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Abstract

With the objective of modeling coastal wave dynamics taking into account
nonlinear and dispersive effects, a highly accurate nonlinear potential flow
model was developed. The model is based on the time evolution of two surface
quantities: the free surface position and the free surface velocity potential.
A spectral approach is used to resolve vertically the velocity potential in the
domain, by decomposing the potential using an orthogonal basis of Cheby-
shev polynomials. With this approach, a wide range of relative water depths
can be simulated, as demonstrated here with the propagation of nonlinear
regular waves over a flat bottom with kh = 2π and 4π (where k is the wave
number and h the water depth). The model is then validated by comparing
the simulation results to experimental data for four non-breaking wave test
cases: (1) nonlinear dynamics of a wave train generated by a piston-type
wavemaker in constant water depth, (2) shoaling of a regular wave train on
beach with constant slope up to the breaking point, (3) propagation of reg-
ular waves over a submerged bar, and (4) propagation of nonlinear irregular
waves over a barred beach. The test cases show the ability of the model to
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reproduce well nonlinear wave interactions and the dynamics of higher-order
bound and free harmonics. The simulation results agree well with the exper-
imental data, confirming the model’s ability to simulate accurately nonlinear
and dispersive effects for non-breaking waves.

Keywords: nonlinear, dispersive, water waves, potential theory, Zakharov
equations

1. Introduction

Fast and accurate models of wave transformation from deep water to the
beach over large spatial scales are needed for coastal and ocean engineering
applications, such as the design of shore protection structures or marine
renewable energy projects. This objective is not an easy task given the range
of spatial and temporal scales to be modelled. To succeed, this type of
model requires an accurate representation of nonlinear phenomena playing
an important role in wave interactions with structures and bathymetry, an
accurate representation of dispersion to propagate waves over a wide range
of depths, and the proper simulation of important coastal physical processes
like shoaling, refraction, diffraction, breaking, and run-up.

Most fluid flow problems can be described by the Navier-Stokes equations
since they account for nonlinearities, vorticity and viscosity. Models based on
these equations can be very accurate when studying wave interactions with
structures in the surf zone (e.g. Shao (2006); Lara et al. (2006)). These equa-
tions can be solved either with an Eulerian approach as in the widely used
code OpenFOAM R�(Higuera et al., 2013a,b) solving the RANS (Reynolds
Averaged Navier-Stokes) equations for two incompressible phases, or with a
Lagrangian approach computing the trajectories of interacting fluid particles
(e.g. Dalrymple and Rogers (2006)). These models are highly accurate when
studying local-scale processes, but the domain size and resolution are limited
due to the computational time, even with the use of GPU parallelized codes
(Dalrymple et al., 2011). To model large spatial domains, these codes are
usually coupled with more computationally efficient models, such as poten-
tial flow models, to simulate the far-field processes (Narayanaswamy et al.,
2010).

Some assumptions can be made to simplify the problem and thus reduce
the computational time. For example, the nonlinear shallow water equations
(NLSWE) are derived by depth integrating the Navier-Stokes equations to
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model waves with a wavelength significantly longer than the water depth (e.g.
to model tidal waves), but this set of equations does not take into account
wave dispersion. However, by including non-hydrostatic pressure in the NL-
SWE and dividing the water depth into a sufficient number of layers, the
frequency dispersion of waves can be greatly improved (Stelling and Zijlema,
2003; Ziljema and Stelling, 2005, 2008; Ziljema et al., 2011). For example,
with only two layers, the accuracy of the deep water dispersion relation is
similar to that of extended Boussinesq-type models. The dispersion of such
non-hydrostatic models can be further improved by optimizing the location
of the levels (Zhu et al., 2014).

When viscous and turbulent effects are negligible, the flow can be well
represented by potential flow theory, which consists of solving the Laplace
problem in the fluid domain, supplemented by nonlinear free surface bound-
ary conditions. One way of solving this problem is to use the Boundary Inte-
gral Equations Method (BIEM), which projects the problem on the boundary
surface of the fluid domain using Green’s Function (Grilli et al., 1989; Wang
et al., 1995). These models enable an accurate description of nonlinear and
even overturning waves and are well adapted to simulate wave-structure inter-
actions (e.g Dombre et al. (2015)). This method is mainly used for calculat-
ing local-scale interactions owing to the long computational times. However,
with the use Fast Fourier Transform (FFT) (Newman and Lee, 2002; Fruc-
tus and Grue, 2007) or Fast Multipole Algorithm methods (Fochesato et al.,
2007), the computational time can be reduced considerably.

Another way of solving the problem is to make additional assumptions
about the nonlinear and dispersive properties of waves. By doing a Taylor
expansion of the vertical velocity about a specified level and truncating it to
a finite number of terms, Boussinesq-type models assume a polynomial vari-
ation of the vertical velocity, thus reducing the problem by one dimension.
Boussinesq-type models are derived with the assumption that nonlinearity
and/or frequency dispersion are weak or moderate (Madsen and Schäffer,
1998; Kirby, 2003). Using only a quadratic polynomial approximation of
the vertical flow distribution gives poor results for wave propagation in in-
termediate depths. A lot of work has been done to improve the frequency
dispersion following various approaches such as: using higher degree polyno-
mials for the vertical approximation with the Green-Naghdi equations (Zhao
et al., 2014), using Padé approximants (Agnon et al., 1999) combined with
an expansion of the Laplace solution from an arbitrary level (Madsen et al.,
2002), and resolving in two arbitrary layers to maintain low-order spatial
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derivatives (Lynett and Liu, 2004; Chazel et al., 2009). Additional modeling
approaches include those of Kennedy et al. (2001), Fuhrman and Bingham
(2004), and Engsig-Karup et al. (2006).

