An assessment of anisotropic phase-field models of brittle fracture
Résumé
In several classes of ductile and brittle materials consisting of different cleavage planes, an orientation dependency of the fracture process is observed. It leads for instance to complex failure behaviours and crack paths in polycrystalline or architected materials. This paper focuses on modeling anisotropy of brittle fracture by means of a variational phase-field approach. More precisely, we study different models including several phase (or damage) variables corresponding to different damage mechanisms. First, we recall a multi-mechanism gradient damage model based on an anisotropic non-local fracture energy. We then consider a model accounting for an anisotropic degradation of the elasticity stiffness tensor. Both types of anisotropies are compared in terms of their influence on analytical homogeneous solutions under uniaxial and biaxial tensile loadings. Weak and strong anisotropies are captured via the chosen multi-mechanism damage framework. The models are implemented numerically by using a finite element discretization. In order to improve numerical performance, we implement an algorithm based on a hybrid direct-iterative resolution of the displacement sub-problem. Accuracy of model prediction is assessed by comparing numerical results to theoretical solutions under uniaxial loading. Benchmark numerical tests on notched and perforated plates highlight the role of material parameters on the fracture anisotropy. Furthermore, both models are able to retrieve zigzag crack patterns observed in prior numerical and experimental studies. Finally, we discuss the predictions of a model combining both types of anisotropies.
Origine | Fichiers produits par l'(les) auteur(s) |
---|