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SAMPLING OF ONE-DIMENSIONAL PROBABILITY MEASURES IN
THE CONVEX ORDER AND COMPUTATION OF ROBUST OPTION
PRICE BOUNDS

AURELIEN ALFONSI, JACOPO CORBETTA AND BENJAMIN JOURDAIN

ABSTRACT. For p and v two probability measures on the real line such that y is smaller
than v in the convex order, this property is in general not preserved at the level of
the empirical measures pu; = %Zle 0x, and vj = %E;}:l dy;, where (X;)i1<i<r (resp.
(Y;)1<j<s) are independent and identically distributed according to p (resp. v). We in-
vestigate modifications of p; (resp. vy) smaller than v; (resp. greater than uy) in the
convex order and weakly converging to u (resp. v) as I, J — oco. According to [Kertz and
Rosler| (1992)), the set of probability measures on the real line with a finite first order
moment is a complete lattice for the increasing and the decreasing convex orders. For p
and v in this set, this enables us to define a probability measure uV v (resp. uAv) greater
than p (resp. smaller than v) in the convex order. We give efficient algorithms permitting
to compute Vv and pAv (and therefore pur V vy and pr Avy) when p and v have finite
supports. Last, we illustrate by numerical experiments the resulting sampling methods
that preserve the convex order and their application to approximate martingale optimal
transport problems and in particular to calculate robust option price bounds.

Keywords: convex order, martingale optimal transport, robust option price bounds, sam-
pling techniques, linear programming
AMS Subject Classification (2010): 91G60, 90C08, 60G42.

1. INTRODUCTION AND MOTIVATIONS

We start with a practical motivation. Let us consider a trader who sells and hedges
exotic options on an asset (St)¢>0. To calculate option prices, the trader typically picks her
favourite model, then calibrates this model to vanilla options prices and uses this calibrated
model (S’Vt)tz[) to calculate exotic option prices. Then, a natural question is to know what
is the range of prices that can be attained by this procedure. To make things simple, we
assume zero interest rates and consider a trader who wants to deal an exotic option that
pays ¢(St,,S1,) at time Ty (with 71 < T3 and ¢: R x R — R) and observes on the market
European call option prices at times 77 and 75 for all strikes. This amounts to know exactly
w and v, the respective probability laws of S7, and Sy, under all risk-neutral measures,

and we suppose that St and Sp, are respectively distributed according to p and v (this
is achieved by the local volatility model and extensions). Then, all the models that are
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compatible with the absence of arbitrage are described by the set of martingale couplings

HMm,u):{weHw,u):vmeR, /R [ylmy|x (2, dy) < o and /R wa|X<x,dy>=m},

where 7y x denotes a Markov kernel such that 7 (dx, dy) = pu(dz)my|x (v, dy). Notice that
the joint law of (§T17 §T2) belongs to ITM (1, v). The range of prices of the exotic option is

given by the set
{/ c(a,y)m(dz, dy),m € TV (u, V)}
RxR

and we are interested in calculating the upper and lower bounds of this set, which are
usually called the robust option price bounds. This problem is precisely the martingale
optimal transport (MOT) problem studied by |Beiglbock et al.| (2013). They have shown
that the upper (resp. lower) bound is also the cheapest (resp. most expensive) price of
a superhedging (resp. subhedging) strategy from the dual formulation of the problem. In
practice, the trader is interested in calculating these bounds and comparing them to her
model price, in order to evaluate the model risk. Unless for particular payoff functions c,
she has to use a Monte-Carlo method and approximate the exotic price in her model
by 4 7 EZ 1 ( Ty 5”2), where (S Vi<i<r are 1ndependent copies of S. Let us note that by

construction, the empirical measures py = 7 Zi:l Ji and vy = 7 Zi:l Ji approximate
T T:

u and v. The goal of the paper is to give a way to calculate from p; and vy the robust price
option bounds. Our approach is to consider the corresponding discrete martingale optimal
transport problem and to rely on the powerful linear programming library that have been
developed. To do so, we need to modify slightly the empirical measures p; and/or vy in
order to recover the convex order, as we explain now.

We now present the mathematical framework and consider X and Y, two random vari-
ables on R, with respective probability distributions @ and v. The random variable X is said
to be smaller than Y in the convex order if E[¢(X)] < E[¢(Y)] for every convex function
¢ : R = R, provided that both expectations exist. In this case, we use the notation X <. Y
or u < V, since the convex order only involves the probability distributions. Theorem 8
in [Strassen| (1965)) ensures that, when [p |y|lv(dy) < oo, M (p,v) # 0 <= p <cx v. In
this work, we consider the approximation of the probability measures p and v by proba-
bility measures with finite supports u; = Zle pidg, and vy = ijl qj0y;, with I, J € N*,
zi,y; € R p;,q; > 0 for any i,5 and S0 p; = ijl ¢; = 1. Note that we simply have
pi = 1/1 and ¢; = 1/J for empirical measures. We consider the approximation of the MOT
problem: to minimize (or maximize)

I J
ZZT ic(xi, yj) (1.1)

i=1 j=1

under the constraints

I J J
rij = 0, Z?"ij =4, ij = pi and Z?‘zjyj = Pi;-
i=1 j=1 Jj=1
Thus, we can use a linear programming library to solve this problem numerically. The
key issue to run these algorithms is the existence of such matrices (r;;)i<i<r,1<j<J, that
amounts to the existence of a martingale coupling between p; and v;. Otherwise, the set of
matrices satisfying the constraints is void. By Strassen’s theorem, this is equivalent to have
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w1 <cx Vj, which motivates the interest of preserving the convex order when approximating
w and v.
Up to now, we have dealt with only two measures p <¢x v. More generally, if pu! <.
<ex pf are £ probability measures, one may be interested in constructing approximations
that preserve the convex order. In the same manner, such approximations would enable to
tackle numerically multi-marginal martingale optimal transport problems, see again Bei-
glbock et al.| (2013)).

Up to our knowledge, few studies consider the problem of preserving the convex order
while approximating two probability measures. We mention the thesis of Baker| (2012
who proposes the following construction for p <. v that are integrable. Let F,(x) =
p((—o0,z]) and Fy(z) = v((—o0, z]|) be the cumulative distribution functions and for p €
(0,1), Fu_l(p) = inf{x € R : F,(z) > p} and F,'(p) = inf{z € R : F,(x) > p} their
left-continuous and non-decreasing generalized inverses also called quantile functions. For
I > 1, setting

I

I
1 1
= — 0 i and 0y = — 6 4 5 1.2
H I; 1L, Frt(u)du ! I; 1[5, Fl(u)du (12)
- T - T

one has by Theorem 2.4.11 in Baker| (2012)) that ji; <.« 77 (this result is consequence of
the characterization of the convex order in terms of the quantile functions that we recall
below in Theorem (v)). This construction is easy to implement and can be obviously
generalized to the multi-marginal case, but it requires an explicit calculation of the integrals
of the quantile functions. Notice that nevertheless, these integrals may be deduced by
calibration if one observes for i € {1,...,I — 1} the price CZ-X of the European call option
with strike K = Fu_l(z/I) written on the asset X as Well as the current price sy = E[X]

of this asset. Since C;* = E[(X — F,; f F p)dp — (1 — %) F7'(i/1), we get
Iff , E Y p)dp = 1(CEX, CiX)—F(I—Z-i-l)Ki_l—(I—z)KZX (with the convention C;* = 0)

fori=2,...,I and IfOT F N p)dp = I(so — CfY) — (I — 1) K7,

The dual quantization introduced by |[Pages and Wilbertz| (2012) gives another way to
preserve the convex order in dimension one (see the remark after Proposition 10 in [Pages
and Wilbertz| (2012))). Suppose that p and v have a bounded support included in [z}, 2]

and that x1 < --+ < xy. The dual quantization of y is defined by

ir = n({er}) 6m+2 / T ()b, + / BT ).

(i,2i41] Litl — Tg (zi,i+1] LTitl — X

This is the law X = X1x— o —|—EZ 1 Ixe(@iwi] (szlUSzilzé =+ leU>zi1fiz~>’ where

U is sampled independently from X according to the uniform distribution on [0, 1]. Let
¢ : R — R be a convex function. We define ¢ : [x1,27] = R by ¢(z) = - (zit1) +

Ti41—T4

%gf)(:&) for z € [z;,x;41], i =1,...,I — 1. This is a convex function, and we have by

using p <. v that
E[p(X)] = E[p(X)] < E[p(Y)] = E[p(Y)].
Note that both methods have serious drawbacks to be used in practice. Baker’s construc-
tion requires to calculate explicitly the integrals of the quantile functions, which is often not
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possible. Dual quantization assumes probability distributions with bounded support, which
is not satisfied by most of the asset models. On the other side, there are many recent works
that deals with robust option price bounds for specific options. Without being exhaustive,
Hobson and Neuberger| (2012)), Hobson and Klimmek! (2015) characterize the bounds for
forward start options. Henry-Labordere and Touzi (2016)) describe explicitly the bounds for
an abstract class of payoff functions ¢ satisfying the so-called Spence-Mirrlees condition,
for which the left and right curtain couplings introduced by Beiglbock and Juillet| (2016))
are optimal. These works crucially exploits particular properties of the payoff functions.
In contrast, the numerical method that we propose in this paper to approximate robust
option price bounds works for general payoff functions.

The paper is structured as follows. In Section 2, we recall the characterization of the
convex, increasing convex and decreasing convex orders in dimension one, and give a way
to test if two probability measures with finite support are in the convex order. Then, in
Section 3, we shift the approximating measures p; and vy so that they have the same
mean and show that they are then in the convex order for I, J large enough, under suitable
assumptions. However, this method is not reliable in practice since the dimension I x J of
the linear programming problem can then be too large for this problem to be solved
quickly. It is thus crucial to use non asymptotic methods that gives approximating measures
in the convex order for any I,J € N*. In Section 4, we propose such a method based on
the following result stated in |Kertz and Rosler| (1992): the set of probability measures with
a finite first order moment is a lattice for the increasing and the decreasing convex orders.
Given p and v in this set, we define Vv (resp. pAv) as the supremum (resp. infimum) of
p and v for the decreasing convex order when [, xju(dz) < [, xv(dz) and for the increasing
convex order otherwise. This way, u V v (resp. p A v) is greater then u (resp. smaller than
v) in the convex order. In Section 5, we give efficient algorithms permitting to compute
pV v and pAv (and therefore uyV vy and puy Avy) when p and v are convex combinations
of Dirac masses. We prove that, when u <.« v, puy V vy and puy A vy respectively converge
weakly to v and p as I, J — oo, which shows that either p; and uyr V vy or pur A vy and
vy respectively approximate p and v and are in the convex order. Section 6 presents the
numerical approximation of different MOT problems. We first consider academic examples
where the MOT is known explicitly. Then, we address some practical examples with two
or three marginals, when the marginal laws are the ones given by the Black and Scholes
model.

This paper only deals with the one-dimensional problem. Of course, the same problem
occurs in higher dimension when one consider d > 2 assets instead of one. Thus, for two
probability measures p and v on R? such that u <. v, and for discrete probability measures
pr and vy that respectively approximate p and v, we want to slightly modify either u; or
v to recover the convex order between the approximating measures. Unfortunately, we can
no longer rely on the lattice structure to construct such a modification since it has been
shown by Miiller and Scarsini| (2006)) that the set of probability measures with a given mean
is not a lattice for the convex order when d > 2. In a companion paper Alfonsi et al.| (2018)),
we propose a suitable modification of uy that is obtained by the mean of a projection for
the Wasserstein distance and that can be efficiently computed.
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2. CHARACTERIZATION OF THE CONVEX, DECREASING CONVEX AND INCREASING
ORDERS

Let P(R) denote the set of probability measures on the real line. We define
P_(R) = {u€ PR): [ a ulds) < o},
R
Py(R) = {n e PR): [ atuldo) < oo,

Pi(R) = {1 € P(R): [ lelu(dn) < o0} = P-(R) N P(R).

