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ON THE CONVERGENCE OF DECOMPOSITION

METHODS FOR MULTISTAGE STOCHASTIC CONVEX

PROGRAMS

P. GIRARDEAU, V. LECLERE, AND A. B. PHILPOTT

Abstract. We prove the almost-sure convergence of a class of sampling-
based nested decomposition algorithms for multistage stochastic convex
programs in which the stage costs are general convex functions of the de-
cisions, and uncertainty is modelled by a scenario tree. As special cases,
our results imply the almost-sure convergence of SDDP, CUPPS and
DOASA when applied to problems with general convex cost functions.

1. Introduction

Multistage stochastic programs with recourse are well known in the sto-
chastic programming community, and are becoming more common in appli-
cations. We are motivated in this paper by applications in which the stage
costs are nonlinear convex functions of the decisions. Production functions
are often modelled as nonlinear concave functions of allocated resources.
For example Finardi and da Silva [4] use this approach to model hydro elec-
tricity production as a concave function of water flow. Smooth nonlinear
value functions also arise when one maximizes profit with linear demand
functions (see e.g. [11]) giving a concave quadratic objective or when co-
herent risk measures are defined by continuous distributions in multistage
problems [13].

Having general convex stage costs does not preclude the use of cutting
plane algorithms for attacking these problems. The most well-known of these
is the stochastic dual dynamic programming (SDDP) algorithm of Pereira
and Pinto [9]. This algorithm constructs feasible dynamic programming
policies using an outer approximation of a (convex) future cost function
that is computed using Benders cuts. The policies defined by these cuts can
be evaluated using simulation, and their performance measured against a
lower bound on their expected cost. This provides a convergence criterion
that may be applied to terminate the algorithm when the estimated cost of
the candidate policy is close enough to its lower bound. The SDDP algo-
rithm has led to a number of related methods [1, 2, 3, 6, 10] that are based
on the same essential idea, but seek to improve the method by exploiting
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the structure of particular applications. We call these methods DOASA
for Dynamic Outer-Approximation Sampling Algorithms but they are now
generically named SDDP methods.

SDDP methods are known to converge almost surely on a finite scenario
tree when the stage problems are linear programs. The first formal proof
of such a result was published by Chen and Powell [1] who derived this for
their CUPPS algorithm. This proof was extended by Linowsky and Philpott
[8] to cover other SDDP algorithms. The convergence proofs in [1] and [8]
make use of an unstated assumption regarding the independence of sampled
random variables and convergent subsequences of algorithm iterates. This
assumption was identified by Philpott and Guan [10], who gave a simpler
proof of almost sure convergence of SDDP methods based on the finite con-
vergence of the nested decomposition algorithm (see [2]). This does not
require the unstated assumption, but exploits the fact that the collection of
subproblems to be solved has a finite number of dual extreme points. This
begs the question of whether SDDP methods will converge almost surely
for general convex stage problems, where the value functions may admit an
infinite number of subgradients.

In this paper we propose a different approach from the one in [1] and [8]
and show how a proof of convergence for sampling-based nested decompo-
sition algorithms on finite scenario trees can be established for models with
convex subproblems (which may not have polyhedral value functions). Our
result is proved for a general class of methods including all the variations dis-
cussed in the literature [1, 2, 3, 6, 9, 10]. The proof establishes convergence
with probability 1 as long as the sampling in the forward pass is indepen-
dent of previous realisations. Our proof relies heavily on the independence
assumption and makes use of the Strong Law of Large Numbers. In contrast
to [10] we have not shown that convergence is guaranteed in all procedures
for constructing a forward pass that visit every node of the scenario tree an
infinite number of times.

The result we prove works in the space of state variables expressed as
random variables adapted to the filtration defined by the scenario tree. Be-
cause this tree has a finite number of nodes, this space is compact, and so
we may extract convergent subsequences for any infinite sequence of states.
Unlike the arguments in [1] and [8], these subsequences are not explicitly
constructed, and so we can escape the need to assume properties of them
that we wish to be inherited from independent sampling.

Although the value functions we construct admit an infinite number of
subgradients, our results do require an assumption that serves to bound
the norms of these. This assumption is an extension of relatively complete
recourse that ensures that some infeasible candidate solutions to any stage
problem can be forced to be feasible by a suitable control. Since we are
working in the realm of nonlinear programming, some constraint qualifica-
tion of this form will be needed to ensure that we can extract subgradients.
In practice, SDDP models use penalties on constraint violations to ensure
feasibility, which implicitly bounds the subgradients of the Bellman func-
tions. Our recourse assumptions are arguably weaker, since we do not have
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a result that shows that they enable an equivalent formulation with an exact
penalization of infeasibility.

The paper is laid out as follows. We first consider a deterministic mul-
tistage problem, in which the proof is easily understandable. This is then
extended in §3 to a stochastic problem formulated in a scenario tree. We
close with some remarks about the convergence of sampling algorithms.

2. The deterministic case

Our convergence proofs are based around showing that a sequence of outer
approximations formed by cutting planes converges to the true Bellman
function in the neighbourhood of the optimal state trajectories. We begin
by providing a proof that Kelley’s cutting plane method [7] converges when
applied to the optimization problem:

W ∗ := min
u∈U

W (u) ,

where U is a convex subset of Rm, and W is a convex function with uniformly
bounded subgradients. The result we prove is not directly used in the more
complex results that follow, but the main ideas on which the proofs rely are
the same. We believe the reader will find it convenient to already have the
scheme of the proof in mind when studying the more important results later
on.

Kelley’s method generates a sequence of iterates
(
uj
)
j∈N by solving, at

each iteration, a piecewise linear model of the original problem. The model
is then enhanced by adding a cutting plane based on the value W

(
uj
)

and

subgradient gj of W at uj . The model at iteration k is denoted by

W k (u) := max
1≤j≤k

(
W
(
uj
)

+
〈
gj , u− uj

〉)
,

and θk := minu∈U W
k (u) = W k

(
uk+1

)
. We have the following result.

Lemma 2.1. If W is convex with uniformly bounded subgradients on U
and U is compact then

lim
k→+∞

W
(
uk
)

= W ∗.

Proof. This proof is taken from Ruszczynski [12, Theorem 7.7]. Let Kε be
the set of indices k such that W ∗ + ε < W

(
uk
)
< +∞. The proof consists

in showing that Kε is finite.
Suppose k1, k2 ∈ Kε and k1 is strictly smaller than k2. We have that

W
(
uk1
)
> W ∗ + ε and that W ∗ ≥ θk1 . Since a new cut will be generated

at uk1 , we will have

W
(
uk1
)

+
〈
gk1 , u− uk1

〉
≤W k1 (u) ≤W k2−1 (u) , ∀u ∈ U ,

where gk1 is an element of ∂W
(
uk1
)
. In particular, choosing u = uk2 gives

W
(
uk1
)

+
〈
gk1 , uk2 − uk1

〉
≤W k1

(
uk2
)
≤W k2−1

(
uk2
)

= θk2−1 ≤W ∗.

But ε < W
(
uk2
)
−W ∗, so

ε < W
(
uk2
)
−W

(
uk1
)
−
〈
gk1 , uk2 − uk1

〉
,
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and as gk2 ∈ ∂W (uk2), the subgradient inequality for u = uk1 yields

W
(
uk2
)
−W

(
uk1
)
≤
〈
gk2 , uk2 − uk1

〉
.

Therefore, since W has uniformly bounded subgradients, there exists κ > 0
such that

ε < 2κ
∥∥∥uk2 − uk1∥∥∥ , ∀k1, k2 ∈ Kε, k1 6= k2.

Because U is compact, Kε has to be finite. Otherwise there would exist a
convergent subsequence of

{
uk
}
k∈Kε and this last inequality could not hold

for sufficiently large indices within Kε. This proves the lemma. �

Note that Lemma 2.1 does not imply that the sequence of iterates
(
uk
)
k∈N

converges1. For instance, if the minimum of W is attained on a “flat” part
(if W is not strictly convex), then the sequence of iterates may not converge.
However, the lemma shows that the sequence of W values at these iterates
will converge.

