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Abstract The spatial variability of stress �elds resulting from polycrystalline
aggregate calculations involving random grain geometry and crystal orienta-
tions is investigated. A periodogram-based method is proposed to identify the
properties of homogeneous Gaussian random �elds (power spectral density and
related covariance structure). Based on a set of �nite element polycrystalline
aggregate calculations the properties of the maximal principal stress �eld are
identi�ed. Two cases are considered, using either a �xed or random grain ge-
ometry. The stability of the method w.r.t the number of samples and the load
level (up to 3.5 % macroscopic deformation) is investigated.

Keywords Polycrystalline aggregates� Crystal plasticity � Random �elds �
Spatial variability � Correlation structure

1 Introduction

In pressurized water reactors of nuclear plants, the pressure vessel constitutes
one element of the second safety barrier between the radioactive fuel rods and
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the external environment. It is made of 16MND5 (A508) steel which is forged
and welded. In case of operating accidents such as LOCA (loss of coolant
accident), the pressure vessel is subjected to a pressurized thermal shock due
to fast injection of cold water into the primary circuit. If some defects (e.g
cracks) were present in the vessel wall this may lead to crack initiation and
propagation and the brittle fracture of the vessel. The detailed study of the
embrittlement of 16MND5 steel under irradiation is thus a great concern for
electrical companies such as EDF.

The brittle fracture behavior of the 16MND5 steel has been thoroughly
studied in the last decade using the local approach of fracture theory (Tan-
guy, 2001) and the so-called Beremin model (Beremin, 1983), which assumes
that cleavage is controlled by the propagation of the weakest link between a
population of pre-existing micro-defects in the material. This approach has
been recently coupled with polycrystalline aggregates simulations (Mathieu
et al, 2006), (Mathieu et al, 2010).

The main idea is to model a material representative volume element (RVE)
as a polycrystalline synthetic aggregate and compute the stress �eld under
given load conditions. As a post-processing a statistical distribution of defects
(carbides) is sampled over the volume. In each Gauss point of the �nite element
mesh the cleavage criterion is attained somewhere along the load path if a)
the equivalent plastic strain has attained some threshold (cleavage initiation)
and b) a Gri�th-like criterion applied to the size of the carbide in this Gauss
point is reached (cleavage propagation). Within the weakest link theory the
failure of a single critical carbide induces the failure of the RVE.

From a single RVE simulation (i.e. a single stress �eld) various distributions
of carbides are drawn, each realization leading to a maximal principal stress
associated to failure. Then the distribution of these quantities is �tted using a
Weibull law (Mathieu et al, 2010). In such an approach, the current practice
of computational micromechanics assumes that the RVE is large enough to
represent the behavior of the material so that a single polycrystalline analy-
sis is carried out (the large CPU required by polycrystalline simulations also
favours the use of a single simulation). However it is believed that numerous
parameters such as grain geometry and orientation may in
uence the stress
�eld and thus the �nal result.

The connection between micromechanics and stochastic methods has been
given much attention in the past few years, as shown in Graham-Brady et al
(2006); Stefanou (2009). Many papers are devoted to developing probabilis-
tic models for reproducing a random microstructure, e.g. Graham and Bax-
ter (2001); Liu et al (2007); Chung et al (2005); Chakraborty and Rahman
(2008). The speci�c representation of polycrystalline microstructures has been
addressed in Arwade and Grigoriu (2004); Grigoriu (2010); Li et al (2010);
Kouchmeshky and Zabaras (2010) among others. The propagation of the un-
certainty on the microstructure through a micromechanical model in order to
study the variability of the resulting strain and stresses has not been addressed
much though (seee.g. Kouchmeshky and Zabaras (2009)).
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In this paper it is proposed to identify the properties of a stress random
�eld resulting from the progressive loading of a polycrystalline aggregate. More
precisely, assuming that the stress random �eld is Gaussian, a procedure called
periodogram methodis devised, which allows one to identify the correlation
structure of the resulting stress �eld.

The paper is organized as follows: in Section 2 basics of Gaussian ran-
dom �elds are recalled and the periodogram method is presented (Dang et al,
2011b). The polycrystalline aggregate computational model is detailed in Sec-
tion 3. The methodology for identifying the correlation structure of the re-
sulting stress �eld is presented in Section 4. Two application cases are then
investigated, namely an aggregate with �xed grain boundaries and random
crystallographic orientations (Section 5) and an aggregate with both random
geometry and orientations (Section 6). The variance of the resulting stress
�eld as well as the spatial covariance function and its correlation lengths is
investigated in details. The properties of the identi�ed random �elds will be
used in a forthcoming study in the context of the local approach to fracture,
as explained above.

2 Inference of the properties of a Gaussian random �eld

In this section an identi�cation method called periodogram is presented, which
uses an estimator of thePower Spectral Density(PSD) in order to identify the
correlation structure of a Gaussian homogeneous random �eld. Based on origi-
nal developments by Stoica and Moses (1997) and Li (2005) for unidimensional
�elds, it has been extended to two-dimensional cases by Dang et al (2011b). As
it relies upon the use of the Fast Fourier Transform (FFT) its computational
e�ciency is remarkable.

