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RESUME 

Nous présentons une méthodologie d’évaluation des incertitudes dans les modèles 
de pollution des eaux de ruissellement. Cette méthodologie, basée sur la théorie 
bayésienne, utilise une technique de simulation par chaîne de Markov (l’algorithme 
Metropolis), pour estimer la distribution de probabilité a posteriori des paramètres du 
modèle, ce qui permet, d’une part, une évaluation quantitative des incertitudes liées à 
l’estimation des paramètres ainsi que leurs interactions, et d’autre part, fournit des 
informations sur la sensibilité des réponses du modèle aux paramètres. L'utilité et 
l'efficacité de cette méthodologie sont illustrées dans le contexte de 4 configurations 
de modèles d’accumulation / érosion testés sur 4 chaussées. Les résultats de calage 
démontrent que l'algorithme Metropolis produit des inférences fiables des paramètres 
qui aident à l'amélioration du concept mathématique des modèles. 

ABSTRACT 

In this paper we present a benchmarking methodology, which aims at comparing 
urban runoff quality models, based on the Bayesian theory. After choosing the 
different configurations of models to be tested, this methodology uses the Metropolis 
algorithm, a general MCMC sampling method, to estimate the posterior distributions 
of the models’ parameters. The analysis of these posterior distributions allows a 
quantitative assessment of the parameters’ uncertainties and their interaction 
structure, and provides information about the sensitivity of the probability distribution 
of the model output to parameters. The effectiveness and efficiency of this 
methodology are illustrated in the context of 4 configurations of pollutants’ 
accumulation/erosion models, tested on 4 street subcatchments. Calibration results 
demonstrate that the Metropolis algorithm produces reliable inferences of parameters 
thus, helping on the improvement of the mathematical concept of model equations. 
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1. INTRODUCTION 

It looks impossible to mechanistically describe the processes involved in pollutants’ 
runoff in urban drainage systems, due to the complexity of the processes related to 
the generation and transport of pollutants during rainfall, the heterogeneity of the 
system’s characteristics and their related space and time scales. Therefore, the only 
possible modelling approach to be used in this case is the conceptual one, which 
often contains parameters that do not have a direct physical interpretation and 
therefore, cannot be measured in the field. Instead, these parameters must be 
estimated using a calibration procedure whereby the model parameters are adjusted 
until the system output and the model output show an acceptable level of conformity. 

Automatic calibration methods quantitatively express the distance between simulation 
results and measured data in terms of a criteria measure and use an optimization 
algorithm to optimize (minimize or maximize) this measure. 

However, the conceptual nature of stormwater quality models and the uncertainty 
level of the in situ measurement data [Ahyerre et al., 1998; Ashley et al., 1999], rarely 
allow a satisfactory calibration and validation of the model, thus the estimated 
parameters from these models are generally error-prone. 

Furthermore, one of the great limitations of classical optimization algorithms for 
calibration is that they do not allow neither an estimation of the significance of the 
obtained optimal parameter set, nor a realistic quantification of the predictive 
uncertainty. Hence, the existing urban stormwater quality models are rarely used for 
practical application. In order to improve these models and their usefulness, we 
propose to develop a more robust methodology for calibration and validation of 
models. 

In the last decade, great attention has been given to the Bayesian approach for model 
calibration particularly in the case of complex hydrological models [Kuczera et al., 
1998, Campbell et al., 1999], but rarely in environmental modelling. Based on this 
approach, a “Monte Carlo Markov Chain method MCMC”, was proposed by [Kanso et 
al., 2003] and applied to urban pollutants’ stormwater modelling. Primary results have 
shown the robustness and effectiveness of this method. Unlike traditional calibration 
techniques, this method not only attempts to identify a “best parameter set”, but also 
helps to assess, and where possible to reduce, uncertainties in the parameter values. 

This paper describes a benchmarking methodology based on this method to test the 
existing urban stormwater quality models on different scales and for various parts of 
the urban catchment system (roof surface, paved surface, street surface, sewers and 
the entire catchment). The availability of data resulting from a 2-year survey 
conducted on the “Marais” catchment in the centre of Paris [Gromaire, 1998] 
facilitates the implementation of this methodology, and leads to an estimation of the 
system’s sensitivity to its different components, a better understanding of the 
processes involved, and a reduction of uncertainties in these models. 

As a first step, this benchmarking methodology as described below, will be tested in 
this paper in the context of pollutants’ accumulation/erosion models at street surface 
areas, and will be extended later to other pollutants’ stormwater submodels. 

