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SAMPLING OF ONE-DIMENSIONAL PROBABILITY MEASURES IN

THE CONVEX ORDER AND COMPUTATION OF ROBUST OPTION

PRICE BOUNDS

AURÉLIEN ALFONSI, JACOPO CORBETTA AND BENJAMIN JOURDAIN

Abstract. For µ and ν two probability measures on the real line such that µ is smaller
than ν in the convex order, this property is in general not preserved at the level of
the empirical measures µI = 1

I

∑I
i=1 δXi and νJ = 1

J

∑J
j=1 δYj , where (Xi)1≤i≤I (resp.

(Yj)1≤j≤J) are independent and identically distributed according to µ (resp. ν). We in-
vestigate modifications of µI (resp. νJ) smaller than νJ (resp. greater than µI) in the
convex order and weakly converging to µ (resp. ν) as I, J → ∞. According to Kertz and
Rösler (1992), the set of probability measures on the real line with a finite first order
moment is a complete lattice for the increasing and the decreasing convex orders. For µ
and ν in this set, this enables us to define a probability measure µ∨ν (resp. µ∧ν) greater
than µ (resp. smaller than ν) in the convex order. We give efficient algorithms permitting
to compute µ∨ ν and µ∧ ν (and therefore µI ∨ νJ and µI ∧ νJ) when µ and ν have finite
supports. Last, we illustrate by numerical experiments the resulting sampling methods
that preserve the convex order and their application to approximate martingale optimal
transport problems and in particular to calculate robust option price bounds.

Keywords: convex order, martingale optimal transport, robust option price bounds, sam-
pling techniques, linear programming
AMS Subject Classification (2010): 91G60, 90C08, 60G42.

1. Introduction and motivations

We start with a practical motivation. Let us consider a trader who sells and hedges
exotic options on an asset (St)t≥0. To calculate option prices, the trader typically picks her
favourite model, then calibrates this model to vanilla options prices and uses this calibrated

model (S̃t)t≥0 to calculate exotic option prices. Then, a natural question is to know what
is the range of prices that can be attained by this procedure. To make things simple, we
assume zero interest rates and consider a trader who wants to deal an exotic option that
pays c(ST1 , ST2) at time T2 (with T1 < T2 and c : R×R→ R) and observes on the market
European call option prices at times T1 and T2 for all strikes. This amounts to know exactly
µ and ν, the respective probability laws of ST1 and ST2 under all risk-neutral measures,

and we suppose that S̃T1 and S̃T2 are respectively distributed according to µ and ν (this
is achieved by the local volatility model and extensions). Then, all the models that are
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compatible with the absence of arbitrage are described by the set of martingale couplings

ΠM (µ, ν) =

{
π ∈ Π(µ, ν) : ∀x ∈ R,

∫
R
|y|πY |X(x, dy) <∞ and

∫
R
yπY |X(x, dy) = x

}
,

where πY |X denotes a Markov kernel such that π(dx, dy) = µ(dx)πY |X(x, dy). Notice that

the joint law of (S̃T1 , S̃T2) belongs to ΠM (µ, ν). The range of prices of the exotic option is
given by the set {∫

R×R
c(x, y)π(dx, dy), π ∈ ΠM (µ, ν)

}
and we are interested in calculating the upper and lower bounds of this set, which are
usually called the robust option price bounds. This problem is precisely the martingale
optimal transport (MOT) problem studied by Beiglböck et al. (2013). They have shown
that the upper (resp. lower) bound is also the cheapest (resp. most expensive) price of
a superhedging (resp. subhedging) strategy from the dual formulation of the problem. In
practice, the trader is interested in calculating these bounds and comparing them to her
model price, in order to evaluate the model risk. Unless for particular payoff functions c,
she has to use a Monte-Carlo method and approximate the exotic price in her model

by 1
I

∑I
i=1 c(S̃

i
T1
, S̃iT2), where (S̃i)1≤i≤I are independent copies of S̃. Let us note that by

construction, the empirical measures µI = 1
I

∑I
i=1 δS̃iT1

and νI = 1
I

∑I
i=1 δS̃iT2

approximate

µ and ν. The goal of the paper is to give a way to calculate from µI and νI the robust price
option bounds. Our approach is to consider the corresponding discrete martingale optimal
transport problem and to rely on the powerful linear programming library that have been
developed. To do so, we need to modify slightly the empirical measures µI and/or νI in
order to recover the convex order, as we explain now.

We now present the mathematical framework and consider X and Y , two random vari-
ables on R, with respective probability distributions µ and ν. The random variable X is said
to be smaller than Y in the convex order if E[φ(X)] ≤ E[φ(Y )] for every convex function
φ : R→ R, provided that both expectations exist. In this case, we use the notation X ≤cx Y
or µ ≤cx ν, since the convex order only involves the probability distributions. Theorem 8
in Strassen (1965) ensures that, when

∫
R |y|ν(dy) < ∞, ΠM (µ, ν) 6= ∅ ⇐⇒ µ ≤cx ν. In

this work, we consider the approximation of the probability measures µ and ν by proba-
bility measures with finite supports µI =

∑I
i=1 piδxi and νJ =

∑J
j=1 qjδyj , with I, J ∈ N∗,

xi, yj ∈ R pi, qj > 0 for any i, j and
∑I

i=1 pi =
∑J

j=1 qj = 1. Note that we simply have

pi = 1/I and qj = 1/J for empirical measures. We consider the approximation of the MOT
problem: to minimize (or maximize)

I∑
i=1

J∑
j=1

rijc(xi, yj) (1.1)

under the constraints

rij ≥ 0,
I∑
i=1

rij = qj ,
J∑
j=1

rij = pi and
J∑
j=1

rijyj = pixi.

Thus, we can use a linear programming library to solve this problem numerically. The
key issue to run these algorithms is the existence of such matrices (rij)1≤i≤I,1≤j≤J , that
amounts to the existence of a martingale coupling between µI and νJ . Otherwise, the set of
matrices satisfying the constraints is void. By Strassen’s theorem, this is equivalent to have
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µI ≤cx νJ , which motivates the interest of preserving the convex order when approximating
µ and ν.

Up to now, we have dealt with only two measures µ ≤cx ν. More generally, if µ1 ≤cx

. . . ≤cx µ
` are ` probability measures, one may be interested in constructing approximations

that preserve the convex order. In the same manner, such approximations would enable to
tackle numerically multi-marginal martingale optimal transport problems, see again Bei-
glböck et al. (2013).

Up to our knowledge, few studies consider the problem of preserving the convex order
while approximating two probability measures. We mention the thesis of Baker (2012)
who proposes the following construction for µ ≤cx ν that are integrable. Let Fµ(x) =
µ((−∞, x]) and Fν(x) = ν((−∞, x]) be the cumulative distribution functions and for p ∈
(0, 1), F−1

µ (p) = inf{x ∈ R : Fµ(x) ≥ p} and F−1
ν (p) = inf{x ∈ R : Fν(x) ≥ p} their

left-continuous and non-decreasing generalized inverses also called quantile functions. For
I ≥ 1, setting

µ̂I =
1

I

I∑
i=1

δ
I
∫ i
I
i−1
I

F−1
µ (u)du

and ν̂I =
1

I

I∑
i=1

δ
I
∫ i
I
i−1
I

F−1
ν (u)du

, (1.2)

one has by Theorem 2.4.11 in Baker (2012) that µ̂I ≤cx ν̂I (this result is consequence of
the characterization of the convex order in terms of the quantile functions that we recall
below in Theorem 2.1 (v)). This construction is easy to implement and can be obviously
generalized to the multi-marginal case, but it requires an explicit calculation of the integrals
of the quantile functions. Notice that nevertheless, these integrals may be deduced by
calibration if one observes for i ∈ {1, . . . , I − 1} the price CXi of the European call option
with strike KX

i = F−1
µ (i/I) written on the asset X as well as the current price s0 = E[X]

of this asset. Since CXi = E[(X − F−1
µ (i/I))+] =

∫ 1
i
I
F−1
µ (p)dp −

(
1− i

I

)
F−1
µ (i/I), we get

I
∫ i
I
i−1
I

F−1
µ (p)dp = I(CXi−1−CXi )+(I−i+1)KX

i−1−(I−i)KX
i (with the convention CXI = 0)

for i = 2, . . . , I and I
∫ 1
I

0 F−1
µ (p)dp = I(s0 − CX1 )− (I − 1)KX

1 .
The dual quantization introduced by Pagès and Wilbertz (2012) gives another way to

preserve the convex order in dimension one (see the remark after Proposition 10 in Pagès
and Wilbertz (2012)). Suppose that µ and ν have a bounded support included in [x1, xI ]
and that x1 < · · · < xI . The dual quantization of µ is defined by

µ̂I = µ({x1})δx1 +

I−1∑
i=1

∫
(xi,xi+1]

x− xi
xi+1 − xi

µ(dx)δxi+1 +

∫
(xi,xi+1]

xi+1 − x
xi+1 − xi

µ(dx)δxi .

This is the law X̂ = X1X=x1 +
∑I−1

i=1 1X∈(xi,xi+1]

(
xi+11

U≤ X−xi
xi+1−xi

+ xi1U> X−xi
xi+1−xi

)
, where

U is sampled independently from X according to the uniform distribution on [0, 1]. Let

φ : R → R be a convex function. We define φ̂ : [x1, xI ] → R by φ̂(x) = x−xi
xi+1−xiφ(xi+1) +

xi+1−x
xi+1−xiφ(xi) for x ∈ [xi, xi+1], i = 1, . . . , I − 1. This is a convex function, and we have by

using µ ≤cx ν that

E[φ(X̂)] = E[φ̂(X)] ≤ E[φ̂(Y )] = E[φ(Ŷ )].

Note that both methods have serious drawbacks to be used in practice. Baker’s construc-
tion requires to calculate explicitly the integrals of the quantile functions, which is often not
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possible. Dual quantization assumes probability distributions with bounded support, which
is not satisfied by most of the asset models. On the other side, there are many recent works
that deals with robust option price bounds for specific options. Without being exhaustive,
Hobson and Neuberger (2012), Hobson and Klimmek (2015) characterize the bounds for
forward start options. Henry-Labordère and Touzi (2016) describe explicitly the bounds for
an abstract class of payoff functions c satisfying the so-called Spence-Mirrlees condition,
for which the left and right curtain couplings introduced by Beiglböck and Juillet (2016)
are optimal. These works crucially exploits particular properties of the payoff functions.
In contrast, the numerical method that we propose in this paper to approximate robust
option price bounds works for general payoff functions.

The paper is structured as follows. In Section 2, we recall the characterization of the
convex, increasing convex and decreasing convex orders in dimension one, and give a way
to test if two probability measures with finite support are in the convex order. Then, in
Section 3, we shift the approximating measures µI and νJ so that they have the same
mean and show that they are then in the convex order for I, J large enough, under suitable
assumptions. However, this method is not reliable in practice since the dimension I × J of
the linear programming problem (1.1) can then be too large for this problem to be solved
quickly. It is thus crucial to use non asymptotic methods that gives approximating measures
in the convex order for any I, J ∈ N∗. In Section 4, we propose such a method based on
the following result stated in Kertz and Rösler (1992): the set of probability measures with
a finite first order moment is a lattice for the increasing and the decreasing convex orders.
Given µ and ν in this set, we define µ∨ ν (resp. µ∧ ν) as the supremum (resp. infimum) of
µ and ν for the decreasing convex order when

∫
R xµ(dx) ≤

∫
R xν(dx) and for the increasing

convex order otherwise. This way, µ ∨ ν (resp. µ ∧ ν) is greater then µ (resp. smaller than
ν) in the convex order. In Section 5, we give efficient algorithms permitting to compute
µ∨ ν and µ∧ ν (and therefore µI ∨ νJ and µI ∧ νJ) when µ and ν are convex combinations
of Dirac masses. We prove that, when µ ≤cx ν, µI ∨ νJ and µI ∧ νJ respectively converge
weakly to ν and µ as I, J → ∞, which shows that either µI and µI ∨ νJ or µI ∧ νJ and
νJ respectively approximate µ and ν and are in the convex order. Section 6 presents the
numerical approximation of different MOT problems. We first consider academic examples
where the MOT is known explicitly. Then, we address some practical examples with two
or three marginals, when the marginal laws are the ones given by the Black and Scholes
model.

This paper only deals with the one-dimensional problem. Of course, the same problem
occurs in higher dimension when one consider d ≥ 2 assets instead of one. Thus, for two
probability measures µ and ν on Rd such that µ ≤cx ν, and for discrete probability measures
µI and νJ that respectively approximate µ and ν, we want to slightly modify either µI or
νJ to recover the convex order between the approximating measures. Unfortunately, we can
no longer rely on the lattice structure to construct such a modification since it has been
shown by Müller and Scarsini (2006) that the set of probability measures with a given mean
is not a lattice for the convex order when d ≥ 2. In a companion paper Alfonsi et al. (2018),
we propose a suitable modification of µI that is obtained by the mean of a projection for
the Wasserstein distance and that can be efficiently computed.
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2. Characterization of the convex, decreasing convex and increasing
orders

Let P(R) denote the set of probability measures on the real line. We define

P−(R) = {µ ∈ P(R) :

∫
R
x−µ(dx) <∞},

P+(R) = {µ ∈ P(R) :

∫
R
x+µ(dx) <∞},

P1(R) = {µ ∈ P(R) :

∫
R
|x|µ(dx) <∞} = P−(R) ∩ P+(R).

For µ ∈ P(R), we set Fµ(x) = µ((−∞, x]), Fµ(x−) = limy→x− Fµ(y) = µ((−∞, x)). For

t ∈ R, we define ϕµ(t) =
∫ t
−∞ Fµ(x)dx. Fubini’s theorem ensures that for t ∈ R,

ϕµ(t) =

∫
R

1{x≤t}

∫
R

1{y≤x}µ(dy) =

∫
R

(t− y)+µ(dy) (2.1)

where the right-hand side is finite iff µ ∈ P−(R). In a symmetric way, we define F̄µ(x) =

µ([x,+∞)), ϕ̄µ(t) =
∫ +∞
t F̄µ(x)dx and notice that

ϕ̄µ(t) =

∫ +∞

t
µ((x,+∞))dx =

∫
R

(y − t)+µ(dy) (2.2)

where the right-hand side is finite iff µ ∈ P+(R). Let us note that µ((x,+∞)) = µ([x,+∞))
dx-a.e., and equation (2.2) is written with the open interval to have the same convention
as Kertz and Rösler (2000). Denoting by µ̄ the image of µ by x 7→ −x, one has

∀x ∈ R, Fµ̄(x) = µ̄((−∞, x]] = µ([−x,+∞)) = F̄µ(−x) and thus ∀t ∈ R, ϕ̄µ(t) = ϕµ̄(−t).
(2.3)

Last, we define the function

πµ(t) =

∫
R
|t− x|µ(dx) = ϕµ(t) + ϕ̄µ(t),

that is usually called the potential of µ. It is finite when µ ∈ P1(R). Since t−
∫
R xµ(dx) =

ϕµ(t)− ϕ̄µ(t) = 2ϕµ(t)− πµ(t) = πµ(t)− 2ϕ̄µ(t), we have

πµ(t) = 2ϕµ(t)− t+

∫
R
xµ(dx) = 2ϕ̄µ(t) + t−

∫
R
xµ(dx).

