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Chapter 2

Introduction

The purpose of this chapter is to provide a brief summary of my academic and teaching
experiences. I will start by outlining my master’s, PhD, and postdoctoral research projects.
Then, I will summarize my current research work at the Laboratoire Navier. Since I have
a strong passion for teaching, I will also describe my past and current teaching activities.
Finally, I will discuss the objectives and structure of this manuscript.
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2.1 An overview of my academic history

2.1.1 Master research projects

My academic journey began in 2010 when I completed my studies at École Polytechnique
and started working as an intern at Setec Tpi, a French engineering firm specializing in civil
engineering, building engineering, and nuclear engineering, among others. I was part of
the development team of their in-house finite-element solver, called Pythagore, under the
supervision of Xavier Cespedes and Mathieu Arquier. My research internship focused on
implementing elasto-plastic shell elements in Pythagore, which was a challenging task for a
student who had just learned mechanics and had no prior knowledge of shell structures.

I deeply cherished this internship as I learned a great deal about shell theory, finite-
elements, and plasticity. It also gave me the opportunity to apply these tools to real projects in
civil engineering and construction. I am grateful to the development team for this experience.
This internship sparked my interest in numerical methods, civil engineering applications, re-
search, and teaching, which ultimately led to my PhD thesis topic. I am also proud to have
continued this scientific collaboration through the years, including supervising industrial
PhD theses initiated by the team members who later founded the engineering firm Strains.

In 2011, I completed my master’s thesis at École des Ponts under the supervision of Alain
Ehrlacher. My research focused on using complex potentials to solve planar elastic problems
through (semi)-analytical resolution. I was fascinated by the application of mathematical
concepts such as complex analysis to practical problems, particularly in fracture mechanics.
However, I realized that I preferred hands-on implementation of numerical methods over
lengthy calculations using the Cauchy principal values and the residue theorem.

2.1.2 PhD thesis at laboratoire Navier

My PhD thesis was inspired by discussions between Xavier Cespedes, Mathieu Arquier,
and my future advisor Patrick de Buhan regarding the development of numerical methods
based on the concepts of limit analysis theory for civil engineering applications. Limit analy-
sis, or yield design theory, as formalized by Salençon (2013), allows for the direct computation
of the ultimate load that a structure can sustain without solving for its complete nonlinear
behavior on a given loading path. The variational approaches based on stress (resp. virtual
displacement) fields can provide a lower (resp. upper) bound estimate of the structure limit
load by combining equilibrium equations with strength conditions. However, its numerical
implementation is challenging as it involves solving convex optimization problems that are
highly non-smooth and of large scale. At that time, the Pythagore team’s attempts to use
general-purpose optimization methods had failed to produce reliable results in a reasonable
amount of time. I was offered the opportunity to work on the topic of Numerical methods
for the yield design of civil engineering structures, which I gladly accepted. After conducting a
literature survey, I discovered that the most promising methods for solving these problems
were based on a formulation as conic programming and dedicated interior-point algorithms.
To this day, these numerical techniques form the basis of many of my works and will be
thoroughly discussed in this manuscript.

Regarding mechanical aspects, the main challenges on which I focused were the following:

• the development of dedicated finite-element (FE) discretization techniques, either with
respect to stresses, or with respect to virtual displacements. A notable specificity of
limit analysis is that inter-element discontinuities can be considered, contrary to most
classical FE discretizations. In particular, I proposed various implementations for thin
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(Bleyer and de Buhan, 2013b) and thick (Bleyer and de Buhan, 2014c; Bleyer et al.,
2015b) plates as well as shell structures (Bleyer and de Buhan, 2016; Bleyer, 2021),
thereby showing that the classical problem of shear locking can be easily avoided using
such discontinuous formulations.

• The formulation of complex strength criteria via the conic programming framework.
Notably, I worked on a multi-scale approach of yield design in order to account for
the strength properties of heterogeneous materials (e.g. multilayered plates or shells,
composite beams, reinforced soils, etc.). In particular, I relied on the concepts of
homogenization theory (Bleyer and de Buhan, 2014b,a, 2016) combined with judicious
approximation procedures of the resulting homogenized yield surface (Bleyer and
de Buhan, 2013d,a).

• The application of these concepts on civil engineering examples such as the fire resis-
tance of high-rise reinforced concrete panels or on a periodic curved canopy for the
Austerlitz railway station.

In addition to my PhD work, I collaborated with Mathilde Maillard, who was also pursu-
ing her PhD at Laboratoire Navier, on a side project. Her PhD was studying the coating of
yield stress or visco-plastic, fluids for which the existing numerical methods were difficult to
use. After reviewing the constitutive models of visco-plastic fluids, I proposed using interior-
point solvers, which outperformed the commonly used Augmented Lagrangian algorithms
(Bleyer et al., 2015c; Bleyer, 2018a).

During my PhD, I was also invited by Kristian Krabbenhoft and Andrei Lyamin from the
University of Newcastle, Australia to work on limit analysis of shells. This opportunity also
allowed me to initiate a collaboration with Xue Zhang, who was researching the simulation
of submarine landslides using the Particle Finite Element Method. I found that viscoplastic
models are useful in describing the rheological behavior of sediments.

2.1.3 Postdoctoral researcher at Ecole Polytechnique Fédérale de Lausanne

In 2016, Jean-François Molinari offered me the opportunity to work as a postdoctoral
researcher at the École Polytechnique Fédérale de Lausanne (EPFL) where I was introduced
to a unique research culture and enjoyed a positive work and living environment. During my
PhD, I mainly focused on the plasticity of structures under quasi-static conditions. However,
at EPFL, I embarked on a new project exploring fast dynamic fracture of brittle materials.
My objectives were twofold: to gain experience in using phase-field approaches for modeling
brittle fracture dynamics, and to evaluate the ability of these numerical methods to accurately
simulate complex physical phenomena like macro- and microbranching instabilities and crack
velocity limitations, which arise in dynamic fracture. These aspects will be discussed in more
detail in Chapter 8, Section 8.2.

2.2 Summary of my research activities at Laboratoire Navier

In 2017, I joined Laboratoire Navier as a permanent researcher in the Architectured Materials
and Structures team. Since then, my research has focused on developing advanced mechanical
models as well as innovative simulation tools to study the failure of materials and structures.
I strive to cover a wide spectrum of disciplines, ranging from applied mathematics (convex
analysis and optimization in particular), theoretical mechanics (homogenization, generalized
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(a) Abbey made of masonry (b) Collapse of an arch including brick failure
(in blue) as well as joint failure (in red)

Figure 2.1: Numerical yield design collapse mechanisms for masonry structures

media, variational principles) and computational mechanics (finite element method, nonlin-
ear solvers). While some of my works may be quite fundamental, I also aim to implement
them in various engineering applications, primarily in civil engineering, often in partnership
with industry. My methodologies are chosen with a focus on two important societal concerns:
sustainable construction and risk management.

In the following sections, I have organized my research activities into four main categories.
Note that most illustrations concern research topics which will not be presented in the main
part of the manuscript.

2.2.1 Limit/yield design analysis for civil engineering

After my PhD studies, I continued to advance both theoretical and numerical methods for
implementing limit analysis on various mechanical models. A major shift from my PhD work
was to abandon my custom Matlab implementations, as these were tedious to maintain and
lacked extensibility. Instead, I focused on creating a highly generic computational framework
using the open-source FEniCS library to handle the finite-element discretization and Mosek
conic programming solver for optimization. With FEniCS’ high-level syntax, I aimed to de-
velop a domain-specific language that would allow for easy formulation of convex optimization
problems, which could then be discretized and solved efficiently. This work was released as
a Python package named fenics_optim (Bleyer, 2020b). Its versatility has been demonstrated
through various applications in computational fluid and solid mechanics, optimal transport,
and image processing (Bleyer, 2020a). Most recently, we also utilized this framework to auto-
mate the formulation of limit analysis problems for various mechanical models (Bleyer and
Hassen, 2021). This framework will be described in further detail in Chapter 5.

The developments of such limit analysis tools have also been applied to civil engineering
problems in the context of industrial collaborations. In particular, the industrial PhD thesis
of Hugues Vincent with the civil engineering firm Strains has been focused on numerical
limit analysis of massive 3D reinforced-concrete (RC) structures (Vincent et al., 2018, 2020)
(e.g. bridge pier cap, footings, etc.) and masonry structures (e.g. vaults, abbey), see Fig. 2.1.
The results of these studies were integrated into Strains’ numerical suite of design tools,
providing advanced and more efficient solutions for the analysis of such structures, see
Section 5.5.2 for more details. The second PhD thesis in collaboration with Strains was that
of Chadi El Boustani which focused on the analysis of complex 3D steel joints, as discussed
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in Section 5.5.1. The work covered both limit analysis and elastoplastic analysis through the
development of a specialized interior-point solver (El Boustani et al., 2020a,b). The solver was
also adapted for large deformations (El Boustani et al., 2020c). The results were promising,
enabling fully nonlinear analyses of complex steel structures despite the non-convex nature
of the optimization problem.

In addition to my research in the field of civil engineering, I have also collaborated with
the Centre Scientifique et Technique du Bâtiment (CSTB) on projects related to fire safety.
One such collaboration was Mingguan Yang during his PhD thesis, where we analyzed the
failure of high-rise RC panels, considering both geometrical nonlinearities caused by thermal
strain and reduced strength capacities of steel and concrete at high temperatures. Currently,
I am supervising with Duc Toan Pham the thesis of Sabine Boulvard, who is investigating
the failure of RC beams under shear and torsional loadings in fire conditions.

2.2.2 Automated numerical tools

My research activities require an important part of numerical development. I strive to
make them as open as possible for enhancing collaboration, transparency and reproducibil-
ity of published results. Moreover, I decided to focus my developments on the FEniCS FE
platform which enables to make them as generic as possible for easier extensibility and pro-
totyping. As a result, I became very involved in the user community.

For instance, I have never really contributed to the software development but I wanted
instead to improve the set of FEniCS tutorials by targeting specifically users from the solid
mechanics and structures community. Indeed, many tutorials in the official documentation
deal with applied mathematics or fluid mechanics problems. I therefore started publishing a
series of Numerical Tours of Computational Mechanics using FEniCS1 (Bleyer, 2018c). These
tutorials allow students or researchers with a mechanics background to learn how to use
FEniCS through examples they are familiar with. These works also allowed me to approach
the modeling of problems that appear less natural to formulate in FEniCS than it seems
(beam, plate and shell models in particular). The success of this project within the interna-
tional FEniCS community has led to the establishment of multiple collaborative relationships.

The most notable is my collaboration with Thomas Helfer (CEA Cadarache) with whom
I started developing a generic interface between FEniCS and the MFront code generator for
material behavior (Helfer et al., 2021). This interface bridged a crucial gap in the capabili-
ties of FEniCS by enabling easy integration of complex nonlinear material constitutive laws
into different variational formulations. The interface was integrated into the open-source
MFront Generic Interface Support project (Helfer et al., 2020). This collaboration has not
only advanced the functionality of FEniCS, but also expanded MFront to handle generalized
behaviors, such as multiphysics problems and generalized continua.

Additionally, I have collaborated with colleagues in diverse fields to bring my numerical
expertise to their projects. I worked with Manas Upadhyay from LMS, École Polytechnique
on advanced numerical models for simulating the impact of laser-heating in metallic additive
manufacturing and dislocation transport in metallic materials. In particular, we developed a
time-explicit Runge-Kutta discontinuous Galerkin solver for the transport equation of the dis-
location density tensor (Fig. 2.2) (Upadhyay and Bleyer, 2022). Second, I also got introduced
to biomechanics by Hervé Turlier and Hudson Borja da Rocha from Collège de France to work

1https://comet-fenics.readthedocs.io. Up-to-date version now available at https://bleyerj.github.
io/comet-fenicsx/.

https://comet-fenics.readthedocs.io
https://bleyerj.github.io/comet-fenicsx/
https://bleyerj.github.io/comet-fenicsx/
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Figure 2.2: Expansion of a polygonal dislocation loop. Snapshots of the magnitude of the
dislocation density tensor 𝜶 at 𝑡 = 0, 0.5, 1, 1.5 and 2 sec.

Figure 2.3: FEniCS simulation of cytokinesis (cell contractile activity in red)

on the formulation and implementation in FEniCS of a viscous shell theory of the cellular
cortex (da Rocha et al., 2022) that incorporates active terms to account for shape changes like
cell division (Fig. 2.3). Finally, I have also been invited by the CSMA junior association to host
a hands-on session on FEniCS in March 2023 during its annual workshop.

2.2.3 Going beyond classical yield design/limit analysis theory

The classical framework of yield design and limit analysis theory described in Section 2.2.1
assumes given geometry, loading conditions, and material strength properties, and computes
the ultimate load using optimization solvers. In 2020, I started exploring two different
extensions to this classical framework.

The first extension was initiated with the PhD of Leyla Mourad, where our goal was to
find a structure with minimal volume and maximum load-bearing capacity. We extended
the limit analysis formulations towards topology optimization. Previously, there was no
general framework that bridged these two domains, with the topology optimization com-
munity mostly focusing on elastic or simple nonlinear behaviors. We formulated a generic
optimization problem, similar to limit analysis, but with the addition of a pseudo-density
field representing the distribution of material as an optimization variable. This allowed us to
easily consider various strength criteria, including materials that can only sustain compres-
sion stress states, such as rocks or masonry. We later extended the formulation to optimize
over two distinct materials, to account for reinforcements. A typical application of this work
is the optimization of massive reinforced-concrete structures, allowing us to simplify the
generation of strut-and-tie models and optimize the use of steel reinforcement in concrete
structures, in collaboration with the civil engineering firm Setec Tpi. These works will be
presented in more details in Chapter 6.

The second extension of the classical framework of yield design and limit analysis theory
aims to include uncertainty. The potential sources of uncertainty, such as material properties,
loading conditions, and geometry imperfections, can significantly impact the ultimate load
of a structure. Moreover, engineers are interested in a safe (or pessimistic) estimate of the
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Figure 2.4: Crack (in red) branching interaction with tough inclusions (black)

structural capacity rather than its mean value. There exist different ways of reaching this goal
such as reliability methods (FORM/SORM) which aim at estimating the probability of failure
of a system or a structure. However, such methods may suffer from a lack of accuracy or from
a sensitivity to the probability distribution of random input parameters which is not always
available. Instead, I decided to investigate another methodology based on the theory of robust
optimization which fits well within the convex programming framework of computational
limit analysis. Indeed, robust optimization theory does not require knowledge of probability
distributions and instead focuses on finding a solution that is robust or feasible for any
possible realization of the uncertain parameters. This makes it well-suited for cases where
information about randomness might be imperfect. The latter is indeed simply represented
by a so-called uncertainty set. However, it does not provide any probabilistic assessment of
structural reliability but only a safe estimate of the worst-case value. In some cases, the
robust optimization counterparts of uncertain optimization problems can be reformulated
as deterministic optimization problems, generally of much larger size, which can be solved
with the same numerical tools as discussed before. In collaboration with Vincent Leclère
(CERMICS, École des Ponts), we started to propose a completely original formulation of limit
analysis in presence of uncertainty using these robust optimization concepts (Bleyer and
Leclère, 2022) which will be presented in Chapter 7.

2.2.4 Fracture models of heterogeneous materials

The last part of my research activities is centered around the prediction and simulation
of brittle fracture in various materials. As mentioned before, this topic has been initiated
during my postdoctoral fellowship at EPFL regarding dynamic fracture in brittle materials.
Brittle fracture is notoriously difficult to simulate since smeared representations of the crack
using damage fields are mathematically ill-posed and produce mesh-dependent results due
to strain and damage localization in a narrow band of elements. Some kind of regularization
procedure is therefore required in order to obtain mesh-independent results. Since my post-
doc I focused mostly on phase-field, or equivalently, damage gradient models which will be
mentioned in Section 8.2.

One of my main research topic in this field is related to the interaction of a crack with
heterogeneities (Fig. 2.4) or its propagation in anisotropic composite materials. Currently,
the PhD thesis of Zakaria Chafia (funded by Labex MMCD) which I co-supervise with
Julien Yvonnet (Univ Gustave Eiffel) aims at proposing upscaling procedures to account for
the failure behaviour of cementitious materials at the macroscopic level. Currently, it is
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matrix crack

multiphase 
continuum

(a) Classical heterogeneous model (left) and generalized multiphase model (right)

(b) Crack-opening displacement as a function of the total number of fibers 𝑁

Figure 2.5: Modeling of a matrix crack bridged by intact fibers using a multiphase generalized
continuum

very difficult to properly account for the influence of the microstructure on the macroscopic
failure behaviour of a structure. A direct simulation would indeed require tremendous
computational effort to resolve these fine length scales. It is however known that fracture
is very difficult to homogenize due to localization phenomena which can occur at various
scales. To do so, we are currently trying to benefit from the formulation of regularized brittle
fracture as a damage gradient model and derive the corresponding effective damage model.

On a closely related topic, I also try to develop new mechanical models which can properly
account for the fracture of fiber-reinforced materials or multilayered plates. In both cases,
past works at Laboratoire Navier have investigated generalized continuum models, so-called
multiphase or multiparticle models, which consist in multiple phases (e.g. the matrix and the
reinforcement for a fibrous material or each layer in a laminated plate), each possessing its
own kinematics, and which can interact with each other. Concerning fibrous materials, I
have proposed a homogenization procedure which can identify the generalized continuum
mechanical parameters from the resolution of a unit cell auxiliary problem (Bleyer, 2018b).
This allows for the extension of such models to nonlinear behaviors, such as cracking of
the matrix phase that is partially bridged by intact fibers (Fig. 2.5). By using a phase-field
model for the matrix phase and a debonding damage model of the fiber/matrix interface, it
becomes possible to simulate complex crack behavior where both mechanisms compete with
each other (Fig. 2.6).

In Paul Bouteiller’s PhD thesis, which was funded by Dassault Aviation, we studied
similar models for multilayered composite plates. A significant amount of theoretical work
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Figure 2.6: Multi-cracking of the matrix phase and partial debonding of the matrix/fiber
inclusion with a mutiphase model

was required to efficiently formulate the model for dynamic and nonlinear behaviors. We
simulated the impact of a laminated plate with mode I and mode II debonding of the ply
interfaces, as well as the anisotropic brittle fracture of the plies. Part of this work will be
presented in Chapter 8, Section 8.2.

2.3 Teaching activities

Teaching has always been a true vocation for me. I had the opportunity to work as a
teaching assistant with Patrick de Buhan in 2011, prior to starting my PhD. I was impressed
by his teaching style and enthusiasm. I find it fulfilling and satisfying to share my knowledge
and skills with others and assist them in reaching their potential. In the following section,
I will provide a brief overview of my teaching experience with a focus on my most recent
responsibilities.

2.3.1 since 2017, Eléments finis pour le génie civil - ENPC

I am currently teaching a course on the Finite Element Method (Éléments finis pour le génie
civil) at École des Ponts ParisTech, with a total of 32 hours. I proposed to launch this course
on finite-elements because there was a lack of theoretical introduction to this topic in the
civil engineering curriculum at ENPC. I believed it was important for students to have an
understanding of the underlying concepts behind commercial finite-element solvers, which
are often used without a full understanding. In this class, I aim to foster a critical perspective
in interpreting numerical results. The course is attended by two different student groups:
3rd-year engineering students of ENPC (≈30 students) + students of Mastère Spécialisé - Génie
Civil Européen (15-20 students). In addition to the lectures, I also supervise the first group of
students in the application part. For this purpose, I have created a pedagogical finite-element
Python package, called wombat2, which uses an Object-Oriented Programming structure and
helps students understand the fundamentals of finite-element formulation (Fig. 2.7). The
class revolves around the following topics:

2We follow a Python-based tradition of naming Pythonmodules or Python-based software from exotic animals:
pandas, Spyder, Anaconda, etc. The wombat is a peaceful marsupial found in Australia.
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• solve small strain linear elastic structures for 2D truss, beam and solid elements (linear
and quadratic triangles)

• modal analysis

• transient analysis (Newmark schemes)

• linear buckling analysis

• material non-linearities (cable elements, elastoplastic bars, etc.)

The class finishes with numerical projects in which students are proposed to implement a
new finite-element based on the developments presented during the class. Such projects are
also a good occasion for them to approach slightly more advanced concepts of structural
mechanics. Typical project topics are:

• quadrangular elements and shear locking issues

• Timoshenko beam elements (shear locking, sandwich beams)

• axisymmetric solid elements

• cylindrical shell elements

• planar grid elements (bending/torsion coupling and analogy with plate models)

• cross-section mechanical characteristics (axial, bending and shear stiffnesses), reduction
of properties in fire conditions
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Figure 2.7: Some finite-element computations using the wombatmodule

The wombat module is also used in other classes at ENPC (Dynamique des structures,
Dynamique avancée des structures) and at Sorbonne Université.

2.3.2 since 2020, Damage mechanics, Master 2 level - SU/ENPC

Since 2020, I am co-responsible for a class on Damage mechanics at the Master 2 level (≈
80 students), jointly accredited by Sorbonne Université and Ecole des Ponts ParisTech. This
course aims at:

• providing the theoretical foundation of damage mechanics for quasi-brittle materials, in
particular regarding the formulation of macroscopic constitutive behaviours coupling
elasticity and damage;
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• studying the problematic of initiation and evolution of damage in a numerical setting
in order to investigate the ill-posedness of local damage models;

• proposing an outlook towards regularization methods though gradient damage models.

I share this responsibility with Kim Pham (ENSTA), formerly with Djimédo Kondo (SU),
who delivers the first 9 hours on the theoretical basis through the thermodynamical frame-
work of irreversible processes. In the next 9 hours, I introduce the students to the numerical
aspects of an isotropic local damage model in the FEniCS environment. The students are
then exposed to classical issues such as mesh-dependency in order to illustrate the ill-posed
character of such models. I then give an introduction to regularizing formulations using
damage gradient (phase-field) approaches. Finally, we study the corresponding numerical
implementation and how this strategy succeeds, or not, in regularizing the problem of crack
propagation in brittle materials.

2.3.3 since 2020, at École Polytechnique

Since 2020, I am Professeur chargé de cours d’exercice incomplet at École Polytechnique in the
Departement of Mechanics. Currently, I am teaching for the Mécanique des milieux déformables
course supervised by Basile Audoly (40h, 40 students) and the Solid Mechanics course super-
vised by Oscar Lopez-Pamies, and now Patrick Le Tallec (40h, 40 students).

Before that, I have also been mentoring experimental project in civil engineering with
Gilles Forêt (Navier, ENPC) between 2018 and 2020.

2.3.4 Past teaching activities

In the past, I have also been a teaching assistant for different courses at ENPC:

• 2014–2015 and 2017–2019 : Solid Mechanics supervised by L. Dormieux, 1st year engi-
neering degree at ENPC, 85h/year.

• 2011–2015 and 2017–2019 : Plasticity and Yield design supervised by P. de Buhan, 2nd

year engineering degree at ENPC, Civil Engineering Department, 40h/year.

• 2012–2015 : Homogenization in yield design supervised by P. de Buhan, master 2 level,
ENPC, 20h/year.

• 2012, 2014, 2015 : Refresher course in Solid Mechanics, supervised by P. de Buhan, 2nd year
engineering degree at ENPC, Civil Engineering Department, 20h/year.

• 2011 : Mechanics of materials and structures at finite strains supervised by P. de Buhan,
master 2 level, ENPC, 20h/year.

During my postdoctoral leave in 2016, I was also a teaching assistant for the Contin-
uum Mechanics course at EPFL (3rd year Bachelor), supervised by Jean-François Molinari
(30h/year).

2.4 Organization of the manuscript

2.4.1 Foreword

When starting writing this Habilitation, I tried to find what could be the common de-
nominator to my research activities. As you will see next, there were many candidates at
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first: limit analysis theory which dates back to my PhD thesis? nonlinear mechanics more
generally? modern numerical tools? After some reflection, it appeared to me that there was
a more profound concept which is central in all branches of physics and which is really at the
core of my research work: variational principles.

Variational principles can be generally characterized by the fact that they formulate laws of
physics (equilibrium state or dynamic evolution of a system) as the result of an optimization
problem. As such, they reveal a fundamental structure of a given physical phenomenon
through the optimization of a given scalar quantity (the objective function to be optimized)
over a space of admissible states. The founding idea related to the notion of variational
principle is due to Pierre de Fermat who proposed his famous "Least Time Principle" in
geometrical optics. Their development then benefited in particular from the formalization
of variational calculus by Euler and Lagrange. Maupertuis was then the first to propose a
variational principle in mechanics called the "Least Action Principle" from which the equations
of motion can be recovered through the corresponding Euler-Lagrange equations. This global
point of view is, in my opinion, mathematically beautiful but also extremely powerful and
fertile. Unfortunately, it is often less considered compared to a local formulation of the
physical evolution laws which results from it. In this work, I would like to give to variational
principles in mechanics the attention they deserve.

Obviously, variational principles are closely linked to the discipline of mathematical
optimization. One of the most important distinction in optimization is between convex and
non-convex problems. Convex optimization, and therefore, convex variational problems,
benefit from a rich set of results and properties studied by convex analysis. In particular,
duality in convex optimization is for me a particularly fertile way of understanding a problem,
both from its primal and dual form. I will make extensive use of such a deep and elegant
concept in the following works.

If variational principles may appear as an old topic at first sight, convex optimization
is a relatively young branch of mathematics which experienced tremendous developments,
especially regarding numerical solvers, in the last decades and which is supported by various
applications in different fields of engineering and, more recently, in machine learning. In par-
ticular, recent algorithms are now very efficient in solving non-differentiable, or non-smooth,
problems involving millions of optimization variables. In this work, I will therefore mostly
focus on non-smooth convex variational problems but will also discuss some applications
in the non-convex world. It is to be noted that this domain was pioneered by the works of
Jean-Jacques Moreau who introduced founding ideas and notions, both in mechanics and
mathematics.

2.4.2 Outline

Chapter 3 provides a brief introduction to the fundamental concepts of convex analysis
and convex optimization, with a focus on readers who are unfamiliar with these topics. An
overview of the available algorithms is presented with a particular emphasis on interior-point
methods which are the main tools used in this work. The chapter then concludes by briefly
discussing the available solvers and modeling languages.

Chapter 4 focuses on the variational principles of solid and structure mechanics, including
elasticity, unilateral behaviors, and viscoplastic fluids. The chapter then focuses on the
incremental variational principle for dissipative materials. An original contribution is the
derivation of the corresponding dual problem. Their use is then illustrated in the context
of elasto-plastic hardening behaviors. Using concepts of convex analysis, their asymptotic
behavior at large loadings is also discussed.

Chapter 5 presents my research on limit analysis theory. The chapter first introduces a
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generic framework for limit analysis problems, which is easily formulated using the FEniCS-
based package fenics_optim. The versatility of the numerical tools is demonstrated through
various academic problems, including plate, shell, and generalized continuum models. The
chapter also reviews some applications of limit analysis in civil engineering, such as the
analysis of 3D steel or reinforced concrete structures.

Chapter 6 extends the concepts and numerical tools to shape optimization in structural
mechanics. The chapter proposes a convex optimization approach to topology optimization
formulations and extends it to generic constitutive models. The approach is applied to a limit
analysis setting, resulting in a topology optimization formulation that maximizes the overall
load-bearing capacity. The chapter discusses the choice of strength criteria and considers
multi-material optimization, focusing on uniaxial reinforcements. The chapter concludes
by presenting the application of similar concepts to form-finding of optimal shell or vault
structures.

Chapter 7 explores different modeling strategies to account for uncertainties in non-
linear mechanics problems. The chapter proposes two optimization approaches: a robust
optimization formulation of limit analysis problems that finds the worst-case limit load,
and a risk-averse optimization approach that derives the best and worst-case estimates of
the mechanical response of dissipative media using the Conditional Value-at-Risk (CVaR)
measure.

Chapter 8 discusses the use of gradient-based variational approaches for the regulariza-
tion of softening behaviors. It first presents some results on phase-field or damage-gradient
regularization of brittle fracture, focusing on dynamic and anisotropic fracture. Second, a
novel regularization strategy for softening plasticity is discussed. In both cases, the under-
lying variational problems are no longer convex but benefit, in their numerical resolution, to
their link to related convex problems.

Chapter 9 draws general conclusions regarding the presented works and discusses some
ideas for future research.
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Convex analysis
𝑓 ∗(𝒚) Convex conjugate function of 𝑓 (𝒙)
𝑓 ◦(𝒚) Polar function of 𝑓 (𝒙)

persp 𝑓 (𝑡 , 𝒙) Perspective of 𝑓 (𝒙)
𝑓∞(𝒙) Recession function of 𝑓 (𝒙)

dom 𝑓 Effective domain of 𝑓 (𝒙)
epi 𝑓 Epigraph of 𝑓 (𝒙)
𝛿𝐺(𝒙) Indicator of a set 𝐺
𝜋𝐺 Support function of a set 𝐺
𝑔𝐺(𝒙) Gauge function of a set 𝐺

conv{𝐴; 𝐵} Convex hull of two sets 𝐴 and 𝐵

Probabilities
P [𝑋] Probability of 𝑋
E [𝑋] Expected value of 𝑋

var[𝑋] Variance of 𝑋
std[𝑋] Standard deviation of 𝑋
ℛ[𝑋] Risk-measure of 𝑋

VaR𝛽(𝑋) Value-at-Risk of 𝑋 at confidence level 𝛽
CVaR𝛽 (𝑋) Conditional Value-at-Risk of 𝑋 at confidence level 𝛽

Table 2.1: Table of notations



Chapter 3

Convex optimization

This chapter aims at giving a very short introduction to basic concepts in convex analysis
(Section 3.1) and convex optimization (Section 3.2) which will be extensively used in the
following chapters. The exposition is deliberately simple and targets readers not familiar
with these concepts. A more thorough exposition can be found in classical textbooks such as
(Rockafellar, 1970) or (Boyd and Vandenberghe, 2004). In Section 3.3, a general overview of
available algorithms is provided with a specific emphasis on interior-point methods. Finally,
existing solvers and modeling languages are also briefly discussed.
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3.1 A short introduction to convex analysis

3.1.1 Convex sets and functions

In the following, we will work in the standard Euclidean space R𝑛 with inner product 𝒙T𝒚
for simplicity but all of these notions can be extended to general Hilbert spaces. All convex
functions considered in this work will be valued in the extended real line R = R ∪ {±∞}.

Definition 1 (Convex sets). A set 𝐺 ⊂ R𝑛 is said to be convex if and only if

∀(𝒙 , 𝒚) ∈ 𝐺 × 𝐺 and 𝜆 ∈ [0; 1], (1 − 𝜆)𝒙 + 𝜆𝒚 ∈ 𝐺 (3.1)

Typical examples include linear spaces {A𝒙 = b} or half-spaces {A𝒙 ≤ b}, balls of the
𝐿𝑝-norm {∥𝒙∥𝑝 ≤ 1} with 𝑝 ≥ 1, intersections of convex sets, etc.

Definition 2 (Convex functions). A function 𝑓 : R𝑛 ↦→ R is said to be convex if and only if

∀(𝒙 , 𝒚) ∈ R𝑛 × R𝑛 and 𝜆 ∈ [0; 1], 𝑓
(
(1 − 𝜆)𝒙 + 𝜆𝒚

)
≤ (1 − 𝜆) 𝑓 (𝒙) + 𝜆 𝑓 (𝒚) (3.2)

Typical examples include affine functions, 𝐿𝑝-norms with 𝑝 ≥ 1, supremum of convex func-
tions, largest eigenvalue of a symmetric matrix, etc.

Definition 3 (Domain, epigraph and indicator function). The effective domain dom 𝑓 is the set
of points such that 𝑓 (𝒙) < +∞.
The epigraph epi 𝑓 is defined as:

epi 𝑓 = {(𝒙 , 𝑡) ∈ R𝑛 × R s.t. 𝑓 (𝒙) ≤ 𝑡} (3.3)

Both dom 𝑓 and epi 𝑓 are convex sets when 𝑓 is convex.

The indicator function 𝛿𝐺(𝒙) of a convex set 𝐺 is convex and defined as:

𝛿𝐺(𝑥) =
{

0 if 𝒙 ∈ 𝐺
+∞ otherwise

(3.4)

Note that some authors use the term characteristic function rather than indicator function. The
difference is generally due to the use of 1 (resp. 0) rather than 0 (resp. +∞) to the denote
membership (resp. non-membership). Again, we use Rockafellar’s terminology in this work.

Unless otherwise stated, all convex functions 𝑓 (𝒙) will be assumed to be:

• proper: they never take value −∞ and are never identically equal to +∞ i.e. its domain
dom 𝑓 is non-empty

• lower-semicontinuous (lsc): roughly speaking, values of 𝑓 around a point 𝒙 are all greater
than or equal to 𝑓 (𝒙). More precisely, for any 𝒙 ∈ dom 𝑓 :

𝑓 (𝒙) ≤ lim inf
𝒙ℎ→𝒙

𝑓 (𝒙ℎ) (3.5)

Definition 4 (Positively homogeneous functions). A function is said to be positively homoge-
neous of degree 𝑝 if:

𝑓 (𝜆𝒙) = 𝜆𝑝 𝑓 (𝒙) ∀𝜆 > 0 (3.6)

Note that the term positively homogeneous, without specifying the degree, generally implies
the important case of degree 𝑝 = 1. In this case, the epigraph is a convex cone.
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3.1.2 Convex cones
Definition 5 (Convex cones). A set 𝐾 is a convex cone if:

∀(𝒙 , 𝒚) ∈ 𝐾 × 𝐾 and 𝛼, 𝛽 ≥ 0, 𝛼𝒙 + 𝛽𝒚 ∈ 𝐾 (3.7)

Typical examples include 𝐿𝑝-norm cones {(𝒙 , 𝑡) such that ∥𝑥∥𝑝 ≤ 𝑡} with 𝑝 ≥ 1, the set of
positive semi-definite matrices, the set of positive convex functions, etc.

Definition 6 (Dual and polar cones). For a convex cone 𝐾:

• the dual cone 𝐾∗ is defined as:

𝐾∗ = {𝒚 ∈ R𝑛 such that 𝒚T𝒙 ≥ 0 ∀𝒙 ∈ 𝐾} (3.8)

• the polar cone 𝐾◦ is defined as:

𝐾◦ = {𝒚 ∈ R𝑛 such that 𝒚T𝒙 ≤ 0 ∀𝒙 ∈ 𝐾} (3.9)

We thus have 𝐾∗ = −𝐾◦.
Finally, such cones can be used to state Moreau’s orthogonal decomposition with respect to

cone 𝐾 as follows:

∀𝒙 ∈ R𝑛 , ∃ 𝒙+ ∈ 𝐾 and 𝒙− ∈ 𝐾◦ such that 𝒙 = 𝒙+ + 𝒙− and (𝒙+)T𝒙− = 0 (3.10)

Moreover, 𝒙+ (resp. 𝒙−) are in fact obtained as the orthogonal projections of 𝒙 onto 𝐾 (resp.
𝐾◦).

3.1.3 Subdifferential and optimality conditions

The subdifferential defines a generalized notion of derivatives (or gradients) for non-
smooth functions. If 𝑓 is non-differentiable at 𝑥, it possesses many tangent directions.

Definition 7 (Subgradient and subdifferential). A subgradient is any direction 𝑔 which char-
acterizes such tangents. It is defined as:

𝒈 ∈ R𝑛 is a subgradient ⇔ 𝑓 (𝒙) + (𝒚 − 𝒙)T𝒈 ≤ 𝑓 (𝒚) ∀𝒚 (3.11)

The set of all subgradients of 𝑓 at 𝒙 defines the subdifferential 𝜕 𝑓 (𝑥).

It is a non-empty convex set. In the case where 𝑓 is differentiable at 𝒙, the subdifferential
contains only the gradient of 𝑓 :

𝜕 𝑓 (𝒙) = {∇ 𝑓 (𝒙)} (3.12)

If 𝑓 = 𝑔1 + 𝑔2 is the sum of two convex functions, then:

𝜕 𝑓 (𝒙) = 𝜕𝑔1(𝒙) ⊕ 𝜕𝑔2(𝒙) (3.13)

where 𝐴 ⊕ 𝐵 = {𝑐 s.t. 𝑐 = 𝑎 + 𝑏 where 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} denotes the Minkowski sum between
two sets 𝐴 and 𝐵.

From (3.11), we see that the subdifferential gives an optimality condition for the mini-
mization of 𝑓 (𝒙):

𝒙∗ = arg min
𝒙

𝑓 (𝒙) ⇔ 0 ∈ 𝜕 𝑓 (𝒙∗) (3.14)
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(a) The graph of 𝑓1(𝑥) and its normal gradients.
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Figure 3.1: The function 𝑓1(𝑥) (3.16) and its subdifferential

which generalizes the fact that for a smooth function the minimum is attained at a critical
point such that ∇ 𝑓 (𝒙∗) = 0.

From (3.11), we also see that a subgradient 𝒈 is such that (𝒈 ,−1) defines an hyperplane
supporting the function epigraph. In the smooth case, 𝒈 = ∇ 𝑓 is such that (∇ 𝑓 ,−1) defines
a normal vector to the function graph. Therefore, we define the normal cone to 𝑓 as the cone
generated by the subdifferential:

𝑁 𝑓 (𝒙) = {(𝑡𝒈 ,−𝑡) ∈ R𝑛 × R ∀𝒈 ∈ 𝜕 𝑓 (𝒙), 𝑡 ≥ 0} (3.15)

As an example for 𝛾 ≥ 0, the function:

𝑓𝛾(𝑥) = |𝑥| + 𝛾
𝑥2

2 (3.16)

is convex on R but non-smooth at 𝑥 = 0 (Fig. 3.1a). Its subdifferential (Fig. 3.1) is:

𝜕 𝑓𝛾(𝑥) =

{−1 + 𝛾𝑥} if 𝑥 < 0
{1 + 𝛾𝑥} if 𝑥 > 0
[−1; 1] if 𝑥 = 0

(3.17)

3.1.4 Conjugate functions

A key notion in convex analysis is the Legendre-Fenchel transform which enables to define
the notion of conjugate functions.

Definition 8 (Convex conjugate function). The convex conjugate 𝑓 ∗(𝒚) of a function 𝑓 (𝒙) as
follows:

𝑓 ∗(𝒚) = sup
𝒙∈R𝑛

{𝒙T𝒚 − 𝑓 (𝒙)} (3.18)

Note that we use here the term conjugate as used by Rockafellar (1970) for instance, rather
than the term polar which is sometimes also used. The reason for this is that we will make
use of another definition of the polar function, denoted by 𝑓 ◦ in Chapter 7.
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(b) 𝑓 ∗0 (𝑦)

Figure 3.2: The conjugate of function 𝑓𝛾(𝑥) for 𝛾 = 1 and 𝛾 = 0.

The Fenchel-Moreau theorem states that 𝑓 = 𝑓 ∗∗ if 𝑓 is convex proper lsc. The Young-
Fenchel inequality states that:

𝑓 (𝒙) + 𝑓 ∗(𝒚) ≥ 𝒙T𝒚 ∀𝒙 , 𝒚 (3.19)

Furthermore, equality in the Young-Fenchel inequality is attained if and only if:

𝑓 (𝒙) + 𝑓 ∗(𝒚) = 𝒙T𝒚 ⇔ 𝒚 ∈ 𝜕 𝑓 (𝒙) ⇔ 𝒙 ∈ 𝜕 𝑓 ∗(𝒚) (3.20)

which means that 𝒙 ∈ 𝜕 𝑓 ∗(𝒚) realizes the supremum in (3.18). As we will see at length in
this work, such concepts are at the core of the development of constitutive laws for standard
generalized materials, see Section 4.5.1.

Definition 9 (Support functions). The support function 𝜋𝐺 of a convex set is the conjugate to
its indicator 𝛿𝐺:

𝜋𝐺(𝒚) = (𝛿𝐺)∗(𝒚) = sup
𝒙∈𝐺

𝒙T𝒚 (3.21)

In particular, it defines the equation of the tangent hyperplane to 𝐺 with normal vector 𝑦.

Conversely, the conjugate function of a positively homogeneous function is the indicator of a
convex set.

Returning to example (3.16), the conjugate function is given by:

𝑓 ∗𝛾(𝑦) =


(𝑦 + 1)2

2𝛾 if 𝑦 ≤ −1

0 if |𝑦| ≤ 1
(𝑦 − 1)2

2𝛾 if 𝑦 ≥ 1

(3.22)

The corresponding graphs have been represented on Fig. 3.2 for the two cases 𝛾 = 1 and
𝛾 = 0. Note that in the latter case, the previous expressions turn out to be 𝑓 ∗0 = 𝛿[−1;1], the
indicator of the segment [−1; 1]. Indeed, in the case 𝛾 = 0, 𝑓0(𝑥) = |𝑥| is a homogeneous
function and its conjugate is therefore the indicator of a convex set.

Other examples of conjugate functions may include:
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• strictly convex quadratic functions:

𝑓 (𝒙) = 1
2𝒙

TQ𝒙 with Q = QT ≻ 0, 𝑓 ∗(𝒚) = 1
2𝒚

TQ−1𝒚 (3.23)

• 𝐿𝑝-norms with 𝑝 ≥ 1:

𝑓 (𝒙) = 𝛼∥𝒙∥𝑝 with 𝛼 > 0, 𝑓 ∗(𝒚) = 𝛿𝐺(𝒚) where 𝐺 = {𝒚 s.t. ∥𝒚∥𝑞 ≤ 𝛼} (3.24)

where ∥ · ∥𝑞 is the dual norm of ∥ · ∥𝑝 with 𝑞 such that 1
𝑝 + 1

𝑞 = 1.

• the sum of two functions 𝑓 (𝒙) + 𝑔(𝒙):

( 𝑓 + 𝑔)∗(𝒚) = ( 𝑓 ∗□𝑔∗)(𝒚) = inf
𝒚1 ,𝒚2

𝑓 ∗(𝒚1) + 𝑔∗(𝒚2)
s.t. 𝒚 = 𝒚1 + 𝒚2

(3.25)

where 𝑓□𝑔 denotes the infimal convolution between two functions 𝑓 and 𝑔.

3.2 Convex optimization

3.2.1 Convex and conic optimization problems

Convex optimization problems (or convex programs) can take different equivalent forms,
one of them being:

min
𝒙∈R𝑛

𝑓 (𝒙)
s.t. 𝑔𝑖(𝒙) ≤ 0 ∀𝑖 = 1, . . . , 𝑚

(3.26)

where 𝑓 and 𝑔𝑖 are assumed to be convex functions. 𝑓 describes the objective function of the
optimization whereas the 𝑔𝑖 encode constraints. The latter may be formalized into a global
constraint 𝒙 ∈ 𝐺 where 𝐺 is the convex set of admissible constraints. Obviously, the main
interest in studying convex optimization problem over non-convex ones is that local minima
are also global minima and that very efficient algorithms exist to solve them.

However, even in the convex case, there exist different algorithms depending on the size
of the problem and, more importantly, on its structure. In fact, trying to solve (3.26) using
general-purpose non-linear programming solvers will generally fail for large problems. For
this reason, research works in the mathematical programming community are usually fo-
cused on specific classes of problems to develop efficient dedicated methods. For instance,
unconstrained problems with smooth objectives can be solved efficiently using descent al-
gorithms whereas non-smooth or smooth + non-smooth objectives1 will require different
strategies such as proximal algorithms or interior-point methods.

Conic programming

One of the most fruitful change of perspective in the last decades is related to the study
of conic programming.

1such as 𝑓𝛾 for instance
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Definition 10 (Conic programs). A conic program can be defined as a minimization problem
of a linear function over a conic section such as:

min
𝒙∈R𝑛

cT𝒙

s.t. A𝒙 = b
𝒙 ∈ 𝐾

(3.27)

where A ∈ R𝑚×𝑛 , b ∈ R𝑚 , c ∈ R𝑛 are given data describing a linear subspace and a linear
function and where 𝐾 is a convex cone.

A key result is that any convex program can be written in the form of a conic program
such as (3.27), see for instance Nesterov and Nemirovsky (1992). For example, for any convex
objective function 𝑓 (𝒙), we can introduce an additional scalar variable 𝑡 and use the epigraph
form to replace min 𝑓 (𝒙) with:

min
𝒙∈R𝑛 ,𝑡∈R

𝑡

s.t. 𝑓 (𝒙) ≤ 𝑡
(3.28)

As a result, objective functions can be converted, without loss of generality, to linear functions
to be optimized over a convex set. Then, any convex set can be converted to a convex cone
using its conical hull.

Consequently, the structure of the original problem is in fact encoded into the cone 𝐾.
We therefore see that different classes of problems can be represented, depending on the
structure of 𝐾.

Linear Programming

The most famous class of problems is that of Linear Programming (LP) which is obtained
when 𝒙 ∈ 𝐾 turns out to be 𝒙 ≥ 0, the corresponding cone being here the positive orthant
𝐾 = R𝑛+. Linear Programming applications cover almost all the spectrum of engineering
(energy, finance, transportation, structural engineering, etc.).

Second-Order Cone Programming

A further generalization of LP is obtained when considering 𝐾 to contain second-order
cones such as:

𝒬𝑑 = {(𝒙 , 𝑡) ∈ R𝑑−1 × R s.t. ∥𝒙∥2 ≤ 𝑡} (3.29)

The resulting class of problems is called Second-Order Cone Programming (SOCP). It enables
for instance to model quadratic programming problems (the objective and constraints are
convex quadratic functions), see also Lobo et al. (1998) for many applications.

Semi-Definite Programming

A further generalization of SOCP, and thus LP, is obtained when considering positive semi-
definite (PSD) matrices as optimization variables. The affine constraints A𝒙 = b may therefore
represent linear matrix equalities whereas linear matrix inequalities are modeled using the
cone of PSD matrices of dimension 𝑑 × 𝑑 which is denoted as 𝒮+

𝑑
. Such a generalization

is called Semi-Definite Programming (SDP) and is also used in many practical applications.
For instance, it is often used to relax combinatorial non-convex optimization problems into
convex problems which can be solved efficiently. Note that for 𝑑 = 2, SDP constraints can be
equivalently formulated as SOCP constraints.
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Power Cone and Exponential Programming

As we will discuss in the next section, the growth of this subfield of mathematical op-
timization is mainly due to the development of very efficient algorithms which have been
initially developed for LP then extended to SOCP and SDP problems. Indeed, the above
mentioned cones, namely positive orthants, second-order and PSD cones, are self-dual (i.e.
𝐾 = 𝐾∗), which has been a corner-stone for the development of such algorithms. More
recently, a similar strategy also proved successful for other classes of cones which are not
self-dual such as:

• power cones 𝒫𝛼
𝑑

parameterized by 𝛼 s.t. 0 < 𝛼 < 1 and 𝑑 ≥ 3:

𝒫𝛼
𝑑
= {𝒛 = (𝑧0 , 𝑧1 , 𝒛̄) ∈ R × R × R𝑑−2 and 𝑧𝛼0 𝑧

1−𝛼
1 ≥ ∥𝒛̄∥2 , 𝑧0 , 𝑧1 ≥ 0} (3.30)

• exponential cones:

𝒦exp = {𝒛 ∈ R3 s.t. 𝒛 = (𝑧0 , 𝑧1 , 𝑧2) and 𝑧0 ≥ 𝑧1 exp(𝑧2/𝑧1), 𝑧0 , 𝑧1 ≥ 0} (3.31)

The set of all such cones which can be tackled by efficient algorithms has been termed
by Juditsky and Nemirovski (2021) as the magic family. Although a very large class of
problems can already be modeled in the framework of SDP, the recent extension to power and
exponential cones paves the way for new applications of such techniques to other objective
functions or constraints. For instance, minimizing a norm other than 𝑝 = 1, 2 or ∞ was
not possible before introducing power cones, similarly exponential-based functions such as
logistic regression problem were unavailable until recently.

Although conic programs should represent any convex program, strictly speaking, we
will from now on abusively consider as conic programs programs which can be represented
using cones from the magic family. Despite limiting ourselves to this family of cones, it turns
out that it already covers a very wide range of convex optimization functions appearing in
practice.

3.2.2 Conic duality

As mentioned before, duality is a very powerful concept in mathematical optimization.
In the case of conic programs of the form (3.27), we can form the following Lagrangian:

ℒ(𝒙 , 𝒚, 𝒔) = cT𝒙 − 𝒚T(A𝒙 − b) − 𝒔T𝒙 (3.32)

where 𝒚 ∈ R𝑚 is the Lagrange multiplier associated with the linear constraint A𝒙 = b. 𝒔 ∈ R𝑛

is the dual conic variables associated with the conic constraint 𝒙 ∈ 𝐾. In particular, 𝒔 is
restricted to lie into the corresponding dual cone i.e. 𝒔 ∈ 𝐾∗. The corresponding min/max
problem therefore reads:

max
𝒚∈R𝑚 ,𝒔∈𝐾∗

min
𝒙∈R𝑛

cT𝒙 − 𝒚T(A𝒙 − b) − 𝒔T𝒙 (3.33)

so that when eliminating 𝒙 one has:

c − AT𝒚 − 𝒔 = 0 (3.34)

which finally gives the dual problem:

max
𝒚∈R𝑚 ,𝒔∈R𝑛

bT𝒚

s.t. AT𝒚 + 𝒔 = c
𝒔 ∈ 𝐾∗

(3.35)



3.3. ALGORITHMS AND SOLVERS 39

which results in the same optimal value as (3.27) under appropriate constraint qualification.
As a result, we obtain the following optimality conditions for the pair of problems (3.27)-

(3.35):

A𝒙 = b (3.36a)
AT𝒚 + 𝒔 = c (3.36b)

𝒙 ∈ 𝐾 (3.36c)
𝒔 ∈ 𝐾∗ (3.36d)

𝒙T𝒔 = 0 (3.36e)

where the last condition (3.36e) is the complementary slackness condition.