For 1 € P(R), we set Fu(z) = p((—o0,x]), Fu(x—) = limy_,— F,(y) = p((—o0,x)). For
t € R, we define ¢, (t f F,,(x)dz. Fubini’s theorem ensures that for ¢ € R,
o) = [ 1z [ 1eantan) = [ (6= tutay (21)

where the right-hand side is finite iff 4 € P_(R). In a symmetric way, we define F),(z) =
p(lz, +00)), @u(t) = t+°o F,(z)dx and notice that

+oo
Gty = [ nllaronde = [ (=0 utan) (2:2)

where the right-hand side is finite iff 4 € P, (R). Let us note that p((z, +00)) = u([z, +00))
dz-a.e., and equation ([2.2)) is written with the open interval to have the same convention
as Kertz and Rosler| (2000). Denoting by f the image of u by x — —x, one has

Vo e R, Fy(x) = p((—o0,z]] = p([—z,+00)) = F’M(—w) and thus Vt € R, ¢,(t) = pu(—1).
(2.3)
Last, we define the function

Tult) = /R 1t — alpu(d) = 9ult) + @u(t),

that is usually called the potential of . It is finite when p € P;(R). Since t — [ zu(dr) =
u(t) = Pult) = 20u(t) — mu(t) = mu(t) — 2¢u(t), we have

mu(t) = 2¢,(t) —t + /Ra:u(dat) =20,(t) +t— /Rx,u(dx).

One important particularity of the dimension 1 is the following result (see e.g. Theo-
rems 3.A.1., 3.A.2. and 3.A.5. in Shaked and Shanthikumar| (2007))).

Theorem 2.1. Let u,v € P1(R). The following conditions are equivalent:

(i) 1% <ex UV,

(i) [pxp(de) = [pxv(de) and Vt € R, m,(t) < m,(t),
(i11) [pxp(de) = [pav(de) and Vi € R, pu(t) < @, (1),
(w) [gzp(de) = [ :cy(da;) and ¥Vt € R, @, (t) < @y (t),
(v) [y F'(p)dp = Jy FH(p)dp and Vg € (0,1), [ F7 (p)dp < [ F; ' (p)dp.

Thus, to check if two probability measures are in the convex order, it is sufficient to
focus on the the family of convex functions ¢(z) = |t — x|, for t € R. Thanks to this result,
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we obtain an interesting corollary that gives a necessary and sufficient condition for two
probability measures with finite support to be in the convex order.

Corollary 2.2. Let u = ZZ'I:1 Pidy; and v = ijl q;0y; be two probability measures on R.
Without loss of generality, we assume that x1 < --- <z, y1 < --- < yy and p1prqiqy > 0.
Then we have p < v if, and only if

(i) y1 <1 and yj > oy,

(it) for all j such that x1 < y; <z, m,(y;) < 7 (y5),

I J
(iti) 32—y PiTi = Zj:l 4595 -
By using (iii) and the link between 7, and ¢,,, this corollary is still true if we replace (i)

by one of the following conditions:

(41") for all j such that z1 <y; < 7, ©.(y;) < @u(yj),

Pu(Y;)-
Proof. The necessary condition is obvious. Let us check the sufficient condition. Since
Y1 = mini<j<;y; and y; = maxi<;<j¥;, we obtain
J
vt <y, m(t) = quyj —tand Vt > yp, m(t) =t — quyj.
j=1 '

<
(i7") for all j such that z1 < y; < xr1, @u(y;) <

Similarly, we have 7, (t) = Zilzl pix; —t for t <z and 7m,(t) =t — Ei[:l pix; for t > xy.
By (i) and (i4), we get m,(t) = m,(t) for t € (—o0,y1] U [ym, +00) and

I
t) = ‘t - Zpiwz‘
i=1

for t € (—oo, z1]U 2, +00) by Jensen’s inequality. Moreover, since 7, is convex and 7, is
affine on [y;;y;41] for every j =1,..., M — 1, we get from (i¢) that 7, (t) < m,(t) for every
t € lyj;yj+1] for every j =1,..., M — 1. Thus, we have 7,(t) < m,(t) for all t € R. O

i(t—v5)

J
< gjlt—ysl = m(t)
j=1

In dimension one, the increasing and decreasing convex orders may be defined as follows.

Definition 2.3. For u,v € P(R), we say that p is smaller than v in the mcreasmg
(resp decreasmg) convex order and denote p <icx v (resp. i <dex V) if [p ¢(x)pu(dr) <
fR v(dz) for each increasing (resp. decreasing) convex function ¢ : R — ]R such that
the mtegmls make sense.

Lemmas 2.2 and 2.5 of [Kertz and Rosler| (2000) give the following characterization of
the increasing and decreasing convex orders.

Theorem 2.4. Let p,v € P1(R) (resp. P_(R)). The following statements are equivalent :
(1) b <iex v (resp. p1 <dex V),
(11) Yt € R, @u(t) < @u(t) (resp. ou(t) < pu(t)),
(iii) ¥q € 0,1], [} FX(p)dp < [ F; X (p)dp (resp. [§ Fy (p)dp > [ F, (p)dp),
(i) i <aex 7 (resp. i <iox )
Note that the equivalence between (i) and (i7i) is a direct consequence that ¢, is the Le-

gendre transform of the convex function g — foq Fy L(p)dp, and conversely, see e.g. Lemma
A .22 of |[Follmer and Schied (2011)).
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3. AN ASYMPTOTIC APPROACH

Now, we turn to our practical problem. We assume that p <. v with u,v € P1(R).
We consider two i.i.d. samples Xy, ..., X; with distribution u and Y1,...,Y; with distri-

bution v, and we set
1< 1<
Hr = I;(SXi and vy = szl(sz'

At least when p and v have densities, the empirical means X; = %Zi[zl X; and Y; =
%Z}]:l Y; are almost surely distinct, and we cannot have ji; <.« 7;. However, we know
that when I,J — +oo, both empirical means converge almost surely to fR xu(de). A
natural idea is then to slightly modify fi7, or 7, or both empirical measures so that they
both have the same mean. The hope is then that for I and J large enough, the modified
empirical measures would be naturally in the convex order. In this paragraph, we will take

1 J
fr.g = T Z 5X¢+YJ7X17 (3.1)
i=1
and keep 7. Other choices are of course possible and some of them are presented in
Subsection [4.2]
For a probability measure p on the real line, let F); L(0+) and F, " L(1-) respectively
denote the left-hand and the right-hand limits of the function £~ Lasp — 0and p — 1.
We have the following result.

Proposition 3.1. Let p,v € Pi(R) be such that i <cx v and F;'(04) < F1(0+) <
Fljl(l—) < F;Y(1-). The probability measure fir ; defined by (3.1 (resp. 0y) converges
weakly to p (resp. v), almost surely when I,J — 400. Suppose moreover that there exists

e > 0 such that for every t € [F,*(0+), F, ' (1-)]

t
/ (Fy(z) — Fy(z))dz > e. (3.2)

—00

Then, almost surely, there exists M such that for all I,J > M,
A, <ex V. (3.3)

Proof. Let f : R — R be a continuous bounded function. The strong law of large number
gives the (almost sure) weak convergence of ji; (resp. Uy) towards p (resp. v), as well as
the almost sure convergence of Y; — X towards 0 as I,J — oo. Now, we use that f is
uniformly continuous on [F Yo+)—1,F; " 1(1—) + 1] to obtain that

1
=Y f(Xi+Y;— X))
IZ: tr IIJ~>+oo/f

almost surely. Thus, i1, 7 converges weakly to p, almost surely.

We now turn to the convex order. Let § > 0 be such that
t

vt € [F,1(0+) — 6, F, ' (1-) + 4], / (Fy(z) — Fy(z))dz > £/2.

—00

We take ¢ € (—oo, F,;1(0+) — ) such that ffoo F,(z)dz < §, which implies that

vt € [F1(0+) — 6, F, ' (1-) + 6], /tt(Fl,(a:) — F,(2))dx >

oo\m
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From the weak convergence of ; (resp. firj) to v (resp. u), we obtain that dz-a.e.,

Fy,(x) — F,(x) (vesp. Fg, ,(z) — Fu(x)). Then, the dominated convergence theorem
gives the pointwise convergence of ftt Fy, (z)dz (resp. ft i, (x)dx) towards ft x)dw
(resp. ft x)dzx). Since these functions are nondecreasing and the limit is continuous

with respect to t, we obtain the uniform convergence on each compact set, and deduce
that, almost surely, there exists M such that

VI,J > M, Vt e [F;1(0+)—5,FM_1( —) + 4], /tt( Fy,(x) — Fg, ,(z))dx >

=1 m

Taking also M large enough so that for I,.J > M, |Y; — X;| < 6, we have F, () = 0 and
Fy,(x) = Fg, ,(z) > 0 for z < F;l(O—F) — ¢ and deduce that
t
Vit € (—oo,F;l(l—) + 9], / (Fo,(z) — Fg, ,(z))dz > 0.
Last, for I,.J > M, Fy, ,(z) = 1for x > F;7(1—)+6 and since lim;_, , o ¢35, (t) =5, , (t) =
0, we get that for t > F; (1) +6, [ (Fy, () — Fy, ,(2))dz = [[°(1 — Fy,(x))dz > 0.

We conclude by using Theorem (iii). O
We now give a sufficient condition for (3.2)).

Lemma 3.2. Let pu,v be two probability measures on the real line with yu <. v and
F7H0+) < Fljl(O—l—) < Fljl(l—) < F;Y(1-). Suppose that

Jdzg € R,Va € (=00, 0], F(x) — Fu(x) > 0 and Vo € [xg, +00), F,(z) — Fu(x) < 0.
Then, holds.
Proof. We know that F,(z) — F,(z) = 0 when = ¢ [F,1(0+), F, }(1-)), F,(2) — Fu(x) =

F,(x) > 0 when z € (F,;1(0+), Fr Lo+)), F,(z) — F#( x) = ( ) —1 < 0 when = €
[Fu_l(l—),Fy_l(l )), and by the equality of the meansweknowf - (Fy(z)—Fy(z))dx =

0. In particular, we necessarily have zo € [F,'(0+),F, (1—)) and we get that ¢ —

fioo(F,,(x) — F,(x))dz is nondecreasing on (oo, x|, nonincreasing on [zg,0), increas-
—1
ing on [F, 1(04), F,1(0+)], decreasing on [F,'(1-), F,'(1-)]. Thus ffgo (0+)(F,,(x) —
—1
Fu(x))dz >0, [ U7)(F,(2) — F,(2))dz > 0 and (3:2) holds for

Firt04) Frla)
- — min ( / (Fy(2) = Fu(w))da > 0, / (F(x) - F,Ax))dx) .

—0o0 — 00

In particular, we see that under the assumptions of Lemma ou(t) > pu(t) for
any t € (F;1(0+),F; (1)), which means that (u,v) is irreducible, see Definition A.3
of Beiglbock and Juillet| (2016).

Proposition gives a framework under which the empirical measures, up to a modifica-
tion that equalizes their means, are asymptotically in the convex order. The assumptions
of Proposition are quite restrictive and could be refined. Nonetheless, it is not very
convenient in practice to reach the convex order only asymptotically. If we have in mind to
solve the discrete MOT problem , which is a linear programming problem in dimension
I x J. To fix the ideas, if we need I,.J > 103 for the modified empirical measures to be in
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the convex order, the resolution of the discrete MOT problem is already too greedy
in time and memory. Thus, it would be much more convenient if we could guarantee that
the approximating measure are in the convex order. This is why we prefer to focus on non
asymptotic methods that ensures the convex order for any I, J.

4. A NON ASYMPTOTIC APPROACH BASED ON THE LATTICE STRUCTURE

4.1. The lattice structure for the increasing and decreasing convex orders. It
has been observed by Kertz and Rosler that for any a € R,

{n € P (R) such that / on(d) = a}

R
is a lattice for the convex order (Proposition 1.6 of Kertz and Rosler| (1992)) and even a
complete lattice (see top of p162 of Kertz and Rosler| (2000)). By Proposition 4.5 of Miller
and Scarsini (2006), this property is no longer true in higher dimension. Thus, if u,v €
P1(R) share the same expectation, there is a unique probability measure p Acx v € P1(R)
(resp. p Vex v € P1(R)) such that p Aex v <cx fy, b Aex V <ex vV (tesp. o <cx p Vex V,
o <ex i Vex V) and 1 <cx p Acx v for all n € Pi(R) such that n <. p and n < v
(resp. i Vex vV <cx 1 for all n € P1(R) such that u <. n and v < 7). By Proposition
1.6 of Kertz and Rosler| (1992)), @,a.. is the greatest convex function below ¢, A ¢, and
@,uvcxz/ = 95/1 V Q.