In the present work, a fully nonlinear potential flow theory model is de-
veloped solving the Zakharov equations (Zakharov, 1968). The temporal
evolution of the free surface elevation η and the free surface velocity poten-
tial Φ̃ are given as a function of these two variables and the vertical velocity at
the free surface w̃. The primary challenge is to express the vertical velocity w̃
as a function of η and Φ̃, a problem commonly called ‘Dirichlet-to-Neumann’
or DtN. One possibility is to solve directly the Laplace equation using finite
element (Wu et al., 1998; Ma et al., 2001) or finite difference (Li and Flem-
ing, 1997; Engsig-Karup et al., 2009) methods. When using finite difference
methods, Kreiss and Oliger (1972) and Bingham and Zhang (2007) recom-
mend using fourth-order schemes with a stretched vertical grid (clustering
points near the free surface) instead of using second-order schemes with a
regular grid. When considering rectangular domains with a flat bottom, a
high-order spectral approach (HOS) is optimal (Dommermuth and Yue, 1987;
West et al., 1987; Chern et al., 1999; Ducrozet et al., 2012). This method is
faster than finite difference methods but less flexible with regard to the spec-
ified geometry and bathymetry, even if progress has been made in taking into
account variable and moving bottoms (Smith, 1998; Guyenne and Nicholls,
2007; Goüın et al., 2015). An additional approach is to use a spectral method
only in the vertical dimension either by expanding the velocity potential with
a local mode series (Belibassakis and Athanassoulis, 2011) or by projecting
it on a polynomial basis (Kennedy and Fenton, 1997; Tian and Sato, 2008).
By using high-order finite difference schemes in the horizontal, these models
maintain a flexible approach for variable domain geometries and bathymetry.
A comparison between a vertical spectral approach and a finite difference ap-
proach in the vertical dimension shows the improved accuracy and efficiency
of the spectral method in 1DH (Yates and Benoit, 2015) and 2DH (Chris-
tiansen et al., 2013). Others approaches can be used, such as the extension
of the DtN operator as a sum of global convolution terms and local integrals
with kernels decaying quickly in space (Clamond and Grue, 2001; Fructus
et al., 2005). Here, the combination of high-order finite difference schemes
for the horizontal dimension and a spectral approach using Chebyshev poly-
nomials in the vertical dimension is tested with emphasis on the ability of
the model to accurately represent nonlinear and dispersive phenomena.

The mathematical model and its numerical implementation are presented
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in Section 2. In Section 3, the ability of the model to simulate deep water
cases is demonstrated before the model is validated by comparing simulation
results to experimental data for four non-breaking wave test cases: (1) non-
linear dynamics of free and bound components in a wave train generated by
a piston-type wavemaker in constant water depth, (2) shoaling of a regular
wave train on beach with constant slope up to the breaking point, (3) prop-
agation of regular waves over a submerged bar (Dingemans, 1994), and (4)
propagation of nonlinear irregular waves over a barred beach (Becq-Girard
et al., 1999). Conclusions and ongoing developments are summarized in the
final Section.

2. Mathematical model and numerical implementation

2.1. Mathematical model

By assuming an inviscid and homogeneous fluid of constant density, and
irrotational flow, potential flow theory can be used. The velocity potential
Φ(x, z, t), where x = (x, y), must satisfy the Laplace equation in the fluid
domain:

∇2Φ+ Φzz = 0. (1)

Here, ∇f ≡ (fx, fy) is the horizontal gradient operator, and partial deriva-
tives are denoted with subscripts. At the free surface z = η(x, t), which is
assumed to be single-valued in x (no overturning waves), and the (nonlinear)
kinematic and dynamic boundary conditions (BC) for z = η(x, t) are:

ηt = −∇η.∇Φ+ Φz, (2)

Φt = −gη − 1

2

�
(∇Φ)2 + (Φz)

2� . (3)

In (3), the atmospheric pressure at the free surface is assumed to be uniform
(and chosen to be 0 by convention), surface tension is neglected, and g is the
acceleration of gravity. At the bottom z = −h(x), assumed constant in time,
the kinematic (impermeability) BC is:

∇Φ ·∇h+ Φz = 0. (4)

At the lateral boundaries, periodic, Dirichlet or Neumann BCs can be im-
posed.

5
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By defining the velocity potential at the free surface Φ̃(x, t) ≡ Φ(x, z =
η(x, t), t), the free surface conditions (2) and (3) are reformulated respectively
as (Zakharov, 1968):

ηt = −∇η.∇Φ̃+ w̃
�
1 + (∇η)2

�
, (5)

Φ̃t = −gη − 1

2
(∇Φ̃)2 +

1

2
w̃2

�
1 + (∇η)2

�
, (6)

where w̃(x, t) ≡ Φz|z=η(x,t) is the vertical velocity at the free surface.
Equations (5-6) involve only free surface quantities, which are functions

of x and t only. To integrate these equations in time, it is necessary to
determine w̃(x, t) from (η(x, t), Φ̃(x, t)), the DtN problem.

