Homogenization of a space frame as a thick plate: Application of the Bending-Gradient theory to a beam lattice - École des Ponts ParisTech Access content directly
Journal Articles Computers & Structures Year : 2013

Homogenization of a space frame as a thick plate: Application of the Bending-Gradient theory to a beam lattice

Arthur Lebée
Karam Sab

Abstract

The Bending-Gradient theory for thick plates is the extension to heterogeneous plates of Reissner-Mindlin theory originally designed for homogeneous plates. In this paper the Bending-Gradient theory is extended to in-plane periodic structures made of connected beams (space frames) which can be considered macroscopically as a plate. Its application to a square beam lattice reveals that classical Reissner-Mindlin theory cannot properly model such microstructures. Comparisons with exact solutions show that only the Bending-Gradient theory captures second order effects in both deflection and local stress fields.
Fichier principal
Vignette du fichier
IASS-IACM-2012_R2.pdf (560.78 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00938967 , version 1 (29-01-2014)

Identifiers

  • HAL Id : hal-00938967 , version 1

Cite

Arthur Lebée, Karam Sab. Homogenization of a space frame as a thick plate: Application of the Bending-Gradient theory to a beam lattice. Computers & Structures, 2013, pp.88-101. ⟨hal-00938967⟩
177 View
424 Download

Share

Gmail Facebook Twitter LinkedIn More