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Multiphase flow in porous media is involved in various natural and industrial appli-

cations including water infiltration into soils, carbon geosequestration, and under-

ground hydrogen storage. Understanding the invasion morphology at pore scale is

critical for better prediction of flow properties at the continuum scale in partially

saturated permeable media. The deep learning method, as a promising technique

to estimate the flow transport processes in porous media, has gained significant at-

tention. However, existing works have mainly focused on single-phase flow, whereas

the capability of data-driven techniques has yet to be applied to the pore-scale mod-

eling of fluid-fluid displacement in porous media. Here, the conditional generative

adversarial network (cGAN) is applied for pore-scale modeling of multiphase flow

in two-dimensional porous media. The network is trained based on a data set of

porous media generated using a particle-deposition method, with the corresponding

invasion morphologies after the displacement processes calculated using a recently

developed interface tracking algorithm. The results demonstrate the capability of

data-driven techniques in predicting both fluid saturation and spatial distribution.

It is also shown that the method can be generalized to estimate fluid distribution

under different wetting conditions and particle shapes. This work represents the first

effort on the application of the deep learning method for pore-scale modeling of im-

miscible fluid displacement and highlights the strength of data-driven techniques for

surrogate modeling of multiphase flow in porous media.
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b)yuantong.gu@qut.edu.au
c)emilie.sauret@qut.edu.au
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I. INTRODUCTION

Multiphase flow in porous media has been investigated extensively mainly in the context

of geological systems for applications including enhanced oil recovery, carbon geoseques-

tration, and underground hydrogen storage1–4. It has been established that the fluid-fluid

displacement processes depend on both flow conditions and fluid properties, which was re-

vealed in the phase diagram proposed in the seminal work by Lenormand 5 , where three

regimes including capillary fingering, viscous fingering, and stable displacement were found

to be governed by the viscosity ratio of the two fluids and Capillary number that reflects the

relative importance of viscous force to capillary force. Besides, the significant impacts from

the wettability of the porous media, quantified by the contact angles measured at three-

phase contact lines, have been identified experimentally and numerically6–10. Generally, as

the wetting conditions of porous media shift from non-wetting (drainage processes with con-

tact angle measured within the invading phase being less than 90◦) to wetting (imbibition

processes), smoother invasion fronts with less trapping of defending phase are observed,

which is explained by the favored cooperative pore-filling events at pore scale11,12.

The knowledge of multiphase flow in porous geological systems, i.e., rocks and soils, has

been employed to study other topics involving different types of porous materials, e.g., gas

diffusion layer in fuel cells13,14. In most applications mentioned above, inferring macroscopic

metrics of fluid-fluid displacement processes, such as displacement efficiency, fractal dimen-

sion of the invading fluid distribution, and relative permeability from fluid properties and

flow conditions has been a central focus. In the past decades, increased emphasis has been

put on the deterministic prediction and control of fluid transport phenomena especially in

artificial porous media where the geometry of pore structure can be controlled, such as

microfluidic devices for applications including drug delivery and selective metallization15,16.

Specifically, how geometry and topology of the pore structure affects multiphase flow remains

an active area of research17–23. Recent works have shown that, by careful design of porous

media with a particle size gradient, the capillary or viscous fingering can be suppressed dur-

ing fluid-fluid displacement processes24,25. Despite these efforts, the deterministic prediction

of multiphase flow in porous media remains elusive.

Various numerical approaches have been employed to supplement experiments in under-

standing the fluid transport in porous media at pore-scale, including conventional Navier-
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Stokes equations solvers such as volume of fluid method26–28, mesoscale methods such as the

lattice Boltzmann method29–31, and pore-network models11,32,33. On the other hand, with the

recent drastic advancement in the development of data-driven techniques, deep learning has

become a promising tool for efficiently modeling fluid transport in porous media, where focus

was placed on estimating the permeability of single-phase flow through a porous medium

using artificial neural networks (ANNs)34, convolutional neural networks (CNNs)35–45, or hy-

brid methods46,47. To further obtain the spatial flow details, approaches based on CNNs have

been proposed to either accelerate or directly predict the velocity field48–50. A recent review