We now consider the multistage case. Let T be a positive integer. We
first consider the following deterministic optimal control problem.

min
x,u

T−1∑
t=0

Ct (xt, ut) + VT (xT )(1a)

s.t. xt+1 = ft (xt, ut) , ∀t = 0, . . . , T − 1,(1b)

x0 is given,(1c)

xt ∈ Xt, ∀t = 0, . . . , T,(1d)

ut ∈ Ut(xt), ∀t = 0, . . . , T − 1.(1e)

In what follows we let Aff(X ) denote the affine hull of X , and define

Bt(δ) = {y ∈ Aff(Xt) |‖ y ‖< δ}.
We now make the following assumptions (H1), for t = 0, . . . , T − 1:

(1) Xt ⊂ Rn, XT ⊂ Rn,
(2) multifunctions Ut : Rn ⇒ Rm are assumed to be convex2 and convex

compact valued,
(3) functions Ct and VT are assumed to be convex lower semicontinuous

proper functions,
(4) functions ft are linear,
(5) final cost function VT is finite valued and Lipschitz-continuous on
XT ,

(6) there exists δt > 0, defining X ′t :=Xt +Bt(δt) such that :
(a) ∀x ∈ X ′t , ∀u ∈ Ut(x), Ct(x, u) <∞,
(b) for every x ∈ X ′t ,

ft(x,Ut(x)) ∩ Xt+1 6= ∅.

1even though because U is compact, there exists a convergent subsequence.
2Recall that a multifunction U on convex set X is called convex if (1−λ)U(x)+λU(y) ⊆

U((1− λ)x+ λy) for every x, y ∈ X and λ ∈ (0, 1).
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Assumptions (H1(1) − (5)) are made to guarantee that problem (1) is a
convex optimization problem. Since this problem is in general nonlinear, it
also requires a constraint qualification to ensure the existence of subgradi-
ents. This is the purpose of Assumption (H1(6)). This assumption means
that we can always move from Xt a distance of δt

2 in any direction and stay
in X ′t , which is a form of recourse assumption that we call extended relatively
complete recourse (ERCR). We note that this is less stringent than imposing
complete recourse, which would require X ′t = Rn. Finally we note that we
never need to evaluate Ct(x, u) with x ∈ X ′t\Xt, so we may assume that
there exists a convex function, finite on X ′t , that coincides with Ct on Xt. Of
course not all convex cost functions satisfy such a property e.g. x 7→ x log(x)
cannot be extended below x = 0 while maintaining convexity.

We are now in a position to describe an algorithm for the deterministic
control problem (1). The Dynamic Programming (DP) equation associated
with (1) is as follows. For all t = 0, . . . , T − 1, let

(2) Vt (xt) =


minut∈Ut(xt) Ct (xt, ut) + Vt+1 (ft (xt, ut))︸ ︷︷ ︸

:=Wt(xt,ut)

, xt ∈ Xt

+∞, otherwise.

Here the quantity Wt (xt, ut) is the future optimal cost starting at time t
from state x and choosing decision ut, so that Vt (x) = minu∈Ut(xt)Wt (x, u).

The cutting plane method works as follows. At iteration 0, define func-
tions V 0

t , t = 0, . . . , T − 1, to be identically equal to −∞. At time T ,
since we know exactly the end value function, we impose V k

T = VT for all
iterations k ∈ N. At each iteration k, the process is the following.

Starting with xk0 = x0, at any time stage t, solve

θkt = min
ut∈Rm

x∈Aff
(
Xt
) Ct (x, ut) + V k−1

t+1 ◦ ft (x, ut) ,(3a)

s.t. x = xkt [βkt ](3b)

ft(x, ut) ∈ Xt+1(3c)

ut ∈ Ut(x)(3d)

Here βkt ∈Aff(Xt) is a vector of Lagrange multipliers for the constraint x =
xkt . We denote a minimizer of (3) by ukt . Its existence is guaranteed by
ERCR. Note that constraint (3a) can be seen as an induced constraint on

ut. Thus we can define the multifunctions Ũt : Rn ⇒ Rm by, for all x ∈ Rn,

(4) Ũt(x) := {u ∈ Ut(x)|ft(x, ut) ∈ Xt+1}.

We can easily check that Ũt is convex (by linearity of ft and convexity of
Ut) and convex compact valued (as the intersection of a compact convex set
and a convex set). Thus (3) can be written as

θkt = min
ut∈Ũt(x)

x∈Aff
(
Xt
) Ct (x, ut) + V k−1

t+1 ◦ ft (x, ut) ,(5a)

s.t. x = xkt . [βkt ](5b)
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Now define, for any x ∈ Rn:

(6) V k
t (x) := max

(
V k−1
t (x) , θkt +

〈
βkt , x− xkt

〉)
,

and move on to the next time stage t+ 1 by defining xkt+1 = ft
(
xkt , u

k
t

)
.

Remark 2.1. The assumption that βkt is in Aff(Xt) is made for technical
reasons, and loses little generality. Indeed if βkt ∈ Rn is an optimal Lagrange
multiplier, then so is its projection on Aff(Xt). In practice we would expect
Aff(Xt) to be the same dimension for every t. If this dimension happened
to be d strictly less than n, then we might change the formulation (by a
transformation of variables) so that Aff(Xt) = Rd.

Remark 2.2. Observe that our algorithm uses V k−1
t+1 when solving the two-

stage problem (3) at stage t, although most implementations of SDDP and
related algorithms proceed backwards and are thus able to use the freshly up-
dated V k

t+1 (although see e.g. [1] for a similar approach to the one proposed
here). In the stochastic case we present a general framework that encom-
passes backward passes.

Note that only the last future cost function VT is known exactly at any
iteration. All the other ones are lower approximations consisting of the
maximum of k affine functions at iteration k. We naturally have the same
lower approximation for function Wt. Thus we define for any (x, u) in Rn+m

(7) W k
t (x, u) := Ct (x, u) + V k

t+1 ◦ ft (x, u) ,

and recall

(8) Wt (x, u) := Ct (x, u) + Vt+1 ◦ ft (x, u) .

Using this notation we have

(9) θkt = min
u∈Ũt(xkt )

W k−1
t

(
xkt , u

)
= W k−1

t

(
xkt , u

k
t

)
Because for any x ∈ Xt+1 and any k′ ≤ k we have that V k−1

t+1 (x) ≥
V k′−1
t+1 (x), it follows that

θkt = min
u∈Ũt(xkt )

W k−1
t

(
xkt , u

)
≥ min

u∈Ũt(xkt )
W k′−1
t

(
xkt , u

)
, ∀k′ ≤ k,

= min
u∈Ũt(xkt )

W k′−1
t

(
xk

′
t +

(
xkt − xk

′
t

)
, u
)
,

∀k′ ≤ k,

which, using convexity of the optimal value function, and the definitions of
θk

′
t and βk

′
t , gives

θkt ≥ θk
′
t +

〈
βk

′
t , x

k
t − xk

′
t

〉
, ∀k′ ≤ k.

Since by (6)

V k−1
t

(
xkt

)
= max

k′<k

{
θk

′
t +

〈
βk

′
t , x

k
t − xk

′
t

〉}
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it follows that

θkt ≥ V k−1
t

(
xkt

)
and so (6) implies

(10) V k
t

(
xkt

)
= max

(
V k−1
t

(
xkt

)
, θkt

)
= θkt = W k−1

t

(
xkt , u

k
t

)
.

Figure 1 gives a view of the relations between all these values at a given
iteration.

x

value
Vt(x)

xk
t

Wt

(
xk

t , u
k
t

)

Vt

(
xk

t

)

θk
t = W k−1

t

(
xk

t , u
k
t

)

V k−1
t (x)

θk
t +

〈
βk

t , x− xk
t

〉

Figure 1. Relations between notations in the multi-stage case

2.1. Proof of convergence in the deterministic case. We begin by
showing some regularity and monotonicity results for the value functions
and their approximations.

Under assumptions (H1), we define for t = 0, . . . , T−1, and for all x ∈ Rn,
the extended value function

(11) Ṽt(x) = inf
u∈Ut(x)

Ct(x, u) + Vt+1 ◦ ft(x, u).

Note that the infimum could be taken on Ũt(x) ⊆ Ut(x) as Vt+1 =∞ when
ft(x, u) /∈ Xt+1. It is convenient to extend the definition to t = T by defining

ṼT = VT . We also observe that Ṽt ≤ Vt as these are identical on the domain
of Vt.

Lemma 2.2. For t = 0, . . . , T − 1,

(i) the value function Vt is convex and Lipschitz continuous on Xt;
(ii) V k

t ≤ Ṽt ≤ Vt, and βkt is defined;
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(iii) the sequences (βkt )k∈N are bounded.