To deal with the case when p,v € Pi(R) are such that [pzu(dr) # [pav(dz), we
are going to use the complete lattice property of Py (R) (resp. P_(R)) endowed with the
increasing (resp. decreasing) convex order stated in Theorem 3.4 of [Kertz and Rosler| (2000)
(resp. Theorem 3.7 (a) of Kertz and Rosler| (2000)). For u,v € P+ (R) (resp. P_(R)), let
p Niex Vs pb Viex V € P(R) (resp. p Adex Vs it Vdex v € P—(R)) satisfy the above properties
of 4 Aex 1, 1t Vex v but with <.y replaced by <ijcx (resp. <4ex). By Proposition 1.4 of Kertz
and Rosler| (1992), for p,v € P4 (R), @un,..v is the greatest convex function below ¢, A @,
and @uv,..v = @u V @u. By Theorem 3.7 (a) of Kertz and Rosler| (2000)), for p,v € P_(R),
[t Adex V = Ji Niex 7 and. p Vdex ¥ = I Viex 7, 0 that by (2.3), ¢un,..o i the greatest convex
function below ¢, A ¢, and @,y .0 = ¢u V @u. Let us now compute the expectations of
1 Niex Vs b Viex Vs b Adex V and i1 Vgex ¥ when p, v € P1(R).

Lemma 4.1. Let p,v € Pi(R). Then p Niex V, b Viex Vs 1b Adex Vs 1t Vdex ¥ € P1(R) and

/R Tpt Viex v(dz) = /]R wp(dz) v /R ev(dz), /R gt Vaex v(da) = /R wp(da) A /R ev(dz),

/R 11 Ao (d) = /R su(dz) A /R w(dz), /R 1 Ao (d) = /R 2u(dz) v /R wv(dz).

Proof. By (2.1), we have t — ¢, (t) = [pzpu(dr) — [p(x — t)Tp(dz), where the last term
tends to 0 as t — +oo by Lebesgue theorem. Since, in the same way, t — ¢, (t) tends to

zv(dz), we deduce that t — ¢, V @, (t) tends to [, zu(dx) A [, xv(dz). On the other
R Iz R R
hand, by (2.1)) with u replaced by p Vgex v,

t—ouVou(t) =t— /R(t — )T Vaex v(dz) = /R(t A ) Vex v(dx)

For t > 0, the right-hand side is equal to — [, ™ pt Vaex v(dx) + [p(2T A t)p Vaex v(dz),
where the second term converges to fR rtuVaex v(dr) as t — oo by monotone convergence.
Therefore [, |z[p Vaex v(da) < 0o and [p 2p Vaex v(dx) = [p zp(dz) A [ zv(de). The fact
that u Viex v € P1(R) and the formula giving its expectation are deduced from the equality
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I Viex V = 1 Vaex V. For p Njex v and p Agex v, this is an easy consequence of the inverse
transform sampling method combined with the more convenient characterization of these
probability measures based on the quantile functions stated in Lemma 4.2 just below. [

Lemma 4.2.

1 1
For p,v € Py(R), Vq € [0,1], / Fo )dp—/ F,Il(p)dpA/ E; (p)dp,
q q

q q
and for p,v € P_(R), Yq € [0,1] / M/\d U :/0 Fﬂ_l(p)dp\//O F Y (p)dp.

Moreover, for all p € (0,1), uAlch(p) Fu/\dcxv( ) € {F L), F N (p)}.

Proof. The first statement is deduced from the second one and the equality p Agex ¥ =
it Niex V. For f: R — (=00, +00], we define f*(y) = sup,cr 2y — f(x) the Fenchel-Legendre
transform of f and recall that f** := (f*)* is the greatest convex function below f. Thus, we
have v = (0 A py)™™. This gives ¢}, = (¢ Apy)*. By using a standard property
of the Fenchel- Legendre transform we have (Pu Npu)* = ©y, Vo5, and we deduce that
I F/:/\ldcx,, Ydp = [ Fr N (p)dp v [ F (p)dp for all g € [0,1] by Lemma A.23 of Follmer
and Schied| (2011)).
Let us check now that Fl:/\licx,,(p) e {F,*(p), F, '(p)} for p € (0,1). The function

qu(q):Z/q p)dp — /qul

is locally bounded with a locally bounded derlvatlve on (0,1) so that the distribution

derivative of g*(q) is equal to 1iys01(Fy ' (q) — F,; L(q)) and the one of

qe/ =/q F\(p)dp - 6% (a)

is equal to _1{9(4)S0}Fu_ (@) — Lig(q)>01F, 1 (q). Therefore dg a.e. on (0,1), FuAlcxv(Q) =
Ligy<0y i (@) + 1g(q)>01 F, ' (q). Let now p € (0,1). There is a sequence (¢n)nen of
elements in (0, p) such that lim, o0 g = p and F, W\lcx,j(qn) € {F,  (an), F,, ' (qn)} for all
n € N. Either F\_,(q,) = F,; (qn) for infinitely many n and, by left-continuity of the
quantile functions FM/\mx,j(p) =F, L(p) or Fu/\mxu(%) = F,!(gy) for infinitely many n and
Funon(0) = F, ().

Sirnilarly, we show that F, u /\ld V( ) €{F, L(p), F, Y (p)} by considering the derivative of

qr— (fo p)dp — [ F; ) + Jo F (p)dp. O
Definition 4.3. For u,v € 731( ), we define p Av,uV v e P(R) by
WAV =101 ppde) < [ av(de)} B Ndex Y+ 1 ap(de)> [ ov(da)yH Niex Vs (4.1)
IV V=11 wu(de)< f, av(de)}H Vdex VL1 au(da)> [ ev(da)y P Viex Vs (4.2)

By Lemma|4_|, fR xpuAv(dx) fR zv(dx) and fR xpVr(dr) fR zu(dz). By Lemma 1.5
of [Kertz and Rosler| (1992)), for fixed a € R the convex, increasing convex and decreasing
convex orders coincide on { € P;(R) such that [ xn(d:n) = a}. Therefore

UAV < vand p <cx iV, (4.3)
and, when [, zp(dz) = [pav(de), pAv=pAexvand pV v = p Ve v.
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Remark 4.4. Let i,v € P1(R). Thenv <¢ pNv <= [pav(dz) = [p zp(dr). Let v be the
image of v byt — t+ [ xp(dz)— [ zv(dz). One has p5(t) = @y (t + [z ov(de) — [ zp(dz))
and @5(t) = @y (t+ [pav(de) — [pzp(de)) for allt € R. When [pzp(dr) < [pav(d),
then ¢, < oy and Vv = 1 Vaex V 50 that ouvy = ©u Vo < 0V oy = ouvp. When
Jgzu(dz) > [pxv(dz), then ¢, < @y and NV v = i Viex v s0 that Puvy = GV @y <
Ou NV @y = Puvi- Therefore, in both cases, p <cx Vv Zex VU,

In the same way, pA\v <cx p if and only if [ xp(de) = [ xv(dx). Let i denote the image
of p by t = t+ [ axv(de) — [z xp(d). One has Fﬁ_l(p) = F;l(p) + Jgxv(de) — [ zp(de)
forp e (0,1). When fR :c,u (dz) < fR TV dx) then F*1 < F:l and ,u/\y = M/\dch so that,

by Lemma fo uAV p)dp = fo dp\/fo p)dp < < fo F~ dp\/fO (p)dp =
I u/\V( p)dp for q € [0,1]. When fR:U,u (dzx) > foV (dz), then Fu > F}7 and AV =
i Niex V, so that, again by Lemma u f ;mu = fql Fu_l(p)dp A fql F;Y(p)dp >

fq Fﬁ p)dp A fq F Y (p)dp = f uAV (p)dp for q € [0, 1]. With Theorem (iii), we
deduce that in both cases, i \ v SCX pAY <ex V.

Let us now check that the diameter of the set {1, v, uVaexV, 4 ViexV, W \dexVs W icxV } (resp.

{M7 V, b Vdex Vs 1 Adex V}) {:ua Uy b Viex Vy b Niex V}) when [N S Py (R) (resp. P- (R)a 7)+ (R)))
in Wasserstein distance is equal to the Wasserstein distance between p and v.

Lemma 4.5. FOTT/ € {Ma Vy WV dexVs WViexVs 1 N\dexVs ;U/\icxy}y Vp € (07 1); Fu_l(p)/\Fy_l(p) <
Fo N p) < FN o) v E ()
Let o > 1. Since, by Proposition 2.17 of Santambrogio| (2015)), the o-Wasserstein distance

between two probability measures 71,72 € P(R) is given by

1/e
o(11,72) (/\ 77_21(p)\9dp> ,

one easily deduces that for all 91,12 € {u, v, 1t Vdex V, 1 Viex Vs b Adex Vs 1 Niex Vs

1 1/e
W) < ( | E R ) - ) A F;1<p>>@dp) = Wy, ).

Proof. For n € {u Niex v, ft Ndex v} this is a consequence of the last statement in Lemma
and the left-continuity of the quantile functions. Let n € {u Viex v, u Vdex V}. Since
for all t € R, ft /\dc v(x) dm:ft Fu( da:\/ft Fy(x)dz and [ Fyn o (x)de =

ft+°° p(x)dz v o, T F,(z)dz a reasoning analogous to the proof of this last statement
ensures that Vo € R, F w(x) € {Fu(z),F,(z)}. For p € (0,1), since

{reR:Fy(z) >p}n{zeR: F,(x) > p}
— {r € R: Fu(2) AFy(w) 2 p} € {w € R: Fy(a) = p),
{reR:Fy(x) >ptU{zeR: F,(x) > p}
— {x € R: Fy(2) V Fylw) 2 p} O {w € R: Fy(a) = p),
we get F, ' (p) A F, N (p) < F(p) < FH(p) V F7 (). O
4.2. Approximations in convex order. Let u,v € P1(R) be two probability measures

such that p <. v. We want to construct a couple of measures with finite supports and
in convex order which approximate (u, ). We first generate (z!);<;<; and (y] )1<j<.J such

that (} ZZI 1 031, 7 Z] 1 5~J) approximates (, ) in one of the following ways :
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L@,....7) = (X1,...,Xy) and (§7,...,97) = (Y1,...,Yy) where ((X;,Y;))i>1 are
random vectors i.i.d. according to u ® v,

2.2l = F; 1 (%2) forie {1,....1} andﬂ}-]:FV_1 (%) for je{1,...,J}.

i I3

We may want either to simply keep these samples with, in general, distinct empirical means
by setting
I I T =I ~ ~
a. (z1,...,z7) = (z1,...,27) and (yi],...,yj) = (ylj,...,yj),
or to modify the approximate measures to ensure that they have the same expectation. We
then propose one of the following modifications

7 ~ ~

b.set (xf, ... 2]y = xl—i-fR:c,udac) %Jzizlx{,...7x§+fRa:u T) — 1221 z!) and
Wi, o)) =@ + Jpuvldy) = 5000, 0 + Jpyvldy) — 355 7)),

c.set (yf,...,y7) = @ +1 211 JZk VU T+ T S @l JZk L U}) and

(zf,...,ahy=(3L,... xI)
d. compute the estimators of the variances o 32; = ZZ 1(~1) ﬁ(zf_l z1)? and
~J 1
U;%:ﬁz:jﬂ(yj) TI— 1)(2 1%) and add 102+J02 <JZJ 1 ; 121 1T >
to each Z! to obtain z! and /EIJC:J/E (% Zl 1T — 5 Z —17j ) to each ﬂj to obtain y}-].