on the development of deep learning techniques on pore-scale modeling is given by Wang

et al. 51 . Despite tremendous progress in the applications of data-driven methods in model-

ing transport problems in porous media, most studies have focused on single-phase flow. For

multiphase flow, Ganti et al.52 presented the first attempt on applying data-driven methods

for surrogate modeling of diesel jet injected into a quiescent nitrogen environment. Wen et

al.53 adopted CNNs as a computationally efficient substitute for predicting multiphase flow

in the context of carbon dioxide storage. Shokouhi et al.54 presented a physics-informed

deep learning method for prediction of CO2 plume migration by modifying the loss function

with the governing equations (continuity and Darcy’s law). However, these aforementioned

works are based on the equations at the continuum scale, neglecting the invasion mechanisms

at pore scale. Nevertheless, it has been shown extensively that the pore-scale modeling of

multiphase flow which includes the effects from wettability and pore structures is of vital

importance for accurate prediction of fluid flow processes18,55–62.

In this work, the deep learning technique based on the conditional generative adversar-

ial network (cGAN) called pix2pix by Isola et al. 63 is applied for the pore-scale modeling

multiphase flow in two-dimensional porous media. This method is chosen due to its wide

applicability in handling image-to-image translation tasks. This is especially suitable for

multiphase flow problems as both the input (porous structures) and the output (liquid dis-

tribution in the pore space) are often images such as those obtained using X-ray computed

tomography. The flow condition considered in the work is the capillary-dominated regime,

i.e., at low capillary number where the viscous effect is negligible compared with the inter-

facial tension, a scenario that can appear in applications such as carbon geosequestration

and subsurface hydrogen storage64,65. We firstly present the workflow, including generation

of porous media, numerical method for fluid-fluid displacement, and the structure of cGAN.
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Figure 1: overall framework
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FIG. 1. Workflow of predicting multiphase flow in porous media using the conditional generative

adversarial network (cGAN). Both the constructed porous media and simulation results (ground

truth) of invasion morphologies are input into the cGAN for training. Once trained, given a

new porous medium, cGAN directly predicts the invasion morphology of the invading phase at

percolation.

Next, the neural network is trained based on 4000 simulation results of drainage processes

(porous media being non-wetting to the invading phase), and the prediction accuracy on test

samples (containing 1000 simulation results) considering both statistical and deterministic

metrics, i.e., saturation and invasion morphology, are examined. We explore the sensitiv-

ity of saturation and morphology prediction performance on the network architecture by

varying the network depth. Then, we probe the generality of cGAN for multiphase flow by

extending to cases with different wetting conditions and particle shapes. Finally, we discuss

the implications of the findings and provide perspectives for potential future works.
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II. METHODS

The workflow for predicting multiphase flow in porous media using deep learning tech-

niques is shown in Fig. 1. Firstly, to obtain the required data set for training, the two-

dimensional porous media are generated as binary images, which are used as geometry

input along with boundary conditions for multiphase flow simulation using numerical meth-

ods. The simulation results containing three phases, i.e., invading fluid, defending fluid,

and solids are then binarized to represent the final morphology of the invading phase, which

is regarded as the ground truth results. Note that, despite that both the defending phase

and solids are in black color, the binary images of geometry input and ground truth re-

sult together should contain the complete information of phase distribution without loss of

information, as both will be input into the learning machine, i.e., the conditional genera-

tive adversarial network (cGAN), during the training process. Once trained, given only a

geometry input (test data) that the machine has not seen, the cGAN can make a predic-

tion of invading phase distribution within the porous medium, which can be compared with

the simulation results to examine the network performance. In the following, details are

provided on the adopted methods in the workflow.

A. Porous Media Generation

Randomly arranged non-overlapping circular particles of different sizes have been com-

monly used as porous media with heterogeneous pore structures9,66. Here, we adopt a sim-

ple particle-deposition method to generate geometries with controlled statistical parameters.