2.1 De�nitions

A Gaussian random �eld Z (x ; ! ) is completely de�ned by its mean value
� (x ), its standard deviation � (x) and its auto-covariance function C(x ; x 0). It
is said homogeneousif the mean value � (x ) and the standard deviation � (x )
are constant in the domain of de�nition of x and the auto-covariance function
C(x ; x 0) only depends on the shift h = x � x 0. Let us introduce the n� th
statistical moment mn

Z and the spatial averagemn
V :

mn
Z = E [Z n (x 0; ! )] =

1Z

�1

zn (x 0; ! )f Z (z; x 0)dz (1)

mn
V = lim

V !1

1
V

Z

V

zn (x ; ! 0)dx (2)
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Table 1 Covariance functions and associated power spectral densities for homogeneous
twodimensional random �elds

Model Covariance function Power spectral density

Exponential � 2exp
h
� ( j h 1 j

l 1
+ j h 2 j

l 2
)
i

� 2 2l 1
1+4 � 2 l 2

1 f 2
1

2l 2
1+4 � 2 l 2

2 f 2
2

Gaussian � 2exp
�

� ( h 2
1

l 2
1

+ h 2
2

l 2
1

)
�

� 2 �l 1exp
�
� 2 l21 f 2

1

�
�l 2exp

�
� 2 l22 f 2

2

�

Wave � 2sinc( j h 1 j
l 1

)sinc( j h 2 j
l 2

) � 2 �l 1 rect1 (�l 1 f 1 ) �l 2 rect1 (�l 2 f 2 )

Triangle � 2 tri( j h 1 j
l 1

)tri( j h 2 j
l 2

) � 2 l1sinc2 (�f 1 l1 ) l2sinc2 (�f 2 l2 )

sinc(x) = sin x=x
tri(x) = 1 � j x j if jx j � 1 and 0 otherwise
rect � (f ) = 1 if jf j � �

2 and 0 otherwise

The �eld is said ergodic if its ensemble statistics is equal to the spatial
average,i.e. mn

Z = mn
V (Cramer and Leadbetter, 1967). Several popular co-

variance models for two-dimensional homogeneous random �elds are presented
in Table 1. In this table, � is the constant standard deviation of the �eld, h1; h2

are the components of the shifth in the two directions, l1; l2 are the correlation
lengths in the two directions. Gaussian and exponential models are plotted in
Figure 1 for the sake of illustration.
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Fig. 1 Gaussian covariance model (left) and Exponential covariance model (right) : � = 2,
l1 = l2 = 5

The power spectral density(PSD) of the random �eld is the Fourier trans-
form of its covariance function as a result of the Wiener-Khintchine relation-
ship (Preumont, 1990). The following relationships hold:

S(f 1; f 2) =
1R

�1

1R

�1
C(h1; h2)e� i 2�f 1 h1 e� i 2�f 2 h2 dh1dh2 (3)

C(h1; h2) =
1R

�1

1R

�1
S(f 1; f 2)ei 2�f 1 h1 ei 2�f 2 h2 df 1df 2 (4)
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The PSD of the Gaussian and exponential covariance models are presented in
Table 1.

2.2 Identi�cation of a PSD

2.2.1 Empirical periodogram

One considers an ergodic homogeneous random �eldZ (x1; x2), (x1; x2) 2 D 1 �
D2 � R2 for which a singlerealization z(x1; x2) is available. If the random �eld
was de�ned over an in�nite domain, the classical estimation of the covariance
function would be:

Ĉ(h1; h2) =
1

4MN

N � 1X

n = � N

M � 1X

m = � M

Z (x1n + h1; x2m + h2)Z (x1n ; x2m ) (5)

By de�nition, the Fourier transform of the covariance estimation is an estima-
tion of the PSD.

Ŝ(f 1; f 2) =
1

4MN
~Z (f 1; f 2) ~Z � (f 1; f 2) =

1
4MN

j ~Z (f 1; f 2)j2 (6)

where j:j denotes the modulus operator.
In practice, the problem is to estimate the periodogram from a limited

amount of data gathered on N � M grid f z(x1i ; x2j ); i = 1 ; : : : ; N ; j =
1; : : : ; M g. Due to symmetry, the covariance estimation is recast as follows:

Ĉ(h1k ; h2l ) =
1

NM

N � kX

n =1

M � lX

m =1

Z (x1n + h1k ; x2m + h2l ) Z (x1n ; x2m ) (7)

By taking the expectation of the above equation one gets:

E
h
Ĉ(h1k ; h2l )

i
=

N � k
N

M � l
M

E [Z (x1n + h1k ; x2m + h2l )Z (x1n ; x2m )]

=
N � k

N
M � l

M
C(h1; h2)

(8)

Using the symmetry of the covariance function, one can write:

E
h
Ĉ(h1k ; h2l )

i
= wB (k; l )C(h1; h2) (9)

where wB (k; l ) is the triangle window, also known as the Bartlett window
(Figure 2):

wB (k; l ) =
� N �j k j

N
M �j l j

M if jkj � N ; jl j � M
0 otherwise

(10)

Consequently the expectation of the periodogram estimation becomes:

E
h
Ŝ(f 1k ; f 2l )

i
= F

n
E

h
Ĉ(h1k ; h2l )

io
= Ff wB (k; l )C(h1; h2)g

= WB (f 1; f 2) � S(f 1; f 2)
(11)
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Table 2 Window functions used in the modi�ed periodogram approach

Model Window equation

Bartlett
� N �j k j

N
M �j l j

M if jkj � N ; jl j � M
0 otherwise

Hann

( h
0:5 + 0 :5cos( �k

N )
i h

0:5 + 0 :5cos( �l
M )

i
if jkj � N ; jl j � M

0 otherwise

Hamming

( h
0:54 + 0 :46cos(�k

N )
i h

0:54 + 0 :46cos( �l
M )

i
if jkj � N ; jl j � M

0 otherwise

Blackman

( h
0:42 + 0 :5cos( �k

N ) + 0 :08cos(2�k
N )

i h
0:42 + 0 :5cos( �l

M ) + 0 :08cos(2�l
M )

i
if jkj � N ; jl j � M

0 otherwise

where F and WB (f 1; f 2) respectively denote the 2D Fourier transform op-
erator and the Fourier transform of the Bartlett window and � denotes the
convolution product. This window tends to a Dirac pulse when N; M tend
to in�nity and wB tends to a unit constant. Thus the periodogram estima-
tion is asymptotically unbiased. However it is not consistent since its variance
does not tend to zero (Preumont, 1990). Furthermore using this window leads
to a convolution product which introduces additional computational burden.
Hence in practice, the modi�ed periodogram presented in the next section is
used to estimate the PSD of the random �eld.