One important particularity of the dimension 1 is the following result (see e.g. Theo-
rems 3.A.1., 3.A.2. and 3.A.5. in Shaked and Shanthikumar (2007)).

Theorem 2.1. Let µ, ν ∈ P1(R). The following conditions are equivalent:

(i) µ ≤cx ν,

(ii)
∫
R xµ(dx) =

∫
R xν(dx) and ∀t ∈ R, πµ(t) ≤ πν(t),

(iii)
∫
R xµ(dx) =

∫
R xν(dx) and ∀t ∈ R, ϕµ(t) ≤ ϕν(t),

(iv)
∫
R xµ(dx) =

∫
R xν(dx) and ∀t ∈ R, ϕ̄µ(t) ≤ ϕ̄ν(t),

(v)
∫ 1

0 F
−1
µ (p)dp =

∫ 1
0 F

−1
ν (p)dp and ∀q ∈ (0, 1),

∫ 1
q F

−1
µ (p)dp ≤

∫ 1
q F

−1
ν (p)dp.

Thus, to check if two probability measures are in the convex order, it is sufficient to
focus on the the family of convex functions φ(x) = |t− x|, for t ∈ R. Thanks to this result,
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we obtain an interesting corollary that gives a necessary and sufficient condition for two
probability measures with finite support to be in the convex order.

Corollary 2.2. Let µ =
∑I

i=1 piδxi and ν =
∑J

j=1 qjδyj be two probability measures on R.
Without loss of generality, we assume that x1 < · · · < xI , y1 < · · · < yJ and p1pIq1qJ > 0.
Then we have µ ≤cx ν if, and only if

(i) y1 ≤ x1 and yJ ≥ xI ,
(ii) for all j such that x1 ≤ yj ≤ xI , πµ(yj) ≤ πν(yj),

(iii)
∑I

i=1 pixi =
∑J

j=1 qjyj.

By using (iii) and the link between πµ and ϕµ, this corollary is still true if we replace (ii)
by one of the following conditions:

(ii′) for all j such that x1 ≤ yj ≤ xI , ϕµ(yj) ≤ ϕν(yj),

(ii′′) for all j such that x1 ≤ yj ≤ xI , ϕ̄µ(yj) ≤ ϕ̄ν(yj).

Proof. The necessary condition is obvious. Let us check the sufficient condition. Since
y1 = min1≤j≤J yj and yJ = max1≤j≤J yj , we obtain

∀t ≤ y1, πν(t) =

J∑
j=1

qjyj − t and ∀t ≥ yM , πν(t) = t−
J∑
j=1

qjyj .

Similarly, we have πµ(t) =
∑I

i=1 pixi − t for t ≤ x1 and πµ(t) = t −
∑I

i=1 pixi for t ≥ xI .
By (i) and (iii), we get πµ(t) = πν(t) for t ∈ (−∞, y1] ∪ [yM ,+∞) and

πµ(t) =

∣∣∣∣t− I∑
i=1

pixi

∣∣∣∣ =

∣∣∣∣ J∑
j=1

qj(t− yj)
∣∣∣∣ ≤ J∑

j=1

qj |t− yj | = πν(t)

for t ∈ (−∞, x1]∪ [xM ,+∞) by Jensen’s inequality. Moreover, since πµ is convex and πν is
affine on [yj ; yj+1] for every j = 1, . . . ,M − 1, we get from (ii) that πµ(t) ≤ πν(t) for every
t ∈ [yj ; yj+1] for every j = 1, . . . ,M − 1. Thus, we have πµ(t) ≤ πν(t) for all t ∈ R. �

In dimension one, the increasing and decreasing convex orders may be defined as follows.

Definition 2.3. For µ, ν ∈ P(R), we say that µ is smaller than ν in the increasing
(resp. decreasing) convex order and denote µ ≤icx ν (resp. µ ≤dcx ν) if

∫
R φ(x)µ(dx) ≤∫

R φ(x)ν(dx) for each increasing (resp. decreasing) convex function φ : R → R such that
the integrals make sense.

Lemmas 2.2 and 2.5 of Kertz and Rösler (2000) give the following characterization of
the increasing and decreasing convex orders.

Theorem 2.4. Let µ, ν ∈ P+(R) (resp. P−(R)). The following statements are equivalent :

(i) µ ≤icx ν (resp. µ ≤dcx ν),

(ii) ∀t ∈ R, ϕ̄µ(t) ≤ ϕ̄ν(t) (resp. ϕµ(t) ≤ ϕν(t)),

(iii) ∀q ∈ [0, 1],
∫ 1
q F

−1
µ (p)dp ≤

∫ 1
q F

−1
ν (p)dp (resp.

∫ q
0 F

−1
µ (p)dp ≥

∫ q
0 F

−1
ν (p)dp),

(iv) µ̄ ≤dcx ν̄ (resp. µ̄ ≤icx ν̄).

Note that the equivalence between (ii) and (iii) is a direct consequence that ϕµ is the Le-
gendre transform of the convex function q 7→

∫ q
0 F

−1
µ (p)dp, and conversely, see e.g. Lemma

A.22 of Föllmer and Schied (2011).
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3. An asymptotic approach

Now, we turn to our practical problem. We assume that µ ≤cx ν with µ, ν ∈ P1(R).
We consider two i.i.d. samples X1, . . . , XI with distribution µ and Y1, . . . , YJ with distri-
bution ν, and we set

µ̂I =
1

I

I∑
i=1

δXi and ν̂J =
1

J

J∑
j=1

δXj .

At least when µ and ν have densities, the empirical means X̄I = 1
I

∑I
i=1Xi and ȲJ =

1
J

∑J
j=1 Yj are almost surely distinct, and we cannot have µ̂I ≤cx ν̂J . However, we know

that when I, J → +∞, both empirical means converge almost surely to
∫
R xµ(dx). A

natural idea is then to slightly modify µ̂I , or ν̂J , or both empirical measures so that they
both have the same mean. The hope is then that for I and J large enough, the modified
empirical measures would be naturally in the convex order. In this paragraph, we will take

µ̃I,J =
1

I

I∑
i=1

δXi+ȲJ−X̄I , (3.1)

and keep ν̂J . Other choices are of course possible and some of them are presented in
Subsection 4.2.

For a probability measure µ on the real line, let F−1
µ (0+) and F−1

µ (1−) respectively

denote the left-hand and the right-hand limits of the function F−1
µ as p → 0 and p → 1.

We have the following result.

Proposition 3.1. Let µ, ν ∈ P1(R) be such that µ ≤cx ν and F−1
ν (0+) < F−1

µ (0+) ≤
F−1
µ (1−) < F−1

ν (1−). The probability measure µ̃I,J defined by (3.1) (resp. ν̂J) converges
weakly to µ (resp. ν), almost surely when I, J → +∞. Suppose moreover that there exists
ε > 0 such that for every t ∈ [F−1

µ (0+), F−1
µ (1−)]∫ t

−∞
(Fν(x)− Fµ(x))dx ≥ ε. (3.2)

Then, almost surely, there exists M such that for all I, J ≥M ,

µ̃I,J ≤cx ν̂J . (3.3)

Proof. Let f : R → R be a continuous bounded function. The strong law of large number
gives the (almost sure) weak convergence of µ̂I (resp. ν̂J) towards µ (resp. ν), as well as
the almost sure convergence of ȲJ − X̄I towards 0 as I, J → ∞. Now, we use that f is
uniformly continuous on [F−1

µ (0+)− 1, F−1
µ (1−) + 1] to obtain that

1

I

I∑
i=1

f(Xi + ȲJ − X̄I) →
I,J→+∞

∫
f(x)µ(dx)

almost surely. Thus, µ̃I,J converges weakly to µ, almost surely.
We now turn to the convex order. Let δ > 0 be such that

∀t ∈ [F−1
µ (0+)− δ, F−1

µ (1−) + δ],

∫ t

−∞
(Fν(x)− Fµ(x))dx ≥ ε/2.

We take t ∈ (−∞, F−1
µ (0+)− δ) such that

∫ t
−∞ Fν(x)dx < ε

6 , which implies that

∀t ∈ [F−1
µ (0+)− δ, F−1

µ (1−) + δ],

∫ t

t
(Fν(x)− Fµ(x))dx ≥ ε

3
.
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From the weak convergence of ν̂J (resp. µ̃I,J) to ν (resp. µ), we obtain that dx-a.e.,
Fν̂J (x) → Fν(x) (resp. Fµ̃I,J (x) → Fµ(x)). Then, the dominated convergence theorem

gives the pointwise convergence of
∫ t
t Fν̂J (x)dx (resp.

∫ t
t Fµ̃I,J (x)dx) towards

∫ t
t Fν(x)dx

(resp.
∫ t
t Fµ(x)dx). Since these functions are nondecreasing and the limit is continuous

with respect to t, we obtain the uniform convergence on each compact set, and deduce
that, almost surely, there exists M such that

∀I, J ≥M, ∀t ∈ [F−1
µ (0+)− δ, F−1

µ (1−) + δ],

∫ t

t
(Fν̂J (x)− Fµ̃I,J (x))dx ≥ ε

4
.

Taking also M large enough so that for I, J ≥M , |ȲJ − X̄I | < δ, we have Fµ̃I,J (x) = 0 and

Fν̂J (x)− Fµ̃I,J (x) ≥ 0 for x ≤ F−1
µ (0+)− δ and deduce that

∀t ∈ (−∞, F−1
µ (1−) + δ],

∫ t

−∞
(Fν̂J (x)− Fµ̃I,J (x))dx ≥ 0.

Last, for I, J ≥M , Fµ̃I,J (x) = 1 for x ≥ F−1
µ (1−)+δ and since limt→+∞ ϕν̂J (t)−ϕµ̃I,J (t) =

0, we get that for t ≥ F−1
µ (1−) + δ,

∫ t
−∞(Fν̂J (x)− Fµ̃I,J (x))dx =

∫ +∞
t (1− Fν̂J (x))dx ≥ 0.

We conclude by using Theorem 2.1 (iii). �

We now give a sufficient condition for (3.2).

Lemma 3.2. Let µ, ν be two probability measures on the real line with µ ≤cx ν and
F−1
ν (0+) < F−1

µ (0+) ≤ F−1
µ (1−) < F−1

ν (1−). Suppose that

∃x0 ∈ R,∀x ∈ (−∞, x0], Fν(x)− Fµ(x) ≥ 0 and ∀x ∈ [x0,+∞), Fν(x)− Fµ(x) ≤ 0.

Then, (3.2) holds.

Proof. We know that Fν(x)− Fµ(x) = 0 when x /∈ [F−1
ν (0+), F−1

ν (1−)), Fν(x)− Fµ(x) =
Fν(x) > 0 when x ∈ (F−1

ν (0+), F−1
µ (0+)), Fν(x) − Fµ(x) = Fν(x) − 1 < 0 when x ∈

[F−1
µ (1−), F−1

ν (1−)), and by the equality of the means we know
∫ F−1

ν (1−)
−∞ (Fν(x)−Fµ(x))dx =

0. In particular, we necessarily have x0 ∈ [F−1
µ (0+), F−1

µ (1−)) and we get that t 7→∫ t
−∞(Fν(x) − Fµ(x))dx is nondecreasing on (∞, x0], nonincreasing on [x0,∞), increas-

ing on [F−1
ν (0+), F−1

µ (0+)], decreasing on [F−1
µ (1−), F−1

ν (1−)]. Thus
∫ F−1

µ (0+)
−∞ (Fν(x) −

Fµ(x))dx > 0,
∫ F−1

µ (1−)
−∞ (Fν(x)− Fµ(x))dx > 0 and (3.2) holds for

ε = min

(∫ F−1
µ (0+)

−∞
(Fν(x)− Fµ(x))dx > 0,

∫ F−1
µ (1−)

−∞
(Fν(x)− Fµ(x))dx

)
.

�

In particular, we see that under the assumptions of Lemma 3.2, ϕν(t) > ϕµ(t) for
any t ∈ (F−1

ν (0+), F−1
ν (1−)), which means that (µ, ν) is irreducible, see Definition A.3

of Beiglböck and Juillet (2016).
Proposition 3.1 gives a framework under which the empirical measures, up to a modifica-

tion that equalizes their means, are asymptotically in the convex order. The assumptions
of Proposition 3.1 are quite restrictive and could be refined. Nonetheless, it is not very
convenient in practice to reach the convex order only asymptotically. If we have in mind to
solve the discrete MOT problem (1.1), which is a linear programming problem in dimension
I × J . To fix the ideas, if we need I, J & 103 for the modified empirical measures to be in
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the convex order, the resolution of the discrete MOT problem (1.1) is already too greedy
in time and memory. Thus, it would be much more convenient if we could guarantee that
the approximating measure are in the convex order. This is why we prefer to focus on non
asymptotic methods that ensures the convex order for any I, J .

4. A non asymptotic approach based on the lattice structure

4.1. The lattice structure for the increasing and decreasing convex orders. It
has been observed by Kertz and Rösler that for any a ∈ R,{

η ∈ P1(R) such that

∫
R
xη(dx) = a

}
is a lattice for the convex order (Proposition 1.6 of Kertz and Rösler (1992)) and even a
complete lattice (see top of p162 of Kertz and Rösler (2000)). By Proposition 4.5 of Müller
and Scarsini (2006), this property is no longer true in higher dimension. Thus, if µ, ν ∈
P1(R) share the same expectation, there is a unique probability measure µ ∧cx ν ∈ P1(R)
(resp. µ ∨cx ν ∈ P1(R)) such that µ ∧cx ν ≤cx µ, µ ∧cx ν ≤cx ν (resp. µ ≤cx µ ∨cx ν,
µ ≤cx µ ∨cx ν) and η ≤cx µ ∧cx ν for all η ∈ P1(R) such that η ≤cx µ and η ≤cx ν
(resp. µ ∨cx ν ≤cx η for all η ∈ P1(R) such that µ ≤cx η and ν ≤cx η). By Proposition
1.6 of Kertz and Rösler (1992), ϕ̄µ∧cxν is the greatest convex function below ϕ̄µ ∧ ϕ̄ν and
ϕ̄µ∨cxν = ϕ̄µ ∨ ϕ̄ν .