This paper is organized as follows: Section 2 presents the methodology proposed by 
introducing the Bayesian inference, the Metropolis algorithm and their use to analyse 
the models’ uncertainties and their sensitivities to the parameters. Section 3 illustrates 
the usefulness and the applicability of the benchmarking methodology in the case of 4 
configurations of pollutants’ accumulation/erosion models, tested on 4 street 
subcatchments. Finally; section 4 summarizes the methodology and discusses the 
results. 
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2. THE BENCHMARKING METHODOLOGY 

As shown in Figure 1, the benchmarking methodology consists of choosing different 
configurations of models to be analysed on a given system using the available in situ 
measurement data. Firstly, the uncertainties in the models’ parameters are inferred 
using a MCMC sampling method based on the Bayesian approach and secondly the 
inference results are analysed and compared for the different models in order to 
better understand the processes involved, estimate the system’s sensitivity to its 
different components and reduce uncertainties in these models. 
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Figure 1. Illustration of the benchmarking methodology proposed 

2.1. Bayesian inference 

2.1.1. Concept 

We are interested in mathematical models that predict outputs from inputs. The 
models are indexed by parameters, which may (or may not) be physically 
interpretable. The model f( ) can be cast as a nonlinear regression model: ( )

tt
Xf

t
Y εθ += , , t = 1,… ,n (1) 

Where (Y1,… Yn) is a vector of model predictions, (X1,… , Xn) is a vector of input data, 

θ = (θ1,… , θp) is the vector of p unknown parameters and (ε1,..., εn) is a vector of 

statistically independent errors with a mean zero and a variance σ2
. 

Equation (1) contains various sources of uncertainties: (i) measurement uncertainties 
representing randomness in samples; (ii) uncertainties caused by lack of knowledge 
of all the causes and effects in physical systems, or by lack of sufficient data. This 
category of uncertainty can be subdivided in two types of uncertainties: those related 
to parameters and those related to the model itself. We are interested in this paper in 
the model’s parameters uncertainties. 

Assuming that the mathematical structure of the model is predetermined and fixed, 
the aim of model calibration procedure is to reduce the uncertainty in the parameter 
values by assimilating measurement data. 

Bayesian approach, expresses uncertainties in terms of probability. Uncertainty in 
measurements can be formalized in a familiar way by assuming that the residuals are 
drawn from a suitable probability distribution. However, parameter uncertainty is 

quantified by introducing at first a prior probability distribution P(θ) which represents 

the knowledge about θ before collecting any new data, and secondly, by updating this 

prior probability on θ to account for the new data collected (D). This update is 
performed using Bayes’ theorem, which can be expressed as: ( ) ( ) ( ) ( )DPPDPDP θθθ ⋅=  (2) 

Where P(θD) is the posterior distribution of θ; P(D) is a proportionality constant 

required so that ∫ P(θD) dθ = 1, and P(Dθ) is the conditional probability for the 
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measured data given the parameters. P(Dθ) is similar to the likelihood function of 
the model. In this case, the likelihood function can be written in the multiplicative form: 

( ) ( )
( )( )∏= ⋅

−−⋅⋅⋅=| n

t

XfY tt

eDP
1

2

,

212

2

2

2

1 σ
θ

σπθ  (3) 

Note that Bayes’ theorem does not allow one to derive posterior distribution without 
prior knowledge. However, in order to avoid favouring any initial value, the use of a 
uniform prior distribution over the range of parameters may seem reasonable [Beven 

et al., 1992]. The posterior distribution P(θD) contains all the available information 

about the parameters θ. In this case, the Bayesian statistical inference becomes an 

estimate of a posterior distribution of θ. 

2.1.2. The Metropolis algorithm for assessing parameter uncertainty 

In practice, it is difficult, if not impossible, to estimate the posterior distribution P(θD) 

by direct analytical calculation. In addition, classical approximations of P(θD) by a 
multinormal distribution can be quite poor [Duan et al., 1992; Kuczera et al., 1998]. 

The Metropolis algorithm, derived from the MCMC family of techniques, was chosen 
because of the simplicity of its implementation, efficiency and generality. It is based 
on the idea that we can create a random walk in the space of parameters in a way to 
generate enough samples, which adapt to the true posterior distribution of parameters 

P(θD) [Robert et al., 1999; Tanner, 1996]. There is typically an initial unstable 
transient phase before reaching the limit distribution. After removing this initial burn-
in, the remainder is used as a dependent sample from the posterior distribution. 

2.1.3. Monte Carlo method for assessing predictive uncertainty 

The propagation of the parameters’ uncertainty through the model with a Monte Carlo 
procedure in order to obtain its confidence intervals, gives an indication of both the 
predictive power of the model and its capacity to reproduce the system’s processes. 