The first modification necessitates the knowledge of [, zu(dz) = [, yv(dy) which is gen-
erally the case in financial applications, since this is the current price of the underly-
ing asset. The second modification seems suitable for the deterministic initialization of
points with I = J, since formally, because of the inequality pu <. v, the tails of u

should be lighter than the tails of v enabling a quicker convergence of %Ele F, 1 (2’2}1)

than of %Zz‘le Ft (21'2}1) to the common expectation of 4 and v as I — oo. When

Jg ¥?v(dy) < oo, the convex combination of %Zi[:l X; and %Z‘jjzl Y; with minimal vari-
ance is

1 J
Var(Y;) Var(X;)
X; Y,
IVar(Y1) + JVar(X;) Zz; * IVar(Y71) + JVar(Xy) ; I
)
and is approximated by the common mean = QiJ - Zf LT+ = 2+J = ijl %] of the two
samples (zf,...,21) and (y{,... ,yJ) for the random initialization of points.

We then set
1< 1<
= TZ(sx{ and vy = 325%],
i=1 j=1

and consider either (ur, pur V) or (ur Avy,vy) to approximate (4, v) in the convex order.
The next proposition shows without giving any speed of convergence that the measures p
and v are then well approximated asymptotically. Notice that, according to Remark [£.4]
the measure py V vy obtained with the second modification dominates in the convex order
the one obtained without modification.

Proposition 4.6. Let p and v be two probability measures on R such that p <.x v and
Jg lz|v(de) < oo. As I, J — oo, pr and pupV vy (resp. ppAvy and vy) converges a.s. weakly
to p and v.
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From this proposition, it seems then natural to approximate the continuous MOT

inf {/zm c(x, y)m(dz, dy), T € HM(,W)}

by the minimum of the discrete MOT for the measures u; A vy and vy when I,J
are large. We will do this with I = .J in Section [6] on numerical examples. However, up to
our knowledge, no convergence result is known in the literature for the MOT cost between
probability measures /i and 7 such that i <. 7, in the limit i — p and © — v for the
weak sense. We intend to address this important question in future research.

To prove Proposition we need the following lemma to deal with the deterministic
choice of points.

Lemma 4.7. Let ;1 be such that [ |z|pu(dr) < oo. As I — oo, %Zi[:l 5F;1(M) converges
21

weakly to i, %25:1 Fu_l (27) converges to [, zp(dz) and for all t € R, %Z{Zl(t -
F V(BN converges to [ (t — x)* p(da).

Proof. The weak convergence follows from the continuity of (0,1) > p = F, L(p) outside
of a set with zero Lebesgue measure and the weak convergence of %Zi[:l d2i-1 to the
21

Lebesgue measure on (0,1). We get by the weak convergence

LN e o R L
hmlnfji:l(Fu ((2i —1)/21)) 2/0 (£, (p)) dp.

From the inequality

1 _ L

1 ! -1 . _ 21 _1 _ I—357 _1 _
7 2B (@i-120) < [FErwy /0 (F, " (p) .

0

and since fol |F;1(p))|dp < 00, we deduce that

I

1
Jim 330 (@i=020) = [ o) (1.4)

Dealing in a symmetric way with the positive part ensures the convergence of the expec-
tations. The inequality (t — x)* < t* + 2~ for t,z € R combined with (4.4)) yields some
uniform integrability property ensuring the last convergence. U

Proof of Proposition[{.6 Let us deal with the second modification, the proof being similar
for the first or third modifications or with no modification. We also deal with the random
choice of points, the previous lemma replacing the strong law of large numbers for the
deterministic choice. The a.s. weak convergence of the empirical measure puy to p as I — oo
is a consequence of the strong law of large numbers. Still by the strong law of large numbers,
DD ijl Y; converges a.s. to [ zu(dx)— [ xv(dz) =0as I,J — oco. Fort € R,
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since @ — (t — x)" is Lipschitz continuous with constant 1,

1o 1
/R(t—q:)erJ(dx)—/R(t—x) )| <7 2 J;YJ
J
D (t-

t— /R(t — ) v(dr)].

Dealing with the second term in the right-hand side by the strong law of large numbers,
one deduces that ¢, (t) converges a.s. to ¢,(t) as I,J — oco. The monotonicity in ¢ and
the continuity of the limit in the same variable ensures that a.s. the convergence holds for
all t € R. In the same way a.s. for all ¢ € R, ¢,,,(t) converges to ¢,(t). Since @, v, (t) =
max (¢, (t), pv,(t)), we deduce that as I, J — oo, a.s., for all t € R, ¢,,vu,(t) converges
to max (¢, (t), pu(t)) = pu(t) since p <¢x v. For t € R and h > 0,

1 1t
E((P,u[vy] (t) — Purvuy (t - h)) = h/ FMI\/VJ (;L')dx
t—h

1 t+h 1
< FMI\/VJ (t) < E \ FMI\/VJ (x)dx = E(‘Pm\/w (t + h) — Purvry (t))

where the left hand and the right-hand 31des of the inequality respectively converge to

Lpt—a)t—(t—h—a)tu(dz) =+ [\, F(x)dr and L [o(t+h—2)T —(t —z)*v(de) =
3 tt+h F,(x)dx. Letting h — 0, we conclude that a.s., Fj,;vu, (t) converges to F,(t) for all

t € R such that v({t}) = 0 which is equivalent to the weak convergence of u; V v to v.
We now prove the a.s. weak convergence of uy A vy to pu. We have by construction
urrv; (t) < min(p,; (t), oo, (t)). This gives a.s, that for all t € R, limsup; ;. o ppurav, (t) <
u(t) since p < v. Now, we observe that the convergence of ¢,, (resp. ¢,,) to ¢,
(resp. ¢,) is uniform on R. In fact, ¢,, and ¢, are nondecreasing functions such that
limy—s oo ¢y, (t) = limy—_ o pu(t) = 0 and ¢, is continuous. From the a.s. simple conver-
gence, we deduce that a.s., ¢, converges uniformly to ¢, on (—oo,T], for any 7' > 0. The
same reasoning gives that a.s., ¢, converges uniformly to ¢,, on [T, 400). Since, by

and ,
t— [ ontdn) = [ (¢ =) utdn) = [ (@ nlda) = 9,0) = 200

I ~ I
t — %Zizl Xi = ou,(t) — ¢y, (t) and %21:1 X; Iﬁ—jroo fR zp(dr), we get that a.s., ¢,
converges uniformly to ¢, on R. The same argument works for the uniform convergence of
¢u, to ¢,. Thus, for € > 0 there exists N such that for I,J > N,

vt € R, max(lou, — eu(t)] [on, — @u(t)]) < e
We deduce
Vt € R, pu, (t) = Pur (t) AN, (t) + Pur () Vo, (1) — ¢, (1)
< s () A pu; (8) + @ut) Voo (t) — @u(t) + 28 = @, () A pw, (E) + 2¢,
since p <¢x v. Since ¢, — 2¢ is a convex function below ¢, A ¢, ;, we get that

VI,J>N,t € R, ¢, (t) =2 < @uav,(t).
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Since € > 0 is arbitrary, this gives a.s, that for all ¢ € R, iminf; j o0 0uav, () > 0u(t).
From the a.s. convergence for all ¢ € R of ¢, Ay, (t) to ¢,(t), we deduce as before the
convergence for all ¢ € R such that pu({t}) = 0 of Fj, ., (t) to F,(t). O

Remark 4.8. The proof of Propositionﬂ 4.0 does not use the independence between (X;)i>1
and (Y;)i>1 when they are sampled. In fact, among the three proposed modifications, only
the third one exploits the independence in order to get the best estimation of the common
expectation [ xp(dr) = [pyp(dy) from the samples (X;)1<i<r and (Yj)1<j<s.

An interesting thing to notice is that the construction of approximate probability mea-
sures that preserve the convex order can be easily extended to the multi-marginal case. More

precisely, let £ > 2, Iy, ..., I, be positive integers and p!,..., u’ be probability measures
on R such that p' <ex ... <ex pf and fR |zt (dr) < co. We either set 75 = F/;“l (—2’[;1> for

ic{l,....;;}and k € {1,...,¢} or T¥ = XF where the random vectors ((X},..., X!))i>1
are i.i.d. according to u' ® .. .®,u€. Next we choose (z f)lgzglk,lgkge as one of the following
vectors :

- (gf)lgiglk,1<k<éa

- (ah - i Ii i +fR xpn (de))1<i<n, 1<k<e
- (@~ i i ~k + 7 Z T} )1<i<ip1<k<ts
I /U 1 I ~j 1 I, ~
( +Z] 1 I = =7 -szl ]_Ikzz'iﬂ?f)) )
i / 1<i<Iy, 1<k<e

=~ 1 I; = E _ 15
Whereaj __1 ZZ (T J) W( Jlxj) and set pif _Ezigl% fork e {1,...,¢}.
For the first choice, the expectations of the measures ,u’}k are in general distinct and, to

obtain an increasing sequence of approximate probability measures for the convex order,
we compute either

11,2 (1 2 3 1,2 ¢
frys B Y 1Ty (i Y R) Y B (i VBT, V) Vg,

or ,u}l A oA (,uf{}l A ,u%)), cey ,uf{i A (pf;ll A “2)7 ,u?;ll A uﬁ, pﬁ. For the other choices,
the expectations are equal and the order in which the suprema V (resp. the infima A)
are computed no longer matters. Indeed, for f,g,h : R — R, we have max(f,g,h) =
max(max(f,g),h) and min(f, g, h) = min((min(f, g)), h)). One easily generalizes the proof
of Proposition to obtain the following result.

Proposition 4.9. Let ,ul, ... ,,uf be probability measures on R such that ,u <ex - <Zex
pt and [ |z|p(de) < co. Then, as Iy,..., Iy — +oo, ,uh, Mh"uh \//1]2,(/”1 \/u12) v
Wy (g, VHG)V )V aG, (resp. g A A, Ao At Ang )i, A
ui, ui}) converge a.s. weakly to pt,. .., pt.

5. ALGORITHMS AND COMPLEXITY

In this section, we present the algorithms to calculate uy Avy and py Vv defined in
and when uy = Zi[:l pidy, and vy = Z}'le q;0y; are probability measures with finite
support. In this case, the probability measures pu; A vy and pr V vy also have a finite
support, and the number of points in their support is discussed in Subsection When
1 < ---<azxyand y; < --- < yy, the number of operations required to calculate puy A vy or
prVvyisin O(I 4+ J). Otherwise, the computation cost is in O(I log(I) + Jlog(J)) since
one has first to sort the points.
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5.1. Algorithm for the calculation of the supremum of two probability measures
with finite support. Let pu; = Zle pids, with (p1,...,pr) € (0,1)f and v; = Zj:l 6y,
with (q1,...,q7) € (0, 1]‘] be two probability measures on the real line. Up to reducing
the number of points and sorting them, we may suppose that x; < z2 < ... < zy (resp
y1 < y2 < ...<yy). The equality ps Viex V7 = i1 Vdex P implies that it is enough to focus
on the computation of p; Vaex V.

The functions ¢,, and ¢, are piecewise affine with slopes taking respectively their
values in {0, p1, p1+p2, .. ., 25;11 pi, 1} and {0, q1, 1 +q2, . . ., Z}]:_ol g¢j,1}. As a consequence
©u; V ¢y, is piecewise affine with slopes taking values in the union of these two sets so that
w1V vy is a probability measure supported on K < I4+J—1 points 21 < 29 < ... < zg. Our
alm is now to provide an efficient algorithm aimed at expliciting puy Vaex Vj = Zle 0k0z, -
Let w1 < wo < ... <wp with L > IV J be such that

{wl,...,wL} = {xl,...,x[}U{yh...,yJ}.
For convenience, we set wo = w1 —1. Of course, ¢, (wo) = F, (wo) = ¢u, (wo) = F,,, (wo) =

0. We now proceed inductively on £ € {1,..., L} remarking that the functions ¢,, and ¢,
are affine with respective slopes F),; (wy—1) and F,; (we—1) on [we_1,wy] :

1. We first compute
Pur (W) = pp(We—1) + Fpuyp (we—1)(we — we—1), Fpup(we) = Fy(we1) + pr({we})
vy (we) = Qv (we1) + Fyy (we—r)(we — we—r), Fyy(we) = Fy,y(we—r1) + vs({we}).