As described in Yates and Benoit (2015), the DtN problem is resolved
by solving a Laplace boundary value problem (BVP) for the potential Φ,
namely the Laplace equation (1), supplemented with the Dirichlet BC at the
free surface:

Φ = Φ̃ at z = η(x, t), (7)

the bottom BC (4), and specified lateral BCs. Following the work of Tian
and Sato (2008) a spectral method is applied in the vertical dimension. An
outline of the method, detailed in Yates and Benoit (2015), is given hereafter
for the case of a single horizontal dimension (i.e. x = x), and the extension
to two horizontal dimensions is straightforward.

First, the fluid domain is mapped onto a strip of constant height by
introducing the vertical coordinate s, which varies from s = −1 at the bottom
to s = 1 at the free surface:

s(x, z, t) =
2z + h−(x, t)

h+(x, t)
, (8)

where h+(x, t) = h(x)+η(x, t) and h−(x, t) = h(x)−η(x, t). The BVP is then
reformulated in this transformed space (x, s) for Φ(x, z, t) ≡ ϕ(x, s(x, z, t), t).
The Laplace equation (1) in the fluid domain, the bottom BC (4) and the
free surface Dirichlet BC (7) become:

ϕxx + 2sxϕxs + (s2x + s2z)ϕss + sxxϕs = 0 in the fluid domain, (9)

h+hxϕx + 2(1 + h2
x)ϕs = 0 for s = −1, (10)

ϕ(x, 1) = Φ̃(x) for s = 1. (11)

Then a spectral approach is used in the vertical: the vertical variation of
the velocity potential is approximated by a linear combination of Chebyshev

6
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polynomials of the first kind, Tn(x), where n = 0, 1, 2, ... indicates the order
of the polynomial:

ϕ(x, s) ≈
NT�

n=0

an(x)Tn(s), (12)

where NT is the maximum order of the Chebyshev polynomials. These poly-
nomials are easy to evaluate, converge rapidly, and have a large convergence
domain. Tian and Sato (2008) and Yates and Benoit (2015) have shown
that values of NT lower than 10 (typically in the range [5, 8]) are sufficient
to provide high accuracy for a variety of test cases. Furthermore, with the
inner product defined as:

< f, g >≡
� 1

−1

f(s)g(s)√
1− s2

ds, (13)

the Tn polynomials form an orthogonal basis over the range [−1, 1], since it
can be shown that:

< Tn, Tp >=





0 if n �= p,
π if n = p = 0,
π
2

if n = p �= 0.
(14)

For an arbitrary function f(s) in [−1, 1], the following operator is defined:

< f >p≡
2

πCp

< f, Tp >, with

�
C0 = 2,
Cp = 1 for p > 0.

(15)

The orthogonality relations (14) then become: < Tn >p= δnp, where δnp is
the Kronecker delta.

By substituting the approximation (12) in the BVP (9-11), the Laplace
equation (9) becomes (dropping the x argument of an(x) coefficients and the
s argument of Tn(s) polynomials for brevity):

NT�

n=0

[a��nTn + 2sxa
�
nT

�
n + an((s

2
x + s2z)T

��
n + sxxT

�
n)] = 0, (16)

with:

sx = (h−
x − sh+

x )/h
+, sz = 2/h+, szz = 0, (17)

sxx = [(h−
xxh

+ − 2h−
x h

+
x ) + s(2(h+

x )
2 − h+

xxh
+)]/(h+)2, (18)

7
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and

a�n ≡ dan
dx

, a��n ≡ d2an
dx2

, T �
n ≡ dTn

ds
and T ��

n ≡ d2Tn

ds2
. (19)

Then the Chebyshev-tau method, a variant of the Galerkin method (see e.g.
Boyd (2001)), is applied in the vertical to (16) to remove the s dependence.
The operator < . >p is applied to (16) for p = 0, 1, ..., NT −2, yielding NT −1
equations:

a��p +
NT�

n=0

Cpna
�
n +

NT�

n=0

Dpnan = 0, p = 0, 1, ...., NT − 2, (20)

with Cpn ≡ (m011Bp01n+m111Bp11n)/m020 andDpn ≡ (m002Bp02n+m102Bp12n+
m202Bp22n +m001Bp01n +m101Bp11n)/m020. The terms mijk depend only on
h+(x, t), h−(x, t), their spatial derivatives (see equations (21)-(28) in Tian
and Sato (2008)), and the coefficients:

Bpikn ≡< si
∂kTn

∂sk
(s) >p, (21)

which are constant and can be calculated analytically once at the beginning
of each simulation.

The NT − 1 equations (20) are supplemented by the two BCs at the
bottom (10) and the free surface (11), which become respectively:

NT�

n=0

[(−1)nh+hxa
�
n + (−1)n−12n2(1 + h2

x)an] = 0, (22)

NT�

n=0

an = Φ̃. (23)

Thus, at each node x, there are NT + 1 equations to solve for the NT + 1
unknown coefficients an(x) for n = 0, 1, ..., NT . A similar treatment is applied
for lateral boundary points (see Yates and Benoit (2015)).

Once the an(x) are determined, the vertical velocity at the free surface w̃
is readily obtained:

w̃(x) = φssz
��
s=1

=
2

h+(x)

NT�

n=0

an(x)n
2, (24)

and equations (5-6) can be stepped forward in time.

8
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2.2. Numerical implementation

To simulate this mathematical model, a numerical model, named MIS-
THYC, has been developed and coded in Fortran in one horizontal dimension
(x, z). The horizontal domain is discretized with NX nodes in the x direction,
with constant or variable Δx. High-order finite difference approximations
(fourth order here) are used to calculate first and second-order derivatives
in x, following Fornberg (1988). The explicit four-step fourth-order Runge-
Kutta (RK4) scheme with a constant time step is used to integrate (5) and
(6) in time.