2.2.2 Modi�ed periodogram

The modi�ed periodogram is built up in order to avoid the convolution product
with the transformed window WB (f 1; f 2) in Eq.(11). In this approach, the data
is multiplied directly with the window w(x; y) before the Fourier transform is
carried out. It aims at �ltering the data to limit the in
uence of long distance
terms and to focus on the information given by the short distance terms. This
leads to the following estimate:

Ŝ(f 1; f 2) =
1

NMU
jF f z(x1; x2):w(x1; x2)g j2 (12)

where U is the energy of the window calculated by:

U =
1

D1D2

NX

i =1

MX

j =1

w2(x1i ; x2j ) (13)

and D1; D2 denote the size of the two-dimensional domainD1 � D 2. Various
window functions are proposed in Preumont (1990), see Table 2. In this paper
we will use mainly the Blackman window (Figure 2).
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Fig. 2 (a) Bartlett window ; (b) Blackman window

2.2.3 Average modi�ed periodogram

As shown in Section 2.2.1, the estimation of the periodogram is asymptotically
unbiased, however not consistent since its variance does not tend to zero when
N; M tend to in�nity. The averaging of the modi�ed periodogram will solve
this problem. Assume that L realizations of the random �eld are available. For
each realizationzl (x1; x2), one calculates the periodogram as in Eq.(12):

Ŝl (f 1; f 2) =
1

NMU
jF

�
zl (x1; x2):w(x1; x2)

	
j2 (14)

with 1 � l � L . Then one calculates the average periodogram by:

S(f 1; f 2) =
1
L

LX

l =1

Ŝl (f 1; f 2) (15)

Therefore the variance of the average periodogram is:

Var
�
S(f 1; f 2)

�
=

1
L

Var
h
Ŝ(f 1; f 2)

i
(16)

It is then obvious that this variance tends to zero when L tends to in�nity,
making the \average modi�ed periodogram" approach more robust.

2.2.4 Final algorithm for PSD estimation

As a summary, the algorithm to estimate the PSD of a random �eld from L
realizations may be decomposed into the four following steps:

1. multiplication of each realization by a selected window,e.g. the Blackman
window (see Table 2);

2. computation of 2D Fourier transform of the product of the current realiza-
tion by the �ltering window;

3. computation of the modulus of the result to obtain the PSD estimation of
each realization;
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4. averaging of theL PSD estimations.

Once the empirical periodogram has been computed, atheoretical peri-
odogram is selected (e.g. Gaussian, exponential, etc., see Table 1) and �tted
using a least-square procedure (Marquardt, 1963). In case of multiple potential
forms for the theoretical periodogram the best �tting is selected according to
the smallest residual.

3 Modeling polycrystalline aggregates

In this section the computational mechanical model used in this study is pre-
sented. It simulates a tensile test on a bidimensional polycrystalline aggregate
under plane strain conditions. The various ingredients are discussed, namely:

{ the microstructure of the material and its synthetic representation;
{ the material constitutive law;
{ the boundary conditions applied onto the aggregate;
{ the mesh used in the �nite element simulation.

3.1 Material characterization

The material is a 16MND5 ferritic steel with a granular microstructure. The
ferrite has a body centered cubic (BCC) structure. Three families of slip system
should be taken into account, namely f 110gh111i , f 112gh111i , f 123gh111i .
However, following Franciosi (1985) it is assumed that the glides on the plane
123 are a succession of micro-glides on the planes 110, 112. This leads to
consider only the two �rst families, which yields 24 slip systems by symmetry.

3.2 Crystal plasticity

The model for crystal plasticity chosen in this work has been originally formu-
lated in Meric and Cailletaud (1991) within the small strain framework. The
total strain rate _" ij is classically decomposed as the sum of the elastic strain
rate _"e

ij and plastic strain rate _"p
ij .

_" ij = _"e
ij + _"p

ij (17)

The elastic part follows the Hooke's law and the plastic part is calculated from
the shear strain rates of the 24 active slip systems.

_"p
ij =

24X

g=1

_
 gRg
ij (18)
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where _
 g is the shear strain rate of the slip systemg and Rg
ij is the Schmid

factor which presents the geometrical projection tensor. The latter is calculated
from the normal vector to the gliding plane n and the direction of gliding m.

Rg
ij =

1
2

(mi nj + mj ni ) (19)

The Resolved Shear Stress (RSS)� g of the slip system g is the projection of
the stress tensor via the Schmid factor.