Proof. (i) We first show the convexity and Lipschitz continuity of Vt on Xt.
We proceed by induction backward in time. By assumption VT is convex and
Lipschitz continuous on XT . Assume the result is true for Vt+1. The function
Ṽt(x) is convex by lemma 5.1. Now by ERCR, for any x ∈ X ′t , Ũt(x) 6= ∅.
This implies that, for x ∈ X ′t , for u ∈ Ũt(x),

Ṽt(x) ≤ Ct(x, u) + Vt+1 ◦ ft(x, u) < +∞.
By (H1(3)) and the induction hypothesis, for any x ∈ X ′t ,

u 7→ Ct(x, u) + Vt+1 ◦ ft(x, u)

is lower semi-continuous, and so the compactness of Ut(x) ensures that the

infimum in the definition of Ṽt(x) is attained, and therefore Ṽt(x) > −∞.

Ṽt is Lipschitz continuous on Xt as Xt is a compact subset of the relative
interior of its domain. Finally remarking that Vt(x) = Ṽt(x) if x ∈ Xt gives
the conclusion.

(ii) As observed above the inequality Ṽt ≤ Vt is immediate as the two
functions are identical on the domain of Vt.

To show V k
t ≤ Ṽt let us proceed by induction forward in k. Assume that

for all t = 0, . . . , T − 1, βk−1
t is defined and V k−1

t ≤ Ṽt. Note that

−∞ = V 0
t ≤ Ṽt,

so this is true for k = 1 (β0
t is never used). We now define, for all t =

0, . . . , T − 1 and all x ∈ Rn,

V̂ k
t (x) = min

u∈Ũt(x)
Ct(x, u) + V k−1

t+1 ◦ ft(x, u).

By hypothesis on Ũt, V̂ k
t is convex and finite on X ′t which strictly contains

Xt. Thus V̂ k
t restricted to Aff(Xt) is subdifferentiable at any point of Xt.

Moreover by definition of βkt in (3)

(12) βkt ∈ ∂
(
V̂ k
t |Aff(Xt)

)
.

Thus βkt is defined. By the induction hypothesis and inequality Ṽt+1 ≤ Vt+1

we have that
V k−1
t+1 ◦ ft ≤ Vt+1 ◦ ft.

Thus the definitions of V̂ k
t and Ṽt yield

(13) V̂ k
t ≤ Ṽt.

we have by (12) that

(14) θkt +
〈
βkt , x− xkt

〉
≤ V̂ k

t (x) ≤ Ṽt(x)

by (13). The definition of V k
t in (6) gives

V k
t (x) = max

(
V k−1
t (x) , θkt +

〈
βkt , x− xkt

〉)
which shows V k

t (x) ≤ Ṽt(x) by (14) and the induction hypothesis. Thus (ii)
follows for all k by induction.

(iii) Finally we show the boundedness of (βkt )k∈N. By definition of βkt we
have for all y ∈ Rn,
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(15) V k(y) ≥ V k(xkt ) +
〈
βkt , y − xkt

〉
.

Recall that X ′t = Xt+Bt(δt), so substituting y = xkt +
δtβkt

2‖βkt ‖
in (15) whenever

βkt 6= 0 yields ∥∥∥βkt ∥∥∥ ≤ 2

δt

[
V k
t

(
xkt +

δt
2

βkt
‖βkt ‖

)
− V k

t

(
xkt

)]
.

We define the compact subset X ′′t of dom Ṽt as X ′′t := Xt+Bt
(
δt
2

)
. Now as

xkt ∈ Xt we have that xkt + δt
2

βkt
‖βkt ‖

∈ X ′′t . Consequently, by (ii),

V k
t

(
xkt +

δt
2

βkt
‖βkt ‖

)
≤ max

x∈X ′′
t

Ṽt < +∞.

Moreover by construction the sequence of functions (V k
t )k∈N is increasing,

thus
V k
t (xkt ) ≥ V 1

t (xkt ) ≥ min
x∈Xt

V 1
t (x) > −∞.

Thus we have that, for all k ∈ N∗ and t = 0, . . . , T − 1,

(16)
∥∥∥βkt ∥∥∥ ≤ 2

δt

[
max
x∈X ′′

t

Ṽt − min
x∈Xt

V 1
t (x)

]
.

This completes the proof. �

Corollary 2.1. Under assumptions (H1), the functions V k
t , t = 0, 1, . . . , T−

1, are α− Lipschtiz for some constant α for all k ∈ N∗.

Proof. By (6) and (16) the subgradients of V k
t are bounded by

α = max
t=0,1,...,T−1

2

δt

[
max
x∈X ′′

t

Ṽt − min
x∈Xt

V 1
t (x)

]
.

�

We now prove that both the upper and lower estimates of Vt converge to
the exact value function under assumptions (H1).

Theorem 2.1. Consider the sequence of decisions
(
uk
)
k∈N generated by

(3) and (6), where each uk is itself a sequence of decisions in time uk =
uk0, . . . , u

k
T−1, and consider the corresponding sequence

(
xk
)
k∈N of state val-

ues. Under assumptions (H1), for any t = 0, . . . , T − 1 we have that:

lim
k→+∞

Wt

(
xkt , u

k
t

)
− Vt

(
xkt

)
= 0 and lim

k→+∞
Vt

(
xkt

)
− V k

t

(
xkt

)
= 0.

Proof. The demonstration proceeds by induction backwards in time. At
time t+ 1, the induction hypothesis is the second statement of the theorem.
That is,

lim
k→+∞

Vt+1

(
xkt+1

)
− V k

t+1

(
xkt+1

)
= 0.

In other words the cuts for the future cost function tend to be exact at xkt+1

as k tends to ∞. The induction hypothesis is clearly true at the last time
stage T for which we defined the approximate value function V k

T to be equal
to the (known) end value function VT .
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Now let us consider time t and choose Kε to be the set of indices k such
that:

(1) Vt
(
xkt
)

+ ε < Wt

(
xkt , u

k
t

)
< +∞,

(2) Vt+1

(
xkt+1

)
− θkt+1 <

ε
2 .

Note that the induction hypothesis states

lim
k→+∞

Vt+1

(
xkt+1

)
− V k

t+1

(
xkt+1

)
= 0

and (10) gives

V k
t+1

(
xkt+1

)
= θkt+1

so

lim
k→+∞

Vt+1

(
xkt+1

)
− θkt+1 = 0.

Hence condition (2) is satisfied for every k large enough. Thus Kε is finite
if and only if the number of indices satisfying condition (1) is finite.

Let k1, k2 be two indices in Kε, k1 being smaller than k2. Suppose that
a new cut has just been added to the approximate future cost function at
time t+ 1. Because of (6), we have that for any k ∈ N and any x ∈ Xt+1

V k
t+1 (x) ≥ θkt+1 +

〈
βkt+1, x− xkt+1

〉
.

It follows that the approximate future cost evaluated at (xk2t , u
k2
t ) satisfies

Ct

(
xk2t , u

k2
t

)
+ θk1t+1 +

〈
βk1t+1, x

k2
t+1 − x

k1
t+1

〉
≤ Ct

(
xk2t , u

k2
t

)
+ V k1

t+1

(
xk2t+1

)
,

= W k1
t

(
xk2t , u

k2
t

)
,

by definition (7) of W k1
t . Now, because k1 < k2,

W k1
t

(
xk2t , u

k2
t

)
≤W k2−1

t

(
xk2t , u

k2
t

)
,

so (3) and (10) give

Ct

(
xk2t , u

k2
t

)
+ θk1t+1 +

〈
βk1t+1, x

k2
t+1 − x

k1
t+1

〉
≤ W k2−1

t

(
xk2t , u

k2
t

)
= min

ut∈Ũt
(
x
k2
t

)W k2−1
t

(
xk2t , ut

)
≤ min

ut∈Ũt
(
x
k2
t

)Wt

(
xk2t , ut

)
= Vt

(
xk2t

)
.

Now, using the fact that k2 ∈ Kε, we have

Vt

(
xk2t

)
+ ε < Wt

(
xk2t , u

k2
t

)
which implies

Ct

(
xk2t , u

k2
t

)
+ θk1t+1 +

〈
βk1t+1, x

k2
t+1 − x

k1
t+1

〉
< Wt

(
xk2t , u

k2
t

)
− ε.