2. If (@u, (we) — ppu; (we)) (0o, (we—1) — ppu; (we—1)) < 0, then, computing the intersection
point between ¢, and ¢,, on [wy_1,w,| and the increase of the slope of ¢,, V ¢,
at this point, we obtain that

({ |, (we) =y (we)[we—1 + v, (We—1) — Py (we—1) lwy })
M1 Vdex VJ
lov; (we) = o (wWe)| + [ow, (we-1) — ©p; (We—1))]
)) _ "Pm (wf) — Pur (w5*1> — Puy (wﬁ) + P, (wffl)‘
Wy — We—1

_ ‘SOI/J (wé) — QDHI(UJg)‘ + ’SOVJ(wf—l) — Pur (wf—l)| _ ‘Fy(’wg_l) N F;L(wﬁ—l)"
Wy — Wp—1

= 1 Vdex Vg ((we—1, we

Otherwise, we either have Vt € (wy—1,we) ©uyvaews () = ou,(t) or YVt € (w1, wy)
Gurvaery () = @u,(t), and the slope of ¢, V ¢, is constant on (w;—1,wy) so that
pir Veex vy ((we—1, we)) = 0.
3. The mass p1 Vaex v ({wy}) is obtained in the following way.
(i) If pu,(we) = @y, (we), then the slopes of ¢,, V ¢,, on (w1, we) and on
(wg, wes1) (convention wry1 = wyr, + 1) are respectively equal to F),, (we—1) A
F,,(we—1) and Fy,, (w) V F,,, (w;) so that
pr Vaex v({wet) = Fu(we) V Fy (we) = Fyy(we1) A Fyy (we-r).
(i) If wu, (we) > o, (we) then ¢, V @, is equal to ¢,, on a neighbourhood of wy
so that U1 Vdex VJ({wg}) = /L[({U)g}).
(iii) If @, (we) < v, (we), then, in a symmetric way, i Vaex Vo({we}) = vr({we}).
Of course, the slope of ¢, V ¢, is equal to 0 on (—oo,w;) and to 1 on (wr,, +00) so that
pr Vaex Vg ((—oo,wi) U (wr, +00)) = 0. Moreover, pr Vaex vg({wi}) = pr({wi}) Vvy({ws}).
On the other hand, by (2.1)), ¢, (wr) = wy, — S pizs, o, (W) = wy, — Z}]:l q;y; and
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when either Zilzﬂh’xi < Z}]:1 q;y; and pr({wr}) = 0 or Zlepixi > Zj:l q;y; and

vy({wr}) = 0, then 17 Vaex v7({wr}) = 0. Otherwise, and in particular when S7_ p;a; =
1G5V, U1 Vdex VJ(Qwr ) > 0. orithm elow 1mplements these 1deas to compute

> Y 1 ({wr}) > 0. Algorithm [I] below impl hese id

HI Vdex V-

5.2. Algorithm for the calculation of the infimum of two probability measures
with finite support. We consider the same setting as in Subsection [5.1] The equality
11 Niex Vg = i Ndex Vg implies that it is enough to focus on the computation of pi; Agex V-
Recall that w; < we < ... < wg, with L > I'VJ are such that {w1,...,wr} = {z1,...,21}U
{y1,...,ys}. Since convex hulls will appear in the characterization, when d = 1, of the
Wasserstein projections considered in Section 3, rather than using the characterization of
11 Ndex Vg deduced from Lemma which would lead to some algorithm similar to the
previous one, we compute the convex hull ¢, a0, of @, Apy,. To do so, we observe that
its epigraph is the convex hull of the union of the epigraphs of ¢,, and ¢, ,. Thus, we can
use Andrew’s monotone chain convex hull algorithm. We describe here briefly how it works
in our case. We exclude the trivial case L = 1 and assume that L > 2. The principle is
to calculate for £ € {2,... L} the convex hull of {(y,w) : w € [wi,we|,y > Yu; A v, (w)}.
It is fully described by indices ip(1) < --- < ig(ng) such that this convex hull is equal to
e(n)

—1 . Wi, (n41) W W—wW;
Unii {(y, w) s w € [ws, (), Wiy(i)], Y > m@m/\SOw(wie(n))‘f‘m@m/\
©u; (Wiy(ng1)) }- Obviously ng = 2, d2(1) = 1, i2(2) = 2 and from this initialization, we
proceed by induction. To calculate the indices i,11 from the indices iy, Andrew’s monotone

chain convex hull algorithm works as follows: {ip11(1),...,9¢(nes1)} is equal to {1}U{is(n) :
Cup N (Wep 1) =P Apw 5 (Wiy(n)) Prp ANPw ; (Wip(n)) —Pur Apw 5 (W) (n—1))
<n<
2 < n < ny, TR > Wiy () Wiy (1) Yu{e+1}.

This means that we remove all the previous points that would give a nonincreasing slope.
Once we have calculated the indices, the weights of the measure i Agex vy are obtained as
the difference of two successive slopes. This is presented in Algorithm

5.3. Examples. In this subsection, we discuss on different examples the number K of
points in the support of uy V vy (resp. ur A vy), in the case Zi[:l pix; = 23'1:1 q;yj. We
show that the maximal value of K is I +J — 1 (resp. I + J — 2).

We start by studying examples for puy V vy and we suppose for convenience that I < J.

1. If I =1, then necessarily pu; <. vy so that uyVvy=vjyand K = J,

2. If I > 2, then the support of p; Vv contains at least the two distinct points 1 Ay; and
xrVyy. Now either Vg € {ur, vy} or neither iy >¢x vy nor vy >¢x pr which implies
that K > 3 : the sign of ¢,, — ¢,, changes on the interval (x1 A yi, 2V ys), which
implies that the cumulative distribution function F' equal to the slope of ¢, V ¢,
is not constant on this interval. In particular, when I > 3 then K > 3. Notice that
K may be equal to 3 even if [ is arbitrarily large. For instance, for the centered
probability measures

1 9 < 9 1
=5 §is and vy = S1tes + =0
wr 3 1+3(I—1); —2 and vy 31 1); 1-It +3 1

with I > 3, ur Vv = %(5,1 + 80 + 61). Indeed ¢, (t) = % for t € [-1,0] whereas
vy, (0) = ﬁ DO =1 = 1 so that ¢y, (t) = 2 for ¢ € [0,1]. With the convexity
of ¢,, and ¢,, and the equality of these functions at the extreme points —1 and
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Algorithm 1 Calculate z; < 29 < ... < zx and (p1,...

K
Zk:l Qkﬁézk

oK) € (0,105 st puy Vaex vy =

max < ryVyy
Try1 ¢ mazx
pr+1 <0
YJj+1 < max
qj+1 <0
14+ 1
j«1
k+1
we—z1 Ay —1
F,+0
ou 0
F,+<0
0, <0
while w < max do
W+ 2; A Yj
FH = F# + 1{@:xi}pi
@‘ — o+ Fu(w —w)
Fl, — F,/ + 1{15=yj}Qj
Py v+ F (0 — w)
if (@u - (?,u)goz/ - Sp,u) <~O then
v— w v— w
o BB
ok — |F, — Fl
k+—k+1
else if ¢, — ¢, =0 then
2k < lEN _
ok < (F, V E,) — (F, NF,)
k+—k+1
end if
if (9 — 9u)Pilfg=s,) > 0 then
2 < W
Ok < Di
k+—k+1
end if
if (o, — @#)qjl{zﬂ:yj} > 0 then
2 < W
Ok < qj
k+—k+1
end if
J 3+ La=y
W 4= w_
F,+ F,
Pu @L
F,+ F,
Py — Oy
end while
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Algorithm 2 Calculate 21 < 290 < ... < zx and (o1, ..
Zszl Qkézk

- 0K) € (0,1]% st pr Aaex vy =

max < xy V Yy

Try1 ¢ mazx

pr+1 <0

YJji+1 < mazx

gs+1 <0

141

g1

L+ {}

w— Ay — 1

F, <0

o <0

F,+<0

w, <0

while w < maz do
W x; A Yj
Pu ¢ op+ Fu(w —w)
Py <y + Fy (0 — w)
while s(L) > 1 and (T eI RS W AL T I ES R I

ZS(L)_ZS(L)fl - w_zs(L)
Remove the last element of L.
end while
w4 W

F“ — F# + 1{1;:%}1)1'
By By + Namy 345
Add (w, ¢, A ¢,,0,0) to the list L.
14— 1+ 1{@:%}
J 7+ Ya=y
end while
if s(L) =1 then
o1 =1
else
FO«0
for 1 <k <s(L)do
F* o Lpca(n)) 22225 + L mar)
Ok Fk _ Fk:—l
end for
end if
if Os(L) = 0 then
Remove the last element of L.
end if
if o1 =0 then
Remove the first element of L.
end if
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1 (deduced at point 1 from the equality of the expectations), one concludes that
1+8) Tt +(t—1)7F
SOM\/SOVI(t):( ) A t-1)7*

. As explained in Subsection we necessarily have K < T+ J —1. For a € (%, %),

T
T«
Zéxz with z; = (I+ 1) 5 and vy = Z;

)
I

the cardinality of the support of uy V vryy is 21. Indeed, it is easy to check that

the condition a < I_% is necessary and sufficient to ensure % <z < } for all

i € {1,...,I}. Under this condition, it is enough to check that for all i € {1,..., T},

Pup i (@) > @u;(2;) and for all i € {1,... 1 =1}, ¢, (%) > ¢u,,, (%) to ensure that F
2

indeed takes the 21 + 1 possible different values. Notice that on [Tl, i]7 v (t) =
1%_1 (t - %) and that on [z, Ti41], ¢p, (t) = % (t — ()Gl 9). The inequality

2(1+1)
21(1+1)

Oupr (@) > @pu; (25) multiplied by therefore writes (2—a(I—1))(I+1—i) > 0.

On the other hand, the inequality gom( ) > ¢y, (%) multiplied by 217 (IH) rewrites
(al —2)(I —13) > 0.
. When the probability measures p; and vy are uniform : p; = % foralli e {1,...,1}

and ¢; = % for all j € {1,...,J}. Then K < I+ J —ged(I,J) (in particular K < I
when J = I) since the cardinality of {% :i € {0,...,I}} U {% c7€40,...,J}}is
I+J+41—ged(I,J). Let I' =1/ged(I,J) and J' = J/ged(1, J). These integers are
prime together and we have

%z% < iJ =4I <= i=kl"and j = kJ,
with € {0,...,gcd(Z,J)} when 0 <i < I and 0 < j < J. Therefore, the cardinal of
{t:ie{0,....011}n{L:j€{0,...,J}} is 1 + ged([, J), which gives the claim.

We now discuss the number K of points in the support of u; Avy and suppose again I < J.
We assume [ > 2, otherwise py Avy has clearly one element (K = 1) and is the Dirac mass

at r1.
1.
2!

3.

fl=J, 2=y and p; = ¢ for 1 <i <1, we have uy A vy = ur and thus K = I.

If I =2, 1 <minj—;__sy; and xp > max;—1,_sy;, then for any j € {1,...,J}, we
have y; = i;:gi 1 + ?27 2 2. Thus, if p; = Zj 1G5 x; i“l and py = Z}I 1G5 g;_ii

we have vy <. pr and thus K J.

We have K < I + J — 2. It is clear that K < I 4+ J since the support of uy A vy is
included in {z1,...,2zr} U{y1,...,ys}. If 21 < y1, then 21 is not in the support of
pr A vy since @uau, (y1) = 0. Thus, at most one element of {x1,;} is in the support
of ur Avy. If xr > yy, then xy is not in the support of ur A vy, otherwise we would
have @), »,,(r7—) < 1 and thus

So,u]/\w(yJ) > ‘PujAuj(xl) +y;—xr =25 — szﬂfz ‘+y;s—xr=yj— quy] QOVJ(Z/J)

=1 7j=1

Thus, at most one element of {z7,ys} is in the support of u; Avy. We eventually
K < I+ J — 2. This bound is attained by the previous example: for o € (7 IL)



SAMPLING OF PROBABILITY MEASURES ON R IN THE CONVEX ORDER 21

W = % Zle 0z, wWith x; = (lltﬁ)i —Sand vy = I—_lH ZiI:O (5%-, the cardinality of the

support of pur A vriq is 21 — 1 Let us recall that we have already shown that for all
i€ {'1,...1}, Ti € (2,4 and ¢y, (25) > @u, (2;) and, for all i € {1,...1 — 1},
©ur(7) > ¢y, (7). Thus, to prove that the support of pur A vy is {z;,1 < i <
I}U{%,1<i<I-1},itis necessary and sufficient to prove that

Pur (xl) - 901‘/14-1 (%) < Prris (%) - ‘pm(xi)

$¢—Z;1 %_-73@' ’ 6{17' 71}7
Curn (1) = Pur (@) op (i) =y (7))
: < ; ,ie{l,...,I—1}.
T T Ti+l — T

We observe that ¢, (z;) = %z(z — 1) and ¢y, (%) = mz(z + 1). After

simple but tedious calculations, we can check that the first condition is equivalent
to 0 < (2— (I —1)) (I +1—1), which is true since @ < 7. Similarly, the second
condition is equivalent to (I — i) (2 — al) < 0, which is true since a > 2.