2.2. Results analysis 

The posterior distribution allows a quantitative estimation of both the parameters’ 
uncertainties and the interaction between parameters. Moreover, a simplified 
sensitivity analysis approach given by a visual analysis of the scatter plots of the 
likelihood measure vs. each parameter can provide information about the sensitivity 
of the probability distribution of the model output to parameters: identification of input 
factors driving the model to have a good conformity with the data would be possible. 

3. APPLICATION OF THE METHODOLOGY 

3.1. A runoff modelling benchmark 

Runoff models describe both the particulate pollutant’s erosion during the storm event 
and their accumulation on the watershed during the preceding dry weather period. 
Table 1 represents the 4 configurations used to describe these processes. We have 
chosen 4 types of accumulation models and 2 types of erosion models (Table 2). 

Configuration Accumulation Erosion Parameters nb 

SIM_01 ACCU_TYPE_01 ERO_TYPE_01 4 Continuous 
Simulations SIM_02 ACCU_TYPE_02 ERO_TYPE_01 4 

SIM_03 ACCU_TYPE_03 ERO_TYPE_01 3 Single event 
simulations SIM_04 ACCU_TYPE_04 ERO_TYPE_02 2 

Table 1 Simulations’ configurations tested in the benchmark 
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ACCU_TYPE_01 [Alley et al., 1981] is commonly used in all available software. 
ACCU_TYPE_02 represents a mathematical reformulation of ACCU_TYPE_01 and 
has been proposed here in regards to the results obtained in this benchmark. Primary 
results encouraged us to propose 2 other models: i) ACCU_TYPE_03, for which the 
accumulation process is supposed to be instantaneous i.e. there is always a sufficient 
available mass Maccu regardless of the length of dry weather period; and ii) 
ACCU_TYPE_04 for which it is supposed that there is an infinite stock on the surface. 
ERO_TYPE_01, commonly used in literature [Huber et al., 1981] supposes that the 
eroded mass depends on the available mass and the rainfall rate. ERO_TYPE_02 
supposes that erosion depends only on the rainfall rate. 

Accumulation Process Mathematical formulation 

ACCU_TYPE_01 Asymptotic 
( ) ( )tMaDeroSimpDaccu

dt

tdMa ⋅−⋅=  (4) 

ACCU_TYPE_02 Asymptotic ))((
)(

lim tMaSimpMKaccu
dt

tdMa −⋅⋅=  (5) 

ACCU_TYPE_03 Instantaneously SimpMaccutMa ⋅=)(   (6) 

ACCU_TYPE_04 Infinite stock No accumulation  

Erosion Process Mathematical formulation 

ERO_TYPE_01 
Depends on 
runoff and Ma 

( ) ( ) ( )tMatIWero
dt

tdMa w ⋅⋅−=  (7) 

ERO_TYPE_02 Only runoff SimptIKerotMe w.)()( ⋅=  (8) 

Table 2 Models used to describe the dry and wet weather processes in the benchmark 

Where Ma(t) (kg) is the available pollutants’ mass, Me(t) (kg/h) is the pollutants’ mass 
eroded by runoff, Simp (ha) is the impervious area, and I(t) (mm/hr) is the rainfall 
intensity. Daccu (kg/ha/day), Dero (day

-1
), Mlim (kg/ha), Kaccu (day

-1
), Maccu (kg/ha), 

Wero, Kero and W are the calibration parameters. Mlim represents the maximum 
accumulated mass and is equivalent to Daccu / Dero. 

3.2. The Data 

Table 3 presents the characteristics of the 4 street subcatchments used for the 
application. These data, for which 51 suspended solids pollutographs are available, 
were acquired for the urban catchment “le Marais” over the period 1996-1997. 

Street name Duval M.B.M. St. Antoine Turenne 

Surface (m
2
) 160 195 1017 1700 

Commercial /circulation level low/low no/low high/high low/med 

Pollutographs: all/calibration 11/8 17/12 11/8 12/9 

Table 3 Characteristics of the 4 street subcatchments (same slope and same imperviousness) 

3.3. Results and discussion 

A uniform distribution is assumed to encode the prior knowledge about the 
parameters. For each simulation, 12000 iterations were performed with the Metropolis 
algorithm, and the first 2000 samples generated were discarded. 

Results showed that the Metropolis algorithm converged successfully to the same 
posterior probability distribution of the parameters regardless of the initial parameter 
set used. Figure 2 shows the obtained posterior distribution of parameters for the 
configuration SIM_01 estimated at the Duval Street. 
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Figure 2 Posterior distribution for the SIM_01’s 4 parameters estimated at the Duval street 

Contrary to the wet weather parameters Wero and W, results for SIM_01 show a 
small reduction of uncertainty for the dry weather parameters, Daccu and Dero, 
comparing to the uniform prior distribution. By comparing the variation of the 
likelihood measure vs. the different parameters, one may conclude that the dry 
weather parameters Daccu and Dero used in SIM_01 have no significant effect on the 
model’s response (Figure 3.a.). Moreover, Figure 4.a. shows a strong linear 
correlation between these 2 parameters. We can conclude that no one of these two 
parameters drives the model to be more “behavioural”, and that their interaction may 
have the main effect on the model’s behaviour. The model used in SIM_01 would 
probably be more easily calibrated if mathematically reformulated. 

a.  

b.  

c.  