At each step of the RK4 scheme, the discretization of the Laplace BVP
in (x, s), with NX nodes in x and NT the maximum order of the Chebyshev
polynomials, results in a system of NX(NT + 1) linear equations for the
coefficients an(xi) for n = 0, ...., NT and i = 1, ...., NX . The corresponding
matrix is sparse, and the system is currently solved in MISTHYC using the
direct solver MUMPS (“MUltifrontal Massively Parallel Solver”, v4.10.0)
(Amestoy et al., 2001, 2006) using the default settings. Iterative solvers
could be also used and will be tested in the future.

3. Validation test cases

The model is validated by comparing the simulation results to stream
function solutions of regular nonlinear waves propagating in deep water,
and then to measurements from four laboratory experiments of non-breaking
waves: (1) nonlinear dynamics of free and bound components in a wave train
generated by a piston-type wavemaker in constant water depth, (2) shoal-
ing of a regular wave train on beach with constant slope up to the breaking
point, (3) propagation of regular waves over a submerged bar (Dingemans,
1994), and (4) propagation of nonlinear irregular waves over a barred beach
(Becq-Girard et al., 1999).

3.1. Applicability of the model to large relative water depths

Incident wave conditions are characterized by two non-dimensional num-
bers: (i) the relative water depth µ ≡ kh (equivalently h/L) and (ii) the
wave steepness � ≡ ka = kH/2 (equivalently H/L), where h is the local wa-
ter depth, k is the wave number of the fundamental wave for regular waves
(or the peak frequency for irregular waves), L = 2π/k is the wavelength, H is
the wave height (crest-to-trough height for regular waves or significant wave

9
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height Hm0 for irregular waves), and a = H/2 is the wave amplitude. Given
h and T , k and L are computed from the linear dispersion relation.

In the following four laboratory experiments, the relative water depth kh
is moderate or small (in the range [0.53, 0.73]) where incident waves are im-
posed. As waves propagate, higher harmonics are generated with frequencies
that are multiples of the fundamental frequency, with consequently larger
values of kh. To represent properly the dynamics of the higher harmonics,
the model must simulate accurately wave dispersion for values of kh much
larger than that of the fundamental frequency.

Yates and Benoit (2015) showed that deep water µ > π (or h/L > 1/2)
test cases can be modeled accurately by increasing the maximum order NT of
the Chebyshev polynomials (12) for: (1) the propagation of a stable, regular
nonlinear wave in constant depth, and (2) the periodic motion of a nonlinear
standing wave in constant depth. In the first case, the initial wave profile,
obtained from the stream function method (order 20), corresponds to a rela-
tive water depth µ = 2π ≈ 6.28 (or h/L = 1) and steepness � = π/10 ≈ 0.314
(or H/L = 10%). After propagating for 25 wave periods, errors in the free
surface position remained small (< 0.1%) for NT > 7 (see e.g. section 3.1.3
and Figures 7 and 8 in Yates and Benoit (2015)). In the second case, after
100 periods of motion of a standing wave with µ = 3 (or h/L ≈ 0.5) and
� = 0.42, and with NT = 7 and sufficient horizontal resolution, the free sur-
face position errors also remained relatively small (< 3%). Considering the
increase in computational time with NT , Yates and Benoit (2015) concluded
that the optimal range of NT is [7; 15] in such deep water conditions.

To further demonstrate the ability of the model to simulate accurately
waves in deep water, new results are presented here for 25 periods of propaga-
tion of a stable, regular nonlinear wave with wave steepness � = π/10 ≈ 0.314
(or H/L = 10%, same as in Yates and Benoit (2015)) and µ = 4π ≈ 12.56
(or h/L = 2), which is 4 times the deep water threshold (and twice that
shown in Yates and Benoit (2015)). The computational domain is one wave-
length (L = 64 m), and based on the sensitivity tests shown in Yates and
Benoit (2015), the spatial and temporal discretization are Δx = L/96 and
Δt = T/75, respectively, corresponding to CFL = 1.28. The initial wave is
computed from the stream function solution (order 20), and after each period
the computed wave should be unchanged from the initial wave profile. Final
wave profiles for NT = 5, 7, 8, 10, 12, 15, and 20 are presented in Figure 1a
and b for µ = 2π and 4π, respectively. Both cases converge visually when NT

is increased, but for the deeper water case, the errors decrease more slowly
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and the simulation with NT = 5 does not remain stable for long time sim-
ulations. A quantitative comparison of the phase difference with respect to
its theoretical position after 25 periods of wave propagation (Figure 2) shows
that the accuracy of the simulations generally increases to an approximately
constant value with increasing NT . For NT < 12, the phase errors are larger
for the deeper water case (kh = 4π), but for NT ≥ 12, the phase differences
decrease and the model simulates accurately long term wave propagation for
both cases. These tests show that the model is able to simulate accurately
deep water waves by increasing the order of the maximum Chebyshev poly-
nomial (e.g. using NT = 10 for kh = 2π and NT = 12 for kh = 4π).