� g = Rg
ij � ij (20)

The shear strain rates _
 g of each slip systemg are the internal variable that
describes plasticity. The evolution of these variables depends on the di�erence
between the RSS� g and the actual critical RSS � g

c in an elastoviscoplastic
setting:

_
 g =
�

� g � � g
c

K

� n

sign(� g) (21)

where K and n are material constants, and sign(a) = a=jaj if a 6= 0 and 0
otherwise. Note that this formula corresponds to an elastoviscoplastic consti-
tutive law but the viscous e�ect will be negligible if su�ciently large values
ofr K and n are selected. Its power form allows one to automatically detect
the active slip systems. All the systems are considered active but the slip rate
is signi�cant only if the RSS � g is much higher than the critical RSS � g

c . This
procedure allows one to numerically smooth the elastoplastic constitutive law.

The critical RSS � g
c evolves according to the following isotropic hardening

law:

� g
c = � g

c0 + Qg
24X

s=1

hgs(1 � e� bg 
 s
cum ) (22)

where 
 s
cum =

tR

t 0

j _
 s jdt. The exponential term presents the hardening satura-

tion in the material when the accumulated slip is high. � g
c0 is the initial critical

RSS on the considered systemg. Qg and bg are parameters which depend on
the material. hgs is the hardening matrix of size 24� 24 whose component
hgs presents the hardening e�ect of the systemg on the system s. In the
present work, one considers only two families of slip systems named 110h111i ,
112h111i . Thus the hardening matrix hgs is completely de�ned by four coef-
�cients h1; h2; h3; h4 only. The values of these coe�cients and this matrix are
presented in Mathieu (2006). All the parameters describing crystal plasticity
for 16MND5 steel are gathered in Table 3.

3.3 Microstructure and boundary conditions

The construction of the aggregate is based on the Voronoi polyhedra model
(Gilbert, 1962), generated in this work with the Quickhull algorithm (Barber
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Table 3 Parameters of the crystal plasticity constitutive law for the 16MND5 steel (Math-
ieu, 2006)

Isotropic elasticity Viscoplasticity Isotropic hardening

E � K n � c0 Q b h1 h2 h3 h4

(MP a ) ( MP a:s 1=n ) ( MP a ) ( MP a )
210000 0:3 15 12 175 20 30 1 1 1 1

et al, 1996). The geometry of the resulting synthetic aggregate, which is a
simpli�ed representation of the real microstructure of the 16MND5 steel, is
shown in Figure 3. It corresponds to a square of size 1000 (this is a relative
length which shall be scaled with a real length depending on the grain size).
Grain boundaries are considered as perfect interfaces.

Fig. 3 (a) Two-dimensional polycrystalline aggregate modelling a volume of 16MND5 steel
(100 grains) (b) Mesh of the specimen (11,295 nodes)

The same crystallographic orientation, de�ned by the three Euler angles
' 1, � , ' 2, is randomly assigned to all integration points inside each individ-
ual grain using a uniform distribution. In Figure 3-a, the color of each grain
corresponds to a given crystallographic orientation. The mesh is generated
by the BLSURF algorithm (Laug and Borouchaki, 1999) of the Salome soft-
ware (http://www.salome-platform.org). The mesh of the generated specimen
is presented in Figure 3-b. The �nite elements are quadratic 6-node triangles
with 3 integration points.

The boundary conditions applied onto the aggregate are sketched in Fig-
ure 4. The lower surface is blocked along theY direction. The displacements
DX = DY = 0 are blocked at the origin of the coordinate system (lower left
corner). On the upper surface, an homogeneous displacement is applied by
steps in theY direction up to a macroscopic strain equal to 3:5%. The compu-
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tation is carried out using the open source �nite element software CodeAster
(http://www.code-aster.org).

Fig. 4 Boundary conditions used for simulating the tensile test

The computational cost for such a non linear analysis is high. The number
of degrees of freedom of the �nite element model is 33; 885. A parallel com-
puting method based on sub-domain decomposition is used. One simulation of
a full tensile test up to 3.5% strain requires about 2 hours computation time
when distributed over 4 processors.

3.4 Results

In this section, we present the result of the simulation of a tensile test on the
2D aggregate at di�erent scales. We de�ne the mean stress and strain tensor
calculated in a volumeV by:

� =
1
V

Z

V

� dV (23)

E =
1
V

Z

V

" dV (24)

Figure 5 shows the macroscopic strain/stress curve. It is observed that
� XX = 0 as expected whereas the uniaxial behaviour shows a global elasto-
plastic behaviour.

At the mesoscopic scale one can observe the mean strain-stress relationship
in each grain as shown in Figure 6. Because of the di�erent crystallographic
orientations in each grain, the mean elastoplastic beahaviour is di�erent from
grain to grain. Furthermore, whereas the mean stress� XX calculated in all the
specimen is zero, the mean values calculated in each single grain are scattered
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Fig. 5 Macroscopic strain-stress relationship in the X and Y directions

around zero. This observation shows the �rst scale of heterogeneity of the
material.

Fig. 6 Mesoscopic behavior in each grain in the X (left) and Y (right) directions

The microscopic behaviour of a single grain (Grain #24, see tag in Figure 3)
is �nally studied. The mean behavior and the strain-stress relationship at each
node of this grain are plotted in Figure 7 for four levels of macroscopic strain,
namely EY Y = 0 :15%; 0:65%; 1:5%; 3:5%.

In this �gure the blue point represents the stress �eld within the grain for
a macroscopic strain levelEY Y = 0 :15%. This single point shows that the
stress �eld is homogeneous within the grain in the elastic domain. The red



Statistical inference of 2D random stress �elds 13

Fig. 7 Microscopic strain-stress relationship for various nodes within Grain #24 and mean
tensile curve

points represent the strees values� Y Y in each node of the grain atEY Y =
0:65% macroscopic strain. One observes that the mean strain calculated for this
single grain is 0:85% and the maximal strain value"Y Y in a speci�c node may
attain about 2%. Similar e�ects are observed at other levels of macroscopic
strain, which show the heterogeneity of the strain and stress �elds at the
very microscopic scale. It is observed that the scattering around the mean
curve increases with the macroscopic strain. Indeed, for the �nal loading step
corresponding to EY Y = 3 :5% the mean strain in the grain is about 4.54%,
while the local strain varies form 2.4 to 9%.

