Validation of a fully nonlinear and dispersive wave model with laboratory non-breaking experiments - École des Ponts ParisTech
Article Dans Une Revue Coastal Engineering Année : 2016

Validation of a fully nonlinear and dispersive wave model with laboratory non-breaking experiments

Résumé

With the objective of modeling coastal wave dynamics taking into account nonlinear and dispersive effects, a highly accurate nonlinear potential flow model was developed. The model is based on the time evolution of two surface quantities: the free surface position and the free surface velocity potential. A spectral approach is used to resolve vertically the velocity potential in the domain, by decomposing the potential using an orthogonal basis of Cheby-shev polynomials. With this approach, a wide range of relative water depths can be simulated, as demonstrated here with the propagation of nonlinear regular waves over a flat bottom with kh = 2π and 4π (where k is the wave number and h the water depth). The model is then validated by comparing the simulation results to experimental data for four non-breaking wave test cases: (1) nonlinear dynamics of a wave train generated by a piston-type wavemaker in constant water depth, (2) shoaling of a regular wave train on beach with constant slope up to the breaking point, (3) propagation of regular waves over a submerged bar, and (4) propagation of nonlinear irregular waves over a barred beach. The test cases show the ability of the model to reproduce well nonlinear wave interactions and the dynamics of higher-order bound and free harmonics. The simulation results agree well with the experimental data, confirming the model's ability to simulate accurately nonlinear and dispersive effects for non-breaking waves.
Fichier principal
Vignette du fichier
CENG-D-15-00266R1_soumis.pdf (990.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01784660 , version 1 (03-05-2018)

Identifiants

Citer

Cécile Raoult, Michel Benoit, Marissa L. Yates. Validation of a fully nonlinear and dispersive wave model with laboratory non-breaking experiments. Coastal Engineering, 2016, 114, pp.194 - 207. ⟨10.1016/j.coastaleng.2016.04.003⟩. ⟨hal-01784660⟩
225 Consultations
438 Téléchargements

Altmetric

Partager

More