Now, the definition (8) of Wt implies

Wt

(
xk2t , u

k2
t

)
= Ct

(
xk2t , u

k2
t

)
+ Vt+1

(
xk2t+1

)



DECOMPOSITION OF MULTI-STAGE STOCHASTIC CONVEX PROGRAMS 11

so

ε < Vt+1

(
xk2t+1

)
− θk1t+1 −

〈
βk1t+1, x

k2
t+1 − x

k1
t+1

〉
,

or
(17)

ε < Vt+1

(
xk1t+1

)
− θk1t+1 + Vt+1

(
xk2t+1

)
− Vt+1

(
xk1t+1

)
−
〈
βk1t+1, x

k2
t+1 − x

k1
t+1

〉
Now, k1 ∈ Kε implies

Vt+1

(
xk1t+1

)
− θk1t+1 <

ε

2
,

and by (i) of lemma (2.2) Vt is Lipschitz continuous and thus there is some
γ1 such that:

Vt+1

(
xk2t+1

)
− Vt+1

(
xk1t+1

)
≤ γ1

∥∥∥xk1t+1 − x
k2
t+1

∥∥∥ .
Furthermore (iii) of lemma 2.2 ensures that (βkt )k∈N is bounded. So there

exists a constant γ2 > 0 such that:

−
〈
βk1t+1, x

k2
t+1 − x

k1
t+1

〉
≤ γ2

∥∥∥xk1t+1 − x
k2
t+1

∥∥∥ .
Finally, taking γ = γ1 + γ2 we obtain

ε <
ε

2
+ γ

∥∥∥xk2t+1 − x
k1
t+1

∥∥∥ ,
giving

(18)
ε

2
< γ

∥∥∥xk2t+1 − x
k1
t+1

∥∥∥ .
It follows that Kε has to be finite. Otherwise, since the state space Xt+1

is compact, we could find a convergent subsequence of states satisfying (18),
and passing to the limit would lead to ε

2 ≤ 0. This proves the first part of
the theorem at time t.

We now have to show the induction hypothesis, namely

lim
k→+∞

Vt

(
xkt

)
− V k

t

(
xkt

)
= 0

for time t. Recall (10) gives

V k
t

(
xkt

)
= θkt = W k−1

t

(
xkt , u

k
t

)
,

= Ct

(
xkt , u

k
t

)
+ V k−1

t+1

(
xkt+1

)
.

Using the definition (8) of Wt, we can replace Ct
(
xkt , u

k
t

)
to get

V k
t

(
xkt

)
= Wt

(
xkt , u

k
t

)
+
(
V k−1
t+1

(
xkt+1

)
− Vt+1

(
xkt+1

))
.

We have just demonstrated above that

ηkt = Wt

(
xkt , u

k
t

)
− Vt

(
xkt

)
k→∞−−−→ 0

so

V k
t

(
xkt

)
= Vt

(
xkt

)
+ ηkt +

(
V k−1
t+1

(
xkt+1

)
− Vt+1

(
xkt+1

))
.

The induction hypothesis at time t+ 1 gives

V k
t+1

(
xkt+1

)
− Vt+1

(
xkt+1

)
k→∞−−−→ 0,



12 P. GIRARDEAU, V. LECLERE, AND A. B. PHILPOTT

which by virtue of Lemma 5.2 (with Vt+1 replacing f) implies3

lim
k→+∞

Vt+1

(
xkt+1

)
− V k−1

t+1

(
xkt+1

)
= 0

so

V k
t

(
xkt

)
− Vt

(
xkt

)
k→∞−−−→ 0.

which gives the result. �

Theorem 2.1 indicates that the lower approximation at each iteration
tends to be exact on the sequence of state trajectories generated throughout
the algorithm. This does not mean that the future cost function will be
approximated well everywhere in the state space. It only means that the
approximation gets better and better in the neighbourhood of an optimal
state trajectory.

3. The stochastic case with a finite distribution

3.1. Stochastic multistage problem formulation. Let us now consider
that the cost function and dynamics at each time t are influenced by a
random outcome that has a discrete and finite distribution. We write the
problem on the complete tree induced by this distribution. The set of all
nodes is denoted by N and {0} is the root node. We denote nodes by m and
n. (We trust that the context will dispel any confusion from the use of m
and n as dimensions of variables u and x.) A node n here represents a time
interval and a state of the world (which has probability Φn) that pertains
over this time interval. We say that a node n is an ascendent of m if it is on
the path from the root node to node m (including m). We will denote a(m)
the set of all ascendents of m, and the depth of node n is one less than the
number of its ascendents. For simplicity we identify this with a time index
t, although the results hold true for scenario trees for which this is not the
case. For every node m ∈ N\{0}, p(m) represent its parent, and r(m) its
set of children nodes. Finally L is the set of leaf nodes of the tree.

This gives the following stochastic program:

min
x,u

∑
n∈N\{L}

∑
m∈r(n)

ΦmCm (xn, um) +
∑
m∈L

ΦmVm (xm)(19a)

s.t. xm = fm
(
xp(m), um

)
, ∀m ∈ N\{0},(19b)

x0 is given,(19c)

xm ∈ Xm, ∀m ∈ N ,(19d)

um ∈ Um(xp(m)), ∀m ∈ N\{0}.(19e)

The reader should note that randomness (that appears in the cost and in
the dynamics) is realized before the decision is taken in this model. Hence
the control affecting the stock4 xn is actually indexed by m, a child node

3Corollary 2.1 ensures the α−Lipschitz assumption on V kt+1, and the other assumptions
are obviously verified.

4We do not make any stagewise independence assumptions on the random variables
that affect the system. Hence there is no reason why variable xn should be called a state
variable and we prefer calling it a stock.



DECOMPOSITION OF MULTI-STAGE STOCHASTIC CONVEX PROGRAMS 13

of n. Put differently, the control adapts to randomness: there are as many
controls as there are children nodes of n.

We have a future cost function for each node n ∈ N which is defined by

(20) Vn(xn) =
∑

m∈r(n)

Φm

Φn
min

um∈Um(xn)
Cm (xn, um) + Vm (fm (xn, um))︸ ︷︷ ︸

Wm(xn,um)

.

We make the following assumptions (H2):

(1) for all n ∈ N , Xn is convex compact;
(2) for all m ∈ N\{0}, the multifunction Um is convex and convex com-

pact valued;
(3) all functions Cn, n ∈ N\L, Vm, m ∈ L, are convex lower semicon-

tinuous proper functions;
(4) for all m ∈ N\{0}, the functions fm are linear;
(5) for all m ∈ L, Vm is Lipschitz-continuous on Xm;
(6) There exists δ > 0 such that for all nodes n ∈ N\L,

(a) ∀x ∈ Xn +B(δ), ∀m ∈ r(n), fm(x,Um(x)) ∩ Xm 6= ∅,
(b) ∀x ∈ Xn +B(δ), ∀u ∈ Um(x), Cn(x, u) <∞.

In general the future cost function at each node can be different from those
at other nodes at the same stage. In the special case where the stochastic
process defined by the scenario tree is stagewise independent, the future
cost function is identical at every node at stage t. Some form of stagewise
independence is typically assumed in applications as it enables cuts to be
shared across nodes at the same stage, however we do not require this for
our proof.

The algorithm that we consider is an extension of the deterministic al-
gorithm of the previous section applied, at each iteration, to a set of nodes
chosen randomly in the tree at which we update estimates of the future cost
function. We assume that all other nodes have null updates, in the sense
that they just inherit the future cost function from the previous iteration.

We now describe the algorithm formally. We start the process with θ̂0
n =

−∞, β̂0
n = 0, for each n ∈ N , and impose V k

n = Vn for all nodes n ∈ L and
all k ∈ N. We then carry out a sequence of simulations and updates of the
future cost functions as follows.

Simulation: Starting at the root node, generate stocks and decisions
for all possible successors (in other words, visit the whole tree for-
ward) by solving (20) with V k−1 instead of V . Denote the obtained
stock variables by (xkn)n∈N and the control variables by (ukn)n∈N\{0}.

Also, for each node n ∈ N , impose θkn = V k−1
n (xkn) and βkn ∈

∂V k−1
n (xkn).

Update: Select non-leaf nodes n1, n2, . . . , nI in the tree. For each i,
xkni is a random variable which is equal to one of the xkn. For each
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selected node ni, and for every child node m of node ni, solve:

θ̂km = min
um∈Rm

x∈Aff
(
Xni
)Cm (x, um) + V k−1

m ◦ fm (x, um) ,(21a)

s.t. x = xkni [β̂km](21b)

um ∈ Um(x)(21c)

fm(x, um) ∈ Xm(21d)

As before β̂km is a Lagrange multiplier at optimality. We also define
the multifunctions

Ũm : x 7→ {u ∈ Um(x)|fm(x, um) ∈ Xm}.
For each selected node ni, replace the values θkni and βkni obtained
during the simulation with:

θkni =
∑

m∈r(ni)

Φm

Φni

θ̂km and βkni =
∑

m∈r(ni)

Φm

Φni

β̂m.

Finally, we update all future cost functions. For every node n

(22) V k
n (x) := max

(
V k−1
n (x) , θkn +

〈
βkn, x− xkn

〉)
, x ∈ Xt.