3.2. Nonlinear dynamics of a wave train generated by a piston-type wave-
maker in constant water depth

The first case consists of simulating the propagation of waves generated
by the sinusoidal movement of a piston-type wavemaker over a flat bottom,
based on the flume experiments of Chapalain et al. (1992) (C92). The results
presented here correspond to trial A (piston stroke amplitude e = 7.8 cm and
period T = 2.5 s), with a constant water depth h = 0.4 m. The wavelength
of the fundamental component is L = 4.74 m from the linear dispersion
relation, corresponding to long waves with µ = 0.53. The model domain
is regularly meshed with Δx = 0.1 m (≈ L/47) and extends far enough
to prevent reflection from the right boundary. The waves were propagated
during 16 periods (i.e. 40 s) with a time step Δt = T/40 = 0.0625 s, with
maximum order of the Chebyshev polynomial NT = 7. The model is forced
by imposing at the left boundary a sinusoidal time varying horizontal velocity
that is uniform in the vertical.

A harmonic analysis of free surface elevation time series (after the steady
state is reached) decomposes the signal into a discrete sum:

η(t) = a0 +
N�

n=1

an cos(nωt+ ϕn), (25)

where t is time, ω = 2π
T

is the angular frequency of the wavemaker, and an
and ϕn are the amplitude and phase of the harmonic component n. The
phase difference between the first and the second harmonic is defined as
Δ ϕ1,2 ≡ ϕ2 − 2ϕ1, following Chapalain et al. (1992). The simulated spatial
evolution of the amplitudes of the first four harmonics agrees well with the
experiments (Figure 3a). Overall, the model correctly represents the energy
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transfers between the different harmonic components, as well as the resultant
beat lengths. However, a decrease in the second harmonic amplitude (after
x = 19 m) is observed in the experimental data but is not reproduced in the
simulations. This could be explained by dissipation in the experiments that
is not taken into account in the model. This phenomenon is more noticeable
for short waves, hence more visible for the higher harmonics. The spatial
evolution of the phase difference between the first and second harmonic is
also reproduced well. The phase difference oscillates between −π/2 and +π/2
with the same periodicity as the harmonic amplitudes. Zero phase difference
occurs when either the first harmonic is maximum and the second harmonic
is minimum, or the contrary.

The variation of the free surface elevation thus depends on the location
in the wave channel, as shown in Figure 4 at x = 4 m, 7 m, 10 m and
14 m. The simulated free surface position qualitatively agrees well with the
measurements (compared to Figure 3 of Chapalain et al. (1992)). When
the first and second harmonics are in phase, the free surface profile is either
quasi-sinusoidal when the first harmonic is maximal and the second minimal
(e.g. x = 14 m), or cnoidal when the second harmonic is maximal and the
first minimal (e.g. x = 7 m). However, when the first and second harmonics
are out of phase, the waves are vertically asymmetrical with either a steeper
(gentler) wave front and a gentler (steeper) rear slope if the phase difference
is positive (negative) (e.g x = 10 m and x = 4 m).

3.3. Nonlinear wave shoaling on a gently sloping beach

The second test case simulates the shoaling of regular nonlinear waves on
a gently sloping (1/35) beach following the experiments of Ting and Kirby
(1994) (TK94). In the spilling breakers experiment, waves were generated
in h = 0.4 m water depth with a wave period of T = 2.0 s and wave height
of H = 0.125 m, corresponding to long waves with µ = 0.68 (h/L = 0.104)
and � = 0.1 (or H/L = 3.3 %). In the numerical model, waves are generated
with the same wave characteristics as the experiments by searching for the
analytical solution to the Zakharov equations and numerically (iteratively)
finding the solution. Dirichlet boundary conditions are applied to generate
waves at the left boundary and in a relaxation zone that extends 2 − 3L
into the domain (−15.0 ≤ x ≤ −4.5 m). In the experiments, waves begin to
break around x = 6.0 m. The present numerical model is not able to take
into account the effects of wave breaking; therefore, waves are absorbed in
an absorption zone of constant depth (h = 0.2286 m) from x = 6.0 m to
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x = 15.0 m (shaded gray area, Figure 5). The model results will only be
compared to the experimental data before the absorption zone. For these
nonlinear waves, the model domain was discretized with Δx = 0.03 m (≈
L/100, with L = 3.8434 m, the wavelength calculated by the numerical
solution for h = 0.4 m), the time step was Δt = 0.01 s (T/200), and NT =
7. As the waves become highly nonlinear approaching the breaking limit,
high frequency instabilities develop in the numerical model. For the selected
spatial and temporal discretization, a fourth-order Savitzky-Golay filter was
applied over 9 points (twice the stencil size) at the end of each time step to
smooth these high frequency instabilities.

The measured crest and trough elevation envelope is reproduced well by
the model during the shoaling phase up to the breaking point (x = 6.0 m,
Figure 5a). After this point, the absorption zone dissipates wave energy but
does not try to reproduce the effects of wave breaking, and the simulated
and measured free surface elevation decay at different rates. Simulated free
surface elevation time series at four positions in the wave tank (Figure 6)
agree well with the wave gauge measurements. At the bottom of the sloping
beach profile, waves are nearly symmetric (Figure 6a). As they progress up
the slope and shoal, the wave profiles become asymmetric with steeper wave
fronts and gentler rear faces, and more skewed with more pointed peaks and
wider troughs (Figure 6b-d). Even near the breaking point, the simulated
wave profiles agree well with the measurements, with only small differences
in the wave troughs (Figure 6c-d).