4’ If I > 2, the support of ur A vy has at least two elements, i.e. K > 2. Since m :=
Zle DiT; = Z}le q;y;j and the elements x; (resp. y;) are distinct, we have ¢, (m) > 0
(resp. ¢y, (m) > 0). If K = 1, we would have then necessary py A vy = 0y, which
would be in contradiction with the previous statement. Notice that K may be equal
to 2 even if [ is arbitrarily large. For I > 2, we take when I — 1 = 2k is even

k k
1 1 1 1 1 1
= o2y (g o) gt m= it g (g iy )
1= 1=
and when I — 1 =2k + 1 is odd,
k k
1 1 1 1 1 1
ur = 1.202 ((5717%‘ +(571+%‘> +§51, VI:25_1+I.202 ((517%‘+(51+%‘).
1= 1=

By construction, the support of u; (resp. vy) has exactly I points. Moreover, one
easily checks that uy A vy = %(5,1 + 01).

5.4. Irreducible components. Specializing Theorem A.4 of Beiglbock and Juillet| (2016))
and its proof to the case of probability measures, one has the following decomposition.

Proposition 5.1. Let p <cx v be two distinct probability measures such that p,v € P (R).
There exists a countable family of disjoint intervals (t,,,t,), 1 <n < N, with N € N*U{oo}
such that
{t € R, pu(t) < @ (B)} = UM, (1, 7).

We have pu((t,,tn)) > 0 for any 1 <n < N.

Let B = Myznend (=00, £, Ulfns +00)}, 1(dr) = 1p(@)pu(de), p(dx) = 1, 5. (@)pa(da)
so that p = qulv:o u". Then, there exists a unique decomposition v = Zg:o v™ such that

n o 0 0

V"(R) = p™(R) and /ﬂlfi@R) <ex R for 1 <n < N and, when u°(R) > 0, m <ex IR
It is given by 1° = u° and, for 1 <n < N, by

v (de) =1, g (@)v(de) + (F (L) = Fu(t,))or, (de) + (Fu(tn =) = Fy (i =)0, (d2).
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Last, if P is a martingale coupling between p and v,

N
P(dx,dy) = 1 (dz)d5(dy) + Y p((Lys b)) Pa(da, dy),
n=1

where P, is a martingale coupling between M#—ZR) and M’{—gm.

The intervals ((t,,,%n))1<n<n are called the irreducible components of the couple (p, v).
According to Corollary A.7 of Beiglbock and Juillet| (2016]), solving a martingale optimal
transport problem between p and v is equivalent to solving the martingale optimal trans-
port problem with the same payoff function between M’f—&@ and Mﬁ’—&) foreach 1 <n < N.
This motivates our interest in studying the irreducible components of (ur A vs,v;) and
(w1, por V vy): to solve numerically the corresponding discrete MOT problem, this replace
a linear programming problem by N linear programming problems of smaller dimension,
where N is the corresponding number of irreducible components.

We now consider two probability measures with finite supports pu; = Zle Di0y; and

VJ:ijlqj(syj with T < - <33], Y1 < v <yJ7pi>Of0ri€{1,...,I} and q] >0

for j € {1,...,J} and Zi[:l P < Z}-le q;y;. Since, by Lemma Jg @1 Vaex vy (dx) =
Jg zpr(de) and [ xpr Adex vi(de) = [gavy(de), pr <ex pir Vdex Vg and g Adex Vg <ex V.
We are interested in describing precisely and computing the irreducible components of
(i1, por Vaex V.g) (resp. (pr Adex Vg, vg)). Of course, there are finitely many components. The
computation of the irreducible components of (pr, pr Viex ¥.7) (resp. (i1 Aiex Vg, V) when
ZiI:I DT > ZJJZI q;y; is easily deduced from the equality pr Viex ¥g = fir Vdex V. (resp.
I Niex VJ = m )

Irreducible components of (ur, 1 Vdex V) when 21'1:1 pix; < ijl ¢;yj- The irreducible
components are defined as the largest intervals on which ¢,,; < ¢, v v, We have pr Vaex
vy = Zszl 0K0z, with 21 < .-+ < zg, or > 0, and Algorithm 1| calculates the points
21, and the weights g;. Among these points, we focus on the points such that ¢, (z;) =
Ourvaeery (26). Thus, we define v1 < vy < ... < vy such that

{Ula s 7UM} = {Zk 1<k <K and SO,UI(Z]C) = SDH[\/dCXVJ(Zk)}' (51)

For t > 2k, ¢u,(t) < Pupvaer, () =1t — Zle pix;. Since the function ¢, is convex and
equal to t — Zi[:l piz; for t > x1, one deduces that ¢, (t) =t — Zle pix; for t > 2z . Since
©u; (1) = Pupvaer, (t) = 0 for t < z; and we have M > 1 and all the irreducible components
lie in (21,2K). If K =1, ur = pr Vaex ¥J = 04, and there is no irreducible component.
Otherwise, we have M > 2, which we assume now.

Remark 5.2. When M > 3, looking at the irreducible components reduces the dimension of
the discrete MOT problem. We notice that if I > 2 and Zi[:l D = Z}]:1 q;y;, then M =

2 = pur <cx vy. In fact, M = 2 implies that ¢, (2i) < @u,(2k) for2 <k < K —1. Since
+
0= pu(21) = v, (21) and zx = Yi_y pici = s (25) = vy (2k) 2 (ZK - i pi%‘) by

Jensen’s inequality, we get v, (21) = vy, (21) and vu, (2x) = @u,(2K) and thus pr <cx V.

We have ¢, < ©u; V 0o, = Pupvaers, and, for any m € {1,..., M}, ¢, (vm) =
CurVaeers (Vm). We can therefore compare the derivatives and get

Fuvaevs (vm—) < Fu, (vm—), Fluvaews (vm) > Fu, (Vm)-
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Let m < M — 1 and ky, be such that v, = z,. If Fj,,v,0,(Vm) = Fu,(vy) then,
since @y vaers; = @u; and the derivative F, v, ., of ¢, V ¢, is constant and equal
t0 Fy Ve (Um) on (2g,,, 2k,,+1) whereas the one F),, of ¢, is nondecreasing, one has Vt €
(Zhys Zhim+1]s PrrVaews (t) = @pu, () and, in particular, kp,41 = kp+1 and 7 ((Vm, UVmy1)) =
0. In a symmetric way, if F,, (Vm41—) = Fu, vy (Umt1—), then

k= kmy1 — 1, p1((Vm, Ums1)) = 0 and @, (1) = @uvaew, () for t € [vm, Umia].

Thus, 7((Vm,vm+1)) > 0 implies that F,,v, 0, (vm) > Fj,(vy) and F, (Ume1—) >
Foupvaeewy (Vm+1—), which gives that Vt € (Vm, Um41)s Purvaers (£) > @u; (t).

Proposition 5.3. We assume Zlepixi < Z}-le q;y;j so that pr <ex pir Vdex vg. Let
v <ve < ...<wp be defined by (5.1). We have

{t R, Pur(t) < PurVaexrs )} = U (Um, Vm41),

1<m<M-—1,
#1 (v, vm41))>0
i.e. the intervals (U, Um1) such that pr((Vm, vm+1)) > 0 are the irreducible components of
(i1, por Vaexvy). Moreover ,u? = Z%:l wr({vm})dy,, and any martingale coupling P between
pr and pir Vaex Vg is such that for allm € {1,..., M}, P({(vm,vm)}) = ur({vm}) and for
allme{1,...,M — 1}, P((Vm,Vm+1) X [Vm, Um+1]) = pr((Vm, Umi1)).

Any martingale optimal transport problem between the marginals u; and p; Vaex Vg
may be decomposed into the martingale optimal transport problems with the same payoff

function but between the marginals m Z{:l Pil{v,, <zi<vmii}0z; and

K

1
e ( (Furvaeass (0m) = Fy (0m) s + 3 0L 1< <115
,UI((Um,Uerl)) <( 11Vdex J( ) M( )) kz_lgk {Vm <2k <Vmi1} 97k

(B, (0m1=) = Fupvay <vm+1—>>6vm+1)

for m such that p7((vm, vm+1)) > 0. Doing so, we replace one linear programming problem
by N linear programming problems of smaller size, where N = Z%[z_ll L {0 ((omomas1))>0} 18
the number of irreducible components.

Setting Nm— = F;u (Um_) - F,uj\/dcqu (Um_)> Thm = NI({’UWL}) and Nm+ = FHIVdchJ (Um) -
Fu,(vm), Algorithmcan be modified in the following way to compute (Vym, Tm— Tm, T+ ) 1<m< M-
First initialize m < 1 before the while loop. In this while loop,

Loif (00 — 0u)(pw — ) < 0, add vm < 2k, Tm— < L, 50,10k M < 0, Nt
L, <1k M 4= m+ 1 just before k <k + 1,

2. if @y — B = 0, add vy, < @, Non—  (Fy = F)T, 1 <= Fy— Fuy ny (B, — E,)T,
m < m + 1 just before k + k + 1.

3. if (SE,u - @V)p’l]-{g:xl} > 07 add Um < @7 Nm— 07 Nm < Dis Mm+ 07 m < m+1
just before k + k + 1.

Irreducible components of (ur Ngex Vg, Vy) when Zi[:l DT < Z}'le q;yj. We start with a
simple observation.

Lemma 5.4. Forje{1,...,J — 1}, we have
3750 € (yjaijrl)) Py (tO) = PurAdex?J (tO) — Vi€ [y]a yj+1]7 Puvy (t) = Purigex?s (t)
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Proof. The function ¢, is affine on [y;, y;+1]. Since the function ¢, A, v, is below ¢,
and convex, the equality of both functions at ¢y implies that they coincide on [y;, yj+1]. O

Now, we assume that Elepia}i < Z}-le qjyj so that pr Aqex Vg <ex vy and we consider
v1 < - < vy such that

{Ula s 7UM} = {yj 1 S] < J and QOVJ(yj) = c)O,MI/\dcxl’J(yj)}7 (52)
and we denote by jp, the index such that v, = y;,,. We have ¢, (y1) = @u;ager, (Y1) =0
and thus M > 1. We have @y, (ys) = y7 — 2=y 49 and Gpungew, (W0) = ys — S1—; 495
since pir Adex vy and pr have the same means. This gives ¢, (V7)) = @urger, (¥s) and
vy = yg. We consider M > 2 and 1 < m < M — 1. By Lemma [5.4] we either have

Jm+1 = Jm + 108 jmp1 > Jm + 1 and o, (t) > Quiagew, (t) for t € (v, vm41). Since
Jm+1 = Jm +1 <= vi(vm, vm+1) = 0, we get the following result.