Briefly, a circle with a prescribed radius R0 is repetitively and randomly (uniform distribu-

tion) deposited into a square domain with an edge length L. The total number N of particles

to be deposited can be calculated by N = (1−φ)L2

πR2
0

, with φ the porosity. During deposition, if

the newly placed circle overlaps with an existing one, coalescence takes place, i.e., the parti-

cles merge into one larger particle with conserved total area. The location of the merged par-

ticle is calculated based on the area-weighted position, i.e., xnew = (x1A1+x2A2)/(A1+A2),

with xi the center coordinates and Ai the area. A schematic showing the coalescence of two

particles is shown in Fig. 2(A). A sample generated porous medium with a porosity φ = 0.6

is shown in Fig. 2(B). Interestingly, it is found that the resulting particle size distribution
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Figure 2 – Fractal circle generation Deposition 
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FIG. 2. Porous media generation. (A) A schematic showing the coalescence of two particles

(red) into a larger one (black) with updated size and position. (B) A sample porous medium

generated using the particle-deposition method with a porosity of 0.6. (C) The particle size is

found to follow an exponential distribution. (D) Generated porous media with a porosity of 0.6

under different numbers of repetition Nr = {1, 10, 100}.

using this simple-deposition method can be well described by an exponential distribution

[Fig. 2(C)]. To further control the geometrical features of porous media, firstly, a distance of

inhibition h can be introduced to prevent particles from being too close, i.e., the coalescence

criterion (ensuring non-overlapping) D < R1+R2 is changed to D < R1+R2+h, with D the

center-to-center distance between two particles, and R1 and R2 the particle radii. Note that

h = 0 corresponds to non-overlapping criterion. The specification of an inhibition distance

ensures sufficient pore spacing among particles such that the non-overlapping geometries can

be accurately captured once the generated porous medium is binarized with a certain reso-

lution. The other modification to control the particle size distribution is the introduction of
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Figure 3 – Interface Tracking Algorithm
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FIG. 3. Interface tracking algorithm for multiphase flow. (A) Schematics of pore-scale

invasion mechanisms. The direction of meniscus movement is indicated by black arrows. The

light-blue and dark-blue curves represent the menisci position before and after the corresponding

advancement event, respectively. (B) and (C) Invasion morphologies in a representation of a Berea

sandstone with contact angles θ = {45◦, 165◦}, respectively. More details can be found in Wang

et al. 67 .

a number of repetition Nr during deposition to control the particle size distribution. Specif-

ically, when depositing a new particle, if the coalescence criterion is triggered, coalescence

is suppressed and another random location is chosen for the particle. This process repeats

until a non-overlapping location is chosen. The number of repetition Nr specifies the max-

imum times the “seek-new-location” process can be executed. Thus, Nr = 1 corresponds

to the original algorithm, and greater Nr encourages space filling of small particles and

avoids coalescence, which would lead to a more uniform particle size distribution. Fig. 2(D)

shows three generated porous media in square domains of unit size with porosity φ = 0.6,

R0 = 0.03, h = 0.01, and Nr = {1, 10, 100}, respectively. In this study, Nr = 10 is chosen.

B. Interface Tracking Algorithm

To simulate multiphase flow in porous media, a recently developed interface tracking

algorithm is used67. The method is developed based on the algorithm originally proposed

by Cieplak and Robbins 11 which considers essential pore-scale instability events, including
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burst, touch, and overlap. The original method has been successfully applied to repro-

duce experimental results of multiphase flow in porous media filled with perfectly spher-

ical particles20,68. The key extension in the new algorithm is the consideration of unpin

event, which results from the sharp edge pinning effect where the effective contact angle

can be greater than the intrinsic one, and the contact angle at which unpin takes place

can be determined according to a purely geometrical extension of Young-Dupre equation

θunpin = θ0 + (180◦− α) with θ0 the intrinsic contact angle and α the local corner angle69,70.