To deal with the case when µ, ν ∈ P1(R) are such that
∫
R xµ(dx) 6=

∫
R xν(dx), we

are going to use the complete lattice property of P+(R) (resp. P−(R)) endowed with the
increasing (resp. decreasing) convex order stated in Theorem 3.4 of Kertz and Rösler (2000)
(resp. Theorem 3.7 (a) of Kertz and Rösler (2000)). For µ, ν ∈ P+(R) (resp. P−(R)), let
µ ∧icx ν, µ ∨icx ν ∈ P+(R) (resp. µ ∧dcx ν, µ ∨dcx ν ∈ P−(R)) satisfy the above properties
of µ ∧cx ν, µ ∨cx ν but with ≤cx replaced by ≤icx (resp. ≤dcx). By Proposition 1.4 of Kertz
and Rösler (1992), for µ, ν ∈ P+(R), ϕ̄µ∧icxν is the greatest convex function below ϕ̄µ ∧ ϕ̄ν
and ϕ̄µ∨icxν = ϕ̄µ ∨ ϕ̄ν . By Theorem 3.7 (a) of Kertz and Rösler (2000), for µ, ν ∈ P−(R),
µ∧dcx ν = µ̄ ∧icx ν̄ and µ∨dcx ν = µ̄ ∨icx ν̄, so that by (2.3), ϕµ∧dcxν is the greatest convex
function below ϕµ ∧ ϕν and ϕµ∨dcxν = ϕµ ∨ ϕν . Let us now compute the expectations of
µ ∧icx ν, µ ∨icx ν, µ ∧dcx ν and µ ∨dcx ν when µ, ν ∈ P1(R).

Lemma 4.1. Let µ, ν ∈ P1(R). Then µ ∧icx ν, µ ∨icx ν, µ ∧dcx ν, µ ∨dcx ν ∈ P1(R) and∫
R
xµ ∨icx ν(dx) =

∫
R
xµ(dx) ∨

∫
R
xν(dx),

∫
R
xµ ∨dcx ν(dx) =

∫
R
xµ(dx) ∧

∫
R
xν(dx),∫

R
xµ ∧icx ν(dx) =

∫
R
xµ(dx) ∧

∫
R
xν(dx),

∫
R
xµ ∧dcx ν(dx) =

∫
R
xµ(dx) ∨

∫
R
xν(dx).

Proof. By (2.1), we have t − ϕµ(t) =
∫
R xµ(dx) −

∫
R(x − t)+µ(dx), where the last term

tends to 0 as t → +∞ by Lebesgue theorem. Since, in the same way, t − ϕν(t) tends to∫
R xν(dx), we deduce that t − ϕµ ∨ ϕν(t) tends to

∫
R xµ(dx) ∧

∫
R xν(dx). On the other

hand, by (2.1) with µ replaced by µ ∨dcx ν,

t− ϕµ ∨ ϕν(t) = t−
∫
R

(t− x)+µ ∨dcx ν(dx) =

∫
R

(t ∧ x)µ ∨dcx ν(dx)

For t ≥ 0, the right-hand side is equal to −
∫
R x
−µ ∨dcx ν(dx) +

∫
R(x+ ∧ t)µ ∨dcx ν(dx),

where the second term converges to
∫
R x

+µ∨dcx ν(dx) as t→∞ by monotone convergence.
Therefore

∫
R |x|µ ∨dcx ν(dx) <∞ and

∫
R xµ ∨dcx ν(dx) =

∫
R xµ(dx) ∧

∫
R xν(dx). The fact

that µ∨icx ν ∈ P1(R) and the formula giving its expectation are deduced from the equality
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µ ∨icx ν = µ̄ ∨dcx ν̄. For µ ∧icx ν and µ ∧dcx ν, this is an easy consequence of the inverse
transform sampling method combined with the more convenient characterization of these
probability measures based on the quantile functions stated in Lemma 4.2 just below. �

Lemma 4.2.

For µ, ν ∈ P+(R), ∀q ∈ [0, 1],

∫ 1

q
F−1
µ∧icxν(p)dp =

∫ 1

q
F−1
µ (p)dp ∧

∫ 1

q
F−1
ν (p)dp,

and for µ, ν ∈ P−(R), ∀q ∈ [0, 1],

∫ q

0
F−1
µ∧dcxν(p)dp =

∫ q

0
F−1
µ (p)dp ∨

∫ q

0
F−1
ν (p)dp.

Moreover, for all p ∈ (0, 1), F−1
µ∧icxν(p), F−1

µ∧dcxν(p) ∈ {F−1
µ (p), F−1

ν (p)}.

Proof. The first statement is deduced from the second one and the equality µ ∧dcx ν =
µ̄ ∧icx ν̄. For f : R→ (−∞,+∞], we define f∗(y) = supx∈R xy−f(x) the Fenchel-Legendre
transform of f and recall that f∗∗ := (f∗)∗ is the greatest convex function below f . Thus, we
have ϕµ∧dcxν = (ϕµ∧ϕν)∗∗. This gives ϕ∗µ∧dcxν = (ϕµ∧ϕν)∗. By using a standard property
of the Fenchel-Legendre transform, we have (ϕµ ∧ ϕν)∗ = ϕ∗µ ∨ ϕ∗ν , and we deduce that∫ q

0 F
−1
µ∧dcxν(p)dp =

∫ q
0 F

−1
µ (p)dp ∨

∫ q
0 F

−1
ν (p)dp for all q ∈ [0, 1] by Lemma A.23 of Föllmer

and Schied (2011).
Let us check now that F−1

µ∧icxν(p) ∈ {F−1
µ (p), F−1

ν (p)} for p ∈ (0, 1). The function

q 7→ g(q) :=

∫ 1

q
F−1
µ (p)dp−

∫ 1

q
F−1
ν (p)dp

is locally bounded with a locally bounded derivative on (0, 1) so that the distribution
derivative of g+(q) is equal to 1{g(q)>0}(F

−1
ν (q)− F−1

µ (q)) and the one of

q 7→
∫ 1

q
F−1
µ∧icxν(p)dp =

∫ 1

q
F−1
µ (p)dp− g+(q)

is equal to −1{g(q)≤0}F
−1
µ (q) − 1{g(q)>0}F

−1
ν (q). Therefore dq a.e. on (0, 1), F−1

µ∧icxν(q) =

1{g(q)≤0}F
−1
µ (q) + 1{g(q)>0}F

−1
ν (q). Let now p ∈ (0, 1). There is a sequence (qn)n∈N of

elements in (0, p) such that limn→∞ qn = p and F−1
µ∧icxν(qn) ∈ {F−1

µ (qn), F−1
ν (qn)} for all

n ∈ N. Either F−1
µ∧icxν(qn) = F−1

µ (qn) for infinitely many n and, by left-continuity of the

quantile functions, F−1
µ∧icxν(p) = F−1

µ (p) or F−1
µ∧icxν(qn) = F−1

ν (qn) for infinitely many n and

F−1
µ∧icxν(p) = F−1

ν (p).

Similarly, we show that F−1
µ∧dcxν(p) ∈ {F−1

µ (p), F−1
ν (p)} by considering the derivative of

q 7→
(∫ q

0 F
−1
µ (p)dp−

∫ q
0 F

−1
ν (p)dp

)+
+
∫ q

0 F
−1
ν (p)dp. �

Definition 4.3. For µ, ν ∈ P1(R), we define µ ∧ ν, µ ∨ ν ∈ P1(R) by

µ ∧ ν = 1{
∫
R xµ(dx)≤

∫
R xν(dx)}µ ∧dcx ν + 1{

∫
R xµ(dx)>

∫
R xν(dx)}µ ∧icx ν, (4.1)

µ ∨ ν = 1{
∫
R xµ(dx)≤

∫
R xν(dx)}µ ∨dcx ν + 1{

∫
R xµ(dx)>

∫
R xν(dx)}µ ∨icx ν, (4.2)

By Lemma 4.1,
∫
R xµ∧ν(dx) =

∫
R xν(dx) and

∫
R xµ∨ν(dx) =

∫
R xµ(dx). By Lemma 1.5

of Kertz and Rösler (1992), for fixed a ∈ R, the convex, increasing convex and decreasing
convex orders coincide on {η ∈ P1(R) such that

∫
R xη(dx) = a}. Therefore

µ ∧ ν ≤cx ν and µ ≤cx µ ∨ ν, (4.3)

and, when
∫
R xµ(dx) =

∫
R xν(dx), µ ∧ ν = µ ∧cx ν and µ ∨ ν = µ ∨cx ν.
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Remark 4.4. Let µ, ν ∈ P1(R). Then ν ≤cx µ∨ν ⇐⇒
∫
R xν(dx) =

∫
R xµ(dx). Let ν̃ be the

image of ν by t 7→ t+
∫
R xµ(dx)−

∫
R xν(dx). One has ϕν̃(t) = ϕν

(
t+

∫
R xν(dx)−

∫
R xµ(dx)

)
and ϕ̄ν̃(t) = ϕ̄ν

(
t+
∫
R xν(dx)−

∫
R xµ(dx)

)
for all t ∈ R. When

∫
R xµ(dx) ≤

∫
R xν(dx),

then ϕν ≤ ϕν̃ and µ ∨ ν = µ ∨dcx ν so that ϕµ∨ν = ϕµ ∨ ϕν ≤ ϕµ ∨ ϕν̃ = ϕµ∨ν̃ . When∫
R xµ(dx) >

∫
R xν(dx), then ϕ̄ν ≤ ϕ̄ν̃ and µ ∨ ν = µ ∨icx ν so that ϕ̄µ∨ν = ϕ̄µ ∨ ϕ̄ν ≤

ϕ̄µ ∨ ϕ̄ν̃ = ϕ̄µ∨ν̃ . Therefore, in both cases, µ ≤cx µ ∨ ν ≤cx µ ∨ ν̃.
In the same way, µ∧ν ≤cx µ if and only if

∫
R xµ(dx) =

∫
R xν(dx). Let µ̃ denote the image

of µ by t 7→ t+
∫
R xν(dx)−

∫
R xµ(dx). One has F−1

µ̃ (p) = F−1
µ (p) +

∫
R xν(dx)−

∫
R xµ(dx)

for p ∈ (0, 1). When
∫
R xµ(dx) ≤

∫
R xν(dx), then F−1

µ ≤ F−1
µ̃ and µ∧ν = µ∧dcx ν, so that,

by Lemma 4.2,
∫ q

0 F
−1
µ∧ν(p)dp =

∫ q
0 F

−1
µ (p)dp∨

∫ q
0 F

−1
ν (p)dp ≤

∫ q
0 F

−1
µ̃ (p)dp∨

∫ q
0 F

−1
ν (p)dp =∫ q

0 F
−1
µ̃∧ν(p)dp for q ∈ [0, 1]. When

∫
R xµ(dx) >

∫
R xν(dx), then F−1

µ > F−1
µ̃ and µ ∧ ν =

µ ∧icx ν, so that, again by Lemma 4.2,
∫ 1
q F

−1
µ∧ν(p)dp =

∫ 1
q F

−1
µ (p)dp ∧

∫ 1
q F

−1
ν (p)dp ≥∫ 1

q F
−1
µ̃ (p)dp ∧

∫ 1
q F

−1
ν (p)dp =

∫ 1
q F

−1
µ̃∧ν(p)dp for q ∈ [0, 1]. With Theorem 2.4 (iii), we

deduce that in both cases, µ̃ ∧ ν ≤cx µ ∧ ν ≤cx ν.

Let us now check that the diameter of the set {µ, ν, µ∨dcxν, µ∨icxν, µ∧dcxν, µ∧icxν} (resp.
{µ, ν, µ∨dcx ν, µ∧dcx ν}, {µ, ν, µ∨icx ν, µ∧icx ν}) when µ, ν ∈ P1(R) (resp. P−(R),P+(R)))
in Wasserstein distance is equal to the Wasserstein distance between µ and ν.

Lemma 4.5. For η ∈ {µ, ν, µ∨dcxν, µ∨icxν, µ∧dcxν, µ∧icxν}, ∀p ∈ (0, 1), F−1
µ (p)∧F−1

ν (p) ≤
F−1
η (p) ≤ F−1

µ (p) ∨ F−1
ν (p).

Let % ≥ 1. Since, by Proposition 2.17 of Santambrogio (2015), the %-Wasserstein distance
between two probability measures η1, η2 ∈ P(R) is given by

W%(η1, η2) =

(∫ 1

0
|F−1
η1 (p)− F−1

η2 (p)|%dp
)1/%

,

one easily deduces that for all η1, η2 ∈ {µ, ν, µ ∨dcx ν, µ ∨icx ν, µ ∧dcx ν, µ ∧icx ν},

W%(η1, η2) ≤
(∫ 1

0
(F−1

µ (p) ∨ F−1
ν (p)− F−1

µ (p) ∧ F−1
ν (p))%dp

)1/%

= W%(µ, ν).

Proof. For η ∈ {µ ∧icx ν, µ ∧dcx ν} this is a consequence of the last statement in Lemma
4.2 and the left-continuity of the quantile functions. Let η ∈ {µ ∨icx ν, µ ∨dcx ν}. Since

for all t ∈ R,
∫ t
−∞ Fµ∧dcxν(x)dx =

∫ t
−∞ Fµ(x)dx ∨

∫ t
−∞ Fν(x)dx and

∫ +∞
t F̄µ∧icxν(x)dx =∫ +∞

t F̄µ(x)dx ∨
∫ +∞
t F̄ν(x)dx a reasoning analogous to the proof of this last statement

ensures that ∀x ∈ R, Fη(x) ∈ {Fµ(x), Fν(x)}. For p ∈ (0, 1), since

{x ∈ R : Fµ(x) ≥ p} ∩ {x ∈ R : Fν(x) ≥ p}
= {x ∈ R : Fµ(x) ∧ Fν(x) ≥ p} ⊂ {x ∈ R : Fη(x) ≥ p},

{x ∈ R : Fµ(x) ≥ p} ∪ {x ∈ R : Fν(x) ≥ p}
= {x ∈ R : Fµ(x) ∨ Fν(x) ≥ p} ⊃ {x ∈ R : Fη(x) ≥ p},

we get F−1
µ (p) ∧ F−1

ν (p) ≤ F−1
η (p) ≤ F−1

µ (p) ∨ F−1
ν (p). �

4.2. Approximations in convex order. Let µ, ν ∈ P1(R) be two probability measures
such that µ ≤cx ν. We want to construct a couple of measures with finite supports and
in convex order which approximate (µ, ν). We first generate (x̃Ii )1≤i≤I and (ỹJj )1≤j≤J such

that (1
I

∑I
i=1 δx̃Ii

, 1
J

∑J
j=1 δỹJj

) approximates (µ, ν) in one of the following ways :
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1. (x̃I1, . . . , x̃
I
I) = (X1, . . . , XI) and (ỹJJ , . . . , ỹ

J
J ) = (Y1, . . . , YJ) where ((Xi, Yi))i≥1 are

random vectors i.i.d. according to µ⊗ ν,

2. x̃Ii = F−1
µ

(
2i−1

2I

)
for i ∈ {1, . . . , I} and ỹJj = F−1

ν

(
2j−1
2J

)
for j ∈ {1, . . . , J}.