Note that we actually only update future cost functions on the selected
nodes. Since the cuts we add at all other nodes are binding on the current
model (by construction in the simulation), there is no point in storing them.
Therefore, in practice, one does not need to sample the whole scenario tree
but just enough to attain all selected nodes. In our proof, we need to look
at what happens even on the nodes that are not selected.

The way we select nodes at which to compute cuts varies with the partic-
ular algorithm implementation. For example DOASA uses a single forward
pass to select nodes, and then computes cuts in a backward pass. We repre-
sent these selections of nodes using a selection random variable yk = (ykn)n∈N
that is equal to 1 if node n is selected at iteration k and 0 otherwise. This
gives a selection stochastic process (yk)k∈N, taking values in {0, 1}|N\L|, that
describes a set of nodes in the tree at which we will compute new cuts in
iteration k. We let (Fk)k∈N denote the filtration generated by (yk)k∈N.

To encompass algorithms such as DOASA and SDDP the selection sto-
chastic process can be viewed as consisting of infinitely many finite subse-
quences, each consisting of τ > 0 selections (consisting for example of a
sequence of selections of nodes in a backward pass). This cannot be done
arbitrarily, and the way that (yk)k∈N is constructed must satisfy some inde-
pendence conditions from one iteration to the next.

Definition 1. Let τ be a positive integer. The process (yk)k∈N is called a
τ -admissible selection process if

(i) ∀m ∈ N\L, ∀k ∈ N, ∀κ ∈ {0, . . . , τ − 1},

ykτ+κ
m = 1 =⇒ ∀n ∈ a(m), ykτn = ykτ+1

n = · · · = ykτ+κ−1
n = 0;

and the process defined by

(23) ỹkn := max{ykτn , ykτ+1
n , ykτ+2

n , . . . , ykτ+τ−1
n }
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satisfies
(ii) for all m ∈ N\L, (ỹkm)k∈N is i.i.d. and for all k ∈ N, and all

m ∈ N\L, ỹkm is independent of Fkτ−1;
(iii) ∀n ∈ N\L, P(ỹkn = 1) > 0.

Property (i) guarantees that when τ > 1, the updating of cutting planes
is done backwards between steps kτ and (k + 1)τ . This means that if the
linear approximation of the value function Vn is updated at step kτ +κ then
neither it or any approximation at any ascendant node has been updated
since step kτ − 1. This implies, as shown in lemma 5.3, that xkτ+κ has not
changed since the step kτ , i.e., if ykτ+κ

n = 1 then xkτ+κ = xkτ .
Property (ii) provides the independence of the selections that we will

use to prove convergence and property (iii) guarantees that all nodes are
selected with positive probability. Without any independence assumption it
would be easy to create a case in which the future cost function at a given
node is updated only when the current stock variable on this node is in a
given region, for instance. In such a case the future cost function could not
gather any information about the other parts of the space that the stock
variable might visit. In other words, this independence assumption ensures
that the values that are optimal can be attained an infinite number of times.
We remark that there is no independence assumption over the nodes n for
(ykn)n∈N\L at k fixed. Thus the selection process could be forced to select
whole branches of the tree for example, as it would for the CUPPS algorithm.
More generally, we have independence when for fixed τ , (ykτ )k∈N is i.i.d and
the next τ − 1 selection values are determined deterministically from ykτ ,
more precisely if for all κ ∈ {0, . . . , τ − 1}, there is a deterministic function
φκ such that ykτ+κ = φκ(ykτ ). On the other hand we have independence
when the selection subsequence (ykτ , ykτ+1, . . . , ykτ+τ−1)k∈N is i.i.d.

We will make use of the following definitions, where m ∈ r(n):

(24) Wm (xn, um) := Cm (xn, um) + Vm (fm (xn, um))

(25) W k
m (xn, um) := Cm (xn, um) + V k

m (fm (xn, um))

In the case where node n ∈ N is selected at iteration k, in other words
n = ni, these definitions then give

θ̂km = min
u∈Ũm(xkn)

W k−1
m

(
xkn, u

)
= W k−1

m

(
xkn, u

k
m

)
.

Because for any x ∈ Xm and any k′ ≤ k we have that V k′−1
m (x) ≤ V k−1

m (x),
it follows that

θ̂km = min
u∈Ũm(xkn)

W k−1
m

(
xkn, u

)
≥ min

u∈Ũm(xkn)
W k′−1
m

(
xkn, u

)
, ∀k′ ≤ k,

= min
u∈Ũm(xkn)

W k′−1
m

(
xk

′
n +

(
xkn − xk

′
n

)
, u
)
,

∀k′ ≤ k,
which, using convexity of the value function of this latter problem and the
definitions of θ̂k

′
m and β̂k

′
m, gives

θ̂km ≥ θ̂k
′
m +

〈
β̂k

′
m, x

k
n − xk

′
n

〉
, ∀k′ ≤ k.
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and taking conditional expectations with probabilities Φm
Φn

, we obtain

θkn ≥ θk
′
n +

〈
βk

′
n , x

k
n − xk

′
n

〉
, ∀k′ ≤ k.

Since by (22)

V k−1
n

(
xkn

)
= max

k′<k

{
θk

′
n +

〈
βk

′
n , x

k
n − xk

′
n

〉}
it follows that

θkn ≥ V k−1
n

(
xkt

)
,

and so (22) implies (once again, only in the case when n = ni )

(26) V k
n

(
xkn

)
= max

(
V k−1
n

(
xkn

)
, θkn

)
= θkn =

∑
m∈r(n)

Φm

Φn
W k−1
m

(
xkn, u

k
m

)
.

Note that because of the way xkn and θkn are defined during simulation for
the non-selected nodes, we have

V k
n

(
xkn

)
= max

(
V k−1
n

(
xkn

)
, θkn

)
= θkn, ∀n ∈ N .

3.2. Proof of convergence in the stochastic case. For every n ∈ N \L
we can define under assumptions (H2) the extended value function

Ṽn(x) =
∑

m∈r(n)

Φm

Φn
inf

u∈Ũm(x)
Cm(x, u) + Vm ◦ fm(x, u),

and we note that Ṽn is finite on X ′n. We now state a lemma analogous to
lemma 2.2.

Lemma 3.1. For every n ∈ N ,

(i) the value function Vn is convex and Lipschitz-continuous on Xt;
(ii) V k

n ≤ Ṽn ≤ Vn, and βkn is defined;
(iii) the sequences (βkn)k∈N are bounded, thus there is αn such that V k

n is
αn−Lipschitz.

Proof. We give only a sketch of the proof as it follows exactly the proof of
its deterministic counterpart lemma 2.2.

(i) By induction backward on the tree Ṽn, is convex and finite valued
on X ′n as the positive sum of convex finite valued functions, and thus

Lipschitz continuous on Xn leading to the result as Ṽn = Vn on Xn.
(ii) Assume that for all n ∈ N\L we have V k−1

n ≤ Ṽn. We define, for a
node n ∈ N\L x ∈ Rn,

V̂ k
n (x) =

∑
m∈r(n)

Φm

Φn
min

u∈Ũn(x)
Cm(x, u) + V k−1

m ◦ fm(x, u).

By hypothesis on Ũm, V̂ k
n is convex and finite on X ′t thus its re-

striction on Aff(Xt) is subdifferentiable on Xt. By definition β̂km ∈
∂V̂ k

n (xkm), and thus β̂km is defined. By the induction hypothesis and

inequality Ṽm ≤ Vm we have that

∀m ∈ r(n), V̂ k−1
m ◦ fm ≤ Vm ◦ fm.
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Thus definitions of V̂ k
n and Ṽn yield V̂ k

n ≤ Ṽn. By definition of βkn
and construction of V k

n we have that V k
n ≤ Ṽn. Induction leads to

inequality (ii).
(iii) Finally we show the boundedness of (βkn)k∈N. As βkn is an element

of ∂V k(xkn), we have

V k(y) ≥ V k(xkn) +
〈
βkn, y − xkn

〉
.

so substituting, if βkn 6= 0, y = xkn + δβkn
2‖βkn‖

in (15) yields∥∥∥βkn∥∥∥ ≤ 2

δ

[
V k
n

(
xkn +

δ

2

βkn
‖βkn‖

)
− V k

n

(
xkn

)]
.

Thus we have that, for all k ∈ N and n ∈ N ,

(27)
∥∥∥βkn∥∥∥ ≤ 2

δ

[
max

x∈Xn+B(δ/2)
Ṽn − min

x∈Xn
V 1
n (x)

]
.

Which ends the proof.

�

We also make use of the following lemma.