Remark 1. Note also that we can write problem (3.27) as min cT𝒙 + 𝛿𝐺∩𝐾(𝒙) where 𝐺 =

{𝒙 s.t. A𝒙 = b} is the affine subspace. Then the optimality conditions can be written using
subdifferentials as:

0 ∈ {c} ⊕ 𝑁𝐺∩𝐾(𝒙) ⊕ 𝑁𝐾(𝒙) = {c} ⊕ 𝑁𝐺(𝒙) ⊕ 𝑁𝐾(𝒙) (3.37)

where the normal cone 𝑁𝐺(𝒙) = {𝒛 ∈ R𝑛 s.t. 𝒛 = AT𝒚} and 𝑁𝐾(𝒙) = −𝐾∗ ∩ {𝒙}⊥. We indeed
recover (3.34) along with the complementary slackness condition (3.36e).

3.3 Algorithms and solvers

As mentioned before, the choice of an appropriate algorithm for solving an optimization
problem is a decisive step which has to be taken under the light of the problem specific
structure. Without giving an exhaustive list of all available algorithms, let us just mention
the important classes of algorithms for various types of convex problems, with a deeper
focus on those used in this work. More details can for instance be found in (Boyd and
Vandenberghe, 2004) or (Nocedal and Wright, 1999). Note also that convex optimization
algorithms can also be used for local optimization of non-convex functionals. However, we
do not discuss global optimization strategies for non-convex functions such as stochastic
gradients which are extremely popular in machine learning or metaheuristic techniques.

3.3.1 Unconstrained optimization

The simplest optimization algorithm for smooth unconstrained problems are descent
methods: 𝑥𝑘+1 = 𝑥𝑘 − 𝜆∇ 𝑓 (𝑥𝑘). For instance, the gradient descent method is a first-order
method as it does not require to invert a linear system to find the optimal descent direction. It
relies instead on first-order derivatives only. Newton’s method is its most natural extension,
being a second-order method which requires solving a linear system involving the objective
function Hessian matrix ∇∇ 𝑓 (𝑥𝑘). Due to its simplicity, the gradient descent converges only
linearly and cannot be applied to non-smooth functions.

Newton’s method is an extremely attractive and widely used method due to its quadratic
convergence near the optimal point. Computational cost due to the Hessian system inversion
can be overcome using approximation techniques such as quasi-Newton methods (Broyden,
BFGS, Levenberg–Marquardt...). Finally, globalization strategies such as line-search or trust-
region methods can be used to increase the radius of convergence of the method around the
optimal point.
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3.3.2 Constrained optimization

Solving constrained optimization problems is much more difficult than unconstrained
ones. A first set of algorithms rely on eliminating the constraints and solving an equivalent
unconstrained optimization problem.

Penalty methods are a simple way of adding the cost of violating the constraints in the
objective function. The penalty parameter will set the trade-off cost of this violation compared
to the initial objective function. Penalty methods are therefore exterior-point methods since
iterates can fall outside the initial feasible region due to the relaxed constraints. Obviously an
important practical difficulty is the selection of the penalty hyperparameter and the associated
problem ill-conditioning when it becomes to large. Note that, as of now, penalty methods
are widely used in deep-learning strategies to enforce physical constraints in an approximate
way.

Augmented Lagrangian methods combine the idea of using Lagrange multipliers (it is a
primal-dual method) with the penalty method and alleviate the need for using a large enough
parameter.

Following the same idea of removing the constraints, active-set methods identify, in an
iterative fashion, the set of active and inactive constraints in order to solve unconstrained
problems until final identification of the active set of constraints. Successive linear program-
ming or sequential quadratic programming can be interpreted as active set methods and
consist in replacing the objective and the constraints by a linear or quadratic approxima-
tion around the current iterate. Unfortunately, such techniques rely on some smoothness
assumption of the objective or constraints.

Barrier methods can be seen as a counter-part of penalty methods in which constraints
are replaced by a barrier function i.e. a function which diverges as the point approaches
the feasible region boundary. These methods are therefore interior-point methods since each
iterate remains feasible. In particular, this requires the initial point to be feasible which
is not always easy to find without any knowledge of the underlying problem. Although
not being extremely efficient since they suffer from similar drawbacks as penalty methods,
barrier methods found new interests due to their connection with the much more efficient
primal-dual interior point methods.

3.3.3 Non-smooth problems

Smoothing

As we have seen, many methods are dedicated to smooth problems. Reformulation and
smoothing methods are a first class of methods which consist in using a specific regulariza-
tion technique to eliminate non-smoothness, thus reformulating the problem as a smooth
optimization program. These techniques suffer from a similar drawback as penalty methods,
namely the choice of the regularization parameter, the ill-conditioning when approaching the
original behaviour and, even more importantly, a change in the underlying physical model
when applied to mechanical problems. For instance, biviscous regularization is a widely
used technique to replace intrinsic viscoplastic models of yield-stress fluids by a surrogate
non-linear viscous behaviour. Unfortunately, abandoning the original non-smooth behaviour
results in a loss on the existence of real solid (rigid) regions in viscoplastic flows, return to
rest in finite time, etc.
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Semi-smooth Newton methods

Unlike traditional Newton methods that require the objective function to be twice contin-
uously differentiable, semi-smooth Newton methods extend their applicability to functions
that may not have smooth derivatives but exhibit some degree of regularity, such as piecewise
linear or piecewise smooth functions. These methods leverage generalized derivatives, like
the Clarke subdifferential or the B-subdifferential, to iteratively approximate and solve the
optimization problem.

Proximal point methods

Proximal algorithms (Parikh et al., 2014) can be seen as a generalization of descent methods
to problems involving non-smooth or composite (smooth + non-smooth) objective functions.
These algorithms iteratively minimize the objective function by solving a sequence of simpler
subproblems that involve the proximal operator:

prox𝜆 𝑓 (𝒙) = arg min
𝒚

𝑓 (𝒚) + 1
2𝜆∥𝒙 − 𝒚∥2

2 (3.38)

which essentially performs a regularized minimization that balances proximity to a given
point and reduction of the objective function value. Proximal algorithms, such as the Alter-
nating Direction Method of Multipliers (ADMM) (Glowinski and Le Tallec, 1989), are known
for their robustness and efficiency, especially in large-scale and high-dimensional problems.
ADMM can be seen as a variant of Augmented Lagrangian approaches with partial updates.
Such techniques have recently gained some attention in the context of conic optimization and
have been implemented in open-source solvers such as SCS (O’Donoghue et al., 2016), COSMO
(Garstka et al., 2021), CDCS (Zheng et al., 2017), etc. Unfortunately, such first-order methods
converge quite slowly and can be used in practice only at the expense of a reduced accuracy
in the computed solution. They are nowadays quite popular in the image and signal process-
ing community which are mostly motivated by obtaining a sufficient decrease of some loss
function (e.g. noise level) rather than computing accurately the solution to the underlying
optimization problem.

3.3.4 Conic programming problems

Linear Programming

As mentioned before, Linear Programming is an extremely important class of non-smooth
optimization problems which appears in a wide range of applications, often when complex
problems under constraints have been linearized.

It was first efficiently solved using the simplex method developed by Dantzig et al. (1955).
The simplex method relies on finding the minimum of the objective function by exploring the
vertices of the polytope defined by the constraints in the opposite direction of the gradient.
The starting point for the simplex method must be a vertex. Thereafter, every iteration moves
to an adjacent vertex, decreasing the objective as it goes, until an optimal vertex is found.
Simplex methods are a well established technology for LP however their extension to non-
linear constraints is not straightforward. Another drawback is the exponential theoretical
complexity of the algorithm which makes it impractical for some large-scale LP problems.

Interior-point methods

A ground-breaking advance in the resolution of large-scale LP has been achieved with the
development of interior-point methods (IPM) by Karmarkar (1984) which exhibited polynomial
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Figure 3.3: General idea of an interior-point algorithm following the central path

worst-case complexity. One decade later, primal-dual methods appeared as an even better
version of IPM by simultaneously solving for primal as well as dual (Lagrange multipliers)
variables.

Another ground-breaking development is due to the introduction of the self-concordant
barrier functions by Nesterov and Nemirovskii (1994) which enabled to extend IPM to a much
wider family of convex optimization problems than LP such as SOCP and SDP (Nesterov and
Todd, 1997, 1998). The advent of interior-point methods is often considered as a revolution
in optimization theory which now views linear and non-linear programming in a unified
perspective. Since then, other important algorithmic developments allowed IPM to exhibit
very good practical performances, especially regarding robustness of convergence (Mehrotra,
1992; Alizadeh and Goldfarb, 2003; Andersen et al., 2003; Boyd and Vandenberghe, 2004), see
for instance (Wright, 2005) for a global overview.

General overview of primal-dual IPM for conic programming

To fix ideas, let us very briefly describe the main ingredients of primal-dual IPM for conic
programs such as (3.27). First, the extension of IPM from LP to general conic programs relies
on self-dual cones2 such as the second-order cone 𝒬𝑑 or the cone of PSD matrices 𝒮+

𝑑
. We

therefore assume that 𝐾 is a product of self-dual cones and is also self-dual: 𝐾 = 𝐾∗.
The main idea of IPM consists in finding a solution to the optimality conditions (3.36)

by following the neighborhood of a curve called the central path corresponding to solutions
𝒛(𝜂) = (𝒙(𝜂), 𝒚(𝜂), 𝒔(𝜂)) to the following perturbed optimality conditions:

𝒓𝜂(𝒛) =

AT𝒚 + 𝒔 − c

A𝒙 − b
𝒙 ◦ 𝒔 − 𝜂𝑒

 = 0, and 𝒙 , 𝒔 ∈ int𝐾 × int𝐾 (3.39)

where 𝒙 ◦ 𝒔 ∈ R𝑛 involves a product ◦ of the Jordan algebra associated with symmetric cones,
see (Alizadeh and Goldfarb, 2003) for more details. In particular, for 𝒙 , 𝒔 ∈ 𝐾×𝐾, the original
complementary condition 𝒙T𝒔 = 0 is equivalent to 𝒙 ◦ 𝒔 = 0. The main difference with the
original system therefore comes from the perturbation of the complementary condition which
is now replaced with 𝒙 ◦ 𝒔 = 𝜂𝒆 where 𝒆 is the unit vector associated with the Jordan product
and 𝜂 ≥ 0 is the so-called barrier parameter. Clearly, for 𝜂 = 0, 𝒛(0) is a primal-dual solution

2Note again that IPM has recently been extended also to non self-dual cones such as the power and exponential
cone.
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to the original system. The central path has the property of consisting of points which are
well-centered i.e. which lie far from the feasible boundary except when 𝜂 → 0. Indeed, when
using descent steps for constrained optimization problems, step sizes are usually very small
because descent steps rapidly hit the boundary of the feasible region. The use of the central
path will instead allow for large descent steps to be taken when following a minimizing path
far from the feasible region boundary.

The IPM will therefore consists in repeatedly solving the perturbed system (3.39) for a
decreasing sequence of 𝜂. Given a current value 𝜂(𝑘) at iteration 𝑘, a Newton descent step is
obtained by solving:

J(𝑘)Δ𝒛 = −𝒓 (𝑘)(𝒛(𝑘)) where J(𝑘) =


0 AT I𝑛
A 0 0

S(𝑘) 0 X(𝑘)

 (3.40)

where I𝑛 is the identity matrix and X(𝑘), S(𝑘) are matrices resulting from the linearization of
𝒙 ◦ 𝒔 around 𝒙(𝑘) , 𝒔(𝑘).

From the computed descent direction Δ𝒛 the next iterate 𝒛(𝑘+1) is obtained by a line-
search on the maximum allowable step length 𝛼 ∈ [0; 1] i.e. 𝒛(𝑘+1) = 𝒛(𝑘) + 𝛼Δ𝒛 so that 𝒙(𝑘+1),
𝒔(𝑘+1) ∈ int𝐾 × int𝐾. The barrier parameter is then reduced before the next step is taken.

There exist different ways, often based on heuristics, to decrease the value of the barrier
parameter. In general, let us simply say that they depend on the distance of the current
iterate from the central path. Broadly speaking, if the iterate is close to the central path (i.e.
𝛼 is close to 1) an aggressive step can be taken and the barrier parameter can be strongly
reduced. Conversely, if the iterate is close to the boundary, a centering step in which the
barrier parameter does not reduce much is taken to "recenter" the iterate near the central
path. There are obviously additional improvements which are really essential to achieve
good performance in practice such as Nesterov-Todd scaling, Mehrotra predictor-corrector
schemes, etc. We refer to (Andersen et al., 2003; Bleyer, 2018a) for more details.

3.3.5 Solvers and modeling languages

There exist many available solvers dedicated to LP, SOCP and/or SDP including com-
mercial solvers such as CPLEX (CPLEX, 2018), Gurobi (Gurobi Optimization, LLC, 2023),
COPT (Ge et al., 2022), Mosek (MOSEK ApS, 2019b) or open-source solvers such as ECOS
(Domahidi et al., 2013), SCS (O’Donoghue et al., 2016), Clarabel (Goulard and Chen, 2023) or
SDPT3 (Toh et al., 1999) just to name a few. Regarding the latter, they exhibit different level of
performances depending on the wanted application. For instance, ECOS has been designed
for embedded systems and is therefore well-suited for small-scale systems whereas SCS is
based on a first-order operator-splitting method which can be very efficient for large-scale
systems but for a moderate accuracy.

All of the previous solvers have been designed to solve conic programs expressed in a
given canonical form such as (3.27) or (3.35) or another equivalent form3. A specific convex
optimization problem must therefore be first transformed into one of such canonical forms
before calling a numerical solver. For instance, if we want to solve the following Lasso
regression problem:

min
𝒙

1
2∥C𝒙 − d∥2

2
s.t. ∥𝒙∥1 ≤ 1

(3.41)

3with the notable exception of Clarabel which can natively tackle a quadratic objective.
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we would first need to introduce additional optimization variables such as:

min
𝒙 ,𝒚,𝑡

𝑡

s.t. C𝒙 − 𝒚 = d
∥𝒙∥1 ≤ 1
1
2∥𝒚∥

2 ≤ 𝑡

(3.42)

to obtain a linear function and a linear subspace condition. The last constraints should then
be further re-expressed, with potentially additional optimization variables, as constraints
involving cones from the magic family. Obviously, we see that such a reformulation process
can quickly become cumbersome and time-consuming if one is interested in studying different
types of models.

Fortunately, this step can be automated using domain-specific languages (DSL). A DSL is
computer language which is specialized for a specific task. In the present case, we are inter-
ested in a domain-specific modeling language which consists in a set of rules and composable
objects to express the structure of a given convex optimization problem. Examples of such
DSL for convex optimization include CVX in Matlab (Grant and Boyd, 2014) and CVXPY in
Python (Diamond and Boyd, 2016) but also JuMP in Julia (Dunning et al., 2017). The power
of such DSL is that they can combine standard Matlab/Python or Julia code with specialized
objects or functions used to define and solve a convex optimization problem by calling various
solvers. In particular, they express composable convex expressions in the form of a graph
and perform automatically the transformation of such a representation into the canonical
representation, which may be different depending on the solver. In this work, we will often
work with CVXPY to define small-scale convex optimization problems. For instance, the Lasso
problem (3.41) can be defined as simply as:

import cvxpy as cp
import numpy as np

# generate random data
m, n = 200, 10
C = np.random.rand(m, n)
d = np.random.rand(m)

# define problem
x = cp.Variable(n)
objective = 0.5*cp.norm2(C*x-d)**2
constraints = [cp.norm1(x) <= 1]
problem = cp.Problem(cp.Minimize(objective), constraints)
problem.solve(solver=cp.MOSEK)

where we required CVXPY to use the Mosek solver.



Chapter 4

Convex variational principles in
mechanics

This chapter provides a comprehensive overview of the variational principles underlying
the formulation of various mechanical behaviors of solids and structures. Rather than an
exhaustive historical presentation, our aim is to showcase their practical use in a range of
applications, including elasticity, unilateral behaviors, and viscoplastic fluids. In particular,
we motivate their use for a given context and provide insights into the corresponding numer-
ical optimization problems. We focus on time-discrete variational formulations for standard
dissipative materials, and explore both the well-known primal formulation and the less fre-
quently considered dual formulation. The chapter also includes a discussion of the use of
these formulations in an elasto-plastic setting and an analysis of their asymptotic behavior
for large load conditions.
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4.1 Elasticity

4.1.1 Elastostatics

Primal variational principle

The most widely known variational principle describing small strain linear elasticity
problems is the principle of minimum potential energy. This principle states that the solution 𝒖
realizes the minimum of the potential energy 𝐸pot(𝒖), i.e. the elastic energy minus the work
of external forces, among all admissible displacements:

min
𝒖∈𝒰ad

𝐸pot(𝒖) = min
𝒖∈𝒰ad

∫
Ω

𝜓(𝜺)dΩ −
∫
Ω

𝒇 · 𝒖 dΩ −
∫
𝜕ΩN

𝑻 · 𝒖 d𝑆 (4.1)

where 𝜺 =
1
2 (∇𝒖 + ∇T𝒖) = ∇𝑠𝒖 is the infinitesimal strain, 𝜓(𝜺) =

1
2 𝜺 : C : 𝜺 with C the

elastic stiffness and 𝒇 (resp. 𝑻 ) are prescribed body (resp. traction) forces in the domain
(resp. on the Neumann boundary 𝜕ΩN). Finally, 𝒰ad denotes the set of kinematically admis-
sible displacement characterized by regularity conditions and imposed Dirichlet boundary
conditions 𝒖D:

𝒰ad =
{
𝒖 ∈ 𝐻1(Ω) and s.t. 𝒖 = 𝒖D on 𝜕ΩD

}
(4.2)

The first-order optimality condition reads in this case:

∀𝒗 ∈ 𝒰0 , 𝛿𝐸pot(𝒖; 𝒗) =
∫
Ω

∇𝑠𝒖 : C : ∇𝑠𝒗 dΩ −
∫
Ω

𝒇 · 𝒗 dΩ −
∫
𝜕ΩN

𝑻 · 𝒗 d𝑆 = 0 (4.3)

where 𝛿𝐸pot(𝒖; 𝒗) denotes the first variation at 𝒖 in direction 𝒗 and 𝒰0 is the space of ad-
missible displacements with homogeneous boundary condition (i.e. 𝒰ad with 𝒖D = 0). The
variational equality (4.3) corresponds to the virtual work principle complemented with the
elastic constitutive law 𝝈 = C : 𝜺. Finally, owing to the strict convexity of 𝐸pot(𝒖), the first-
order condition is sufficient to characterize the minimum which is also unique.

When restricting to a finite-dimensional subspace𝒰ℎ ⊂ 𝒰ad such as the one obtained after
a classical finite-element discretization, the minimum potential energy principle becomes:

min
𝒖̄∈R𝑛

1
2 𝒖̄

TK𝒖̄ − FT𝒖̄ (4.4)

where 𝒖̄ denotes the global vector of degrees of freedom, K is the global stiffness matrix
and F the global vector of equivalent nodal forces. We clearly obtain a simple unconstrained
quadratic optimization problem with optimality conditions:

K𝒖̄ − F = 0 (4.5)

Dual variational problem

If the previous primal variational problem is widely known and lies at the basis of the
finite-element method, the corresponding dual variational problem is less used, at least from
the numerical perspective. Upon standard derivation, the dual problem is formulated in
terms of admissible stresses and states that the optimal stress field realizes the minimum of
the complementary energy 𝐸comp(𝝈):

min
𝝈∈𝒮ad

𝐸comp(𝝈) = min
𝝈∈𝒮ad

∫
Ω

𝜓∗(𝝈)dΩ −
∫
𝜕ΩD

(𝝈𝒏) · 𝒖D d𝑆 (4.6)
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where 𝜓∗(𝝈) = 1
2𝝈 : C−1 : 𝝈, 𝒏 is the unit exterior normal and 𝒮ad denotes the set of statically

admissible stress fields defined as:

𝒮ad =

{
𝝈 ∈ 𝐻(div;Ω) s.t.

���� div 𝝈 + 𝒇 = 0 in Ω

𝝈𝒏 = 𝑻 on 𝜕ΩN

}
(4.7)

where 𝐻(div;Ω) is the space of symmetric stress tensors which are 𝐿2(Ω) and such that
div 𝝈 ∈ 𝐿2(Ω). Note that this enforces in particular that 𝝈𝒏 must be continuous inside the
domain.

Let us also point out that both problems are dual to each other in the sense that they
provide the same solution and that at the optimum1:

𝐸pot(𝒖) = −𝐸comp(𝒖) (4.8)

Remark 2. Note that we should also mention mixed variational principles such as the
Hellinger-Reissner principle which is nothing else than the corresponding max/min sad-
dle point problem obtained from the Lagrangian associated with (4.1) and (4.6):

max
𝝈∈𝒮ad

min
𝒖∈𝒰ad

∫
Ω

𝝈 : 𝜺 − 1
2𝝈 : C−1 : 𝝈 dΩ −

∫
Ω

𝒇 · 𝒖 dΩ −
∫
𝜕ΩN

𝑻 · 𝒖 (4.9)

Similarly, the three-field Hu-Washizu principle corresponds to the same Lagrangian
where the compatibility equation 𝜺 = ∇𝑠𝒖 has been included as an explicit constraint and
included in the Lagrangian.

One of the main reason explaining the prevalence of the primal approach over the dual
one in a discrete setting is due to the fact that it is extremely difficult to devise conforming
approximations of 𝒮ad. For brevity, we will not review the literature concerning stress-based
finite-elements and related approaches and refer the reader to (de Almeida and Maunder,
2017) for a good introduction on this topic. Instead, let us just formalize what would be
obtained when considering a fully discontinuous piecewise-polynomial interpolation of the
stress inside each finite-elements. To fix ideas, let us consider the stress field to be linear
inside each element but with a discontinous interpolation with respect to adjacent elements
and that there is no imposed traction. Strong equilibrium can then be enforced for piecewise-
constant body forces inside each element. Strong traction continuity conditions can also be
enforced by imposing that [[𝝈(𝒙 𝑗)]]𝒏 = 0 across a given finite-element facet of normal 𝒏 with
vertices 𝒙 𝑗 . Eventually, one obtains a quadratic optimization problem with affine equality
constraints:

min
𝝈̄

1
2 𝝈̄S𝝈̄ − 𝒖̄T

D𝝈̄

s.t. H𝝈̄ + F = 0
B𝝈̄ = 0

(4.10)

where S is a global compliance matrix, H is a global equilibrium matrix collecting each
element internal equilibrium condition and B is a global equilibrium matrix collecting inter-
element jump conditions and free traction boundary conditions.

We therefore see from (4.10) that optimality conditions result in the following linear system
involving Lagrange multipliers 𝒖̄ corresponding to the first constraint and 𝒗̄ corresponding

1The true dual in the optimization vocable would rather be max−𝐸comp = −min𝐸comp so that both problems
yield the same objective value at the optimum.
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Figure 4.1: Left: geometrical 2D mesh. Right: FE discretization of the mixed approach:
piecewise linear stresses 𝝈, piecewise-constant cell-displacement𝒖 and piecewise-linear facet-
displacement 𝒗.

to the second constraint:

max
𝒖̄ ,𝒗̄

min
𝝈̄

1
2 𝝈̄S𝝈̄ − 𝒖̄T

D𝝈̄ − 𝒖̄T(H𝝈̄ + F) − 𝒗̄TB𝝈 (4.11)

⇒


S −HT −BT

−H 0 0
−B 0 0



𝝈̄
𝒖̄
𝒗̄

 =

{
𝒖̄D
F

}
(4.12)

From a mechanical stand point, 𝒖 and 𝒗 can both be interpreted as displacements, the former
being defined in cells only whereas the latter is defined on facets only. Moreover, since
𝝈 is linear, local equilibrium can be enforced using piecewise-constant 𝒖 whereas traction
continuity is enforced with piecewise-linear 𝒗, see Fig. 4.1.

In the finite-element literature, such approaches looking simultaneously for stress and
displacement fields is generally termed as a mixed approach. More precisely, mixed approaches
generally refer to conforming discretizations of the 𝐻(div) space. However, up to now, no
simple mixed FE is available for the general 3D elasticity problem. When relaxing the
traction continuity condition and enforcing it in the discrete formulation as presented above
is a process called hybridization. This allows for the use of simpler FE space at the expense
of an additional Lagrange multiplier to solve for. However, it turns out the matrices S and
H enjoy a block-structure associated with FE cells, it is therefore possible to perform static
condensation of the stress 𝝈 and cell-displacement 𝒖 variables at the cell level. The resulting
system being formulated only on the facet-Lagrange multiplier 𝒗, see (Arnold and Brezzi,
1985; Cockburn et al., 2009; Gong et al., 2019).

Use in up-scaling approaches

In our point of view, up-scaling techniques refer to methods that reduce the complexity of
modeling a heterogeneous material at a microscopic scale while preserving the key properties
that affect its behavior at the macroscopic scale. The goal is to achieve a computationally
efficient representation of the material’s behavior without sacrificing too much accuracy.
Up-scaling can be achieved in various ways such as homogenization where the microscopic
details are averaged out by using an effective homogeneous model of the material. In this
case, the original 3D continuum is replaced with an other 3D continuum model (possibly a
generalized one such strain-gradient, micromorphic models, etc.). Up-scaling can also refer
to dimensional reduction of a 3D continuum at the microscopic scale towards a 1D beam or
2D plate/shell model at the macroscopic level.
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Figure 4.2: Geometry of the bi-material and shear-lag stress distribution assumptions

In all cases, primal and dual variational principles are often used in such a context to de-
rive variationally consistent macroscopic effective models from approximations of kinematic
or static quantities at the microscopic scale. Primal (resp. dual) variational principles can
provide upper (resp. lower) bounds on effective properties such as Voigt (resp. Reuss) or
Hashin-Shtrikman bounds in homogenization. As regards the derivation of plate models for
instance, the use of an approximation on the 3D displacement field in the primal approach
(4.1) results in a "stiff" model where strain compatibility is verified exactly but local equilib-
rium is verified in a weak sense only. Conversely, the use of an approximation on the 3D
stress field in the dual approach (4.6) results in a "compliant" model where local equilibrium
is verified exactly and strain compatibility is verified in a weak sense only. Obviously, the
relevance of using one approach over another highly depends on the considered application.
Note that when using mixed variational principles where both displacement and stresses
are simultaneously approximated, the bounding character of the resulting model is lost in
general.

As an illustration, let us consider a very simple up-scaling case considering the bi-material
of Fig. 4.2 in plane-stress state in the (𝑥1 , 𝑥2)-plane. The bilayer consists of one central core
of thickness 𝑒2 surrounded by two symmetric skins of thickness 𝑒1/2. Each material (skins
and core) is isotropic elastic with Young modulus 𝐸𝑖 and shear modulus 𝜇𝑖 for 𝑖 = 1, 2. We
consider a rectangular region Ω = 𝜔 × [−𝑒/2; 𝑒/2] where 𝑒 = 𝑒1 + 𝑒2. We are interested
in a generalized 1D model along 𝑥1 which is capable of describing the behaviour of both
layers and, in particular, the shear transfer mechanism occurring at the interface. Note
that this model is a proxy for the 3D multiphase continuum model and the more advanced
multilayered plate models discussed in Section 2.2.4. Such a simple model is called the shear
lag model in the corresponding literature. Here, we provide a simple variational construction
based on the dual stress-based principle.

Let us indeed assume the following form for the local 2D stress-field 𝝈(𝑥1 , 𝑥2) (see again
Fig. 4.2-right):

𝜎11(𝑥1 , 𝑥2) =
{
𝜎1(𝑥1) for |𝑥2| > 𝑒2/2
𝜎2(𝑥1) for |𝑥2| < 𝑒2/2

(4.13a)

𝜎12(𝑥1 , 𝑥2) =


2𝜏𝑥2
𝑒2

for |𝑥2| < 𝑒2/2

(±𝑒 − 2𝑥2)
𝜏
𝑒1

for ± 𝑥2 ≥ 𝑒2/2
(4.13b)

𝜎22(𝑥1 , 𝑥2) = 0 (4.13c)

where 𝜎𝑖(𝑥1) and 𝜏(𝑥1) are unknown fields which will form the generalized stresses of the
shear-lag model. Clearly, 𝜎𝑖 can be interpreted as the partial stress in layer 𝑖 while 𝜏(𝑥1) is
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the interfacial shear stress. We assume stress-free conditions on top and bottom surfaces and
potential Dirichlet conditions on the boundary 𝜕𝜔 × [−𝑒/2; 𝑒/2]

Injecting assumptions (4.13) into (4.6) yields for the elastic stress energy:∫
Ω

1
2𝝈 : C−1 : 𝝈 dΩ =

∫
𝜔

2∑
𝑖=1

(
𝑒𝑖

2𝐸𝑖
𝜎2
𝑖 +

𝑒𝑖

6𝜇𝑖
𝜏2

)
d𝜔 (4.14)

whereas the work of imposed displacements reduces to:∫
𝜕ΩD

(𝝈𝒏) · 𝒖D d𝑆 =

∫
𝜕𝜔

2∑
𝑖=1

𝑒𝑖𝜎𝑖𝑢𝑖 ,D d𝑆 (4.15)

where 𝑢𝑖 ,D denotes the averaged horizontal imposed displacement 𝒖D over the layer 𝑖. Finally,
the set of admissible stresses 𝒮ad now reduces to the following set of admissible generalized
stresses 𝚺 = (𝜎1 , 𝜎2 , 𝜏):

𝒮ad =

(𝜎1 , 𝜎2 , 𝜏) s.t.

�������
𝜎′

1(𝑥1) −
2𝜏(𝑥1)
𝑒1

= 0

𝜎′
2(𝑥1) +

2𝜏(𝑥1)
𝑒2

= 0

 (4.16)

We therefore have the following corresponding minimum complementary energy principle
describing the 1D shear lag model:

min
𝜎1 ,𝜎2 ,𝜏

∫
𝜔

(
𝑒1

2𝐸1
𝜎2

1 +
𝑒2

2𝐸2
𝜎2

2 +
1
𝜅
𝜏2 − 𝑒1𝜎1𝑢1,D − 𝑒2𝜎2𝑢2,D

)
d𝜔

s.t. 𝑒1𝜎′
1(𝑥1) − 2𝜏(𝑥1) = 0

𝑒2𝜎′
2(𝑥1) + 2𝜏(𝑥1) = 0

(4.17)

where 𝜅 =
6

𝑒1
𝜇1

+ 𝑒2
𝜇2

is a shear interaction stiffness between both layers.

Introducing 𝑢1 (resp. 𝑢2) as the two Lagrange multipliers associated with both constraints,
we see that the optimality conditions read as:

𝜎1(𝑥1)
𝐸1

= 𝑢′1(𝑥1) (4.18a)

𝜎2(𝑥1)
𝐸2

= 𝑢′2(𝑥1) (4.18b)

𝜏(𝑥1)
𝜅

= 𝑢1(𝑥1) − 𝑢2(𝑥1) (4.18c)

𝑢𝑖(𝑥1) = 𝑢𝑖 ,𝐷(𝑥1) 𝑖 = 1, 2 on 𝜕𝜔 (4.18d)

As expected, we obtain the corresponding generalized Dirichlet boundary conditions as well
as the generalized constitutive equations of the model, expressed in "compliance" form. For
this simple model, they relate each partial stress 𝜎𝑖 to the corresponding uniaxial strain
𝜖𝑖 = 𝑢′

𝑖
via the layer Young modulus and, more interestingly, the interfacial shear stress 𝜏

to the relative displacement between both layers 𝑢1 − 𝑢2 via the shear interaction stiffness 𝜅.
The latter depends on the thickness of both layers and will be at the origin of size effects in
the response of the shear lag model. Finally, the Lagrange multipliers 𝑢𝑖 are interpreted here
as the generalized displacement of phase 𝑖. To be more precise, the optimality conditions
of the initial variational problem show that such generalized displacements 𝑢𝑖(𝑥1) can be
interpreted as the average of the horizontal microscopic displacement field 𝒖(𝑥1 , 𝑥2) · 𝒆1 over
layer 𝑖. We see here that dual-based variational principles allow for a strong enforcement of
equilibrium equations but, in return, allow for a weak control only of microscopic kinematics.
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4.1.2 Elastodynamics

Primal variational principle

It is widely known that the evolution equations of dynamic mechanical systems can be
described by Hamilton’s stationary action variational principle which defines the action from
the potential and kinetic energy of the system, see (Bedford, 1985) for instance. In the context
of elastodynamics, the action can be defined as:

𝒜p[𝒖] =
∫ 𝑡1

𝑡0

∫
Ω

(
1
2𝜌∥ ¤𝒖∥

2 − 1
2 𝜺 : C : 𝜺

)
dΩd𝑡 (4.19)

where 𝑡0 and 𝑡1 are two specified times with given state 𝒖(𝑡0) = 𝒖0 and 𝒖(𝑡1) = 𝒖1. In the
above, we omit external loads for simplicity. Hamilton’s principle then states that the true
trajectory 𝒖(𝑡) on [𝑡0; 𝑡1] is a stationary point of the action 𝒜. The corresponding optimality
conditions, the Euler-Lagrange equations, then provide the corresponding differential equations
characterizing the solution.

Note that classical time integration methods typically approach the solution of differential
equations by discretizing the equations directly in time. On the other hand, variational time
integrators are are a specialized class of time discretization techniques that instead discretize
the time-continuous variational principle, yielding a time-discrete variational counterpart.
This approach leads to several advantages, such as preserving important physical quantities
such as convservation of energy and momentum as well as underlying symmetries, resulting
in increased stability and accuracy compared to traditional methods.

Dual variational principle

A much more confidential principle in elastodynamics is the corresponding dual principle
to Hamilton’s principle which relies on stress fields. A first version has been proposed
by Toupin (1952) using the stress impulse 𝓣 (𝑡) = 𝓣 (𝑡0) +

∫ 𝑡

𝑡0
𝝈(𝑠)d𝑠. The corresponding

complementary elastodynamic principle (Fraeĳs de Veubeke, 1971; Tabarrok, 1984) states
that the following functional is stationary at the solution:

𝒜d[𝓣 ] =
∫ 𝑡1

𝑡0

∫
Ω

(
1
2
¤𝓣 : C−1 : ¤𝓣 − 1

2𝜌∥div𝓣 ∥2
)

dΩd𝑡 (4.20)

for all 𝓣 such that ¤𝓣 𝒏 = 0 on 𝜕ΩN. Note again that we do not consider imposed Dirichlet
boundary conditions for simplicity.

An equivalent two-field principle can be obtained by introducing the momentum density
𝒑 as an independent unknown, i.e. 𝒑 = div𝓣 . The complementary elastodynamic principle
is therefore equivalent to the following functional stationarity:

𝒜d[𝝈 , 𝒑] =
∫ 𝑡1

𝑡0

∫
Ω

(
1
2𝝈 : C−1 : 𝝈 − 1

2𝜌∥𝒑∥
2
)

dΩd𝑡 (4.21a)

for all 𝝈 , 𝒑 such that:

div 𝝈 = ¤𝒑 on Ω (4.21b)
𝝈𝒏 = 0 on 𝜕ΩN (4.21c)
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Remark 3. As (4.21a), Hamilton’s principle can also be formulated as a two field-principle
involving the displacement 𝒖 and the velocity 𝒗 under the constraint 𝒗 = ¤𝒖. Inspection of
both objective function provide a nice duality between the stress and displacement involved
in the elastic energy and between the momentum and velocity in the kinetic energy. Note that
Hamiltonian mechanics consist in performing a partial Legendre transform from the velocity
𝒗 to the momentum 𝒑.

Interestingly, we have used such a principle when dealing in (Bouteiller et al., 2022) with
layerwise plate models which are formulated from the 3D dual elastic principle, in the same
spirit as the shear lag model. However, their extension to dynamic scenarios was initially
not straightforward. While models derived from a primal variational principle can easily be
extended to dynamics by using the same Ansatz for both the microscopic displacement and
velocity fields, this is not the case for stress-based models. In this case, generalized degrees
of freedom are obtained through duality with the generalized equilibrium equations. When
transitioning to a dynamic setting, the challenge is to compute the generalized inertias from
the local density distribution of the underlying material. In some cases, generalized dofs may
have a clear physical interpretation, making it simple to define the generalized inertias, but
this is not always the case. To address this, a systematic procedure is required to obtain a
consistent elastodynamic version of stress-based models.

This procedure relies on the dual principle (4.21a) in which an Ansatz for the microscopic
momentum 𝒑 is considered, rather than the microscopic velocity. This Ansatz must be
consistent with the corresponding Ansatz for the stress field which impacts the corresponding
microscopic dynamic equation. Going back to the shear lag model for the sake of illustration,
the latter is given by:

¤𝑝(𝑥1 , 𝑥2) =

𝜎′

1(𝑥1) −
2𝜏(𝑥1)
𝑒1

for |𝑥2| > 𝑒2/2

𝜎′
2(𝑥1) +

2𝜏(𝑥1)
𝑒2

for |𝑥2| < 𝑒2/2
(4.22)

where 𝑝 = 𝒑 · 𝒆1 is the longitudinal momentum density. A consistent use of the variational
principle (4.21a) therefore requires to choose a scalar piecewise-constant momentum with
respect to 𝑥2:

𝑝(𝑥1 , 𝑥2) =
{
𝑝1(𝑥1) for |𝑥2| > 𝑒2/2
𝑝2(𝑥1) for |𝑥2| < 𝑒2/2

(4.23)

yielding the following generalized dynamic equations for 𝑥1 ∈ 𝜔:

𝑒1 ¤𝑝1(𝑥1) = 𝑒1𝜎
′
1(𝑥1) − 2𝜏(𝑥1) (4.24a)

𝑒2 ¤𝑝2(𝑥1) = 𝑒2𝜎
′
2(𝑥1) + 2𝜏(𝑥1) (4.24b)

Assuming that the material density in both layers is described by a generic function 𝜌(𝑥2),
the kinetic energy term in (4.21a) specializes to:∫ 𝑡1

𝑡0

∫
Ω

1
2𝜌∥𝒑∥

2 dΩd𝑡 =
∫ 𝑡1

𝑡0

∫
𝜔

1
2

(
𝑒1

〈
1
𝜌

〉
1
𝑝2

1 + 𝑒2
〈

1
𝜌

〉
2
𝑝2

2

)
d𝜔 d𝑡 (4.25)

where ⟨★⟩𝑖 denotes the average of ★ over layer 𝑖.
Introducing the same Lagrange multipliers 𝑢1 (resp. 𝑢2) as in Section 4.1.1) (now as-

sociated with the dynamic equations (4.24)), the optimality conditions of (4.21a) now read:
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𝜎1(𝑥1)
𝐸1

= 𝑢′1(𝑥1) (4.26a)

𝜎2(𝑥1)
𝐸2

= 𝑢′2(𝑥1) (4.26b)

𝜏(𝑥1)
𝜅

= 𝑢1(𝑥1) − 𝑢2(𝑥1) (4.26c)〈
1
𝜌

〉
1
𝑝1 = ¤𝑢1 (4.26d)〈

1
𝜌

〉
2
𝑝2 = ¤𝑢2 (4.26e)

As a result, we can remark that this approach yields 𝑚𝑖 = 1/
〈
1/𝜌

〉
𝑖

as the generalized
inertia associated with the motion of layer 𝑖. On the contrary, if we had assumed that layer 𝑖
was animated by a uniform translation motion of velocity ¤𝑢𝑖 , we would have naturally used
𝑚𝑖 =

〈
𝜌
〉
𝑖
as the corresponding inertia.

In the general case, see (Bouteiller et al., 2022), the above procedure yields the generalized
momentum/velocity constitutive relation: ¤𝑼 = 𝑫𝑷 where ¤𝑼 is the generalized velocity
vector, 𝑷 the generalized momentum vector. Inverting this relation as 𝑷 = 𝑫−1 ¤𝑼 , 𝑫−1 can be
interpreted as the generalized mass matrix of the considered model.

4.2 Contact conditions

The previous primal and dual variational principle of linear elastostatics and elastody-
namics can also be extended to situations involving contact conditions.

4.2.1 Elastic and unilateral support conditions

Let us first start with the case where elastic support conditions are considered. Consider
a portion 𝜕ΩC of the boundary on which the domain Ω is connected to a linear density of
springs with initial length 𝑔0(𝒙) and aligned along the unit direction 𝑵 . In the deformed
configuration, the new length in this direction is 𝑔𝑁 (𝒙) = 𝑔0(𝒙) + 𝒖(𝒙) · 𝑵 . Assuming that
the density of spring stiffness is 𝐾𝑁 , the equilibrium of such a system is characterized by
the variational principle (4.1) where the potential energy is complemented with the springs
contribution to the elastic energy:

𝐸el, springs(𝒖) =
∫
𝜕ΩC

1
2𝐾𝑁 (𝑔𝑁 (𝒙) − 𝑔0(𝒙))2 d𝑆 =

∫
𝜕ΩC

1
2𝐾𝑁 (𝒖(𝒙) · 𝑵 )2 d𝑆 (4.27)

Obviously, this can be further generalized to tangential spring stiffnesses or nonlinear elas-
ticity provided that the latter is derived from a convex potential 𝜓c(𝑔𝑁 , 𝒈𝑇) with respect to
the gap measure of normal component 𝑔𝑁 and tangential component 𝒈𝑇 .

Unilateral contact against a fixed obstacle can then be formalized as a specialized case of
nonlinear spring elasticity in which:

𝜓c(𝑔𝑁 , 𝒈𝑇) =
{

0 if 𝑔𝑁 ≥ 0
+∞ otherwise

(4.28)
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The corresponding primal variational principle therefore reads:

min
𝒖

∫
Ω

1
2 𝜺 : C : 𝜺dΩ −

∫
Ω

𝒇 · 𝒖 dΩ −
∫
𝜕ΩN

𝑻 · 𝒖 d𝑆

s.t. 𝒖 = 𝒖D on 𝜕ΩD
𝒖 · 𝑵 ≥ −𝑔0 on 𝜕ΩC

(4.29)

which turns out to be quadratic optimization problem with linear equality and inequality
constraints.

One can show that the dual variational principle will involve:

𝜓∗
c(𝜎𝑁 , 𝝈𝑇) =

{
0 if 𝜎𝑁 ≤ 0 and 𝝈𝑇 = 0
+∞ otherwise

(4.30)

where 𝜎𝑁 = 𝑵 · (𝝈𝑵 ) is the normal traction and 𝝈𝑇 = 𝝈𝑵 − 𝜎𝑁𝑵 is the tangential traction.
In particular, as 𝜓c is the indicator of the unilateral cone R+ × R2, 𝜓∗

c is the indicator of the
dual cone R− × {0}.

4.2.2 Including frictional contact

Including frictional contact in the previous formulation poses however tremendous ad-
ditional complexity due to the fact that Coulomb’s friction law does not satisfy the normality
rule (or maximum dissipation principle). Indeed, the corresponding stress criterion is de-
scribed by the Coulomb friction cone:

𝒦𝜇 = {(𝜎𝑁 , 𝝈𝑇) ∈ R3 s.t. 𝜇𝜎𝑁 + ∥𝝈𝑇∥ ≤ 0} (4.31)

The corresponding dual variables being the normal and slip velocities ( ¤𝑔𝑁 , ¤𝒈𝑇) = ( ¤𝑢𝑁 , ¤𝒖𝑇),
an associative friction law would require the latter to belong to the corresponding dual cone:

𝒦 ∗
𝜇 = {( ¤𝑢𝑁 , ¤𝒖𝑇) ∈ R3 s.t. ¤𝑢𝑁 ≤ 𝜇∥ ¤𝒖𝑇∥} (4.32)

along with the complementarity condition:

𝜎𝑁 ¤𝑢𝑁 + 𝝈𝑇 · ¤𝒖𝑇 = 0 (4.33)

In particular, we see that, in the case of a frictional sliding contact with a non zero velocity,
an associative friction law would predict a non-zero normal velocity such that ¤𝑢𝑁 = 𝜇∥ ¤𝒖𝑇∥,
that is a dilation proportional to the friction coefficient.

However, as regards real materials, dilation of frictional contact is considered to be zero.
One therefore needs to abandon the use of an associated rule and turn instead to a non-
associated rule stating that, if frictional sliding occurs, then ¤𝑢𝑁 = 0 and ∥ ¤𝒖𝑇∥ > 0. It turns
out that Coulomb friction can still be formulated using second-order cones by introducing a
modified velocity ¤̃𝒖 = ( ¤𝑢𝑁 + 𝜇∥ ¤𝒖𝑇∥, ¤𝒖𝑇).

Then, the Coulomb law is equivalent to saying that (𝜎𝑁 , 𝝈𝑇) ∈ 𝒦𝜇 and ¤̃𝒖 ∈ 𝒦 ∗
𝜇 along

with the complementarity condition. In this case, one indeed recovers a purely sliding
behaviour with ¤𝑢𝑁 = 0. However, there is no longer a potential associated with the above
formulation, meaning that a problem including friction can no longer be formulated as a
convex optimization problem. Instead, one ends up with a so-called non-monotone second-
order complementarity problem which is inherently more difficult to solve than a convex SOCP
problem. For more details on the numerous available strategies to deal with such 3D contact
problems, we refer the reader to the extensive review by Acary et al. (2018). Let us just
mention that some strategies might involve convexifying the problem by still retaining an
associative optimization formulation or by using a fixed-point algorithm solving a sequence
of SOCP problems.
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4.3 Asymmetric behaviours

All of the previous primal and dual variational principles of linear elastostatics and
elastodynamics can also be extended without any difficulty to more general settings, in
particular when replacing the quadratic strain energy 1

2 𝜺 : C : 𝜺 with a generic convex strain
energy potential𝜓(𝜺) in (4.1). Similarly, the dual principle (4.6) can be extended by accounting
for the corresponding conjugate stress energy potential 𝜓∗(𝝈).

4.3.1 No-tension materials

One typical example consists of elastic materials which cannot sustain any tensile state due
to their brittle behaviour in tension e.g. rocks, masonry, etc. Rather than modeling explicitly
such a brittle behaviour, a simplified analysis of such materials relies on a constitutive model
where zero stiffness is assumed for tensile states, leading to the so-called no-tension material
behaviour. Note that the latter is non-dissipative and can be seen as an extension of the
unilateral contact law to a 3D behaviour. The no-tension material model can be formulated
using the following complementary elastic energy:

𝜓∗(𝝈) =


1
2𝝈 : C−1 : 𝝈 if 𝝈 ∈ 𝒦−

+∞ otherwise
(4.34)

where 𝒦− is a cone corresponding to "negative" stress states. There may exist different
definitions of what "negative" means but authors generally rely on the cone of negative semi-
definite stress states 𝒦− = −S+. In this case, "negative" means that all principal stresses are
compressive only.

The corresponding stress-strain relation is then derived from the above potential as fol-
lows:

𝜺 ∈ 𝜕𝜓∗(𝝈) = 𝜕𝜓∗
el(𝝈) ⊕ 𝜕𝛿𝒦−(𝝈) (4.35)

= {C−1 : 𝝈} ⊕ 𝒦 ◦
− (4.36)

so that:

𝜺 = 𝜺el + 𝜺c (4.37a)
𝝈 = C𝜺el (4.37b)
𝜺c ≽ 0, 𝝈 ≼ 0, 𝝈 : 𝜺c = 0 (4.37c)

which also corresponds to the primal strain energy potential:

𝜓(𝜺) = inf
𝜺el

1
2 𝜺el : C : 𝜺el

s.t. 𝜺 ≽ 𝜺el

(4.38)

which involves the elastic strain as an internal state variable which has to be optimized for.
As a result, the corresponding discrete problem yields a quadratic optimization problem

with SDP constraints in 3D (SOCP in 2D). Again, this problem is highly non-smooth due to
the abrupt change in behaviour between tension and compression.
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Figure 4.3: Left: wrinkled membrane model. Right: tension field membrane model.