We may want either to simply keep these samples with, in general, distinct empirical means
by setting

a. (xI1, . . . , x
I
I) = (x̃I1, . . . , x̃

I
I) and (yJ1 , . . . , y

J
J ) = (ỹJ1 , . . . , ỹ

J
J ),

or to modify the approximate measures to ensure that they have the same expectation. We
then propose one of the following modifications

b. set (xI1, . . . , x
I
I) = (x̃I1 +

∫
R xµ(dx)− 1

I

∑I
i=1 x̃

I
i , . . . , x̃

I
I +

∫
R xµ(dx)− 1

I

∑I
i=1 x̃

I
i ) and

(yJ1 , . . . , y
J
J ) = (ỹJ1 +

∫
R yν(dy)− 1

J

∑J
j=1 ỹ

J
j , . . . , ỹ

J
J +

∫
R yν(dy)− 1

J

∑J
j=1 ỹ

J
j ).

c. set (yJ1 , . . . , y
J
J ) = (ỹJ1 + 1

I

∑I
i=1 x̃

I
i − 1

J

∑J
k=1 ỹ

J
k , . . . , ỹ

J
J + 1

I

∑I
i=1 x̃

I
i − 1

J

∑J
k=1 ỹ

J
k ) and

(xI1, . . . , x
I
I) = (x̃I1, . . . , x̃

I
I),

d. compute the estimators of the variances σ̂2
x = 1

I−1

∑I
i=1(x̃Ii )

2− 1
I(I−1)(

∑I
i=1 x̃

I
i )

2 and

σ̂2
y = 1

J−1

∑J
j=1(ỹJj )2− 1

J(J−1)(
∑J

j=1 ỹ
J
j )2 and add Jσ̂2

x

Iσ̂2
y+Jσ̂2

x

(
1
J

∑J
j=1 ỹ

J
j − 1

I

∑I
i=1 x̃

I
i

)
to each x̃Ii to obtain xIi and

Iσ̂2
y

Iσ̂2
y+Jσ̂2

x

(
1
I

∑I
i=1 x̃

I
i − 1

J

∑J
j=1 ỹ

J
j

)
to each ỹJj to obtain yJj .

The first modification necessitates the knowledge of
∫
R xµ(dx) =

∫
R yν(dy) which is gen-

erally the case in financial applications, since this is the current price of the underly-
ing asset. The second modification seems suitable for the deterministic initialization of
points with I = J , since formally, because of the inequality µ ≤cx ν, the tails of µ
should be lighter than the tails of ν enabling a quicker convergence of 1

I

∑I
i=1 F

−1
µ

(
2i−1

2I

)
than of 1

I

∑I
i=1 F

−1
ν

(
2i−1

2I

)
to the common expectation of µ and ν as I → ∞. When∫

R y
2ν(dy) < ∞, the convex combination of 1

I

∑I
i=1Xi and 1

J

∑J
j=1 Yj with minimal vari-

ance is

Var(Y1)

IVar(Y1) + JVar(X1)

I∑
i=1

Xi +
Var(X1)

IVar(Y1) + JVar(X1)

J∑
j=1

Yj

and is approximated by the common mean
σ̂2
y

Iσ̂2
y+Jσ̂2

x

∑I
i=1 x̃

I
i + σ̂2

x

Iσ̂2
y+Jσ̂2

x

∑J
j=1 ỹ

J
j of the two

samples (xI1, . . . , x
I
I) and (yJ1 , . . . , y

J
J ) for the random initialization of points.

We then set

µI =
1

I

I∑
i=1

δxIi
and νJ =

1

J

J∑
j=1

δyJj
,

and consider either (µI , µI ∨ νJ) or (µI ∧ νJ , νJ) to approximate (µ, ν) in the convex order.
The next proposition shows without giving any speed of convergence that the measures µ
and ν are then well approximated asymptotically. Notice that, according to Remark 4.4,
the measure µI ∨ νI obtained with the second modification dominates in the convex order
the one obtained without modification.

Proposition 4.6. Let µ and ν be two probability measures on R such that µ ≤cx ν and∫
R |x|ν(dx) <∞. As I, J →∞, µI and µI ∨νJ (resp. µI ∧νJ and νJ) converges a.s. weakly

to µ and ν.
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From this proposition, it seems then natural to approximate the continuous MOT

inf

{∫
R×R

c(x, y)π(dx, dy), π ∈ ΠM (µ, ν)

}
by the minimum of the discrete MOT (1.1) for the measures µI ∧ νJ and νJ when I, J
are large. We will do this with I = J in Section 6 on numerical examples. However, up to
our knowledge, no convergence result is known in the literature for the MOT cost between
probability measures µ̂ and ν̂ such that µ̂ ≤cx ν̂, in the limit µ̂ → µ and ν̂ → ν for the
weak sense. We intend to address this important question in future research.

To prove Proposition 4.6, we need the following lemma to deal with the deterministic
choice of points.

Lemma 4.7. Let µ be such that
∫
R |x|µ(dx) <∞. As I →∞, 1

I

∑I
i=1 δF−1

µ ( 2i−1
2I ) converges

weakly to µ, 1
I

∑I
i=1 F

−1
µ

(
2i−1

2I

)
converges to

∫
R xµ(dx) and for all t ∈ R, 1

I

∑I
i=1(t −

F−1
µ

(
2i−1

2I

)
)+ converges to

∫
R(t− x)+µ(dx).

Proof. The weak convergence follows from the continuity of (0, 1) 3 p 7→ F−1
µ (p) outside

of a set with zero Lebesgue measure and the weak convergence of 1
I

∑I
i=1 δ 2i−1

2I
to the

Lebesgue measure on (0, 1). We get by the weak convergence

lim inf
I→∞

1

I

I∑
i=1

(F−1
µ ((2i− 1)/2I))− ≥

∫ 1

0
(F−1

µ (p))−dp.

From the inequality

1

I

I∑
i=1

(F−1
µ ((2i− 1)/2I))− ≤

∫ 1
2I

0
(F−1

µ (p))− +

∫ 1− 1
2I

0
(F−1

µ (p))−dp,

and since
∫ 1

0 |F
−1
µ (p))|dp <∞, we deduce that

lim
I→∞

1

I

I∑
i=1

(F−1
µ ((2i− 1)/2I))− =

∫ 1

0
(F−1

µ (p))−dp. (4.4)

Dealing in a symmetric way with the positive part ensures the convergence of the expec-
tations. The inequality (t − x)+ ≤ t+ + x− for t, x ∈ R combined with (4.4) yields some
uniform integrability property ensuring the last convergence. �

Proof of Proposition 4.6. Let us deal with the second modification, the proof being similar
for the first or third modifications or with no modification. We also deal with the random
choice of points, the previous lemma replacing the strong law of large numbers for the
deterministic choice. The a.s. weak convergence of the empirical measure µI to µ as I →∞
is a consequence of the strong law of large numbers. Still by the strong law of large numbers,
1
I

∑I
i=1Xi− 1

J

∑J
j=1 Yj converges a.s. to

∫
R xµ(dx)−

∫
R xν(dx) = 0 as I, J →∞. For t ∈ R,



14 AURÉLIEN ALFONSI, JACOPO CORBETTA AND BENJAMIN JOURDAIN

since x 7→ (t− x)+ is Lipschitz continuous with constant 1,∣∣∣∣∫
R

(t− x)+νJ(dx)−
∫
R

(t− x)+ν(dx)

∣∣∣∣ ≤
∣∣∣∣∣∣1I

I∑
i=1

Xi −
1

J

J∑
j=1

Yj

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1J
J∑
j=1

(t− Yj)+ −
∫
R

(t− x)+ν(dx)

∣∣∣∣∣∣ .
Dealing with the second term in the right-hand side by the strong law of large numbers,
one deduces that ϕνJ (t) converges a.s. to ϕν(t) as I, J → ∞. The monotonicity in t and
the continuity of the limit in the same variable ensures that a.s. the convergence holds for
all t ∈ R. In the same way a.s. for all t ∈ R, ϕµI (t) converges to ϕµ(t). Since ϕµI∨νJ (t) =
max (ϕµI (t), ϕνJ (t)), we deduce that as I, J → ∞, a.s., for all t ∈ R, ϕµI∨νJ (t) converges
to max (ϕµ(t), ϕν(t)) = ϕν(t) since µ ≤cx ν. For t ∈ R and h > 0,

1

h
(ϕµI∨νJ (t)− ϕµI∨νJ (t− h)) =

1

h

∫ t

t−h
FµI∨νJ (x)dx

≤ FµI∨νJ (t) ≤ 1

h

∫ t+h

t
FµI∨νJ (x)dx =

1

h
(ϕµI∨νJ (t+ h)− ϕµI∨νJ (t))

where the left-hand and the right-hand sides of the inequality respectively converge to
1
h

∫
R(t− x)+− (t− h− x)+ν(dx) = 1

h

∫ t
t−h Fν(x)dx and 1

h

∫
R(t+ h− x)+− (t− x)+ν(dx) =

1
h

∫ t+h
t Fν(x)dx. Letting h → 0, we conclude that a.s., FµI∨νJ (t) converges to Fν(t) for all

t ∈ R such that ν({t}) = 0 which is equivalent to the weak convergence of µI ∨ νJ to ν.
We now prove the a.s. weak convergence of µI ∧ νJ to µ. We have by construction

ϕµI∧νJ (t) ≤ min(ϕµI (t), ϕνJ (t)). This gives a.s, that for all t ∈ R, lim supI,J→+∞ ϕµI∧νJ (t) ≤
ϕµ(t) since µ ≤cx ν. Now, we observe that the convergence of ϕµI (resp. ϕνJ ) to ϕµ
(resp. ϕν) is uniform on R. In fact, ϕµI and ϕµ are nondecreasing functions such that
limt→−∞ ϕµI (t) = limt→−∞ ϕµ(t) = 0 and ϕµ is continuous. From the a.s. simple conver-
gence, we deduce that a.s., ϕµI converges uniformly to ϕµ on (−∞, T ], for any T > 0. The
same reasoning gives that a.s., ϕ̄µI converges uniformly to ϕ̄µ on [T,+∞). Since, by (2.1)
and (2.2),

t−
∫
R
xµ(dx) =

∫
R

(t− x)+µ(dx)−
∫
R

(x− t)+µ(dx) = ϕµ(t)− ϕ̄µ(t),

t − 1
I

∑I
i=1Xi = ϕµI (t) − ϕ̄µI (t) and 1

I

∑I
i=1Xi →

I→+∞

∫
R xµ(dx), we get that a.s., ϕµI

converges uniformly to ϕµ on R. The same argument works for the uniform convergence of
ϕνJ to ϕν . Thus, for ε > 0 there exists N such that for I, J ≥ N ,

∀t ∈ R,max(|ϕµI − ϕµ(t)|, |ϕνJ − ϕν(t)|) ≤ ε.

We deduce

∀t ∈ R, ϕµI (t) = ϕµI (t) ∧ ϕνJ (t) + ϕµI (t) ∨ ϕνJ (t)− ϕνJ (t)

≤ ϕµI (t) ∧ ϕνJ (t) + ϕµ(t) ∨ ϕν(t)− ϕν(t) + 2ε = ϕµI (t) ∧ ϕνJ (t) + 2ε,

since µ ≤cx ν. Since ϕµI − 2ε is a convex function below ϕµI ∧ ϕνJ , we get that

∀I, J ≥ N, t ∈ R, ϕµI (t)− 2ε ≤ ϕµI∧νJ (t).
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Since ε > 0 is arbitrary, this gives a.s, that for all t ∈ R, lim infI,J→+∞ ϕµI∧νJ (t) ≥ ϕµ(t).
From the a.s. convergence for all t ∈ R of ϕµI∧νJ (t) to ϕµ(t), we deduce as before the
convergence for all t ∈ R such that µ({t}) = 0 of FµI∧νJ (t) to Fµ(t). �

Remark 4.8. The proof of Proposition 4.6 does not use the independence between (Xi)i≥1

and (Yi)i≥1 when they are sampled. In fact, among the three proposed modifications, only
the third one exploits the independence in order to get the best estimation of the common
expectation

∫
R xµ(dx) =

∫
R yµ(dy) from the samples (Xi)1≤i≤I and (Yj)1≤j≤J .

An interesting thing to notice is that the construction of approximate probability mea-
sures that preserve the convex order can be easily extended to the multi-marginal case. More
precisely, let ` ≥ 2, I1, . . . , I` be positive integers and µ1, . . . , µ` be probability measures

on R such that µ1 ≤cx . . . ≤cx µ
` and

∫
R |x|µ

`(dx) <∞. We either set x̃ki = F−1
µk

(
2i−1
Ik

)
for

i ∈ {1, . . . , Ik} and k ∈ {1, . . . , `} or x̃ki = Xk
i where the random vectors ((X1

i , . . . , X
`
i ))i≥1

are i.i.d. according to µ1⊗ . . .⊗µ`. Next we choose (xki )1≤i≤Ik,1≤k≤` as one of the following
vectors :
- (x̃ki )1≤i≤Ik,1≤k≤`,

- (x̃ki − 1
Ik

∑Ik
i=1 x̃

k
i +

∫
R xµ1(dx))1≤i≤Ik,1≤k≤`,

- (x̃ki − 1
Ik

∑Ik
i=1 x̃

k
i + 1

I1

∑I1
i=1 x̃

1
i )1≤i≤Ik,1≤k≤`,

-

(
x̃ki +

∑`
j=1

Ij/σ̂2
j∑`

l=1 Il/σ̂
2
l

( 1
Ij

∑Ij
i=1 x̃

j
i −

1
Ik

∑Ik
i=1 x̃

k
i )

)
1≤i≤Ik,1≤k≤`

,

where σ̂2
j = 1

Ij−1

∑Ij
i=1(x̃ji )

2− 1
Ij(Ij−1)(

∑Ij
i=1 x̃

j
i )

2 and set µkIk = 1
Ik

∑Ik
i=1 δxki

for k ∈ {1, . . . , `}.
For the first choice, the expectations of the measures µkIk are in general distinct and, to
obtain an increasing sequence of approximate probability measures for the convex order,
we compute either

µ1
I1 , µ

1
I1 ∨ µ

2
I2 , (µ

1
I1 ∨ µ

2
I2) ∨ µ3

I3 , . . . , ((µ
1
I1 ∨ µ

2
I2) ∨ . . .) ∨ µ`I`

or µ1
I1
∧ (. . .∧ (µ`−1

I`−1
∧ µ`I`)), . . . , µ

`−2
I`−2
∧ (µ`−1

I`−1
∧ µ`I`), µ

`−1
I`−1
∧ µ`I` , µ

`
I`

. For the other choices,

the expectations are equal and the order in which the suprema ∨ (resp. the infima ∧)
are computed no longer matters. Indeed, for f, g, h : R → R, we have max(f, g, h) =
max(max(f, g), h) and min(f, g, h) = min((min(f, g)), h)). One easily generalizes the proof
of Proposition 4.6 to obtain the following result.