Proposition 5.5. We assume Zi[:lpixi < Z}']:1 q;y; so that py Naex Vg <ex vy . Let

v] < vy < ...<wp be defined by (5.2). We have
{t € R, 0ppnaers (t) < op, (8)} = U (Ums Um+1)-

1<m<M-1,
vy ((Vm,vm+1))>0

i.e. the intervals (Vm, Vm+1) such that vy((Vm,vm+1)) > 0 are the irreducible components
of (i1 Ndex Vg, vy). Moreover 1Y = E%:l w1 Ndex V.g({vm})ow,, and any martingale cou-
pling P between pir Naex Vg and vy is such that for allm € {1,... ., M}, P({(vm,vm)}) =
T Ndex VJ({Um}) and for all m € {17 s M — 1}’ P((Umavm+1) X [’Umyvm+1]) = KT Adex

VJ((Uma 'Uerl))'

Any MOT problem between the marginals py Agex Vg = Zle 0k0, and vy = ijl q;0y,
may be decomposed into the MOT problems with the same payoff function but between

. K
the marginals L okl 0., and
g SK oL (om <o <om 1) Zkfl Ok L {vpm<zp<vmi1}921

1

J
<(FVJ (vm) — Fuynaexvs (Vin))0v,, + Z qjl{vm<yj <vm+1}5yj

okl
> k1 Ok {vm<zk<vm41} j=1

- Fpmgs (0mir—) — By, <vm+1—>>6vm+1)

for m such that v;((vm, vm+1)) > 0. Doing so, we replace one linear programming problem
by N linear programming problems of smaller size, where N = Z%;ll L0 ((myvmas1)) >0} 18
the number of irreducible components.

To compute the irreducible components, it is convenient to add two coordinates 7, and
FF¥ to each element in the list L in Algorithm [2l Instead of adding (w, ou N ¢1,0,0) to
the list, one should add (w, ¢, A ¢y, 0,0, Na=y; on<pu} B> F,). At the end of the algorithm,
one computes {vi,...,vn}t by m =1, for k =1 to s(L) if n > 0, then v, = 2k, pr Ndex
VJ({vm}) = 0Ok, Fu;/\dcqu(Um*)*FuJ(vm*) = Fk*@kfFernka FZ/J(IUm)*F/u/\dCXVJ('Um) =
Fk—F*k m=m+1.

6. NUMERICAL EXPERIMENTS

In this section, we show how the different constructions of probability measures presented
in the paper can be used to approximate the solution of a martingale optimal transport
problem. In each case, we have used as approximating measures the empirical measures
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obtained of i.i.d. samples. This corresponds to the most generic practical case for the
financial application: martingale asset prices are simulated to compute option prices by
the Monte-Carlo method, and we want to reuse these simulations to compute bounds on
these option prices. To solve numerically ,We have used the linear programming solver
GLPKﬂ With this solver, we are limited to use samples with I = J =~ 100: the dimension
of the matrix r;; is then about 10000. Other solvers may be more efficient, but since the
dimension of the linear problem is the square of the number of points, the size of the
samples which can be treated by exact solvers is limited. Approximated solvers such as
the one proposed by Benamou et al.| (2015) with entropic regularization seem to be a
promising way to overcome this issue. The discussion on the maximal size of the samples
that is possible to handle is of course interesting, but outside the scope of the paper. Here,
we rather want to compare the different constructions and illustrate their relevance.

Last, we only consider in our numerical experiments approximations constructed from
L.1.d. samples of the measures p and v. When the quantile functions £, Land F; 1 are
known explicitly, it is possible to consider approximations with more evenly distributed
points such as or Ny = % ZZ-I;OI 5F;1((i+1/2)/1)’ n € {u,v}. The former approximation,
which requires in addition to know explicitly the antiderivative of the quantile functions,
preserves the convex order. The latter is likely to do the same, but one has to check this
property by using for instance Corollary before using the linear programming solver.
This check has the same computational complexity as calculating the probability measure
[y ADr equal to iy when iy <.« Py, which ensures in any case the convex ordering. Besides,
for the financial application, the quantile functions coming from the marginal distributions
of a local volatility model or a stochastic volatility model are not known explictly in gen-
eral. Moreover, when considering large i.i.d. samples with I = J it is possible to use Baker’s
construction on the re-ordered modifications of empirical measures. This approach is
made precise in Exampld6.3] and leads to very evenly spaced points in Figure [7] We have
noticed in our numerical experiments almost no difference for the same final sample size
between this procedure and the direct use of when the (integrated) quantile functions
can be calculated explicitly. This is why we only present here approximations obtained
from i.i.d. samples.

6.1. An example with an explicit MOT. We start with an example where the mar-
tingale optimal transport is known explicitly. Let o > 2,

1 1
wu(dz) = 51[,171] (x)dz and v(dz) = 11[,272] (x)dz.

We consider the following martingale optimal transport problem:

min ly — x|°m(dx, dy).
WGHAI(;U'J/) /RXR

For any m € IIM (1, v), we have [; |y — z[*n(dz, dy) = [ y*v(dy) — [p 2*p(dz) = 1. For
0 > 2, Jensen’s inequality gives

%
/ ly — x|°m(dx, dy) > </ ly — x\%r(dx,dy)) = 1.
RxR RxR

Jrhttps ://www.gnu.org/software/glpk/
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We observe that

1 Oz11(d 0z—1(d
achieves this lower bound. Let 7 € II™M(u,v) be an optimal coupling (i.e. Jour v —
z|®m(dx,dy) = 1). The equality condition in Jensen’s inequality gives that |y — x| is
constant m(dz,dy)-a.s. and thus equal to 1. The martingale condition then gives m =
7*. Let us note that for ¢ < 2, the same arguments with [; o |y — z[?7(dz,dy) <

dx (6.1)

e
( Jour 1V — z|?7(dz, dy)) ? =1 gives that 7* is the unique martingale coupling that maxi-
mizes [, p |y — |97 (dz, dy). The optimality of 7* for ¢ = 1 was obtained by Hobson and
Neuberger| (2012)) in Example 6.1. Note that the optimal coupling is neither the left-curtain

coupling 7'°(dz, dy) = %1[_171] (x)dz (%57 7%(dy) + %5%x+%(dy)> nor the right-curtain

%
coupling 7"¢(dz, dy) = %1[_1,1] (z)dx (%6%1_%(6@) + iégig(dy)) introduced by [Beiglbock
and Juillet| (2016)), Theorem 1.5, see also Henry-Labordere and Touzi (2016)) for an explicit
calculation of those couplings.

C(x,y) = |x-y|~{2.3}
Sgp

15

FIGURE 1. Points (z;,y;) such that r; > 0, where 7* is the optimal solution
of the MOT minimization (I.1)) with c(z,y) = |y — z|*>3 for (u; A vy, vr) at
left and (pg, ur V vyr) at right, with I = 100. The segments y = = + 1,
z € [—1,1] indicate the support of 7* given by (6.1).

For the implementation, we consider independent random samples X1, ..., X distributed
according to p and Y7, ..., Y7 distributed according to v, with I = 100. We set

1< 1<
NI:I,El(SXH VI:I,El(SYi’
1= 1=

I I

~ 1 Z - 1 Z

/’LI = T 5XZ‘—X]’ VI = j 53/1'—5_/[’
i=1 i=1
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Cx,y) = |x-y[~{2.3}

Inf Sup
150 1 150
”
1.0} f‘ o3 1.0} f‘ o3
-®® -®®
0.5} 1 05}

FIGURE 2. Points (z;,y;) such that r;‘j > 0, where r* is the optimal solution
of the MOT minimization with c(z,y) = |y — z|*3 for (iy Avr,v7) at
left and (py,ur V vr) at right, with I = 100. The segments y = = + 1,
z € [—1,1] indicate the support of 7* given by (6.1)).

with X7 = % Zle X; and Y7 = % 22‘1:1 Y;. The measures iy and vy are the ones suggested
by the first modification presented in Subsection [4.2] This modification requires to know
explicitly the common mean of 1 and v. Note that this is usually the case for the financial
application: discounted assets prices are martingales, and their mean is given by the present
values. We consider o = 2.3. We have run the linear programming solver to solve with
(ur Avr,vr) and (pr, prVur) in Figureand with (zr Avr, vr) and (fig, i Vo) in Figure
In those figures, we have drawn the points with positive probability under the optimal
transport, i.e. with the notation of , the points (x;,y;) such that rz’-‘]- > 0, where r* is
the optimal solution of . We expect to recover the line segments y = z+1andy =z —1
for x € [—1,1]. From those figures, we observe that the martingale optimal transport
map is much better approximated when we equalize the means. This can be heuristically
explained as follows. Since pi; and vy have the same mean, we have uy A vy < V7 and
iy A vr <cx pir- The latter inequality ensures from Corollary that the lowest (resp.
highest) point weighted by iy A Uy is greater (resp. smaller) than the lowest (resp. highest)
point weighted by fi7. Thus, iy AUy mainly weights points in [—1, 1]. Instead, when we do not
equalize the means, we only have u; A vy <. vy, but there is absolutely no reason to have
pr Avr <ex pir. Therefore, pr A vy may weight points that are significantly outside [—1,1]:
we observe in Figure (1| (left) many points close to 2. A similar phenomenon happens for the
supremum. When we equalize the means, we have both p; <.« pr Vv and vy < r V vy,
and the latter condition gives that fiy V 7y mainly weights points across [—2, 2]. In contrast,
we do not have v; <. pr V vy and the points weighted by u; V vy may not span [—2,2]. In
Figure [1] (right), the highest point weighted by uy V vy is 1.215876, which is far from 2.
To complement this discussion, we now compare the value of the discrete optimal cost
to the continuous one, i.e. to [p. p |y —#|27*(dz, dy) = 1. On the run of Figures [l{and [2, we
have obtained respectively 0.9294, 0.9101, 1.0773 and 1.0773 for (u; Avy,vr), (pr, pr VvV vr),
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(r Avr,vr) and (pr, iy V or). On 100 independent samples, we have obtained respectively
the mean costs 0.7506, 0.7319, 1.0020, 1.0020 with the standard deviations 0.2148, 0.2148,
0.1400 and 0.1400. These results confirm that the cost is much better approximated in
this example when we equalize the mean. Let us note here that the costs (and the optimal
probability measure) obtained with (zif A vr,vr) and (g, iy V 7y) are the same because we
already have on our samples i <. U7, which is due to the fact that v largely dominates
p for the convex order. From now on, we will only present numerical results for which we
equalize the means.

6.2. The at-the-money discrete Asian call option. We consider the payoff function
c(z,y) = (x+y)T =2((x +y)/2)", which corresponds to the case of a discret Asian call
option where the average is calculated on two dates. We consider probability distributions
1 <cx v with zero mean, so that the call is at-the-money.

Before to consider shifted lognormal laws, we first study the case

1 1 1 1
p(dz) = 51[—1,1}d337 v(dz) = (121[3,1}(95) + 51[71,1] (z) + 121[1,3](37)> dz,

because we know then an explicit optimal martingale transport. If X is a uniform random
variable on [—1,1] and ¢ an independent random variable such that P(§ = —2) = P(§ =
2) =1/6 and P({ =0) =2/3, X + £ ~ v. Since E[¢] = 0, this shows that p <. v. We are
interested in the optimal coupling 7 € II™ (y, v) that minimizes [ (2 +y)T7(dz, dy). By
Jensen’s inequality, we have

/RxR(a? +y)+ﬂ(dm)ﬂy|x(x,dy) > /R <w+ /Ryﬂy|x(a:,dy)>+#(dx) — /R(2x)+ﬂ(dx) _ %

The equality in Jensen’s inequality is equivalent to have either 7y x(z,[~z,+00)) =1 or
Ty |x (%, (—00, —]) = 1, u(dr)-a.e.. The martingale kernel

T (2, dy) = 5 (65-a(dy) + G () (6.2)

satisfies this condition and is therefore optimal. We observe that 7*(dz, dy) has the right-
monotone property for € [—1,0] (see Definition 1.4 of |Beiglbock and Juillet| (2016)) and
the left-monotone property for = € [0, 1]. Let us note that we have not shown that 7* is
the unique optimal martingale coupling. We also mention that, by similar arguments, 7*
is also an optimal martingale coupling that minimizes [ g (32 —y)Tn(dz,dy). We have
plotted in Figure |3| the points weighted by the discrete MOT problem with the measures
i = %Zfil dx,_x, and vy = % ZZ'I:1 dy,_y,, where X1,..., X and Y1,..., Y] are sampled
independently according to p and v. Note that for I = 100, like the one plotted in Figure [3]
most of the samples already satisfy ji; <.x 7. As expected, the plotted points are close to
the segment lines y = —x and y = 3z for # € [—1,1]. The corresponding cost is 0.5085,
which is not so far from the theoretical cost 1/2 obtained for the continuous MOT. On 100
independent runs, we have obtained a mean cost of 0.5106 with a standard deviation equal
to 0.0326.