To quantify the wave nonlinearity, higher order statistical moments were
calculated from the free surface elevation time series, including the skewness
(or horizontal asymmetry) and kurtosis (or measure of the flatness of the free
surface elevation distribution). The skewness is defined as the normalized,
centered, third-order moment of the free surface elevation:

S =
�(η − �η�)3�

σ3
, (26)

and the kurtosis as the normalized, centered, fourth-order moment of the free
surface elevation:

K =
�(η − �η�)4�

σ4
, (27)

where the variance σ2 of the free surface elevation is:

σ2 = �(η − �η�)2�, (28)
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with �−� denoting the time-average operator.
As observed in the free surface time series, the waves progressively de-

velop narrow, peaked crests and wide, flat troughs as they shoal on the slope,
causing an increase in skewness (Figure 7a). With these changes in the wave
profile, the free surface elevation distribution becomes less Gaussian, thus
causing an increase in the kurtosis (Figure 7b). The simulations reproduce
well the measured increases in skewness and kurtosis as the waves shoal, with
small differences appearing as the waves become highly nonlinear approach-
ing the breaking point. After the breaking point, the model is not able to
simulate accurately the wave profile and the dissipation of energy, and a wave
breaking dissipation model is currently being developed to take into account
these effects.

3.4. Regular waves over a submerged bar

Beji and Battjes (1993) and then Dingemans (1994) (D94) performed a
series of experiments of regular wave propagation over a submerged trape-
zoidal bar. These experiments are now a standard test case for wave models
since both nonlinear and dispersive effects are important when waves prop-
agate over the top of the bar. The bottom profile is shown in Figure 8 at
the scale of the experiments of Beji and Battjes (1993). The water depth is
h = 0.40 m offshore and reduces to a minimum of 0.10 m on top of the bar.
The front slope of the bar is 1:20, and the rear slope is 1:10. Eleven wave
probes recorded the free surface elevation time series in the experiments (see
positions in Figure 8).

Here, case A is studied with an incident wave heightH = 2.0 cm and a pe-
riod T = 2.02 s, corresponding to long waves with µ = 0.67 (or h/L = 0.107)
offshore of the bar and relatively small steepness � = 0.017 (orH/L = 0.53%).
Under these conditions, the incident wave train is significantly affected dur-
ing the propagation over the submerged bar, with transfers of energy toward
higher harmonics.

The model domain has a regularly spaced grid with Δx = 0.05 m (i.e.
about L/75 offshore of the bar) and extends from x = −6 m to 30 m (721
nodes along the x axis). Waves are generated in an 8-m wide relaxation
zone at the left boundary of the domain (-6 ≤ x ≤ 2 m) using a second-
order Stokes solution to impose the free surface elevation and the velocity
potential. Waves are absorbed in a 5-m wide relaxation zone (25 ≤ x ≤ 30 m)
applied in front of the fully reflective right boundary to avoid reflections.
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Waves are propagated during 25 wave periods (i.e. 50.5 s) with a time step
Δt = T/100 = 0.0202 s.

Times series of free surface profiles computed with NT = 7 are presented
at probes 4 to 11 in Figure 9. The choice of this value of NT will be discussed
at the end of this section. When waves propagate over the front slope of the
bar, the wave height and steepness increase due to shoaling effects (probes 4
to 6, Figure 9(a-c)). The wave profile becomes asymmetric due to nonlinear
wave-bottom interactions that create higher frequency bound harmonic com-
ponents. These harmonics are released in the shallowest region and on the
rear slope of the bar and then propagate at their own phase speed (probes 7
and 8, Figure 9(d-e)). After the bar, the measured wave profiles vary signif-
icantly between the probes due to the differences in celerity of the free wave
components. At the last three probes (probes 9 to 11, Figure 9(f-h)), the
model reproduces well the complex wave profiles, including the dispersive
(high frequency) components.

In order to examine more closely the energy transfers between harmonics,
a Fourier analysis of the measured and computed wave signals was completed.
The model accurately reproduces the spatial evolution of the amplitudes of
the first six harmonics, corresponding to frequencies f = 1/T (fundamental
component) to 6f (Figure 10). The amplitude of the fundamental harmonic
increases due to shoaling on the submerged bar up to the bar’s crest and then
decreases (starting from about x = 12 m) due to transfers of energy toward
higher harmonics. The observed oscillations are hypothesized to be caused
by reflections in the wave channel. The second harmonic (2f) increases as
the waves shoal on the front slope of the bar and continues increasing until
x = 16 m, after which its amplitude fluctuates. The higher harmonics start
increasing in amplitude at shallower depths, and mainly develop around the
bar crest (12 ≤ x ≤ 15 m). Harmonics 4f to 6f decrease after the bar,
which is not the case for harmonics 2f and 3f . In addition, after the bar,
the second harmonic has the largest amplitude, and the amplitude of the
third harmonic is nearly comparable to (though smaller than) that of the
fundamental component. The model results agree well with the data up to
the sixth harmonic, with the exception of slight differences at some locations
in the amplitude of the second harmonic (e.g. at x = 19 m).

To test the sensitivity of the model to the parameter NT (all other pa-
rameters were kept constant), simulations were run with NT = 3, 4, 5, 7 and
10 and compared to the observations (Figure 11). In the offshore part of the
flume and up to the submerged bar (i.e. up to probe 8), only the simulation
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results with NT = 3 differ significantly from those with higher NT , which
are superimposed and agree well with the measured time series. At the last
three probes, where dispersive effects are more important, the results with
NT = 3 clearly deteriorate, and results with NT = 4 and 5 also show increas-
ing differences with the measurements. Results with NT = 7 and 10 remain
superimposed and in good agreement with the measurements at all probes.
Therefore, NT = 7 was chosen to optimize model’s accuracy and efficiency.