Proposition 4.9. Let µ1, . . . , µ` be probability measures on R such that µ1 ≤cx . . . ≤cx

µ` and
∫
R |x|µ

`(dx) < ∞. Then, as I1, . . . , I` → +∞, µ1
I1
, µ1

I1
, µ1

I1
∨ µ2

I2
, (µ1

I1
∨ µ2

I2
) ∨

µ3
I3
, . . . , ((µ1

I1
∨µ2

I2
)∨. . .)∨µ`I` (resp. µ1

I1
∧(. . .∧(µ`−1

I`−1
∧µ`I`)), . . . , µ

`−2
I`−2
∧(µ`−1

I`−1
∧µ`I`), µ

`−1
I`−1
∧

µ`I` , µ
`
I`

) converge a.s. weakly to µ1, . . . , µ`.

5. Algorithms and complexity

In this section, we present the algorithms to calculate µI ∧νJ and µI ∨νJ defined in (4.1)

and (4.2) when µI =
∑I

i=1 piδxi and νJ =
∑J

j=1 qjδyj are probability measures with finite
support. In this case, the probability measures µI ∧ νJ and µI ∨ νJ also have a finite
support, and the number of points in their support is discussed in Subsection 5.3. When
x1 < · · · < xI and y1 < · · · < yJ , the number of operations required to calculate µI ∧ νJ or
µI ∨ νJ is in O(I + J). Otherwise, the computation cost is in O(I log(I) + J log(J)) since
one has first to sort the points.
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5.1. Algorithm for the calculation of the supremum of two probability measures
with finite support. Let µI =

∑I
i=1 piδxi with (p1, . . . , pI) ∈ (0, 1]I and νJ =

∑J
j=1 qjδyj

with (q1, . . . , qJ) ∈ (0, 1]J be two probability measures on the real line. Up to reducing
the number of points and sorting them, we may suppose that x1 < x2 < . . . < xI (resp
y1 < y2 < . . . < yJ). The equality µI ∨icx νJ = µ̄I ∨dcx ν̄J implies that it is enough to focus
on the computation of µI ∨dcx νJ .

The functions ϕµI and ϕνJ are piecewise affine with slopes taking respectively their

values in {0, p1, p1+p2, . . . ,
∑I−1

i=1 pi, 1} and {0, q1, q1+q2, . . . ,
∑J−1

j=0 qj , 1}. As a consequence
ϕµI ∨ϕνJ is piecewise affine with slopes taking values in the union of these two sets so that
µI∨νJ is a probability measure supported on K ≤ I+J−1 points z1 < z2 < . . . < zK . Our
aim is now to provide an efficient algorithm aimed at expliciting µI ∨dcx νJ =

∑K
k=1 %kδzk .

Let w1 < w2 < . . . < wL with L ≥ I ∨ J be such that

{w1, . . . , wL} = {x1, . . . , xI} ∪ {y1, . . . , yJ}.
For convenience, we set w0 = w1−1. Of course, ϕµI (w0) = FµI (w0) = ϕνJ (w0) = FνJ (w0) =
0. We now proceed inductively on ` ∈ {1, . . . , L} remarking that the functions ϕµI and ϕνJ
are affine with respective slopes FµI (w`−1) and FνJ (w`−1) on [w`−1, w`] :

1. We first compute

ϕµI (w`) = ϕµI (w`−1) + FµI (w`−1)(w` − w`−1), FµI (w`) = FµI (w`−1) + µI({w`})
ϕνJ (w`) = ϕνJ (w`−1) + FνJ (w`−1)(w` − w`−1), FνJ (w`) = FνJ (w`−1) + νJ({w`}).

2. If (ϕνJ (w`)−ϕµI (w`))(ϕνJ (w`−1)−ϕµI (w`−1)) < 0, then, computing the intersection
point between ϕµI and ϕνJ on [w`−1, w`] and the increase of the slope of ϕµI ∨ ϕνJ
at this point, we obtain that

µI ∨dcx νJ

({
|ϕνJ (w`)− ϕµI (w`)|w`−1 + |ϕνJ (w`−1)− ϕµI (w`−1)|w`
|ϕνJ (w`)− ϕµI (w`)|+ |ϕνJ (w`−1)− ϕµI (w`−1)|

})
= µI ∨dcx νJ((w`−1, w`)) =

|ϕµI (w`)− ϕµI (w`−1)− ϕνJ (w`) + ϕνJ (w`−1)|
w` − w`−1

=
|ϕνJ (w`)− ϕµI (w`)|+ |ϕνJ (w`−1)− ϕµI (w`−1)|

w` − w`−1
= |Fν(w`−1)− Fµ(w`−1)|.

Otherwise, we either have ∀t ∈ (w`−1, w`) ϕµI∨dcxνJ (t) = ϕµI (t) or ∀t ∈ (w`−1, w`)
ϕµI∨dcxνJ (t) = ϕνJ (t), and the slope of ϕµI ∨ ϕνJ is constant on (w`−1, w`) so that
µI ∨dcx νJ((w`−1, w`)) = 0.

3. The mass µI ∨dcx νJ({w`}) is obtained in the following way.

(i) If ϕµI (w`) = ϕνJ (w`), then the slopes of ϕµI ∨ ϕνJ on (w`−1, w`) and on
(w`, w`+1) (convention wL+1 = wL + 1) are respectively equal to FµI (w`−1) ∧
FνJ (w`−1) and FµI (w`) ∨ FνJ (w`) so that

µI ∨dcx νJ({w`}) = FµI (w`) ∨ FνJ (w`)− FµI (w`−1) ∧ FνJ (w`−1).

(ii) If ϕµI (w`) > ϕνJ (w`) then ϕµI ∨ ϕνJ is equal to ϕµI on a neighbourhood of w`
so that µI ∨dcx νJ({w`}) = µI({w`}).

(iii) If ϕµI (w`) < ϕνJ (w`), then, in a symmetric way, µI ∨dcx νJ({w`}) = νJ({w`}).
Of course, the slope of ϕµI ∨ ϕνJ is equal to 0 on (−∞, w1) and to 1 on (wL,+∞) so that
µI ∨dcx νJ((−∞, w1)∪ (wL,+∞)) = 0. Moreover, µI ∨dcx νJ({w1}) = µI({w1})∨ νJ({w1}).
On the other hand, by (2.1), ϕµI (wL) = wL −

∑I
i=1 pixi, ϕνJ (wL) = wL −

∑J
j=1 qjyj and
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when either
∑I

i=1 pixi <
∑J

j=1 qjyj and µI({wL}) = 0 or
∑I

i=1 pixi >
∑J

j=1 qjyj and

νJ({wL}) = 0, then µI ∨dcx νJ({wL}) = 0. Otherwise, and in particular when
∑I

i=1 pixi =∑J
j=1 qjyj , µI ∨dcx νJ({wL}) > 0. Algorithm 1 below implements these ideas to compute

µI ∨dcx νJ .

5.2. Algorithm for the calculation of the infimum of two probability measures
with finite support. We consider the same setting as in Subsection 5.1. The equality
µI ∧icx νJ = µ̄I ∧dcx ν̄J implies that it is enough to focus on the computation of µI ∧dcx νJ .
Recall that w1 < w2 < . . . < wL with L ≥ I∨J are such that {w1, . . . , wL} = {x1, . . . , xI}∪
{y1, . . . , yJ}. Since convex hulls will appear in the characterization, when d = 1, of the
Wasserstein projections considered in Section 3, rather than using the characterization of
µI ∧dcx νJ deduced from Lemma 4.2 which would lead to some algorithm similar to the
previous one, we compute the convex hull ϕµI∧dcxνJ of ϕµI ∧ϕνJ . To do so, we observe that
its epigraph is the convex hull of the union of the epigraphs of ϕµI and ϕνJ . Thus, we can
use Andrew’s monotone chain convex hull algorithm. We describe here briefly how it works
in our case. We exclude the trivial case L = 1 and assume that L ≥ 2. The principle is
to calculate for ` ∈ {2, . . . L} the convex hull of {(y, w) : w ∈ [w1, w`], y ≥ ϕµI ∧ ϕνJ (w)}.
It is fully described by indices i`(1) < · · · < i`(n`) such that this convex hull is equal to

∪n`−1
n=1 {(y, w) : w ∈ [wi`(n), wi`(n+1)], y ≥

wi`(n+1)−w
wi`(n+1)−wi`(n)

ϕµI∧ϕνJ (wi`(n))+
w−wi`(n)

wi`(n+1)−wi`(n)
ϕµI∧

ϕνJ (wi`(n+1))}. Obviously n2 = 2, i2(1) = 1, i2(2) = 2 and from this initialization, we
proceed by induction. To calculate the indices i`+1 from the indices i`, Andrew’s monotone
chain convex hull algorithm works as follows: {i`+1(1), . . . , i`(n`+1)} is equal to {1}∪{i`(n) :

2 ≤ n ≤ n`,
ϕµI∧ϕνJ (w`+1)−ϕµI∧ϕνJ (wi`(n))

w`+1−wi`(n)
>

ϕµI∧ϕνJ (wi`(n))−ϕµI∧ϕνJ (wi`(n−1))

wi`(n)−wi`(n−1)
} ∪ {`+ 1}.

This means that we remove all the previous points that would give a nonincreasing slope.
Once we have calculated the indices, the weights of the measure µI ∧dcx νJ are obtained as
the difference of two successive slopes. This is presented in Algorithm 2.

5.3. Examples. In this subsection, we discuss on different examples the number K of
points in the support of µI ∨ νJ (resp. µI ∧ νJ), in the case

∑I
i=1 pixi =

∑J
j=1 qjyj . We

show that the maximal value of K is I + J − 1 (resp. I + J − 2).
We start by studying examples for µI ∨ νJ and we suppose for convenience that I ≤ J .

1. If I = 1, then necessarily µI ≤cx νJ so that µI ∨ νJ = νJ and K = J ,

2. If I ≥ 2, then the support of µI∨νJ contains at least the two distinct points x1∧y1 and
xI∨yJ . Now either µI∨νJ ∈ {µI , νJ} or neither µI ≥cx νJ nor νJ ≥cx µI which implies
that K ≥ 3 : the sign of ϕνJ − ϕµI changes on the interval (x1 ∧ y1, xI ∨ yJ), which
implies that the cumulative distribution function F equal to the slope of ϕµI ∨ ϕνJ
is not constant on this interval. In particular, when I ≥ 3 then K ≥ 3. Notice that
K may be equal to 3 even if I is arbitrarily large. For instance, for the centered
probability measures

µI =
1

3
δ−1 +

2

3(I − 1)

I∑
i=2

δ i−2
I−2

and νI =
2

3(I − 1)

I−1∑
i=1

δ 1−I+i
I−2

+
1

3
δ1

with I ≥ 3, µI ∨ νI = 1
3(δ−1 + δ0 + δ1). Indeed ϕµI (t) = 1+t

3 for t ∈ [−1, 0] whereas

ϕνI (0) = 2
3(I−1)

∑I−1
i=1

i−1
I−2 = 1

3 so that ϕνI (t) = 1+2t
3 for t ∈ [0, 1]. With the convexity

of ϕµI and ϕνI and the equality of these functions at the extreme points −1 and
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Algorithm 1 Calculate z1 < z2 < . . . < zK and (%1, . . . , %K) ∈ (0, 1]K s.t. µI ∨dcx νJ =∑K
k=1 %kδzk
max← xI ∨ yJ
xI+1 ← max
pI+1 ← 0
yJ+1 ← max
qJ+1 ← 0
i← 1
j ← 1
k ← 1
w ← x1 ∧ y1 − 1
Fµ ← 0
ϕµ ← 0
Fν ← 0
ϕν ← 0
while w < max do
w̃ ← xi ∧ yj
F̃µ ← Fµ + 1{w̃=xi}pi
ϕ̃µ ← ϕµ + Fµ(w̃ − w)

F̃ν ← Fν + 1{w̃=yj}qj
ϕ̃ν ← ϕν + Fν(w̃ − w)
if (ϕ̃ν − ϕ̃µ)(ϕν − ϕµ) < 0 then

zk ← |ϕ̃ν−ϕ̃µ|w+|ϕν−ϕµ|w̃
|ϕ̃ν−ϕ̃µ|+|ϕν−ϕµ|

%k ← |Fν − Fµ|
k ← k + 1

else if ϕ̃ν − ϕ̃µ = 0 then
zk ← w̃
%k ← (F̃ν ∨ F̃µ)− (Fν ∧ Fµ)
k ← k + 1

end if
if (ϕ̃µ − ϕ̃ν)pi1{w̃=xi} > 0 then
zk ← w̃
%k ← pi
k ← k + 1

end if
if (ϕ̃ν − ϕ̃µ)qj1{w̃=yj} > 0 then
zk ← w̃
%k ← qj
k ← k + 1

end if
i← i+ 1{w̃=xi}
j ← j + 1{w̃=yj}
w ← w̃
Fµ ← F̃µ
ϕµ ← ϕ̃µ
Fν ← F̃ν
ϕν ← ϕ̃ν

end while
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Algorithm 2 Calculate z1 < z2 < . . . < zK and (%1, . . . , %K) ∈ (0, 1]K s.t. µI ∧dcx νJ =∑K
k=1 %kδzk
max← xI ∨ yJ
xI+1 ← max
pI+1 ← 0
yJ+1 ← max
qJ+1 ← 0
i← 1
j ← 1
L← {}
w ← x1 ∧ y1 − 1
Fµ ← 0
ϕµ ← 0
Fν ← 0
ϕν ← 0
while w < max do
w̃ ← xi ∧ yj
ϕµ ← ϕµ + Fµ(w̃ − w)
ϕν ← ϕν + Fν(w̃ − w)

while s(L) > 1 and
ψs(L)−ψs(L)−1

zs(L)−zs(L)−1
≥ ϕµ∧ϕν−ψs(L)

w̃−zs(L)
do

Remove the last element of L.
end while
w ← w̃
Fµ ← Fµ + 1{w̃=xi}pi
Fν ← Fν + 1{w̃=yj}qj
Add (w̃, ϕµ ∧ ϕν , 0, 0) to the list L.
i← i+ 1{w̃=xi}
j ← j + 1{w̃=yj}

end while
if s(L) = 1 then
%1 = 1

else
F 0 ← 0
for 1 ≤ k ≤ s(L) do

F k ← 1{k<s(L)}
ψk+1−ψk
zk+1−zk + 1{k=s(L)}

%k ← F k − F k−1

end for
end if
if %s(L) = 0 then

Remove the last element of L.
end if
if %1 = 0 then

Remove the first element of L.
end if
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1 (deduced at point 1 from the equality of the expectations), one concludes that

ϕµI ∨ ϕνI (t) = (1+t)++t++(t−1)+

3 .