Now, we carry on our numerical study and consider lognormal distributions (Black

and Scholes model). Namely, we assume that X; @ exp (UXG — %ag() — 1 and Y; (i)

exp (UyG - %052,) — 1, with G ~ N(0,1), ox = 0.24 and oy = 0.28. We have estimated
for I = 100 the probability that iy <. 7y on 10° runs: we have obtained P(fi; <. 7) ~
0.4601, with a 95% confidence interval [0.4570, 0.4632]. Therefore, it is crucial to use either
iy A vp or iy V vy on this example to recover discrete probability measures in the convex
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C(x,y) = (x+y)™+

FIGURE 3. Points (z;,y;) such that r;‘j > 0, where r* is the optimal solution
of the MOT minimization (L.1]) with ¢(z,y) = (y + x)* for (ar A vy, vp),
with I = 100. The segments y = 3z and y = —z, x € [—1,1] indicate the
support of 7* given by .

order. In Figure [4 we have plotted the points weighted by the solution to the discrete
MOT minimization of ¢(z,y) = (z +y)" for (uy Avr,vr) and (fir, fiy V 7y) in a case where
17 Zex V1. Though being different, the two graphs are very similar. The costs are the same
up to 9 digits (compared to 12 digits when iy <.« 7y) and are equal to 0.1809. Thus, in
our experiments, we have not observed any important differences between the MOT prob-
lems on (uy A vr,vr) and (ur, i V vr), and we will work later on with (zi; A v, vr). Now,
let us comment qualitatively Figure @l We have plotted, as in Figure [3] the segment lines
y = —x and y = 3x for z € [—1,1]. As one may expect, there are still many points on
the first segment line, which is the boundary of the set of points where the cost function
vanishes. Instead, the other segment line was more related to the specific laws that we have
considered in Figure [3] In Figure[4] there are points close to y = 3z at the origin, but then
they move away from this line. Points at the top right or at bottom left are mostly gath-
ered around the line y = x, which is due to the martingale constraint. This is particularly
noticeable on our example for the points at the bottom left.

6.3. Lognormal distributions with ¢(z,y) = |z—y|?. We consider the cases p = 2.1 and
o0 = 1.9, and take again p and v as the lognormal distributions of exp (UXG — %Ug() —1and
exp (UyG - %052/) — 1, with G ~ N(0,1), ox = 0.24 and oy = 0.28. In Figure |5, we have
plotted the weighted points of the discrete MOT for the minimization problem. We still
observe for 9o = 2.1 two curves that do not cross like in Figure [2| but the curves obtained
for the lognormal distributions are quite far from the lines y = z +1 and y = = — 1
obtained for the uniform distribution. In Figure [6] we have plotted the weighted points
for the maximization program. Interestingly, the optimal minimizing coupling for o = 2.1
(resp. o = 1.9) is very close to the optimal maximizing coupling for ¢ = 1.9 (resp. o = 2.1).



30 AURELIEN ALFONSI, JACOPO CORBETTA AND BENJAMIN JOURDAIN

C(x,y) = (x+y)™+
Inf Sup

FIGURE 4. Points (z;,y;) such that r;‘j > 0, where r* is the optimal solution
of the MOT minimization with ¢(z,y) = (y + x)* for (u; A vr,vp) at
left and (7, oy V vr) at right, with I = 100. The segments y = 3z and
y = —x, x € [—1,1] indicate the support of 7* given by .

C(x,y) = |x-y|"~rho

rho=2.1 rho=1.9
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FIGURE 5. Points (z;,y;) such that r7; > 0, where r* is the optimal solution
of the MOT minimization (1) for (fir A 7y, vr) with c(z,y) = |y — =|>' at
left and c(z,y) = |y — z|'*Y at right, with I = 100.

The graphs that we have produced up to now depend on the samples Xi,..., X7 and
Y1,...,Yr. From a run to another, we observe the same patterns but with different points.
One may like to have a discrete MOT with smaller statistical error. It is possible to do
this by using Baker’s construction on probability measures with finite supports. Namely,
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C(x,y) = |x-y|~rho
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FIGURE 6. Points (z;,y;) such that r;‘j > 0, where r* is the optimal solution
of the MOT maximization (1.1)) for (i; A 7y, 7y) with c(x,y) = |y — z|*>! at
left and c(z,y) = |y — z|'*Y at right, with I = 100.

we consider a not too small integer I’ < I and set

N 1 X 1
S DAY R ) 3 S (63

The calculation of the integrals is easy and explicit since the quantile function of a dis-
crete probability measure is piecewise constant. Even better, this construction applied to
%Zfil 0z, with 21 <9 < ... < xy and I’ a divisor of I simply leads to

Il
- 14 I,/I,ar; ) .
I T tany,

By Theorem 2.4.11 of Baker| (2012)), we have fi;s <cx Uy since iy A vy <cx v7. We have
plotted in Figure [7| the same discrete MOT as in Figure [5, but using (fiy/, 7/) with I’ = 100
and I = 10000. The plot is clearly less noisy. This method can also be used to reduce vari-
ance on the calculation of the optimal cost. On the example of Figure [2, with 100 samples,
I’ = 100 and I = 10000, we have a mean cost equal to 0.9981 with a standard deviation
equal to 0.0148. This is to compare with the mean cost of 1.0020 and the standard devia-
tion of 0.1400 obtained with (zi; A vy, vr) and I = 100.

6.4. An example with three marginal laws. We first write the discrete MOT problem
in this case. We have to minimize (or maximize)

K
> 2 rigkel®i yjs %) (6.4)

I J
i=1 j=1 k=1

2
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C(x,y) = |x-y|~rho
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FIGURE 7. Points (z;,y;) such that r;‘j > 0, where r* is the optimal solution
of the MOT minimization (I.1)) with c(z,y) = |y —z|*! at left and c(z,y) =
ly —x|*9 at right for (ji7/, 77/) defined by (6.3)) with I’ = 100 and I = 10000.

under the constraints

J K I K I J
Viaj7k> Tijk > Oa vz?ZZTZ]k = Di, vjvzzrl]k =45, Vk>zzrmk = Sk,

j=1 k=1 i=1 k=1 i=1 j=1

J K K
k=1

j=1 k=1

For a solution to exist, the measures u = Zi[:l Dilg;, V = ijl qj6y, and n = Zle SK02,
have to satisfy p <cx v <cx 1.

d d
For i = 1,...,1, we consider independent samples X; @ exp (UXG - %agf) -1,Y @

exp (O’yG — %012,) —1and Z; @ exp (UyG - %0‘%) —1, with G ~ N(0,1), 0x = 0.24, oy =
0.28, o0z = 0.32. In the financial application, the variables X +1, Y +1 and Z + 1 represent
the values of an asset at three different dates t; < to < t3 in a Black-Scholes model, and
we are interested in calculating price bounds for the option that pays (Z — ¥)+’ i.e.
c(z,y,z) = (z — %ﬁ)—F The price of this option in the Black-Scholes model can easily be
calculated with a Monte-Carlo method and is approximately equal to 0.0681.

We define as before X; = % Zi[:l X, Y = % Zle Yi, Zr = % Ele Ziy if = % Zle Ox,— X
v = %Zle dy,_y, and 7 = %Zijzl 0y,_z,- Following Proposition E we then consider
the measures py A (v A np),vr A 71,71 to solve . In fact, instead of working with
(ir A (vr A7), vr Amp,nr), we will work with

1 & 1< 1 &
ﬂf':fzé T ,19[/:?25 i aﬁl':fzé &

7 7 -1 7 —1 ’
i1 Ui FﬁI/\(EI/\ﬁI)(u)du i1 Ui F;IAr,I(“)d“ - IS5 o (u)du

17 17 N
(6.5)
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0.8 -0.6

FIGURE 8. Points (x;,y;,2;) such that Ti*jk > 0, where r* is the optimal

solution of the MOT minimization (6.4) with c¢(x,y,2) = (z — xTﬂ/)+ for
(fip, vpr) defined by (6.3) with I’ = 25 and I = 2500.

This has two advantages. First, as discussed in the example of Figure [7], the result is less
noisy. Second, the dimension of r in the problem is fixed and equal to (I')?, while
we do not know a priori the number of points weighted by iy A (7 A n7) and vy A 77, see
Subsection [5.3] Thus, we keep the control on the time needed by the linear programming
solver.

We have plotted in Figure[§|the points weighted by the discrete MOT that minimizes the
cost. As one may expect, many points are on the hyperplane z = xQﬁ which is the boundary
of the set of points where the cost function vanishes. With this example, we have obtained
a cost of 0.0303, which is a lower bound for the price. Running the maximization program
on the same sample, we have obtained 0.0856 for the price upper bound. As expected, the
Black-Scholes price 0.0681 is between these bounds: the position of the Black-Scholes price
with respect to the bounds is an indication on how conservative the model is to price the
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option.

REFERENCES

Alfonsi, A., Corbetta, J., and Jourdain, B. (2018). Sampling of probability measures in
the convex order by Wasserstein projection and approximation of martingale optimal
transport problems. Submitted.

Baker, D. (2012). Martingales with specified marginals. Theses, Université Pierre et Marie
Curie - Paris VI.

Beiglbock, M. and Juillet, N. (2016). On a problem of optimal transport under marginal
martingale constraints. Ann. Probab., 44(1):42-106.

Beiglbock, M., Henry-Labordere, P., and Penkner, F. (2013). Model-independent bounds
for option prices—a mass transport approach. Finance Stoch., 17(3):477-501.

Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G. (2015). Iterative
Bregman projections for regularized transportation problems. SIAM J. Sci. Comput.,
37(2):A1111-A1138.

Follmer, H. and Schied, A. (2011). Stochastic finance, An introduction in discrete time.
Walter de Gruyter & Co., Berlin, third edition.

Henry-Labordere, P. and Touzi, N. (2016). An explicit martingale version of the one-
dimensional Brenier theorem. Finance Stoch., 20(3):635-668.

Hobson, D. and Klimmek, M. (2015). Robust price bounds for the forward starting straddle.
Finance Stoch., 19(1):189-214.

Hobson, D. and Neuberger, A. (2012). Robust bounds for forward start options. Math.
Finance, 22(1):31-56.

Kertz, R. P. and Rosler, U. (1992). Stochastic and convex orders and lattices of probability
measures, with a martingale interpretation. Israel J. Math., 77(1-2):129-164.

Kertz, R. P. and Rosler, U. (2000). Complete lattices of probability measures with applica-
tions to martingale theory. In Game theory, optimal stopping, probability and statistics,
volume 35 of IMS Lecture Notes Monogr. Ser., pages 153-177. Inst. Math. Statist.,
Beachwood, OH.

Miiller, A. and Scarsini, M. (2006). Stochastic order relations and lattices of probability
measures. SIAM J. Optim., 16(4):1024-1043.

Pages, G. and Wilbertz, B. (2012). Intrinsic stationarity for vector quantization: foundation
of dual quantization. STAM J. Numer. Anal., 50(2):747-780.

Santambrogio, F. (2015). Optimal transport for applied mathematicians. Progress in
Nonlinear Differential Equations and their Applications, 87. Birkhduser/Springer.

Shaked, M. and Shanthikumar, J. G. (2007). Stochastic orders. Springer Series in Statistics.
Springer, New York.

Strassen, V. (1965). The existence of probability measures with given marginals. Ann.
Math. Statist., 36:423—-439.



	1. Introduction and motivations
	2. Characterization of the convex, decreasing convex and increasing orders
	3. An asymptotic approach
	4. A non asymptotic approach based on the lattice structure
	4.1. The lattice structure for the increasing and decreasing convex orders
	4.2. Approximations in convex order

	5. Algorithms and complexity
	5.1. Algorithm for the calculation of the supremum of two probability measures with finite support.
	5.2. Algorithm for the calculation of the infimum of two probability measures with finite support.
	5.3. Examples.
	5.4. Irreducible components.

	6. Numerical experiments
	6.1. An example with an explicit MOT
	6.2. The at-the-money discrete Asian call option
	6.3. Lognormal distributions with c(x,y)=|x-y|
	6.4. An example with three marginal laws

	References