This is a common phenomenon observed in both natural and artificial surfaces where menisci

can get pinned at sharp edges, e.g., Wu, Kharaghani, and Tsotsas 71 , Chen et al. 72 . Fig. 3(A)

shows the schematics of these pore-scale mechanisms, with light and dark blue curves rep-

resenting the menisci position before and after an instability event, respectively. The main

advantage of the interface tracking algorithm is its applicability to arbitrarily-structured

porous media, as opposed to perfectly circular grains in the original model. This new

method has been validated and applied to study fluid-fluid displacement processes in porous

media with complex pore structures and different wetting conditions22,67. As illustrative

examples, Fig. 3(B) and (C) show the simulated invasion morphologies of diagonal injection

simulations in a representation of a Berea sandstone73 with contact angles θ = {45◦, 165◦},

respectively. The algorithm is currently able to simulate multiphase flow in the capillary-

dominated regime, i.e., quasi-static processes with vanishing capillary number where the

viscous effects are negligible. This regime is often encountered during fluid flow in fine soils

and sands underground or in microfluidic devices where the size of pore space is small (in

the order of micrometers). The algorithm is much more computationally efficient compared

with conventional CFD methods, which facilitates the generation of data sets for training

neural networks. A more detailed description of the algorithm can be found in the previous

studies22,67 and is omitted here for brevity.

C. Conditional Generative Adversarial Network

We adopt a conditional generative adversarial network (cGAN) called pix2pix as described

in Isola et al. 63 . This method is chosen due to its wide applicability in handling image-to-

image translation tasks and ease of adoption without the need for parameter tweaking. This

is especially suitable for multiphase flow problems as both the input (porous structures) and
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FIG. 4. Conditional generative adversarial network (cGAN). The Generator G learns to

generate the output that can fool the discriminator. The discriminator D learns to classify fake

images (created by the generator) from the ground truth y.

the output (liquid distribution in the pore space) are often images such as those obtained

using X-ray computed tomography, after image treatment and segmentation (see e.g. Blunt

et al. 74 , Bruchon et al. 75). A schematic of the cGAN is shown in Fig. 4, where the generator

G, for a given input porous medium x, predicts the invading fluid distribution at percolation

y, i.e., when the invading fluid reaches the outlet, while its adversary, the discriminator D,

tries to classify whether the output result is “real” or “fake”. In other words, during the

training process, G is trained to produce output images that can “fool” D, whereas D

is trained to distinguish fake images from real ones. Specifically, the architectures of the

generator and discriminator are based on “ResU-net” and “PatchGAN” described in detail

in Zhang, Liu, and Wang 76 and Nie et al. 77 , respectively. The exact network structures of

the generator and the discriminator are provided in the Appendix (Fig. A1 and Fig. A2,

respectively). All neural networks used in this framework are developed using Tensorflow78.

The loss function of the cGAN is given by:

LcGAN(G,D) = Ex,y∼Pdata(x,y)[logD(x, y)] + Ex∼Pdata(x)[log (1−D(x,G(x)))], (1)

where G tries to minimize this objective against its adversary D that tries to maximize it.

At the same time, the generator not only learns to fool the discriminator but also is tasked

to generate output close to the ground truth results in an L1 sense:

LL1(G) = Ex,y∼Pdata(x,y)[||y −G(x)||1]. (2)
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L1 norm rather than L2 is used to encourage clear boundary for the generator output63, i.e.,

a clear boundary between fluid-fluid and fluid-solid interfaces. Hence, the final objective

is63:

G∗ = arg min
G

max
D
LcGAN(G,D) + λLL1(G). (3)

In the original work of Isola et al. 63 , it is shown that the quality of prediction is affected by

the choice of λ. Particularly, L1 alone, corresponding to λ being too large or the absence of

the first term on the right-hand side of Eqn. (3), leads to blurry results, which is undesirable

in the current application of immiscible fluids; A small value of λ, on the other hand,

gives sharper results but could introduce unwanted artifacts. Thus, a λ = 100 is chosen

to reduce both of these artifacts, the same value adopted in Isola et al. 63 . We believe that

the optimal value of λ is problem-based (could be different depending on the application),

which is worth further investigation. The standard approach is followed during training79:

one gradient descent step is executed alternatively between D and G, and the objective is

divided by 2 while optimizing D, which slows down the rate at which D learns compared

with G. The Adam optimizer is adopted80, with a learning rate of 0.0002, and momentum

parameters β1 = 0.5, β2 = 0.999. For the input, the generated porous media are binarized

into 256x256 images as input images x for training. For flow simulation using the interface

tracking algorithm, a diagonal injection setting is adopted, i.e., point inlet at the bottom

left and point outlet at the top right, a typical geometry relevant to oil recovery processes.