4 Identi�cation of the maximal principal stress �eld

In this section the method developed in Section 2 is applied to the identi�-
cation of the properties of the random stress �eld in polycristalline aggregate
calculations. More speci�cally the maximal principal stress �eld � I that is
observed through repeated polycrystalline simulations is considered.

4.1 Finite element calculations and projection

The maximal principal stress �eld is assumed to be Gaussian and homogeneous
(the latter assumption will be empirically checked as shown in the sequel).
The periodogram method is applied usingK = 35 realizations of stress �elds,
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i.e. 35 full elastoplastic analysis of aggregates up to a macroscopic strain of
3.5 %. The identi�cation is carried out successively at various levels of the
macroscopic strain. Two cases are considered:

{ Case #1: the grains geometry is the same for all the �nite element calcu-
lations. Only the crystallographic orientations are varying from one calcu-
lation to the other.

{ Case #2: both the grains geometry and the crystallographic orientations
vary.

The input data of the identi�cation problem is the maximal principal stress
�eld � I obtained from the �nite element calculations. As the periodogram
method is based on a regular sampling of the random �eld under consideration,
the brute result ( i.e. the maximal principal stress at the nodes of the mesh)
has to be projected onto a regular grid. This operation is carried out using
internal routines of Code Aster. Note that a slice of width 100 (i.e. 10% of
total size) is discarded along the edges of the aggregate in order to avoid the
e�ect of boundary conditions on the computed stress �eld, as suggested in
Mathieu (2006). A typical maximal principal stress �eld is shown in Figure 8.

Fig. 8 A realization of the maximal principal stress �eld � I

4.2 Check of the homogeneity of the �eld

As it was described in Section 2 the periodogram method assumes that the
random �eld under consideration is homogeneous. From the available realiza-
tions SIG i (x; y); i = 1 ; : : : ; 35 one �rst checks empirically this assumption
using the following approach:
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{ The ensemble mean and varianceof the �eld is computed point-by-point
throughout the grid for an increasing number of realizationsK = 2 ; : : : ; 35:

� K (x; y) =
1
K

KX

i =1

SIG i (x; y) (25)

� 2
K (x; y) =

1
K � 1

KX

i =1

(SIG i (x; y) � � (x; y))2 (26)

If the �eld is homogeneous these quantities should tend to constants values
that are independent from the position (x; y) when K tends to in�nity.

{ In order to measure the magnitude of the spatial 
uctuation of the latter,
the spatial averageand spatial variance of a realization of a �eld Z (x; y)
sampled onto aN � M grid is de�ned by:

�� Z =
1

NM

NX

i =1

MX

j =1

Z (x i ; yj ) (27)

�� 2
Z =

1
NM

NX

i =1

MX

j =1

(Z (x i ; yj ) � �� Z )2 (28)

whereas the associated \spatial" coe�cient of variation is de�ned by:

CVZ =
�� Z

�� Z
(29)

{ The spatial coe�cient of variation of the ensemble mean and variance
(Eqs.(25)-(26)) are computed and plotted as a function ofK . If the under-
lying random �eld is homogeneous it is expected that the curves ofCV� K

and CV� 2
K

converge to zero.

4.3 Choice of theoretical periodograms and �tting

From a visual inspection of the obtained empirical periodograms it appears
that a Gaussian or an exponential model of periodogram such as those pre-
sented in Table 1 may be consistent with the data. However it appeared in the
various analyses that the peak of the periodogram is not always in zero. An
initial frequency is thus introduced which shifts the theoretical periodogram.
Finally, due to lack of �tting of the single-type periodogram ( e.g. Gaussian
and exponential), a combination thereof is also �tted. The most general model
�nally reads:

S(f x ; f y ) = � 2
1 �l x 1exp

h
� 2l2

x 1(f x � f (1)
x 0 )2

i
ly1exp

h
� 2l2

y1(f y � f (1)
y0 )2

i

+ � 2
2

2lx 2

1 + 4� 2l2
x 2(f x � f (2)

x 0 )2

2ly2

1 + 4� 2l2
y2(f y � f (2)

y0 )2

(30)
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where lx 1; ly1; lx 2; ly2 are correlation lengths in each directionX and Y (aniso-
tropic �eld) for each component (1) (Gaussian part) and (2) (exponential part).
Similarly f (1)

x 0 ; f (1)
y0 ; f (2)

x 0 ; f (2)
y0 are initial shift frequencies.