4.3.2 Membranes

Non-convex variational principle

On a close topic, we consider the deformation of a thin hyperelastic membrane. In the
finite-strain setting, the hyperelastic potential of a 3D material can be expressed as a function
of some nonlinear strain measure such as the Cauchy-Green strain tensor 𝑪 = 𝑭T𝑭 where
𝑭 = 𝑰 + ∇𝒖 is the deformation gradient. The free energy hyperelastic potential is then
𝜓(𝑪) and the displacement field can be obtained as the solution to the following minimum
principle:

inf
𝒖 ,𝑪

∫
Ω

𝜓(𝑪)dΩ −
∫
Ω

𝒇 · 𝒖 dΩ −
∫
𝜕ΩN

𝑻 · 𝒖 d𝑆

s.t. 𝑪 = 𝑰 + ∇𝒖 + ∇𝒖T + ∇𝒖T∇𝒖
𝒖 = 0 on 𝜕ΩD

(4.39)

In the general case, such a problem is not convex which makes the analysis of hyperelastic
materials rather complex. In particular, some equilibrium positions can be unstable and lead
to buckling phenomena.

Tension field elastic membrane

As regards thin hyperelastic membranes, local buckling (or wrinkling) will occur at very
low load levels in compressed regions, see Fig. 4.3. In the limit of infinitely thin membranes,
compressed stress states cannot be supported at all. Tension field theory (Wagner, 1929;
Reissner, 1938) has been proposed in order to simplify the analysis of thin membranes.

In the finite-deformation case, the tension-field theory has been first formalized by Pipkin
(1994) by introducing a relaxed strain energy functional. More precisely, introducing the
following convex relaxation of 𝜓:

𝜓memb(𝑪) = inf
𝑪el

𝜓(𝑪el)
s.t. 𝑪el ≽ 𝑪

(4.40)

the tension field variational principle is obtained when replacing 𝜓 with 𝜓memb in (4.39):

inf
𝒖 ,𝑪el

∫
Ω

𝜓(𝑪el)dΩ −
∫
Ω

𝒇 · 𝒖 dΩ −
∫
𝜕ΩN

𝑻 · 𝒖 d𝑆

s.t. 𝑪el ≽ 𝑰 + ∇𝒖 + ∇𝒖T + ∇𝒖T∇𝒖
𝒖 = 0 on 𝜕ΩD

(4.41)
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The above relaxed potential then provides a tension-field constitutive equation in terms
of the second Piola-Kirchhoff stress 𝑺 as follows:

𝑺 = 2
𝜕𝜓

𝜕𝑪
(𝑪el) (4.42a)

𝑪 = 𝑪el + 𝑪w (4.42b)
𝑪w ≼ 0, 𝑺 ≽ 0, 𝑺 : 𝑪w = 0 (4.42c)

where𝑪w can be seen as an inelastic wrinkling strain accounting for the occurrence of wrinkles
in compressed regions. As a consequence, the resulting stress is always tensile. Clearly, in
the small-strain setting, the above formulation corresponds exactly to the case of a linear
no-compression material as discussed in Section 4.3.1 for a linear no-tension material.

Conic reformulation

Finally, Pipkin (1994) showed that when 𝜓 is a convex function of 𝑪, 𝜓memb turns out to
be a convex function of 𝑭 or, equivalently, of the displacement gradient 𝑮 = ∇𝒖. Indeed,
if 𝜓(𝑪el) is convex, the relaxed minimum principle (4.41) is a convex program due to the
following conic reformulation of the SDP constraint (see also Kanno (2011)):

𝑪el ≽ 𝑪 = 𝑰 + 𝑮 + 𝑮T + 𝑮T𝑮 (4.43)

Let us first recall the Schur complement lemma for a PSD block-matrix:

Lemma 1. Let 𝒁 be a symmetric block-matrix

𝒁 =

[
𝑼 𝑽
𝑽T 𝑾

]
(4.44)

in which 𝑾 ≻ 0. Then 𝒁 ≽ 0 if and only if 𝑼 − 𝑽𝑾−1𝑽T ≽ 0.

Let us then consider the following symmetric matrix:

𝒁 =

[
𝑪el 𝑰 + 𝑮T

𝑰 + 𝑮 𝑰

]
≽ 0 (4.45)

we have𝑾 = 𝑰 ≻ 0 and𝑼−𝑽𝑾−1𝑽T = 𝑪el−(𝑰+𝑮T)(𝑰+𝑮) = 𝑪el−𝑰−𝑮−𝑮T−𝑮T𝑮 = 𝑪el−𝑪.
As a result, using the Schur complement lemma, 𝒁 ≽ 0 if and only if 𝑪el ≽ 𝑪.

In conclusion, if 𝜓(𝑪) admits a convex conic representation in terms of 𝑪, problem (4.41)
is a convex conic program. In Kanno (2011), only Saint-Venant-Kirchhoff materials were
considered for which 𝜓(𝑪) is a quadratic function. In Bleyer (2022), we provided a conic
formulation for more realistic hyperelastic models including an incompressible Ogden or
neo-Hookean material.

Annular square membrane deformation

By way of illustration, we consider a square annular membrane initially located in the
(𝑂𝑥1𝑥2) plane, embedded in R3. Its outer boundary of size 𝑊out = 50 mm is fixed whereas
the inner boundary, of size 𝑊in = 17.5 mm, is subjected to an in-plane torsion of angle 90◦
and to an out-of-plane vertical displacement of amplitude 𝑡𝑊out/2 for 𝑡 = 0 to 𝑡 = 1. The
variational problem (4.41) is discretized using linear triangular finite-elements and solved
with Mosek interior point solver, see Chapter 5 for more details on the numerical toolchain.
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(a) 𝑡 = 0.2 (b) 𝑡 = 0.5 (c) 𝑡 = 1

Figure 4.4: Annular square deformed membrane at various loading steps. Blue regions
denote wrinkled regions. Black arrows indicate principal stresses amplitude and orientation.

Fig. 4.4 reports different snapshots of the deformation and wrinkled state of the mem-
brane. We can observe that initially a large inner region is in a wrinkled state due to compres-
sion induced by the torsion. At larger load steps, the wrinkled region extent tends to diminish
due to the important tension exerted by the vertical displacement. In the last stage, the shape
of the wrinkled regions is quite complex due to the combination of excessive shearing and
elongation. The obtained wrinkled regions are quite similar to those obtained in de Rooĳ
and Abdalla (2015) with a slightly different material model. Finally, let us remark that it was
not necessary to subdivide the final loading into smaller load steps. Interior-point methods
are known to be remarkably robust and quite insensitive to a good or bad initial guess of
the solution. The final solution, as well as even more extremely deformed configurations for
𝑡 > 1, could be obtained in only 20 iterations.

4.4 Plasticity-like behaviours

Numerical resolution of elastoplastic computations are commonly approached via an
elastic predictor/plastic corrector approach embedded in a global Newton-Raphson proce-
dure. Return-mapping schemes (Simo and Hughes, 2006) refer to the resolution of plasticity
evolution equations at the local (material point level). Such a procedure can be shown to
be equivalent to solving an inner local minimization problem with respect to plastic strain
increments. Some recent works have proposed to rely on conic solvers for solving this local
problem (Bruno et al., 2020). Obviously, global convergence of the Newton procedure is not
guaranteed and one typically needs a good initial guess to achieve efficiency and robustness.
Other approaches may include semi-smooth Newton methods (Christensen, 2002; Sander and
Jaap, 2020), general interior-point methods (Krabbenhoft et al., 2007), sequential quadratic
programming, (Bilotta et al., 2012), accelerated proximal gradient methods (Kanno, 2016), etc.

In this section, we discuss variational principles for problems involving a plastic-like
behaviour. Let us first mention that variational principles for plasticity have first been given
by Hill (1948) on the basis of the maximum dissipation principle and Maier (1968) was the
first to propose primal and dual principles formulated as quadratic convex optimization
programs.
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4.4.1 Deformation theory of plasticity

Mathematical analysis of plasticity problems is often simplified by considering the so-
called deformation theory of plasticity. Instead of considering the original history-dependent
formulation of plasticity involving total strain and plastic strain rates, the deformation theory
of plasticity can be seen as a nonlinear elasticity formulation involving a relation between
total stress and total strains, ignoring history effects. For instance, for linear elasticity and
perfect plasticity, a variational formulation can be obtained from:

inf
𝒖 ,𝜺p

∫
Ω

𝜓(𝜺, 𝜺p)dΩ −𝑊ext(𝒖)
s.t. 𝜺 = ∇𝑠𝒖

𝒖 = 0 on 𝜕ΩD

(4.46)

where𝑊ext is the work of external loads and with the following non-linear potential:

𝜓(𝜺, 𝜺p) = 1
2 (𝜺 − 𝜺p) : C : (𝜺 − 𝜺p) + 𝜋𝐺(𝜺p) (4.47)

where 𝜋𝐺 is the support function of the elastic domain. For instance, for von Mises plasticity,
the elastic domain is:

𝐺 =

{
𝝈 s.t.

√
3
2∥dev(𝝈)∥2 ≤ 𝜎0

}
(4.48)

and the support function is given by:

𝜋𝐺(𝜺p) =

√

2
3𝜎0∥𝜺p∥2 if tr 𝜺p = 0

+∞ otherwise
(4.49)

The structural response is therefore no longer history-dependent. Such a theory provides
useful results only in situations of proportional loadings and where no local elastic unloading
occurs. A better variational treatment of elastoplasticity will be given later in Section 4.5.
Finally, the dual variational problems involves the following conjugate potential:

𝜓∗(𝝈) = 1
2𝝈 : C−1 : 𝝈 + 𝛿𝐺(𝝈) (4.50)

Remark 4. The formulation of no-tension materials discussed in Section 4.3.1 is equivalent
to a deformation plasticity formulation with an elastic domain 𝐺 corresponding to pure
compression stress states 𝒦−.

4.4.2 Limit analysis

Variational problems involving perfect plasticity behaviours generally possess a solution
only if the loading level is sufficiently low. Indeed, above a certain limit load, no stable
equilibrium complying with plastic yield conditions can be found. The computation of such
a limit load is the purpose of limit analysis theory which can be formulated by adapting both
variational problems.

Considering the primal formulation (4.46), a limit analysis formulation can be obtained
by assuming a rigid elastic behaviour, enforcing 𝜺 = 𝜺p. The resulting objective function
involves only 𝜋𝐺 and the work of external loads. It is homogeneous of degree 1 so that
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optimal solutions are determined up to a positive multiplicative constant. To fix such a
constant, one generally considers the following normalized problem:

𝜆+ = min
𝒖

∫
Ω

𝜋𝐺(𝜺)dΩ

s.t. 𝜺 = ∇𝑠𝒖
𝒖 = 0 on 𝜕ΩD
𝑊ext(𝒖) = 1

(4.51)

which is the kinematic (upper-bound) formulation of limit analysis. Standard convex duality
then shows that the dual reads:

𝜆+ = max
𝜆,𝝈

𝜆

s.t. div 𝝈 + 𝜆 𝒇 = 0 in Ω

𝝈𝒏 = 𝜆𝑻 on 𝜕ΩN
𝝈 ∈ 𝐺 in Ω

(4.52)

where the load factor 𝜆 appears as an additional scalar optimization variable. Problem (4.52)
corresponds to the static (lower-bound) formulation of limit analysis. It amounts to finding
the maximum load factor such that there exists a stress field 𝝈 in equilibrium with the scaled
loading (𝜆 𝒇 ,𝜆𝑻) and complying with the yield condition 𝝈 ∈ 𝐺. Importantly, both problems
(4.51) and (4.52) yield the same optimal value 𝜆+ corresponding to the structure limit load.
The theorems of limit analysis state that the structure is safe if 𝜆 < 𝜆+ and will collapse
if 𝜆 > 𝜆+. In this case, the optimal "displacement" 𝒖 in (4.51) provides the corresponding
plastic collapse mechanism.

Clearly, one main difference between all of the previous problems and those of limit
analysis is that there is no quadratic (or strictly convex) objective function in the latter. The
objective is homogeneous of degree 1 which makes its numerical resolution using Newton-
like procedure extremely challenging. In fact, there is no notion of any constitutive relation
anymore which reduces only to the fact that 𝝈 and 𝜺 must belong to convex sets and normal
cones:

𝝈 ∈ 𝜕𝜋𝐺(𝜺) = 𝐺 and 𝜺 ∈ 𝜕𝛿𝐺(𝝈) = 𝑁𝐺(𝝈) (4.53)

This observation is one of the main reasons for which IPM solvers have been successfully used
to solve numerical limit analysis problems. A more detailed presentation of limit analysis
problems, their numerical resolution and applications is given in Chapter 5.

Remark 5. A very closely related theory to limit analysis is that of shakedown analysis. Shake-
down analysis deals with cyclic loadings and consists in finding the maximum load level
for which there exists an elastic shakedown state, i.e. an asymptotic elastic steady-state state.
Above such a level, structures may undergo an asymptotic steady-state plastic cycle (palstic
shakedown) or unbounded plastic evolution (ratcheting). Both cases can be detrimental to
structural safety and it is therefore important to compute the structure elastic shakedown
limit. Koiter and Melan theorems respectively correspond to the shakedown extension of the
kinematic and static limit analysis theorems.

4.4.3 Viscoplastic fluids

If elastoplasticity can be seen as a mathematical middle ground between elasticity (quadratic
potential) and limit analysis (homogeneous potential), another kind of middle ground is pro-
vided by viscoplastic or yield stress fluids. Indeed, such fluids behave like a standard Newtonian
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Figure 4.5: Rheological behaviour of a Bingham fluid

fluid only if the local stress reaches a critical threshold, the fluid yield stress 𝜏0. If the stress is
below 𝜏0, the fluid behaves like a rigid solid. Such fluids occur in many industrial applica-
tions such as civil engineering (fresh concrete), petroleum or cosmetics (crude oil, toothpaste,
foams, mayonnaise), natural hazards (lava, muds), etc. One of the most simple model to
describe such fluids is the Bingham model which assumes a linear Newtonian behaviour,
characterized by a viscosity 𝜂, above the yield stress, see Fig. 4.5. For recent reviews on yield
stress fluids, we refer to Balmforth et al. (2014); Coussot (2016).

It can be shown that the solution velocity field 𝒗 in steady-state conditions is given by the
solution to:

min
𝒗

∫
Ω

(
𝜂𝒅 : 𝒅 + 𝜏0

√
2𝒅 : 𝒅

)
dΩ

s.t. 𝒅 = ∇𝑠𝒗
div 𝒗 = 0
𝒗 = 𝒗D on 𝜕ΩD

(4.54)

where 𝒅 is the strain rate tensor and 𝒗D denotes imposed velocities on the Dirichlet boundary.
The objective function:

𝜙(𝒅) = 𝜂𝒅 : 𝒅 + 𝜏0
√

2𝒅 : 𝒅 (4.55)

indeed contains a quadratic viscous contribution and a homogeneous yield-stress contribu-
tion. Its subgradient provides the corresponding stress-strain rate relationship:

𝝈 ∈ 𝜕𝜙(𝒅) = {2𝜂𝒅} + 𝐺 (4.56)

where 𝐺 is the convex domain such that 𝜏0
√

2𝒅 : 𝒅 is its support function. We therefore see
that:

𝝈 = 2𝜂𝒅 + 𝝀 (4.57)

where 𝝀 is an overstress verifying 𝝀 ∈ 𝐺 and 𝒅 ∈ 𝑁𝐺(𝝀). More precisely, we have:

𝐺 =

{
𝝀 s.t.

√
1
2𝝀 : 𝝀 ≤ 𝜏0

}
(4.58a)√

1
2𝝀 : 𝝀 < 𝜏0 ⇒ 𝒅 = 0 (4.58b)

𝒅 ≠ 0 ⇒ 𝝀 =
√

2𝜏0
𝒅

∥𝒅∥2
(4.58c)
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Introducing a typical velocity 𝑉 and a typical length-scale 𝐿 for the problem, we can see
that the above variational principle is characterized by a single non-dimensional number,

the so-called Bingham number Bi =
𝜏0𝐿

𝜂𝑉
. This number measures the relative influence of

yield stress compared to viscosity. For Bi ≫ 1, the fluid behaves very much like a collapse
mechanism in limit analysis. Conversely, Bi ≪ 1, the fluid is close to being a classical New-
tonian fluid since yield stress is very low so that flow occurs almost instantaneously. As
hinted before, viscoplastic variational problems are another way of combining a quadratic
behaviour (viscous term) with a homogeneous term (yield stress term). In this case, 𝜙 is the
sum of both kinds of terms whereas the potential of elastoplastic behaviours is formed from
the inf-convolution of similar terms.

Regarding their numerical simulation, viscoplastic fluids are very challenging because
of the distinction between flowing and non flowing regimes. This non-smoothness in the
expression of the constitutive relation necessitates to resort to more advanced techniques
than those traditionally used for Newtonian fluids for instance. Regularized models have
first been proposed to replace the non-smooth viscoplastic constitutive law by a smooth
purely viscous model (Bercovier and Engelman, 1980; Papanastasiou, 1987). Augmented
Lagrangian (AL) approaches have then emerged as an interesting alternative to the use of
regularized models to solve viscoplastic fluid flows, it is now one of the most popular method
to solve such problems (Fortin and Glowinski, 1982; Glowinski and Le Tallec, 1989; Saramito
and Roquet, 2001; Dean et al., 2007; Glowinski and Wachs, 2011). However, it suffers from
a slow convergence rate so that three-dimensional simulations are still extremely expensive.
Recently, it has been pointed out that such AL schemes can be accelerated quite easily, yielding
a faster convergence rate (Treskatis et al., 2016). For a review on the simulation of viscoplastic
fluids and various extensions, we refer to Saramito and Wachs (2017) and references herein.
In Bleyer et al. (2015c); Bleyer (2018a), we proposed to solve the corresponding variational
problem using conic programming and IP solvers and demonstrated their computational
advantages over AL algorithms.

As an illustration, we consider the classical lid-driven cavity problem where 𝒗 = 𝑉𝒆𝑥
is imposed on the top boundary with 𝒗 = 0 on the remaining boundary of square cavity.
The solution is obtained from a custom IP solver written in FEniCS (see Bleyer (2017) for
more details) using a quadratic discretization of the velocity field on triangular elements.
Iso-stress contour lines and unyielded regions (in gray) are reported in Fig. 4.6. In particular,
the location of such regions for different Bingham numbers is consistent with results from
the literature, see for instance Syrakos et al. (2013); Treskatis et al. (2016).

4.5 Standard dissipative materials

We have seen that variational problems naturally describe the non-dissipative materials
characterized by a free-energy potential 𝜓(𝜺). The treatment of dissipative materials is more
involved since we need to account both for energy and dissipation terms depending on internal
state variables. Building upon the works of Ziegler (1963) and Moreau (1970) who introduced
the notion of a pseudo-potential of dissipation, Halphen and Nguyen (1975) formalized such
concepts more generally with the introduction of Generalized Standard Materials (GSM). Such a
setting enables in particular to easily construct constitutive laws which automatically satisfy
the principles of thermodynamics.



4.5. STANDARD DISSIPATIVE MATERIALS 63

(a) Bi = 0 (b) Bi = 1

(c) Bi = 2 (d) Bi = 5

(e) Bi = 20 (f) Bi = 200

Figure 4.6: Velocity streamlines and unyielded elements (in gray) for the lid-driven cavity
problem (ℎ = 𝐿/200) with varying Bingham numbers. The bottom unyielded region is fixed
whereas the central one rotates due to the surrounding moving fluid.
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4.5.1 Generalized Standard Materials

Let us consider a material described by the total strain 𝜺 and a set of internal state variables
𝜶. The GSM framework postulates the existence of:

• a free energy density 𝜓(𝜺, 𝜶)

• a dissipation pseudo-potential 𝜙(¤𝜺, ¤𝜶; 𝜶)

In particular, the latter is assumed to be a positive convex function of the state variable rates
(¤𝜺, ¤𝜶). The semi column followed by 𝜶 means that it may also depend on the state itself.

In duality to internal state variables, there exist associated thermodynamic forces. The
constitutive equations relating forces to state variables are obtained from the corresponding
potentials:

𝝈 = 𝝈nd + 𝝈d (4.59a)
0 = 𝒀nd + 𝒀d (4.59b)

(𝝈nd ,𝒀nd) ∈ 𝜕(𝜺,𝜶)𝜓(𝜺, 𝜶) (4.59c)
(𝝈d ,𝒀d) ∈ 𝜕(¤𝜺, ¤𝜶)𝜙(¤𝜺, ¤𝜶; 𝜶) (4.59d)

where the subscript ★nd (resp. ★d) refers to a non-dissipative (resp. dissipative) quantity.
Note that, in most cases, the free energy is a smooth function so that the subgradient often
reduces to a classical differentiation whereas the pseudo-potential is often non-smooth in
many applications. Moreover, the Young-Fenchel property (3.20) also provides the inverse
constitutive relations using the corresponding conjugate potentials:

(𝜺, 𝜶) ∈ 𝜕(𝝈nd ,𝒀nd)𝜓
∗(𝝈nd ,𝒀nd) (4.60a)

(¤𝜺, ¤𝜶) ∈ 𝜕(𝝈d ,𝒀d)𝜙
∗(𝝈d ,𝒀d; 𝜶) (4.60b)

Finally, if equations (4.59) describe the constitutive relations for a generic GSM materials,
we must mention two important specific cases. The first one is the case where the total
strain 𝜺 is not considered as a dissipative variable e.g. (visco)elasticity, elasto(visco)plasticity,
damage, etc. Then, 𝝈d = 0 and 𝝈 = 𝝈nd. The second important case is that of rate-independent
behaviours such as elastoplasticity, as opposed to elastoviscoplasticity for instance. Rate-
independent cases are associated with a homogeneous dissipation pseudo-potential. This
specific situation results in (4.59d) being an inclusion in a convex set and (4.60b) being an
inclusion in the corresponding normal cone.

4.5.2 Primal incremental variational principle

In practice, solving the evolution of a GSM material is achieved using a time discretization
scheme. Dividing the total interval into finite time intervals [𝑡𝑛 ; 𝑡𝑛+1], an approximate solution
(𝒖𝑛+1 , 𝜶𝑛+1) is computed based on the knowledge of the solution at the previous time step
(𝒖𝑛 , 𝜶𝑛). There may exist different strategies for choosing a time discretization scheme. The
most common strategy is to discretize in time the evolution equations (4.59), using a fully
implicit Euler scheme or a 𝜃-scheme. The nonlinear resolution of the constitutive equations
is then embedded into a global Newton-Raphson method solving for the system equilibrium.
In some instances, the resulting time-discrete system may loose some structural properties
of the original evolution equation, leading for instance to non-symmetric tangent operators.

Another approach relies on the formulation of an incremental variational principle over
[𝑡𝑛 , 𝑡𝑛+1] with increments of strains and internal state variables (Ortiz and Stainier, 1999;
Miehe, 2002; Mielke, 2005; Maso et al., 2006).
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Definition 11 (Primal incremental variational problem). The solution (𝒖𝑛+1 , 𝜶𝑛+1) is com-
puted from the resolution of the following incremental variational problem:

(𝒖𝑛+1 , 𝜶𝑛+1) = arg min
𝒖∈𝒰ad ,𝜶

∫
Ω

(
𝜓(𝜺, 𝜶) + Δ𝑡𝜙

(
Δ𝜺
Δ𝑡
,
Δ𝜶
Δ𝑡

; 𝜶𝑛+𝜃
))

dΩ −𝑊ext,𝑛+1(𝒖) (4.61)

The incremental variational problem (4.61) therefore amounts to solving for displacement
and internal state variables increments by minimizing a potential which is parameterized by
the previous state. We see that, even with convex 𝜓 and 𝜙, the resulting problem is not
necessarily convex, owing to the dependence of the pseudo-dissipation potential to the state
which has been evaluated at time 𝑡𝑛+𝜃 = 𝑡𝑛 + 𝜃Δ𝑡 with 𝜃 ∈ [0; 1]. Choosing 𝜃 = 0 for this
term leads to a semi-implicit scheme which restores the original convexity. In the following,
we will assume for simplicity that the dissipation potential does not depend on the state,
unless otherwise stated. As a result, the incremental problem can also be formally written in
a more compact form as:

𝒖𝑛+1 = arg min
𝒖∈𝒰ad

𝐽(𝜺; 𝜺𝑛 , 𝜶𝑛) −𝑊ext,𝑛+1(𝒖) (4.62)

where 𝐽(𝜺; 𝜺𝑛 , 𝜶𝑛) =
∫
Ω

𝑗(𝜺; 𝜺𝑛 , 𝜶𝑛)dΩ (4.63)

𝑗(𝜺; 𝜺𝑛 , 𝜶𝑛) = min
𝜶

𝜓(𝜺, 𝜶) + Δ𝑡𝜙
( 𝜺 − 𝜺𝑛

Δ𝑡
,
𝜶 − 𝜶𝑛
Δ𝑡

)
(4.64)

where 𝐽 can be seen as an incremental global potential and 𝑗 is the associated volume density.
The latter is obtained through an implicit minimization over the state variables 𝜶 as a function
of the observable state variable 𝜺. Both of them are parameterized by the values (𝜺𝑛 , 𝜶𝑛) of
the state variables at the previous time step. The final variational problem is therefore very
similar to a non-linear elastic principle such as (4.1) except that the potential changes at each
increment. The optimality condition:

𝝈 ∈ 𝜕𝑗(𝜺; 𝜺𝑛 , 𝜶𝑛) (4.65)

represents the final stress/strain relation where internal state variables are implicitly solved
for in the partial minimization. Akin to variational time integrators, using such variational
formulations of constitutive relation updates (Ortiz and Stainier, 1999; Heuzé and Stainier,
2022) enables to preserve properties of the underlying variational structure, such as symme-
tries of the tangent operator for instance.

Remark 6. The discrete evolution [0;𝑇] involves a sequential resolution of problems (4.61)
since each problem relies on the previous solution. There have been attempts to solve for the
whole evolution curve on a given time interval [0;𝑇] in a single computation. For instance,
Mielke and Ortiz (2008) proposed a single variational principle based on a weighted sum of
each incremental contribution. The corresponding Pareto weights are exponentially decaying
in time in order to preferentially solve the first, then the second incremental problem and so
on. Unfortunately, such a construction yields an extremely poorly conditioned optimization
problem which cannot be solved numerically in an efficient manner. The Brezis-Ekeland-
Nayrolle principle has also been applied to the case of standard plasticity (Buliga and de Saxcé,
2017; Cao et al., 2020), resulting in a two-field variational problem involving the stress and
the displacement. The latter is however not jointly convex with respect to both stress and
displacement which makes its numerical resolution for large scale problems more difficult.
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4.5.3 Dual incremental variational principle

To our knowledge, we did not find in the literature any derivation of the dual problem
to (4.61) in the general case. The latter involves stresses and thermodynamic forces rather
than strain and internal variables as primary unknowns. Considering 𝒖D = 0 for simplicity,
it reads:

Definition 12 (Dual incremental variational problem). The solution (𝝈𝑛+1 ,𝒀𝑛+1) is computed
from the resolution of the following incremental variational problem:

(𝝈𝑛+1 ,𝒀𝑛+1) = arg min
𝝈 ,𝒀 ,𝝈nd ,𝝈d ,𝒀nd ,𝒀d

∫
Ω

(
𝜓∗(𝝈nd ,𝒀nd) + Δ𝑡𝜙∗(𝝈d ,𝒀d) + 𝝈d : 𝜺𝑛 + 𝒀d𝜶𝑛

)
dΩ

s.t. div 𝝈 + 𝒇 𝑛+1 = 0 in Ω

𝝈𝒏 = 𝑻𝑛+1 on 𝜕ΩN
𝝈 = 𝝈nd + 𝝈d

0 = 𝒀nd + 𝒀d

(4.66)

In the case where 𝜺 is not considered to be a dissipative variable, it reduces to:

(𝝈𝑛+1 ,𝒀𝑛+1) = arg min
𝝈 ,𝒀

∫
Ω

(
𝜓∗(𝝈 ,−𝒀 ) + Δ𝑡𝜙∗(𝒀 ) + 𝒀𝜶𝑛

)
dΩ

s.t. div 𝝈 + 𝒇 𝑛+1 = 0 in Ω

𝝈𝒏 = 𝑻𝑛+1 on 𝜕ΩN

(4.67)

where we introduced 𝒀 = 𝒀d = −𝒀nd. This expression is consistent with the one derived by
De Angelis and Cancellara (2017) in the viscoplastic case.

Remark 7. In the case of rate-independent materials, 𝜙 is a homogeneous function so that
(4.61) simplifies as:

(𝒖𝑛+1 , 𝜶𝑛+1) = arg min
𝒖∈𝒰ad ,𝜶

∫
Ω

(
𝜓(𝜺, 𝜶) + 𝜙 (𝜶 − 𝜶𝑛)

)
dΩ −𝑊ext,𝑛+1(𝒖) (4.68)

This results in 𝜙∗ being the indicator of some convex set 𝐺 and (4.67) reduces to:

(𝝈𝑛+1 ,𝒀𝑛+1) = arg min
𝝈 ,𝒀

∫
Ω

(
𝜓∗(𝝈 ,−𝒀 ) + 𝒀𝜶𝑛

)
dΩ

s.t. div 𝝈 + 𝒇 𝑛+1 = 0 in Ω

𝝈𝒏 = 𝑻𝑛+1 on 𝜕ΩN
𝒀 ∈ 𝐺 in Ω

(4.69)

4.6 Application to elasto-plastic problems

4.6.1 Illustration on von Mises plasticity with isotropic hardening

As an illustration of the previous principles, let us consider here the specific case of
an elastoplastic material with isotropic non-linear hardening. The state variables are the
plastic strain 𝜺p and the cumulated equivalent plastic strain 𝑝. The Helmholtz free energy is
composed of an elastic term and a hardening term:

𝜓(𝜺, 𝜺p , 𝑝) = 𝜓el(𝜺 − 𝜺p) + 𝜓h(𝑝) (4.70)
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We consider a von Mises yield criterion of uniaxial strength 𝜎0 such that the dissipation
potential is given by:

𝜙( ¤𝜺p , ¤𝑝) =
{
𝜎0

√
2
3∥ ¤𝜺p∥ if tr( ¤𝜺p) = 0

+∞ otherwise
(4.71)

In addition, we should also define the link between the cumulated plastic strain and the

plastic strain tensor:
√

2
3∥ ¤𝜺p∥ = ¤𝑝. However, this constraint cannot be enforced as such in the

definition of 𝜙 since it is not a convex constraint. Nevertheless, we can use the epigraph form

of 𝜎0

√
2
3∥ ¤𝜺p∥ to naturally introduce the link with ¤𝑝 while preserving convexity as follows:

𝜙( ¤𝜺p , ¤𝑝) =
{
𝜎0 ¤𝑝 if tr( ¤𝜺p) = 0 ;

√
2
3∥ ¤𝜺p∥ ≤ ¤𝑝

+∞ otherwise
(4.72)

Let us denote by 𝒀 𝜺p and 𝑌𝑝 the corresponding thermodynamic forces. The dual pseudo-
potential is given by:

𝜙∗(𝒀 𝜺p , 𝑌𝑝) =
{

0 if
√

3
2∥dev(𝒀 𝜺p)∥ + 𝑌𝑝 ≤ 𝜎0

+∞ otherwise
. (4.73)

The dual Gibbs free energy is given by:

𝜓∗(𝝈 ,−𝒀 𝜺p ,−𝑌𝑝) =
{
𝜓∗

el(𝝈) + 𝜓∗
ℎ
(−𝑌𝑝) if 𝝈 = 𝒀 𝜺p

+∞ otherwise
(4.74)

Later, we will use 𝑅 = −𝑌𝑝 ∈ 𝜓h(𝑝) to denote the hardening force.

The primal variational principle (4.68) writes:

(𝒖𝑛+1 , 𝜺
p
𝑛+1 , 𝑝𝑛+1) = arg min

𝒖∈𝒰ad ,𝜺p ,𝑝

∫
Ω

(
1
2 (𝜺 − 𝜺p) : C : (𝜺 − 𝜺p) + 𝜓h(𝑝) + 𝜎0(𝑝 − 𝑝𝑛)

)
dΩ −𝑊ext,𝑛+1(𝒖)

s.t. tr(𝜺p) = 0 in Ω√
2
3∥𝜺p − 𝜺

p
𝑛∥ ≤ 𝑝 − 𝑝𝑛 in Ω

(4.75)
The dual variational principle (4.69) writes:

𝝈𝑛+1 , 𝑅𝑛+1 = arg min
𝝈 ,𝑅

∫
Ω

(
1
2𝝈 : C−1 : 𝝈 + 𝜓∗

h(𝑅) − 𝝈 : (𝜺𝑛 − 𝜺
p
𝑛) − 𝑅𝑝𝑛

)
dΩ

s.t. div 𝝈 + 𝒇 𝑛+1 = 0 in Ω

𝝈𝒏 = 𝑻𝑛+1 on 𝜕ΩN√
3
2∥dev(𝝈)∥ ≤ 𝜎0 + 𝑅 in Ω

(4.76)

Note that since 𝝈𝑛 , 𝑅𝑛 and 𝝈𝑛+1 , 𝑅𝑛+1 both satisfy the plastic yield criterion, it will also be
satisfied for any linear time interpolation between 𝝈𝑛 , 𝑅𝑛 and 𝝈𝑛+1 , 𝑅𝑛+1 between times 𝑡𝑛
and 𝑡𝑛+1 owing to the convexity of the yield surface.
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Figure 4.7: Primal/dual FE computations for the torsion of an elastoplastic cylinder, taken
from (El Boustani, 2020)

4.6.2 Primal-dual FE discretizations

Note that both problems (4.75) and (4.76) are SOC constrained convex optimization prob-
lems. In the linear hardening case, the objective will be quadratic. Similarly to the elastic case
in (4.8), both optimal values are opposite for the true elastoplastic solution. When restrict-
ing both minimum problems to finite-dimensional subspace obtained from a displacement
or stress-based finite-element discretization for instance, both objective functions will dif-
fer. With carefully selected spatial discretization, a displacement-based discretization (upper
bound scheme) will yield a stiffer response in the elastic regime and a larger limit load in at
plastic collapse. Conversely, an equilibrium stress-based discretization (lower bound scheme)
will yield a softer response and a smaller plastic collapse limit load. This is illustrated in
Fig. 4.7 which corresponds to the torsion moment/rotation angle curve of a 3D cylinder using
both kinds of FE discretization schemes. The primal-dual gap between both discretizations
can be used as an error indicator with respect to the true solution and can be used in an
adpative mesh refinement procedure for instance, see (El Boustani et al., 2020b).

4.6.3 Large load steps computations

We consider a 2D rectangular domain fixed on both lateral extremities and subjected
to a uniform downwards vertical body force 𝒇 = − 𝑓 𝒆𝑦 in a plane strain setting. We use a
Voce-type exponential hardening law:

𝜓h(𝑝) = (𝜎𝑢 − 𝜎0)
(
𝑝 + 1

𝜔
exp(−𝜔𝑝)

)
(4.77a)

𝑅(𝑝) = 𝜕𝜓h

𝜕𝑝
= (𝜎𝑢 − 𝜎0)(1 − exp(−𝜔𝑝)) (4.77b)

where 𝜎0 (resp. 𝜎𝑢) is the initial (resp. ultimate) yield strength and 𝜔 a saturation parameter.
We set 𝐸 = 210 GPa, 𝜈 = 0.3, 𝜎0 = 450 MPa, 𝜎𝑢 = 700 MPa and 𝜔 = 50. Fig. 4.8 shows the
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Figure 4.8: Load-deflection evolution depending on the total number of load increments
(only one used in the unloading phase).

load-displacement curve using different numbers of load steps. Interestingly, the computed
displacement at the ultimate state near collapse ( 𝑓 = 𝑓 +) is already very accurate using a
single load step, see also (Krabbenhoft et al., 2007; El Boustani et al., 2020b). Each resolution
with Mosek v.9.0 took between 2.5 and 3.5 seconds (10 to 18 IP iterations) depending on the
loading step (fully plastic steps near 𝑓 = 𝑓 + took a larger number of iterations than initial
elastic steps). Even when refining the mesh size, we found that the number of required
iterations remained very similar. This indicates that the IP solver exhibits a very robust
behaviour in terms of number of iterations with respect to the problem size. Similarly, solver
robustness does not seem to be affected by the load step amplitude since the number of IP
iterations remains very similar.

Although not being fully competitive against standard Newton methods in multi-step
plasticity for this specific von Mises plasticity behaviour, the conic programming approach
becomes interesting when much larger load steps are considered. It becomes even more
interesting when dealing with non-smooth yield surfaces such as Tresca, Mohr-Coulomb,
Rankine, etc. for which projection onto the yield surface might be troublesome in standard
return mapping procedures. For such yield surfaces, non-smoothness is naturally included
in the underlying conic formulation (Bisbos and Pardalos, 2007) and readily tackled by the
corresponding solvers.

4.6.4 Extension to finite-strain elastoplasticity

In El Boustani et al. (2020c), we extended the use of interior-point algorithms to conic
programs involving either smooth but non-convex or non-smooth but convex objectives or
constraints. A typical application for such kind of problems is finite-strain elastoplasticity.
We addressed such problems using the logarithmic strain framework proposed in Miehe et al.
(2002) which has been shown to be well suited for describing finite-strain metal plasticity. In
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this framework, the chosen total strain measure is the Hencky logarithmic strain:

𝑬 =
1
2 log(𝑭𝑇𝑭) (4.78)

where 𝑭 = 𝑰 + ∇𝒖 is the deformation gradient.

An attractive feature of using logarithmic strain measures is that classical small strain
constitutive relations can be naturally extended to a finite-strain setting. In particular, the
total (Hencky) strain can be split additively into an elastic and plastic contributions:

𝑬 = 𝑬el + 𝑬p (4.79)

Small-strain constitutive relations are then formulated in terms of 𝑬el and 𝑬p.
A variational principle close to (4.39) and (4.68) describes the incremental evolution of

such a system as follows:

(𝒖𝑛+1 , 𝑬
p
𝑛+1 , 𝑝𝑛+1) = arg min

𝒖∈𝒰ad ,𝑬p ,𝑝

∫
Ω

(
𝜓(𝑬 − 𝑬p) + 𝜓h(𝑝) + 𝜙

(
𝑬p − 𝑬

p
𝑛 , 𝑝 − 𝑝𝑛

) )
dΩ −𝑊ext,𝑛+1(𝒖)

s.t. 𝑬 =
1
2 log(𝑭𝑇𝑭)

(4.80)
where the elastic and hardening potentials 𝜓el and 𝜓h as well as the dissipation pseudo-
potential 𝜙 are the convex potentials associated with a given small-strain behaviour, such as
that in Section 4.6.1 for instance. As a result, problem (4.80) is non-convex only because of
the non-convex constraint (4.78) defining the Hencky strain measure. The remaining terms,
in particular the plastic dissipation, are still convex in the auxiliary variables 𝑬p , 𝑝.

Problem (4.80) has been solved with a custom IPM capable of handling non-convex but
smooth objectives or constraints. Obviously, proofs of convergence of the IPM algorithm will
necessarily be lost in the non-convex case. However, our heuristic reasoning is that we will
restrict to a case in which difficulties will be decoupled. On the one hand, non-smoothness
is present only in conic constraints which we still consider to be convex (plastic dissipation),
while, on the other hand, non-convexity concerns only terms which are smooth (stress-strain
relation). Since the IPM can be seen as a Newton method with continuation along the
so-called central path, we hope that smooth terms will be properly handled by the Newton
method and that continuation along the central path will sill handle properly the non-smooth
but convex conic constraints. Our proposed algorithm is therefore a simple extension of a
classical IPM to the previously mentioned non-convex case.

As an illustration, we consider a fully clamped rectangular beam of length 𝐿 = 2.0 m
oriented in direction 𝑥 and of height ℎ = 0.1 m and width 𝑏 = 0.04 m. The beam consists
of steel material (von Mises perfect plasticity, 𝜎0 = 250 MPa) and is subject to a uniformly
distributed body force 𝒇 = − 𝑓 𝒆𝑧 .

The present implementation results have been compared with computations using the
commercial finite-element software Abaqus (Smith, 2009) and also using the open-source
finite-element platform FEniCS (Logg and Wells, 2010; Logg et al., 2012; Alnæs et al., 2015)
coupled with MFront (Helfer et al., 2020) for the constitutive behaviour integration.

The FEniCS/MFront implementation consists in a total-Lagrangian implementation of
logarithmic plasticity using a standard Newton-Raphson/return mapping procedure. The
coupling between both libraries relies on theMFrontGenericInterfaceSupportproject (Helfer
et al., 2020).
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Figure 4.9: Evolution of the mid-span deflection 𝑢 and the horizontal support reaction 𝐻

Table 4.1: Total number of iterations for the different methods and load-stepping

Method Total iterations
FEniCS (30 steps) 128
IPM (30 steps) 385
IPM (15 steps) 192
IPM (5 steps) 70

The Abaqus implementation relies on an updated-Lagrangian formulation using the
Cauchy stress tensor and its work-conjugate rate of deformation. The integration technique
for the total deformation gives the logarithmic strains (LE in Abaqus notation) which is used
in the case of metal plasticity.

We monitor the evolution of the mid-span deflection 𝑢 and the horizontal support reaction
𝐻 when increasing the body force up to 𝑓 = 50 MN/m3. The evolutions of 𝑢 and 𝐻 have
been represented in Fig. 4.9. It can first be observed that all three different implementations
yield very similar results, the slight difference observed with respect to the FEniCS/MFront
computations can be attributed to the fact that a different mesh, although of similar element
size, was used. The obtained results clearly exhibit a first elastic then plastic stage (for a
load factor below 0.5) when geometrical non-linear effects do not play an important role. A
secondary stiffening stage (for load factor larger than 0.5) is then observed due to membrane
catenary effect (see the increase of the horizontal reaction force) when geometrical non-linear
effects become more and more important.

In order to assess the numerical solution procedure, we will compare the FEniCS solution
with the proposed IPM solution since both approaches rely on a total-Lagrangian formulation.
In particular, we compared the number of iterations per load step to reach convergence using
the same relative residual tolerance. It must be recalled that, apart from the way boundary
conditions are handled, the linear system size, and hence the cost per iteration, is similar for
both methods.

Results are reported in Fig. 4.10 where it can be observed that the required number of
iterations is much larger for the IPM than for the Newton method used in FEniCS for 30
load steps. This is by no means surprising due to the quadratic convergence of the Newton
method close to a solution. It can also be observed that the required number of iterations
increases in the second stage of the problem where plasticity and geometrically non-linear
effects become much more dominant.
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Figure 4.10: Number of iterations per load step
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Figure 4.11: Comparison of the evolution of the mid-span deflection 𝑢 and the horizontal
support reaction 𝐻 using 5 load steps
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However, an extremely interesting feature of the IPM is its robustness over large load steps.
Indeed, the Newton method was unable to converge with less than 20 load steps whereas
the IPM method could converge using only 5 load steps. Besides, this robustness does not
seem to deteriorate the convergence quality since roughly the same number of iterations is
required for the same load level when using smaller load steps (see again Fig. 4.10). Overall,
the total number of iterations (Table 4.1) using 5 load steps becomes competitive compared
with the Newton method, whereas the Newton method is more efficient than the IPM with
similar load-stepping. Moreover, Fig. 4.11 clearly shows that using fewer load steps yields
similar values for the displacement and reaction forces.

4.7 Closing remarks

This chapter has shown that many problems in nonlinear mechanics enjoy a variational
formulation which can be tackled using conic programming formulations. In particular, in-
cremental variational principles of standard dissipative media offer a very generic framework
for formulating thermodynamically consistent behaviours and working on the underlying
variational evolution principles. Moreover, we have also seen that some finite-strain be-
haviours such as membranes can be formulated using convex principles. Obviously, in the
general case, it is expected that finite-strain problems will remain non-convex.

On the numerical side, we have evidenced that IP solvers can deal without any prob-
lem with highly non-smooth behaviours as well as very large load steps without hindering
convergence robustness, as opposed to Newton methods for instance. This can be further
understood from the fact that considering large load steps does not fundamentally change
the structure of the corresponding problem. Appendix B indeed investigates the behaviour
of the primal and dual incremental variational problems such as (4.61) in the limit of very
large load steps. This analysis shows that the solution at infinitely large load steps can be
obtained by replacing the original incremental potential 𝑗 of (4.64) with its corresponding
recession function 𝑗∞, see Definition 13. The latter encodes how 𝑗 behaves at infinity and is
a convex homogeneous function by definition. Through this analysis, we recover intuitive
results:

• the asymptotic problem of a perfectly elasto-plastic problem turns out to be rigid-plastic
and therefore results in a standard limit analysis formulation;

• for elasto-plastic problems with unlimited hardening, the asymptotic problem is un-
bounded if hardening is not limited;

• with limited hardening, we recover a limit analysis problem with a yield strength
corresponding to the ultimate strength obtained after complete hardening.

Overall, we can anticipate that a numerical method which is tailored to handle non-smooth
homogeneous functions will perform well for large load steps. We have also seen promising
results concerning non-convex IP solvers for finite-strain elastoplasticity.

To conclude, we should mention various aspects which have not been discussed in this
chapter. First, we should mention the variational approach to fracture of Francfort and Marigo
(1998) which revisits crack propagation as an energy minimization problem, see Marigo (2023)
for a historical perspective of these developments. This approach extends Griffith’s approach
to brittle fracture by considering generic crack paths and topologies and provides a powerful
framework for modeling crack propagation in brittle materials. Its numerical regularization
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based on phase-field/damage-gradient approaches has found widespread use in many areas
of engineering and materials science and will be discussed in Chapter 8, Section 8.2. Second,
the framework of GSM can also be extended to models including gradient of state variables
or other generalized continua, see for instance Maugin (1990); Frémond and Nedjar (1996).
In particular, corresponding incremental variational principles can also be easily derived and
an example will be discussed in Chapter 8, Section 8.3.

Finally, optimality conditions of variational formulations for plastic materials necessar-
ily result in associated plastic flow rules. However, experimental measurements for many
materials suggest that non-associated flow rules should be considered, which cannot be cap-
tured by an underlying variational formulation using standard convex analysis tools. To
overcome this limitation, de Saxcé and Feng (1991); De Saxcé (1992) introduced the concept
of a bipotential, which extends the Young-Fenchel inequality to a function 𝑏(𝑥, 𝑦) rather than
a separable sum 𝑓 (𝑥) + 𝑓 ∗(𝑦). The bipotential provides a suitable modeling framework for a
broad range of non-associated laws. Materials admitting a bipotential are called implicit stan-
dard materials (ISM), which include non-associated Drucker-Prager and Cam-Clay models in
soil mechanics, non-linear kinematic hardening rules for cyclic plasticity and viscoplasticity,
coupled plasticity-damage laws, Coulomb’s friction law, and more. However, works devoted
to an efficient numerical treatment of such frameworks remain very scarce at the moment,
except concerning frictional contact, and should deserve more attention in the future.



Chapter 5

Computational limit analysis and civil
engineering applications

This chapter gives an overview of one of my main research topics on limit analysis theory.
We first expose a generic numerical framework in which limit analysis problems are very
easily formulated using a domain-specific language based on FEniCS, the fenics_optim
package. The latter enables to translate the abstract convex optimization problem into its
discrete counterpart which is solved using the interior-point solver Mosek. The versatility
of the numerical tools is illustrated on various academic problems, ranging from plate or
shell models to generalized continua. In a second part, we review different applications of
limit analysis approaches for civil engineering applications, including complex 3D steel or
reinforced-concrete structures.
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5.1 Introduction

As discussed in Section 4.4.2, limit analysis (Hill, 1950), or more generally, yield design
theory (Salençon, 1983, 2013), provides a direct way of computing the limit load without
relying on incremental elasto-plastic analyses, and only requires a few mechanical parameters
(i.e. the strength domain𝐺), instead of a complete constitutive relation. By considering simple
collapse mechanisms, analytical upper bounds for the exact collapse load can be obtained
efficiently. The exact collapse load can be bracketed by the bounding status of the static lower
bound and kinematic upper bound solutions. Limit analysis has found extensive applications
in mechanical and civil engineering problems, such as soil slope stability, footing bearing
capacity, and other geotechnical problems (Chen, 2013), masonry structures (Heyman, 1966),
design of reinforced-concrete structures (e.g., through strut-and-tie methods (Schlaich et al.,
1987) or yield-line analysis (Johansen, 1962)) (Chen, 2007; Nielsen and Hoang, 2016), the
computation of collapse loads of frame, plate, or shell structures (Save, 1995; Save et al.,
1997), etc. Analytical design formulas, obtained from hand-based solutions, have been
implemented in different design codes.

5.1.1 Computational aspects

Limit analysis techniques have been somehow limited to hand-based solutions for quite a
long time because of the difficulties encountered in the past when automating their resolution
in a finite-element discrete setting for instance. This difficulty is mainly attributed to the
non-smooth nature of the strength criterion which prevents from the use of gradient-based
approaches as mentioned earlier. Fortunately, most strength criteria can be expressed using
second-order cone or semi-definite constraints (Bisbos and Pardalos, 2007; Makrodimopoulos,
2010) so that the resulting limit analysis problem falls into the class of SOCP or SDP problems.
Thanks to the efficiency of modern IP solvers, it now possible to solve complex and large-
scale limit analysis problems (Krabbenhøft et al., 2008; Martin and Makrodimopoulos, 2008;
Portioli et al., 2014; Vincent et al., 2018).