The simulation results y are also binarized into 256x256 images where the morphologies of

the invading fluid at percolation are colored in white. 5000 simulation cases under drainage

conditions with a contact angle of 165◦ are simulated, among which 4000 are for training,

and 1000 for test.

III. RESULTS AND DISCUSSION

A. Performance Evaluation

A sample multiphase flow prediction for given input geometry from cGAN as well as

the ground truth results from the simulation are displayed in Fig. 5(A). In the case of

drainage processes (θ = 165◦), the occupation of relatively big pores by the invading phase

(white) is observed. Despite that there is some unphysical scattered invading phase that
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FIG. 5. Error quantification for drainage with θ = 165◦. (A) From left to right: a sample

input of a porous medium, the corresponding simulation result (ground truth), prediction from

cGAN, and contrast between simulation result and cGAN prediction, respectively. (B) Comparison

of invading phase saturation from simulation and cGAN prediction on training (blue) and test (red)

samples. The coefficients of determination R2 for training and test results are 0.998 and 0.981,

respectively. The inset shows the distribution of relative error from cGAN on test samples, with

the standard deviation 0.068 indicated by black-dashed lines. (C) Cumulative distribution function

(CDF) for the error percentage for both saturation and morphology predictions. The percentage of

cases that have less than 20% error on saturation-training, saturation-test, morphology-training,

morphology-test are {100.0, 98.7, 99.9, 89.4} %, respectively.

is disconnected from the main invading cluster, the prediction of phase distribution from

cGANs compares well with the ground truth result. The image contrast in Fig. 5(A), i.e.,

cGAN prediction subtracted from the ground truth result, highlights the regions where the

prediction and the ground truth result are different. Specifically, 1, 0, and -1 in the contrast

map respectively represent the region of false invasion (not invaded in the ground truth),
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exact match, and false non-invasion (invaded in the ground truth). It can be seen that most

of the unmatched regions (clusters in red or blue) are located at the menisci interfaces and

are in the form of thin slices of the size of one or two layers of pixels. This, however, is not

surprising as uncertainties are likely to be introduced when the geometry input and ground

truth result are binarized into images with limited resolution. In the current work, with the

choice of image resolution of 256x256 pixels, the characteristic geometrical feature size of

the porous media, i.e., the average face-to-face distance between particles (or the average

throat size), corresponds to 13.02 pixels. Higher image resolution associated with a greater

number of pixels for the characteristic size may improve the accuracy at a compromise of

increased computational cost.

The performance of cGAN in predicting multiphase flow is quantitatively evaluated based

on two metrics. The first is the invading fluid saturation Sinv = Ainv/Apore, with Ainv and

Apore the area of invading fluid and total pore space, respectively. This is a critical parameter

for the macroscopic characterization of multiphase flow in many engineering applications,

such as enhanced oil recovery and carbon geosequestration. Note that, as the pore space

is initially filled with only the defending phase, the value of Sinv is also equal to the sweep

efficiency of the displacement process, i.e., the proportion of the defending fluid that is

displaced out of the porous domain. The comparison of saturation prediction of cGAN for

the training data (blue) and test data (red) is shown in Fig. 5(B). The predictions on test

data are clearly more sparsely distributed. However, a small standard deviation of 0.068

(black-dashed lines) of the error distribution shown in the inset indicates overall outstanding

performance in saturation prediction. Indeed, the coefficient of determination is calculated

to be R2 = 0.981 on test data. The other metric, which is comparatively harsher compared

with Ainv, is the area ratio of total mismatched liquid distribution to the total pore space:

εm =
Ã

Apore

, (4)

with Ã the mismatched area [red and blue regions in the image contrast in Fig. 5(A)].