Note that Eq.(30) corresponds only to positive values off x ; f y . The pe-
riodogram is then extended by symmetry for negative frequencies. In terms
of associated covariance models, the linear combination of periodograms leads
to a linear combination of covariance models. The initial frequency shift in
the periodogram leads to oscillatory cosine terms in the covariance by inverse
Fourier transform:

C(hx ; hy ) = � 2
1exp

"

� (
h2

x

l2
x 1

+
h2

y

l2
y1

)

#

cos(2�f (1)
x 0 hx )cos(2�f (1)

y0 hy )

+ � 2
2exp

�
� (

jhx j
lx 2

+
jhy j
ly2

)
�

cos(2�f (2)
x 0 hx )cos(2�f (2)

y0 hy )

(31)

In order to compare the various �ttings the least-square residual between
the empirical periodogram �S(f x ; f y ) (Eq.(15)) and the �tted periodogram
Stheor (f x ; f y ) is �nally computed. The following non dimensional error es-
timate is used:

� =

vu
u
t 1

NM

NX

i =1

MX

j =1

� �S(f xi ; f yj ) � Stheor (f xi ; f yj )
� 2

= max
( f x ;f y )

�S(f x ; f y ) (32)

5 Results { Case #1: �xed grain geometry

5.1 Check of the homogeneity

First the homogeneity of the maximal principal stress �eld is checked using
the methodology proposed in Section 4.2. Figure 9 shows the evolution of
CV� K and CV� 2

K
. These quantities regularly decrease and it is seen that they

would tend to zero if a larger number of realizations was available. This leads
to accepting the assumption that the random �eld is homogeneous since the

uctuations around the constant spatial average tend to zero whenK increases.

5.2 Identi�cation of periodograms at 3.5% macroscopic strain

The average empirical periodogram obtained fromL = 35 realizations of the
maximal principal stress �eld � I at 3.5% of macroscopic strain is plotted in
Figure 10-a.

Table 4 presents the results of the �tting of the average empirical peri-
odogram calculated from 35 realizations of the �eld using three models, namely
Gaussian, exponential and a mixed \Gaussian + exponential" as in Eq.(30).

From the results in Table 4 it appears that the mixed model provides a
signi�cantly smaller least-square error than that obtained from the Gaussian
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Fig. 9 Case #1: Evolution of CV� K and CV K
� with respect to the number of realizations

Fig. 10 Case #1: (a) Average empirical periodogram of the stress �eld at 3 :5% macroscopic
strain { (b) best �tted periodogram

Table 4 Fitted parameters and error estimates for the three �tted models: Gaussian, ex-
ponential and mixed \Gaussian + exponential"

Model
� Gaussian Exponential

(Eq.(32)) � 1 lx 1 ly 1 f (1)
x 0 f (1)

y 0 � 2 lx 2 ly 2 f (2)
x 0 f (2)

y 0
Gaussian 0:0043 69:4 104:6 102:9 0:00287 0

Exponential 0 :0039 84:2 73:8 87:5 0:00275 0
Mixed 0 :0017 54:7 138:4 159:1 0:00244 0 57:6 57:5 63:5 0:00562 0:0028

and exponential models respectively. The corresponding �tted periodogram is
plotted in Figure 10-b.

In order to better appreciate the quality of the �tting, two-dimensional
cuts of the empirical (resp. �tted) periodogram are given in Figures 11{13.
Figure 11 corresponds to a cut along theX direction for two values of f y =
0 ; 0:0013. Figure 12 corresponds to a cut along theY direction for two values
of f x = 0 ; 0:0013. Finally Figure 13 corresponds to a cut along the diagonal
f x = f y .

From the above �gures it appears that the �tting of the empirical peri-
odogram by a mixed model is remarkably accurate. It is interesting to interpret
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Fig. 11 Case #1: Cut of the periodograms in the X direction

Fig. 12 Case #1: Cut of the periodograms in the Y direction

Fig. 13 Case #1: Cut of the periodograms along the diagonal f x = f y

the �tted parameters reported in Table 4. First it is observed that the ampli-
tude of each component of the mixed periodogram is similar since� 1 � � 2.
The variance of the �eld is equal to � 2

1 + � 2
2 � 6309 MPa2. The associated

standard deviation is 79.4 MPa. As the mean principal stress is 720 MPa at
3.5% macroscopic strain, the coe�cient of variation of the �eld is about 11%.
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In order to interpret the correlation length parameters let us de�ne the
mean size of a grainSg such a two-dimensional aggregate. As the volume of
edge length equal to 1,000 corresponds to 100 grains, the equivalent diameter
of a single grain reads:

Dg =

r
4
�

Sg =

r
4
�

1000� 1000
100

= 112:8 (33)

Thus the correlation lengths obtained from the �tting vary from 0.55 to 1.3 Dg.
This shows that the characteristic dimension of the underlying microstructure
(i.e. Dg) is of the same order of magnitude as these parameters. In other words
the scale of local 
uctuation of the stress �eld is related to the grain size, as
heuristically expected. Moreover, it appears that the lengths in theX and Y
directions are almost identical. The stress �eld does not show any signi�cant
anisotropy in this case.

5.3 In
uence of the number of realizations

In this section the stability of the �tted parameters as a function of the num-
ber of available realizations K used in the average periodogram method is
considered. In practice the procedure applied in the previous paragraph is run
using K = 8 ; 9; : : : ; 35 realizations of the stress �eld. The evolution of the
standard deviations (� 1; � 2) is shown in Figure 14. The evolution of the cor-
relation lengths l (x;y )(1 ;2) is shown in Figure 15. The evolution of the initial

frequenciesf (1 ;2)
(x;y )0

is shown in Figure 16.

Fig. 14 Case #1: Evolution of the �tted standard deviations with respect to the number
of realizations K = 8 ; : : : ; 35

From these �gures it appears that the �tted parameters tend to a con-
verged value when at least 20 realizations of the stress �eld are used for their
estimation.
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Fig. 15 Case #1: Evolution of the �tted correlation lengths in the X; Y directions with
respect to the number of realizations K = 8 ; : : : ; 35

Fig. 16 Case #1: Evolution of the �tted initial frequency in the X; Y directions with respect
to the number of realizations K = 8 ; : : : ; 35

5.4 In
uence of the macroscopic strain level

In this section the evolution of the parameters of the �tted periodograms as a
function of the macroscopic strain is investigated. For this purpose the method-
ology presented in Section 5.2 is applied using the realizations of the maximal
principal stress �elds corresponding to various levels of the loading curve,i.e.
various values of the equivalent macroscopic strainEY Y = 0 :; : : : ; 3:5%.

