On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs - École des Ponts ParisTech
Article Dans Une Revue Mathematics of Operations Research Année : 2015

On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs

Résumé

We prove the almost-sure convergence of a class of sampling-based nested decomposition algorithms for multistage stochastic convex programs in which the stage costs are general convex functions of the decisions , and uncertainty is modelled by a scenario tree. As special cases, our results imply the almost-sure convergence of SDDP, CUPPS and DOASA when applied to problems with general convex cost functions.
Fichier principal
Vignette du fichier
ConvergenceOfDecompositionMethods.pdf (488.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01208295 , version 1 (02-10-2015)

Identifiants

Citer

Pierre Girardeau, Vincent Leclere, A. B. Philpott. On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs. Mathematics of Operations Research, 2015, 40 (1), ⟨10.1287/moor.2014.0664⟩. ⟨hal-01208295⟩
144 Consultations
309 Téléchargements

Altmetric

Partager

More