Lemma 3.2. Let n be a node in N\L. Suppose that there is some integer
τ ′ > 0 such that for all m ∈ r(n) we have

lim
k→+∞

Vm

(
xkτ

′
m

)
− V kτ ′

m

(
xkτ

′
m

)
= 0.

Then

lim
k→+∞

∑
m∈r(n)

Φm

Φn
Wm

(
xkτ

′
n , ukτ

′
m

)
− Vn

(
xkτ

′
n

)
= 0.

Proof. Choose Kε to be the set of indices k, multiples of τ ′, such that:

(1) Vn
(
xkn
)

+ ε <
∑

m∈r(n)
Φm
Φn
Wm

(
xkn, u

k
m

)
< +∞,

(2)
∑

m∈r(n)
Φm
Φn

(
Vm
(
xkm
)
− θkm

)
< ε

2 .

Note that because of the hypothesis and (26) the quantity on the left-hand
side of condition (2) converges to 0 as k goes to infinity. Hence condition (2)
is satisfied for all k large enough and if Kε is finite, then it is the number of
indices satisfying condition (1) that has to be finite.

Because of (22), we have that for any k ∈ N, any child node m of n, and
any x ∈ Xm,

(28) V k
m (x) ≥ θkm +

〈
βkm, x− xkm

〉
.

Let k1, k2 be two indices in Kε, k1 being smaller than k2. It follows from (28)
applied at k = k1, that the approximate future cost evaluated at (xk2n , u

k2
m )

satisfies

Cm

(
xk2n , u

k2
m

)
+ θk1m +

〈
βk1m , x

k2
m − xk1m

〉
≤ Cm

(
xk2n , u

k2
m

)
+ V k1

m

(
xk2m

)
,

= W k1
m

(
xk2n , u

k2
m

)
.
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and k1 < k2 implies

W k1
m

(
xk2n , u

k2
m

)
≤W k2−1

m

(
xk2n , u

k2
m

)
.

Thus∑
m∈r(n)

Φm

Φn

(
Cm

(
xk2n , u

k2
m

)
+θk1m +

〈
βk1m , x

k2
m − xk1m

〉)
≤

∑
m∈r(n)

Φm

Φn
W k2−1
m

(
xk2n , u

k2
m

)
,

=
∑

m∈r(n)

Φm

Φn
min

um∈Ũm
(
x
k2
n

)W k2−1
m

(
xk2n , um

)
,

≤
∑

m∈r(n)

Φm

Φn
min

um∈Ũm
(
x
k2
n

)Wm

(
xk2n , um

)
,

= Vn

(
xk2n

)
.

Now, since k2 ∈ Kε,

Vn

(
xk2n

)
+ ε <

∑
m∈r(n)

Φm

Φn
Wm

(
xk2n , u

k2
m

)
which gives

∑
m∈r(n)

Φm

Φn

(
Cm

(
xk2n , u

k2
m

)
+ θk1m +

〈
βk1m , x

k2
m − xk1m

〉)
<

∑
m∈r(n)

Φm

Φn
Wm

(
xk2n , u

k2
m

)
− ε.

Now recall the definition (24) of Wm which gives

∑
m∈r(n)

Φm

Φn
Wm

(
xk2n , u

k2
m

)
=

∑
m∈r(n)

Φm

Φn
Cm

(
xk2n , u

k2
m

)
+

∑
m∈r(n)

Φm

Φn
Vm

(
fm

(
xk2n , u

k2
m

))
.

Substituting and observing

xk2m = fm

(
xk2n , u

k2
m

)
gives

ε <
∑

m∈r(n)

Φm

Φn

(
Vm

(
xk2m

)
− θk1m −

〈
βk1m , x

k2
m − xk1m

〉)
,
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yielding

ε <
∑

m∈r(n)

Φm

Φn

(
Vm

(
xk1m

)
− θk1m

)
+

∑
m∈r(n)

Φm

Φn

(
Vm

(
xk2m

)
− Vm

(
xk1m

))(29)

−
∑

m∈r(n)

Φm

Φn

〈
βk1m , x

k2
m − xk1m

〉
.

Now, k1 ∈ Kε implies∑
m∈r(n)

Φm

Φn

(
Vm

(
xk1m

)
− θk1m

)
<
ε

2
.

Furthermore by (i) of lemma 3.1 there exists a constant γ1 > 0 such that

Vm

(
xk2m

)
− Vm

(
xk1m

)
≤ γ1

∥∥∥xk1m − xk2m∥∥∥ ,
and by (iii) of lemma 3.1, there exists a constant γ2 > 0 such that

−
〈
βk1m , x

k2
m − xk1m

〉
≤ γ2

∥∥∥xk1m − xk2m∥∥∥ .
Collecting terms and taking γ = γ1 + γ2 we obtain

ε <
ε

2
+ γ

∑
m∈r(n)

Φm

Φn

∥∥∥xk2m − xk1m∥∥∥ ,
giving

(30)
ε

2
< γ

∑
m∈r(n)

Φm

Φn

∥∥∥xk2m − xk1m∥∥∥ .
Hence Kε has to be finite. Otherwise, because the space (Xm) is compact,
we could find a convergent subsequence of states satisfying (30), and passing
to the limit would lead to ε

2 ≤ 0. �

Theorem 3.1. Consider the sequence of decisions
(
uk
)
k∈N generated by

the above described procedure under assumptions (H2), where each uk is
itself a set of decisions on the complete tree, and consider the corresponding
sequence of state values

(
xk
)
k∈N. Assume that the selection process is τ -

admissible for some integer τ > 0.
Then we have that, P-almost surely:

lim
k→+∞

∑
m∈r(n)

Φm

Φn
Wm

(
xkτn , u

kτ
m

)
− Vn

(
xkτn

)
= 0.

and

lim
k→+∞

Vn

(
xkτn

)
− V kτ

n

(
xkτn

)
= 0.

Proof. Because the selection process for nodes in the update step is sto-
chastic, decision variables as well as approximate future cost functions are
stochastic throughout the course of the algorithm. Thus, during the whole
proof, all equalities or inequalities are taken P-almost surely.
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The demonstration follows the same approach as the proof of Theorem
2.1. Let T be the maximum depth of the tree. We procede by backward
induction on nodes of fixed depth. The induction hypothesis is

lim
k→+∞

Vm

(
xkτm

)
− V kτ

m

(
xkτm

)
= 0

for each node m of depth t + 1. Since for every leaf of the tree those two
quantities are equal, by definition, the induction hypothesis is true for every
node n ∈ L. For any arbitrary node n of depth t that is not a leaf, lemma
3.2 gives the first statement of the theorem.

We now have to show the induction hypothesis, namely

lim
k→+∞

Vn

(
xkτn

)
− V kτ

n

(
xkn

)
= 0

for every node n of depth t.
We start by proving the result for iterations kτ such that n is selected in

the next τ − 1 steps, i.e. such that ỹkn = 1. Define κk ∈ {0, . . . , τ − 1} such
that ykτ+κk = 1. Recall that by lemma 5.3 we have xkτ+κk

n = xkτn .
We have by (26)

V kτ+κk
n

(
xkτ+κk
n

)
= V kτ+κk

n

(
xkτn

)
=

∑
m∈r(n)

Φm

Φn
min

um∈Ũm(xkτn )

{
W kτ+κk−1
m

(
xkτn , um

)}
≥

∑
m∈r(n)

Φm

Φn
min

um∈Ũm(xkτn )

{
W kτ−1
m

(
xkτn , um

)}
=

∑
m∈r(n)

Φm

Φn
W kτ−1
m

(
xkτn , u

kτ
m

)

which implies

V kτ+κk
n

(
xkτn

)
≥

∑
m∈r(n)

Φm

Φn

[
Cm

(
xkτn , u

kτ
m

)
+ V kτ−1

m

(
xkτm

)]
,

=
∑

m∈r(n)

Φm

Φn

[
Wm

(
xkτn , u

kτ
m

)
+
(
V kτ−1
m

(
xkτm

)
− Vm

(
xkτm

)) ]
.

We have just demonstrated above that

ηkτn =
∑

m∈r(n)

Φm

Φn
Wm

(
xkτn , u

kτ
m

)
− Vn

(
xkτn

)
k→∞−−−→ 0.