As regards numerical discretization techniques for limit analysis problem, the vast major-
ity of works relies on the finite-element method (Lysmer, 1970; Anderheggen and Knöpfel,
1972; Pastor and Turgeman, 1976). The specificity of limit analysis problems, compared to
more standard nonlinear computations with displacement-based FE discretizations, lies in the
use of static equilibrium-based finite-elements for obtaining true lower bound (Sloan, 1988;
Krabbenhoft and Damkilde, 2002) (and therefore safe) estimates of the limit load but also in
the use of discontinuous finite-elements for the kinematic upper bound approach (Sloan and
Kleeman, 1995; Makrodimopoulos and Martin, 2008, 2007). Indeed, most hand-based upper
bound solutions have been obtained considering rigid-block mechanisms, thus involving no
deformation but only displacement jumps in the plastic dissipation computation. Despite the
higher computational cost compared to equivalent continuous interpolations, discontinuous
interpolations provide more accurate limit load estimates (Pastor and Turgeman, 1976; Sloan
and Kleeman, 1995; Krabbenhoft et al., 2005; Makrodimopoulos and Martin, 2008), especially
if finite-element edges are well-oriented. They are also more robust for certain problems since
they do not suffer from locking issues, see for instance Nagtegaal et al. (1974) for volumetric
locking in pressure-insensitive materials or Bleyer and de Buhan (2016) for shear-locking in
thin plates.

In the present chapter, we describe a general framework for the formulation of limit
analysis problems for different mechanical models (2D/3D continua, plates/shells or gener-
alized continua). Relying on the FEniCS finite-element library and symbolic representation
of operators and code-generation capabilities, different FE discretization schemes (including
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discontinuous or equilibrium elements) can be easily formulated and generalized to more ad-
vanced mechanical models. The proposed framework therefore offers four levels of generality
in the problem formulation:

• choice of a mechanical model: limit analysis problems possess the same structure and
can be formulated in a symbolic fashion through generalized stress/strain definitions
(Section 5.2).

• choice of a strength criterion: the formulation of its conic representation at a local point
suffices to completely characterize the strength criterion, its translation to the global
optimization problem being automatically performed (Section 5.3.1).

• choice of a FE discretization: including element type, interpolation degree or quadrature
rule, all compatible for a variable number of degrees of freedom related to the choice
of the mechanical model (Section 5.2.4).

• choice of the optimization solver: although the accompanying FEniCS toolbox relies
extensively on the Mosek optimization solver (MOSEK ApS, 2019b), once formulated in
a standard conic programming form, the problem can then be written in a specific file
format appropriate for another solver.

5.2 A general framework for limit analysis problems

In this section, we consider a material domain Ω ⊂ R𝑑 (with 𝑑 = 1, 2, 3) associated with
a specific mechanical model. In the subsequent applications, we will consider classical con-
tinuum theories such as 2D or 3D Cauchy continua or Reissner-Mindlin plate models for
instance but also generalized continuum models encompassing higher-grade or higher-order
theories. For this reason, the subsequent presentation will be made in a generalized contin-
uum framework in which the mechanical stress or strain measures, equilibrium or continuity
equations and boundary conditions will be written in an abstract fashion, their precise ex-
pression remaining to be specified for each particular mechanical theory. In particular, the
presentation will make use of the virtual work principle following the works of Germain
(1973b,a).

5.2.1 Virtual work principle for generalized continua

Let us therefore consider a generalized virtual velocity field 𝒖(𝒙) of dimension 𝑛 and
a set of strain measures 𝑫𝒖 of dimension 𝑚 with 𝑫 being a generalized strain operator.
Following Germain (1973b,a), such strain measures must be objective i.e. null for any rigid
body motion. The virtual power of internal forces is assumed to be given by an internal force
density depending linearly upon the strain measures:

𝒫 (𝑖)(𝚺, 𝒖) = −
∫
Ω

𝚺 · 𝑫𝒖 dΩ (5.1)

in which 𝚺 denotes the generalized stress measure associated with 𝑫𝒖 by duality1. The
above expression must in fact be understood in the sense of distributions i.e. 𝒖 may exhibit
discontinuities 𝑱𝒖 (where 𝑱 is a jump operator consistent with the definition of operator 𝑫)

1We use the scalar product "·" to denote the inner product between the associated stress and strain measures
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across some internal surface Γ. The power of internal forces therefore writes more explicitly
as:

𝒫 (𝑖)(𝚺, 𝒖) = −
(∫

Ω\Γ
𝚺 · 𝑫𝒖 dΩ +

∫
Γ

𝚺 · 𝑱𝒖 d𝑆
)

(5.2)

The power of external forces is given by:

𝒫 (𝑒)(𝒖) =
∫
Ω

𝒇 · 𝒖 dΩ +
∫
𝜕Ω

𝑻 · 𝒖 d𝑆 (5.3)

where 𝒇 denotes body forces and 𝑻 surface tractions.
According to the virtual power principle, the system is in equilibrium if and only if the

sum of the internal and external virtual powers is zero for any virtual velocity field:

𝒫 (𝑖)(𝚺, 𝒖) + 𝒫 (𝑒)(𝒖) = 0 ∀𝒖 (equilibrium)

5.2.2 General formulation of a limit analysis problem

Limit analysis (or yield design) theory amounts to finding the maximum loading a system
can sustain considering only equilibrium and strength conditions for its constitutive material.
The latter can be generally described by the fact that the generalized stresses𝚺(𝒙)must belong
to a strength domain 𝐺(𝒙) for all points 𝒙 ∈ Ω:

𝚺(𝒙) ∈ 𝐺(𝒙) ∀𝒙 ∈ Ω (strength condition)

The strength domain 𝐺 ⊆ R𝑚 is assumed to be a convex set (it may be unbounded and
non-smooth) which usually contains the origin 0 ∈ 𝐺.

Finding the maximum loading will be achieved with respect to a given loading direction
i.e. by assuming that both volume and surface forces 𝒇 and 𝑻 are scaled by a single load
factor 𝜆. Let us mention that if one wants to describe the set of ultimate loads defined by
multiple loading parameters, the ultimate load factor 𝜆+ must be computed independently
for each fixed loading direction in the multiple loading parameter space. When repeating
this process for different loading directions, one obtains the corresponding set of ultimate
loads.

The limit analysis problem can finally be formulated as finding the maximum load fac-
tor 𝜆 such that there exists a generalized stress field 𝚺(𝒙) in equilibrium with 𝜆( 𝒇 ,𝑻) and
complying with the material strength properties i.e. satisfying both (equilibrium) and
(strength condition) which can also be written as:

𝜆+ = sup
𝜆,𝚺

𝜆

s.t. 𝒫 (𝑖)(𝚺, 𝒖) + 𝜆𝒫 (𝑒)(𝒖) = 0 ∀𝒖
𝚺(𝒙) ∈ 𝐺(𝒙) ∀𝒙 ∈ Ω

(5.4)

Formulation (5.4) is at the basis of the mixed finite-element formulation discussed in
Bleyer and Hassen (2021) when choosing proper interpolation spaces for 𝚺 and 𝒖. We now
turn to the general formulation of the static and kinematic approaches.
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Static approach

Starting from the weak formulation of equilibrium given by (equilibrium), strong balance
equations, continuity conditions and boundary conditions can be obtained for the generalized
stresses 𝚺. These will generally take the following form:

𝓔𝚺 + 𝜆 𝒇 = 0 in Ω (5.5)
𝓒𝚺 = 0 on Γ (5.6)

𝓣 𝚺 = 𝜆𝑻 on 𝜕Ω (5.7)

where 𝓔 is an equilibrium operator (adjoint to 𝓓) and 𝓒 and 𝓣 are some continuity and
trace operators related to 𝓔. A generalized stress field 𝚺(𝒙) satisfying these conditions will
be termed as statically admissible with a given loading (𝜆 𝒇 ,𝜆𝑻).

The pure static formulation can therefore be generally written as:

𝜆+ = sup
𝜆,𝚺

𝜆

s.t. 𝓔𝚺 + 𝜆 𝒇 = 0 in Ω

𝓒𝚺 = 0 on Γ

𝓣 𝚺 = 𝜆𝑻 on 𝜕Ω
𝚺(𝒙) ∈ 𝐺(𝒙) ∀𝒙 ∈ Ω

(SA)

Obviously 𝚺 must belong to an appropriate functional space 𝒲 consistent with the nature
of the above operators. If one restricts to a (finite-dimensional) subset 𝒲ℎ ⊂ 𝒲 such that all
constraints of (SA) can be satisfied exactly, the corresponding solution𝜆𝑠 of the corresponding
(finite) convex optimization problem will therefore be a lower bound to the exact limit load:
𝜆𝑠 ≤ 𝜆+.

Kinematic approach

The kinematic formulation of a limit analysis problem can be obtained after introducing
the maximum resisting power as:

𝒫 (𝑚𝑟)(𝒖) = sup
𝚺(𝒙)∈𝐺(𝒙)

{−𝒫 (𝑖)(𝚺, 𝒖)} =

∫
Ω\Γ

𝜋𝐺(𝑫𝒖)dΩ +
∫
Γ

𝜋𝐺(𝑱𝒖)d𝑆 (5.8)

in which 𝜋𝐺 is the support function of the convex set 𝐺:

𝜋𝐺(𝒅) = sup
𝚺∈𝐺

{𝚺 · 𝒅} (5.9)

The kinematic approach of limit analysis then reads as:

𝜆+ = inf
𝒖

𝒫 (𝑚𝑟)(𝒖)
s.t. 𝒫 (𝑒)(𝒖) = 1

(KA)

Similarly to the static approach (SA), 𝒖 must belong to an appropriate functional space 𝒱 .
If one restricts to a (finite-dimensional) subset 𝒱ℎ ⊂ 𝒱 , the corresponding solution 𝜆𝑢 of the
corresponding (finite) convex optimization problem will therefore be an upper bound to the
exact limit load: 𝜆+ ≤ 𝜆𝑢 .
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5.2.3 Conic programming of strength criteria

As already mentioned in Bisbos and Pardalos (2007); Krabbenhøft et al. (2007); Makrodi-
mopoulos (2010), a large class of classical strength criteria can be formulated in terms of
second-order cone (SOC) constraints or semi-definite positive (SDP) matrix constraints. For
some more advanced strength criteria, their conic representation may involve power or ex-
ponential cones. This is the case, for instance, for the Generalized Hoek-Brown (Kumar
and Rahaman, 2020) or the Hosford yield criterion which are both power-cone representable
(Bleyer and Hassen, 2021). Below, we illustrate how conic-representation is used for the case
of a 3D Mohr-Coulomb criterion.

The Mohr-Coulomb criterion 𝐺 for a soil of cohesion 𝑐 and internal friction angle 𝜙
requires the stress state 𝝈 ∈ S3 to satisfy:

𝜎M − 𝑎𝜎m ≤
2𝑐 cos 𝜙
1 + sin 𝜙

(5.10)

where 𝑎 =
1−sin 𝜙
1+sin 𝜙 and 𝜎M = max

𝐼
𝜎𝐼 (resp. 𝜎m = min

𝐼
𝜎𝐼) is the maximum (resp. minimum)

principal stress. The quantity 𝑘 = 2𝑐 cos 𝜙
1+sin 𝜙 corresponds to the soil unixial tensile strength.

As the criterion involves the maximum and minimum principal stresses in its defini-
tion, it can be formulated using SDP constraints in the 3D case (Bisbos and Pardalos, 2007;
Krabbenhøft et al., 2007; Martin and Makrodimopoulos, 2008). Note that in 2D, its formula-
tion involves second-order cone constraints only. Let us introduce a scalar variables 𝑡 such
that:

𝑡𝑰 ≼ 𝝈 (5.11)
so that 𝑡 ≤ 𝜎m. Then, one replaces (5.10) with:

𝜎M ≤ 𝑘 + 𝑎𝑡 (5.12)

Both constraints (5.11) and (5.12) can then be rewritten using SDP constraints involving two
additional matrix variables 𝑿 1 and 𝑿 2 as follows:

𝝈 ∈ 𝐺 ⇔ ∃𝑡 ,𝑿 1 ,𝑿 2 s.t.


(𝑘 + 𝑎𝑡) 𝑰 − 𝝈 = 𝑿 1

𝝈 − 𝑡𝑰 = 𝑿 2

𝑿 1 ,𝑿 2 ≽ 0
(5.13)

which provides the SDP representation of criterion 𝐺 defined by (5.10).
Conic convex duality can then be used to easily derive the corresponding conic-representation

of the support function:

𝜋𝐺(𝒅) = max
𝝈∈𝐺

𝝈 : 𝒅 = min
𝒀1 ,𝒀2≽0

max
𝝈 ,𝑡

𝝈 : 𝒅 +
(
( 𝑓c + 𝑎𝑡)𝑰 − 𝝈

)
: 𝒀1 + (𝝈 − 𝑡𝑰) : 𝒀2

= min
𝒀1 ,𝒀2

𝑘 tr𝒀1

s.t. 𝒅 = 𝒀1 − 𝒀2
𝑎 tr𝒀1 = tr𝒀2
𝒀1 ,𝒀2 ≽ 0

(5.14)

We can show that the above conic formulation is equivalent to the more classical definition
(Salençon, 1983) of Mohr-Coulomb’s support function:

𝜋𝐺(𝒅) =

𝑐 cotan 𝜙 tr 𝒅 if tr 𝒅 ≥ sin 𝜙

3∑
𝐼=1

|𝑑𝐼 |

+∞ otherwise
(5.15)
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5.2.4 Kinematic formulation for 2D/3D continua

Let us now consider the kinematic limit analysis of 2D or 3D continua for which 𝒖 is a
2D or 3D velocity field and the associated strain is its symmetric gradient 𝑫𝒖 = ∇𝑠𝒖. For a
continuous velocity field 𝒖, the finite-element kinematic limit analysis approach (KA), with
body force 𝒇 only, reads:

𝜆+ ≤ inf
𝒖∈𝒱ℎ

∫
Ω

𝜋𝐺(∇𝑠𝒖)dΩ

s.t.
∫
Ω
𝒇 · 𝒖 dΩ = 1

(5.16)

where 𝒱ℎ is a finite-element subspace of Lagrange elements based on a given mesh of typical
mesh size ℎ. In the above problem, the computed objective function is an upper bound of
the exact limit load factor 𝜆+ only if the integral of the objective function term is evaluated
exactly. In general, this is not possible because of the non-linearity of function 𝜋𝐺, except
in the special case of 𝒖 being interpolated with P1-Lagrange elements so that the gradient is
cell-wise constant and the integral becomes trivial.

In classical finite-element approaches, integrals are numerically evaluated using Gaussian
quadrature rules. Doing so, one looses the upper-bound estimate of (5.16). It is however
possible to obtain an upper-bound estimate when using P2-Lagrange elements for 𝒖 on a
mesh consisting of simplex (straight edges) triangles (or tetrahedra in 3D) by relying on a
vertex quadrature rule (Makrodimopoulos and Martin, 2007):∫

𝑇

𝐹(r(𝒙))d𝑇 ≲
|𝑇|
𝑑 + 1

𝑑+1∑
𝑖=1

𝐹(r(𝒙 𝑖)) (5.17)

where 𝐹 is a convex function and r is an affinely-varying function over the mesh cell 𝑇 (either
a triangle in dimension 𝑑 = 2 or a tetrahedron for 𝑑 = 3 of area/volume |𝑇|) with r(𝒙 𝑖) being
its value at the 𝑑 + 1 vertices.

In this case, we have:

𝜆+ ≤ 𝜆𝑢 = inf
𝒖∈𝒱ℎ

∑
𝑇∈𝒯ℎ

|𝑇|
𝑑 + 1

𝑑+1∑
𝑖=1

𝜋𝐺(∇𝑠𝒖(𝒙 𝑖))

s.t. 𝑭T𝒖 = 1
(5.18)

where 𝒯ℎ denotes the mesh and 𝑭 the vector of nodal forces. The numerical resolution
of (5.18) using general-purpose conic solvers requires to transform it into a canonical form
such as (3.27). To do so, one must in particular express the objective function using the
conic representation (5.14) after introducing additional auxiliary variables 𝒀1 ,𝒀2 defined at
all integration points. The process of converting all expressions and constraints into matrix
format is rather cumbersome, especially if one aims at changing easily the strength criterion
𝐺 or the finite-element discretization, notably when using discontinuous interpolations for
instance.

5.3 The fenics_optim package

For these reasons, I have developed a general-purpose domain-specific language (DSL)
for automating the formulation and resolution of convex variational problems in a finite-
element setting. The package is implemented as an add-on to the FEniCS Python interface
and enables to easily formulate convex optimization problems using only a few lines of code
and to discretize them in a very simple manner using various finite-element interpolation
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spaces available in FEniCS. Their numerical resolution is performed efficiently using Mosek
as the underlying conic programming solver (MOSEK ApS, 2019b). We describe below
some of the key aspects at the core of the package implementation. For more details and
additional examples, the reader can refer to (Bleyer, 2020a) and the online documentation
https://fenics-optim.readthedocs.io/. At the time of writing this manuscript, this
project is being adapted to the new FEniCSx version.

5.3.1 Conic-representable functions

One of the main feature of fenics_optim is to easily handle the representation of a convex
function in a conic format, as (5.14) for instance. Indeed, given a convex function 𝑓 (𝒙), we
say that it is conic-representable if it can be written in the following form:

𝑓 (𝒙) = inf
𝒚

𝒄T
𝑥𝒙 + 𝒄T

𝑦𝒚

s.t. 𝒃𝑙 ≤ 𝑨𝒙 + 𝑩𝒚 ≤ 𝒃𝑢
𝒚 ∈ 𝒦

(5.19)

where 𝒄𝑥 , 𝒄𝑦 , 𝒃𝑙 , 𝒃𝑢 are given vectors of appropriate size, 𝑨 and 𝑩 are given matrices and
𝒦 = 𝒦1 × . . . × 𝒦𝑛 is a product of cones of the magic family (see Section 3.2). Note that the
above representation is not necessarily unique. However, as soon as one equivalent form
of (5.19) is available, minimizing 𝑓 (𝒙) can be achieved using dedicated conic IP solvers. As
mentioned in Juditsky and Nemirovski (2021), any given convex function does not neces-
sarily possess an obvious conic reformulation and specific calculus rules must therefore be
used in order to obtain such a representation. This process can be automated using Dis-
ciplined Convex Programming, as done for instance in the CVX software (Grant and Boyd,
2014). Without being exhaustive, we give in the following several examples of simple conic-
representable functions and some convexity-preserving operations which also maintain conic
representability inherited from the original function(s).

Simple conic-representable functions

Many interesting conic-representable functions can be obtained using simple building
blocks such as:

• affine functions;

• convex quadratic functions;

• 𝑝-norms with 𝑝 ≥ 1: 𝑝 = 2 requires quadratic cones, 𝑝 = 1 or ∞ requires linear
inequalities and 𝑝 ∉ {1, 2,∞} can be expressed using generic power cones;

• logarithm and exponential functions using exponential cones;

• maximum and minimum principal values of a symmetric matrix variable using SDP
cones.

We refer for instance to MOSEK ApS (2019a) for more details on conic formulations of other
usual functions.

https://fenics-optim.readthedocs.io/
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Operations on functions

Based on the above simple functions, more complex functions can be obtained using
simple operations on functions which all preserve the conic-representability. For instance, the
sum 𝑓1(𝒙) + 𝑓2(𝒙) of two conic-representable functions is obviously also conic-representable.
Without being exhaustive, other examples include:

• precomposition by a linear operator 𝐴:

( 𝑓 ◦ 𝐴)(𝒙) = 𝑓 (𝑨𝒙) (5.20)

• convex conjugate:
𝑓 ∗(𝒚) = sup

𝒙
𝒚T𝒙 − 𝑓 (𝒙) (5.21)

• perspective (Rockafellar, 1970):

persp 𝑓 (𝒙 , 𝑡) = 𝑡 𝑓 (𝒙/𝑡) (5.22)

• inf-convolution 𝑓1□ 𝑓2 between two functions 𝑓1, 𝑓2 (Rockafellar, 1970):

( 𝑓1□ 𝑓2)(𝒙) = inf
𝒙1 ,𝒙2

𝑓1(𝒙1) + 𝑓2(𝒙2)
s.t. 𝒙 = 𝒙1 + 𝒙2

(5.23)

• the marginal 𝑓 \ 𝑨 of 𝑓 through a linear operator 𝑨 (Fitzpatrick and Simons, 2001):

( 𝑓 \ 𝑨)(𝒙) = inf
𝒚

𝑓 (𝒚)
s.t. 𝒙 = 𝑨𝒚

(5.24)

• a generalized marginal operator through a set of 𝑛 linear operators 𝑨𝑖 and positive
weights 𝑐𝑖 ≥ 0:

( 𝑓 \ {𝑨𝑖 , 𝑐𝑖})(𝒙) = inf
𝒚1 ,...,𝒚𝑛

𝑛∑
𝑖=1

𝑐𝑖 𝑓 (𝒚𝑖)

s.t. 𝒙 =

𝑛∑
𝑖=1

𝑨𝑖𝒚𝑖

(5.25)

By extension, we also say that a convex set𝐺 is conic-representable if its indicator function
𝛿𝐺 is conic-representable. In this case, 𝐺 is conic-representable, its support function 𝜋𝐺 is
also conic-representable. Moreover, if 𝑓 is conic-representable, its epigraph epi 𝑓 is also
conic-representable.

5.3.2 Conic-representable variational problems

As mentioned in Chapter 4, many convex variational problems consist in minimizing some
potentialΨ(𝒖)with respect to a mechanical field 𝒖. Often this potential can be expressed from
a corresponding potential density 𝜓(𝒖) per unit volume. The resulting variational problem
formulated on a domain Ω generally reads as:

inf
𝒖∈𝑉

∫
Ω

𝜓(𝒖)dΩ (5.26)
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where 𝑉 is some affine, or at least convex, space gathering various constraints on 𝒖 e.g.
boundary conditions, physical bounds, etc. After introducing an appropriate finite-element
discretization space 𝑉ℎ ⊂ 𝑉 and quadrature rule for the integral, the discrete version will be
of the form:

min
𝒖̄=(𝒖 𝑖)∈𝑉ℎ

𝐺∑
𝑔=1

𝜔𝑔𝜓(𝑳𝑔 𝒖̄) (5.27)

where 𝜔𝑔 are positive quadrature weights and 𝑳𝑔 are linear operators relating the vector
of unknowns 𝒖̄ = (𝒖 𝑖) ∈ 𝑉ℎ to the value of the continuous field 𝒖 at the corresponding
quadrature point.

When the potential density 𝜓 is conic-representable, one naturally obtains a conic-
representable variational problem. The fenics_optim package therefore relies on FEniCS
to transform abstract forms (5.26) into their discrete counterparts (5.27) for a generic conic-
representable function 𝜓.

For this reason, in the following of the manuscript, we will write variational problems
in their continuous form such as (5.26) rather than their discrete counterpart for the sake of
notation simplicity. It is however implied that their concrete implementation and resolution
is performed using a specific discretization such as (5.27). For the same reason, we will often
ignore the definition of appropriate continuous function spaces for the different fields and
do as if working in finite dimension.

5.4 Illustrative applications

5.4.1 Stability of a vertical cut-off

To illustrate the versatility of the fenics_optim package, we consider the stability of a
vertical cut-off in a cohesive-frictional soil obeying the Mohr-Coulomb criterion. In 3D, the
conic representation of its support function is easily defined as:

class MohrCoulomb(ConvexFunction):
"""SDP implementation of Mohr-Coulomb criterion."""
def conic_repr(self, X):

a = (1-sin(phi))/(1+sin(phi))
k = 2*c*cos(phi)/(1+sin(phi))
Y1 = self.add_var(6, cone=SDP(3))
Y2 = self.add_var(6, cone=SDP(3))
self.add_eq_constraint(X - Y1 + Y2)
self.add_eq_constraint(tr(to_mat(Y2))-a*tr(to_mat(Y1)))
self.set_linear_term(k*tr(to_mat(Y1)))

Then the corresponding function space V (continuous P2-Lagrange elements) is defined
and fixed boundary conditions are imposed on the part named "border" of the boundary. A
MosekProblem object is instantiated and a first optimization field ubelonging to function space
V is added to the problem and is constrained to satisfy the Dirichlet boundary conditions bc:

V = VectorFunctionSpace(mesh, "P", 2)
bc = DirichletBC(V, Constant((0.,0.,0.)), border)

prob = MosekProblem("Upper bound limit analysis")
u = prob.add_var(V, bc=bc)
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The external work normalization constraint is then added by defining the function space for
the Lagrange multiplier corresponding to the constraint (here it is scalar so we use a "Real"
function space) and passing the corresponding constraint in its weak form as follows:

R = FunctionSpace(mesh, "Real", 0)
def Pext(lamb):

return lamb*dot(f,u)*dx
prob.add_eq_constraint(R, A=Pext, b=1)

Finally, the Mohr-Coulomb support function is called as a function of the strain ∇𝑠𝒖 written
in terms of UFL operators. We also specify the choice for the quadrature scheme used for its
numerical evaluation. Here the vertex scheme (5.17) is chosen. This convex function is then
added to the problem before asking for its optimization by Mosek.

mc_support = MohrCoulomb(c, phi)
strain = sym(grad(u))
pi = mc_support(strain, quadrature_scheme="vertex")
prob.add_convex_term(pi)

prob.optimize()

Clearly, the package enables to express complex problems in very compact forms. Similar
implementation can be obtained when dealing with static lower bound approaches. In this
case, the main difference comes from the fact that discontinuous spaces are used for the
stress interpolation and traction continuity must be enforced through element facets. This
is however easily handled thanks to FEniCS modelling capabilities. Similarly, discontinuous
interpolations for the velocity field in kinematic approaches can also be handled by defining
convex function with facet integration measures.

As an illustration, we test on a plane strain vertical cut-off stability problem the conver-
gence properties for various discretization choices. The latter include P1 and P2 upper bound
elements, stress-based lower bound elements and non-upper bound displacement-based ele-
ments, we refer the reader to Bleyer and Hassen (2021) and references therein for more details
on the finite-element formulations. Results are given in terms of the non-dimensional safety
factor (𝛾𝐻/𝑐)+ for a slope of self-weight 𝛾 and height 𝐻 in Fig. 5.1-left as a function of the
total number of elements. The concentration of the local dissipation 𝜋𝐺(∇𝑠𝒖) along the slip-
line is represented on Fig. 5.1-right. We can see that we observe, as expected, convergence
from below for lower-bound elements and from above for upper bound elements. Regarding
the latter, the rate of convergence is faster for quadratic elements (UB2) than for linear ele-
ments (UB1). As often, displacement-based and mixed elements which are not supposed to
yield an upper-bound estimate tend to converge from above with a better accuracy than true
upper-bound elements.

5.4.2 Plate and shell models

Thin plate models

In this section, we discuss the limit analysis of thin plates in bending, a problem which
has been studied in Demengel (1983); Bleyer et al. (2016) for instance. In the present case, we
consider a unit square plate made of a von Mises material of uniform bending strength 𝑚

and subjected to a uniformly distributed transverse loading 𝑓 . The thin plate limit analysis
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Figure 5.1: Left: Convergence of the vertical slope factor of safety for various finite element
discretization: UB1 (resp. UB2) are the P1 (resp. P2) Lagrange upper bound elements, LB the
lower bound element and Disp1, Disp2, Mixed correspond to non-upper bound elements
considered in (Krabbenhøft et al., 2007). Analytical upper bound from Chen (2013). Right:
local dissipation map

problem consists in solving the following problem:

inf
𝑢∈HB0(Ω)

∫
Ω

𝜋(∇2𝑢)dΩ

s.t.
∫
Ω

𝑓 𝑢 dΩ = 1
(5.28)

where HB0 is the space of bounded Hessian functions (Demengel, 1984) with zero trace on
𝜕Ω and 𝜋(𝜿) = 2𝑚√

3

√
𝜅2

11 + 𝜅2
22 + 𝜅2

12 + 𝜅11𝜅22 for any 𝜿 ∈ S+2 is the support function of the
plane-stress von Mises criterion expressed in terms of bending curvatures 𝜿.

Contrary to elastic bending plate problems involving functions with 𝐶1-continuity, we
deal here with functions in HB which are continuous but may have discontinuities in their
normal gradient 𝜕𝑛𝑢. In particular, we can consider a P2-Lagrange interpolation for 𝑢 with
jumps of 𝜕𝑛𝑢 across all internal facets 𝐹 ∈ Γℎ of unit normal 𝒏. In this case the objective
function in (5.28) writes explicitly (Bleyer and de Buhan, 2013c) as:

inf
𝑢∈HB0(Ω)

∑
𝑇∈𝒯ℎ

∫
𝑇

𝜋(∇2𝑢)dΩ +
∑
𝐹∈Γℎ

∫
𝐹

𝜋([[𝜕𝑛𝑢]]𝒏 ⊗ 𝒏)d𝑆

s.t.
∫
Ω

𝑓 𝑢 dΩ = 1
(5.29)

where 𝒯ℎ is the set of all triangular finite-elements. It happens that in fact 𝜋([[𝜕𝑛𝑢]]𝒏 ⊗ 𝒏) =
|[[𝜕𝑛𝑢]]|𝜋(𝒏 ⊗ 𝒏) = |[[𝜕𝑛𝑢]]| 2𝑚√

3
for the von Mises criterion.

The reference solution for this problem is known to be 25.02𝑚/ 𝑓 (Capsoni and Corradi,
1999), whereas we find 25.05𝑚/ 𝑓 for a 50× 50 structured mesh. The corresponding solutions
for 𝑢 and 𝜋(∇2𝑢) are represented in Fig. 5.2.

We refer the reader to (Bleyer and de Buhan, 2013b)(Bleyer et al., 2015a) for a more
thorough discussion on FE discretizations, to (Bleyer and de Buhan, 2014c; Bleyer et al.,
2015b) for their extension to thick plate problems and to (Bleyer and de Buhan, 2014b,a) for
homogenization of periodic thin plates in limit analysis.
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(a) Optimal collapse mechanism 𝑢 (b) Curvature dissipation density 𝜋(∇2𝑢)

Figure 5.2: Results for the simply supported von Mises square plate

Shell finite-element discretization

Let us now briefly consider a lower bound approach for shell structures. We refer to (Bleyer
and de Buhan, 2016) and references therein for more details concerning limit analysis of shells,
especially the upper bound kinematic approach. The shell geometry will be approximated
by a plane facet discretization into triangular elements and will be described locally by a
unit normal 𝝂 and a tangent plane spanned by two unit vectors 𝒂1 and 𝒂2. This local frame
is therefore constant element-wise. The generalized internal forces of the shell model are
described by a symmetric membrane force tensor 𝑵 = 𝑁𝑖 𝑗𝑎 𝑖 ⊗ 𝑎 𝑗 , a symmetric bending moment
tensor 𝑴 = 𝑀𝑖 𝑗𝒂 𝑖 ⊗ 𝒂 𝑗 and a shear force vector 𝑸 = 𝑄𝑖𝒂 𝑖 (𝑖 , 𝑗 = 1, 2), the components of which
are expressed in the local tangent plane. We will consider only thin shells, meaning that the
shell strength criterion 𝐺shell is a convex set in the 6-dimensional (𝑵 ,𝑴) space (infinite shear
strength assumption). Introducing 𝑻 = 𝑵 + 𝝂⊗𝑸, the local equilibrium equations in a plane
facet are given by:

div𝑇 𝑻 + 𝜆 𝒇 = 0 (5.30)
div𝑇 𝑴 +𝑸 = 0 (5.31)

where div𝑇 is the tangent plane divergence operator and 𝜆 𝒇 the distributed loading. In
addition to local equilibrium, continuity equations of the force resultant 𝑹 = 𝑻𝒏 and the
normal bending moment 𝓜 = 𝑴𝒏 × 𝝂 must be satisfied where 𝒏 is the in-plane normal to a
facet edge:

[[𝑹]] = 0 (5.32)
[[𝓜]] = 0 (5.33)

Finite-element discretization relies on a discontinuous P1,𝑑 interpolation for both mem-
brane forces 𝑵 and shear forces 𝑸 and a discontinuous P2,𝑑 interpolation for the bending
moments 𝑴 . Equilibrium (resp. continuity) equations are then satisfied using cell (resp.
facet) Lagrange multipliers of appropriate polynomial degree. Again, all these constraints
are easily implemented with UFL operators.
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General shell strength criterion

Even for the simple case of a homogeneous von Mises thin shell, the strength condition
expressed in terms of (𝑵 ,𝑴) stress-resultant becomes extremely complicated (Ilyushin, 1956)
so that simple SOC-representable approximations have been proposed in the past for the von
Mises shell (Robinson, 1971). In (Bleyer and de Buhan, 2016), we proposed a general way
of formulating an (𝑵 ,𝑴) shell strength criterion for a general multilayered shell through an
up-scaling procedure. It is given by:

(𝑵 ,𝑴) ∈ 𝐺shell ⇐⇒



∃ 𝝈(𝑧) ∈ 𝒢ps ∀𝑧 ∈ [−ℎ/2; ℎ/2] and s.t.

𝑵 =

∫ ℎ/2

−ℎ/2
𝝈(𝑧)d𝑧

𝑴 =

∫ ℎ/2

−ℎ/2
(−𝑧)𝝈(𝑧)d𝑧

(5.34)

where ℎ is the shell thickness and 𝒢𝑝𝑠 is the material local plane-stress criterion, which may
potentially depend on coordinate 𝑧 for a multilayered shell. To make formulation (5.34) usable
in practice, the local plane-stress distribution 𝝈(𝑧) is replaced by a discrete set of plane-stress
states 𝝈 𝑔 = 𝝈(𝑧𝑔) expressed at quadrature points 𝑧𝑔 which are used to approximate the two
integrals:

(𝑵 ,𝑴) ∈ 𝐺approx
shell ⇐⇒



∃ 𝝈 𝑔 ∈ 𝒢ps ∀𝑔 = 1, . . . , 𝑛𝑧 and s.t.

𝑵 =

𝑛𝑧∑
𝑔=1

𝜔𝑔𝝈 𝑔

𝑴 =

𝑛𝑧∑
𝑔=1

(−𝑧𝑔)𝜔𝑔𝝈 𝑔

(5.35)

where 𝜔𝑔 are the corresponding quadrature weights of the 𝑛𝑧-points quadrature rule. From
(5.35) it can readily be seen that if 𝒢ps is SOC-representable, so will be 𝐺approx

shell .
The precise choice of the quadrature rule leads to different kinds of approximations to

𝐺shell: e.g. an upper bound approximation is obtained with a trapezoidal quadrature rule, a
Gauss-Legendre quadrature leads to an approximation with no lower or upper bound status,
a rectangular rule will give a lower bound approximation. In the following, we choose the
latter to be consistent with the lower bound status of the static approach. Let us finally remark
that the approximation will converge to the shell criterion 𝐺shell when increasing 𝑛𝑧 . In the
following we took 𝑛𝑧 = 6.

Numerical example

As an illustrative application, we consider the problem of a cylindrical shell of length 2𝐿,
radius 𝑅 and thickness ℎ = 0.01𝑅, clamped at both extremities and loaded by a self-weight
uniform vertical loading 𝒇 = −𝑞𝒆𝑧 (see Fig. 5.3a). The shape of the collapse mechanism varies
depending on the cylinder slenderness 2𝐿/𝑅. For sufficiently long cylinders, the computed
limit load 𝑞+ is well described by the one obtained when representing the cylinder as a

1D beam 𝑞+beam = 32
𝜋 𝑁0

(
𝑅

2𝐿

)2

with 𝑁0 = 𝜎0ℎ being the membrane uniaxial strength. The

obtained limit loads agree very well with the lower bound result of Bleyer and de Buhan
(2016). The obtained deformations have been represented in Fig. 5.3b along with the normal
force magnitude distribution. It can be seen that the mechanisms agree well with those
obtained from an upper bound kinematic approach, with a beam-like mechanism involving
plastic hinges at the clamped supports and mid-span for the case 2𝐿/𝑅 = 30.
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(a) Limit load results: reference LB and UB limit loads
from Bleyer and de Buhan (2016), present LB from
Bleyer and Hassen (2021)

(b) Cylindrical shell pseudo-collapse mecha-
nisms and normalized normal force magni-
tude ∥𝑵∥/𝑁0. Top: slenderness 2𝐿/𝑅 = 10,
bottom: slenderness 2𝐿/𝑅 = 30.

Figure 5.3: Cylindrical shell under self-weight

5.4.3 A Cosserat-continuum model for jointed rocks

We further illustrate the ability of the proposed framework to tackle generalized continua
by considering a Cosserat model for jointed rocks, initially proposed in de Buhan et al. (2002).
The governing equations of the model, in plane strain conditions, involve a non-symmetric

stress tensor 𝚺 =

[
Σ11 Σ12
Σ21 Σ22

]
and a couple stress vector 𝑯 = (𝐻1 , 𝐻2) both expressed in

the local reference frame (𝒆1 , 𝒆2) of the jointed rock mass (see Fig. 5.4). The corresponding
equilibrium equations read as:

div𝚺 + 𝒇 = 0 (5.36)
div𝑯 + Σ21 − Σ12 = 0 (5.37)

the corresponding weak form obtained from the virtual work principle being:

∫
Ω

(
𝚺T : (∇𝒖 − skew 𝜔) + 𝑯 · ∇𝜔

)
dΩ =

∫
Ω

𝒇 · 𝒖 dΩ (5.38)

for any continuous test function 𝒖 and 𝜔 with skew 𝜔 = 𝜔(𝑒2 ⊗ 𝑒1 − 𝑒1 ⊗ 𝑒2) and where we
considered only body forces as loading parameters.

As regards strength properties, the rock mass is assumed to obey a Mohr-Coulomb
criterion of cohesion 𝑐𝑚 and friction angle 𝜙𝑚 . The joints are represented as an orthogonal
array, spaced by a length ℓ and making an angle 𝜃 with the horizontal axis. They are assumed
to also obey a Mohr-Coulomb condition with parameters (𝑐 𝑗 , 𝜙 𝑗). The generalized strength
condition for a jointed rock mass modeled as a Cosserat continuum is expressed as (de Buhan
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et al., 2002):

(𝚺,𝑯) ∈ 𝐺Cosserat ⇐⇒



Σ11 tan 𝜙 𝑗 + |Σ21| ≤ 𝑐 𝑗

Σ22 tan 𝜙 𝑗 + |Σ12| ≤ 𝑐 𝑗
ℓ

2Σ11 + |𝐻1| ≤
ℓ

2
𝑐 𝑗

tan 𝜙 𝑗

ℓ

2Σ22 + |𝐻2| ≤
ℓ

2
𝑐 𝑗

tan 𝜙 𝑗

|𝐻1| ≤
ℓ

2
𝑐 𝑗

cos 𝜙 𝑗

|𝐻2| ≤
ℓ

2
𝑐 𝑗

cos 𝜙 𝑗

sym𝚺 ∈ 𝐺MC,2D(𝑐𝑚 , 𝜙𝑚)

(5.39)

where the last condition expresses the rock mass Mohr-Coulomb criterion on sym𝚺 =

(𝚺 + 𝚺T)/2 and where all other conditions involve the joints resistance. Let us point out
that the case ℓ = 0 induces 𝐻𝑖 = 0 and thus 𝚺 = 𝚺T due to (5.37), one therefore retrieves a
Cauchy model with a strength criterion described by the first, second and last conditions of
(5.39). Finally, 𝐺Cosserat involves only linear inequality constraints in addition to the Mohr-
Coulomb criterion 𝐺MC,2D. It is, therefore, SOC-representable, the part involving joints only
being linear-representable.

We considered the stability problem of an excavation of height 𝐻, making a 25◦ angle
with the vertical and subjected to its self-weight of intensity 𝛾. The problem amounts to

find the maximum value of the non-dimensional stability factor 𝐾+ =

(
𝛾𝐻

𝑐𝑚

)+
. For numerical

applications, we took 𝑐 𝑗 = 0.5𝑐𝑚 , 𝜙 𝑗 = 20◦, 𝜙𝑚 = 40◦, 𝜃 = 10◦ and varied the joint spacing
ℓ . The evolution of the stability factor estimates as a function of ℓ/𝐻 has been represented
in Fig. 5.4b for two different mesh sizes. Strengthening of the stability factor is observed
for increasing ℓ/𝐻 ratios. The obtained value in the standard Cauchy (ℓ = 0) case is quite
close to the analytical upper bound of 𝐾+ ≤ 1.47 derived for the same problem in de Buhan
et al. (2002). Finally, collapse mechanisms and a measure of the pure Cosserat contribution
(Σ21 −Σ12)(𝑢2,1 −𝑢1,2 −𝜔)+𝑯 · ∇𝜔 to the total dissipation have been represented in Fig. 5.5. It
can be observed that the shape of the collapse mechanism and the location of "shearing" zones
involving Cosserat effects is quite dependent on the joint spacing. For ℓ = 0, a triangular
sliding block with a concentrated slip zone is obtained, approximately corresponding to the
merging of the two slip bands of Fig. 5.5a.

5.5 Civil engineering applications

In this section, we will present some practical applications of finite-element based limit
analysis for civil engineering problems. Examples of Section 5.5.1 and Section 5.5.2 are ex-
tracted from industrial PhD theses made in collaboration with the engineering company
Strains2. The corresponding developments and results have been implemented in the com-
pany’s internal software. The latter uses the same methodology, i.e. lower and upper-bound
finite-element discretization, conic formulations and interior-point solver, as the one pre-
sented earlier in this chapter. In particular, I have helped the company to develop its own
primal-dual interior point solver for SOCP and SDP problems.

2https://strains.fr/

https://strains.fr/
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(b) Evolution of the stability factor as function
of the joints spacing ℓ/𝐻 for two mesh sizes
(dashed lines correspond to standard continuum
limit analysis results ℓ = 0).

Figure 5.4: Stability of a jointed rock excavation

(a) ℓ/𝐻 = 0.001 (b) ℓ/𝐻 = 0.01 (c) ℓ/𝐻 = 0.1

Figure 5.5: Collapse mechanism of the jointed rock excavation and pure Cosserat contribution
to the total dissipation
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5.5.1 Complex 3D steel connections

Introduction

The first application concerns complex 3D assemblies found in steel construction. Steel
assemblies connect different parts of a structure using various topologies designed specifically
to transmit a given type of force. In simple industrial buildings, connections can be modeled
using simplifying hypothesis such as nominally-pinned or fully-rigid connections between
the elements. However, engineers are facing today new 3D connection topologies where
a large number of members converge to the same point in different angles and sizes (see
Fig. 5.6).

Figure 5.6: A complex 3D steel structure - Fondation Louis Vuitton

The behavior of the steel connection is neither fully-rigid nor nominally-pinned. In reality,
all steel assemblies are semi-rigid, and their stiffness and ultimate resistance varies due to the
contact between the steel plates, bolts, welds and the possible yielding or buckling of some
parts.

The Eurocode design rules provide some approximate methods to evaluate the mechanical
characteristics of steel assemblies such as the sub-components method. However, these
calculations are often extremely time-consuming and rely on simplified models with large
safety coefficients therefore providing uneconomical designs.

The design of steel assemblies is to be considered one of the biggest challenges of steel
structures engineering. Few software used in engineering practice can efficiently handle
such intrinsically three-dimensional models using a first-order elastic analysis, let alone a full
second-order plastic analysis coupling contact interfaces with material non-linearities and
geometrical non-linearities.

The main objective of Chadi El Boustani’s PhD work (El Boustani, 2020) was to provide
engineers with a robust and efficient numerical tool for the ultimate state analysis of such
assemblies. Note that this tool has also been extended to elastoplastic simulations, including
contact, both in a small and finite-strain setting as discussed in Section 4.6.4.

Analysis of a column base plate

According to the Eurocodes (EC) (EN1993–1-1, 2005; EN1993–1-8, 2005), a typical steel
assembly ultimate design analysis relies on the so-called component method where the complex
assembly is divided into basic components (Fig. 5.7). Each of them is then checked against
various failure mechanisms assembled to derive an estimate of the ultimate resistance of the
connection. Note that computing the strength of even basic component can be sometimes
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Figure 5.7: A descriptive explanation of the components method

difficult. In such cases, EC provides guidelines to replace the corresponding component with
an equivalent T-stub (of effective length 𝐿𝑒 𝑓 𝑓 ) which is simpler to analyse.

However, even for a classical base column under tensile loading as shown in Fig. 5.8, the
component method requires more than 20 sub-components should be analysed (Fig. 5.9).
This manual procedure quickly becomes impractical for more complex assemblies. As an
alternative, we used a 3D finite-element model of the assembly to determine its ultimate
strength. The HEB column is welded to a base plate which is bolted to its final support, fillet
welds are explicitly modeled and contact conditions are enforced around the bolts. Both
lower and upper-bound finite-element simulations are run, providing a bracketing of the
assembly tensile strength between 𝐹T,lower = 335 kN using the lower bound approach and
𝐹T,upper = 354 kN using the upper bound approach. The associated 3D collapse mechanism
represented in Fig. 5.10 involves yielding in bending of the base plate. As plastic dissipation
mostly concentrates near the welds and the bolts, the obtained mechanism looks similar to a
yield-line mechanism as commonly considered for plates in bending.

Indeed, the manual computation according to the Eurocode identifies the yield-line mech-
anism of Fig. 5.11a as the most critical one associated with a tensile strength of 𝐹𝑇,𝑟𝑑 = 312 kN.
Clearly, both mechanisms are very close to each other. The small difference in terms of pre-
dicted strength is due to the fact that the Eurocode simplified approach does not take into
consideration 3D effects, nor the complete curvature seen in the yield line, nor the contribu-
tion of the bolt heads to the assembly strength. The predicted strength is therefore slightly
more conservative.

More complex assemblies

In this paragraph, we briefly describe two other complex assemblies that were analyzed
using the industrial software developed by Strains. These assemblies are part of a large set of
checks that were made for a structural engineering firm. Geometry details and load cases are
omitted in order to simplify the presentation and preserve the confidentiality of the study.

Two complex assemblies are briefly presented:

• a 3D bracing assembly (Fig. 5.12a) in which the applied loads are mainly tension or
compression forces in the converging bracing members obtained from a global 3D
model of the whole structure;

• a moment transmitting assembly (Fig. 5.12b) in which the applied load is a combination
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Figure 5.8: Description of the column base plate model

Figure 5.9: Illustration of all failure mechanisms to check (the dashed red lines represent
yield lines)
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Figure 5.10: 3D failure mode obtained by the finite-element limit analysis (color indicates
plastic dissipation)

(a) Expected yield mechanism (the dashed red
lines represent yield lines)

(b) Plastic dissipation concentration matches the
expected shape of the yield lines in Fig. 5.11a

Figure 5.11: Top view of the critical failure mechanism

(a) A wind bracing assembly (b) A continuity assembly

Figure 5.12: Complex 3D assemblies
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(a) Equivalent von Mises plastic stress isovalues (b) Plastic dissipation in the critical diagonal

Figure 5.13: Wind bracing analysis

of a uniaxial bending moment, normal and shear force.

In the case of the first assembly, failure occurs in one of the bracing members where the
web plate fails in bearing due to a critical bearing pressure as shown in Fig. 5.13b. One can
also see in Fig. 5.13a that the elastic limit, in this case 𝑓𝑦 = 355 MPa is reached in the same
diagonal member. The upper bound provides a load factor of 2.2 for the corresponding load
case while the lower bound approach yields a load factor of 1.9. The gap between the two
results can be reduced by reducing the mesh size in the failure area.

For the second assembly, the failure mechanism involves bending of the top beam as well
as bending of the end-plate (Fig. 5.14a). As before, failure of the end-plate can be matched to
a complex yield-line mechanism as shown in Fig. 5.14b.

The mesh used for both examples consisted of roughly 5.5 million degrees of freedom. The
interior point method shows a very efficient behavior with a number of iteration remaining
stable compared to smaller problems (22 to 24 iterations) and a CPU time of approximately
315 s per iteration (OpenMP parallelization over 8 cores), resulting in a computing time of 2h
per analysis.

5.5.2 Massive reinforced-concrete structures

In this section, we consider the case of massive 3D reinforced-concrete structures. Con-
trary to steel, concrete is not a perfectly plastic material as it is brittle in tension and damage-
able in compression. However, including steel rebars reinforcements often provide enough
ductility to reinforced-concrete structures so that limit analysis concepts can also be applied
to this case. Nevertheless, one must keep in mind this fundamental difference and ensure
that ductility requirements are satisfied, that the failure mechanism does not involve tensile
failure of concrete, etc. This makes the analysis of concrete structure particularly difficult,
accounting also for the fact that damage models are difficult to handle in practice due to
damage localization and mesh dependence issues, see Chapter 8.

With such precautions in mind, the design of reinforced-concrete structures at ultimate
state covered by Eurocode 2 essentially distinguishes two types of structural regions:

• so-called B-regions where beam theory applies and design is based the cross-section
properties
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(a) 3D failure mechanisms (b) 2D view of plastic dissipation

Figure 5.14: Continuity assembly failure mechanism

• and so-called D-regions corresponding to regions of geometry or loading discontinuities,
boundaries, etc.