Therefore, εm not only concerns the prediction of the total amount of invading liquid that

is occupying the pore space after the displacement process, but also where it is distributed,

i.e., the morphology, within the pore space. Fig. 5(C) shows the cumulative distribution

function (CDF) of the errors in saturation (εs, absolute saturation difference between cGAN

predictions and ground truth results) and morphology prediction (εm) for both training and
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FIG. 6. Simplifications of generator network structure. (A) Network structures of the

generator with progressively removed bridging layers of minimum size. (B) and (C) Corresponding

performance in predicting the final saturation and invasion morphologies of multiphase flow in

porous media, respectively.

test data. The CDF shows the proportion of predictions (y-axis) that have errors that are

less than a specific value (x-axis). A shift of curves towards the right indicates an increase in

the error. It can be seen that the error in morphology prediction is higher than in saturation

prediction. Specifically, if 20% is chosen as the error threshold, the corresponding percentage

of saturation (P 20
s ) and morphology (P 20

m ) predictions are 98.7% and 89.4%, respectively. In

other words, about 90% of predictions in the phase occupation status in the pore space have

less than 20% error.

B. Sensitivity on Network Complexity

To investigate how the network architecture complexity impacts the prediction accuracy,

the network depth of the cGAN generator is varied, which is illustrated in Fig. 6(A). The

deepest bridging layers are progressively removed, which is associated with decreasing the

network complexity of the generator. The obtained architectures are denoted as cGAN-4,

cGAN-8, cGAN-16. Fig. 6(B) and (C) respectively show the error CFD for the saturation

and morphology predictions with different network depths. As expected, compared with

spatial fluid distribution, the saturation predictions are generally better for all cases. For

14



Architecture Network Depth P 20
s εs P 20

m εm

cGAN-4 7 0.987 0.051 0.894 0.111

cGAN-8 6 0.987 0.051 0.906 0.109

cGAN-16 5 0.747 0.141 0.111 0.277

TABLE I. Comparison of performance for the generator with different network depth. P 20
s and

P 20
m represent the proportion of cases on the validation data set that have less than 20% error for

saturation and morphology, respectively. εs and εm denote the average error for saturation and

morphology predictions, respectively.

architecture-wise comparison, cGAN-16 is significantly outperformed by cGAN-4 and cGAN-

8, whereas there is no significant difference between cGAN-4 and cGAN-8, indicating a

saturated performance at cGAN-8, and further network complexity will not lead to a further

increase in prediction accuracy. The quantitative metrics for performance quantification are

summarised in Table. I. We note that apart from the architecture complexity examined in

this section, other aspects of the neural network as well as parameters during training such

as the type of activation function, the learning rate, and the momentum parameters could

also impact the training time and the performance of the trained model; this is however

beyond the scope of the current study.

C. Predicting Multiphase Flow in Porous Media

Since wettability and particle shape have been identified as key factors that can influence

multiphase flow processes in porous media, it is important to assess the applicability and

performance of cGAN in predicting multiphase flow under different wetting conditions and

pore structures. So, we generate another 15000 cases of simulation results to cover different

contact angles θ = {60◦, 105◦} and angular particles with sharp corners (represented by

square shapes in this work). The porous media with angular grains can be generated based

on the original circular ones by converting circular grains to square ones while preserving

particle size (conserved area). Random rotation is then applied to every square particle.

Again, for each 5000 data sets, 4000 are for training and 1000 are for validation.

Fig. 7 shows three sample geometry inputs, ground truth results, and predictions from
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Figure 7 – image results different CA & shape
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FIG. 7. Prediction of multiphase flow in porous media with different wettability and particle

shapes.

cGAN for different wettability and particle shapes. Qualitatively, the predictions of the

invading phase distribution within the pore space agree reasonably well with the simula-

tion results. A general trend of more compact area occupied by the invading phase can

be observed for cases with smaller contact angles, consistent with the expected transition

from capillary fingering to stable displacement as contact angle decreases due to favored

cooperative pore-filling events11,12. Again, small regions of dispersed invading fluid that are

disconnected from the main invading cluster can be observed. It is possible to design and

carry out a post-processing procedure during which these isolated clusters are filtered out.
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Figure 8 – quantitative results: saturation for different contact angles
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FIG. 8. Saturation prediction for multiphase flow under different wetting conditions θ =

{60◦, 105◦, 165◦}, with R2 = {0.849, 0.956, 0.981}, respectively. The dashed and solid curves sur-

round the 80% and 50% cases based on the contours of density plot. The non-transparent circles

denote the mean saturation for different θ.