3. As explained in Subsection 5.1, we necessarily have K ≤ I + J − 1. For α ∈ (2
I ,

2
I−1),

µI =
1

I

I∑
i=1

δxi with xi =
(1 + α)i

I + 1
− α

2
and νI+1 =

1

I + 1

I∑
i=0

δ i
I
,

the cardinality of the support of µI ∨ νI+1 is 2I. Indeed, it is easy to check that
the condition α < 2

I−1 is necessary and sufficient to ensure i−1
I < xi <

i
I for all

i ∈ {1, . . . , I}. Under this condition, it is enough to check that for all i ∈ {1, . . . , I},
ϕνI+1(xi) > ϕµI (xi) and for all i ∈ {1, . . . I − 1}, ϕµI ( iI ) > ϕνI+1( iI ) to ensure that F

indeed takes the 2I + 1 possible different values. Notice that on [ i−1
I ,

i
I ], ϕνI+1(t) =

i
I+1

(
t− i−1

2I

)
and that on [xi, xi+1], ϕµI (t) = i

I

(
t− (1+α)(i+1)

2(I+1) + α
2

)
. The inequality

ϕνI+1(xi) > ϕµI (xi) multiplied by 2I(I+1)2

i therefore writes (2−α(I−1))(I+1−i) > 0.

On the other hand, the inequality ϕµI (
i
I ) > ϕνI+1( iI ) multiplied by 2I2(I+1)

i rewrites
(αI − 2)(I − i) > 0.

4. When the probability measures µI and νJ are uniform : pi = 1
I for all i ∈ {1, . . . , I}

and qj = 1
J for all j ∈ {1, . . . , J}. Then K ≤ I + J − gcd(I, J) (in particular K ≤ I

when J = I) since the cardinality of { iI : i ∈ {0, . . . , I}} ∪ { jJ : j ∈ {0, . . . , J}} is
I + J + 1− gcd(I, J). Let I ′ = I/ gcd(I, J) and J ′ = J/ gcd(I, J). These integers are
prime together and we have

i

I
=
j

J
⇐⇒ iJ ′ = jI ′ ⇐⇒ i = κI ′ and j = κJ ′,

with κ ∈ {0, . . . , gcd(I, J)} when 0 ≤ i ≤ I and 0 ≤ j ≤ J . Therefore, the cardinal of

{ iI : i ∈ {0, . . . , I}} ∩ { jJ : j ∈ {0, . . . , J}} is 1 + gcd(I, J), which gives the claim.

We now discuss the number K of points in the support of µI ∧νJ and suppose again I ≤ J .
We assume I ≥ 2, otherwise µI ∧νJ has clearly one element (K = 1) and is the Dirac mass
at x1.

1′. If I = J , xi = yi and pi = qi for 1 ≤ i ≤ I, we have µI ∧ νJ = µI and thus K = I.

2′. If I = 2, x1 ≤ minj=1,...,J yj and x2 ≥ maxj=1,...,J yj , then for any j ∈ {1, . . . , J}, we

have yj =
x2−yj
x2−x1x1 +

yj−x1
x2−x1x2. Thus, if p1 =

∑J
j=1 qj

x2−yj
x2−x1 and p2 =

∑J
j=1 qj

yj−x1
x2−x1 ,

we have νJ ≤cx µI and thus K = J .

3′. We have K ≤ I + J − 2. It is clear that K ≤ I + J since the support of µI ∧ νJ is
included in {x1, . . . , xI} ∪ {y1, . . . , yJ}. If x1 < y1, then x1 is not in the support of
µI ∧ νJ since ϕµI∧νJ (y1) = 0. Thus, at most one element of {x1, y1} is in the support
of µI ∧ νJ . If xI > yJ , then xI is not in the support of µI ∧ νJ , otherwise we would
have ϕ′µI∧νJ (xI−) < 1 and thus

ϕµI∧νJ (yJ) > ϕµI∧νJ (xI) + yJ − xI = xI −
I∑
i=1

pixi + yJ − xI = yJ −
J∑
j=1

qjyj = ϕνJ (yJ).

Thus, at most one element of {xI , yJ} is in the support of µI ∧ νJ . We eventually get
K ≤ I + J − 2. This bound is attained by the previous example: for α ∈ (2

I ,
2
I−1),
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µI = 1
I

∑I
i=1 δxi with xi = (1+α)i

I+1 −
α
2 and νI+1 = 1

I+1

∑I
i=0 δ i

I
, the cardinality of the

support of µI ∧ νI+1 is 2I − 1. Let us recall that we have already shown that for all
i ∈ {1, . . . I}, xi ∈ ( i−1

I ,
i
I ) and ϕνI+1(xi) > ϕµI (xi) and, for all i ∈ {1, . . . I − 1},

ϕµI (
i
I ) > ϕνI+1( iI ). Thus, to prove that the support of µI ∧ νJ is {xi, 1 ≤ i ≤

I} ∪ { iI , 1 ≤ i ≤ I − 1}, it is necessary and sufficient to prove that

ϕµI (xi)− ϕνI+1

(
i−1
I

)
xi − i−1

I

<
ϕνI+1

(
i
I

)
− ϕµI (xi)

i
I − xi

, i ∈ {1, . . . , I},

ϕνI+1

(
i
I

)
− ϕµI (xi)

i
I − xi

<
ϕµI (xi+1)− ϕνI+1

(
i
I

)
xi+1 − i

I

, i ∈ {1, . . . , I − 1}.

We observe that ϕµI (xi) = 1+α
2I(I+1) i(i − 1) and ϕνI+1

(
i
I

)
= 1

2I(I+1) i(i + 1). After

simple but tedious calculations, we can check that the first condition is equivalent
to 0 < (2− α (I − 1)) (I + 1− i), which is true since α < 2

I−1 . Similarly, the second

condition is equivalent to (I − i) (2− αI) < 0, which is true since α > 2
I .

4′. If I ≥ 2, the support of µI ∧ νJ has at least two elements, i.e. K ≥ 2. Since m :=∑I
i=1 pixi =

∑J
j=1 qjyj and the elements xi (resp. yj) are distinct, we have ϕµI (m) > 0

(resp. ϕνJ (m) > 0). If K = 1, we would have then necessary µI ∧ νJ = δm, which
would be in contradiction with the previous statement. Notice that K may be equal
to 2 even if I is arbitrarily large. For I ≥ 2, we take when I − 1 = 2k is even

µI =
1

I − 1

k∑
i=1

1

2

(
δ−1− i

k
+ δ−1+ i

k

)
+

1

2
δ1, νI =

1

2
δ−1 +

1

I − 1

k∑
i=1

1

2

(
δ1− i

k
+ δ1+ i

k

)
,

and when I − 1 = 2k + 1 is odd,

µI =
1

I

k∑
i=0

1

2

(
δ−1− i

k
+ δ−1+ i

k

)
+

1

2
δ1, νI =

1

2
δ−1 +

1

I

k∑
i=0

1

2

(
δ1− i

k
+ δ1+ i

k

)
.

By construction, the support of µI (resp. νI) has exactly I points. Moreover, one
easily checks that µI ∧ νI = 1

2(δ−1 + δ1).

5.4. Irreducible components. Specializing Theorem A.4 of Beiglböck and Juillet (2016)
and its proof to the case of probability measures, one has the following decomposition.

Proposition 5.1. Let µ ≤cx ν be two distinct probability measures such that µ, ν ∈ P1(R).
There exists a countable family of disjoint intervals (tn, tn), 1 ≤ n ≤ N , with N ∈ N∗∪{∞}
such that

{t ∈ R, ϕµ(t) < ϕν(t)} = ∪Nn=1(tn, tn).

We have µ((tn, tn)) > 0 for any 1 ≤ n ≤ N .
Let E = ∩1≤n≤N{(−∞, tn]∪ [tn,+∞)}, µ0(dx) = 1E(x)µ(dx), µn(dx) = 1(tn,tn)(x)µ(dx)

so that µ =
∑N

n=0 µ
n. Then, there exists a unique decomposition ν =

∑N
n=0 ν

n such that

νn(R) = µn(R) and µn

µn(R) ≤cx
νn

µn(R) , for 1 ≤ n ≤ N and, when µ0(R) > 0, µ0

µ0(R)
≤cx

ν0

µ0(R)
.

It is given by ν0 = µ0 and, for 1 ≤ n ≤ N , by

νn(dx) = 1(tn,tn)(x)ν(dx) + (Fν(tn)− Fµ(tn))δtn(dx) + (Fµ(tn−)− Fν(tn−))δtn(dx).



22 AURÉLIEN ALFONSI, JACOPO CORBETTA AND BENJAMIN JOURDAIN

Last, if P is a martingale coupling between µ and ν,

P (dx, dy) = µ0(dx)δx(dy) +

N∑
n=1

µ((tn, tn))Pn(dx, dy),

where Pn is a martingale coupling between µn

µn(R) and νn

µn(R) .

The intervals ((tn, tn))1≤n≤N are called the irreducible components of the couple (µ, ν).
According to Corollary A.7 of Beiglböck and Juillet (2016), solving a martingale optimal
transport problem between µ and ν is equivalent to solving the martingale optimal trans-
port problem with the same payoff function between µn

µn(R) and νn

µn(R) for each 1 ≤ n ≤ N .

This motivates our interest in studying the irreducible components of (µI ∧ νJ , νJ) and
(µI , µI ∨ νJ): to solve numerically the corresponding discrete MOT problem, this replace
a linear programming problem by N linear programming problems of smaller dimension,
where N is the corresponding number of irreducible components.

We now consider two probability measures with finite supports µI =
∑I

i=1 piδxi and

νJ =
∑J

j=1 qjδyj with x1 < · · · < xI , y1 < · · · < yJ , pi > 0 for i ∈ {1, . . . , I} and qj > 0

for j ∈ {1, . . . , J} and
∑I

i=1 pixi ≤
∑J

j=1 qjyj . Since, by Lemma 4.1,
∫
R xµI ∨dcx νJ(dx) =∫

R xµI(dx) and
∫
R xµI ∧dcx νJ(dx) =

∫
R xνJ(dx), µI ≤cx µI ∨dcx νJ and µI ∧dcx νJ ≤cx νJ .

We are interested in describing precisely and computing the irreducible components of
(µI , µI ∨dcx νJ) (resp. (µI ∧dcx νJ , νJ)). Of course, there are finitely many components. The
computation of the irreducible components of (µI , µI ∨icx νJ) (resp. (µI ∧icx νJ , νJ)) when∑I

i=1 pixi >
∑J

j=1 qjyj is easily deduced from the equality µI ∨icx νJ = µ̄I ∨dcx ν̄J (resp.

µI ∧icx νJ = µ̄I ∧dcx ν̄J ).

Irreducible components of (µI , µI ∨dcx νJ) when
∑I

i=1 pixi ≤
∑J

j=1 qjyj. The irreducible
components are defined as the largest intervals on which ϕµI < ϕµI∨dcxνJ . We have µI ∨dcx

νJ =
∑K

k=1 %kδzk with z1 < · · · < zK , %k > 0, and Algorithm 1 calculates the points
zk and the weights %k. Among these points, we focus on the points such that ϕµI (zk) =
ϕµI∨dcxνJ (zk). Thus, we define v1 < v2 < . . . < vM such that

{v1, . . . , vM} = {zk : 1 ≤ k ≤ K and ϕµI (zk) = ϕµI∨dcxνJ (zk)}. (5.1)

For t ≥ zK , ϕµI (t) ≤ ϕµI∨dcxνJ (t) = t −
∑I

i=1 pixi. Since the function ϕµI is convex and

equal to t−
∑I

i=1 pixi for t ≥ xI , one deduces that ϕµI (t) = t−
∑I

i=1 pixi for t ≥ zK . Since
ϕµI (t) = ϕµI∨dcxνJ (t) = 0 for t ≤ z1 and we have M ≥ 1 and all the irreducible components
lie in (z1, zK). If K = 1, µI = µI ∨dcx νJ = δx1 and there is no irreducible component.
Otherwise, we have M ≥ 2, which we assume now.

Remark 5.2. When M ≥ 3, looking at the irreducible components reduces the dimension of
the discrete MOT problem. We notice that if I ≥ 2 and

∑I
i=1 pixi =

∑J
j=1 qjyj, then M =

2 =⇒ µI ≤cx νJ . In fact, M = 2 implies that ϕµI (zk) < ϕνJ (zk) for 2 ≤ k ≤ K − 1. Since

0 = ϕµI (z1) ≥ ϕνJ (z1) and zK −
∑I

i=1 pixi = ϕµI (zK) ≥ ϕνJ (zK) ≥
(
zK −

∑I
i=1 pixi

)+
by

Jensen’s inequality, we get ϕµI (z1) = ϕνJ (z1) and ϕµI (zK) = ϕνJ (zK) and thus µI ≤cx νJ .

We have ϕµI ≤ ϕµI ∨ ϕνJ = ϕµI∨dcxνJ and, for any m ∈ {1, . . . ,M}, ϕµI (vm) =
ϕµI∨dcxνJ (vm). We can therefore compare the derivatives and get

FµI∨dcxνJ (vm−) ≤ FµI (vm−), FµI∨dcxνJ (vm) ≥ FµI (vm).
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Let m ≤ M − 1 and km be such that vm = zkm . If FµI∨dcxνJ (vm) = FµI (vm) then,
since ϕµI∨dcxνJ ≥ ϕµI and the derivative FµI∨dcxνJ of ϕµI ∨ ϕνJ is constant and equal
to FµI∨dcxνJ (vm) on (zkm , zkm+1) whereas the one FµI of ϕµI is nondecreasing, one has ∀t ∈
[zkm , zkm+1], ϕµI∨dcxνJ (t) = ϕµI (t) and, in particular, km+1 = km+1 and µI((vm, vm+1)) =
0. In a symmetric way, if FµI (vm+1−) = FµI∨dcxνJ (vm+1−), then

km = km+1 − 1, µI((vm, vm+1)) = 0 and ϕµI (t) = ϕµI∨dcxνJ (t) for t ∈ [vm, vm+1].

Thus, µI((vm, vm+1)) > 0 implies that FµI∨dcxνJ (vm) > FµI (vm) and FµI (vm+1−) >
FµI∨dcxνJ (vm+1−), which gives that ∀t ∈ (vm, vm+1), ϕµI∨dcxνJ (t) > ϕµI (t).

