Permeability of Uniformly Graded 3D Printed Granular Media - École des Ponts ParisTech Access content directly
Journal Articles Geophysical Research Letters Year : 2021

Permeability of Uniformly Graded 3D Printed Granular Media

Jean-Michel Pereira
Yixiang Gan
  • Function : Author
  • PersonId : 1093566

Abstract

The present work explores water permeability of uniformly graded irregular grains using 3D printing with controlled shapes and fractal morphological features at low Reynold's number for viscous flow. From large amount of real 3D granular morphological data, a scaling law, in terms of fractal dimension, is found to be followed. With this universal law, sand grains with controlled fractal morphological features are generated using Spherical Harmonics, and then created using 3D printing technique for water permeability tests. A modified Kozeny-Carman equation is proposed through more accurate determination of specific area, as a function of relative roughness and fractal dimension, than approximation using the volume-equivalent sphere. By isolating the contributions from specific area, the shape coefficient is found to be insensitive to particle morphology. Through benchmarking the model prediction against experiments from both this work and past literature, we demonstrate the validity and wide applicability of the modified Kozeny-Carman equation.
Fichier principal
Vignette du fichier
wei2021_accepted.pdf (1.49 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03169968 , version 1 (22-03-2021)

Identifiers

Cite

Deheng Wei, Zhongzheng Wang, Jean-Michel Pereira, Yixiang Gan. Permeability of Uniformly Graded 3D Printed Granular Media. Geophysical Research Letters, 2021, 48 (5), ⟨10.1029/2020GL090728⟩. ⟨hal-03169968⟩
45 View
259 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More