However, we note that such a procedure may not be necessarily beneficial in interpreting the

predicted results from cGAN. This is because the isolated clusters are not necessarily un-

physical and might appear in three-dimensional displacement processes. In strong drainage,

snap-off events caused by the swelling of defending phase corner flow could occur, which

can disconnect the invading fluid81,82, although the disconnection tends to be intermittent.

In strong imbibition, the fluid invasion process in the capillary-dominated regime follows a

percolation-like pattern where the invading phase can be mainly transported through corner

flows9,83. This implies that the invading fluid could appear to be disconnected for given lim-

ited imaging resolution where the corner or thin film flows cannot be resolved. Therefore,

in this work we refrain from applying any post-processing techniques to the results from

cGAN.

The predictions of invading phase saturation Sinv from cGAN under different wetting

conditions for the test data are plotted in Fig. 8. To highlight the regions where most

data points fall into, the dashed and solid curves enclose, respectively, 80% and 50% of

cases based on the contours of density plot. It can be seen that these regions are located

close to the diagonal line (black-solid line), indicating a general consistency between the
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Figure  9 – quantitative result: morphologies for different contact angles and shapes

FIG. 9. Cumulative distribution function (CDF) for error percentage of invasion morphology

predictions. For test cases, the proportion of cases that have less than 20% errors for circular

grains θ = {60◦, 105◦, 165◦} and angular grains θ = 165◦ are {0.56, 0.73, 0.91, 0.86}, respectively.

predictions and the ground truth results. Specifically, the coefficients of determination are

R2 = {0.849, 0.956, 0.981} for θ = {60◦, 105◦, 165◦}, respectively, which also corresponds

to P 20
s = {0.775, 0.940, 0.987} (proportion with less than 20% error in saturation predic-

tion), respectively. One reason that may explain the decrease in accuracy as the porous

media become more wetting to the invading fluid could be the favored non-local cooperative

pore-filling events (or overlap event), since the pore invasion triggered by the overlap of two

menisci depends on the exact location of both menisci, and as mentioned previously signif-

icant proportion of morphological inconsistency are located at the fluid-fluid interfaces [see

the image contrast in Fig. 5(A)]. The average values of Sinv for different contact angles are

indicated as solid dots. As expected, the invading phase saturation increases as θ decreases,

consistent with existing literature8,19,84.

The performance of cGAN on predicting fluid morphological distribution for different

wettability and particle shapes is evaluated by plotting the CDF of error in invasion mor-

phology predictions (Fig. 9). The overall trend of accuracy as a function of wettability is

similar: greater error is observed when θ decreases. For circular grains with θ = 60◦, only

56% morphology predictions have less than 20% error, a noticeable reduction compared with
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the 91% for θ = 165◦. For porous media with angular particles, the proportion of predictions

having less than 20% error is slightly smaller (86%) compared with circular grains at the

same wetting condition (91%). This might be attributed to the decrease in the minimum

throat size when converting circular grains into square ones. As mentioned previously, the

porous media with square particles are generated by converting each circular grain to square

ones with the area of each particle remaining the same (consequently the same porosity), af-

ter which a random rotation is applied to each individual particle. As a result, the minimum

feature size of the porous media - the minimum possible face-to-face distance between two

particles - is smaller for square particles compared with circular ones. Given the intrinsic

uncertainties (inversely related to the image resolution) remain the same, slightly greater

errors are observed in porous media with angular particles.