The latter are much more involved to design as they require a local 2D/3D analysis. To
simplify such an analysis, Eurocode 2 relies on a simplified approach called the strut-and-tie
method, see also in Chapter 6. This method relies on an idealization of the flow of forces
inside a structure in the form of a truss consisting of concrete struts in compression and
steel reinforcements (or ties) in tension. Equilibrium conditions are enforced at nodes, strut
and ties strength capacities are verified according to their corresponding cross-section and
additional strength conditions are enforced at the nodes using 3D stress states. In this sense,
the strut-and-tie method is a simplified lower-bound limit analysis which looks for a stress
state in equilibrium satisfying the materials strength conditions. The main difference with
a finite-element based lower bound limit analysis is that the stress state is not a general 3D
field but is simplified in the form of a truss with members and nodes, resulting in a sim-
plified analysis. However, the main difficulty when implementing such a method is to find
a relevant truss layout for complex or non-conventional cases. In practice, a first 3D elastic
analysis is often conducted in order to guide the engineer’s intuition towards a relevant truss
layout. Here, we advocate the use of 3D finite-element limit analysis of reinforced concrete
structures to directly provide a relevant stress field and accurate estimate of the collapse load.

3D limit analysis of reinforced-concrete structures

The PhD work of Hugues Vincent, again in collaboration with Strains, has been devoted
to the implementation of a similar limit analysis tool for 3D RC structures (Vincent, 2018).
Concrete is modeled using a Mohr-Coulomb or a Rankine strength criterion with very small
tensile strength. As seen in Section 5.2.3, the corresponding 3D limit analysis problems
result in large-scale semi-definite programs, which makes them inherently more challenging
to solve than their SOCP counterparts for 3D steel structures. Again both lower and upper
bound discretizations have been developed (Vincent et al., 2018, 2020).

A specific emphasis must however be put on the modeling of steel rebars. Indeed,
modeling them explicitly as 3D cylinders often results in very fine mesh sizes and complex
meshing densities. Fortunately, 3D reinforced-structures often consist of regions where steel
reinforcement is arranged in a periodic array of identical steel rebars. In such regions, we can



98 CHAPTER 5. COMPUTATIONAL LIMIT ANALYSIS

Figure 5.15: Homogenization of a periodic material (concrete in gray) reinforced by linear 3D
inclusions (steel rebars in red).

resort to homogenization theory to replace individual rebars with an equivalent homogenized
layer for which mesh size requirements will be much less stringent.

Let us consider a 2D region consisting of a periodic array of parallel rebars oriented along
direction 𝒆2 as in Fig. 5.15. Accounting for the fact that rebars are in small volume fraction
and assuming perfect bonding between concrete and steel rebars, the homogenized strength
criterion can be written as:

𝝈 ∈ 𝐺hom ↔ ∃𝝈c , 𝜎r s.t.


𝝈 = 𝝈c + 𝜎r𝒆2 ⊗ 𝒆2

𝝈𝑐 ∈ 𝐺c

|𝜎𝑟 | ≤ 𝜂r 𝑓𝑦

(5.40)

where the total stress 𝝈 can be decomposed as the sum of a 3D partial stress 𝝈c in the concrete
phase and a 1D partial stress 𝜎𝑟 in the reinforcement phase. The former must satisfy the
reinforced concrete criterion 𝐺c whereas the latter should satisfy a uniaxial stress criterion
involving the steel elastic limit 𝑓𝑦 and 𝜂r is the reinforcement volume fraction defined as:

𝜂r =
𝐴s
𝑠ℎ

(5.41)

with 𝐴s being the cross-section of a single rebar, 𝑠 the rebar spacing and ℎ the layer thickness.
The above composite criterion is therefore given by the Minkowski sum of the bulk concrete
criterion 𝐺c and a segment [−𝜂r 𝑓𝑦 ;𝜂r 𝑓𝑦] along direction 22. Geometrically, it can be obtained
as the convex hull of two copies of 𝐺c translated by ±𝜂r 𝑓𝑦 along direction 22 (see Fig. 5.15-
right). Obviously, it can be extended to the case of non-symmetric strengths in tension and
compression or another set of inclusions oriented, for instance, along 𝒆1.

Remark 8. Formula (5.40) heavily relies on the two assumptions of small volume fraction
and perfect bonding. Relaxing the first one would imply solving a 3D limit analysis problem
over the periodic unit cell. Our numerical tools enable to do such a computation quite
easily. However, using the numerically computed criterion in a limit analysis problem at the
structure scale is however much more difficult. Indeed, one needs to resort to approximation
procedures to express the obtained numerical yield surface using conic constraints. The
interested reader may refer to references (Bleyer and de Buhan, 2013a,d, 2014a) for more
details on this aspect.

Relaxing the perfect bonding assumption would require to resort to a specific class of gen-
eralized continua called multiphase continua where both concrete and reinforcement phases
are endowed with their own kinematics. A specific interfacial strength condition could then
be considered to account for a possible loss of steel rebar anchorage. Again, the reader can
refer to (de Buhan et al., 2017) and references therein.
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(a) 2D view and loading (b) 3D view and 45◦ slice

Figure 5.16: Reinforced-concrete circular footing

Obviously, there are practical cases where homogenization cannot be used directly. In
Vincent et al. (2018), we investigated a strategy in which a single rebar can be diluted in a
larger region using the homogenized formulation. This approach requires a coarser mesh
than meshing the real rebar diameter in 3D but needs to identify an appropriate smearing
length scale. More recently, we worked on a specific finite-element formulation enabling
to use embedded 1D bars in a 3D mesh (Ferradi et al., 2023). This approach is much more
interesting regarding mesh generation but allows only for pseudo lower-bound estimates of
the ultimate load.

Load-bearing capacity of a reinforced-concrete footing

As an illustration of 3D limit analysis in reinforced-concrete structures, we consider the
computation of the load-carrying capacity of a circular slab (thickness ℎ, radius 𝑟𝑠) used as a
building or bridge foundation system (Fig. 5.16a). It is rigidly connected in its central upper
part to a column (bridge pier for instance) of radius 𝑟𝑐 < 𝑟𝑠 . The action of the underlying
soil is simply modeled by means of a uniform pressure applied on the footing base equal
to: 𝑝 = 𝑄/(𝜋𝑟2

𝑠 ) where 𝑄 is the total resulting force applied by the foundation to the soil.
The concrete footing has been reinforced in its lower part by a system of steel rebars which
are homogenized as a uniform layer of orthotropic reinforced material (Fig. 5.16b). Finally,
we model a 45◦ slice accounting for symmetry conditions. The objective of the analysis is to
investigate, for a given geometry of the footing, the influence on the bearing capacity 𝑄+ of
the reinforcement ratio 𝜔 defined as:

𝜔 =
𝐴s

2ℎ𝑟𝑠
𝑓𝑦

𝑓𝑐
(5.42)

where 𝐴s is the total area of reinforcement in a meridional (𝑥 = 0 or 𝑦 = 0) cross-section and
𝑓𝑦 , 𝑓𝑐 are the steel and concrete yield strengths.

The results of our analysis will be compared to those established by Simões et al. (2016)
who implemented a semi-analytical kinematic approach in a simplified axisymmetric setting3.
It is based upon two families of simple failure mechanisms, called M1 and M2, represented
in Fig. 5.17 in any meridian plane passing through the symmetry axis, with the cylindrical
coordinates (𝑟 − 𝑧). The first kind of mechanism (M1, Fig. 5.17a) corresponds to a rigid body

3Note that the orthotropic reinforcement layout breaks the symmetry around the vertical axis. However, we
verified numerically that the solution is essentially influenced by the reinforcement ratio 𝜔 but not by the exact
reinforcement layout (orthogonal vs. orthoradial grid for instance).
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(a) Mechanism M1 (b) Mechanism M2

Figure 5.17: Failure mechanisms M1 and M2 used in the kinematic approach of limit analysis
by Simões et al. (2016).

motion of an external part of the slab separated from its central part by a velocity discontinuity
line, the instantaneous centre of rotation (ICR) being located in the upper left quarter of plane
defined in the same figure. The second kind of mechanism (M2, Fig. 5.17b) corresponds to
the situation when the ICR is located in the lower right quarter of plane. Simões et al. (2016)
determined the optimal location of the ICR for each mechanism numerically and proposed
simplified analytical expressions approximating the obtained results with satisfying accuracy.

The numerical bounds obtained from our 3D limit analysis are represented by the two red
coloured (upper bound) and blue coloured (lower bound) curves of Fig. 5.18 for the following
values of the strength parameters:

𝑓𝑐 = 30 MPa ; 𝑓𝑡 = 0.1 MPa ; 𝑓𝑦 = 500 MPa (5.43)

and a geometry of the footing defined by the following non-dimensional parameters:

𝑟𝑐/𝑑 = 0.5 ; (𝑟𝑠 − 𝑟𝑐)/𝑑 = 1.5 ; 𝑟𝑠/𝑟𝑐 = 4 (5.44)

The results are compared against the analytical predictions of Simões et al. (2016) who iden-
tified that failure is dictated by a flexural-shear mechanism for low values of the reinforcement
ratio 𝜔 and by a "punching shear" failure for large values of the reinforcement ratio.

We can observe that our 3D predictions agree well with the analytical estimates of Simões
et al. (2016). More precisely, while the flexural-shear predictions are higher that the 3D
predictions, the punching-shear prediction (which is independent of the reinforcement ratio)
lies within the interval formed by the 3D upper and lower bound estimates. It must however
be kept in mind that the analytical predictions correspond to approximations of a purely
kinematic approach in an axisymmetric setting.

Finally, deeper insight can be gained from analyzing the obtained velocity fields repre-
sented in Fig. 5.19 for three increasing reinforcement ratios: 𝜔 = 0.05; 0.20; 0.375. It deserves
the following comments:

• For the lowest reinforcement ratio (𝜔 = 0.05, Fig. 5.19a) where all calculation methods
lead to very close estimates of the load-bearing capacity, the observed velocity field
corresponds to a pure flexural mechanism, in which the external part of the footing is
given, in the median plane, a rigid body motion with a centre of rotation located in the
vicinity of the central supported column.
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Figure 5.18: Comparison between different estimates of the footing load-bearing capacity as
functions of the reinforcement ratio

(a) 𝜔 = 0.05

(b) 𝜔 = 0.20

(c) 𝜔 = 0.375

Figure 5.19: Optimal failure mechanisms obtained for three different reinforcement ratios
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• Conversely, for an intermediate value of the reinforcement ratio (𝜔 = 0.20, Fig. 5.19b) the
optimal velocity field corresponds to a punching-shear mechanism, that is to a uniform
vertical translation of an external ring-shaped part of the footing, while the central part
around the column remains motionless.

• Finally, for the highest value of the reinforcement ratio (𝜔 = 0.375, Fig. 5.19c), the
optimal velocity field is also of punching-shear type but with a rigid body motion around
of centre of rotation located outside the footing.

5.6 Conclusions

This chapter has discussed the numerical implementation of limit analysis theory in a
finite-element setting. The structure ultimate load is estimated by accounting for a material
strength criterion through the resolution of stress and displacement variational principles.
Upon selection of appropriate finite-element discretization spaces and quadrature rules, their
resolutions leads to guaranteed lower and upper bound estimates, respectively. However,
such variational problems lead to complex, non-smooth, and large-scale convex optimization
problems, which are addressed with conic programming and interior-point algorithms. The
development of a Domain-Specific Language dedicated to formulating convex variational
problem enables to automate limit analysis problems for various mechanical models.

This chapter also highlighted the usefulness of such computational tools for assessing
the load-bearing capacity of complex civil engineering structures in various domains. For
instance, limit analysis-based software have also recently emerged in the field of geotechnical
engineering, see the Optum Computational Engineering4 products for instance.

The next two chapters present more recent developments which were motivated by ex-
tending limit analysis concepts from their classical setting. In Chapter 6, we will present
how limit analysis and topology optimization concepts can be used together to optimize a
structure geometry with respect to its load-bearing capacity. In Chapter 7, we will discuss
how limit analysis can be extended to account for uncertainties either in material properties
or loading values.

4https://optumce.com/

https://optumce.com/


Chapter 6

Optimal design of structures using
convex shape optimization

This chapter is devoted to an extension of the previously introduced concepts and numerical
tools to the problematic of shape optimization in structural mechanics. Our contribution to
this domain is based on a convex optimization viewpoint of topology optimization formu-
lations which can be extended to generic constitutive models. When applying the proposed
approach to a limit analysis setting, we obtain a topology optimization formulation which
looks for the optimal structure maximizing the overall load-bearing capacity, instead of the
elastic compliance for instance. An important aspect of this setting is related to the choice of
the corresponding strength criterion which we discuss. We then consider the case of multi-
material optimization, focusing in particular on structures made of uniaxial reinforcements
with either fixed or unknown orientations. Numerical applications show deep links with
the strut-and-tie method used in practice for the design of reinforced concrete structures.
This chapter ends with applying similar concepts to form-finding of optimal shell or vault
structures subject to compression only.
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6.1 Introduction

Shape optimization covers the generic problem of finding an optimal shape or an optimal
distribution of material which minimizes or maximizes a given objective function subject
to some cost constraints (e.g. fixed total volume). Depending on the type of optimization
variable and the set of admissible solutions, one obtains various classes of problems. The
most basic is the parametric optimization where only a few parameters (e.g. length, width
of a rectangular domain, elastic modulus, etc.) are optimized. Geometric optimization then
amounts to find the optimal shape from an initial guess and then move its boundary towards
an optimum. In this case, topological changes (addition of matter or holes) is not allowed.
Finally, topology optimization allows for a generic optimization with topological changes and
is thus more challenging.

Objective functions in shape optimization can be very diverse depending on the appli-
cation e.g. maximum stiffness or target displacement in quasi-statics, target eigenfrequency
in dynamics, maximum damping coefficient for viscous materials, etc. In the setting of
static linear elasticity, the most simple problem consists in finding an optimal shape Ω which
would maximize the structural stiffness for a given loading and an imposed volume of ma-
terial. More formally, stiffness maximization or compliance minimization can be formulated
as follows:

min
Ω,𝒖

∫
𝜕Ω

𝑻 · 𝒖 d𝑆

s.t. 𝝈 = C0 : ∇𝒖 in Ω

div 𝝈 = 0 in Ω

𝝈𝒏 = 𝑻 on 𝜕ΩN
𝒖 = 0 on 𝜕ΩD
|Ω| = 𝜂|𝒟|

(6.1)

where C0 is the material stiffness, 𝜂 ∈ [0; 1] is the imposed volume fraction, 𝑻 an imposed
external loading applied on the boundary and Ω belongs to some set of admissible shapes
(typically contained inside a computational domain 𝒟 ⊇ Ω). Note that in (6.1), the structural
compliance has been written here as the work of external loads. Indeed, in the case of zero
prescribed displacement, a stiff structure will correspond to minimal displacements under
the imposed external loads. However, this definition of compliance does not work in the case
of non-zero prescribed displacement as discussed in Barbarosie and Lopes (2011); Niu et al.
(2011).

The difficulty of this formulation is obviously that one has to optimize over a shape Ω.
Moreover, there is no existence result of well-defined optimal shapes in general. Various
methods have therefore been proposed in the literature to parameterize this optimization
problem by enlarging the class of admissible solutions for which optimal solutions do exist.

One of them is the homogenization method (Allaire, 2012) which operates on a local vol-
ume fraction and an effective stiffness tensor which represents an underlying microstructure.
Note that the microstructure can vary locally and adapt in an optimal fashion to the local
stress distribution. To obtain manufacturable shapes, a specific penalization procedure is of-
ten introduced in order to produce black-and-white designs. Another class of methods relies
on the introduction of a scalar fictitious densitiy field 𝜌 ∈ [0; 1] defined on the computational
domain 𝒟, the most popular being by far the Solid Isotropic Material Penalization (SIMP)
(Bendsøe and Sigmund, 2004). In this case, a specific assumption is made on the form C(𝜌)
of the stiffness tensor on 𝜌, namely:

C(𝜌) = 𝜌𝑝C0 (6.2)
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where 𝑝 > 1 is progressively driven from 1 to 𝑝max (typically around 3) in order to penalize
intermediate densities. The corresponding minimization problem therefore reads:

min
𝜌,𝒖

∫
𝜕𝒟

𝑻 · 𝒖 d𝑆

s.t. 𝝈 = 𝜌𝑝C0 : ∇𝒖 in 𝒟
div 𝝈 = 0 in 𝒟
𝝈𝒏 = 𝑻 on 𝜕𝒟N
𝒖 = 0 on 𝜕𝒟D
0 ≤ 𝜌 ≤ 1 in 𝒟∫
𝒟 𝜌dΩ = 𝜂|𝒟|

(6.3)

Note that the above problem is convex if 𝑝 = 1 and non-convex as soon as 𝑝 > 1. A
typical solving strategy amounts to alternatively minimize with respect to 𝝈 and 𝜌. To
avoid checkerboard instabilities, filtering strategies are generally introduced, e.g. non-local
sensitivity filtering. Restriction methods aim at removing mesh dependency due to the
emergence of finer and finer microstructure, one can mention for instance perimeter control,
gradient control, Helmholtz filters, etc. The reader can refer to Sigmund and Petersson (1998)
for a general review.

Finally, let us also mention other topology optimization approaches: the level-set method
(Allaire et al., 2004) which relies on a level-set description of the shape Ω and uses shape
derivatives to optimize for the location of the shape boundary; Evolutionary Structural Opti-
mization (Xie and Steven, 1997) (ESO/BESO) which use element erosion (and insertion), free
material optimization (Zowe et al., 1997), etc.

Note that, in most cases, the topology optimization pipeline consists in an iterative pro-
cedure involving a direct calculation with fixed values of the optimization variables (density
field, homogenized stiffness tensor, etc.), followed by an evaluation of the gradient of the
objective with respect to such parameters (the so-called sensitivities computation) and a gra-
dient descent step to update the new parameters (potentially with some penalization and
filtering steps as discussed before). In this numerical chain, the computation of sensitivi-
ties might be quite challenging, especially when extending the previous elastic compliance
minimization setting to nonlinear behaviours. For instance, for non-smooth behaviours such
as elasto-plasticity, sensitivities or shape derivatives are often computed by replacing the
original non-smooth behaviour with a regularized smooth behaviour (Allaire et al., 2018).
Overall, in such non-smooth cases, the convergence of the iterative procedure might therefore
be more difficult to obtain.

In the following, we will depart from this usual strategy and propose instead a convex
optimization formulation in a generic thermodynamic setting. This point of view offers new
insights on topology optimization formulations for general material behaviours. Moreover,
it makes it possible to optimize simultaneously over the mechanical fields and the density
variable, thereby avoiding the need of computing sensitivities which will prove very useful
for non-smooth behaviours.

6.2 A generic convex optimization formulation

6.2.1 Elastic compliance minimization

Let us first revisit the elastic compliance minimization problem (6.1). The latter benefits
from a purely stress-based formulation since the work of external forces is related to the total
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complementary elastic energy. Our forthcoming proposal will therefore rely on a topology
optimization formulation based on the dual stress-based variational principle which reads
here:

min
Ω,𝝈

∫
Ω

1
2𝝈 : (C0)−1 : 𝝈 dΩ

s.t. div 𝝈 = 0 in Ω

𝝈𝒏 = 𝑻 on 𝜕ΩN
|Ω| = 𝜂|𝒟|

(6.4)

Note that in the case of non-zero prescribed displacement 𝒖 = 𝒖̄ on 𝜕ΩD, the compliance 𝒞 ,
defined as the objective of the above minimization problem, would be in fact:

𝒞 =

∫
Ω

1
2𝝈 : (C0)−1 : 𝝈 dΩ −

∫
𝜕ΩD

(𝝈𝒏) · 𝒖̄ d𝑆 (6.5)

= −
∫
Ω

1
2 𝜺 : C0 : 𝜺dΩ +

∫
𝜕ΩN

𝑻 · 𝒖 d𝑆 (6.6)

recovering the definition proposed in Barbarosie and Lopes (2011); Niu et al. (2011).
Finally, the SIMP counterpart to (6.4) reads:

min
𝜌,𝝈

∫
Ω

1
2𝜌

−𝑝𝝈 : (C0)−1 : 𝝈 dΩ

s.t. div 𝝈 = 0 in 𝒟
𝝈𝒏 = 𝑻 on 𝜕𝒟N
0 ≤ 𝜌 ≤ 1 in 𝒟∫
𝒟 𝜌dΩ = 𝜂|𝒟|

(6.7)

which, again, is convex when 𝑝 = 1 since (𝝈 , 𝜌) ↦→ (𝝈 : (C0)−1 : 𝝈)/𝜌 is a convex function of
(𝝈 , 𝜌).

6.2.2 Extension to convex stress potentials

In the following, we aim at extending the volume-constrained compliance minimization to
a generic thermodynamic stress potentialΨ∗(𝝈) representing a material behaviour which may
be different than classical linear elasticity. For simplicity, we restrict to behaviours without
internal state variables and consider a single load step only. We propose the following
formulation:

min
𝜌,𝝈

∫
𝒟
𝜌Ψ∗(𝝈/𝜌)dΩ

s.t. div 𝝈 = 0 in 𝒟
𝝈𝒏 = 𝑻 on 𝜕𝒟N
0 ≤ 𝜌 ≤ 1 in 𝒟∫
𝒟 𝜌dΩ = 𝜂|𝒟|

(6.8)

in which we introduced the perspective function persp
Ψ∗(𝜌, 𝝈) = 𝜌Ψ∗(𝝈/𝜌) in the objective

function, see Appendix A.2 for the definition and properties of the perspective function.
The above problem is therefore convex owing to the convexity of the perspective. If 𝜂 = 1,
𝜌 = 1 everywhere is possible and we recover a standard stress-based variational principle.
Moreover, this formulation coincides with the SIMP formulation (6.3) with 𝑝 = 1 in the elastic
case since 𝜌Ψ∗(𝝈/𝜌) = 1

2𝜌( 𝝈𝜌 ) : C−1
0 : ( 𝝈𝜌 ) = 1

2 (𝝈 : C−1
0 : 𝝈)/𝜌.



6.2. A GENERIC CONVEX OPTIMIZATION FORMULATION 107

One can also easily derive the corresponding dual displacement-based problem which
reads (see Appendix C.1):

min
𝒖 ,Λ

∫
𝒟

max{Ψ(𝜺);Λ}dΩ −
∫
𝜕𝒟N

𝑻 · 𝒖 d𝑆 − (1 − 𝜂)|𝒟|Λ (6.9)

where Λ ∈ R is a scalar variable corresponding to the Lagrange multiplier associated with
the volume constraint in (6.8). Interestingly, the dual problem (6.9) is similar to a classical
potential energy minimum principle, except that a lower limit Λ is set on the local potential
energy densityΨ(𝜺). The pseudo-density 𝜌 can be recovered from the optimal dual variables.
Note that if 𝜂 = 1, that is we allow the pseudo-density 𝜌 to fill the whole domain, Λ can take
any value and we recover the classical complementary and potential energy principles from
(6.8) and (6.9) respectively.

6.2.3 Numerical aspects

Conic programming modeling

The benefit of having a convex formulation such as (6.8) or (6.9) is that one is guaranteed
of the existence of an optimal solution. Moreover, the latter can be efficiently obtained nu-
merically using conic programming solvers if the corresponding original variational problem
(without any topology optimization) benefits from a conic formulation. The numerical reso-
lution is slightly more costly (an additional scalar field 𝜌 to solve for) but similar robustness
of the conic solver algorithm is expected. Finally, the use of a Domain-Specific Language for
convex optimization makes the formulation of such a problem particularly easy. For instance,
in the fenics_optim package, a Perspective operator has been introduced in order to easily
model convex functions such as 𝜌Ψ∗(𝝈/𝜌) from an existing convex function object Ψ∗.

Penalization procedure

In some instances, solving the convex topology optimization problem already provides
very interesting results in term of optimal shapes. However, in general, one should expect
the solution 𝜌(𝒙) to be a gray-level field with intermediate values which does not correspond
to a real material. As discussed before, a penalization procedure must therefore be used in
order to obtain black-and-white designs.

Inspired by the SIMP continuation strategy, we would like to replace 𝜌 in the objective of
(6.8) with 𝜌𝑝 for 𝑝 > 1 increasing. Unfortunately, the problem is no longer convex in this case.
Akin to the procedure suggested in Mourad et al. (2021), we propose to consider instead a
linear approximation of 𝜌𝑝 for iteration 𝑛 + 1, namely:

𝜌𝑝 ≈ 𝑎𝑛 + 𝜌𝑏𝑛 (6.10)

where 𝑎𝑛 and 𝑏𝑛 are coefficients obtained from a previous estimate 𝜌𝑛 of the pseudo-density
field. For instance, two strategies can be investigated:

• tangent approximation:
𝜌𝑝 ≈ 𝜌

𝑝
𝑛 + 𝑝𝜌

𝑝−1
𝑛 (𝜌 − 𝜌𝑛) (6.11)

that is:
𝑎𝑛 = 𝜌

𝑝
𝑛(1 − 𝑝) ; 𝑏𝑛 = 𝑝𝜌

𝑝−1
𝑛 (6.12)
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• secant approximation:
𝜌𝑝 ≈ 𝜌

𝑝−1
𝑛 𝜌 (6.13)

that is:
𝑎𝑛 = 0 ; 𝑏𝑛 = 𝜌

𝑝−1
𝑛 (6.14)

In doing so, we recover convex formulations with the corresponding stress-based problem
being:

min
𝜌,𝝈

∫
𝒟
(𝑎𝑛 + 𝜌𝑏𝑛)Ψ∗(𝝈/(𝑎𝑛 + 𝜌𝑏𝑛))dΩ

s.t. div 𝝈 = 0 in 𝒟
𝝈𝒏 = 𝑻 on 𝜕𝒟N
0 ≤ 𝜌 ≤ 1 in 𝒟∫
𝒟 𝜌dΩ = 𝜂|𝒟|

(6.15)

whereas, adapting the calculations in Appendix C.1, the dual problem now becomes:

min
𝒖 ,Λ

∫
𝒟
(max{𝑏𝑛Ψ(𝜺);Λ} − 𝑎𝑛Ψ(𝜺)) dΩ −

∫
𝜕𝒟N

𝑻 · 𝒖 d𝑆 − (1 − 𝜂)|𝒟|Λ (6.16)

The penalization procedure therefore amounts to solve iteratively a series of problems
(6.15) by starting from the initial convex formulation (6.8) with 𝑎0 = 0, 𝑏0 = 1. At each step,
coefficients 𝑎𝑛 and 𝑏𝑛 are updated and the SIMP penalization exponent 𝑝 is slightly increased
with some heuristic up to reaching a maximum value 𝑝max with 𝑝max = 3 typically.

Filtering

As discussed before, filtering strategies must be considered to remove checkerboard
instabilities and remove mesh dependence of the obtained solutions. In our work, we tested
in particular a filtering based on a slope-control constraint following Petersson and Sigmund
(1998) :

∥∇𝜌∥2 ≤ 1/ℓ in 𝒟 (6.17)

where ℓ is a user-defined minimal characteristic length. With such a constraint, strong
gradients of the density field are prevented since 𝜌 is forced to vary between 0 and 1 on a
distance which is at least ℓ . As a result, mesh independent solutions are obtained when ℓ
is larger than a few mesh sizes. Note that this constraint is convex and directly fits into the
conic programming framework. It can be added at a small extra cost without impacting on
the overall convergence of the interior-point algorithm.

6.3 Optimization of structural load-bearing capacity

The PhD of Leyla Mourad has been the initial motivation for working on topology opti-
mization formulations. The main goal of this PhD was to propose novel methodologies for
optimizing reinforced concrete structures. In this case, the overall geometry filled with con-
crete is generally given and engineers aim at proposing an optimal layout of reinforcements
to sustain the applied load and prevent the occurrence of traction in the concrete phase. In
order to optimize steel consumption, it therefore appears irrelevant to optimize with respect
to a compliance objective function since steel reinforcements do not contribute to the global
stiffness, which is essentially due to the concrete. Instead, they contribute, in an essential
fashion, to the structure load-bearing capacity. To reach this goal, we first aimed at extending
the concepts of limit analysis to the topology optimization setting by finding an optimal
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structure which would have a maximum load-bearing capacity. Previously, Damkilde and
Krenk (1997) determined an optimized material distribution in reinforced concrete slabs in
bending. More recently, the works of Kammoun and Smaoui (2014); Fin et al. (2018); Herfelt
et al. (2018) have proposed strength-based topology optimization of von Mises plastic mate-
rials using limit analysis formulations. Here, we provide a general formulation of topology
optimization in a limit analysis context with a special emphasis on the choice of the strength
criterion, including for instance materials with asymmetric tension/compression strengths.

6.3.1 LOAD-MAX and VOL-MIN formulations

We now particularize the previous formulations to a stress potential given by the indicator
of a convex strength domain 𝐺 i.e. Ψ∗(𝝈) = 𝛿𝐺(𝝈) akin to limit analysis formulations. For
this purpose, it will be more convenient to consider the displacement-controlled variant of
(6.8), similar to (B.2):

min
𝜌,𝝈 ,𝜆

∫
𝒟
𝜌Ψ∗(𝝈/𝜌)dΩ − 𝜆𝑈 = −max

𝜌,𝝈 ,𝜆
𝜆𝑈

s.t. div 𝝈 = 0 in 𝒟 𝝈 ∈ 𝜌𝐺 in 𝒟
𝝈𝒏 = 𝜆𝑻 on 𝜕𝒟N div 𝝈 = 0 in 𝒟
0 ≤ 𝜌 ≤ 1 𝝈𝒏 = 𝜆𝑻 on 𝜕𝒟N∫
𝒟 𝜌dΩ = 𝜂|Ω| 0 ≤ 𝜌 ≤ 1∫

𝒟 𝜌dΩ = 𝜂|Ω|

(LOAD-MAX)

in which we can see that the imposed displacement amplitude𝑈 becomes irrelevant and can
be taken as 𝑈 = 1. As a result, we obtain an extended limit analysis problem in which both
𝜌 and 𝝈 are optimized for and in which the strength condition corresponds to a strength
criterion scaled by the pseudo-density 𝜌. The initial convex-potential topology optimization
formulation therefore amounts to finding the structureΩ exhibiting the maximum load-bearing
capacity which was initially proposed in Mourad et al. (2021). We introduce:

𝜆+(𝜂) = val(LOAD-MAX) (6.18)

as the maximum limit load for an imposed volume fraction. Note that for 𝜂 = 1, one obtains
the load factor 𝜆+(1) = Λ+ of the original computational domain 𝒟.

In (Mourad et al., 2021), we also proposed a variant of the above-problem in which we fix
the load level 𝜆 and rather look for the structure of minimum volume capable of sustaining
the load level under the considered strength conditions. This volume minimization problem
reads:

𝜂−(𝜆) = min
𝜌,𝝈

1
|𝒟|

∫
𝒟
𝜌dΩ

s.t. 𝝈 ∈ 𝜌𝐺 in 𝒟
div 𝝈 = 0 in 𝒟
𝝈𝒏 = 𝜆𝑻 on 𝜕𝒟N
0 ≤ 𝜌 ≤ 1

(VOL-MIN)

Interestingly, one can show, see (Mourad et al., 2021), that both problems (LOAD-MAX) and
(VOL-MIN) are in fact equivalent since 𝜆+(𝜂) and 𝜂−(𝜆) are inverses of each other.

In both problems, if 𝜌 = 1 then the original strength constraint 𝝈 ∈ 𝐺 is enforced, whereas
for 𝜌 = 0, a zero stress field is enforced 𝝈 = 0. Finally, let us point out that we will always
solve the above problems simultaneously for 𝝈 and 𝜌, in a monolithic fashion using conic
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(a) Symmetric strengths 𝑓𝑡 = 𝑓𝑐 = 1 (b) Asymmetric strengths 𝑓𝑐 = 5, 𝑓𝑡 = 1

Figure 6.1: Strength criteria shapes in the principal stress space (the 𝐿0-norm is represented
in red).

solvers. Indeed, contrary to elastic-based topology optimization problems, solving the above
problems for 𝝈 only, at fixed 𝜌, is already a difficult problem, since it is, in fact, a limit
analysis problem. The coupled problem therefore adds only an extra scalar optimization
variable compared to a standard limit analysis computation and avoids the need of alternate
minimization between the problem on 𝝈 and the problem on 𝜌.

6.3.2 On the choice of the strength criterion

The strength criterion 𝐺 can be chosen based on the considered material strength prop-
erties. Various criteria can model the strength properties of materials exhibiting different
behaviours in tension and compression, e.g. Drucker-Prager, Mohr-Coulomb, Rankine, etc.

However, in topology optimization, one expects to find optimal structures in the form of
trusses consisting of individual members subjected to a uniform stress state so that− 𝑓𝑐 ≤ 𝜎𝐼 ≤
𝑓𝑡 and 𝜎𝐼𝐼 = 0 where 𝑓𝑡 (resp. 𝑓𝑐) is the tensile (resp. compressive) strength, see in particular
the seminal work of Michell (1904). This condition is equivalent to saying that 𝝈 must be of
rank 1 (𝐿0 Schatten norm). Unfortunately, the induced set is non-convex. The smallest convex
set containing the sparsity-inducing 𝐿0-norm is the nuclear 𝐿1-ball: ∥𝝈∥1 = |𝜎𝐼 | + |𝜎𝐼𝐼 | ≤ 𝑓0
for equal tension and compression strengths 𝑓𝑡 = 𝑓𝑐 = 𝑓0. Indeed, the 𝐿1-norm is the tightest
convex relaxation norm of the 𝐿0-norm and has been used in many applications for inducing
sparse solutions (Bach et al., 2011) in compressed sensing or image processing applications.
As a result, we advocate for the use of a 𝐿1-Rankine criterion in order to promote sparse
(i.e. as uniaxial as possible) principal stress states at the optimum. In the case of asymmetric
tensile/compressive strengths, this 𝐿1-Rankine criterion reads as (see Fig. 6.1 for a comparison
of the criterion shapes in plane stress 2D):

𝝈 ∈ 𝐺L1-Rankine ⇔
∑

𝐽=𝐼 ,𝐼𝐼 ,𝐼𝐼𝐼

max
{
−
𝜎𝐽
𝑓𝑐

;
𝜎𝐽
𝑓𝑡

}
≤ 1 (6.19)

which can be easily expressed using a second-order cone formulation in the 2D case, see
again Mourad et al. (2021).

We further justify this choice by relating it to volume-optimal trusses studied by Michell
(1904). Continuous volume-optimal 2D trusses have indeed been characterized as finding a
2D stress state complying with equilibrium conditions and minimizing the quantity

∫
𝒟(|𝜎𝐼 |+

|𝜎𝐼𝐼 |)dΩ in Strang and Kohn (1983); Allaire (2012). We see that, when removing the upper
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bound 𝜌 ≤ 1 on the material density, problem (VOL-MIN) with a symmetric 𝐿1-Rankine
criterion can be written as:

min
𝝈 ,𝜌

1
|𝒟|

∫
𝒟
𝜌dΩ

s.t. equilibrium
|𝜎𝐼 | + |𝜎𝐼𝐼 | ≤ 𝜌 𝑓0 in 𝒟

(6.20)

which is also equivalent to:

min
𝝈

1
𝑓0|𝒟|

∫
𝒟
(|𝜎𝐼 | + |𝜎𝐼𝐼 |)dΩ

s.t. equilibrium
(6.21)

which is exactly the characterization of volume-optimal continuous 2D trusses discussed
in Strang and Kohn (1983); Kilian et al. (2017). A similar equivalence can be obtained for
asymmetric strengths.

In the above problems, we removed the upper bound condition 𝜌 ≤ 1 so that there
is no limit load anymore. A constrained version of the Michell truss design problem has
also been proposed in Strang and Kohn (1983) although not being completely equivalent to
our formulation. However, they share the similar feature of avoiding infinitely large truss
member sections (and are thus unable to sustain concentrated forces) but also of exhibiting a
maximum load level.

6.3.3 Illustrative applications

MBB beam

We first consider a MBB beam example (see inset of Fig. 6.2a) of length 𝑙 = 36 and height
ℎ = 6 with simple supports on the left and roller supports on the right, a vertical force of
reference intensity 𝑃 = 1 is applied at the top. In the following, only one half of the model
will be considered, taking symmetry into account. Both supports and force are distributed
over a small distance 𝑠 = 0.5 to mitigate stress concentrations.

In Fig. 6.2a, solutions to problems (LOAD-MAX) and (VOL-MIN) have been represented for
varying load level and volume fractions. As expected, both problems yield the same solution
in terms of 𝜆+(𝜂). The most interesting feature is the existence of a plateau where 𝜆+(𝜂) = Λ+

for 𝜂 ≥ 𝜂max = 𝜂−(Λ+). This can be explained by the fact that, for a given geometry, limit
analysis solutions do not necessarily involve optimal stress fields lying at the boundary of
the strength criterion everywhere in the domain. Some regions are indeed only weakly
stressed or even unstressed so that a smaller strength criterion can be used. This leads to a
material distribution with significantly lower total density while preserving the maximum
load-bearing capacity. Interestingly, in the present example the material volume savings are
significant since 𝜂max ≈ 50%.

Moreover, the solutions to the convex load maximization problem (Fig. 6.2b obtained
for 𝜂 = 20% display a concentration of matter in the top and bottom region as one could
expect. However, in the central region of the beam, the optimized material is much more
diffused as evidenced by the principal stress fields. The latter is indeed reminiscent of
continuous solutions of the Michell problem. In Mourad et al. (2021), it has been shown that
the 𝐿1-Rankine was the best option for promoting uniaxial stress states in such regions, as
opposed to more classical criteria like a von Mises or Rankine criterion. Nevertheless, this
solution shows the need for a penalization procedure to obtain a manufacturable truss-like
design. The solution obtained after this penalization have been represented in Fig. 6.3 which
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(a) Comparison between both formulations. The horizontal
line corresponds to the standard limit analysis solution Λ+

and the oblique line of equation 𝜆+(𝜂) = 𝐶𝜂 to the solution
of (LOAD-MAX) when removing the upper bound constraint
𝜌 ≤ 1.

(b) Optimized design for 𝜂 = 0.20.
Top: pseudo-density field 𝜌. Bottom:
principal stresses (blue: compression,
red:traction)

Figure 6.2: Load maximization/volume minimization for the 𝐿1-Rankine ( 𝑓𝑐 = 𝑓𝑡 = 1)
criterion on a MBB beam problem.

(a) (LOAD-MAX), 𝜂 = 0.2 (b) (VOL-MIN), 𝜆 = 𝜆+(0.2)

Figure 6.3: Optimized design of the MBB-beam using either penalized load maximization or
volume minimization.

clearly exhibit a truss-like topology. It should be noted that if a (LOAD-MAX) formulation is
used (Fig. 6.3a), the penalization will result in a structure with a lower limit load than the
continuous solution of Fig. 6.2b for the same volume fraction. Conversely, when using a
(VOL-MIN) formulation (Fig. 6.3b), the penalized solution will sustain the same load level 𝜆
but will require a larger volume 𝜂pen > 0.2.

No-tension material

We further illustrate the versatility of our formulation by tackling the important case of
no-tension materials 𝑓𝑡 = 0. The domain represented in Fig. 6.4 is subject to fixed supports on
its bottom and lateral sides and uniformly distributed compressive 𝑻 = −𝒆𝑦 load on the top
boundary. We investigate two different cases for the central region width with either 𝑠 = 0
or 𝑠 = 0.3. We set 𝜂 = 0.2 and ℓ = 0.1 for slope control.

First, the principal stress distributions obtained from the resolution of the unpenalized
convex problem for the case 𝑠 = 0 are represented in Fig. 6.5a. We can remark that the
obtained stress field is indeed in a purely compressive state with a localized uniaxial field in
the inclined strut which is supported by the bottom boundary. The central top region is subject
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1.4s s

Figure 6.4: Geometrical domain for optimization of a no-tension material

(a) Initial unpenalized solution (b) Final penalized solution

Figure 6.5: Principal stress distributions for the no-tension material example with 𝑠 = 0

to a uniformly distributed uniaxial stress state. We can highlight that the obtained solution
is therefore already extremely satisfying in terms of manufacturability. As a result, there is
little use here for a penalization procedure, which will essentially replace the top uniform
region by a series of columns and slightly modify the main struts inclination (Fig. 6.5b).

Interestingly, when increasing the central opening width (case 𝑠 = 0.3). The previous
solution now becomes impossible to sustain since the struts would have to kink to avoid the
opening. Since this kink cannot be supported by a no-tension material, the final solution
introduces a secondary strut which will be supported by the vertical boundaries in this case
(Fig. 6.6a). Again, the obtained solution is remarkably well localized and the penalization
procedure only modifies the top uniform region (Fig. 6.6b).

(a) Initial unpenalized solution (b) Final penalized solution

Figure 6.6: Principal stress distributions for the no-tension material example with 𝑠 = 0.3
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Figure 6.7: Bi-material optimization where we optimize over two materials and a void phase.

6.4 Generalization to multi-material optimization and application
to reinforced concrete structures

In this section, we show how the previous formulation can be easily extended to the
optimization of a structure in presence of reinforcements. In (Mourad et al., 2022), we
investigated the case where the composite material consists of a matrix phase with a fixed
geometry and a reinforcement phase the topology of which we want to optimize. Even if this
situation seems more relevant for the practical application to reinforced concrete structures,
we will see that it is more interesting to consider the situation where both phases, matrix
(concrete) and reinforcement (steel), are simultaneously optimized as it will draw some links
with the strut-and-tie method used in engineering practice. In the following, we will therefore
treat only this second situation and we refer to (Mourad et al., 2022) for more details on the
former case.

6.4.1 Problem formulation

We therefore investigate the concurrent optimization of two different materials (or phases)
in addition to a void phase (Fig. 6.7). Both materials are indexed by 𝑖 = 1, 2 whereas void is
associated with 𝑖 = 0. Each material possesses a corresponding strength criterion 𝐺𝑖 . We aim
at enforcing that a given point 𝒙 belongs to either phase 1, phase 2 or to the void. In terms of
strength conditions, we would therefore have 𝝈 ∈ 𝐺1, 𝝈 ∈ 𝐺2 or 𝝈 = 0 which can be written
as follows:

∃𝝈̃0 , 𝝈̃1 , 𝝈̃2 , 𝜁0 , 𝜁1 , 𝜁2 s.t.



𝝈 = 𝜁0𝝈̃
0 + 𝜁1𝝈̃

1 + 𝜁2𝝈̃
2

𝝈̃0 = 0
𝝈̃1 ∈ 𝐺1

𝝈̃2 ∈ 𝐺2

𝜁0 + 𝜁1 + 𝜁2 = 1
𝜁0 , 𝜁1 , 𝜁2 ∈ {0, 1}

(6.22)

where the binary variables 𝜁𝑖 indicate the membership to the corresponding phase, the con-
straint

∑
𝜁𝑖 = 1 enforcing that one and only one of the 𝜁𝑖 = 1 while the others are zero.

Obviously, due to the binary constraints, the above strength condition is not convex which
will result in the corresponding topology optimization problem being extremely difficult
to solve. To alleviate this issue and following the same concept as the convex topology
optimization formulation, a natural idea is to convexify the above condition with its tightest
convex relaxation. To do so, we allow each 𝜁𝑖 to take continuous values inside [0; 1] instead of
being binary. To make a clear distinction, we will replace each 𝜁𝑖 with 𝜌𝑖 , interpreting these
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variables as the pseudo-density fields of topology optimization. Hence, we consider:

∃𝝈̃1 , 𝝈̃2 , 𝜌0 , 𝜌1 , 𝜌2 s.t.



𝝈 = 𝜌1𝝈̃
1 + 𝜌2𝝈̃

2

𝝈̃1 ∈ 𝐺1

𝝈̃2 ∈ 𝐺2

𝜌0 + 𝜌1 + 𝜌2 = 1
𝜌0 , 𝜌1 , 𝜌2 ∈ [0; 1]

⇐⇒ ∃𝝈̃1 , 𝝈̃2 , 𝜌1 , 𝜌2 s.t.



𝝈 = 𝜌1𝝈̃
1 + 𝜌2𝝈̃

2

𝝈̃1 ∈ 𝐺1

𝝈̃2 ∈ 𝐺2

𝜌1 + 𝜌2 ≤ 1
𝜌1 , 𝜌2 ∈ [0; 1]

(6.23)
This motivates the introduction of the following density-dependent strength condition𝐺(𝜌1 , 𝜌2):

𝝈 ∈ 𝐺(𝜌1 , 𝜌2) ⇔ ∃𝝈1 , 𝝈2 s.t.


𝝈 = 𝝈1 + 𝝈2

𝝈1 ∈ 𝜌1𝐺
1

𝝈2 ∈ 𝜌2𝐺
2

(6.24)

in which we made the change of variable 𝝈 𝑖 = 𝜌𝑖 𝝈̃
𝑖 .

In particular, if both 𝜌1(𝒙) = 𝜌2(𝒙) = 0 at a given point 𝒙, we have 𝝈(𝒙) = 0 i.e. 𝒙 is in a
void phase. If 𝜌1(𝒙) = 1, then 𝜌2(𝒙) = 0 and 𝝈(𝒙) ∈ 𝐺1 i.e. 𝒙 belongs to material 1 and vice
versa. Note that it is possible to find states where 𝜌1(𝒙) ≠ 0 and 𝜌2(𝒙) ≠ 0, which results in 𝒙
belonging to a fictitious material averaging the strength properties of both phases. Indeed, in
the case where 𝜌1 + 𝜌2 = 1, 𝐺(𝜌1 , 𝜌2) corresponds to the convex hull of 𝐺1 and 𝐺2. Finally, in
the case where 𝐺1 = 𝐺2 = 𝐺, we have 𝐺(𝜌1 , 𝜌2) = (𝜌1 + 𝜌2)𝐺 = 𝜌𝐺 and we recover the single
material formulation of (Mourad et al., 2021).

The two corresponding load-maximization (LOAD-MAX) and volume minimization (VOL-MIN)
problems are therefore respectively given by:

𝜆+ = max
𝜆,𝝈1 ,𝝈2 ,𝜌1 ,𝜌2

𝜆

s.t. div(𝝈1 + 𝝈2) = 0 in 𝒟
(𝝈1 + 𝝈2)𝒏 = 𝜆𝑻 on 𝜕𝒟𝑇

𝝈1 ∈ 𝜌1𝐺
1 in 𝒟

𝝈2 ∈ 𝜌2𝐺
2 in 𝒟∫

𝒟(𝜌1 + 𝜌2)dΩ ≤ 𝜂|𝒟|
0 ≤ 𝜌1 ≤ 1
0 ≤ 𝜌2 ≤ 1
𝜌1 + 𝜌2 ≤ 1

(BIMAT-LOAD-MAX)

and
𝜂− = min

𝝈1 ,𝝈2 ,𝜌1 ,𝜌2

1
|𝒟|

∫
𝒟
(𝜌1 + 𝜌2)dΩ

s.t. div(𝝈1 + 𝝈2) = 0 in 𝒟
(𝝈1 + 𝝈2)𝒏 = 𝜆𝑻 on 𝜕𝒟𝑇

𝝈1 ∈ 𝜌1𝐺
1 in 𝒟

𝝈2 ∈ 𝜌2𝐺
2 in 𝒟

0 ≤ 𝜌1 ≤ 1
0 ≤ 𝜌2 ≤ 1
𝜌1 + 𝜌2 ≤ 1

(BIMAT-VOL-MIN)

where we used 𝑐(𝜌1 , 𝜌2) = 𝜌1 +𝜌2 as a cost function measuring the amount of both materials.
Note that in (Mourad et al., 2022), we also investigated the use of a non-symmetric cost
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Figure 6.8: Splitting of a nominal strength criterion 𝐺 (in black) into a purely compressive
part 𝐺− (in blue) and a purely tensile part 𝐺+ (in red) and the corresponding convex hull
conv{𝐺+ , 𝐺−} (in green). Left: a Rankine strength criterion, right: a 𝐿1-Rankine strength
criterion in the plane of principal stresses

function 𝑐𝜔(𝜌1 , 𝜌2) which introduces a weighting factor 𝜔 ∈ [0; 1] to give more or less weight
to the cost associated with the presence of material 1 over material 2. Finally, both problems
can be solved using a similar conic programming formulation and penalization procedure as
the single material case.

6.4.2 No-tension and no-compression materials

An important case of application of the previous bi-material formulation is concerned
with the optimization of a no-tension and a no-compression phase. Practically, this could
correspond to two different materials respectively possessing negligible tensile strength (e.g.
concrete, rocks, masonry, etc.) and negligible compressive strength (e.g. thin membrane
which would buckle under compression). Another possibility is to consider a single material
for which we would like to distinguish members in tension from members in compression in
the optimization process, for example in order to assign a different cost between the tensile
and compressive "phase".