The evolution of the standard deviations (� 1; � 2) is shown in Figure 17.
The two components of the periodogram (e.g. Gaussian and exponential) con-
tribute for approximately the same proportion to the total variance of the
�eld since the curves are almost superimposed. Note that these standard devi-
ations increase with the applied load in the same way as the mean load curve
(Figure 4).

The evolution of the correlation lengths l (x;y )(1 ;2) is shown in Figure 18.

The evolution of the initial frequencies f (1 ;2)
(x;y )0

is shown in Figure 19. It is
observed that once plasticity is settled (i.e. once the macroscopic strainEY Y

is greater than � 0:5%) the parameters describing the 
uctuations of the
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Fig. 17 Case #1: Evolution of the �tted standard deviations with respect to the load level
(macroscopic strain EY Y = 0 :; : : : ; 3:5%)

maximal principal stress �eld are almost constant. This conclusion is valid
for both the correlation lengths and the initial frequencies. Note that the
convergence is faster for the parameters related to theX direction, i.e. the
direction that is transverse to the one-dimensional loading. Finally it is also
observed that f (1)

y0 is almost equal to zero whatever the load level, thus the
zero value in Table 4.

Fig. 18 Case #1: Evolution of the �tted correlation lengths in the X; Y directions with
respect to the load level (macroscopic strain EY Y = 0 :; : : : ; 3:5%)



22 Bruno Sudret, Hung Xuan Dang, Marc Berveiller, Asmahana Zeghadi

Fig. 19 Case #1: Evolution of the �tted initial frequency in the X; Y directions with respect
to the load level (macroscopic strain EY Y = 0 :; : : : ; 3:5%)

6 Results { Case #2: random grain geometry

In this section both the randomness in the grain geometry and in the crys-
tallographic orientations are taken into account. A total number of 35 �nite
element models are run. In each case, the grain geometry is obtained from a
uniform sampling of points from which a Vorono•� tessellation is built.

6.1 Check of the homogeneity

As in Section 5 the homogeneity of the maximal principal stress �eld is checked
using the methodology proposed in Section 4.2. Figure 20 shows the evolution
of CV� K and CV� 2

K
. These quantities regularly decrease and it is seen that

they would tend to zero if a larger number of realizations was available. This
leads to accepting the assumption that the random �eld is homogeneous.

Fig. 20 Case #2: Evolution of CV� K and CV K
� with respect to the number of realizations
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6.2 Identi�cation of periodograms at 3.5% macroscopic strain

The average empirical periodogram obtained fromL = 35 realizations of the
maximal principal stress �eld � I at 3.5% of macroscopic strain is plotted in
Figure 22-a. Three types of theoretical periodograms have been �tted as in
the previous section, which lead to the conclusion that the mixed model that
combines a Gaussian and an exponential component is best suited. The �tted
parameters are gathered in Table 5 where the parameters �tted for Case #1
are also recalled for the sake of comparison.

Fig. 21 Case #2: (a) Average empirical periodogram of the stress �eld at 3 :5% macroscopic
strain { (b) best �tted periodogram

In order to check the accuracy of the �tting, two-dimensional cuts of the
empirical (resp. �tted periodogram) are plotted in Figure 22 (cut along the
X direction), Figure 23 (cut along the Y direction), Figure 24 (cut along the
diagonal f x = f y ). Again the �tting is remarkably accurate, meaning that the
�tted model of periodogram accurately represents the spatial variability of the
maximal principal stress �eld.

Fig. 22 Case #2: Cut of the periodograms in the X direction
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Fig. 23 Case #2: Cut of the periodograms in the Y direction

Fig. 24 Case #2: Cut of the periodograms along the diagonal f x = f y

It can be observed from the �gures in Table 5 that the �tting is of equal
quality in both cases (relative error less than 2 10� 3). As far as the contribution
of each component of the periodogram is concerned, the symmetry reported in
Case #1 is not existing anymore since the standard deviation of the exponen-
tial contribution ( � 2 = 81:6) is much greater than that of the Gaussian part
(� 1 = 35:8). The total variance of the �eld is 7940 MPA 2, corresponding to
a standard deviation of 89.1 MPa and a coe�cient of variation of 12%. Thus
there is a little more scattering in the random stress �eld obtained in Case #2
when considering both the random grain geometry and orientations.

Table 5 Fitted parameters and error estimates for the mixed \Gaussian + exponential"
periodogram

Case
� Gaussian Exponential

(Eq.(32)) � 1 lx 1 ly 1 f (1)
x 0 f (1)

y 0 � 2 lx 2 ly 2 f (2)
x 0 f (2)

y 0
Case #1 0 :0017 54:7 138:4 159:1 0:00244 0 57:6 57:5 63:5 0:00562 0:0028
Case #2 0 :0018 35:8 269:5 174:5 0:00172 0 81:6 67:2 70:4 0:004 0
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The correlation lengths associated with the exponential part do not di�er
much in Case #2 compared to Case #1 (corresponding here to 1.5 to 2.4Dg).
In contrast the correlation lengths related to the Gaussian part are increased,
which tends to produce less rapidly varying realizations. This may be explained
by the fact that the grain boundaries are \averaged" in Case #2 whereas they
were �xed in Case #1. The stress concentrations that are usually observed at
the grain boundaries are thus smoothed in Case #2 compared to Case #1.