D. Discussion

The capability of data-driven method for predicting fluid-fluid displacement processes in

porous media with different wetting conditions and particle shapes has been clearly demon-

strated. The saturation estimation from cGAN is in good agreement with the ground truth

results, whereas the prediction of spacial liquid distribution fails to achieve the same level of

quantitative accuracy. The noticeable reduction in fluid morphology prediction highlights an

important feature of multiphase flow in porous media compared with single-phase flow. Dur-

ing single-phase flow, small variations in local pore size is not expected to have a significant

impact on the permeability. However, for multiphase flow, the global spatial liquid distri-

bution can be very sensitive to local pore/throat size fluctuations, especially in processes

where the capillary force and pore geometry governs the invasion sequence. An infinitesimal

amount of variation in the size of one throat/pore could theoretically lead to the change

of phase occupation status of an entire region, e.g., when all the subsequent invasion of a

region depends on the filling of a specific pore/throat. An example of drastic change in the

invasion morphology during imbibition processes due to slight variation in porous medium

porosity or wettability has been reported recently85. This, combined with the previously

mentioned more demanding accuracy for the exact menisci location prediction during the

cooperative pore-filling event, results in deteriorated performance in fluid morphology pre-

diction during imbibition processes (θ = 60◦). Despite the complexity involved in fluid-fluid
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displacement processes, the overall performance of cGAN on fluid morphology prediction is

found to be satisfactory: 56% (imbibition) to 91% (drainage) correct prediction with 20%

error tolerance, and 94% (imbibition) to 100% (drainage) with 40% error tolerance. In future

works, images with enhanced quality, i.e., greater pixel density for the pore geometry, can

be adopted to explore the improvement in pore-scale accuracy during imbibition processes.

In the current study, conditional generative adversarial networks were chosen as the

network architecture for the pore-scale modeling of fluid-fluid displacement processes under

different wettability and particle shapes. This is because, as mentioned before, (1) its

proven strength of handling image-to-image translation tasks, and (2) the inputs and outputs

of multiphase flow in porous media are often images as those obtained from X-ray CT.

By exploring the performance of cGAN under different network complexity, it is shown

that the prediction accuracy is saturated at network cGAN-8, which is associated with a

network depth of 6. However, we note that this observation is likely to be case-specific, i.e.,

the network depth needed for saturated performance depends on the smallest geometrical

features of the pore structure, e.g., the characteristic throat size of the porous media. Here,

cGAN has been focused on in this work, and we note that further studies are required for

the exploration of optimal network structures using other alternative architectures. For the

computational cost, the computation time is around 85 hours on an NVIDIA Tesla P100

GPU for the training process with 4000 training data. Once trained, the computation time

for predicting 1000 test cases using cGAN is about 6 minutes, which is approximately two

orders of magnitude faster than the interface tracking algorithm that was used for data

generation67. In the current work, despite that the same network architecture is adopted for

all cases as shown in Fig. 7, the model is retrained for different wetting conditions and particle

shapes. Future work could include embedding the contact angle into the training data

such that the model can be used to predict the fluid distribution under various conditions.

Alternatively, it is also possible to apply transfer learning to accelerate the training processes.

IV. CONCLUSIONS

We have presented a workflow where the data-driven technique is applied for predicting

pore-scale multiphase flow in porous media, which is a crucial process in many engineering

applications such as enhanced oil recovery and carbon geosequestration. It is shown that
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deep learning techniques can be used to not only predict the macroscopic metric during

multiphase flow such as saturation, but also are able to perform satisfactorily in predicting

spatial liquid distribution with different wetting conditions and particle shapes. Specifically,

more than 99% (drainage) and 78% (imbibition) cases have less than 20% error for the

saturation prediction, and more than 91% (drainage) and 56% (imbibition) cases have less

than 20% error regarding the exact liquid spatial distribution. The greater error observed

during imbibition processes is attributed to the more favored non-local cooperative pore-

filling events at smaller contact angles, a mechanism that is demanding in accurate prediction

of the exact location of menisci.

This work represents the first effort on the application of data-driven technique for the

pore-scale modeling of immiscible fluid displacement in porous media. The direct consider-

ation of wettability and pore structure geometry during multiphase flow distinguishes the

current work from several recent studies in the literature52–54,86,87. The results presented in

this study demonstrated the strength of data-driven techniques for fast surrogate modeling

of fluid displacement processes in porous media, which could facilitate the development of

more accurate continuum-scale models as well as help in deterministic predictions of fluid

flow in artificial porous media such as topological optimization of microfluidic devices for

controlled liquid transport.
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