3.5. Random waves over a barred beach

The last test case simulates the propagation of irregular nonlinear waves
over a barred beach, reproducing the wave flume experiments of Becq-Girard
et al. (1999) (B99). The bathymetric profile of these experiments (Figure 12)
was specifically designed to study nonlinear wave effects in shallow water
(triad interactions). Irregular waves were generated with a piston-type ran-
dom wavemaker using a JONSWAP wave spectrum with a peak-enhancement
factor of γ = 3.3. The bottom profile was created with smooth metal sheets
to minimize bottom friction dissipation, and a beach absorber was included
on the upper part of the beach to reduce wave reflection. Resistive-type
wave probes measured the free surface elevation at 16 locations in the wave
flume (Figure 12) during the 40-minute experiment with a sampling time
step Δt = 0.07 s.

The model computational grid extends from x = −5 m to x = 25 m (with
the foot of the bar at x = 0 m). Waves are generated in a 5-m relaxation
zone by imposing the velocity potential at the left boundary and correcting
the free surface position and velocity potential in the relaxation zone. Non-
breaking irregular waves are simulated with significant wave height of Hm0 =
3.4 cm and a peak period of Tp = 2.39 s in the deepest part of the domain
(h = 0.65 m). Waves are absorbed in a 10-m long relaxation zone at the
right boundary. Time series of these variables are reconstructed using linear
wave theory to sum the components of the wave spectrum obtained from the
free surface measurements at probe 2 (located at the foot of the submerged
bar). The computational grid is regularly meshed with Δx = 0.05 m, and
NT = 7, as in the previous test case. The total simulation time is 2380 s
(approximately 39.7 min), with a time step equaling the sampling time step
of the free surface elevation probes, Δt = 0.07 s.

The measured and simulated wave variance spectra agree well (Figure 13,
spectra at probes 2, 5, 7, 9, 11, 13, 15, and 16). The main spectral peak in-
creases from probes 2 to 5 due to wave shoaling. In addition, energy is
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transferred from lower to higher frequencies, particularly from the peak fre-
quency to its super-harmonics. This phenomenon is visible at probe 5 with
the appearance of the second harmonic peak (2fp). When the water depth
becomes nearly constant (probes 7, 9, and 11), the second and higher har-
monic peaks become more pronounced. A peak at the fifth harmonic (5fp)
becomes visible in the spectra at probes 9 and 11, and its amplitude is re-
produced well by the model. On the back side of the bar, the energy transfer
reverses back to the lower harmonics (in particular to the second harmonic).
At probe 13, the peak of the fifth harmonic disappears, and at probe 15,
the peaks of the third and fourth harmonics also nearly disappear. Only
the second harmonic and main spectral peaks remain visible in the trough.
Finally, at probe 16, the third harmonic (3fp) peak reappears due to the new
decrease in the water depth.

The simulated spatial evolution of the first five harmonic amplitudes
agrees well with the experimental observations (Figure 14). In the deep
end of the wave tank, the amplitude of the first harmonic is dominant. Be-
tween 0 m and 5 m, the first harmonic amplitude increases due to shoaling
while the higher harmonics remain stable. After 5 m, the first harmonic am-
plitude decreases while higher harmonic amplitudes increase due to transfers
of energy from lower to higher frequencies. Around 9 m, the water depth
increases again, the first harmonic amplitude continues decreasing and the
third, fourth, and fifth harmonic amplitudes also begin to decrease, with an
energy transfer to the second harmonic. Finally, in the shallowest part of the
domain, the energy transfer from the second to the third harmonics begins
again. The oscillations visible in the first and second harmonic amplitudes
are likely caused by reflections from the lateral boundaries.

To further evaluate the spatial spectral evolution, a set of integral wave
parameters are calculated. From the variance density spectrum (E(f)), the
significant wave height Hm0 = 4

√
m0 and mean wave period Te = Tm−1,0 =

m−1

m0
or Tm0,2 = (m0

m2
)
1
2 can be expressed in terms of the n-th moment (mn) of

the variance density spectrum where mn =
�∞
0

fnE(f) df . The 0th moment
corresponds to the free surface elevation variance or σ2 (28).

Nonlinear effects are also visible in the spatial evolution of these param-
eters, which are globally estimated well by the model (Figure 15). The sig-
nificant wave height evolves similarly to the first harmonic amplitude shown
in Figure 14. It increases as the waves shoal, decreases in the trough and
finally increases again as the water depth decreases approaching the beach.
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The simulated Hm0 agrees well with the measured values, with only a slight
overestimation for x > 7 m and a maximum difference of 8.8%. The evo-
lution of the mean wave period is similar for the two definitions considered
(Tm−1,0 and Tm0,2). The mean period initially decreases when a reduction
in the energy in the low frequency range of the spectrum is compensated by
an increase in the high frequency range. The subsequent release of higher
harmonics in the trough leads to an increase in the mean wave period that
persists along the tank. The largest differences in mean period occur near
the end of the tank, with errors of less than 3.5% and 7% for Tm−1,0 and
Tm0,2, respectively.

