Pore-scale modeling of multiphase flow in porous media using a conditional generative adversarial network (cGAN) - École des Ponts ParisTech Access content directly
Journal Articles Physics of Fluids Year : 2022

Pore-scale modeling of multiphase flow in porous media using a conditional generative adversarial network (cGAN)

Yixiang Gan
Jean-Michel Pereira

Abstract

Multiphase flow in porous media is involved in various natural and industrial applications, including water infiltration into soils, carbon geosequestration, and underground hydrogen storage. Understanding the invasion morphology at the pore scale is critical for better prediction of flow properties at the continuum scale in partially saturated permeable media. The deep learning method, as a promising technique to estimate the flow transport processes in porous media, has gained significant attention. However, existing works have mainly focused on single-phase flow, whereas the capability of data-driven techniques has yet to be applied to the pore-scale modeling of fluid–fluid displacement in porous media. Here, the conditional generative adversarial network is applied for pore-scale modeling of multiphase flow in two-dimensional porous media. The network is trained based on a data set of porous media generated using a particle-deposition method, with the corresponding invasion morphologies after the displacement processes calculated using a recently developed interface tracking algorithm. The results demonstrate the capability of data-driven techniques in predicting both fluid saturation and spatial distribution. It is also shown that the method can be generalized to estimate fluid distribution under different wetting conditions and particle shapes. This work represents the first effort at the application of the deep learning method for pore-scale modeling of immiscible fluid displacement and highlights the strength of data-driven techniques for surrogate modeling of multiphase flow in porous media.
Fichier principal
Vignette du fichier
wang_etal_gan_accepted.pdf (3.18 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03907112 , version 1 (19-12-2022)

Licence

Copyright

Identifiers

Cite

Zhongzheng Wang, Hyogu Jeong, Yixiang Gan, Jean-Michel Pereira, Yuantong Gu, et al.. Pore-scale modeling of multiphase flow in porous media using a conditional generative adversarial network (cGAN). Physics of Fluids, 2022, 34 (12), pp.123325. ⟨10.1063/5.0133054⟩. ⟨hal-03907112⟩
17 View
133 Download

Altmetric

Share

Gmail Facebook X LinkedIn More