Managing uncertainties in urban runoff quality models: A benchmarking methodology - École des Ponts ParisTech
Communication Dans Un Congrès Année : 2004

Managing uncertainties in urban runoff quality models: A benchmarking methodology

Résumé

In this paper we present a benchmarking methodology, which aims at comparing urban runoff quality models, based on the Bayesian theory. After choosing the different configurations of models to be tested, this methodology uses the Metropolis algorithm, a general MCMC sampling method, to estimate the posterior distributions of the models' parameters. The analysis of these posterior distributions allows a quantitative assessment of the parameters' uncertainties and their interaction structure, and provides information about the sensitivity of the probability distribution of the model output to parameters. The effectiveness and efficiency of this methodology are illustrated in the context of 4 configurations of pollutants' accumulation/erosion models, tested on 4 street subcatchments. Calibration results demonstrate that the Metropolis algorithm produces reliable inferences of parameters thus, helping on the improvement of the mathematical concept of model equations.
Fichier principal
Vignette du fichier
Novatech04-kansobancs_d_essai_399.pdf (392.61 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00727149 , version 1 (02-09-2012)

Identifiants

  • HAL Id : hal-00727149 , version 1

Citer

Assem Kanso, Bruno Tassin, Ghassan Chebbo. Managing uncertainties in urban runoff quality models: A benchmarking methodology. Novatech 2004, Jun 2004, Lyon, France. pp.399-'06. ⟨hal-00727149⟩
180 Consultations
141 Téléchargements

Partager

More