Sampling of one-dimensional probability measures in the convex order and computation of robust option price bounds - École des Ponts ParisTech
Article Dans Une Revue International Journal of Theoretical and Applied Finance Année : 2019

Sampling of one-dimensional probability measures in the convex order and computation of robust option price bounds

Résumé

For µ and ν two probability measures on the real line such that µ is smaller than ν in the convex order, this property is in general not preserved at the level of the empirical measures µI = 1 I I i=1 δX i and νJ = 1 J J j=1 δY j , where (Xi) 1≤i≤I (resp. (Yj) 1≤j≤J) are independent and identically distributed according to µ (resp. ν). We investigate modifications of µI (resp. νJ) smaller than νJ (resp. greater than µI) in the convex order and weakly converging to µ (resp. ν) as I, J → ∞. According to Kertz and Rösler (1992), the set of probability measures on the real line with a finite first order moment is a complete lattice for the increasing and the decreasing convex orders. For µ and ν in this set, this enables us to define a probability measure µ ∨ ν (resp. µ ∧ ν) greater than µ (resp. smaller than ν) in the convex order. We give efficient algorithms permitting to compute µ ∨ ν and µ ∧ ν (and therefore µI ∨ νJ and µI ∧ νJ) when µ and ν have finite supports. Last, we illustrate by numerical experiments the resulting sampling methods that preserve the convex order and their application to approximate martingale optimal transport problems and in particular to calculate robust option price bounds.
Fichier principal
Vignette du fichier
simu_cvx_order_1D_v2.pdf (581.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01963507 , version 1 (21-12-2018)

Identifiants

Citer

Aurélien Alfonsi, Jacopo Corbetta, Benjamin Jourdain. Sampling of one-dimensional probability measures in the convex order and computation of robust option price bounds. International Journal of Theoretical and Applied Finance, 2019, 22 (3), ⟨10.1142/S021902491950002X⟩. ⟨hal-01963507⟩

Relations

498 Consultations
764 Téléchargements

Altmetric

Partager

More