To further analyze the simulated wave nonlinearity, the skewness (S)
or horizontal asymmetry coefficient, vertical asymmetry coefficient (A) and
kurtosis (K) are compared to those of the measurements. The skewness can
be defined from the free surface elevation (26) or as:

S =

�+∞
m=−∞

�+∞
n=−∞ Re[Bm,n]

m
3/2
0

, (29)

and the vertical asymmetry coefficient as:

A =

�+∞
m=−∞

�+∞
n=−∞ Im[Bm,n]

m
3/2
0

, (30)

where Bm,n is the complex bispectrum. Finally, the kurtosis measures the
flattening of the free surface distribution, which is related to the probability
of occurrence of high waves (27).

For a linear sea state, both the vertical and horizontal asymmetries are
zero. Here (Figure 16), the simulated skewness and vertical asymmetry are
approximately zero at the left side of the domain and evolve along the bathy-
metric profile in close agreement with the measurements. The spatial evolu-
tion of the kurtosis also begins with a value of approximately 3, typical of a
linear (Gaussian) sea state, and then increases in shallower water, reaching
a maximum in the shallowest zone. The model reproduces well the spatial
evolution of the kurtosis, only slightly underestimating the maximum.

This test case validates the ability of the model to simulate the genera-
tion, propagation, and absorption of irregular, non-breaking waves, including
nonlinear processes such as wave shoaling and wave interactions causing the
transfer of energy between higher and lower harmonics.
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4. Conclusions

Comparisons of simulation results to four laboratory experiments with
non-breaking waves demonstrate that the model is able to simulate accu-
rately nonlinear wave propagation, including nonlinear and dispersive ef-
fects. In the first set of experiments studying nonlinear resonant interactions
in constant depth, the transfer of energy from the principal wave to its sec-
ond harmonic was reproduced well, including the beat length of the resonant
interaction. In the second case modeling the shoaling of highly nonlinear
waves on a gentle beach, the model accurately simulated the changes in the
wave profile, including the skewness and kurtosis, up to the breaking point.
The last two sets of experiments investigated the propagation of regular and
irregular nonlinear waves over a submerged bar and a barred beach, respec-
tively, including the generation and propagation of higher-order harmonics.
In both cases, the simulations reproduced well the observations, including
the amplitudes of the first five harmonics.

Using the proposed spectral approach to solve for the velocity potential,
the model converges exponentially with a flexible level of accuracy depending
of the choice of NT , the highest order Chebyshev polynomial. A sensitivity
test verified previous results showing that the model simulates accurately
wave propagation for NT = 7 for real tests cases over variable bathymetry.
To simulate well deep-water conditions, NT can be increased to 10-12, as
shown by the propagation of regular nonlinear waves over a flat bottom with
relative water depths as high as kh = 4π ≈ 12.6.

Ongoing model development includes taking into account the effects of
wave breaking and validating the accuracy of simulations with moving bot-
toms (e.g. tsunami generation). The model is also currently being extended
to 2DH using unstructured meshes to reach the objective of modeling the
coastal zone.
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Figure 1: Simulated free surface position for a range of NT (highest order Chebyshev
polynomial) after 25 periods of wave propagation for (a) kh = 2π and (b) kh = 4π.

Figure 2: Phase difference as a function of NT (highest order Chebyshev polynomial) after
25 periods of wave propagation for the simulations shown in Figure 1.
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Figure 3: a) Spatial evolution of the first four harmonic amplitudes for test case A of
Chapalain et al. (1992): experimental (circles) and MISTHYC simulation (solid line)
results. b) Spatial evolution of the phase difference between the first and second harmonic:
experimental (C92, circles) and MISTHYC simulation (solid line) results.
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Figure 4: MISTHYC simulated free surface elevation η at four different positions in the
wave channel for the test case A of Chapalain et al. (1992).
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Figure 5: (a) Minimum and maximum free surface elevation η from the MISTHYC sim-
ulations in comparison to the wave gauge measurements of Ting and Kirby (1994) for a
regular nonlinear wave with H = 0.125 m and T = 2.0 s. (b) Beach profile used in the
model simulations, showing the location of the wave gauges. In (a) and (b), the light gray
shaded area (x ≥ 6 m) indicates the wave absorption zone, and the vertical gray lines
indicate the wave gauge measurements shown in Figure 6.
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Figure 6: Simulated and measured (Ting and Kirby, 1994) free surface elevation time
series at waves gauges located at: (a) x = 0.5 m, (b) x = 3.5 m, (c) x = 5.5 m, and (d)
x = 6.0 m (indicated by the vertical gray lines in Figure 5).
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Figure 7: Simulated and measured (Ting and Kirby, 1994) wave skewness and kurtosis at
wave gauges leading up to and in the beginning of the wave absorption zone (light gray
shaded area starting at x = 6.0 m).
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Figure 8: Bathymetry and position of wave probes in the Dingemans (1994) experiments.
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Figure 9: Comparison of measured and simulated (with NT = 7) free surface elevation
time series at probes 4 to 11 for case A of Dingemans (1994) (probe location in Figure 8).
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Figure 10: Spatial evolution of the first six harmonic amplitudes (at frequencies f ,
2f ,...,6f) of the free surface elevation for case A of Dingemans (1994) experiments: obser-
vations (D94, circles) and MISTHYC simulation results (solid lines) .
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Figure 11: Comparison of measured and simulated free surface elevation time series at
probes 6, 8, 10 and 11 for case A of Dingemans (1994). Results of simulations with 5
values of NT (3, 4, 5, 7, 10) are compared (all other numerical parameters are constant).
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