Modelling atmospheric dry deposition in urban areas using an urban canopy approach - École des Ponts ParisTech Access content directly
Journal Articles Geoscientific Model Development Year : 2015

Modelling atmospheric dry deposition in urban areas using an urban canopy approach

Abstract

Atmospheric dry deposition is typically modelled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parametrise momentum and heat transfer. We extend this approach here to mass transfer, and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing-length parametrisation of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially distributed dry deposition fluxes. Three different flow regimes are distinguished in the urban canyon depending on the height-to-width ratio of built areas: isolated roughness flow, wake interference flow and skimming flow. Differences between the classical roughness-length model and the model developed here are investigated. Sensitivity to key parameters are discussed. This approach provides spatially distributed dry deposition fluxes that depend on surfaces (streets, walls, roofs) and flow regimes (recirculation and ventilation) within the urban area.
Fichier principal
Vignette du fichier
gmd-8-893-2015.pdf (624.75 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01238317 , version 1 (26-01-2018)

Identifiers

Cite

N. Chérin, Y. Roustan, L. Musson-Genon, C. Seigneur. Modelling atmospheric dry deposition in urban areas using an urban canopy approach. Geoscientific Model Development, 2015, 8 (3), pp.893-910. ⟨10.5194/gmd-8-893-2015⟩. ⟨hal-01238317⟩
139 View
162 Download

Altmetric

Share

Gmail Facebook X LinkedIn More