As regards this last point of view, one could define, for a single material of nominal
strength properties𝐺, the no-tension strength criterion𝐺1 = 𝐺− = 𝐺∩𝑆− and the no-compression
strength criterion 𝐺2 = 𝐺+ = 𝐺 ∩ 𝑆+ where:

𝑆± = {𝝈 s.t. ± 𝝈 ≽ 0} (6.25)

represent the cone of symmetric positive/negative stress tensors. In this case, since 𝐺± ⊂ 𝐺

and 𝐺 is convex, we have that conv{𝐺+ , 𝐺−} ⊆ 𝐺. Again, this formulation will tend to
promote stress states either in pure tension or in pure compression. Fig. 6.8 illustrates this
construction in the case of a Rankine and 𝐿1-Rankine criterion. Note that we have that
conv{𝐺+ , 𝐺−} = 𝐺𝐿1-Rankine in this latter case.

Finally, as already discussed, the use of a 𝐿1-Rankine strength criterion will even further
promote uniaxial stress states. If the original material is isotropic and possesses a characteris-
tic tensile strength 𝑓𝑡 and compressive strength 𝑓𝑐 , a natural modeling strategy for obtaining
truss-like designs when distinguishing the optimization of tensile and compressive members
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(a) Reinforcement along a single
prescribed direction

(b) Reinforcement along two
prescribed directions

(c) Reinforcement along one di-
rection among a set of potential
orientations

Figure 6.9: Modelling the reinforcement phase with uniaxial reinforcements

is therefore to consider:

𝐺1 = 𝐺𝐿1-Rankine( 𝑓𝑐 ,0) (6.26)
𝐺2 = 𝐺𝐿1-Rankine(0, 𝑓𝑡 ) (6.27)

where 𝐺𝐿1-Rankine( 𝑓𝑐 , 𝑓𝑡 ) denotes the isotropic 𝐿1-Rankine strength criterion of compressive
(resp. tensile) strength 𝑓𝑐 (resp. 𝑓𝑡).

6.4.3 Reinforcement phase with prescribed orientations

Finally, the above choice can also be adapted to the situation in which the reinforcement
phase consists of uniaxial reinforcement members which have fixed or unknown orientations
instead of the isotropic 𝐿1-Rankine criterion.

Let us first consider the case where the reinforcing phase (here denoted with 𝑖 = 2
by convention) consists of uniaxial members of tensile strength 𝑓𝑡

1 oriented along a given
direction 𝒆𝛼 as in Fig. 6.9a. The corresponding strength condition will therefore read:

𝐺2 = {𝝈2 = 𝜎r𝒆𝛼 ⊗ 𝒆𝛼 s.t. 0 ≤ 𝜎r ≤ 𝑓𝑡} (6.28)

The latter also easily generalizes to a reinforcing material made of multiple reinforcement
directions by summing the corresponding uniaxial stress contributions. For instance, an
important practical case of interest is that of orthogonal reinforcements aligned with the
global 𝑥, 𝑦 directions (and possibly 𝑧 in 3D) as in Fig. 6.9b. In this case, the strength criterion
for two reinforcement directions 𝒆𝑥 and 𝒆𝑦 generalizes to:

𝐺2 = {𝝈2 = 𝜎r,𝑥𝒆𝑥 ⊗ 𝒆𝑥 + 𝜎r,𝑦𝒆𝑦 ⊗ 𝒆𝑦 s.t. 0 ≤ 𝜎r,𝑥 , 𝜎r,𝑦 ≤ 𝑓𝑡} (6.29)

Now, instead of considering that the reinforcing material is made of a fixed distribution
of predefined orientations, we can consider a reinforcing material consisting of uniaxial
reinforcements but with a locally unknown orientation a priori, with the goal that the topology
optimization process would naturally select the locally optimal orientation. Finding such an
optimal microstructure for the reinforcing phase at each material point is reminiscent of the
concepts of the homogenization method in topology optimization (Allaire et al., 2004), with
respect to strength conditions instead of the elastic stiffness tensor.

Let us indeed consider that the reinforcing material is made of a distribution of uniaxial
reinforcements belonging to a certain family 𝒜 of orientations 𝛼 as in Fig. 6.9c. In order to

1Note that considering a non-zero compressive strength 𝑓𝑐 is also possible.
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enforce that only one orientation is active at a given material point, we can write the following
strength condition:

∃𝜎r,𝛼 , 𝜁𝛼 s.t.



𝝈2 =

∑
𝛼∈𝒜

𝜁𝛼𝜎
r,𝛼𝒆𝛼 ⊗ 𝒆𝛼

0 ≤ 𝜎r,𝛼 ≤ 𝑓𝑡 ∀𝛼 ∈ 𝒜
𝜁𝛼 ∈ {0; 1} ∀𝛼 ∈ 𝒜∑
𝛼∈𝒜

𝜁𝛼 = 1

(6.30)

where we introduced the binary variables 𝜁𝛼 which describe the activation or not of a specific
orientation, the last constraint enforcing that one and only one of such orientations can be
active.

Again, criterion (6.30) is non-convex due to the binary constraint on the 𝜁𝛼. As before, we
consider instead the following convexified formulation by relaxing the binary constraint:

𝝈2 ∈ 𝐺2 ⇔ ∃𝜎r,𝛼 , 𝜁𝛼 s.t.



𝝈r =
∑
𝛼∈𝒜

𝜁𝛼𝜎
r,𝛼𝒆𝛼 ⊗ 𝒆𝛼

0 ≤ 𝜎r,𝛼 ≤ 𝑓𝑡 ∀𝛼 ∈ 𝒜
0 ≤ 𝜁𝛼 ≤ 1 ∀𝛼 ∈ 𝒜∑
𝛼∈𝒜

𝜁𝛼 = 1

(6.31)

which we recognize as the definition of the convex hull of the individual uniaxial strength
conditions 𝐺𝛼 = {𝜎r,𝛼𝒆𝛼 ⊗ 𝒆𝛼 s.t. 0 ≤ 𝜎r,𝛼 ≤ 𝑓𝑡} i.e.

𝐺2 = conv𝛼∈𝒜{𝐺𝛼} (6.32)

which is indeed the tightest convexification of the union of all the 𝐺𝛼. Finally, in the case
where 𝒜 spans all the possible directions in space, we can easily show that 𝐺2 is in fact
equal to the 𝐿1-Rankine criterion with tensile strength 𝑓𝑡 . This result justifies that the 𝐿1-
Rankine is the tightest convex criterion promoting uniaxial stress states in an isotropic fashion.

The main interest of the above construction in the case of a fixed family of discrete
orientations 𝒜 = {𝛼1 , . . . , 𝛼𝑁} is that the resulting strength condition will be anisotropic,
exhibiting a larger strength in the corresponding directions. We therefore expect the strength-
based topology optimization procedure to naturally result in designs locally oriented in one
of these favorable directions.

By way of illustration, Fig. 6.10 displays the maximum uniaxial tensile stress 𝜎+ in direc-
tion 𝒆𝜃 = cos𝜃𝒆𝑥 + sin𝜃𝒆𝑦 for a material consisting of such a family of discrete orientations
obeying criterion (6.31). As expected, when the reinforcement material is made of only
two reinforcement directions, the material possesses no shear strength so that the uniaxial
strength is always zero except if 𝜃 is perfectly aligned with one of the two directions. For
more than two directions, the material possesses a shear strength and, therefore, a non-zero
tensile strength for any 𝜃. Again, we observe that the uniaxial strength is equal to 𝑓𝑡 when
the loading direction is aligned with one of the reinforcement direction and is less than 𝑓𝑡
in-between. The resulting material therefore possesses anisotropic strength properties. In the
limit of an isotropic continuous distribution of reinforcement direction, the uniaxial strength
becomes a constant equal to 𝑓𝑡 since the resulting material strength properties are equivalent
to an isotropic 𝐿1-Rankine strength criterion.
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Figure 6.10: Anisotropic uniaxial tensile strength for a material reinforced by a family of
reinforcements of discrete orientations obeying criterion (6.31)

6.4.4 Example

We revisit here the MBB example with the two-material formulation where phase 1 (resp.
phase 2) corresponds to a pure compression (resp. pure tension) phase of strength 𝑓𝑐 (resp.
𝑓𝑡) as in (6.27). Fig. 6.11 represents the corresponding optimized densities for both phases
and various imposed volume fractions 𝜂. Clearly, each truss member belongs to a single
phase, depending on its state of tension or compression. The resulting distribution of tensile
and compression agrees with structural intuition. We can see that regions where both phases
are simultaneously active correspond to joints where members connect to each other.

We assume now that the tensile phase (phase 2) enjoys anisotropic strength properties of
the form (6.31). We recall that if the set of allowed orientations 𝒜 spans all directions, then
the corresponding strength criterion is equivalent to a 𝐿1-Rankine strength criterion so that
we recover the results of Fig. 6.11. In Fig. 6.12, we report the results obtained when consid-
ering a tensile phase with allowed orientations of 𝛼 = 0◦, 𝛼 ∈ {0◦;±30◦}, 𝛼 ∈ {0◦;±45◦} or
𝛼 ∈ {0◦; 90◦}. As expected, if tensile members can be aligned horizontally only (Fig. 6.12a),
the most efficient design is obtained with tensile members located at the bottom of the beam
and with inclined compressive struts transmitting the load to the supports. Interestingly,
we obtain two individual tensile members in this case. When we further allow for inclined
directions along ±30◦ or ±45◦, we obtain, in addition to a horizontal tensile member, sec-
ondary inclined members to which additional compressive struts can be connected. Note
that the case 𝛼 ∈ {0◦;±45◦} (Fig. 6.12c) is quite close to the isotropic case obtained with the
𝐿1-Rankine criterion in Fig. 6.11c. Finally, the case with 𝛼 ∈ {0◦; 90◦} (Fig. 6.12d) indeed
produces tensile members aligned either horizontally or vertically. Interestingly, despite the
fact that tensile orientations are constrained, one still has freedom in the length and location
of those members which enables to reach a design where compressive struts can more or
less follow the same paths as in the isotropic case. Also note that the convexified formula-
tion (6.31) authorizes in theory a superposition of the different orientations at a given point.
Clearly, this is not observed since each tensile members is in a pure uniaxial stress state corre-
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(a) 𝜂 = 0.05 (b) 𝜂 = 0.1

(c) 𝜂 = 0.2 (d) 𝜂 = 0.3

Figure 6.11: Bi-material load-maximization of the MBB example with tension/compression
splitting ( 𝑓𝑐 = 𝑓𝑡 = 1) and various maximum volume fraction 𝜂

(a) Orientations along 0◦ (b) Orientations along 0◦ and ±30◦

(c) Orientations along 0◦ and ±45◦ (d) Orientations along 0◦ and 90◦

Figure 6.12: Bi-material load-maximization (𝜂 = 0.2) of the MBB example with discrete
orientations for the tensile phase
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Figure 6.13: Optimized reinforced concrete beam [courtesy of S. Maitenaz, Laboratoire Navier]

sponding to a single well-defined orientation. It is only at points corresponding to junctions
between tensile and/or compressive members that different orientations may coexist locally.

6.4.5 A link with the strut-and-tie method for reinforced concrete structures

As mentioned earlier, it may appear strange to apply the previous bi-material formulation
to the optimization of steel layout in reinforced concrete structures since the concrete phase
occupies the whole domain in practice. However, this could pave the way to a systematic
optimization of concrete consumption in standard reinforced concrete structures such as
beams or slabs. For instance, the work of Maitenaz et al. (2020) has shown that classical beams
can indeed be optimized and fabricated using additive manufacturing, without impairing
their overall mechanical performance. In this work, optimization has been based on the
normative design code which relies on the strut-and-tie method.

The latter bears similarities with the proposed bi-material formulation. Indeed, rather
than considering the topology optimization formulation as a tool for obtaining an optimal
shape with minimal volume, one could also view it as a way of obtaining a simplified flow of
stresses in equilibrium with a given load and satisfying strength conditions of the concrete and
reinforcement phase. With this point of view, the stress field is indeed simplified towards a set
of regions in which it is essentially uniaxial, except for joint regions. Moreover, since volume
is also optimized, one can expect that among all the possible stress fields in equilibrium with
a given loading, the resulting layout will be the most simple possible, i.e. consisting of a
minimal number of members. This philosophy is exactly that on which the strut-and-tie
method is based. One looks indeed for a simplified mechanical system to transmit forces,
in the form of a truss, while satisfying strength conditions, both in the members and in the
truss nodes.

To further test the analogy between both methods, a more quantitative comparison has
been made on a reinforced concrete corbel (Fig. 6.14a). The reference strut-and-tie (ST) model,
shown in Fig. 6.14b, essentially involves a vertical and an horizontal tie connected to an in-
clined strut going from the point of load application to the column vertical edge. The strut
inclination angle is denoted by 𝜃. A secondary strut connects the first one to the two ties.
When looking at the optimized topology of concrete (in blue) and steel (in red) phases, one
can see in Fig. 6.14c that a similar layout is obtained. The main difference is that the steel
ties makes a round corner and is sustained by a fan of concrete struts. This is due to the fact
that an isotropic distribution of steel orientations was possible in this case. A much closer
layout is obtained when considering only orthogonal steel orientations along the vertical
and horizontal directions, as shown in Fig. 6.14d. More quantitatively, Table 6.1 reports the
measured forces in the strut and tie as well as the strut inclination in the case of orthogonal
steel. Different values are measured from the topology optimization result, depending on
the chosen value for the concrete strength 𝑓𝑐 : either the characteristic strength 𝑓𝑐𝑘 = 45 MPa,
the design strength 𝑓𝑐𝑑 = 30 MPa or the effective strength accounting for a reduction due to
potential cracking 𝜈′ 𝑓𝑐𝑑 with 𝜈′ = 1 − 𝑓𝑐𝑘/(250 MPa) = 0.82. We can see that the measured
values agree very well with the strut-and-tie result. It can be noted that the retained value
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(a) Geometry and load-
ing

(b) Strut-and-tie model, taken
from Bosc (2008)

(c) Optimized,
isotropic steel

(d) Optimized, or-
thogonal steel

Figure 6.14: Reinforced-concrete corbel: comparison between strut-and-tie model and bi-
material optimization

𝑓𝑐 = 𝑓𝑐𝑘 𝑓𝑐 = 𝑓𝑐𝑑 𝑓𝑐 = 𝜈′ 𝑓𝑐𝑑 ST
𝐹strut 2.37 MN 2.37 MN 2.39 MN 2.43 MN
𝜃 65.60 ◦ 64.30 ◦ 62.90 ◦ 68 ◦

𝐹tie 0.82 MN 0.88 MN 0.87 MN 0.9 MN

Table 6.1: Estimated forces and strut inclination with respect to the strut-and-tie (ST) result
depending on the chosen concrete strength 𝑓𝑐

for the concrete strength does not play an important role, which can be explained by the fact
that steel rebars are the limiting factor for this case.

Finally, the attractiveness of this methodology as a design aid for the structural engineer
is further illustrated by investigating situations for which the ST model is much more difficult
to imagine. For instance, Fig. 6.15a considers a deep beam with a square opening which has
been investigated in (Muttoni et al., 2015). In this work, quite complex ST models have been
imagined based on the combination of engineering intuition and practice and finite-element
computations, guiding towards an idea about the flow of stresses in this structure. With our
approach, we are able to obtain the strut-and-tie layout of Fig. 6.15b. Clearly, the obtained
solution is very close to the imagined ST model, even when looking at small details around
the opening for instance. An alternative ST model including only horizontal and vertical
reinforcements has also been proposed (Fig. 6.16a) and compared against our prediction
(Fig. 6.16b). Again, the agreement between the ST model and the optimization procedure is
striking.

6.5 Optimization of funicular shells

In this section, we will analyze funicular shell structures i.e. curved 2D structures in an
ambient 3D space which are subjected to a compressive membrane state only for a given
loading. Clearly, it is quite straightforward to extend the methodology described in the
previous sections to such a situation for which the shell mid-surface is given a priori. However,
one is usually more interested in finding an optimal shell mid-surface and the corresponding



6.5. OPTIMIZATION OF FUNICULAR SHELLS 123

(a) ST model based on elastic stress fields: solid
lines: ties in tension; dashed lines: struts in com-
pression

(b) Optimized design from the bimaterial volume
minimization

Figure 6.15: Comparison of the proposed methodology with strut-and-tie models with in-
clined reinforcements, taken from (Muttoni et al., 2015)

(a) ST model based on elastic stress fields: solid
lines: ties in tension; dashed lines: struts in com-
pression

(b) Optimized design from the bimaterial volume
minimization

Figure 6.16: Comparison of the proposed methodology with strut-and-tie models with or-
thogonal reinforcements, taken from (Muttoni et al., 2015)

thickness distribution in an automatic manner. For this purpose, multiple form-finding
methods can be found in the literature including dynamic relaxation, thrust-network analysis,
etc.

In the following, various formulations will be presented when considering pure tensile
states rather than compressive ones. Following the hanging chain analogy, compressive solu-
tions can be obtained by a simple change of sign of loadings and optimal shapes. Illustrative
applications will however be given in the form of arch or vault-like structures.
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Figure 6.17: Left: optimal arch problem. Right: optimal vault problem

6.5.1 Optimal arch

Let us consider the case of an arch constrained to lie in a 2D (𝑂𝑥𝑧) plane and supported
by two supports A at 𝑥 = 0 and B at 𝑥 = 𝑙 (Fig. 6.17-left). We consider a distributed loading
of intensity 𝒇 = 𝑝𝒆𝑧 which is constant per horizontal unit length 𝑥. A classical result of
structural mechanics for such a load case is that funicular arches are parabolic. Indeed,
owing to equilibrium, one has for the internal force:

𝑹(𝑥) = 𝐻𝑥𝒆𝑥 + (𝐻𝑦 − 𝑝𝑥)𝒆𝑧 (6.33)

where 𝐻𝑥 and 𝐻𝑦 are the opposite of the horizontal and vertical reactions at A, 𝐻 = −𝐻𝑥

being the so-called arch thrust. The arch will be funicular if the internal force consist only of

a normal force i.e. 𝑹(𝑥) = 𝑁(𝑥)𝒕(𝑥) with 𝑁(𝑥) ≥ 0 and 𝒕(𝒙) = 1√
1 + (𝑧′(𝑥))2

(𝒆𝑥 + 𝑧′(𝑥)𝒆𝑧) is

the unit tangent vector for an arch of elevation 𝑧(𝑥). Hence, one has:

𝐻𝑥 =
𝑁(𝑥)√

1 + (𝑧′(𝑥))2
(6.34)

𝐻𝑦 − 𝑝𝑥 =
𝑁(𝑥)𝑧′(𝑥)√
1 + (𝑧′(𝑥))2

= 𝐻𝑥𝑧
′(𝑥) (6.35)

which yields:
𝑧(𝑥) = 𝑝

2𝐻𝑥
𝑥(𝑙 − 𝑥) (6.36)

with 𝐻𝑦 =
𝑝𝑙

2 . As a result, there exists an infinite number of funicular arches depending on
the value of the thrust 𝐻. Among all of them, we can find an arch of minimum volume if
we consider that its constitutive material cannot sustain a stress larger than 𝜎0. Indeed, the
volume of the arch is given by:

𝒱 =

∫
𝐴(𝑠)d𝑠 =

∫ 𝑙

0
𝐴(𝑥)

√
1 + (𝑧′(𝑥))2 d𝑥 (6.37)

where 𝐴 is the cross-section at a given point. The minimum volume arch is obtained by
choosing the latter such that the material is fully stressed at its tensile limit i.e.

𝑁(𝑥) = 𝜎0𝐴(𝑥) = 𝐻𝑥

√
1 + (𝑧′(𝑥))2 (6.38)
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One then has:

𝒱 =
1
𝜎0

∫ 𝑙

0
𝐻𝑥

(
1 + (𝑧′(𝑥))2

)
d𝑥 =

1
𝜎0

∫ 𝑙

0

(
𝐻𝑥 +

𝑝2(𝑥 − 𝑙/2)2
𝐻𝑥

)
d𝑥 (6.39)

The minimal volume arch is therefore given by the solution to the following scalar convex
problem:

min
𝐻𝑥

1
𝜎0

∫ 𝑙

0

(
𝐻𝑥 +

𝑝2(𝑥 − 𝑙/2)2
𝐻𝑥

)
d𝑥

s.t. 𝐻𝑥 ≥ 0
(6.40)

for which we easily find the optimal solution to be:

𝐻𝑥 =
𝑝𝑙

2
√

3
(6.41)

𝒱 =
𝑝𝑙

√
3𝜎0

(6.42)

The optimal arch is therefore parabolic with a maximum rise at 𝑥 = 𝑙/2 of 𝑧max = (
√

3/4)𝑙.
Note that the total volume 𝒱 in (6.40) can be decomposed into the sum of a thrust

contribution 𝐻𝑥 and a rise contribution 𝑝2(𝑥 − 𝑙/2)2/𝐻𝑥 . Interestingly, the optimal arch is
characterized by an equipartition property since, at the optimum, both contributions are
equal.

6.5.2 Optimal archgrids and optimal vaults

Extension of the above reasoning to systems consisting of two sets of orthogonal arches
led to the study of optimal archgrids (Rozvany and Prager, 1979). Further progress was
made by recognizing that finding optimal archgrid continua can be formulated as a convex
optimization program similar to (6.40) (Czubacki and Lewiński, 2020). However, archgrids
cannot sustain any in-plane shear and so that stable solutions may fail to exist in general,
apart from particular configurations of boundary conditions and loadings. Very recently,
Bołbotowski (2022); Bołbotowski and Bouchitté (2022) extended the above reasoning to an
isotropic setting in which an optimal vault is characterized by an elevation function 𝑧(𝒙)
defined over a reference planar domain Ω (Fig. 6.17-right). The corresponding primal stress-
based formulation akin to (6.40) is given by:

inf
𝚺,𝒒

2
𝜎0

∫
Ω

𝑐(𝚺, 𝒒)dΩ

s.t. div𝚺 = 0
div 𝒒 + 𝑓 = 0

(6.43)

where div refers to the planar divergence operator on Ω and where 𝑐(𝚺, 𝒒) is defined as2:

𝑐(𝚺, 𝒒) = sup
𝜺,𝜽

{𝚺 : 𝜺 + 𝜽 · 𝒒 s.t. 2𝜺 + 𝜽 ⊗ 𝜽 ≼ 𝑰} (6.44)

=

{
1
2 tr𝚺 + 1

2𝒒𝚺
−1𝒒 if 𝚺 ≽ 0

+∞ otherwise
(6.45)

Note that notations and numerical coefficients have been changed compared to the original
publication (Bołbotowski, 2022) in order to be consistent throughout all sections. The above

2Note that expression (6.45) should be written more carefully when 𝚺 has a zero eigenvalue.
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formulation is reminiscent of plate theory as it involves an in-plane membrane force tensor
𝚺 and a vertical force vector 𝒒 which is in equilibrium with the out-of-plane loading 𝑓 . The
objective function in (6.43) yields the vault optimal volume so that 2𝑐(𝚺, 𝒒)/𝜎0 corresponds
to the projected shell thickness per unit area in the reference plane Ω.

Clearly, (6.43) is a convex optimization problem which enjoys a corresponding dual vari-
ational problem given by:

sup
𝝃,𝑧

2
𝜎0

∫
Ω

𝑓 𝑧 dΩ

s.t. 𝜺 = ∇𝑠𝝃
𝜽 = ∇𝑧
2𝜺 + 𝜽 ⊗ 𝜽 ≼ 𝑰
𝝃 = 0 and 𝑧 = 0 on 𝜕ΩD

(6.46)

where 𝑧 is the wanted optimal vault elevation. Indeed, at the optimum, one has 𝒒 = 𝚺∇𝑧 at
the optimum which is reminiscent of (6.35) in the case of an arch.

The primal (6.43) and dual (6.46) formulations are conic programs which are representable
using quadratic cones. In (Bołbotowski, 2022), numerical examples have been given using
a ground structure discretization method. In the following, we will rather rely on a finite-
element discretization.

Remark 9. The constraint
2𝜺 + 𝜽 ⊗ 𝜽 ≼ 𝑰 (6.47)

can be also rewritten as follows:

2𝜀𝜏𝜏 + 𝜃2
𝜏 ≤ 1 ∀𝝉 ∈ R2 with ∥𝝉∥ = 1 (6.48)

where 𝝉 · 𝜺𝝉 = 𝜀𝜏𝜏, 𝜃𝜏 = 𝜽 · 𝝉 and 𝝉 denotes any in-plane unit vector. The above constraint is
therefore isotropic.

Interestingly, this isotropic constraint can be relaxed by considering a finite set of pre-
scribed directions 𝝉𝑘 for 𝑘 = 1, . . . , 𝑁 . With (𝝉𝑘) = {𝒆1 , 𝒆2} consisting of two in-plane orthog-
onal directions, one obtains an orthotropic formulation which coincides with the archgrid
formulation studied in (Rozvany and Prager, 1979; Czubacki and Lewiński, 2020).

6.5.3 Optimal shells

In this section, we aim at providing various improvements over the formulations discussed
in the previous sections. The first main improvement is the ability to properly account for
in-plane loading components which does not seem to have been considered so far. Doing so,
we will no longer assume that the optimal surface is given by a single elevation function 𝑧(𝒙)
with respect to the reference plane Ω which de facto excludes overhanging parts for instance.
Instead, we consider that the optimal surface is given from a generic 3D displacement field
𝒖(𝒙) = (𝑢(𝒙), 𝑣(𝒙), 𝑤(𝒙)). This will also make it possible to consider surfaces with supports
which are not necessarily aligned on a fixed plane. In order to distinguish our proposal from
the previous optimal vault formulation, we will rather speak of an optimal shell formulation.

Extension to the optimal arch problem

Let us momentarily go back to the optimal arch problem of Section 6.5.1. We consider an
arch supported by two supports A and B lying on the 𝑥-axis and subjected to a generic 3D
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loading 𝒇 , thereby consisting of both longitudinal and transversal components.
Assuming that the optimal arch is transformed via a generic 3D displacement field 𝒖, the

tangent vector now becomes

𝒕(𝑥) = 1
𝐽

(
(1 + 𝑢′(𝑥))𝒆𝑥 + 𝑣′(𝑥)𝒆𝑦 + 𝑤′(𝑥)𝒆𝑧

)
(6.49)

where 𝐽(𝑥) = 𝑑𝑠

𝑑𝑥
=

√
(1 + 𝑢′(𝑥))2 + (𝑣′(𝑥))2 + (𝑤′(𝑥))2 (6.50)

We have the equilibrium equation:

𝑑𝑹
𝑑𝑥

+ 𝒇 = 0 (6.51)

with 𝑹(𝑥) = 𝑁(𝑥)𝒕(𝑥) and 𝑁(𝑥) ≥ 0 so that the arch is funicular. In particular, one has:

𝑅𝑥 =
𝑁

𝐽
(1 + 𝑢′(𝑥)) 𝑅𝑦 =

𝑁

𝐽
𝑣′(𝑥) 𝑅𝑧 =

𝑁

𝐽
𝑤′(𝑥) (6.52)

Introducing Σ(𝑥) = 𝑁(𝑥)/𝐽(𝑥), the total volume is:

𝒱 =

∫
𝐴(𝑠)𝑑𝑠 = 1

𝜎0

∫ 𝑙

0
𝑁
𝑑𝑠

𝑑𝑥
𝑑𝑥 =

1
𝜎0

∫ 𝑙

0
Σ𝐽2𝑑𝑥 (6.53)

=
1
𝜎0

∫ 𝑙

0

(
𝑅2
𝑥

Σ
+ 𝑅2

𝑧

Σ
+
𝑅2
𝑦

Σ

)
𝑑𝑥 (6.54)

where we can see that the obtained expression for the arch volume is close to the original
expression (6.39) for a single elevation function.

Unfortunately, minimizing the total volume 𝒱 subject to the equilibrium condition (6.51)
will always produce a null solution since Σ(𝑥) can be as large as possible, contrary to before
where 𝐽 ≥ 1. We therefore need to impose additional constraints on Σ(𝑥) to prevent this. For
now, let us fix a maximum value Σ0 > 0 for Σ(𝑥). This will enforce the normal force to satisfy
𝑁(𝑥) ≤ Σ0𝐽(𝑥) as an additional design constraint. We will see later that such a constraint
can have a different interpretation. We therefore consider the following convex optimization
problem:

min
Σ,𝑹

1
𝜎0

∫ 𝑙

0

∥𝑹∥2

Σ
d𝑥

s.t. 𝑑𝑹
𝑑𝑥

(𝑥) + 𝒇 = 0
0 ≤ Σ ≤ Σ0

(6.55)

Obviously, the solution will depend on the imposed value forΣ0 which produces arches of
different rise-to-span ratios. In fact, problem (6.55) belongs to the class of problems described
in Appendix C.2 where the objective function is a homogeneous function of degree -1 and
where the cost constraint 𝑗(Σ) = sup

𝑥∈[0;𝑙]
Σ(𝑥) = ∥Σ∥∞ is homogeneous of degree 1. As a result,

one can show that the solution (Σ,𝑹) of (6.55) for any Σ0 can be obtained from the solution
to the following reference problem:

min
Σ,𝑹

∫ 𝑙

0

(
1
𝜎0

∥𝑹∥2

Σ
+ ∥Σ∥∞

)
d𝑥

s.t. 𝑑𝑹
𝑑𝑥

(𝑥) + 𝒇 = 0
(6.56)
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More precisely, denoting by (Σ★,𝑹★) the optimal solution to the reference problem (6.56)
and 𝒱★ the corresponding optimal volume, the solution (Σ,𝑹) and optimal value 𝒱 to (6.55)
is given by:

Σ =
2Σ0
𝒱★Σ

★ (6.57)

𝑹 = 𝑹★ (6.58)

𝒱 =
(𝒱★)2
4Σ0

(6.59)

Let us now derive the dual problem to (6.55) which reads:

inf
𝒖

2
𝜎0

∫ 𝑙

0

(
1
2Σ0∥𝒖′(𝑥)∥2 − 𝒇 · 𝒖

)
d𝑥

s.t. 𝒖 = 0 at 𝑥 = 0, 𝑙
(6.60)

where the displacement field 𝒖 describes the optimal shape. Interestingly, the objective
function can be interpreted (up to the unimportant factor 2/𝜎0) as the geometric stiffness
energy of a perfectly flexible chain, minus the work of external loads. Assuming that its
elastic energy is negligible compared to the geometric stiffness, the above formulation is
therefore equivalent to finding the equilibrium position of such a chain with an initial pre-
stress Σ0.

Similarly, we can show that the optimal displacement solution 𝒖 is given as:

𝒖 =
𝒱★

2Σ0
𝒖★ (6.61)

where 𝒖★ solves the reference problem:

inf
𝒖

1
𝜎0

∫ 𝑙

0
𝒇 · 𝒖 d𝑥

s.t.
∫ 𝑙

0 ∥𝒖′(𝑥)∥2 ≤ 𝑙

𝒖 = 0 at 𝑥 = 0, 𝑙

(6.62)

which is the dual to (6.56). The above formulation is reminiscent of the mean-squared slope
condition discussed in (Rozvany and Prager, 1979; Czubacki and Lewiński, 2020).

In order to validate the above extended optimal arch formulations, a 1D finite-element
implementation of the reference problems (6.56)-(6.62) has been solved using CVXPY. We first
consider a transversal load of the form sin𝜃𝑔𝒆𝑦 − cos𝜃𝑔𝒆𝑧 for which we expect to find the
optimal parabolic arch for a uniform load of intensity 𝑔 in the vertical plane rotated by the
angle 𝜃. This is indeed verified in Fig. 6.18, we also check that we recover the same volume for
all 𝜃. Second, in Fig. 6.19, we consider an in-plane load of the form 𝑔(𝛾𝑥𝒆𝑥−𝒆𝑧) corresponding
for instance to an earthquake-induced horizontal acceleration. We see that the formulation
(6.62) makes it possible to consider an inplane deformation, including overhanging parts for
very large horizontal accelerations.

Finally, Fig. 6.20 illustrates the set of optimal arches when varying the volume/prestress
ratio 𝜂 = 𝒱★/(2Σ0) for the in-plane loading case. Note that when 𝜂 = 1, one obtains the
solution to the reference problem (6.56)-(6.62). Solutions for 𝜂 < 1 corresponds to solution
for which having a smaller volume is preferred over the prestress cost which is required to
reach such an equilibrium. On the contrary, solutions with 𝜂 > 1 prefer reducing prestress
cost at the expense of a larger volume. The former therefore correspond to small rise-to-span
ratios whereas the latter correspond to large rise-to-span ratios.
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Figure 6.18: Optimal arch solutions with inclined transversal load sin𝜃𝑔𝒆𝑦 − cos𝜃𝑔𝒆𝑧
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Figure 6.19: Optimal arch solutions with in-plane load 𝑔(𝛾𝑥𝒆𝑥 − 𝒆𝑧)
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Figure 6.20: Series of optimal arches for variable volume/prestress ratios 𝜂 = 𝒱★/(2Σ0)
(in-plane loading case)
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(a) 𝛾𝑥 = 0 (b) 𝛾𝑥 = 0.25

Figure 6.21: 3D view of the optimal groin vault for a uniform horizontal + vertical loading
𝒇 = (𝛾𝑥 𝑔, 0,−𝑔).

Extension to optimal shells

At the time of writing this manuscript, we are currently working on the generalization of
the previous ideas to a formulation of optimal shells. It turns out that the interpretation of the
problem as maximizing the geometric stiffness of membrane is particularly useful. Skipping
the technical details, we illustrate the obtained optimal forms found by this process in the
case of a groin vault in Fig. 6.21 for a loading 𝒇 = (𝛾𝑥 𝑔, 0,−𝑔) for two values of horizontal
acceleration 𝛾𝑥 . We also illustrate in Fig. 6.22 results of an optimal shell for a more complex
boundary and for which the inner circles are supported at a different prescribed height.

6.6 Conclusions

This chapter has discussed various convex optimization formulations in the context of
shape optimization. In this field, convex problems are usually the exception rather than
the rule. Indeed, common practice usually considers highly non-convex problems which
are solved by a specific optimization procedure, sometimes involving a series of convex
approximations such as the method of moving asymptotes (MMA) or sequential quadratic
programming (SQP). In this chapter, we follow a somehow opposite path as we start from
generic convex topology optimization formulations involving convex thermodynamic poten-
tials. Such convex problems are then used with a continuation procedure involving a penalty
exponent in order to obtain better-defined black-and-white designs.

Thereby, we introduced a general formulation of topology optimization in a limit analysis
setting, focusing on optimizing the limit load rather than the elastic compliance. In particular,
the proposed formulation reduces to the Michell plastic design setting in the limit of infinitely
small imposed volume fraction. For higher volume fractions, one tends to recover limit
analysis solutions associated with the full computational domain but with important potential
savings of material for a similar load-bearing capacity.

One key aspect of our formulation is also related to the choice of a specific strength
criterion for the considered material. This enables us to tackle not only materials with different
properties in tension and compression, up to no-tension materials, but also to introduced
preferred reinforcement orientations in anisotropic formulations. The latter are particularly
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(a) 3D view

(b) Elevation view

Figure 6.22: Complex optimal shell structure

useful when optimizing two phases simultaneously, e.g. a concrete pure-compression and a
steel pure-tension phase. The obtained topologies then become extremely close to strut-and-
tie models which are particularly relevant for reinforced-concrete engineers.

Finally, we have also seen how the problem of finding optimal funicular arches or shells
can be formulated using convex programs which is not necessarily obvious at first sight.
Akin to topology optimization, form-finding problems rarely fit into a convex optimization
framework. Interestingly, such formulations can also be related to a minimum compliance
problem involving the geometric stiffness of a prestressed membrane. This point of view
remains largely unexplored as of now and offers interesting perspectives for future research.
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Chapter 7

Handling uncertainties using robust
and stochastic optimization

In this chapter, we explore recent developments in the mathematical optimization and finance
communities to account for uncertainties in non-linear mechanics problems. Instead of
deriving the average value of a structure response with respect to such uncertainties, we
rather aim at evaluating the worst-case behavior of the structure which should be accounted
for in a safe design process. In particular, we propose a robust optimization formulation of
limit analysis problems which aims at finding the worst-case limit load for any realization
of the uncertain parameters among a given uncertainty set. Second, we also propose a risk-
averse optimization approach for deriving best and worst-case estimates of the mechanical
response of standard dissipative media using the Conditional Value-at-Risk (CVaR) measure.
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7.1 Introduction

When modeling and simulating real materials, it is important to account for uncertainties
in material properties that are inevitable. In traditional deterministic constitutive modeling,
material models are typically calibrated using a set of experimental data. However, even
though these experimental data sets generally exhibit statistical distribution, the models are
often calibrated based solely on the mean of the data, disregarding any information about
uncertainties.

Advanced techniques of uncertainty quantification (UQ) aim to propagate the uncertain-
ties in material properties from the material scale to the structural scale. These techniques
are particularly important for designing and optimizing structures under uncertain operat-
ing conditions or environmental loads. They can be classified into two different categories:
intrusive and non-intrusive ones. Non-intrusive approaches are a class of techniques used
to propagate uncertainties through computational models without modifying the models
themselves. The basic idea behind non-intrusive UQ methods is to use the model as a black
box and construct a surrogate model, which is a computationally efficient approximation of
the original model. The surrogate model is then used to perform the uncertainty quantifi-
cation. The main advantage of non-intrusive UQ is that it can be applied to any existing
computational model without the need for additional code development. Typical techniques
involve Monte-Carlo sampling, polynomial chaos expansion, surface response methods or
machine-learning techniques.

Conversely, intrusive UQ methods involve modifying the original computational model
by including additional terms to propagate uncertainty through the system. They are called
intrusive because they require direct modification of the original simulation code, which may
be computationally expensive and time-consuming. However, they might be more accu-
rate than non-intrusive approaches. A typical example is stochastic finite element method
(Ghanem and Spanos, 2003), which involves introducing probabilistic models for material
properties, loads, and boundary conditions into the finite element model of the structure.
The probabilistic models are then propagated through the finite element analysis to ob-
tain probabilistic estimates of the structural response. This approach is however difficult to
generalize to highly non-linear material behaviour such as elastoplasticity. This is notably
due to the important coupling between elasticity, plastic yield surfaces and hardening which
can all be stochastic but also due to the history-dependent character of elastoplastic behaviour.

In the following, we describe two approaches based on robust and stochastic optimization
to account for uncertainties in a rather simplified manner for the robust case or in a more
detailed manner for the stochastic optimization case.

7.2 Robust optimization approach

In many cases, uncertainties are not necessarily known in great details. In particular,
most stochastic approaches, including the one in Section 7.3 rely on a priori knowledge of
the uncertain parameters probability distribution. In this first section, we instead aim at
describing the uncertainties in a simpler manner. We assume that the uncertain material
parameters, described by a general vector 𝜻, belong to some known convex set 𝒰 , called an
uncertainty set. The goal of robust optimization (Ben-Tal et al., 2009; Bertsimas et al., 2011) is
then to find an optimal solution among all possible realizations of the problem data inside
this uncertainty set. Such problems therefore often turn into min/max problems as they
amount to optimizing with respect to the worst-case scenario among the uncertainty set.
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7.2.1 Application to uncertain limit analysis

In the context of limit analysis, let us consider here the case where the loading is certain
but the material may possess uncertain material properties. The strength criterion is now
written as 𝐺(𝜻) where 𝜻 ∈ 𝒰 ⊆ R𝑚 is a vector of uncertain parameters in the uncertainty
set. Obviously, the choice of the uncertainty set is an important modeling step in such ap-
proaches and depends on our knowledge of the origins of the considered uncertainty. If
probability distributions are known, uncertainty sets can be based on the size of the support
or the shape of the probability distribution. For instance, its size can correspond to a cer-
tain confidence level of the probability distribution. It can also be built from available data.
Here, we can assume, for simplicity, that 𝒰 is a convex ball of unit radius for some norm i.e.
𝒰 = {𝜻 ∈ R𝑚 s.t. ∥𝜻∥ ≤ 1}. In particular, we will note by 𝒰𝑝 uncertainty sets corresponding
to the 𝐿𝑝-ball (typically with 𝑝 = 1, 2 or ∞).

The maximum load factor now becomes uncertain i.e. it depends on the value 𝜻 of the
uncertainty realization:

𝜆+(𝜻) = max
𝜆,𝝈

𝜆

s.t. div 𝝈 + 𝜆 𝒇 r + 𝒇 f
= 0

𝝈 · 𝒏 = 𝜆𝒕r + 𝒕 f

𝝈 ∈ 𝐺(𝜻)

(7.1)

where 𝒇 r (resp. 𝒇 f) is a variable (resp. fixed) body force and 𝒕r (resp. 𝒕 f) a variable (resp.
fixed) surface traction.

7.2.2 Adjustable robust optimization

For a given loading and two different given realizations of the uncertainty, one expects
that the corresponding optimal stress fields will be different depending on the uncertainty
realizations. The most natural approach therefore consists in considering the stress field and
the corresponding load factor to be recourse variables, i.e. variables which depend on the
realization 𝜻 of the uncertainty. Thus, we are faced with an adjustable robust counterpart (ARC)
to problem (7.1) defined as follows:

𝜆ARC = min
𝜻∈𝒰

𝜆+(𝜻) = min
𝜻∈𝒰

max
𝝈(𝜻),𝜆(𝜻)

𝜆(𝜻)

s.t. div 𝝈(𝜻) + 𝜆(𝜻) 𝒇 r + 𝒇 f
= 0

𝝈(𝜻) · 𝒏 = 𝜆(𝜻)𝒕r + 𝒕 f

𝝈(𝜻) ∈ 𝐺(𝜻)

(ARC)

i.e. we find the smallest maximum load factor for each realization of the uncertainty within
the uncertainty set.

7.2.3 Static robust optimization

Unfortunately, adjustable recourse problem are numerically challenging. Indeed, for-
mulation (ARC) involves a min/max problem and can be equivalently formulated as a max
problem involving an infinite number of constraints. To solve adjustable recourse problem,
one typically makes a simplifying assumption on how recourse variables depend on the
uncertainty, the so-called decision rules.

The most simple of such rules is to assume that recourse variables are in fact static, i.e.
they do not depend on the uncertainty. This yields to a conservative static robust counterpart
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Figure 7.1: Robust strength domain 𝐺RC (in blue) obtained as the intersection of various
uncertain realizations 𝐺(𝜻) (in black) of a nominal domain (in red).

(RC) in which we look for a stress field 𝝈 and a load factor 𝜆, independent of the exact
realization of the uncertainty, which satisfy the strength condition 𝐺(𝜻) for all 𝜻 ∈ 𝒰 . The
corresponding problem can be formulated as follows:

𝜆RC = max
𝜆,𝝈

𝜆

s.t. div 𝝈 + 𝜆 𝒇 r + 𝒇 f
= 0

𝝈 · 𝒏 = 𝜆𝒕r + 𝒕 f

𝝈 ∈ 𝐺(𝜻) ∀𝜻 ∈ 𝒰

(RC)

What makes problem (RC) a robust optimization problem is the condition ∀𝜻 ∈ 𝒰 in the last
constraint. This implies that the constraint 𝝈 ∈ 𝐺(𝜻) must be fulfilled for any possible value
of 𝜻 ∈ 𝒰 . It is therefore an infinite-dimensional constraint. One of the main goals of robust
optimization theory is to make such a problem tractable using standard convex optimization
algorithms.

For instance, the robust constraint can be reformulated as:

𝝈 ∈ 𝐺(𝜻) ∀𝜻 ∈ 𝒰 ⇔ 𝝈 ∈ 𝐺RC (7.2)

when introducing:
𝐺RC =

⋂
𝜻∈𝒰

𝐺(𝜻) (7.3)

the robust counterpart to the uncertain strength criterion. In order for a stress field to be
admissible with respect to any possible realization of the uncertain strength criterion 𝐺(𝜻), it
has to belong to the intersection of all such domains (see Fig. 7.1).

As a result, problem (RC) is a classical limit analysis problem with a different strength
criterion given by (7.3). This makes problem (RC) very appealing provided that a simple
expression for𝐺RC can be found. It is however very hard to determine a simple expression for
the infinite-dimensional set intersection appearing in (7.3). Fortunately, exact or approximate
reformulation of strength criteria robust counterparts can be obtained in many cases, see
Bleyer and Leclère (2022).
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7.2.4 Affinely adjustable robust optimization

Unfortunately, if RC problems are numerically tractable, the obtained approximation
might be unreasonably conservative (Bertsimas and Sim, 2004). A middle ground is the
affinely adjustable robust counterpart (AARC), which consists in looking for adjustable variables
𝝈(𝜻) and 𝜆(𝜻) that are affine functions of the uncertain variable, the so-called affine decision
rule (Ben-Tal et al., 2004):

𝝈(𝜻) = 𝝈0 +
𝑚∑
𝑗=1

𝝈 𝑗𝜁 𝑗 (7.4a)

𝜆(𝜻) = 𝜆0 +
𝑚∑
𝑗=1

𝜆 𝑗𝜁 𝑗 (7.4b)

where the 𝝈 𝑖 (resp. 𝜆𝑖) represent 1+𝑚 different stress fields (load factor variables) which are
now static optimization variables. Inserting the affine decision rules (7.4a)-(7.4b) into (ARC),
the corresponding AARC reads:

𝜆AARC = max
𝝈 𝑖 ,𝜆𝑖

min
𝜻∈𝒰

𝜆0 +
𝑚∑
𝑗=1

𝜆 𝑗𝜁 𝑗

s.t. div ©­«𝝈0 +
𝑚∑
𝑗=1

𝝈 𝑗𝜁 𝑗
ª®¬ + ©­«𝜆0 +

𝑚∑
𝑗=1

𝜆 𝑗𝜁 𝑗
ª®¬ 𝒇 r + 𝒇 f

= 0

©­«𝝈0 +
𝑚∑
𝑗=1

𝝈 𝑗𝜁 𝑗
ª®¬ · 𝒏 =

©­«𝜆0 +
𝑚∑
𝑗=1

𝜆 𝑗𝜁 𝑗
ª®¬ 𝒕r + 𝒕 f

©­«𝝈0 +
𝑚∑
𝑗=1

𝝈 𝑗𝜁 𝑗
ª®¬ ∈ 𝐺(𝜻)

(7.5)

which can also be reformulated as follows:

𝜆AARC = max
𝜆̄,𝝈 𝑖 ,𝜆𝑖

𝜆̄

s.t. div(𝝈 𝑗) + 𝜆 𝑗 𝒇
r + 𝒇 f

= 0 ∀𝑗 = 0, . . . , 𝑚
𝝈 𝑗 · 𝒏 = 𝜆 𝑗𝒕r + 𝒕 f ∀𝑗 = 0, . . . , 𝑚©­«𝝈0 +

𝑚∑
𝑗=1

𝝈 𝑗𝜁 𝑗
ª®¬ ∈ 𝐺(𝜻) ∀𝜻 ∈ 𝒰

𝜆̄ ≤ 𝜆0 +
𝑚∑
𝑗=1

𝜆 𝑗𝜁 𝑗 ∀𝜻 ∈ 𝒰

(AARC)

in which we removed the uncertainty from the objective function and replaced the minimiza-
tion over 𝜻 with robust constraints. Note that equality constraints depending on 𝜻 have been
re-expressed by identifying the corresponding terms of the expansion in terms of 𝜁𝑖 since 𝒰
is full dimensional.

7.2.5 Comparison between the different approaches

Summarizing, (RC) is the most conservative formulation yielding the smallest limit load.
(AARC) is more flexible since it considers additional static variables 𝝈 𝑗 ,𝜆 𝑗 for 𝑗 = 1, . . . , 𝑚 and
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Figure 7.2: Empirical distribution of the slope stability safety factor. The vertical black and
red lines correspond to a single deterministic limit analysis with either nominal strength
properties or using the corresponding robust strength condition.

reduces to (RC) if we fix all 𝝈 𝑗 = 0. As mentioned, (ARC) is less conservative than (AARC) since
we allow for more general decision rules but is generally untractable. Finally, all of these
formulations guard against all possible realizations of the uncertainty such that we have the
following ordering:

𝜆RC ≤ 𝜆AARC ≤ 𝜆ARC ≤ 𝜆+(𝜻) ∀𝜻 ∈ 𝒰 (7.6)

7.2.6 Illustrative example

As an illustration, we consider a slope stability problem for a cohesive-frictional soil with
uncertain values for the cohesion and friction angle (𝑐 = 1 ± 0.1 MPa and 𝜙 = (30 ± 10)◦)
for a pseudo-static earthquake loading 𝒇 = (0.2𝑔,−𝑔). In this case, the robust criterion 𝐺RC
can be well approximated by the intersection of two Mohr-Coulomb cones, see Bleyer and
Leclère (2022), each of them having the minimal value for the cohesion i.e. 𝑐min = 0.9 MPa
and one cone being associated with the smallest friction angle 𝜙min = 20◦ and the other with
the largest friction angle 𝜙max = 40◦.