Figure 3 Scatter plots of the likelihood measure vs. the parameters for the configurations a. 
SIM_01, b. SIM_02 and c. SIM_03 obtained at the Duval street 
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However, results for the reformulated model SIM_02 show a better estimation of the 
Mlim parameter and scatter plots indicate that a clear optimum is detected for this 
parameter (Figure 3.b.). But great uncertainty is still obtained for the accumulation 
factor Kaccu, with a clear trend for a highest value (>1 day

-1
) which is much more 

important than the values used in literature (=0.08) [Bujon et al., 1990]. Such result 
suggests (confirming the results shown by [Gromaire, 1998]) that the dry weather 
period have no significant effect on the accumulation process. This led us to test two 
hypotheses: an instantaneous accumulation process and an infinite stock. 

a.  b.
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Figure 4 Types of correlations found between the model’s parameters for the Turenne street: a. 
Dry weather parameters Daccu and Dero (SIM_01); b. Mass of pollutants available and the 

erosion parameter Wero (SIM_03). 

Results obtained for SIM_03 indicate a good estimation of a unimodal distribution of 
parameters. Figure 3.c. also shows that the likelihood measure is highly sensitive to 
the accumulated mass. Nevertheless, results indicate a clear correlation between the 
mass available Maccu and the erosion parameter Wero (Figure 4.b.). Such 
correlation is not surprising regarding the mathematical structure of the erosion model 
(Equation (7) represents a multiplicative form of Maccu and Wero). However, despite 

this correlation, results show a slight diminution of the variance of errors σ2
 and 

consequently amelioration in the predictive power of the model (Table 4). 

Configuration Measurement SIM_01 SIM_02 SIM_03 SIM_04 

σ (mg/l) 62 47±10 47±10 42±7 50±10 

Table 4 Comparison of the standard deviation of the measured concentrations with the standard 
deviation of residuals between model and observation for the 4 configurations at the Duval Street 

It is to be noted that results for SIM_04 showed deterioration in the model behaviour 
(Table 4). In contrast to the other three configurations, this model cannot explain the 
washing-effect (not showed here) of the street after a high rainfall rate that has been 
shown by [Gromaire, 1998]. 

The propagation of the parameters’ uncertainty remaining after calibration of the 
model using a Monte Carlo procedure shows that the model confidence intervals are 
large, or, in other words, that the predictive power of the calibrated model is low. 

4. CONCLUSION 

This paper has presented a benchmarking methodology, based on the Bayesian 
theory, for assessing parameter uncertainties in urban runoff quality models. This 
methodology consists firstly of choosing a number of models’ configurations to 
describe the system studied and uses the Metropolis algorithm, a general MCMC 
sampling method, to infer the true posterior probability distribution of the models’ 
parameters conditioning to data. An analysis of the obtained posterior distributions for 
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the different configurations allows a quantitative assessment of the parameters’ 
uncertainties and their interaction structure, and helps to identify the main parameters 
that drive the model to have a good conformity with the data. The usefulness and the 
applicability of this methodology are illustrated in the case of 4 configurations of 
pollutants’ accumulation/erosion models, tested on 4 street subcatchments. 

Though Metropolis algorithm is computationally very intensive and needs a 
considerable number of iterations, results demonstrate clearly its effectiveness and 
efficiency to produce reliable inferences of parameters. 

Results show that the mathematical concept of the accumulation model, using two 
parameters Daccu and Dero, contains a strong interaction between its parameters, 
and implies much more uncertainty in their calibration. 

Furthermore, despite that a reformulation of this model using two parameters (Mlim 
and Kaccu) allows a better identification of the parameter Mlim, it seems difficult to 
reduce uncertainty about the accumulation parameter Kaccu. The high estimated 
value of this parameter and the good behaviour obtained of a one parameter 
accumulation model (Maccu) suggest that accumulation may happen instantaneously 
regardless of the length of the dry weather period. This hypothesis casts doubts on 
the utility of using an asymptotic behaviour to describe the accumulation process. 
Such a conclusion needs to be validated on other sites to test its generality. 

Finally, this method delivers much information which would have been unreachable 
with classical calibration methods and which are very useful for modelling attempts. 
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