Statistical inference of 2D random stress fields obtained from polycrystalline aggregate calculations - École des Ponts ParisTech
Article Dans Une Revue International Journal of Fracture Année : 2012

Statistical inference of 2D random stress fields obtained from polycrystalline aggregate calculations

Hung Xuan Dang
  • Fonction : Auteur
  • PersonId : 917672
Marc Berveiller
  • Fonction : Auteur
  • PersonId : 858577
Asmahana Zeghadi
  • Fonction : Auteur
  • PersonId : 877551

Résumé

The spatial variability of stress fields resulting from polycrystalline aggregate calculations involving random grain geometry and crystal orientations is investigated. A periodogram-based method is proposed to identify the properties of homogeneous Gaussian random fields (power spectral density and related covariance structure). Based on a set of finite element polycrystalline aggregate calculations the properties of the maximal principal stress field are identified. Two cases are considered, using either a fixed or random grain geometry. The stability of the method w.r.t the number of samples and the load level (up to 3.5 \% macroscopic deformation) is investigated.
Fichier principal
Vignette du fichier
Sudret-IJF-2012.pdf (3.67 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00660409 , version 1 (16-01-2012)

Identifiants

  • HAL Id : hal-00660409 , version 1

Citer

Bruno Sudret, Hung Xuan Dang, Marc Berveiller, Asmahana Zeghadi. Statistical inference of 2D random stress fields obtained from polycrystalline aggregate calculations. International Journal of Fracture, 2012, pp.1-30. ⟨hal-00660409⟩
328 Consultations
373 Téléchargements

Partager

More