The problem has been formulated using a finite-element discretization using thefenics_optim
package described in Bleyer (2020a) and solved using Mosek (MOSEK ApS, 2019b). Fig. 7.2
represents the empirical distribution of the slope safety factor obtained for 200 random real-
izations of the material parameters. The nominal safety factor is slightly larger than 3 whereas
the robust estimate is slightly less than 2 and indeed corresponds to the lower bound of the
empirical distribution. It can be seen from Fig. 7.3 that the collapse mechanism in the robust
case involves a much larger volume of soil than the nominal case since the most critical
scenario corresponds to a smaller friction angle.

7.3 Risk-averse behaviour of standard dissipative media

In this section, we present our contribution to develop a stochastic variational formulation
accounting for non-smooth material behaviour under uncertainty. Using the concepts of
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(a) Nominal collapse mechanism (b) Robust collapse mechanism

Figure 7.3: Collapse mechanism and concentrated dissipation in slip lines for the nominal
and robust case.

Figure 7.4: A stochastic material resulting in a stochastic stress-strain response (left) is re-
placed with an effective constitutive behavior (right), depending on a confidence level 𝛽.
Average, optimistic and pessimistic effective behavior are obtained depending on the choice
of the confidence level when evaluating the effective behavior.

stochastic programming, we provide a thermodynamically consistent formulation of stochastic
Generalized Standard Materials. We will discuss in particular how to define an effective
behaviour to obtain the average response of the material. More importantly, we will be
interested in obtaining optimistic and pessimistic effective responses of the material, see
Fig. 7.4. To do so, we borrow from the concepts of risk measures in mathematical finance and
study the use of the Conditional Value-at-Risk in this context. This section is extracted from
Bleyer (2023b).

7.3.1 Stochastic approach of material behaviour

Formulation of an effective behaviour

Let us first investigate the formulation of material behaviour in the stochastic setting. For
simplicity, we restrict ourselves to rate-independent behaviours. As we have seen before,
dissipative materials can be described by the primal incremental variational principle (4.62)
involving the generic incremental convex potential 𝑗(𝜺).

We now assume that it depends upon random parameters 𝜻which have a known probabil-
ity distribution i.e. 𝑗(𝜺; 𝜻) is now a random field. We are interested in the effective behaviour of
the material with respect to the variability of 𝜻 and therefore consider the following effective
potential:

𝑗eff(𝜺) = ℛ
[
𝑗(𝜺; 𝜻)

]
(7.7)
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where ℛ refers to some effective measure of 𝑗 over all realizations 𝜻. Since 𝑗 is defined as
a minimum problem involving an uncertain objective function, its computation therefore
falls into the scope of stochastic programming. The most classical choice for the effective mea-
sure is the expected value ℛ[𝑗] = E

[
𝑗
]

which only considers the average behaviour of the
material. For engineering applications, one is instead interested in events of low probabil-
ity which might be more detrimental to the structural safety. In such a context, it becomes
interesting to rely on the notion of risk measures which will be later introduced in Section 7.3.2.

Internal state variables in the stochastic setting

Before that, let us first discuss the classical case where ℛ[𝑗] = E
[
𝑗
]
. In the stochastic

setting, the first question which arises concerns the dependency of the internal state variables
with respect to the uncertainty. Since we are interested in computing an effective behaviour of
the material, we consider the total strain 𝜺 to be imposed by the external observer. In a global
structural analysis, 𝜺 will for instance be obtained by minimizing the effective potential
associated with 𝑗eff. In the stochastic programming setting, 𝜺 is therefore referred to as a
first-stage variable since its value is chosen independently from the exact realization of the
uncertainty. On the contrary, the implicit state variables 𝜶 are referred to as second-stage
variables i.e. their value directly depends on the uncertainty realization. To make this
dependency more explicit, we will now use the subscripted notation 𝜶𝜻.

In the stochastic setting where the different potentials are now random, we can wonder
about how to select the appropriate internal state variables in addition to the effective ob-
servable strain 𝜺. A first possibility is to consider that we control the total strain 𝜺𝜻 in all
observations i.e.:

𝜺 = 𝜺𝜻 a.s. (7.8)

This assumption results in the fact that the total stress is controlled on average only i.e.:

𝝈 = E
[
𝝈𝜻

]
(7.9)

where 𝝈𝜻 is the individual stress response of each realization.
Conversely, we can also decide to impose the total stress for each realization, while

controlling the strain on average only i.e.:

𝝈 = 𝝈𝜻 a.s. (7.10)
𝜺 = E

[
𝜺𝜻

]
(7.11)

Both approaches are obviously not equivalent. For instance, in the case of linear elasticity,
the first approach yields:

𝑗eff(𝜺) = E
[
1
2 𝜺 : C𝜻 : 𝜺

]
=

1
2 𝜺 : E

[
C𝜻

]
: 𝜺 (7.12)

whereas the second approach yields:

𝑗eff(𝜺) = min
𝒆𝜻

E
[
1
2 (𝜺 + 𝒆𝜻) : C𝜻 : (𝜺 + 𝒆𝜻)

]
=

1
2 𝜺 : E

[
C−1
𝜻

]−1
: 𝜺

s.t. E
[
𝒆𝜻

]
= 0

(7.13)
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We therefore see that the first approach will produce an elastic behaviour characterized by
the average elastic moduli whereas the second expression is associated with the harmonic
average of the elastic moduli. Note that both quantities are not equal in general, as we only

have E
[
C𝜻

]
≽ E

[
C−1
𝜻

]−1
where inequality is understood in the sense of quadratic forms.

Note that a result similar to (7.13) can also be found in Junker and Nagel (2019).

Numerical application

We now illustrate the more general stochastic formulations on the example of a one-
dimensional elasto-plastic behaviour with isotropic power-law hardening. The correspond-
ing 1D potentials are given by:

𝜓(𝜀, 𝜀𝑝 , 𝑝) = 𝜓el(𝜀, 𝜀p) + 𝜓h(𝑝) (7.14)

𝜓el(𝜀, 𝜀p) = 1
2𝐸(𝜻)(𝜀 − 𝜀p)2 (7.15)

𝜓h(𝑝) =
1

1 + 1/𝑚𝐻(𝜻)𝑝1+1/𝑚 (7.16)

𝜙( ¤𝜀𝑝 , ¤𝑝) =
{
𝜎0(𝜻) ¤𝑝 for | ¤𝜀𝑝| ≤ ¤𝑝
+∞ otherwise

(7.17)

We consider that the Young modulus𝐸(𝜻), hardening modulus𝐻(𝜻) and yield stress 𝜎0(𝜻) are
independent random variables following a lognormal distribution. We assume the power-
law exponent 𝑚 to be deterministic (𝑚 = 3 in the following numerical simulations).

The stochastic programming formulation where we consider the total strain to be fully
deterministic reads:

𝑗eff(𝜀) = min
𝜀

p
𝜻 ,𝑝𝜻

1
2E

[
𝐸(𝜻)(𝜀 − 𝜀

p
𝜻)2

]
+ 1

1 + 1/𝑚E
[
𝐻(𝜻)𝑝1+1/𝑚

𝜻

]
+ E

[
𝜎0(𝜻)(𝑝𝜻 − 𝑝𝑛,𝜻)

]
s.t. |𝜀p

𝜻 − 𝜀
p
𝑛,𝜻| ≤ 𝑝𝜻 − 𝑝𝑛,𝜻

(7.18)

The corresponding dual potential is given by:

(𝑗eff)∗(𝜎) = min
𝜎𝜻 ,𝑅𝜻

1
2E

[
1

𝐸(𝜻)𝜎
2
𝜻

]
+ 1

1 + 𝑚E
[

1
𝐻(𝜻)𝑚 𝑅

1+𝑚
𝜻

]
+ E

[
𝜎𝜻𝜀

p
𝑛,𝜻 − 𝑅𝜻𝑝𝑛,𝜻

]
s.t. |𝜎𝜻| ≤ 𝜎0(𝜻) ∀𝜻

𝜎 = E
[
𝜎𝜻

] (7.19)

The second stochastic programming formulation where we consider the total stress to be
deterministic reads:

𝑗eff(𝜀) = min
𝑒𝜻 ,𝜀

p
𝜻 ,𝑝𝜻

1
2E

[
𝐸(𝜻)(𝜀 + 𝑒𝜻 − 𝜀

p
𝜻)2

]
+ 1

1 + 1/𝑚E
[
𝐻(𝜻)𝑝1+1/𝑚

𝜻

]
+ E

[
𝜎0(𝜻)(𝑝𝜻 − 𝑝𝑛,𝜻)

]
s.t. |𝜀p

𝜻 − 𝜀
p
𝑛,𝜻| ≤ 𝑝𝜻 − 𝑝𝑛,𝜻

(7.20)
The corresponding dual potential is given by:

(𝑗eff)∗(𝜎) = min
𝑅𝜻

1
2E

[
1

𝐸(𝜻)𝜎
2
]
+ 1

1 + 𝑚E
[

1
𝐻(𝜻)𝑚 𝑅

1+𝑚
𝜻

]
+ E

[
𝜎𝜀

p
𝑛,𝜻 − 𝑅𝜻𝑝𝑛,𝜻

]
s.t. |𝜎| ≤ 𝜎0(𝜻) ∀𝜻

(7.21)
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(a) Hardening case with E [𝐻] = 1
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(b) Nearly perfectly plastic case with E [𝐻] = 0.01

Figure 7.5: Effective behaviour of a stochastic hardening elastoplastic material. The black
dashed line corresponds to the nominal deterministic case where all parameters take their
average value. Thin black lines correspond to 100 independent realizations of the stochastic
behaviour.

Fig. 7.5a represents the corresponding effective behaviour for both formulations in the
case where E [𝐸] = 20, E [𝐻] = 1 and E [𝜎0] = 1 and a 20% standard deviation for both 𝐸

and 𝐻 and 10% for 𝜎0. The effective behaviour is obtained either using formulation (7.18) (in
blue) or (7.20) (in red). In both cases, expectations have been computed using a Monte-Carlo
sampling approximation with a sample size𝑁 = 500. Minimization over the𝑁 different state
variables is performed using the cvxpy package (Diamond and Boyd, 2016; Agrawal et al.,
2018). First, it can be seen that both approaches lead to a very similar behaviour, the second
formulation (7.20) being slightly softer than the first one due to the presence of additional
total strain variables. Interestingly, the obtained effective behaviour is close to the nominal
deterministic behaviour except that it exhibits an earlier and progressive onset of plasticity
since it accounts for a distribution of yield stress with different values.

This is further confirmed in Fig. 7.5b which corresponds to an almost perfectly-plastic
behaviour with E [𝐻] = 0.01. We can observe that the effective behaviour corresponding to
(7.18) admits an initial hardening phase before reaching a perfectly plastic plateau. Moreover,
in the ultimate perfectly plastic regime, the elastic term vanishes so that 𝜀p

𝜻 = 𝜀. One can then
see that (7.18) gives approximately 𝑗eff(𝜀) ≈ E [𝜎0] |𝜀 − 𝜀𝑛| in the asymptotic regime of the
perfectly plastic case. The final plastic plateau is therefore given by the average yield stress
E [𝜎0] = 1.

Conversely, formulation (7.20) clearly fails in reproducing a reasonable effective behaviour.
This can indeed be well understood when inspecting the dual formulation (7.21) in which
the last constraint will enforce the observable stress to satisfy the plasticity criterion for any
possible realization of the yield stress 𝜎0(𝜻). As a result, this constraint can in fact be reformu-
lated as |𝜎| ≤ min𝜻 𝜎0(𝜻) which is overly conservative. Note that we obtain here a non-zero
yield stress due to the fact that we have a finite set of samples but, in theory for a lognormal
distribution, this minimum should be zero.

We might therefore be tempted to conclude that the second formulation imposing a
deterministic stress is not relevant. However, when inspecting again the dual formulation
(7.21), we can see that a minor modification could lead to a relevant effective estimate, yet
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different from (7.18)-(7.19). Indeed, the last constraint can also be formulated as 𝑔(𝜎; 𝜻) ≤ 1
∀𝜻 where 𝑔(𝜎; 𝜻) = |𝜎|/𝜎0(𝜻) is the gauge function of the corresponding yield criterion.
Since the second formulation involves a deterministic stress, we then see that satisfying the
yield condition almost surely is too restrictive. Another classical approach in stochastic
programming is to replace such a hard constraint by a soft counterpart such as imposing that
the constraint is satisfied on average only, hence E

[
𝑔(𝜎; 𝜻)

]
≤ 1. In the present case, this

amounts to imposing |𝜎| ≤ 1

E
[

1
𝜎0(𝜻)

] . The new dual formulation therefore reads:

(𝑗eff)∗(𝜎) = min
𝑅𝜻

1
2E

[
1

𝐸(𝜻)𝜎
2
]
+ 1

1 + 𝑚E
[

1
𝐻(𝜻)𝑚 𝑅

1+𝑚
𝜻

]
+ E

[
𝜎𝜀

p
𝑛,𝜻 − 𝑅𝜻𝑝𝑛,𝜻

]
s.t. E [|𝜎|/𝜎0(𝜻)] ≤ 1 ∀𝜻

(7.22)

Going back to the corresponding primal formulation, (7.22) is the dual to the following primal
formulation:

𝑗eff(𝜀) = min
𝑒𝜻 ,𝜀

p
𝜻 ,𝑝𝜻

1
2E

[
𝐸(𝜻)(𝜀 + 𝑒𝜻 − 𝜀

p
𝜻)

2
]
+ 1

1 + 1/𝑚E
[
𝐻(𝜻)𝑝1+1/𝑚

𝜻

]
+ max

𝜻
[𝜎0(𝜻)(𝑝𝜻 − 𝑝𝑛,𝜻)]

s.t. |𝜀p
𝜻 − 𝜀

p
𝑛,𝜻| ≤ 𝑝𝜻 − 𝑝𝑛,𝜻

(7.23)
where the only difference with (7.20) is that the effective measure of the dissipation potential
is no longer the expectation but the worst-case value. Fig. 7.6 shows the obtained effective
estimate using this third formulation involving soft yield constraints. Clearly, we can see
that this formulation removes the deficiencies of (7.20) which we identified earlier. Besides,
it yields an effective behaviour which is close to formulation (7.18), the main difference being
that there is no progressive onset of plasticity in this case. Note that for a lognormal variable
𝑋 we have:

E
[
𝑋−1]−1

= E [𝑋]
(
1 + var[𝑋]

E [𝑋]2

)−1

≈ E [𝑋] (7.24)

when the variance is small as in the present case. This explains for instance in Fig. 7.6b why
the effective yield stress are very close for both formulations (only 1% difference since we
have a 10% standard deviation on 𝜎0). However, let us point out that we might see more
differences for other types of distributions than a lognormal one.

To conclude, we have seen that there exist different possible formulations of an effective
behaviour for a stochastic dissipative material. Depending on the chosen hypothesis regard-
ing whether total strain is considered as a first-stage or second-stage variable, the associated
thermodynamic stress should be respectively considered as a second-stage or a first-stage
variable. Depending on the chosen hypothesis, we have also seen that the retained effec-
tive measure plays an important role, especially concerning the dissipation potential. These
various formulations seem to yield very close effective behaviour which can question the
usefulness of having such a discussion. However, we considered here the expectation as
an effective measure of the behaviour. In the following, we will now discuss other choices,
in particular risk measures which can take into account low probability events rather than
average behaviour. In such a case, the distinction between these different formulations will
be crucial.
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(b) Nearly perfectly plastic case with E [𝐻] = 0.01

Figure 7.6: Effective behaviour of a stochastic hardening elastoplastic material using the soft
constraint formulations (7.23).

7.3.2 Coherent risk measures

In financial mathematics, a risk measure is a functional which amounts to quantify the
level of risk of a given random variable 𝑋 where 𝑋 can be, for instance, some financial loss or
cost, see (Rockafellar, 2007) for a broad overview. In the subsequent presentation, we follow
the tradition in optimization where costs should be minimized. Therefore, we consider that
large positive values of 𝑋 are disliked. The choice of a proper risk measure will aim at
guarding against large values of 𝑋. Many possibilities of risk measures can be considered,
depending on how the decision-maker evaluates risks. Typical examples are for instance:

• the expected value:
ℛ[𝑋] = E [𝑋] (7.25)

• the safety margin using 𝑘 standard deviations:

ℛ[𝑋] = E [𝑋] + 𝑘 std[𝑋], for 𝑘 > 0 (7.26)

• the worst-case value:
ℛ[𝑋] = sup𝑋 (7.27)

• the Value-at-Risk (VaR) for a confidence level 𝛽 ∈ [0; 1] (or the 𝛽-quantile):

ℛ[𝑋] = VaR𝛽(𝑋) = inf{𝑍 s.t. P [𝑍 ≥ 𝑋] ≥ 𝛽} (7.28)

• and many more...

Recently, attention has been devoted to the use of so-called coherent risk measures which are
a specific class of risk measures benefiting from desirable properties proposed by Artzner
et al. (1999) such as translational invariance, monotonicity and convexity. For instance, the
expected value is a coherent risk measure but it is not very useful in quantifying the amount
of risk since it does not take into account events in the distribution tail. This measure
is therefore termed risk-neutral. Risk measures satisfying ℛ[𝑋] > E [𝑋] are instead called
risk-averse measures.

The safety margin measure (7.26) is for instance risk-averse but is not coherent. Con-
versely, the worst-case value fulfills both coherency and risk-aversion but is not useful in



7.3. RISK-AVERSE BEHAVIOUR OF STANDARD DISSIPATIVE MEDIA 145

practice due to being severely conservative. The VaR𝛽(𝑋) might be an interesting risk-averse
measure as it gives an estimate of 𝑋 which is exceeded only with probability 1− 𝛽. It is how-
ever not convex and hence does not fall into the class of coherent risk measures. As a result,
stochastic programs in which an uncertain convex function 𝑗(𝜺, 𝜻) is replaced with VaR𝛽(𝑗)(𝜺)
would not be convex anymore which is extremely undesirable from the computational and
theoretical perspective. A very popular risk-averse measure closely linked to the VaR and
which overcomes this drawback is the Conditional Value-at-Risk (CVaR).

7.3.3 Conditional Value-at-Risk and risk-averse estimates

For a continuous distribution, the CVaR is defined as the expected value of 𝑋 above VaR𝛽:

CVaR𝛽 (𝑋) = E
[
𝑋 s.t. 𝑋 ≥ VaR𝛽(𝑋)

]
(7.29)

The above definition is slightly more technical when considering discrete distributions, we
refer the reader to (Rockafellar and Uryasev, 2002) for a rigorous definition.

The CVaR is then a coherent risk measure and a key result due to Rockafellar et al. (2000)
is that CVaR benefits from the following convex optimization characterization:

CVaR𝛽 (𝑋) = inf
𝜆
𝜆 + 1

1 − 𝛽
E [⟨𝑋 − 𝜆⟩+] (7.30)

where ⟨★⟩+ = max{★, 0} denotes the positive part. From this definition, it is clear that
CVaR0(𝑋) = E [𝑋]. Let us also point out that, if the minimum of (7.30) is unique, then the
optimal value is exactly 𝜆 = VaR𝛽(𝑋).

The CVaR𝛽 of |x| for a vector x ∈ R𝑁 can also be interpreted as a norm parameterized by
𝛽. Indeed, for 𝛽 = 0, it reduces to the geometric average of all entries, whereas for 𝛽 = 1 it
reduces to the maximum norm. For intermediate values, it can be seen as an average of the
𝑘 largest values of |x| where 𝑘/𝑁 = 1 − 𝛽, see Mafusalov and Uryasev (2013); Pavlikov and
Uryasev (2014) for a more precise definition.

Applying such concepts from financial optimization to mechanics requires to decide
on what would be the "loss" function against which we want to be immunized. This not
necessarily an obvious question to answer. Let us first investigate what would be obtained
when considering the CVaR as an effective measure ℛ in (7.7) in the simple case where the
behaviour is linear elastic, hence here 𝑗(𝜺) = 𝜓(𝜺) = 1

2 𝜺 : C : 𝜺. We assume that uncertainty
affects only the material Young modulus so that 𝐸(𝜻) is a random variable and C(𝜻) = 𝐸(𝜻)C0
for some reference C0 material with unit Young modulus (see Fig. 7.7a). Then, one easily sees
that:

𝜓eff(𝜺) = CVaR𝛽
(
𝜓
)
(𝜺) = 1

2 𝜺 : CVaR𝛽 (𝐸)C0 : 𝜺 (7.31)

i.e. one obtains a linear elastic material with an effective Young modulus 𝐸eff = CVaR𝛽 (𝐸).
In the following, we use the notation 𝐸𝛽 = CVaR𝛽 (𝐸) which has the following properties:

𝐸0 = E [𝐸] (7.32)
𝐸1 = sup𝐸 (7.33)
𝐸𝛽 ≥ VaR𝛽(𝐸) (7.34)

𝐸𝛽 ≤ 𝐸𝛽
′ ∀𝛽 ≤ 𝛽′ (7.35)



146 CHAPTER 7. ROBUST AND STOCHASTIC OPTIMIZATION

For 𝛽 ∈ [0; 1], the effective modulus therefore varies from its mean value to its supremum
(which can be infinite). In practice, 𝛽 is often chosen close to 1 e.g. 𝛽 = 0.95, 0.99 so that
𝐸𝛽 provides a best-case estimate of the material Young modulus. It might therefore appear
strange to consider this stiff estimate as being a useful risk measure from the engineering
point of view, since stiff materials are generally looked for. As it will be clear later, consid-
ering a CVaR in a primal displacement-based principle will yield an overestimation of the
mechanical performance compared to its mean value. Structural performance underestima-
tion will instead be obtained through duality. The confidence level 𝛽 will enable us to reach
tail behaviours (both left and right) when 𝛽 is close to 1. We will therefore use in the following
the term risk or risk-averse measure to denote a measure of the deviation from the mean value,
irrespective of the fact that such a value can be beneficial or detrimental from the engineering
point of view.

7.3.4 Dual CVaR

Quadratic elastic potentials

In Bleyer (2023a), we proposed to obtain the worst-case estimate of an elastic potential 𝜓
by taking the conjugate function of the CVaR of the conjugate i.e. (𝜓∗)∗

𝛽
. In the elastic case,

we easily see that:

(𝜓∗)𝛽(𝝈) =
1
2𝝈 : CVaR𝛽

(
𝐸−1) S0 : 𝝈 (7.36)

(𝜓∗)∗
𝛽
(𝜺) = 1

2 𝜺 : (CVaR𝛽
(
𝐸−1))−1C0 : 𝜺 (7.37)

where S0 = (C0)−1. This defines an elastic material with an effective Young modulus given
by:

𝐸eff = 𝐸𝛽 = CVaR𝛽
(
𝐸−1)−1

= ((𝐸−1)𝛽)−1 (7.38)

where we introduced the dual CVaR notation 𝐸𝛽 which enjoys the following properties:

𝐸0 = E
[
𝐸−1]−1 (7.39)

𝐸1 = inf𝐸 (7.40)
𝐸𝛽 ≤ VaR𝛽(𝐸−1)−1 (7.41)

𝐸𝛽′ ≤ 𝐸𝛽 ∀𝛽 ≤ 𝛽′ (7.42)

In the generic case of a convex function 𝑓 (𝒙), one has the following convex formulation:

( 𝑓 ∗)∗
𝛽
(𝒙) = inf

𝒙̂ ,𝑧
E

[
𝑧 𝑓 (̂𝒙/𝑧)

]
s.t. E [̂𝒙] = 𝒙

0 ≤ 𝑧 ≤ 1
1 − 𝛽

E [𝑧] = 1

(7.43)

Unfortunately, we see that this definition is not suitable for all convex functions. Indeed,
for positive homogeneous functions for instance, the objective simplifies to E

[
𝑓 (̂𝒙)

]
and the

auxiliary variable 𝑧, and thus 𝛽, play no role anymore. For instance, in the case where
𝑓 (𝒙) = 𝑘(𝜻)∥𝒙∥𝑝 is the support function of a 𝐿𝑞-ball of radius 𝑘(𝜻) with 1

𝑝 + 1
𝑞 = 1, one can
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easily see that (7.43) yields the ball of smallest radius i.e. ( 𝑓 ∗)∗
𝛽
(𝒙) = {inf 𝑘(𝜻)}∥𝒙∥𝑝 . This is

obviously not what we are looking for as this worst-case estimate is way too conservative and
does not depend on 𝛽. We can remark that we recover an issue similar to that encountered
previously with formulation (7.21) of the effective behaviour.

Polar-based definition

Instead, we propose to obtain the worst-case estimate of a positive convex function 𝑓 by
taking the polar function of the CVaR of the polar function:

𝑓𝛽(𝒙) = ( 𝑓 ◦)◦
𝛽
(𝒙) (7.44)

where the polar is defined as Rockafellar (1970, Th. 15.4):
𝑓 ◦(𝒚) = inf{𝜇 ≥ 0 s.t. (𝒙 , 𝒚) − 𝜇 𝑓 (𝒙) ≤ 1 ∀𝒙} (7.45)

In the case of quadratic convex functions, 𝑓 ◦ = 𝑓 ∗ so that the polar definition (7.44)
coincides with that given in Bleyer (2023a) in the context of linear elasticity.

Moreover, we have the following convex representation of 𝑓𝛽(𝒙):

𝑓𝛽(𝒙) = inf
𝑣≥0

max{E
[
𝑣 𝑓 (𝒙/𝑣)

]
; (1 − 𝛽) sup{𝑣 𝑓 (𝒙/𝑣)}}

s.t. E [𝑣] ≤ 1
(7.46)

The case of homogeneous functions

Suppose now that 𝑓 is homogeneous, then 𝑓 ◦ = 𝑔𝐺 i.e. it is the gauge function of the
convex set 𝐺 from which 𝑓 is the support function. For the previous support function

𝑓 (𝒙) = 𝑘(𝜻)∥𝒙∥𝑝 , 𝐺 = {𝒚 s.t. ∥𝒚∥𝑞 ≤ 𝑘(𝜻)} so that 𝑓 ◦(𝒚) = 𝑔𝐺(𝒚) =
1
𝑘(𝜻)∥𝒚∥𝑞 . Thus:

𝑓 ◦
𝛽
(𝒚) = (𝑘−1)𝛽∥𝒚∥𝑞 =

1
𝑘𝛽

∥𝒚∥𝑞 (7.47)

⇒ 𝑓𝛽(𝒙) = ( 𝑓 ◦)◦
𝛽
(𝒙) = 𝑘𝛽∥𝒙∥𝑝 (7.48)

Finally, 𝑓𝛽 defines a 𝑝-norm scaled by the worst-case estimate 𝑘𝛽 which is typically what was
expected. This result can be generalized in the sense that 𝑓 ◦

𝛽
= (𝑔𝐺)𝛽 is homogeneous and

therefore defines a new convex set𝐺𝛽 such that (𝑔𝐺)𝛽 = 𝑔𝐺𝛽 . Hence, (𝑔𝐺𝛽 )◦ = 𝑓𝛽 is the support
function of 𝐺𝛽.

Properties

Note that one has:
𝑓𝛽′ ≤ 𝑓𝛽 ≤ 𝑓0 = E

[
𝑓 ◦

]◦ ≤ 𝑓0 = E
[
𝑓
]
≤ 𝑓𝛽 ≤ 𝑓𝛽′ ∀ 0 ≤ 𝛽 ≤ 𝛽′ < 1 (7.49)

Let us also recall that the optimal value of 𝜆 in the CVaR definition (7.30) corresponds
to the VaR. Then, 𝑔◦ = VaR𝛽( 𝑓 ◦) is such that 𝐹 𝑓 ◦(𝑔◦) = 𝛽. But one also has 𝐹 𝑓 ◦(𝑔◦) =

P
[
𝑓 ◦ ≤ 𝑔◦

]
= P

[
𝑓 ≥ 𝑔

]
so that:
𝐹 𝑓 ◦(𝑔◦) = 1 − 𝐹 𝑓 (𝑔) = 𝛽 ⇒ 𝐹 𝑓 (𝑔) = 1 − 𝛽 (7.50)

We conclude that 𝑔 = VaR𝛽( 𝑓 ◦)◦ corresponds to the (1 − 𝛽)-quantile of 𝑓 (𝒙; 𝜻). However,
𝑓𝛽 does not correspond to the expectation below this (1 − 𝛽)-quantile but rather the "polar
expectation" E

[
𝑓 ◦

]◦ below this quantile.
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Illustration on one-dimensional behaviours

All these results concerning the CVaR best-case and worst-case estimates of simple be-
haviours are illustrated in Fig. 7.7 in the one-dimensional case. Thin black lines denote
independent realizations of the corresponding potential and stress-strain curve assuming
a lognormal distribution of the corresponding material coefficient with a unit mean and a
10% standard deviation. CVaR+

𝛽 (resp. CVaR−
𝛽 ) denotes the corresponding best-case (resp.

worst-case) estimate obtained using 𝜓𝛽 (resp. 𝜓𝛽) as the corresponding convex potential.
Numerical results have been represented for a 95% confidence level.

7.3.5 Risk-averse stochastic programming of the structural response

A truss example

In this section, we investigate the global response of a structure in the previous stochastic
behaviour framework. We will illustrate the proposed formulations on the 2D truss structure
of Fig. 7.8 made of 𝑀 = 30 members. Each member is of identical cross-section 𝑆 = 1 and
assumed to follow the hardening elastoplastic behaviour of (7.14)-(7.17). As before, the Young
modulus 𝐸, the hardening modulus 𝐻 and the yield stress 𝜎0 for each member are assumed
to be independent random variables following a lognormal distribution of mean E [𝐸] = 20,
E [𝐻] = 1 and E [𝜎0] = 1. Unless stated otherwise, the corresponding standard deviations
are again taken to be of 20% for the elastic moduli 𝐸 and 𝐻 and 10% for the yield stress
𝜎0. The reference loading 𝑭 represented in Fig. 7.8 consists of vertical forces applied to the
upper face. We will use a displacement-controlled path-following strategy by driving the
associated work-conjugate displacement𝑈 = 𝑭T𝒖 and report the corresponding load factor.

To fix ideas, Fig. 7.9 represents the bundle of structural responses for each of 𝑁 = 500
realizations. It also reports the resolution of the corresponding deterministic problem when
each bar property is affected its best-case CVaR value (CVaR+

𝛽 ) of level 𝛽 or its worst-case
dual CVaR value (CVaR−

𝛽 ). For instance, CVaR+
0 corresponds to the nominal case and CVaR−

0
to the case where each property 𝑋 is of value 1/E [1/𝑋]. Clearly, we see that simply taking
the CVaR (resp. dual CVaR) value for each bar is way too optimistic (resp. pessimistic) since
it assumes that each bar will take its best (resp. worst) case value simultaneously which is
highly unlikely.

Effective structural response

In Section 7.3.1, we investigated the effective behaviour of a stochastic material by intro-
ducing an effective measure of the incremental potential density 𝑗. We now aim at extending
the same concepts to investigate the effective structural response.

When using the risk-neutral measure ℛ = E, we equivalently have:

ℛ[𝐽](𝜺) = E
[∫

Ω

𝑗(𝜺; 𝜻)dΩ
]
=

∫
Ω

E
[
𝑗
]
(𝜺)dΩ =

∫
Ω

ℛ[𝑗](𝜺)dΩ (7.51)

In this case, the expectation is additive so that the effective global potential 𝐽eff = ℛ[𝐽] is equal
to the global potential associated with the effective density 𝑗eff. However, this is no longer
true when considering more complex nonlinear risk measures such as CVaR.
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(a) Linear elastic behaviour 𝑓 (𝜀; 𝜁) = 𝐸(𝜁) 1
2 𝜀

2.

0.0 0.2 0.4 0.6 0.8 1.0

Strain ε

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
ot

en
ti

al
ψ

Realizations

expected

CVaR+
0.95

CVaR−0.95

0.0 0.2 0.4 0.6 0.8 1.0

Strain ε

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
tr

es
s
σ

Realizations

expected

CVaR+
0.95

CVaR−0.95

(b) Perfectly plastic behaviour 𝑓 (𝜀; 𝜁) = 𝑘(𝜁)|𝜀|.

0.0 0.2 0.4 0.6 0.8 1.0

Strain ε

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
ot

en
ti

al
ψ

Realizations

expected

CVaR+
0.95

CVaR−0.95

0.0 0.2 0.4 0.6 0.8 1.0

Strain ε

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
tr

es
s
σ

Realizations

expected

CVaR+
0.95

CVaR−0.95

(c) Power-law behaviour 𝑓 (𝜀; 𝜁) = 𝐻(𝜁) 3
4 |𝜀|4/3.

Figure 7.7: Risk-averse estimates of various 1D behaviours with lognormal distributions of
unit mean and 10% standard deviations for 𝐸(𝜁), 𝑘(𝜁) and 𝐻(𝜁).
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Figure 7.8: Truss structure with reference loading consisting of downwards vertical forces of
intensity 1 on the middle nodes and 0.5 on the end nodes.
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Figure 7.9: Stochastic structural response for 500 realizations and deterministic responses
using the CVaR and dual CVaR value of each material property.



7.3. RISK-AVERSE BEHAVIOUR OF STANDARD DISSIPATIVE MEDIA 151

Primal risk-averse formulation

The extension of the previous risk-averse material response will rely on introducing the
global free-energy and dissipation pseudo-potentials:

Ψ(𝜺, 𝜶; 𝛽) =
∫
Ω

𝜓(𝜺, 𝜶; 𝜻)dΩ (7.52)

Φ(𝜺, 𝜶; 𝛽) =
∫
Ω

𝜙(𝜺, 𝜶; 𝜻)dΩ (7.53)

These are now stochastic global potentials and we apply the same formulation as before on
the global potentials rather than on the local potentials:

ℛ𝛽[𝐽] = min
𝜶𝜻

CVaR𝛽
(
Ψ(𝜺, 𝜶𝜻; 𝜻)

)
+ CVaR𝛽

(
Φ(𝜺 − 𝜺𝑛 , 𝜶𝜻 − 𝜶𝜻,𝑛 ; 𝜻)

)
(7.54)

= min
𝜶𝜻

Ψ𝛽(𝜺, 𝜶𝜻) +Φ𝛽(𝜺 − 𝜺𝑛 , 𝜶𝜻 − 𝜶𝜻,𝑛)

In the case where 𝜺 is not a dissipative variable, this leads to the following stochastic varia-
tional program:

𝒖𝑛+1 = arg min
𝒖∈KA

min
𝜶𝜻

Ψ𝛽(𝜺, 𝜶𝜻) +Φ𝛽(𝜶𝜻 − 𝜶𝑛,𝜻) − 𝒫ext(𝒖) (7.55)

Note that ℛ𝛽 is still a convex function of 𝜺 and reduces to E [𝐽] for 𝛽 = 0. Let us also
point out that the notation used in (7.54) and (7.55) is slightly abusive in the sense that 𝜶𝜻 is
a second-stage optimization variable and therefore depends on 𝜻. In any case, introducing
the convex formulation (7.30) in lieu of the CVaR operator in expression will result in (7.55)
being a convex stochastic program where 𝜶𝜻 are second-stage variables and 𝒖 , 𝜺 and the two
𝜆 parameters associated with each CVaR terms are first-stage variables. The introduction
of the two CVaR measures only adds these two additional scalar variables compared to
a formulation based on the expectation. It introduces some additional non-linearity in the
problem due to the presence of the positive part in (7.30). The latter can however be considered
as very minor compared to the material non-linearity.

As discussed before, this risk-averse stochastic program can be solved by adopting a
Monte-Carlo sampling approximation, yielding the following equivalent deterministic prob-
lem:

arg min
𝒖∈KA,𝜶(1) ,...,𝜶(𝑁) ,𝜆Ψ ,𝜆Φ

𝜆Ψ + 1
1 − 𝛽

1
𝑁

𝑁∑
𝑘=1

Ψ
(𝑘)
+ + 𝜆Φ + 1

1 − 𝛽
1
𝑁

𝑁∑
𝑘=1

Φ
(𝑘)
+ − 𝒫ext(𝒖)

s.t.
∫
Ω

𝜓(𝜺, 𝜶(𝑘); 𝜁(𝑘))dΩ − 𝜆Ψ ≤ Ψ
(𝑘)
+ ∀𝑘 = 1, . . . , 𝑁∫

Ω

𝜙(𝜺 − 𝜺𝑛 , 𝜶
(𝑘) − 𝜶(𝑘)

𝑛 ; 𝜁(𝑘))dΩ − 𝜆Φ ≤ Φ
(𝑘)
+

0 ≤ Ψ
(𝑘)
+

0 ≤ Φ
(𝑘)
+

(7.56)

which is conic-representable when both 𝜓 and 𝜙 are conic-representable. This problem is
often called a deterministic equivalent of the original stochastic problem. Obviously, solving
the above effective problem is computationally intensive since a large number of realizations
must be considered in order for the Monte-Carlo sampling approximation to converge and
the problem size scales with 𝑁 . A large body of works in the literature is therefore devoted to
improving the efficiency of computing the corresponding effective behaviour using various
techniques such as variance reduction, adaptive sampling, kriging methods, etc.

Clearly, for 𝛽 > 0, the solution to (7.56) will result in a "stiffer/stronger" response than the
corresponding risk-neutral problem with 𝛽 = 0.
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Dual risk-neutral formulation

Following the developments of Section 7.3.4, it would make sense to replace in (7.54)
the CVaR measure of Ψ and Φ with their dual CVaR measure. However, we also need to
provide some supplementary freedom by considering that the total strain is controlled on
average only in order to derive correct worst-case estimates. Hence, we consider the following
risk-averse measure:

ℛ𝛽[𝐽] = min
𝜺𝜻 ,𝜶𝜻

Ψ𝛽(𝜺𝜻 , 𝜶𝜻) +Φ𝛽(𝜺𝜻 − 𝜺𝑛,𝜻 , 𝜶𝜻 − 𝜶𝜻,𝑛) (7.57)

to be used in the stochastic program:

𝒖𝑛+1 = arg min
𝒖∈𝒰ad

min
𝜶𝜻

Ψ𝛽(𝜺, 𝜶𝜻) +Φ𝛽(𝜶𝜻 − 𝜶𝑛,𝜻) −𝑊ext,𝑛+1(𝒖) (7.58)

Note that in the case of a rate-independent material, the stress formulation involves a
yield criterion of the form 𝑔(𝒀 𝜻; 𝜻) ≤ 1 to be satisfied at all 𝒙 ∈ Ω. With the corresponding
formulation, the latter is transformed into the following yield criterion:

CVaR𝛽

(
sup
Ω

𝑔(𝒀 𝜻)
)
≤ 1 (7.59)

We therefore see that the corresponding risk-averse yield criterion will involve the CVaR of
the maximum value of the gauge function 𝑔 attained on Ω. If we particularize this expression
to the case of a single material point, we therefore have CVaR𝛽

(
𝑔(𝒀 𝜻)

)
≤ 1. In the risk-neutral

case 𝛽 = 0, this reduces to E
[
𝑔(𝒀 )

]
≤ 1 which coincides with the yield constraint proposed

in (7.22).
As before, its numerical resolution is obtained by a Monte-Carlo sampling approximation

resulting in a convex program involving𝑁 state variables. It is important to differentiation our
approach from a Monte-Carlo sampling evaluation of various realizations of the structural
response. Here, instead of evaluating 𝑁 times the full structural response associated with
a classical constitutive law, we evaluate only once (for a given value of 𝛽) the effective
structural response which is now associated with a more complex constitutive law (the
classical constituive law being basically duplicated 𝑁 times). Our motivation is that, for
large-scale problems, solving for the displacement field in a Newton-Raphson method is
much more time-consuming than evaluating the constitutive equation. Therefore, despite
an additional complexity in solving the constitutive model, we expect this formulation to be
way more efficient computationally than a direct sampling.

7.3.6 Illustrative application

We first analyze the effective response of the truss structure in the risk-neutral 𝛽 = 0.
Fig. 7.10 shows the corresponding response obtained when solving the risk-neutral stochastic
programs (7.55) and (7.58). We see that there is indeed a duality gap between both formu-
lations since the dual CVaR risk measure is not equivalent to the CVaR measure for 𝛽 = 0.
This gap is however moderate. In particular, both formulations yield a good approxima-
tion of the average structural response when comparing with the empirical distribution of
load-displacement curves.

We then consider the resolution of both problems in the risk-averse case with 𝛽 = 0.95.
Fig. 7.11 shows the different obtained responses when considering different types of uncer-
tainty. On Fig. 7.11a, we assume that uncertainty affects only the Young modulus. In this case,
the bundle of responses is quite thin and the behaviour has much less variance in the final
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Figure 7.10: Risk-neutral 𝛽 = 0 structural responses using the primal CVaR measure (7.55)
and the dual CVaR measure (7.58).

hardening stage of the response. Both formulations are however able to correctly account
for a best-case and a worst-case estimate of the response. On Fig. 7.11b, uncertainty affects
only the hardening modulus which results in a much wider spread of the responses after a
first deterministic elastic stage. Again, both risk-averse estimates are of very good quality
compared to the empirical distribution. They coincide in the first deterministic elastic stage
and then exhibit a hardening behaviour with a different slope, following that of the response
distribution. A similar observation can also be made concerning Fig. 7.11c which consid-
ers only a yield strength uncertainty. Here, the difference is that both risk-averse estimates
show a similar hardening response but the onset of plasticity occurs at different load levels,
closely matching that of the empirical distribution. Finally, Fig. 7.11d is the most interesting
since it considers a simultaneous uncertainty on all three mechanical parameters. Again, the
agreement is also excellent in this case.

As regards this last case, Fig. 7.12 displays the deformed configurations of the truss
structure for two different load levels corresponding to a displacement𝑈 = 2 and𝑈 = 4. The
effective responses obtained from the resolution of both risk-averse formulations (7.55) and
(7.58) have been compared against 25 of the uncertain realizations. First, we can see that the
spread of nodal displacements can be quite large for some nodes and such a spread increases
with the load level. Let us point out that, since we have a displacement control, all deformed
configuration have the same equivalent displacement 𝑈 which corresponds to a weighted-
average of the vertical displacement of the top surface. However, each deformed configuration
will be associated with a very different state of internal forces. This is particularly highlighted
by Fig. 7.12b which shows that the worst-case effective response using the dual CVaR measure
(in red) is close to a collapsed state where its vertical members on both supports experience
a very strong deformation. On the contrary, the best-case estimate in blue seems to be much
stiffer for the same load level.

Fig. 7.13 investigates the influence on the confidence level 𝛽 on the obtained risk-averse
estimate. As expected, going from 0 to 1 yields a stiffer and stronger response for the estimate
obtained with the CVaR measure whereas one obtains a softer and weaker response for that
obtained with the dual CVaR measure. One can see that going from 𝛽 = 0.95 to 𝛽 = 0.995
does not have too much of an influence here. However, we must moderate this observation
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(a) Uncertainty on 𝐸 only
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(b) Uncertainty on 𝐻 only
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(c) Uncertainty on 𝜎0 only
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(d) Uncertainty on 𝐸, 𝐻 and 𝜎0

Figure 7.11: Risk-averse estimates for various types of uncertainty
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Figure 7.12: Effective deformed configurations: primal CVaR (blue), dual CVaR (red) and 25
random realizations
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Figure 7.13: Influence of confidence level and number of sampling realizations on risk-averse
estimates

since we used only a very small sample size in order to limit the computational cost. To
further asses this aspect, Fig. 7.13b assesses the influence of the sample size 𝑁 for 𝛽 = 0.95. It
seems that reasonable estimates are already obtained with 𝑁 = 50. In particular, it does not
seem that one formulation is more sensitive than the other to the chosen sample size.

Finally, we further assess the efficiency of the proposed formulations on the much more
challenging problem of a cyclic loading. In Fig. 7.14, the displacement amplitude is varied
as 𝑈 : 0 → 3 → 0 → 5 → 0. We can first observe that the cyclic behaviour of the truss
is correctly reproduced. Moreover, in the plastic evolution phases, both formulation indeed
produce the correct worst-case and best-case estimates, even after load direction has flipped
signs. However, we can notice that in the elastic unloading/reloading phases, there is a
crossover between the worst-case and best-case estimates. To explain this, let us consider the
first unloading from 𝑈 = 3 to 0. Even if the best-case estimate is stiffer than the worst-case
one, at 𝑈 = 3, the best-case response is associated with smaller plastic strain levels than
the worst-case. Elastic unloading therefore occurs at different levels of plastic strain and
this strain difference is then later compensated by stiffer/stronger response in the unloading
stage. In the subsequent plastic yielding phases, the clearer separation between the optimistic
and pessimistic responses is however quickly recovered.

7.4 Conclusions

This chapter introduced the theory of robust and stochastic optimization in the field of
nonlinear mechanics. To our opinion, this approach is rather new in this field and offers very
promising developments in the future. Regarding the stochastic approach of GSM materials,
one key practical challenge is the numerical cost associated with an extensive number of
internal state variables when using Monte-Carlo sampling. To overcome this difficulty,
one potential strategy is to identify the set of active scenarios, for instance during global
Newton iterations, which would significantly reduce the cost of evaluating the constitutive
law. Indeed, when using the CVaR with a large risk-aversion level, we should expect only a
small fractions of scenarios to be active at a given increment. Additionally, using linear or non-
linear decision rules (Georghiou et al., 2015) for second-stage variables instead of sampling
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Figure 7.14: Risk-averse structural responses for a cylic loading.

could be a viable alternative to reduce this cost. More generally, it would be interesting to
adapt this stochastic framework to a more classical treatment of constitutive laws in standard
solvers.



Chapter 8

Variational regularization through
gradient-based models

This chapter is devoted to non-convex problems which exhibit some kind of softening such as
brittle fracture and damage models as well as softening plasticity problems. Section 8.2 first
discusses the use of damage gradient or phase-field models used to regularize brittle fracture.
We focus in particular on our contributions related to dynamic and anisotropic fracture. Fi-
nally, Section 8.3 presents a novel regularization method for elasto-plastic problems involving
softening. The proposed approach departs from classical strain gradient plasticity models
by including gradient regularization terms in the plastic dissipation potential.
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Figure 8.1: Regularization of a sharp crack problem with a phase-field/damage gradient
model with regularization length ℓ0

8.1 Introduction

In practical applications, many materials exhibit, after a given load level, some form of
degradation process, reducing its mechanical properties for increasing loading. This type of
behavior is generally termed as softening in the sense that stress/strain relations are no longer
monotonic increasing. Damage mechanics is the archetypal softening behavior model in
which elastic properties are reduced through the evolution of a damage variable. Softening
plasticity, in which elastic properties remain intact but plastic yield strength is reduced is
another example. Finally, coupled elasto-plastic damage models can also be considered.

In all cases, softening behaviors are associated with a lack of convexity of the underlying
energy potential and will result in localization of mechanical fields. Such models are there-
fore ill-posed and any discretization scheme will induce mesh-dependent results in which
localization will occur over a band of one element width and dissipate zero energy in the
limit of very fine meshes. Regularization strategies are therefore needed to remove such
deficiencies.

Among the large number of possible strategies, all of them have in common of introducing
nonlocality. Typical examples include:

• ad hoc regularization of local variables using integral or gradient-based averaging;

• generalized continua such as higher-order (e.g. strain gradient) or higher-grade (e.g.
Cosserat) models;

• models base on gradients of internal state variables.

For more details, we refer to our chapter in the MEALOR II book (Besson et al., 2023, Chap.
11) and references therein.

The forthcoming discussion will focus on models based on gradients of internal state
variables for both brittle and ductile fracture.

8.2 Variational models of brittle fracture

8.2.1 Introduction

It has always been notoriously difficult to accurately simulate the nucleation, propagation,
kinking, branching of cracks in brittle materials. One of the main achievements of the
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last decades has been the introduction of the variational approach to fracture by Francfort
and Marigo (1998) who generalized the classical Griffith model of crack propagation in a
variational energy minimization setting. In this setting, the displacement solution 𝒖 and
crack topology Γ is obtained as the global minimum of a total energy ℰ consisting of an
elastic ℰel and a fracture ℰf energy:

ℰ(𝒖 , Γ) = ℰel(𝒖 , Γ) + ℰf(Γ) =
∫
Ω\Γ

1
2 𝜺 : C : 𝜺dΩ + 𝐺c|Γ| (8.1)

where the crack set is constrained to satisfy an irreversible evolution constraint: Γ ⊇ Γ𝑛

with respect to the previous time step 𝑡𝑛 . Although this setting is formally appealing since
crack path selection can be deduced from a global energy minimization principle, this model
cannot account for crack nucleation and is challenging to implement numerically because of
the geometrical nature of the crack set variable Γ.