Proposition 5.3. We assume
∑I

i=1 pixi ≤
∑J

j=1 qjyj so that µI ≤cx µI ∨dcx νJ . Let

v1 < v2 < . . . < vM be defined by (5.1). We have

{t ∈ R, ϕµI (t) < ϕµI∨dcxνJ (t)} =
⋃

1≤m≤M−1,

µI((vm,vm+1))>0

(vm, vm+1),

i.e. the intervals (vm, vm+1) such that µI((vm, vm+1)) > 0 are the irreducible components of

(µI , µI∨dcxνJ). Moreover µ0
I =

∑M
m=1 µI({vm})δvm and any martingale coupling P between

µI and µI ∨dcx νJ is such that for all m ∈ {1, . . . ,M}, P ({(vm, vm)}) = µI({vm}) and for
all m ∈ {1, . . . ,M − 1}, P ((vm, vm+1)× [vm, vm+1]) = µI((vm, vm+1)).

Any martingale optimal transport problem between the marginals µI and µI ∨dcx νJ
may be decomposed into the martingale optimal transport problems with the same payoff
function but between the marginals 1

µI((vm,vm+1))

∑I
i=1 pi1{vm<xi<vm+1}δxi and

1

µI((vm, vm+1))

(
(FµI∨dcxνJ (vm)− FµI (vm))δvm +

K∑
k=1

%k1{vm<zk<vm+1}δzk

+ (FµI (vm+1−)− FµI∨dcxνJ (vm+1−))δvm+1

)
for m such that µI((vm, vm+1)) > 0. Doing so, we replace one linear programming problem

by N linear programming problems of smaller size, where N =
∑M−1

m=1 1{µI((vm,vm+1))>0} is
the number of irreducible components.

Setting ηm− = FµI (vm−)−FµI∨dcxνJ (vm−), ηm = µI({vm}) and ηm+ = FµI∨dcxνJ (vm)−
FµI (vm), Algorithm 1 can be modified in the following way to compute (vm, ηm−, ηm, ηm+)1≤m≤M .
First initialize m← 1 before the while loop. In this while loop,

1. if (ϕ̃ν − ϕ̃µ)(ϕν − ϕµ) < 0, add vm ← zk, ηm− ← 1{ϕν>ϕµ}%k, ηm ← 0, ηm+ ←
1{ϕν<ϕµ}%k, m← m+ 1 just before k ← k + 1,

2. if ϕ̃ν − ϕ̃µ = 0, add vm ← w̃, ηm− ← (Fµ−Fν)+, ηm ← F̃µ−Fµ, ηm+ ← (F̃ν − F̃µ)+,
m← m+ 1 just before k ← k + 1.

3. if (ϕ̃µ − ϕ̃ν)pi1{z̃=xi} > 0, add vm ← w̃, ηm− ← 0, ηm ← pi, ηm+ ← 0, m ← m + 1
just before k ← k + 1.

Irreducible components of (µI ∧dcx νJ , νJ) when
∑I

i=1 pixi ≤
∑J

j=1 qjyj. We start with a
simple observation.

Lemma 5.4. For j ∈ {1, . . . , J − 1}, we have

∃t0 ∈ (yj , yj+1), ϕνJ (t0) = ϕµI∧dcxνJ (t0) ⇐⇒ ∀t ∈ [yj , yj+1], ϕνJ (t) = ϕµI∧dcxνJ (t).
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Proof. The function ϕνJ is affine on [yj , yj+1]. Since the function ϕµI∧dcxνJ is below ϕνJ
and convex, the equality of both functions at t0 implies that they coincide on [yj , yj+1]. �

Now, we assume that
∑I

i=1 pixi ≤
∑J

j=1 qjyj so that µI ∧dcx νJ ≤cx νJ and we consider
v1 < · · · < vM such that

{v1, . . . , vM} = {yj : 1 ≤ j ≤ J and ϕνJ (yj) = ϕµI∧dcxνJ (yj)}, (5.2)

and we denote by jm the index such that vm = yjm . We have ϕνJ (y1) = ϕµI∧dcxνJ (y1) = 0

and thus M ≥ 1. We have ϕνJ (yJ) = yJ −
∑J

j=1 qjyj and ϕµI∧dcxνJ (yJ) ≥ yJ −
∑J

j=1 qjyj
since µI ∧dcx νJ and µI have the same means. This gives ϕνJ (yJ) = ϕµI∧dcxνJ (yJ) and
vM = yJ . We consider M ≥ 2 and 1 ≤ m ≤ M − 1. By Lemma 5.4, we either have
jm+1 = jm + 1 or jm+1 > jm + 1 and ϕνJ (t) > ϕµI∧dcxνJ (t) for t ∈ (vm, vm+1). Since
jm+1 = jm + 1 ⇐⇒ νJ(vm, vm+1) = 0, we get the following result.

Proposition 5.5. We assume
∑I

i=1 pixi ≤
∑J

j=1 qjyj so that µI ∧dcx νJ ≤cx νJ . Let

v1 < v2 < . . . < vM be defined by (5.2). We have

{t ∈ R, ϕµI∧dcxνJ (t) < ϕµI (t)} =
⋃

1≤m≤M−1,

νJ ((vm,vm+1))>0

(vm, vm+1).

i.e. the intervals (vm, vm+1) such that νJ((vm, vm+1)) > 0 are the irreducible components

of (µI ∧dcx νJ , νJ). Moreover ν0
J =

∑M
m=1 µI ∧dcx νJ({vm})δvm and any martingale cou-

pling P between µI ∧dcx νJ and νJ is such that for all m ∈ {1, . . . ,M}, P ({(vm, vm)}) =
µI ∧dcx νJ({vm}) and for all m ∈ {1, . . . ,M − 1}, P ((vm, vm+1) × [vm, vm+1]) = µI ∧dcx

νJ((vm, vm+1)).

Any MOT problem between the marginals µI∧dcxνJ =
∑K

k=1 %kδzk and νJ =
∑J

j=1 qjδyj
may be decomposed into the MOT problems with the same payoff function but between
the marginals 1∑K

k=1 %k1{vm<zk<vm+1}

∑K
k=1 %k1{vm<zk<vm+1}δzk and

1∑K
k=1 %k1{vm<zk<vm+1}

(
(FνJ (vm)− FµI∧dcxνJ (vm))δvm +

J∑
j=1

qj1{vm<yj<vm+1}δyj

+ (FµI∧dcxνJ (vm+1−)− FνJ (vm+1−))δvm+1

)
for m such that νJ((vm, vm+1)) > 0. Doing so, we replace one linear programming problem

by N linear programming problems of smaller size, where N =
∑M−1

m=1 1{νJ ((vm,vm+1))>0} is
the number of irreducible components.

To compute the irreducible components, it is convenient to add two coordinates ηk and
F kν to each element in the list L in Algorithm 2. Instead of adding (w̃, ϕµ ∧ ϕν , 0, 0) to
the list, one should add (w̃, ϕµ ∧ϕν , 0, 0, 1{w̃=yj ,ϕν≤ϕµ}qj , Fν). At the end of the algorithm,

one computes {v1, . . . , vm} by m = 1, for k = 1 to s(L) if ηk > 0, then vm = zk, µI ∧dcx

νJ({vm}) = %k, FµI∧dcxνJ (vm−)−FνJ (vm−) = F k−%k−F kν +ηk, FνJ (vm)−FµI∧dcxνJ (vm) =

F kν − F k, m = m+ 1.

6. Numerical experiments

In this section, we show how the different constructions of probability measures presented
in the paper can be used to approximate the solution of a martingale optimal transport
problem. In each case, we have used as approximating measures the empirical measures
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obtained of i.i.d. samples. This corresponds to the most generic practical case for the
financial application: martingale asset prices are simulated to compute option prices by
the Monte-Carlo method, and we want to reuse these simulations to compute bounds on
these option prices. To solve numerically (1.1),we have used the linear programming solver
GLPK†. With this solver, we are limited to use samples with I = J ≈ 100: the dimension
of the matrix rij is then about 10000. Other solvers may be more efficient, but since the
dimension of the linear problem is the square of the number of points, the size of the
samples which can be treated by exact solvers is limited. Approximated solvers such as
the one proposed by Benamou et al. (2015) with entropic regularization seem to be a
promising way to overcome this issue. The discussion on the maximal size of the samples
that is possible to handle is of course interesting, but outside the scope of the paper. Here,
we rather want to compare the different constructions and illustrate their relevance.

Last, we only consider in our numerical experiments approximations constructed from
i.i.d. samples of the measures µ and ν. When the quantile functions F−1

µ and F−1
ν are

known explicitly, it is possible to consider approximations with more evenly distributed
points such as (1.2) or η̂I = 1

I

∑I−1
i=0 δF−1

η ((i+1/2)/I), η ∈ {µ, ν}. The former approximation,

which requires in addition to know explicitly the antiderivative of the quantile functions,
preserves the convex order. The latter is likely to do the same, but one has to check this
property by using for instance Corollary 2.2 before using the linear programming solver.
This check has the same computational complexity as calculating the probability measure
µ̂I ∧ ν̂I equal to µ̂I when µ̂I ≤cx ν̂I , which ensures in any case the convex ordering. Besides,
for the financial application, the quantile functions coming from the marginal distributions
of a local volatility model or a stochastic volatility model are not known explictly in gen-
eral. Moreover, when considering large i.i.d. samples with I = J it is possible to use Baker’s
construction (1.2) on the re-ordered modifications of empirical measures. This approach is
made precise in Example6.3 and leads to very evenly spaced points in Figure 7. We have
noticed in our numerical experiments almost no difference for the same final sample size
between this procedure and the direct use of (1.2) when the (integrated) quantile functions
can be calculated explicitly. This is why we only present here approximations obtained
from i.i.d. samples.

6.1. An example with an explicit MOT. We start with an example where the mar-
tingale optimal transport is known explicitly. Let % > 2,

µ(dx) =
1

2
1[−1,1](x)dx and ν(dx) =

1

4
1[−2,2](x)dx.

We consider the following martingale optimal transport problem:

min
π∈ΠM (µ,ν)

∫
R×R
|y − x|%π(dx, dy).

For any π ∈ ΠM (µ, ν), we have
∫
R×R |y − x|

2π(dx, dy) =
∫
R y

2ν(dy)−
∫
R x

2µ(dx) = 1. For
% > 2, Jensen’s inequality gives∫

R×R
|y − x|%π(dx, dy) ≥

(∫
R×R
|y − x|2π(dx, dy)

) %
2

= 1.

†https://www.gnu.org/software/glpk/
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We observe that

π?(dx, dy) =
1

2
1[−1,1](x)

δx+1(dy) + δx−1(dy)

2
dx (6.1)

achieves this lower bound. Let π ∈ ΠM (µ, ν) be an optimal coupling (i.e.
∫
R×R |y −

x|%π(dx, dy) = 1). The equality condition in Jensen’s inequality gives that |y − x| is
constant π(dx, dy)-a.s. and thus equal to 1. The martingale condition then gives π =
π?. Let us note that for % < 2, the same arguments with

∫
R×R |y − x|%π(dx, dy) ≤(∫

R×R |y − x|
2π(dx, dy)

) %
2

= 1 gives that π? is the unique martingale coupling that maxi-

mizes
∫
R×R |y − x|

%π(dx, dy). The optimality of π? for % = 1 was obtained by Hobson and

Neuberger (2012) in Example 6.1. Note that the optimal coupling is neither the left-curtain

coupling πlc(dx, dy) = 1
21[−1,1](x)dx

(
1
4δ−x2−

3
2
(dy) + 3

4δ 3
2
x+ 1

2
(dy)

)
nor the right-curtain

coupling πrc(dx, dy) = 1
21[−1,1](x)dx

(
3
4δ 3

2
x− 1

2
(dy) + 1

4δ 3
2
−x

2
(dy)

)
introduced by Beiglböck

and Juillet (2016), Theorem 1.5, see also Henry-Labordère and Touzi (2016) for an explicit
calculation of those couplings.
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Figure 1. Points (xi, yj) such that r?ij > 0, where r? is the optimal solution

of the MOT minimization (1.1) with c(x, y) = |y − x|2.3 for (µI ∧ νI , νI) at
left and (µI , µI ∨ νI) at right, with I = 100. The segments y = x ± 1,
x ∈ [−1, 1] indicate the support of π? given by (6.1).

For the implementation, we consider independent random samplesX1, . . . , XI distributed
according to µ and Y1, . . . , YI distributed according to ν, with I = 100. We set

µI =
1

I

I∑
i=1

δXi , νI =
1

I

I∑
i=1

δYi ,

µ̃I =
1

I

I∑
i=1

δXi−X̄I , ν̃I =
1

I

I∑
i=1

δYi−ȲI ,
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Figure 2. Points (xi, yj) such that r?ij > 0, where r? is the optimal solution

of the MOT minimization (1.1) with c(x, y) = |y − x|2.3 for (µ̃I ∧ ν̃I , ν̃I) at
left and (µ̃I , µ̃I ∨ ν̃I) at right, with I = 100. The segments y = x ± 1,
x ∈ [−1, 1] indicate the support of π? given by (6.1).

with X̄I = 1
I

∑I
i=1Xi and ȲI = 1

I

∑I
i=1 Yi. The measures µ̃I and ν̃I are the ones suggested

by the first modification presented in Subsection 4.2. This modification requires to know
explicitly the common mean of µ and ν. Note that this is usually the case for the financial
application: discounted assets prices are martingales, and their mean is given by the present
values. We consider % = 2.3. We have run the linear programming solver to solve (1.1) with
(µI ∧νI , νI) and (µI , µI ∨νI) in Figure 1 and with (µ̃I ∧ ν̃I , ν̃I) and (µ̃I , µ̃I ∨ ν̃I) in Figure 2.
In those figures, we have drawn the points with positive probability under the optimal
transport, i.e. with the notation of (1.1), the points (xi, yj) such that r?ij > 0, where r? is

the optimal solution of (1.1). We expect to recover the line segments y = x+1 and y = x−1
for x ∈ [−1, 1]. From those figures, we observe that the martingale optimal transport
map is much better approximated when we equalize the means. This can be heuristically
explained as follows. Since µ̃I and ν̃I have the same mean, we have µ̃I ∧ ν̃I ≤cx ν̃I and
µ̃I ∧ ν̃I ≤cx µ̃I . The latter inequality ensures from Corollary 2.2 that the lowest (resp.
highest) point weighted by µ̃I ∧ ν̃I is greater (resp. smaller) than the lowest (resp. highest)
point weighted by µ̃I . Thus, µ̃I∧ν̃I mainly weights points in [−1, 1]. Instead, when we do not
equalize the means, we only have µI ∧ νI ≤cx νI , but there is absolutely no reason to have
µI ∧ νI ≤cx µI . Therefore, µI ∧ νI may weight points that are significantly outside [−1, 1]:
we observe in Figure 1 (left) many points close to 2. A similar phenomenon happens for the
supremum. When we equalize the means, we have both µ̃I ≤cx µ̃I ∨ ν̃I and ν̃I ≤cx µ̃I ∨ ν̃I ,
and the latter condition gives that µ̃I ∨ ν̃I mainly weights points across [−2, 2]. In contrast,
we do not have νI ≤cx µI ∨ νI and the points weighted by µI ∨ νI may not span [−2, 2]. In
Figure 1 (right), the highest point weighted by µI ∨ νI is 1.215876, which is far from 2.