6.3 In
uence of the number of realizations

In this section one considers the stability of the �tted parameters as a func-
tion of the number of available realizationsK used in the average periodogram
method. The procedure applied in the previous paragraph is run usingK =
8; 9; : : : ; 35 realizations of the stress �eld. The evolution of the standard de-
viations (� 1; � 2) and the initial frequencies f (1 ;2)

(x )0
is shown in Figure 25 (note

that f (1 ;2)
(y )0

= 0 in the present case). The evolution of the correlation lengths
l (x;y )(1 ;2) is shown in Figure 26.

Fig. 25 Case #2: Evolution of the �tted standard deviations and the initial frequencies
f (1 ;2)

( x ) 0
with respect to the number of realizations K = 8 ; : : : ; 35

From these �gures it clearly appears that the �tted parameters are almost
constant when the number of realizations of the stress �eld used in their esti-
mation increases. The minimal number ofK = 8 could be used here without
signi�cant errors although it is recommended to keep a value ofK = 20 as in
Case #1 for robustness.

6.4 In
uence of the macroscopic strain level

Finally the evolution of the parameters of the �tted periodograms as a function
of the macroscopic strainEY Y is investigated. For this purpose the identi�ca-
tion method is applied using the realizations of the maximal principal stress
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Fig. 26 Case #2: Evolution of the �tted correlation lengths in the X (left) (resp. Y (right))
directions with respect to the number of realizations K = 8 ; : : : ; 35

�elds corresponding to various levels of the loading curve,i.e. various values
of the equivalent macroscopic strainEY Y = 0 :; : : : ; 3:5%.

Fig. 27 Case #2: Evolution of the �tted standard deviations (left) with respect to the load

level (macroscopic strain EY Y = 0 :; : : : ; 3:5%) (resp. the initial frequencies f (1)
( x;y ) 0

(right))

The evolution of the two standard deviations look similar to the results
obtained in Case #1 (Figure 27). It is observed that the ratio � 2=� 1 is almost
constant all along the loading path up to 3.5% strain. As far as the initial
frequencies are concerned, there is a complete independance with the load
level as soon asEY Y is greater than � 0:5%, i.e. when plasticity has settled in
the aggregate. The same conclusion can be drawn for the various correlation
lengths.
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Fig. 28 Case #2: Evolution of the �tted correlation lengths in the X (left) (resp. Y (right))
directions with respect to the load level (macroscopic strain EY Y = 0 :; : : : ; 3:5%)

7 Conclusions

The distribution of stresses in a material at a microscopic scale (where hetero-
geneities such as grain structures are taken into account) has been given much
attention in the context of computational homogenization methods. However
the current methods usually stick to a deterministic formulation. Starting from
the premise that any representative volume element (such as a polycristalline
aggregate) is a single speci�c realization of a random quantity, the present
paper aims at using methods of computational stochastic mechanics for rep-
resenting the (random) stress �eld.

After recalling the basic mathematics of Gaussian random �elds, the paper
presents aperiodogram methodfor estimating the parameters describing the
spatial 
uctuation of a random �eld from a collection of realizations of this
�eld. This method is adapted in two dimensions from well-known techniques
originating from signal processing.

The material under consideration, namely the 16MND5 steel used in nu-
clear pressure vessels is then presented together with a local modelling by
polycrystalline �nite element calculations. From a collection of 35 realizations
of the (maximal principal) stress �eld, the spatial correlation structure of the
latter is identi�ed. By �tting various theoretical periodograms, a mixed model
combining a Gaussian and an exponential-type contribution is retained. These
two contributions may be empirically interpreted as follows: The Gaussian
part corresponds to the 
uctuation from grain to grain ; the (less smooth)
exponential component corresponds to the sharp grain boundaries stress con-
centrations.

Two cases are considered, namely a \�xed-geometry" case in which only
the crystallographic orientations changes within the 35 realizations (�xed grain
boundaries), and a \variable geometry" in which the grain geometry is ran-
domly sampled for each realization. In both cases, a good convergence of the
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procedure is observed when the number of realizations increases. A set of
20 realizations is recommended, although good results are already obtained
for � 8 realizations in Case #2.

Moreover it is shown that the correlation lengths are of the same order
of magnitude as the grain size. The initial frequencies that are required for a
best �tting of the periodogram and that translate into some kind of spatial
periodicity in the covariogram could be explained by spurious edge e�ects due
to the limited size of the aggregate. This should be investigated more in details
in further analysis.

Another important result is drawn from the comparison of the �tted param-
eters at various load levels. Once plasticity is settled within the aggregate, the
parameters describing the spatial 
uctuations of the �eld are almost constant.
Moreover the variance of the �eld (sum of the variance of each component
of the periodogram) increases proportionally to the mean strain/stress curve,
meaning that the coe�cient of variation of the stress �eld is almost constant
(around 11% for the �xed geometry and 12% for the variable geometry).

The results presented in this paper should be con�rmed by additional in-
vestigations under di�erent types of loading (e.g. biaxial loading). The tools
that are presented here may be applicable to three-dimensional aggregates
and stress �elds at a much larger computational cost though. This work is
currently in progress.

The identi�ed stress �elds may eventually be re-simulated: new realizations
of the stress �elds are straightforwardly obtained at a low conmputational cost
by random �eld simulation techniques such as the spectral approach or the
circulant embedding method (Preumont, 1990; Dang et al, 2011a,b). This will
allow one to apply local approach to fracture analysis (such as that presented
in Mathieu et al (2006)) for the assessment of the brittle fracture of metallic
materials.
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