To answer both challenges, a mathematical regularization has been proposed by Bourdin
et al. (2000) based on a Ambrosio-Tortorelli regularization. The latter introduces an auxiliary
field 𝑑 ∈ [0; 1] where 𝑑 = 1 represents the crack location and an internal length scale ℓ0 which
limits via a gradient term localization effects. Evolution is still governed by a minimization
principle over the pair (𝒖 , 𝑑) of the following total energy:

ℰ(𝒖 , 𝑑) = ℰel(𝒖 , 𝑑) + ℰf(𝑑) =
∫
Ω

𝑔(𝑑)12 𝜺 : C : 𝜺dΩ +
∫
Ω

𝐺c
𝑐𝑤ℓ0

(
𝑤(𝑑) + ℓ 2

0∥∇𝑑∥2) dΩ (8.2)

where 𝑔(𝑑) is a degradation stiffness function, typically 𝑔(𝑑) = (1 − 𝑑)2, and 𝑤(𝑑) is a local
fracture energy density (e.g. 𝑤(𝑑) = 𝑑 for the AT1 model, 𝑤(𝑑) = 𝑑2 for the AT2 model, etc.).
Finally, 𝑐𝑤 is a normalization constant related to the specific choice of 𝑤(𝑑). It is chosen to
ensure that the energy spent to create 1d localization profiles is exactly related to the input
fracture energy 𝐺c.

Such models have been initially introduced as a regularization of the variational approach
to fracture and Γ-convergence towards the original model as ℓ0 → 0 can be proved in various
settings. However, it also turns out that such regularized models are able to predict crack
nucleation with respect to a critical stress 𝜎𝑐 ∝

√
𝐸𝐺𝑐/ℓ0. In this sense, the numerical

parameter ℓ0 can also be viewed as a physical material parameter and model (8.2) can be
interpreted as a gradient-damage model (Pham et al., 2011; Tanné et al., 2018). Despite this
historical perspective, the community eventually chose the term phase-field to describe this
class of model, borrowing from similarities with models used in physics to describe phase
changes in materials with diffuse interfaces.

One of the main success of such approaches is that crack path selection, including branch-
ing events, is automatically derived from an energy minimization principle without any ad-
ditional criterion. Its prediction capabilities is continuously tested, favorably, against fracture
experiments, see Figure 8.2.

8.2.2 Dynamic crack propagation and crack branching

Understanding the various mechanisms governing the dynamic propagation of a crack in
a brittle medium is still an open challenge due to numerous phenomena occurring around the
crack tip, including non-linear effects, dynamic stress redistribution due to crack front waves,
crack tip splitting or crack surface instabilities. Dynamic linear fracture mechanics predicts
that the Rayleigh wave speed 𝑐𝑅 is the limiting velocity of a mode I propagating crack (Stroh,
1957). However, various experimental results have shown that this simple picture of dynamic
brittle fracture is far from being complete (Ravi-Chandar and Knauss, 1984a,b; Fineberg and
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Figure 8.2: Crack propagation in a compact tension specimen: experimental crack path (left)
vs numerical crack path with gradient-damage model (right). Source: MEALOR II Summer
School

Marder, 1999). In particular, the existence of limiting velocities well below 𝑐𝑅, microscopic
and macroscopic crack branching phenomena and a dependence of the fracture energy on
the crack velocity have been observed experimentally.

We have worked with an extended version of the previous gradient damage models to
a dynamic setting to investigate whether they were able to reproduce parts of the complex
physical aspects of dynamic crack propagation. In Bleyer et al. (2017), we performed various
numerical tests in a 2D pre-strained plate setting. Our results showed in particular that such
models reproduce mode I cracks accelerating up to a certain limit velocity 𝑣max ≈ 0.7𝑐𝑅 above
which macroscopic crack branching can occur Fig. 8.3a. Interestingly, if we constrain the crack
on a weaker path (e.g. with holes or along a weaker interface), branching is suppressed and
cracks can accelerate to much larger velocities close to 𝑐𝑅. Before branching, the acceleration
phase is associated with a broadening of the localized 1D crack solutions until enough energy
is available for the crack tip to split into two main branches. This branching event seems to
be related to a dynamic energy release rate Γ reaching the value 2𝐺c (Fig. 8.3c). Interestingly,
the link between damage dissipation and crack velocity before the first branching event
was found to be roughly independent on the loading level (Fig. 8.3d), which reproduces
experimental observation of velocity-toughening mechanisms.

Finally, experimental observations also reported that cracks exhibit dynamic instabilities
characterized by crack velocity oscillations and frustrated branching attempts called micro-
branches. Such microbranching events result in highly localized roughness events along
post-mortem crack surfaces. In PMMA, at the onset of the microbranching instability, micro-
branches initially localize along the width direction but rapidly merge, forming an almost
invariant pattern across the width and showing a periodic alternance of up and down micro-
branches with a well-defined length scale. As regards numerical simulations, we did not find
any work which was capable of reproducing this kind of observation in a 2D setting. Since
microbranching seems to be intrinsically 3D, we attempted to reproduce such an instability
using dynamic explicit 3D simulations. Our results were in line with experimental obser-
vations in the sense that microbranching instability occurs at low velocities as a transition
between strain crack propagation and macroscopic branching, see Fig. 8.4a. Moreover, it was
also previously observed experimentally that this microbranching phase can be suppressed
if the plate was made thinner and thinner. Our results also reproduce the same observation
(Fig. 8.4b) and, conversely, they lead to much more localized branching events across the
plate width for thicker plates. We must highlight that all simulations have been performed
with the same regularization length ℓ0 which has an influence on the typical size of such
microbranches.
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(a) Damage band broadening before branching (b) Suppressed branching on a weak path

(c) Evolution of the normalized damage dissipation rate Γ/𝐺c during crack propagation for different
loading levels. For the low prestrain level (Δ𝑈 = 0.035 mm), the evolution is regular with 𝐺c ≤ Γ ≤
1.5𝐺c and no branching is observed. For a higher loading (Δ𝑈 = 0.045 mm), branching is observed
slightly after Γ ≥ 2𝐺c. After branching, the dissipation associated with a single crack tip (Γ/2) is
close to its initial value, slightly above 𝐺c.

(d) The damage dissipation rate Γ is a well-defined increasing function of the crack speed for all
initial loadings. The points correspond to instantaneous values of 𝑣 and Γ during the single crack
propagation phase i.e. after initiation phase and before branching for high loadings. The dotted line
corresponds to the experimentally observed limiting velocity in Zhou (1996).

Figure 8.3: Some results of dynamic phase-field models in 2D, from Bleyer et al. (2017)
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(a) Crack surface patterns for different loading lev-
els Δ𝑈 for the same plate width (𝑊 = 1𝑚𝑚).
The crack propagates as a single straight crack
for low loading levels (top), the microbranch-
ing instability appears for higher loading with
longer branches and shorter distance between suc-
cessive branches for increasing loading (middle).
For even higher loading (bottom), macroscopic
branches are formed and are very close to 2D sim-
ulation patterns.

(b) Crack surface patterns for different plate
widths 𝑊 for the same loading level (Δ𝑈 =

0.06 mm). The microbranching instability is
clearly suppressed for the thin plate (a), the mac-
robranching crack pattern being reminiscent of
2D simulations. The up-and-down quasi-periodic
regime of small microbranching is obtained for the
intermediate width (b) whereas more localization
in the z-direction is obtained for the larger width
(c) without exhibiting any well-structured feature.

Figure 8.4: 3D microbranching crack surfaces in various configurations.

Overall, even though theoretical results on such dynamic-extended models are still lacking
at the moment, we believe that non-trivial physical instabilities can be well reproduced, at
least qualitatively, by these models which further assess their versatility for accounting for
fracture in various contexts.

8.2.3 Anisotropic fracture

Another rich extension of phase-field models of brittle fracture concerns the setting of
anisotropic fracture. In such a context, one is typically interested in reproducing the fact that
crack surface energy is no longer isotropic but depends on the crack propagation direction.
In some extreme cases, one may even consider directions where crack propagation is entirely
forbidden. Many works have focused on the anisotropic fracture energy setting where
elastic properties are supposed isotropic. In this case, an important distinction must be
made between the weak anisotropy case and the strong anisotropy case which correspond to

the situation where the reciprocal fracture energy 1
𝐺c(𝜃)

is, respectively, a convex or a non-

convex function of the crack direction 𝜃. Weak anisotropy with two-fold symmetry can be
well-reproduced using an extended anisotropic version of the fracture energy ℰf such as:

ℰf(𝑑) =
∫
Ω

𝐺c
𝑐𝑤ℓ0

(
𝑤(𝑑) + ℓ 2

0∇𝑑 · 𝑨 · ∇𝑑
)

dΩ (8.3)

where 𝑨 is a structural tensor characterizing the anisotropy. For four-fold symmetry and/or
strong anisotropy, more advanced models must be proposed such as high-order models
relying on the second-gradient ∇2𝑑, see Li and Maurini (2019).



8.2. VARIATIONAL MODELS OF BRITTLE FRACTURE 163

Figure 8.5: Schematics of the multi-mechanism anisotropic damage gradient model

Multi-damage models

Alternatively, we have been motivated by developing phase-field models of brittle fracture
for fiber-reinforced composites in which two main fracture mechanisms seem to dominate,
see Fig. 8.5: transverse fracture where cracks are parallel to the fiber orientation, splitting the
matrix only, and longitudinal fracture where cracks are perpendicular to the fibers and break
both the fiber and the matrix phases. For such purposes, we proposed a model accounting
for two different damage variables 𝑑1 , 𝑑2 associated with each mechanism. Assuming that no
interaction exists in terms of dissipated energy, we posit the following total fracture energy:

ℰf(𝑑1 , 𝑑2) =
∫
Ω

[
𝐺1

c
𝑐𝑤ℓ0

(
𝑤(𝑑1) + ℓ 2

0∥∇𝑑1∥2) + 𝐺2
c

𝑐𝑤ℓ0

(
𝑤(𝑑2) + ℓ 2

0∥∇𝑑2∥2) ] dΩ (8.4)

where 𝐺1
c , 𝐺

2
c are the surface fracture energies corresponding to both fracture mechanisms.

Note that for simplicity, we considered the same regularization length ℓ0 and local energy𝑤(𝑑)
for both contributions. Regarding the elastic energy, our approach consists in introducing
a specific anisotropic degradation function which will promote crack nucleation along the
corresponding directions, a typical example in 2D would be for instance:

ℰel(𝒖 , 𝑑1 , 𝑑2) =
∫
Ω

1
2 𝜺 : C(𝑑1 , 𝑑2) : 𝜺dΩ (8.5)

where C(𝑑1 , 𝑑2) = D(𝑑1 , 𝑑2) : C0 : D(𝑑1 , 𝑑2) (8.6)

=


(1 − 𝑑1)2𝐶11 (1 − 𝑑1)(1 − 𝑑2)𝐶12 0

(1 − 𝑑1)(1 − 𝑑2)𝐶12 (1 − 𝑑2)2𝐶22 0
0 0 (1 − 𝑑1)(1 − 𝑑2)𝐶66

 (8.7)

The numerical resolution then follows the classical alternate minimization strategy with the
main difference that the damage problem now involves a vectorial field (𝑑1 , 𝑑2).

This kind of model is capable of reproducing the preferential crack orientation of anisotropic
fiber reinforced materials as illustrated in Fig. 8.6 for a Single-Edge Notch Test in mode I load-
ing. Moreover, a similar mode I setting with a pre-crack at 0◦ and fibers oriented at 90◦ has
been analyzed theoretically by Leguillon (1993) using LEFM. Assuming that cracks other than
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(a) Crack paths.Transverse cracks (damage vari-
able 𝑑2) are shown in blue, longitudinal cracks
(damage variable 𝑑1) are shown in red.
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Figure 8.6: Longitudinal/Transverse Damage (LTD) model results for mode I loading for
different principal orthotropic direction orientations 𝛼.

0◦ or ±90◦ are forbidden, the author showed that straight propagation occurs if the contrast
𝜒 = 𝐺c(90◦)/𝐺c(0◦) between both fracture energies is above a critical threshold 𝜒𝑐 . Below
this threshold, a crack kinking at ±90◦ is expected. For the retained values of the elastic
properties, the theoretical threshold is estimated to be 𝜒𝑐 ≈ 0.09. Our simulations reveal
the correct abrupt transition between the two failure modes: straight propagation or kinked
propagation, see Fig. 8.7. By varying the imposed ratio between both fracture energies, we
found the transition to happen between 𝜒 = 0.09 and 𝜒 = 0.11 for a length scale ℓ0 = 10
mm. For even smaller length scale, we found the critical contrast to approach the predicted
value of 𝜒𝑐 ≈ 0.09. Interestingly, classical damage models with a single variable and a weakly
anisotropic fracture energy are unable to reproduce this phenomenon.

In the work of Scherer et al. (2022), we further explored the difference between such
models on more complex settings. In particular, we investigated the possibility of reproducing
complex zig-zag crack paths which can occur in brittle crystals under certain conditions. Our
approach indeed manages to exhibit nice zig-zag patterns as in Fig. 8.8 without relying on
sophisticated higher-order phase-field models.

Multi-layered plate models and inter/intra-laminar damage interaction

These models have also been used in the context of modeling damage mechanisms arising
in low-velocity impact of composites laminates for the aeronautic industry. The PhD thesis
of Paul Bouteiller funded by Dassault Aviation focused on developing a generalized multi-
layered plate model to reduce the computational burden of 3D simulations. As discussed in
Section 2.2.4, the goal was to represent the complex 3D kinematics of a multilayered laminate
with a generalized plate model formulated on a reference 2D plate, each node containing
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Figure 8.7: Crack path of the LTD model for the kinking problem for varying values of the
surface energy constrast : left 𝜒 = 0.05, middle 𝜒 = 0.09, right 𝜒 = 0.11.

Figure 8.8: Zig-zag crack paths along two cleavage planes in a brittle crystal.

multiple degrees of freedom associated with each layer displacement and rotation for in-
stance. The originality of the approach stems from the fact that the model is based on a
stress expansion (rather than on a displacement expansion) inside each ply along the vertical
coordinates to perform the 3D-2D dimension reduction. This choice is particularly relevant
since we then have access to quantities of physical interest such as interfacial shear and
opening stresses which play a pivotal role in simulating debonding mechanisms. The final
model resulted in having, in each ply, two intra-laminar damage variables corresponding to
the LTD anisotropic model and in each interface, two inter-laminar damage variables capable
of modeling mode I and mode II debonding mechanisms. Note that intra-laminar damage
fields will tend to produce localized cracks and must therefore be regularized as presented
before, whereas inter-laminar damage is constrained to lie along the interface and can be seen
as a damage field of a cohesive-zone model and does not require any regularization.

Fig. 8.9 shows an example of a four-point bending test of a 90◦/0◦/90◦ laminate investigated

Figure 8.9: Four-point bending test from Quintanas-Corominas et al. (2020)
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(a) Δ = 1.36 mm (b) Δ = 1.71 mm (c) Δ = 1.94 mm

(d) Δ = 4 mm (e) Δ = 5 mm (f) Δ = 6 mm

Figure 8.10: Matrix multi-cracking in the bottom 90◦ ply (in black) and debonding at the
90◦/0◦ interface (in red) – top view.

(a) Modified Cam-Clay yield surface (b) Typical stress/strain curves

Figure 8.11: Illustration of the Modified Cam-Clay model for granular soils

in Quintanas-Corominas et al. (2020). With our multilayered model (Bouteiller, 2022), this
problem is modeled using a 2D mesh representing the plate reference plane in the 𝑥, 𝑦

direction and 3 layers which possess Reissner-Mindlin kinematics (in-plane and out-of-plane
displacements and rotation) in interaction with each other. Fig. 8.10 represents the evolution
of the intra-laminar and inter-laminar damage fields at different loading levels. For this
configuration, matrix cracks first appear in the bottom 90◦ layer under the loading region
and are followed by further matrix cracking events in the central zone. In this initial stage,
delamination does not occur. For larger loading levels, multi-cracking stops and delamination
propagates from the location of the matrix cracks. This kind of behavior is in line with
experimental observations and more complex simulations using solid elements. The loading
levels of crack nucleation and the obtained crack density also agree quantitatively with
previous references.

8.3 Gradient regularization of softening plasticity models

8.3.1 Motivations

Recently, in the thesis of Goustan Bacquaert in collaboration with EDF, we investigated
novel formulations for describing the behavior of granular soils. The main focus was put on
developing simple models in order to favor robustness of structural computations. Indeed,
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many elastoplastic models found in soil mechanics exhibit some form of softening which is
detrimental to reliable engineering computations at the structural scale. One of the archetypal
models found in this community is the so-called Modified Cam-Clay (MMC) model which
can be described as an elastoplastic model characterized by an elliptic yield surface and a
combined isotropic/kinematic hardening driven by the volumetric plastic strain (Fig. 8.11a).
Depending on the loading path, the stress-strain curve can exhibit either a hardening or a
softening response as in Fig. 8.11b.

In such a case, plastic strain localization and mesh-dependency problems will necessarily
emerge when solving problems at the structure scale. Among many of the possible ways of
solving these issues in softening plasticity, a common approach is due to Aifantis (1987) in
which the free energy is supplemented with a quadratic term of the cumulated plastic strain
gradient:

𝜓reg(𝜺, 𝑝,∇𝑝) = 𝜓loc(𝜺, 𝑝) +
𝐴

2 ∥∇𝑝∥2 (8.8)

where 𝜓loc is the original free energy of the local (non-regularized) model and 𝐴 > 0 a new
material parameter which sets a typical length scale to control plastic strain localization.

To illustrate this model, let us consider an elasto-plastic material characterized by a convex
yield domain and an isotropic hardening controlled by the cumulated plastic strain. The
plastic yield surface can therefore be described by the convex set 𝐺(𝑝) = 𝜌(𝑝)𝐺0 where 𝐺0 is
the initial convex yield domain and 𝜌(𝑝) a positive scalar-valued function such that 𝜌(0) = 1.
In the case where 𝜌 is a decreasing function of 𝑝, we are in presence of a softening plasticity
model. The quadratic plastic gradient regularization proposed by Aifantis (1987) has been
studied by many authors as a means of controlling plastic localization. However, many works
(De Borst and Pamin, 1996; Jirásek and Rolshoven, 2009; Scherer et al., 2019; Abatour and
Forest, 2023) have also pointed out some inherent deficiencies of this approach since localized
plastic bands eventually thicken in an uncontrolled manner. This is illustrated in Fig. 8.12
for the case of a 1D bar in traction using a linear softening model which has been studied
in detail by Jirásek and Rolshoven (2009). In this setting, one can derive an exact analytical
solution and show that plastic strain profiles have a controlled support in an initial phase
where the yield stress is between 𝜎0 and 𝜎0/2. When the yield stress becomes lower than
𝜎0/2, the plastic strain profile exhibits an increasingly larger support with the strain level.
If this uncontrolled spreading of plastic bands is already problematic, such solutions will
also eventually dissipate a larger energy than the homogeneous solution, which is another
important fundamental issue. To overcome these issues some authors have recently proposed
to rely either on adding an ad hoc evolution equation of the internal length scale (Scherer et al.,
2019) or to rely on the concept of saturating state variables (Abatour and Forest, 2023).

8.3.2 A novel regularization framework

In our work, we are currently investigating the possibility of solving these issues without
relying on the Aifantis model or its extended versions. Instead, we propose to control
plastic localization using the dissipation pseudo-potential instead of the free energy. Without
regularization, the dissipation pseudo-potential is simply the support function of the yield
surface:

𝜙loc( ¤𝜺p , ¤𝑝; 𝑝) = 𝜌(𝑝)𝜋𝐺0( ¤𝜺p , ¤𝑝) (8.9)

where𝜋𝐺0 is the support function of the initial yield surface𝐺0, given for instance by Eq. (4.72)
for 𝐽2-plasticity. Here, the main specificity is related to the fact that the dissipation potential
is state-dependent since the radius 𝜌 depends on the current plastic strain 𝑝.
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Figure 8.12: Response of a 1D bar in traction for a linear softening model and Aifantis (1987)
regularization: (left) stress/strain response ; (right) plastic strain profiles

We now propose to extend the above dissipation potential with a nonlocal term depending
on the gradient of the cumulated plastic strain rate as follows:

𝜙ref( ¤𝜺p , ¤𝑝,∇¤𝑝; 𝑝) = 𝜙loc( ¤𝜺p , ¤𝑝; 𝑝) + 𝜙nloc( ¤𝑝,∇¤𝑝) (8.10)

where 𝜙nloc is a state-independent non-local dissipation potential which we require to satisfy
certain properties.

First, we require 𝜙nloc( ¤𝑝,∇¤𝑝) to depend on ∇¤𝑝 through the non-dimensional gradient
plasticity variable ¤𝑃 = ℓ0 ¤∇𝑝 where ℓ0 is an additional material parameter which is interpreted
as a regularization length-scale. We thus make the following change of variable:

𝜙nloc( ¤𝑝,∇¤𝑝) = 𝜑( ¤𝑝, ℓ0∇¤𝑝) (8.11)

Furthermore, we require the auxiliary function 𝜑( ¤𝑝, ¤𝑃) to satisfy the following properties:

• 𝜑( ¤𝑝, ¤𝑃) is convex and positive homogeneous of degree 1 to ensure rate-independence;

• 𝜑( ¤𝑝, 0) = 0 ∀¤𝑝 so that there is no gradient contribution when plastic evolution is
homogeneous (i.e. ∇¤𝑝 = 0) or when the regularization length ℓ0 = 0).

There exist many functions which may satisfy such properties. In the isotropic case, we
also enforce 𝜑 to depend on ¤𝑃 via its norm ∥ ¤𝑃∥2 only. In such a case, typical examples which
may satisfy such properties are:

• coupled quadratic norm:

𝜑( ¤𝑝, ¤𝑃) = 𝜅

(√
¤𝑝2 + ∥ ¤𝑃∥2

2 − ¤𝑝
)

(8.12)

• coupled max norm:

𝜑( ¤𝑝, ¤𝑃) = 𝜅
(
max{ ¤𝑝, ∥ ¤𝑃∥2} − ¤𝑝

)
= 𝜅

〈
| ¤𝑃∥2 − ¤𝑝

〉
+ (8.13)

• QuadOverLin function:

𝜑( ¤𝑝, ¤𝑃) = 𝜅
∥ ¤𝑃∥2

2
2 ¤𝑝 (8.14)

where 𝜅 > 0 is an additional material parameter.



8.3. GRADIENT REGULARIZATION OF SOFTENING PLASTICITY MODELS 169

Figure 8.13: Regularization of plastic bands in the softening MCC model for a tensile loading
using Eq. (8.13): (left) numerical profile in red and analytical solution in dotted black at
various loading levels; (right) final 2D plastic profile

8.3.3 Preliminary results

The proposed model can then fit into the incremental variational schemes discussed in
Chapter 4. It is important to note that the model is now non-local with respect to the plastic
strain variable 𝑝. Classical strategies of constitutive integration combining return mapping
procedures at the material point and global Newton-Raphson schemes can no longer be used
in such a context. Instead we rely on the conic programming tools discussed earlier in this
manuscript to solve the global variational problem associated with 𝑝. We must point out that,
using a fixed-point strategy to freeze the state-dependent radius 𝜌 at a previous iteration, this
global problem is non-smooth in the plastic strain variable and its gradient. Finally, all of the
forms proposed for the function 𝜑 are representable using simple conic constraints and can
therefore be implemented easily in the fenics_optim package.

In Fig. 8.13 we show some preliminary results when applying the above methodology to
the softening MCC model for a tensile loading test. In this case, we used the non-local function
Eq. (8.13) as it allowed us to derive an analytical solution for the 1D localized profiles. These
profiles exhibit a decaying exponential form with a fixed typical length scale ℓ∞ = ℓ0. As a
result, we never observe any spreading of the localized plastic bands as evidenced in Fig. 8.13-
left for different loading levels. Moreover, the analytical solution shows that dissipation is
well controlled and always bounded above by that of the homogeneous solutions, thereby
avoiding the two issues identified with Aifantis model of gradient plasticity.

Moreover, these good properties do not seem to be specific to the particular choice of
(8.13). For instance, using (8.12) we are no longer able to derive an analytical solution but
numerical simulations show that the localized plastic solutions exhibit a similar behavior, see
Fig. 8.14. The main differences come from the shape of the profile and its support. In this
case, the profile is smoother and the support of the last plastic increments seems finite.

Finally, Fig. 8.15 illustrates the difference between the energy regularization with a
quadratic gradient term as proposed by Aifantis (1987) and the proposed approach with
the QuadOverLin function Eq. (8.14) in the case of a softening von Mises plasticity model for
a tension loading on a plate. As we can see, plastic band widths are well controlled in the
proposed approach whereas for the energetic regularization, uncontrolled spreading of the
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Figure 8.14: Regularization of plastic bands in the softening MCC model for a tensile loading
using Eq. (8.12): (left) numerical profile in red at various loading levels; (right) final 2D plastic
profile

bands occurs. We check that we easily reach mesh-independent results when the mesh size
is sufficiently small with respect to the band width. Finally, we observe that the choice of the
regularization length ℓ0 influences the post-peak softening regime of the load-displacement
curve, the smaller ℓ0, the stronger is the softening regime.

8.3.4 Conclusions

The proposed model of regularization of softening plasticity seems extremely promising
in controlling the plastic band localization, without any spurious spreading and with a
consistent value for the dissipated energy. Interestingly, we tested the approach on various
types of softening behaviors and various plastic yield surfaces and found the same behavior
in all cases. Similarly, the dissipation regularization offers a certain freedom in choosing
the non-local pseudo-potential 𝜑. Importantly, similar results were obtained using various
forms of such potential provided that we respect certain properties regarding convexity
and homogeneity. The main difference between these different choices is related to the
shape of the plastic localization profile. This suggests that the approach is very general and
versatile. However, the approach relies on conic programming to be solved efficiently as its
implementation into a standard nonlinear FE solver does not seem straightforward at first
sight.

Obviously, this work is quite recent and will deserve more study in the future to better
understand the role of this regularizing gradient term in the dissipation. Moreover, compar-
ison with experimental plastic band localization profile could pave the way to identifying the
relevant form of the potential 𝜑 for a given material.
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(a) Energy regularization ∥∇𝑝∥2

(b) Proposed dissipation regularization (8.12)

Figure 8.15: Regularization of softening von Mises plasticity for different load levels
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Chapter 9

General research perspectives

This chapter discusses various research perspectives, focusing either on applications,
theoretical aspects or computation techniques.

9.1 Avanced mechanical models in novel construction systems

In the near future, my goal is to advance the use of phase-field models for modeling brittle
fracture of civil engineering materials in two PhD theses which started in Fall 2023. These
projects aim to develop advanced mechanical and computational models for 3D-printed
concrete thin-walled structures (PhD of Alice Gribonval) and wooden multilayered plates
such as Cross-Laminated Timber (PhD of Gaspard Blondet), respectively.

The first project focuses on the development of high-performance 3D-printed concrete
material that is planned to be used in pre-stressed structures with an optimized geometry to
reduce construction material consumption. However, the 3D-printing process results in thin
layered structures with anisotropic mechanical properties, making the modeling of brittle
failure phenomena a challenge (Fig. 9.1a). To qualify projects using 3D-printed structures, it
is necessary to correctly account for such phenomena, as these structures are not currently
covered in design codes. Thus, the project will develop efficient and accurate simulation
techniques for modeling brittle failure, contributing to better design and optimization of
3D-printed structures.

The second project aims to develop layerwise plate models to simulate failure in wooden
multilayered plates such as CLT (Fig. 9.1b), which is increasingly popular in high-rise wooden
buildings. Currently, there is no available model to correctly account for the interaction
between the various damage mechanisms characterizing their failure, including rolling shear
failure, tensile splitting, and ply debonding, see Fig. 9.1c. The project will also extend the
layerwise models to a large displacement setting to account for buckling-induced failure.
Such developments will result in advanced numerical models which will be key for better
design and optimization of CLT structures to possibly reduce wood consumption.

9.2 Optimization under uncertainty

The line of work described in Chapter 7 opens a large range of possible applications of
stochastic and robust optimization approaches to mechanical problems involving uncertainty.
One interesting application would be to compute pessimistic crack paths in brittle fracture to
improve the design of industrial parts which can be sensitive to brittle fracture. Moreover, as
we have discussed in Chapter 6, I believe that topology optimization can only be relevant for
practical engineering applications if we adopt a robust approach accounting for the possibility
of uncertainties in the design loads. One of the main challenge in combining the concepts of
Chapter 6 and Chapter 7 together lies in reducing the computational cost which is induced
both by the topology optimization formulation and by the stochastic/robust optimization
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(a) 3D-printed concrete thin-walled structure
(XtreeE)

(b) 5-layer CLT panel

(c) Rolling shear failure and debonding

Figure 9.1: Current research projects

approach. Bridging these developments with limit-analysis based topology optimization on
concrete structures may pave the way to designing innovative 3D-printed concrete structures
of excellent structural performance.

9.3 Automated numerical tools

The advent of automated numerical tools, including just-in-time compilation (JIT) and
automatic differentiation (AD), is significantly enhancing efficiency and flexibility across
various scientific computing domains. JIT compilation facilitates dynamic code generation
at runtime, optimizing performance through tailored machine-specific instructions. Con-
currently, automatic differentiation enables the calculation of derivatives concerning input
parameters, streamlining gradient-based optimization and sensitivity analysis. This proves
especially beneficial in computational mechanics, where constitutive models and structural
simulations often involve complex and computationally intensive operations. In automated
tools such as MFront or FEniCS, the computational burden of implementation is left to the
machine while the user can dedicate time to build more complex models using a simple
Domain-Specific Language. I believe that scientific computing is currently in a period of
excitement, with the emergence of many powerful tools, often open-source and driven by the
development of machine learning. For instance, JAX is an open-source numerical computing
library developed by Google. It is designed to provide a high-performance machine learning
framework for transforming numerical functions while being flexible and composable. It
provides various functionalities such as accelerated linear algebra, just-in-time compilation,
automatic differentiation, auto-vectorization, etc. Currently we are exploring how to couple
such tools for implementing material constitutive models at a much smaller cost from the
user’s perspective, see Fig. 9.21.

1See also the Linear viscoelasticity with JAX numerical tour

https://bleyerj.github.io/comet-fenicsx/tours/nonlinear_problems/linear_viscoelasticity_jax/linear_viscoelasticity_jax.html
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Figure 9.2: Automated constitutive modeling with JAX

9.4 Optimal Transport

Optimal Transport theory is an extremely active research field lying at the intersection
between probabilities, PDEs and optimization. It essentially relies on the notion of a distance
between probability distributions. For instance, it makes it possible to interpolate between
probability distributions with minimal cost. Thereby, it has fundamental links with least
action principles that can be found in various physical systems. I have been particularly
amazed by the work of Benamou and Brenier (2000) who exhibited the link between a fluid
mechanics least action principle and the Monge problem of optimal transport. I used this
beautiful link as a computational example (Fig. 9.3) for the fenics_optim package where
an initial Gaussian distribution 𝜌0 (Fig. 9.3a) defined on the unit square Ω = [0; 1] × [0; 1] is
mapped onto 4 Gaussian distributions 𝜌1 (Fig. 9.3f) by solving the following convex problem:

inf
𝜌,𝒎

∫ 1

0

∫
Ω

∥𝒎∥2

2𝜌 dΩd𝑡

s.t. 𝜕𝑡𝜌 + div𝑥 𝒎 = 0
𝜌(𝒙 , 𝑡 = 0) = 𝜌0(𝒙)
𝜌(𝒙 , 𝑡 = 1) = 𝜌1(𝒙)
𝒎 · 𝒏 = 0 on 𝜕Ω

(9.1)

As evidenced by previous works, optimal transport is also closely linked to shape opti-
mization problems which we investigated in Section 6.5. I think that such a connection is
extremely fruitful and should be further explored in the future. Finally, optimal transport is
also widely used in the field of machine learning and more specifically distributional robust
learning which explicitly accounts for uncertainty in the data distribution. Instead of opti-
mizing for a single distribution, distributional robust optimization considers a set of possible
distributions, often represented as a Wasserstein ball in the Wasserstein space defined by
optimal transport. Exploring how such type of approaches can find interesting applications
in mechanics seems also very interesting for the future.

9.5 Computational optimization

As evidenced in this manuscript, optimization numerical solvers, especially conic pro-
gramming solvers, lie at the center of my computational toolbox. Even though such solvers
showcase very interesting computational performances, many aspects would deserve to be
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(a) 𝑡 = 0 : 𝜌0 distribution (b) 𝑡 = 0.2 (c) 𝑡 = 0.4

(d) 𝑡 = 0.6 (e) 𝑡 = 0.8 (f) 𝑡 = 1.0 : 𝜌1 distribution

Figure 9.3: Optimal transport between two distributions

developed in the future.

First, although conic representation of convex functions offers a versatile framework for
composing operations on convex functions, it requires the user to formulate his problem
in a somewhat rigid format. For instance, current black-box conic solvers cannot account
for any prior knowledge of the problem mathematical structure such as composite objective
containing smooth and non-smooth terms, cones acting only on local variables which can be
condensed from the global linear system, etc. For this reason, it appears interesting to work
on an open-source implementation of such solvers which would offer increased flexibility
and which could account for the typical structure of problems arising in mechanics.

Second, knowing how an optimal solution depends on the data of the underlying problem
is essential in many cases of application such as sensitivity analysis, uncertainty quantifica-
tion, outer optimization, etc. As of today, there is very little work dedicated to computing
sensitivities of convex optimization problems, a notable exception being Agrawal et al. (2019).

Finally, using such solvers on large scale problems is still challenging because of the use
of direct solvers for solving the linear system involved at each iteration. The use of iterative
solvers would definitely be necessary to improve the computational efficiency. However,
the current challenge is that the linear system conditioning strongly deteriorates during the
iterations when approaching the solution. A possible remedy to this issue would be to
devise a hybrid algorithm which would combine during the course of the solution procedure
different types of solvers (first and second order for instance).



Appendix A

Convex optimization results

A.1 Recession function

The recession function corresponds, in some sense, to the asymptotic behaviour of a convex
function 𝑓 at infinity. More precisely, it is defined as follows (Combettes, 2018):

Definition 13 (Recession function). The recession function 𝑓∞ of 𝑓 is defined as:

𝑓∞(𝒙) = sup
𝒚∈dom 𝑓

𝑓 (𝒙 + 𝒚) − 𝑓 (𝒚) (A.1)

In particular, it is a positively homogeneous convex function.
For a closed function 𝑓 , we have:

𝑓∞(𝒙) = lim
𝑡→0+

𝑡 𝑓 (𝒙/𝑡) (A.2)

We also have:

( 𝑓 ∗)∞(𝒚) = 𝜋dom 𝑓 (𝒚) (A.3)
( 𝑓∞)∗(𝒚) = 𝛿dom 𝑓 ∗(𝒚) (A.4)

A.2 Perspective function

A.2.1 Definition

We start by noticing that for any convex function 𝑓 , the function:

𝑝 𝑓 (𝑡 , 𝒙) =
{
𝑡 𝑓 (𝒙/𝑡) if 𝑡 > 0
+∞ otherwise

(A.5)

is convex with respect to (𝑡 , 𝒙). Some authors call this function the perspective of 𝑓 . Others
consider that the perspective is the lower semi-continuous envelope of 𝑝 𝑓 . We make this
latter choice in this manuscript and define the perspective as:

Definition 14 (Perspective). The perspective function of a convex function 𝑓 (𝒙):

persp 𝑓 (𝑡 , 𝒙) =

𝑡 𝑓 (𝒙/𝑡) if 𝑡 > 0
𝑓∞(𝒙) if 𝑡 = 0
+∞ otherwise

(A.6)
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A.2.2 Conjugate

A result from convex analysis (Bauschke et al., 2011) establishes that:

(persp 𝑓 )∗(𝑠, 𝒚) = 𝛿epi 𝑓 ∗(−𝑠, 𝒚) =
{

0 if 𝑓 ∗(𝒚) + 𝑠 ≤ 0
+∞ otherwise

(A.7)

A.2.3 Application to the QuadOverLin function

Definition 15. The QuadOverLin function is defined as the perspective of the quadratic func-

tion 𝑔(𝒙) = 1
2∥𝒙∥

2
2:

QuadOverLin(𝑡 , 𝒙) =


∥𝒙∥2

2
𝑡

if 𝑡 > 0

0 if (𝑡 , 𝒙) = 0
+∞ otherwise

(A.8)

Moreover:

𝑓 ∗(𝑠, 𝒚) =
0 if 𝑔∗(𝒚) + 𝑠 = 1

2∥𝒚∥
2
2 + 𝑠 ≤ 0

+∞ otherwise
(A.9)

using (A.7).



Appendix B

Asymptotic analysis of
rate-independent dissipative materials

In this section, we aim at studying the behaviour of the incremental variational problem
discussed in Section 4.5.2 in an asymptotic regime of large loadings.

B.1 Displacement-controlled formulation

In the following, we will consider a displacement-controlled setting. Let us thus assume
zero Dirichlet boundary conditions 𝒖D = 0 and a proportional loading of fixed direction (,𝑻)
but with an unknown amplitude 𝜆. The loading will be controlled via the value 𝑈 of the
corresponding work-conjugate displacement. The condensed primal variational principle
(4.62) is changed to:

𝐽(𝑈) := min
𝒖∈𝒰ad

∫
Ω

𝑗(𝜺)dΩ

𝜺 = ∇𝑠𝒖
𝑊ext(𝒖) = 𝑈

(B.1)

In this problem, the unknown loading amplitude 𝜆 is retrieved as the scalar Lagrange multi-
plier associated with the last constraint. The corresponding complementary energy principle
indeed reads:

−𝐽(𝑈) = min
𝝈 ,𝜆

∫
Ω

𝑗∗(𝝈)dΩ − 𝜆𝑈

s.t. div 𝝈 + 𝜆 𝒇 = 0 in Ω

𝝈𝒏 = 𝜆𝑻 on 𝜕ΩN

(B.2)

B.2 Asymptotic behaviour via recession functions

Let us now study the behaviour of problem (B.1) for large values of the imposed displace-
ment𝑈 . Introducing a rescaled variable 𝒖̂ = 𝒖/𝑈 , one has:

𝐽(𝑈)
𝑈

:= min
𝒖̂∈𝒰ad

1
𝑈

∫
Ω

𝑗(𝑈 𝜺̂)dΩ

𝜺̂ = ∇𝑠 𝒖̂
𝑊ext(𝒖̂) = 1

(B.3)

At the limit𝑈 → ∞, the above problem then becomes:

𝐽∞ := min
𝒖̂∈𝒰ad

∫
Ω

𝑗∞(̂𝜺)dΩ

𝜺̂ = ∇𝑠 𝒖̂
𝑊ext(𝒖̂) = 1

(B.4)

179



180APPENDIX B. ASYMPTOTIC ANALYSIS OF RATE-INDEPENDENT DISSIPATIVE MATERIALS

where we introduced the recession function 𝑗∞ of 𝑗 defined in Definition 13. The latter charac-
terizes the asymptotic behaviour of the incremental potential at large loadings.

B.3 Example on hardening elastoplasticity

Depending on the expression of 𝑗, the above problem may be unbounded i.e. 𝐽∞ = +∞.
This is for instance the case if 𝑗 is a purely elastic quadratic potential, then 𝑗∞ = 𝛿{𝜺=0}.
Conversely, let us consider the elastoplastic model with isotropic hardening introduced in
Section 4.6.1 where:

Ψ(𝜺) = min
𝜺p ,𝑝

𝜓el(𝜺 − 𝜺p) + 𝜓h(𝑝) + 𝜙(𝜺p − 𝜺𝑛 , 𝑝 − 𝑝𝑛) (B.5)

We recall that 𝜓el is the elastic quadratic potential so that its recession function will be infinite
except if 𝜺p = 𝜺, that is, we recover a rigid-plastic behaviour. As regards the hardening
potential, its recession function will be finite only if the hardening is limited that is if𝜓h ∼ 𝐻∞𝑝
for some constant 𝐻𝑖𝑛 𝑓 𝑡𝑦 when 𝑝 → ∞. In such a case, (𝜓h)∞(𝑝) = 𝐻𝑖𝑛 𝑓 𝑡𝑦𝑝. Finally, the
plastic dissipation potential is positively homogeneous so that 𝜙 = 𝜙∞. Therefore:

𝑗∞(̂𝜺) = min
𝑝
𝐻∞𝑝 + 𝜙(̂𝜺, 𝑝) (B.6)

As a result we recover a potential akin to a rigid-plastic finite deformation formulation of
elastoplasticity where the dependency on the previous state variable vanishes.

As an example for the von Mises plastic behaviour with exponential hardening (4.77), we
have 𝐻∞ = 𝜎u − 𝜎0 and:

𝑗∞(̂𝜺) = min
𝑝,
√

2
3 ∥̂𝜺∥≤𝑝

(𝜎u − 𝜎0)𝑝 + 𝜎0𝑝 =

√
2
3𝜎𝑢 ∥̂𝜺∥ (B.7)

Problem (B.1) then becomes:

𝐽∞ := min
𝒖̂∈𝒰ad

∫
Ω

√
2
3𝜎𝑢 ∥̂𝜺∥dΩ

𝜺̂ = ∇𝑠 𝒖̂
𝑊ext(𝒖̂) = 1

(B.8)

As a result, our asymptotic analysis through recession functions yields a limit analysis prob-
lem of a von Mises material with a tensile strength corresponding to the ultimate strength 𝜎u.
This analysis therefore formalizes the rigid-plastic analogy which is made for limit analysis
problems. It however extends it by taking into account more complex evolution of internal
state variables such as isotropic hardening in the previous simple example.

B.4 Dual recession principle

Similarly, (B.2) admits a corresponding stress-based recession principle which is the dual
problem to (B.4) and is given by:

−𝐽∞ = min
𝝈 ,𝜆

∫
Ω

(𝑗∞)∗(𝝈)dΩ − 𝜆

s.t. div 𝝈 + 𝜆 𝒇 = 0 in Ω

𝝈𝒏 = 𝜆𝑻 on 𝜕ΩN

(B.9)
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Note that from (A.4), (𝑗∞)∗ is the indicator of the convex set:

𝐺 = {𝝈 s.t. 𝑗∗(𝝈) < +∞} (B.10)

so that one has:
𝐽∞ = max

𝝈 ,𝜆
𝜆

s.t. div 𝝈 + 𝜆 𝒇 = 0 in Ω

𝝈𝒏 = 𝜆𝑻 on 𝜕ΩN
𝝈 ∈ 𝐺 in Ω

(B.11)

Again, we recover the classical form of a limit analysis problem. As before, for an elastic
potential 𝐺 is not bounded and problem (B.11) does not admit a finite solution.
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Appendix C

Convex optimization results for
topology optimization

C.1 Derivation of the dual problem

Using classical convex duality, we can derive the dual problem associated with (6.8).
Introducing first the weak form of the equilibrium conditions (first two constraints):∫

Ω

𝝈 : 𝜺dΩ =

∫
𝜕Ω𝑁

𝑻 · 𝒖 d𝑆 (C.1)

where 𝒖 is a kinematically admissible displacement field, we then form the following saddle-
point problem:

max
𝒖 ,𝑟≥0,𝑠≥0,Λ

min
𝜌,𝝈

ℒ(𝜌, 𝝈 , 𝒖 , 𝑟 , 𝑠 ,Λ) (C.2)

where 𝑟(𝒙), 𝑠(𝒙) are positive scalar fields on Ω, Λ is a single scalar Lagrange multiplier. The
Lagrangian is given by:

ℒ =

∫
Ω

(
𝜌Ψ∗(𝝈/𝜌) − 𝝈 : 𝜺 − (𝜌 − 𝜌m)𝑠 − (𝜌M − 𝜌)𝑟 +Λ(𝜌 − 𝜂)

)
dΩ +

∫
𝜕Ω𝑁

𝑻 · 𝒖 d𝑆 (C.3)

in which we replaced the inequality constraints 0 ≤ 𝜌 ≤ 1 present in (6.8) with the more
general constraint 𝜌m ≤ 𝜌 ≤ 𝜌M. Rearranging terms and transforming the min into a max,
one has:

min
𝜌,𝝈

ℒ = −max
𝜌,𝝈

{∫
Ω

(
𝝈 : 𝜺 + 𝜌(𝑠 − 𝑟 −Λ) − 𝜌Ψ∗(𝝈/𝜌)

)
dΩ

}
−
∫
Ω

(𝜌M𝑟−𝜌m𝑠+𝜂Λ)dΩ+
∫
𝜕Ω𝑁

𝑻 ·𝒖 d𝑆

(C.4)
We now recognize that the maximization problem corresponds to the definition of the
Legendre-Fenchel conjugate of the perspective function persp

Ψ∗ : (𝜌, 𝝈) ↦→ 𝜌Ψ∗(𝝈/𝜌).
Here, using (A.7) with 𝑓 = Ψ∗, thus 𝑓 ∗ = Ψ, one has finally:

max
𝒖 ,𝑟≥0,𝑠≥0,Λ

−
∫
Ω

(𝜌M𝑟 − 𝜌m𝑠 + 𝜂Λ)dΩ +
∫
𝜕Ω𝑁

𝑻 · 𝒖 d𝑆

s.t. Ψ(𝜺) ≤ 𝑟 +Λ − 𝑠 ≤ 𝑟 +Λ

(C.5)

Again transforming the max into a min and eliminating auxiliary variables yields:

min
𝒖 ,Λ

∫
Ω

(
(𝜌M − 𝜌m)max{Ψ(𝜺);Λ} + 𝜌mΨ

)
dΩ −

∫
𝜕Ω𝑁

𝑻 · 𝒖 d𝑆 − (𝜌M − 𝜌m − 𝜂)|Ω|Λ (C.6)

The latter expression then reduces to (6.9) in the specific case 𝜌M = 1, 𝜌m = 0.
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184APPENDIX C. CONVEX OPTIMIZATION RESULTS FOR TOPOLOGY OPTIMIZATION

C.2 A specific class of convex problems

We consider below a specific class of convex problems:

inf
𝑥∈𝑆

𝑐(𝑥)
s.t. 𝑗(𝑥) ≤ 𝑗0

(𝑃𝑗0)

where the objective function 𝑐(𝑥) is assumed to be positive homogeneous of degree −1 and
where the constraint function 𝑗(𝑥) is assumed to be positive homogeneous of degree 1 and 𝑆
is a vectorial space (or a cone). Moreover, 𝑗0 is a given constant. Hence, the solution to (𝑃𝑗0)
is parametrized by the value of the constraint constant 𝑗0.

We can show in fact that the whole range of solutions of (𝑃𝑗0) can be entirely characterized
by the solution of a single reference problem. We have indeed the following lemma:

Lemma 2. Consider the following problem:

inf
𝑥∈𝑆

𝑐(𝑥) + 𝑗(𝑥) (𝑃∗)

Let 𝑥∗ denote an optimal solution to (𝑃∗) and let𝑄 = 𝑐(𝑥∗)+ 𝑗(𝑥∗) be the corresponding optimal value.
Then

𝑥 =
𝑄2

4𝑗0
𝑥∗ (C.7)

is also an optimal solution to (𝑃𝑗0).

Proof. Let us introduce 𝐶(𝑗0) = val(𝑃𝑗0). From the homogeneity hypothesis, we easily see
that 𝐶(𝑗0) is also −1-homogeneous. Moreover, if 𝑥0 is an optimum solution to (𝑃𝑗0), then
necessarily 𝑗(𝑥0) = 𝑗0, otherwise the optimum could be improved.

Now, let us conside an optimal solution 𝑥∗ to (𝑃∗). Then, 𝑐(𝑥∗) + 𝑗(𝑥∗) ≤ 𝑐(𝜆𝑥∗) + 𝑗(𝜆𝑥∗)
∀𝜆 > 0. Thus, the function 𝑓 (𝜆) := 𝜆−1𝑐(𝑥∗) + 𝜆𝑗(𝑥∗) attains its minimum at 𝜆 = 1. But the

minimum is characterized by 𝑗(𝑥∗) = 𝑐(𝑥∗)/𝜆2. This shows that 𝑗(𝑥∗) = 𝑐(𝑥∗) = 𝑄

2 .

Moreover 𝑥∗ is also admissible for (𝑃𝑄/2) so that 𝐶(𝑄/2) ≤ 𝑐(𝑥∗) = 𝑄/2. Let us then con-
sider 𝑥𝑄/2 the optimal solution to (𝑃𝑄/2), then we have 𝑗(𝑥𝑄/2) = 𝑄/2 and 𝑐(𝑥𝑄/2) + 𝑗(𝑥𝑄/2) =
𝐶(𝑄/2) +𝑄/2 ≤ 𝑄. Thus 𝑥𝑄/2 is also a solution to (𝑃∗) and we have that 𝐶(𝑄/2) = 𝑄/2. Also

𝐶(𝑗0) = 𝐶

(
2𝑗0
𝑄

𝑄

2

)
=
𝑄2

4𝑗0
.

Similarly, 2𝑗0
𝑄 𝑥

∗ is also admissible for (𝑃𝑗0) so that 𝐶(𝑗0) ≤ 𝑐(2𝑗0
𝑄 𝑥

∗) = 𝑄2

4𝑗0
. Hence 2𝑗0

𝑄 𝑥
∗ is

an optimal solution to (𝑃𝑗0). Considering now 𝑥♯ =
𝑄

2𝑗0
𝑥 𝑗0 where 𝑥 𝑗0 is an optimal solution of

(𝑃𝑗0), then 𝑗(𝑥♯) and 𝑐(𝑥♯) = 𝑄/2 so that 𝑥♯ is also optimal for (𝑃∗). □
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