Thus,

V kτ+κk
n

(
xkτn

)
≥ Vn

(
xkτn

)
+ ηkτn +

∑
m∈r(n)

Φm

Φn

(
V kτ−1
m

(
xkτm

)
− Vm

(
xkτm

))
.
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However the induction hypothesis gives

lim
k→+∞

Vm

(
xkτm

)
− V kτ

m

(
xkτm

)
= 0

and by virtue of lemma 5.2 (with Vm replacing f) 5 implies

lim
k→+∞

Vm

(
xkτm

)
− V kτ−1

m

(
xkτm

)
= 0.

and thus

η̃kτ := ηkτn +
∑

m∈r(n)

Φm

Φn

(
V kτ−1
m

(
xkτm

)
− Vm

(
xkτm

))
k→∞−−−→
ỹkn=1

0.

But

Vn(xkτn ) ≥ V kτ+κk
n (xkτn ) ≥ Vn(xkτn ) + η̃kτ

which gives

(31) Vn

(
xkτn

)
− V kτ+κk

n

(
xkτn

)
k→∞−−−→
ỹkn=1

0.

Thus lemma 5.2 applied with κ = τ gives

Vn

(
xkτn

)
− V kτ+κk−τ

n

(
xkτn

)
k→∞−−−→
ỹkn=1

0,

and by monotonicity we have V kτ+κk−τ
n ≤ V kτ

n ≤ Vn, which finally yields

(32) Vn

(
xkτn

)
− V kτ

n

(
xkτn

)
k→∞−−−→
ỹkn=1

0.

Now we prove that the values also converge for the iterations k such
that ỹkn = 0, i.e. the iterations for which node n is not selected between
step kτ and step (k + 1)τ − 1. By contradiction, suppose the values do not
converge. Then by lemma 5.2 we have that Vn(xkτn )− V kτ−1

n (xkτn ) does not
converge to 0. It follows that there is some ε > 0 such that Kε is infinite
where

(33) Kε := {k ∈ N|Vn
(
xkτn

)
− V kτ−1

n

(
xkτn

)
≥ ε}.

Let zj denote the j-th element of the set {ykτn |k ∈ Kε}. Note that the
random variables V kτ−1 and xkτn are measurable with respect to Fkτ−1 :=

σ
(
(yk

′
)k′<kτ

)
, and thus so is 1k∈Kε from which ỹkn is independent. Moreover

the σ−algebra generated by the past realisations of ỹkn is included in Fkτ−1.
This implies by lemma 5.4 that random variables (zj)j∈N are i.i.d. and share
the same probability law as ỹ0

n.
According to the Strong Law of Large Numbers [5, page 294] applied to

the random sequence (zj)j∈N, we should then have

1

N

N∑
j=1

zj
N→+∞−−−−−→ E(z1) = E(ỹ0

n) = P
(
ỹ0
n = 1

)
> 0.

5Lemma 3.1 (iii) provides a Lipschitz condition on V km.
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However, Kε ∩ {ỹkn = 1} is finite because of (31) thus we know that there is
only a finite number of indices j such that zj = 1, the rest being equal to 0.
So

1

N

N∑
j=1

zj
N→+∞−−−−−→ 0,

which is a contradiction. This shows that

Vn

(
xkτn

)
− V kτ−1

n

(
xkτn

)
k→∞−−−→
ỹkn=0

0.

and monotonicity shows that,

Vn

(
xkτn

)
− V kτ

n

(
xkτn

)
k→∞−−−→
ỹkn=0

0.

which completes the induction. �

3.3. Application to known algorithms. In order to illustrate on our
result we will apply it to two well known algorithms. For simplicity we
will assume that the tree represents a T -step stochastic decision problem in
which every leaf of the tree is of depth T .

We first define the CUPPS algorithm [1] in this setting. Here at each
major iteration we choose a T − 1-step scenario and compute the optimal
trajectory while at the same time updating the value function for each node
of the branch. In our setting, this uses a 1-admissible selection process
(yk)k∈N defined by an i.i.d. sequence of random variables, with y0 selecting
a single branch of the tree. Theorem 3.1 shows that for every node n the
upper and lower bound converges, that is

lim
k→+∞

∑
m∈r(n)

Φm

Φn
Wm

(
xkn, u

k
m

)
− Vn

(
xkn

)
= 0

and

lim
k→+∞

Vn

(
xkn

)
− V k

n

(
xkn

)
= 0.

We now place the SDDP algorithm [9] and DOASA algorithm [10] in
our framework. There are two phases in each major iteration of the SDDP
algorithm, namely a forward pass, and a backward pass of T − 1 steps.
Given a current polyhedral outer approximation of the Bellman function

(V k̃−1
n )n∈N\L, a major iteration k̃ of the SDDP algorithm consists in:

• selecting uniformly a number N of scenarios (N = 1 for DOASA);
• simulating the optimal strategy for the problem, that is solving prob-

lem (21) to determine a trajectory (for each scenario) (xk̃nt)t∈{0,...,T−1}
where (nt)t∈{0,...,T−1} defines one of the selected scenarios;
• For t = T − 1 down to t = 0

for each scenario solving problem (21) with V k̃
m instead of

V k̃−1
m ,

and defining

V k̃
nt(x) = max{V k̃−1

nt (x), θk̃nt + 〈βk̃nt , x− x
k̃
nt〉}.

SDDP fits into our framework as follows. Given N , we define the T − 1-
admissible selection process, (y(T−1)k)k∈N by an i.i.d. sequence of random
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variables with y0 selecting uniformly a set of N pre-leaves (i.e. nodes whose
children are leaves) of the tree. Then for κ ∈ {1, . . . , T−2}, k ∈ N, n ∈ N\L,
we define

yk(T−1)+κ
n :=

{
1 if there exist m ∈ r(n) such that y

k(T−1)+κ−1
m = 1

0 otherwise.

This algorithm defines an SDDP algorithm with N randomly sampled for-
ward passes per stage. The cut sharing feature used in SDDP when ran-
dom variables are stagewise independent can be easily incorporated. Since
for every node n of the tree (excepting the leaves) there is a κ such that

P(y
k(T−1)+κ
n = 1) > 0, theorem 3.1 guarantees the convergence of the lower

bound of the SDDP algorithm for every node.

4. Discussion

The convergence result we have proved assumes that we compute new
cuts at scenario-tree nodes that are selected independently from the history
of the algorithm. This enables us to use the Strong Law of Large Numbers
in the proof. Previous results for multistage stochastic linear programming
[10] require a selection process that visits each node in the tree infinitely
often, which is a weaker condition than independence, since it follows by the
Borel-Cantelli Lemma [5, page 288]. An example would be a deterministic
round-robin selection. We do not have a proof of convergence for such a
process in the nonlinear case. It is important to observe that the polyhedral
form of Vt that was exploited in the proof [10] is absent in our problem, and
this difference could prove to be critical.

The convergence result is proved for a general scenario tree. In SDDP
algorithms, the random variables are usually assumed to be stagewise inde-
pendent (or made so by adding state variables). This means that the future
cost functions Vm(x) are the same at each node m at depth t. This allows
cutting planes in the approximations to be shared across these nodes. The
convergence result we have shown here applies to this situation as a special
case.

Observe that the class of algorithms covered by our result is larger than
the examples presented in the literature. For example an algorithm where
we select randomly a node on the whole tree, and then update backwards
from there is proven to converge. One could also think of combining SDDP
and CUPPS algorithms.

In the case where one would want to add cuts at different nodes in the tree
in the update step of our procedure, the solving of the subproblems can be
done in parallel. This is the case in CUPPS, where a whole branch of the tree
is selected at each iteration. It also allows us to consider different selection
strategies, where nodes at a given iteration could be selected throughout
the tree depending on some criteria defined by the user. In the first few
iterations, this could highly increase efficiency of the approximation and,
because the solving of the subproblems can be parallelized, would not be very
time-consuming. One should bear in mind however that, at some point, the
algorithm has to come back to an appropriate selection procedure, i.e. one
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that satisfies the independence assumption, in order to ensure convergence
of the algorithm.

5. Appendix: Technical lemmas

Lemma 5.1. If J : Rm → R ∪ {∞} is convex, U : Rn ⇒ Rm is convex then
φ(x) := minu∈U(x) J(u) is convex. Moreover if J is lower-semicontinuous,
and U compact non-empty valued, then the infimum exists and is attained.

Proof. We define

I(u, x) :=

{
0 if u ∈ U(x)
+∞ otherwise

Then φ(x) = minu∈Rm J(u) + I(u, x). Fix u1 ∈ U(x1) and u2 ∈ U(x2), then
for every λ ∈ [0, 1] λu1 + (1 − λ)u2 ∈ U(λx1 + (1 − λ)x2) by convexity of
U . This shows that I(u, x) is convex, whereby φ is convex as the marginal
function of a jointly convex function. The second part of the lemma follows
immediately from the compactness U and lower-semicontinuity of J . �

Lemma 5.2. Suppose f is convex and X is compact, and suppose for any
integer κ, the sequence of α-Lipschitz convex functions fk, k ∈ N satisfies

fk−κ (x) ≤ fk (x) ≤ f (x) , for all x ∈ X .

