Simplotopal maps and necklace splitting - École des Ponts ParisTech Access content directly
Journal Articles Discrete Mathematics Year : 2014

Simplotopal maps and necklace splitting

Abstract

We show how to prove combinatorially the Splitting Necklace Theorem by Alon for any number of thieves. Such a proof requires developing a combinatorial theory for abstract simplotopal complexes and simplotopal maps, which generalizes the theory of abstract simplicial complexes and abstract simplicial maps. Notions like orientation, subdivision, and chain maps are defined combinatorially, without using geometric embeddings or homology. This combinatorial proof requires also a Z p-simplotopal version of Tucker's Lemma.
Fichier principal
Vignette du fichier
Simplotopal_Necklace_web.pdf (367.96 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01792244 , version 1 (15-05-2018)

Identifiers

Cite

Frédéric Meunier. Simplotopal maps and necklace splitting. Discrete Mathematics, 2014, 323, pp.14 - 26. ⟨10.1016/j.disc.2014.01.008⟩. ⟨hal-01792244⟩
53 View
150 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More