A Variational Analysis of the Thermal-Equilibrium State of Charged Quantum Fluids - École des Ponts ParisTech Access content directly
Journal Articles Communications in Partial Differential Equations Year : 1995

A Variational Analysis of the Thermal-Equilibrium State of Charged Quantum Fluids

F. Pacard
  • Function : Author
A. Unterreiter
  • Function : Author

Abstract

The thermal equilibrium state of a charged, isentropic quantum fluid in a bounded domain Omega is entirely described by the particle density n minimizing the total energy E(n) = integral(Omega)\del root n\(2) + integral(Omega)H(n) + 1/2 integral(Omega)nV[n] + integral(Omega)V(e)n where Phi = V[n] + V-e solves Poisson's equation -Delta Phi = n - C subject to mixed Dirichlet-Neumann boundary conditions. It is shown that for given N > 0 (i. e. for prescribed total number of particles) this energy functional admits a unique minimizer in {n is an element of L(1) (Omega); n greater than or equal to 0, integral(Omega) n = N, root n is an element of H-1 (Omega)} Furthermore it is proven that n is an element of C-loc(1,lambda)(Omega)boolean AND L(infinity)(Omega) for all lambda is an element of (0, 1) and n > 0 in Omega.
No file

Dates and versions

hal-00779889 , version 1 (22-01-2013)

Identifiers

Cite

F. Pacard, A. Unterreiter. A Variational Analysis of the Thermal-Equilibrium State of Charged Quantum Fluids. Communications in Partial Differential Equations, 1995, 20 (41430), pp.885-900. ⟨10.1080/03605309508821118⟩. ⟨hal-00779889⟩
84 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More