Then for any infinite sequence xk ∈ X

lim
k→+∞

f
(
xk
)
− fk

(
xk
)

= 0 ⇐⇒ lim
k→+∞

f
(
xk
)
− fk−κ

(
xk
)

= 0.

Proof. If limk→+∞ f
(
xk
)
− fk−κ

(
xk
)

= 0 then pointwise monotonicity of

fk shows that limk→+∞ f
(
xk
)
− fk

(
xk
)

= 0. For the converse, suppose

that the result is not true. Then there is some subsequence
(
fk(l)

)
l∈N and

xk(l) ∈ X with

(34) lim
k→+∞

f
(
xk(l)

)
− fk(l)

(
xk(l)

)
= 0

and ε > 0, L ∈ N with

f
(
xk(l)

)
− fk(l)−κ

(
xk(l)

)
> ε

for every l > L. Since X is compact, we may assume (by taking a further

subsequence) that
(
xk(l)

)
l∈N converges to x∗ ∈ X . For sufficiently large l,

the Lipschitz continuity of fk(l) and fk(l)−κ gives∣∣∣fk(l) (x∗)− fk(l)
(
xk(l)

)∣∣∣ ≤ α‖xk(l) − x∗‖ <
ε

4
,∣∣∣fk(l)−κ

(
xk(l)

)
− fk(l)−κ (x∗)

∣∣∣ ≤ α‖xk(l) − x∗‖ <
ε

4
,

and (34) implies that for sufficiently large l

f
(
xk(l)

)
− fk(l)

(
xk(l)

)
<
ε

4
.
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It follows that

fk(l) (x∗)− fk(l)−κ (x∗) = fk(l) (x∗)− fk(l)
(
xk(l)

)
+fk(l)

(
xk(l)

)
− f

(
xk(l)

)
+f
(
xk(l)

)
− fk(l)−κ

(
xk(l)

)
+fk(l)−κ

(
xk(l)

)
− fk(l)−κ (x∗)

>
ε

4
,

since f
(
xk(l)

)
− fk(l)−κ (xk(l)

)
is greater than ε, and the other three terms

each have an absolute value smaller than ε/4. Consequently fk(l) (x∗) >

fk(l)−κ (x∗) + ε
4 , for infinitely many l which contradicts the fact that fk (x∗)

is bounded above by f(x∗). �

Lemma 5.3. If (yk)k∈N is a τ -admissible selection process then for all k ∈
N, κ ∈ {0, . . . , τ − 1}, and all n ∈ N\L we have

ykτ+κ
n = 1 =⇒

{
xkτ+κ
n = xkτn ,

V kτ+κ−1
n = V kτ−1

n if k ≥ 1.

Proof. Let n, k and κ be such that ykτ+κ
n = 1. Let a(n) := (n0, n1, . . . , nt)

be the sequence of ascendents of nt := n, i.e. n0 is the root node, and for
all t′ < t, nt′ = p(nt′+1). Define the hypothesis H(t, κ) :

(a) xkτ+κ
nt = xkτnt ,

(b) V kτ+κ−1
nt = V kτ−1

nt , if t ≥ 1.

Let κ′ < κ and assume that for κ′ and all t′ ≤ t, H(t′, κ′) holds true. This
is satisfied for κ′ = 0. Let t′ < t and assume H(t′, κ′ + 1) is true. Since x0

is fixed, this is satisfied for t′ = 0. By definition of ukτ+κ′+1
nt+1

we have

ukτ+κ′+1
nt′+1

∈ arg min
u∈Ũ
(
xkτ+κ

′+1
nt′

){Cnt′+1

(
xkτ+κ′+1
nt′

, u
)

+ V kτ+κ′
nt′+1

◦ fnt′+1

(
xkτ+κ′+1
nt′

, u
)}

thus by H(t′, κ′ + 1) (a) we have

ukτ+κ′+1
nt′+1

∈ arg min
u∈Ũ
(
xkτnt′

){Cnt+1

(
xkτnt′ , u

)
+ V kτ+κ′

nt′+1
◦ fnt+1

(
xkτnt′ , u

)}
.

Now as nt′+1 is an ascendent of n and κ′ < κ by property (i) of definition 1,
we have that the representation of Vnt′+1

is not updated at iteration κ′, i.e.

V kτ+κ′
nt′+1

= V kτ+κ′−1
nt′+1

.

And thus H(t′ + 1, κ′) (b) gives H(t′ + 1, κ′ + 1) (b), i.e.

V kτ+κ′
nt′+1

= V kτ−1
nt′+1

,

therefore

ukτ+κ′+1
nt′+1

∈ arg min
u∈Ũ
(
xkτnt′

){Cnt+1

(
xkτnt′ , u

)
+ V kτ−1

nt′+1
◦ fnt+1

(
xkτnt′ , u

)}
,
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and consequently6

ukτ+κ′+1
nt′+1

= ukτnt′+1
,

which gives by definitionH(t′+1, κ′+1) (a). Induction on t′ givesH(t′, κ′+1)
for all t′ ≤ t, and induction on κ′ establishes H(t, κ) for all κ ∈ {0, 1, . . . , τ}.

�

Lemma 5.4. Let (wk)k∈N be a stochastic process with value in {0, 1} adapted
to a filtration (Fk)k∈N, such that the number of terms that are non-zero is
almost surely infinite. Let (yk)k∈N be a sequence of i.i.d discrete random
variables. Define the filtration Bk := σ

(
Fk ∪ σ(y1, . . . , yk−1)

)
and assume

that for all k ∈ N, yk is independent of Bk. Let k(j) denote the jth integer
such that wk = 1, i.e. k(0) = 0 and for all j > 0,

k(j) := min{l > k(j − 1)|wl = 1}.

Finally we define for all j > 0, the jth value of (yk) such that wk = 1, i.e.

zj := yk(j).

Then (zk)k∈N is a sequence of i.i.d. random variables equal in law to y0.

Proof. Let Y denote the support of y0. We start with z1. For i ∈ Y ,

P(z1 = i) =
∞∑
l=1

P
(
{∀l′ < l, wl

′
= 0} ∩ {wl = 1} ∩ {yl = i}

)
because of the {0,1}definition, and hence

=
∞∑
l=1

P
(
{yl = i}

)
P
(
{∀l′ < l, wl

′
= 0} ∩ {wl = 1}

)
by independence, so that

= P
(
{y0 = i}

) ∞∑
l=1

P
(
{∀l′ < l, wl

′
= 0} ∩ {wl = 1}

)
as (yl) is i.i.d., and so

= P
(
{y0 = i}

)
as the sequence (wk)k∈N must contain a 1 almost surely. Thus z1 is equal
in law to y0.

Now suppose that z = (z1, . . . , zm) is a sequence of i.i.d. random vari-
ables. Let k1, · · · , km be m ordered integers, and fix b ∈ {0, 1}n and i ∈ Y .

6This requires that the choice of optimal control among the set of minimizers is deter-
ministic (say that with minimum norm).
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We have

P
(
{z = b} ∩ {zm+1 = i} ∩ {k(1) = k1, . . . , k(m) = km}

)
=
∞∑
ν=0

P
(
{z = b} ∩ {k(1) = k1, . . . , k(m) = km}

∩{yν = i} ∩ {ν = k(m+ 1)}
)

=
∞∑
ν=0

P
(
yν = i

)
P
(
{z = b} ∩ {k(1) = k1, . . . , k(m) = km}

∩{ν = k(m+ 1)}
)

= P
(
y0 = i

)
P
(
{z = b} ∩ {k(1) = k1, . . . , k(m) = km}

)
.

For the last equality we have used the fact that (yk) is i.i.d. and the fact
that k(m + 1) is almost surely finite and thus

(
{ν = k(m + 1)}

)
ν∈N is a

partition of the set of events.
Summing over the possible realisations of k(1), . . . , k(m), we obtain

P
(
{z = b} ∩ {zm+1 = i}

)
= P

(
z = b

)
P(y0 = i).

Now summing over the possible realisations of b shows that zm+1 is equal
in law to y0. Thus

P
(
{z = b} ∩ {zm+1 = i}

)
= P

(
{z = b} ∩ {y0 = i}

)
= P

(
z = b

)
P(y0 = i)

= P
(
z = b

)
P(zm+1 = i)

which shows that zm+1 is independent of z and equal in law to y0. Induction
over m completes the proof. �
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