%0 Journal Article %T Statistical inference of 2D random stress fields obtained from polycrystalline aggregate calculations %+ Méthodes d'Analyse Stochastique des Codes et Traitements Numériques (GdR MASCOT-NUM) %+ Matériaux et Structures Architecturés (msa) %+ Laboratoire de Mécanique et Ingénieries (LAMI) %+ EDF R&D (EDF R&D) %A Sudret, Bruno %A Dang, Hung, Xuan %A Berveiller, Marc %A Zeghadi, Asmahana %< avec comité de lecture %@ 0376-9429 %J International Journal of Fracture %I Springer Verlag %P 1-30 %8 2012-01-02 %D 2012 %K Polycrystalline aggregates %K Crystal plasticity %K Random fields %K Spatial variability %K Correlation structure %Z Engineering Sciences [physics]/Materials %Z Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] %Z Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]Journal articles %X The spatial variability of stress fields resulting from polycrystalline aggregate calculations involving random grain geometry and crystal orientations is investigated. A periodogram-based method is proposed to identify the properties of homogeneous Gaussian random fields (power spectral density and related covariance structure). Based on a set of finite element polycrystalline aggregate calculations the properties of the maximal principal stress field are identified. Two cases are considered, using either a fixed or random grain geometry. The stability of the method w.r.t the number of samples and the load level (up to 3.5 \% macroscopic deformation) is investigated. %G English %2 https://enpc.hal.science/hal-00660409/document %2 https://enpc.hal.science/hal-00660409/file/Sudret-IJF-2012.pdf %L hal-00660409 %U https://enpc.hal.science/hal-00660409 %~ ENPC %~ PRES_CLERMONT %~ CNRS %~ UNIV-BPCLERMONT %~ UR-NAVIER %~ NAVIER-STRUCTURES %~ PARISTECH %~ INSTITUT_PASCAL %~ IFSTTAR %~ ACL-SF %~ ACL-SPI %~ EDF %~ UNIV-EIFFEL %~ IFSTTAR-UNIVEIFFEL