Statistical inference of 2D random stress fields obtained from polycrystalline aggregate calculations - École des Ponts ParisTech Access content directly
Journal Articles International Journal of Fracture Year : 2012

Statistical inference of 2D random stress fields obtained from polycrystalline aggregate calculations

Hung Xuan Dang
  • Function : Author
  • PersonId : 917672
Marc Berveiller
  • Function : Author
  • PersonId : 858577
Asmahana Zeghadi
  • Function : Author
  • PersonId : 877551

Abstract

The spatial variability of stress fields resulting from polycrystalline aggregate calculations involving random grain geometry and crystal orientations is investigated. A periodogram-based method is proposed to identify the properties of homogeneous Gaussian random fields (power spectral density and related covariance structure). Based on a set of finite element polycrystalline aggregate calculations the properties of the maximal principal stress field are identified. Two cases are considered, using either a fixed or random grain geometry. The stability of the method w.r.t the number of samples and the load level (up to 3.5 \% macroscopic deformation) is investigated.
Fichier principal
Vignette du fichier
Sudret-IJF-2012.pdf (3.67 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00660409 , version 1 (16-01-2012)

Identifiers

  • HAL Id : hal-00660409 , version 1

Cite

Bruno Sudret, Hung Xuan Dang, Marc Berveiller, Asmahana Zeghadi. Statistical inference of 2D random stress fields obtained from polycrystalline aggregate calculations. International Journal of Fracture, 2012, pp.1-30. ⟨hal-00660409⟩
310 View
333 Download

Share

Gmail Facebook X LinkedIn More