To complement this discussion, we now compare the value of the discrete optimal cost
to the continuous one, i.e. to

∫
R×R |y−x|

%π?(dx, dy) = 1. On the run of Figures 1 and 2, we

have obtained respectively 0.9294, 0.9101, 1.0773 and 1.0773 for (µI ∧ νI , νI), (µI , µI ∨ νI),
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(µ̃I ∧ ν̃I , ν̃I) and (µ̃I , µ̃I ∨ ν̃I). On 100 independent samples, we have obtained respectively
the mean costs 0.7506, 0.7319, 1.0020, 1.0020 with the standard deviations 0.2148, 0.2148,
0.1400 and 0.1400. These results confirm that the cost is much better approximated in
this example when we equalize the mean. Let us note here that the costs (and the optimal
probability measure) obtained with (µ̃I ∧ ν̃I , ν̃I) and (µ̃I , µ̃I ∨ ν̃I) are the same because we
already have on our samples µ̃I ≤cx ν̃I , which is due to the fact that ν largely dominates
µ for the convex order. From now on, we will only present numerical results for which we
equalize the means.

6.2. The at-the-money discrete Asian call option. We consider the payoff function
c(x, y) = (x + y)+ = 2((x + y)/2)+, which corresponds to the case of a discret Asian call
option where the average is calculated on two dates. We consider probability distributions
µ ≤cx ν with zero mean, so that the call is at-the-money.

Before to consider shifted lognormal laws, we first study the case

µ(dx) =
1

2
1[−1,1]dx, ν(dx) =

(
1

12
1[−3,−1](x) +

1

3
1[−1,1](x) +

1

12
1[1,3](x)

)
dx,

because we know then an explicit optimal martingale transport. If X is a uniform random
variable on [−1, 1] and ξ an independent random variable such that P(ξ = −2) = P(ξ =
2) = 1/6 and P(ξ = 0) = 2/3, X + ξ ∼ ν. Since E[ξ] = 0, this shows that µ ≤cx ν. We are
interested in the optimal coupling π ∈ ΠM (µ, ν) that minimizes

∫
R×R(x+y)+π(dx, dy). By

Jensen’s inequality, we have∫
R×R

(x+ y)+µ(dx)πY |X(x, dy) ≥
∫
R

(
x+

∫
R
yπY |X(x, dy)

)+

µ(dx) =

∫
R

(2x)+µ(dx) =
1

2
.

The equality in Jensen’s inequality is equivalent to have either πY |X(x, [−x,+∞)) = 1 or
πY |X(x, (−∞,−x]) = 1, µ(dx)-a.e.. The martingale kernel

π?Y |X(x, dy) =
1

2
(δ−x(dy) + δ3x(dy)) (6.2)

satisfies this condition and is therefore optimal. We observe that π?(dx, dy) has the right-
monotone property for x ∈ [−1, 0] (see Definition 1.4 of Beiglböck and Juillet (2016)) and
the left-monotone property for x ∈ [0, 1]. Let us note that we have not shown that π? is
the unique optimal martingale coupling. We also mention that, by similar arguments, π?

is also an optimal martingale coupling that minimizes
∫
R×R(3x − y)+π(dx, dy). We have

plotted in Figure 3 the points weighted by the discrete MOT problem with the measures
µ̃I = 1

I

∑I
i=1 δXi−X̄I and ν̃I = 1

I

∑I
i=1 δYi−ȲI , where X1, . . . , XI and Y1, . . . , YI are sampled

independently according to µ and ν. Note that for I = 100, like the one plotted in Figure 3,
most of the samples already satisfy µ̃I ≤cx ν̃I . As expected, the plotted points are close to
the segment lines y = −x and y = 3x for x ∈ [−1, 1]. The corresponding cost is 0.5085,
which is not so far from the theoretical cost 1/2 obtained for the continuous MOT. On 100
independent runs, we have obtained a mean cost of 0.5106 with a standard deviation equal
to 0.0326.

Now, we carry on our numerical study and consider lognormal distributions (Black

and Scholes model). Namely, we assume that Xi
(d)
= exp

(
σXG− 1

2σ
2
X

)
− 1 and Yi

(d)
=

exp
(
σYG− 1

2σ
2
Y

)
− 1, with G ∼ N (0, 1), σX = 0.24 and σY = 0.28. We have estimated

for I = 100 the probability that µ̃I ≤cx ν̃I on 105 runs: we have obtained P(µ̃I ≤cx ν̃I) ≈
0.4601, with a 95% confidence interval [0.4570, 0.4632]. Therefore, it is crucial to use either
µ̃I ∧ ν̃I or µ̃I ∨ ν̃I on this example to recover discrete probability measures in the convex
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Figure 3. Points (xi, yj) such that r?ij > 0, where r? is the optimal solution

of the MOT minimization (1.1) with c(x, y) = (y + x)+ for (µ̃I ∧ ν̃I , ν̃I),
with I = 100. The segments y = 3x and y = −x, x ∈ [−1, 1] indicate the
support of π? given by (6.2).

order. In Figure 4, we have plotted the points weighted by the solution to the discrete
MOT minimization of c(x, y) = (x+ y)+ for (µ̃I ∧ ν̃I , ν̃I) and (µ̃I , µ̃I ∨ ν̃I) in a case where
µ̃I 6≤cx ν̃I . Though being different, the two graphs are very similar. The costs are the same
up to 9 digits (compared to 12 digits when µ̃I ≤cx ν̃I) and are equal to 0.1809. Thus, in
our experiments, we have not observed any important differences between the MOT prob-
lems on (µ̃I ∧ ν̃I , ν̃I) and (µ̃I , µ̃I ∨ ν̃I), and we will work later on with (µ̃I ∧ ν̃I , ν̃I). Now,
let us comment qualitatively Figure 4. We have plotted, as in Figure 3 the segment lines
y = −x and y = 3x for x ∈ [−1, 1]. As one may expect, there are still many points on
the first segment line, which is the boundary of the set of points where the cost function
vanishes. Instead, the other segment line was more related to the specific laws that we have
considered in Figure 3. In Figure 4, there are points close to y = 3x at the origin, but then
they move away from this line. Points at the top right or at bottom left are mostly gath-
ered around the line y = x, which is due to the martingale constraint. This is particularly
noticeable on our example for the points at the bottom left.

6.3. Lognormal distributions with c(x, y) = |x−y|%. We consider the cases % = 2.1 and
% = 1.9, and take again µ and ν as the lognormal distributions of exp

(
σXG− 1

2σ
2
X

)
−1 and

exp
(
σYG− 1

2σ
2
Y

)
− 1, with G ∼ N (0, 1), σX = 0.24 and σY = 0.28. In Figure 5, we have

plotted the weighted points of the discrete MOT for the minimization problem. We still
observe for % = 2.1 two curves that do not cross like in Figure 2, but the curves obtained
for the lognormal distributions are quite far from the lines y = x + 1 and y = x − 1
obtained for the uniform distribution. In Figure 6 we have plotted the weighted points
for the maximization program. Interestingly, the optimal minimizing coupling for % = 2.1
(resp. % = 1.9) is very close to the optimal maximizing coupling for % = 1.9 (resp. % = 2.1).



30 AURÉLIEN ALFONSI, JACOPO CORBETTA AND BENJAMIN JOURDAIN

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

0.6

Inf

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

0.6

Sup
C(x,y) = (x+y)^+

Figure 4. Points (xi, yj) such that r?ij > 0, where r? is the optimal solution

of the MOT minimization (1.1) with c(x, y) = (y + x)+ for (µ̃I ∧ ν̃I , ν̃I) at
left and (µ̃I , µ̃I ∨ ν̃I) at right, with I = 100. The segments y = 3x and
y = −x, x ∈ [−1, 1] indicate the support of π? given by (6.2).
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Figure 5. Points (xi, yj) such that r?ij > 0, where r? is the optimal solution

of the MOT minimization (1.1) for (µ̃I ∧ ν̃I , ν̃I) with c(x, y) = |y − x|2.1 at
left and c(x, y) = |y − x|1.9 at right, with I = 100.

The graphs that we have produced up to now depend on the samples X1, . . . , XI and
Y1, . . . , YI . From a run to another, we observe the same patterns but with different points.
One may like to have a discrete MOT with smaller statistical error. It is possible to do
this by using Baker’s construction on probability measures with finite supports. Namely,
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Figure 6. Points (xi, yj) such that r?ij > 0, where r? is the optimal solution

of the MOT maximization (1.1) for (µ̃I ∧ ν̃I , ν̃I) with c(x, y) = |y − x|2.1 at
left and c(x, y) = |y − x|1.9 at right, with I = 100.

we consider a not too small integer I ′ < I and set

µ̂I′ =
1

I ′

I′∑
i=1

δ
I′

∫ i
I′
i−1
I′

F−1
µ̃I∧ν̃I

(u)du
, ν̂I′ =

1

I ′

I′∑
i=1

δ
I′

∫ i
I′
i−1
I′

F−1
ν̃I

(u)du
. (6.3)

The calculation of the integrals is easy and explicit since the quantile function of a dis-
crete probability measure is piecewise constant. Even better, this construction applied to
1
I

∑I
i=1 δxi with x1 ≤ x2 ≤ . . . ≤ xI and I ′ a divisor of I simply leads to

1

I ′

I′∑
i=1

δ I′
I

∑I/I′
j=1 x (i−1)I

I′ +j

.

By Theorem 2.4.11 of Baker (2012), we have µ̂I′ ≤cx ν̂I′ since µ̃I ∧ ν̃I ≤cx ν̃I . We have
plotted in Figure 7 the same discrete MOT as in Figure 5, but using (µ̂I′ , ν̂I′) with I ′ = 100
and I = 10000. The plot is clearly less noisy. This method can also be used to reduce vari-
ance on the calculation of the optimal cost. On the example of Figure 2, with 100 samples,
I ′ = 100 and I = 10000, we have a mean cost equal to 0.9981 with a standard deviation
equal to 0.0148. This is to compare with the mean cost of 1.0020 and the standard devia-
tion of 0.1400 obtained with (µ̃I ∧ ν̃I , ν̃I) and I = 100.

6.4. An example with three marginal laws. We first write the discrete MOT problem
in this case. We have to minimize (or maximize)

I∑
i=1

J∑
j=1

K∑
k=1

rijkc(xi, yj , zk) (6.4)
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Figure 7. Points (xi, yj) such that r?ij > 0, where r? is the optimal solution

of the MOT minimization (1.1) with c(x, y) = |y−x|2.1 at left and c(x, y) =
|y−x|1.9 at right for (µ̂I′ , ν̂I′) defined by (6.3) with I ′ = 100 and I = 10000.

under the constraints

∀i, j, k, rijk ≥ 0, ∀i,
J∑
j=1

K∑
k=1

rijk = pi, ∀j,
I∑
i=1

K∑
k=1

rijk = qj , ∀k,
I∑
i=1

J∑
j=1

rijk = sk,

∀i,
J∑
j=1

K∑
k=1

rijk(yj − xi) = 0, ∀i, j,
K∑
k=1

rijk(zk − yj) = 0.

For a solution to exist, the measures µ =
∑I

i=1 piδxi , ν =
∑J

j=1 qjδyj and η =
∑K

k=1 skδzk
have to satisfy µ ≤cx ν ≤cx η.

For i = 1, . . . , I, we consider independent samples Xi
(d)
= exp

(
σXG− 1

2σ
2
X

)
− 1, Yi

(d)
=

exp
(
σYG− 1

2σ
2
Y

)
−1 and Zi

(d)
= exp

(
σYG− 1

2σ
2
Y

)
−1, with G ∼ N (0, 1), σX = 0.24, σY =

0.28, σZ = 0.32. In the financial application, the variables X+1, Y +1 and Z+1 represent
the values of an asset at three different dates t1 < t2 < t3 in a Black-Scholes model, and

we are interested in calculating price bounds for the option that pays
(
Z − X+Y

2

)+
, i.e.

c(x, y, z) =
(
z − x+y

2

)+
. The price of this option in the Black-Scholes model can easily be

calculated with a Monte-Carlo method and is approximately equal to 0.0681.
We define as before X̄I = 1

I

∑I
i=1Xi, ȲI = 1

I

∑I
i=1 Yi, Z̄I = 1

I

∑I
i=1 Zi, µ̃I = 1

I

∑I
i=1 δXi−X̄I ,

ν̃I = 1
I

∑I
i=1 δYi−ȲI and η̃ = 1

I

∑I
i=1 δZi−Z̄I . Following Proposition 4.9, we then consider

the measures µ̃I ∧ (ν̃I ∧ η̃I), ν̃I ∧ η̃I , η̃I to solve (6.4). In fact, instead of working with
(µ̃I ∧ (ν̃I ∧ η̃I), ν̃I ∧ η̃I , η̃I), we will work with

µ̂I′ =
1

I ′

I′∑
i=1

δ
I′

∫ i
I′
i−1
I′

F−1
µ̃I∧(ν̃I∧η̃I )

(u)du
, ν̂I′ =

1

I ′

I′∑
i=1

δ
I′

∫ i
I′
i−1
I′

F−1
ν̃I∧η̃I

(u)du
, η̂I′ =

1

I ′

I′∑
i=1

δ
I′

∫ i
I′
i−1
I′

F−1
η̃I

(u)du
.

(6.5)
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Figure 8. Points (xi, yj , zk) such that r?ijk > 0, where r? is the optimal

solution of the MOT minimization (6.4) with c(x, y, z) =
(
z − x+y

2

)+
for

(µ̂I′ , ν̂I′) defined by (6.3) with I ′ = 25 and I = 2500.

This has two advantages. First, as discussed in the example of Figure 7, the result is less
noisy. Second, the dimension of r in the problem (6.4) is fixed and equal to (I ′)3, while
we do not know a priori the number of points weighted by µ̃I ∧ (ν̃I ∧ η̃I) and ν̃I ∧ η̃I , see
Subsection 5.3. Thus, we keep the control on the time needed by the linear programming
solver.

We have plotted in Figure 8 the points weighted by the discrete MOT that minimizes the
cost. As one may expect, many points are on the hyperplane z = x+y

2 which is the boundary
of the set of points where the cost function vanishes. With this example, we have obtained
a cost of 0.0303, which is a lower bound for the price. Running the maximization program
on the same sample, we have obtained 0.0856 for the price upper bound. As expected, the
Black-Scholes price 0.0681 is between these bounds: the position of the Black-Scholes price
with respect to the bounds is an indication on how conservative the model is to price the
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option.
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Beiglböck, M. and Juillet, N. (2016). On a problem of optimal transport under marginal
martingale constraints. Ann. Probab., 44(1):42–106.
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