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À Apolline.

Que je suis impatient de t’emmener chasser,
crayon à la main, dans ces contrées merveilleuses

qui naissent de quelques axiomes.
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Organization of the manuscript

This manuscript sums up some of my work in optimization under uncertainty as a researcher at École
des Ponts from 2014 to 2022.

The manuscript is made of a preliminary chapter introducing concepts, notation and challenges of
optimization under uncertainty, and two parts of roughly equal importance, the first being dedicated to
theoretical results, and the second to various applications of optimization under uncertainty. We end the
manuscript with some perspectives.

We present the main results and some proof arguments, but the reader is referred to the original
papers for technical details and more computational results.

Part I. Exact methods in multistage stochastic optimization

This part mainly considers multistage problems with uncertain parameters modeled as stagewise inde-
pendent random variables with known law, paving the way to Dynamic Programming methodologies.
If those random variables have non-discrete distributions, the traditional approach consists in sampling
them first, and then optimizing over the sampled problem, using statistical theory to characterize the
results obtained with some confidence.

Chapter 2 is based on the Ph.D. thesis work of Maël Forcier co-supervised with Stéphane Gaubert,
described in [VL13, VL12]. It leverages geometric tools to obtain, in the linear case, a discretization
method that yields the same value as the original problem. This discretization can either be universal
(that is working for all probability law) or not, and uniform (that is valid for all first-stage decisions) or
local (that is for a given first-stage decision). In the second case, it is used as part of adapted partition
methods to provide an effective algorithm for two-stage linear problems with non-finitely supported
noises.

Chapters 3 and 4 are the result of a long-term work on the Stochastic Dual Dynamic Programming
(SDDP) algorithm, with various colleagues. In Chapter 3, we present a generic framework, called Tra-
jectory Following Dynamic Programming, encompassing the well-known SDDP and multiple variants,
as well as convergence results based on [VL3, VL12]. These algorithms work by progressively refin-
ing (exact or error-controlled) lower approximations of cost-to-go functions. If lower bounds, or more
precisely outer bounds, are common, computing inner bounds for multistage stochastic problems, even
under the finitely supported noise assumption, is challenging. Consequently, Chapter 4 leverages duality
theory to compute outer bounds of the dual, and thus inner bounds of the original problem. It results first
from a collaboration with Jean-Philippe Chancelier, Pierre Carpentier and François Pacaud [VL10], and
then with Bernardo da Costa [VL14].

Part II. Applications of optimization under uncertainty

This part presents various applications of decision under uncertainty problems.
Chapter 5 mainly stems from a collaboration with Pierre Carpentier, Jean-Philippe Chancelier, Michel

De Lara and François Pacaud [VL2, VL7]. It presents decomposition methods for multistage stochas-
tic problems, with a special focus on spatial decomposition tools mainly motivated by energy-related
problems. It also leverages epi-convergence results from [VL9].



vi Contents

Chapter 6 results from a project with Andy Philpott during Henri Gerard’s Ph.D. thesis, and discusses
risked competitive partial equilibrium for risk-averse agents with strictly concave objective functions
presented in [VL8]. In contrast with social planning problems, or equilibrium, with risk-neutral agents
we show that risked equilibrium are not unique.

Finally, Chapter 7 covers some work done during the Ph.D. thesis of Etienne de Saint Germain
supervised by Frédéric Meunier and myself. It discusses applications of optimization under uncertainty
in supply chain on lot-sizing problems, especially on the trade-off between costs, stocks and service
level. This work is presented in [VL6].

Chapters Papers
Chapter 2 [VL13, VL12]
Chapter 3 [VL3, VL16]
Chapter 4 [VL10, VL14]
Chapter 5 [VL2, VL7, VL9]
Chapter 6 [VL8]
Chapter 7 [VL6]

Not discussed [VL1, VL4, VL5, VL11, VL15]

Table 1: Overview of papers discussed in the manuscript
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Notation

We are going to use the following notational convention:

• Random variables are written in bold, their realization in normal font

• Ja, bK represents the set of integer between a and b, and [n] = J1, nK

• (Ω,A,P) represents a probability space, where Ω is the sample space, A a σ-algebra, and P a
probability measure

• R := R ∪ {−∞,+∞}

• If A is a finite set, |A| is its cardinality

• f⋆ denotes the Fenchel conjugate of f (see Eq. (4.7))

• xt ≼ At stands for the random variable xt being measurable with respect to the σ-algebra At
• EP stands for the expectation with respect to (the often omitted) probability P

• B (resp. F) are the backward (resp. forward) Bellman operators (see Section 1.3)

• MSP is a shorthand for multistage stochastic problem

• conv(A) is the convex hull of set A, and ri(A) its relative interior

• epi(f) is the epigraph of function f , dom(f) its domain

• supp(ξ) is the support of random variable ξ

We end with some standard notation: x denotes the state of a system, u a control, ξ an exogenous
uncertain variable, ρ a risk-measure. The notation V̂t usually refers to a cost-to-go, or Bellman, function,
and Vt its expected (or risk-adjusted) counterpart. Most of the time, V t (resp. V t) are upper bound (resp.
lower bound) of Vt. Finally, B usually refers to a (backward) Bellman operator.
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Chapter 1

An introduction to optimization under
uncertainty

This chapter is a didactic, but incomplete, presentation of optimization under uncertainty: its definitions,
concepts, challenges and methodologies. It serves as an introduction to the rest of the manuscript as well
as an opportunity to fix notation and definitions.

1.1 How to approach a decision under uncertainty problem?

Imagine that you have an industrial optimization problem and want to take uncertainty on some param-
eters into account. In this Section, we go through a series of questions one should ask when trying to
add uncertainty to some deterministic problem: What is your risk preference? What are the constraints?
What is the information structure? We end with an important practical recommendation: set up a simu-
lator to evaluate any solution proposed.

Remark 1.1 (Where does uncertainty come from?). Uncertainty can be due to lack of knowledge
(e.g., missing data or private information), lack of computational power (e.g., high resolution weather
forecast model cannot be run over large area and long horizon), truly random parameters2 (e.g., number
of clients on a given day), forecasting or computing errors, actions of others, etc.

1.1.1 Representing risk preference

Modeling decision-making under uncertainty is a challenge in itself as it is difficult to represent uncertain
parameters ξ. Indeed, with an uncertain parameter, you now have to find a decision x ∈ X minimizing
an objective J(x, ξ) parametrized by an unknown ξ. The question is, how to determine which of ξ 7→
J(x1, ξ) or ξ 7→ J(x2, ξ) is preferable? In fact, as there is no natural total ordering on functional spaces,
this is a subjective and modeling choice, as illustrated by Fig. 1.1.

ξ

J(·, ξ) x = 1

x = 0

Figure 1.1: Parametrized cost function J(x, ·) : ξ 7→ (ξ + x)2 − x for two values of x.

2Although one might philosophically argue that most of what we casually consider random, like a die throw, is actually
deterministic but woefully chaotic, and cannot be forecasted due to lack of data and/or computing power.



2 An introduction to optimization under uncertainty

There are two main paradigms: robust and stochastic optimization. Robust optimization essentially
assumes that the uncertain parameter ξ belongs in a known uncertainty set R, and is chosen in an ad-
versarial way. On the other hand, stochastic optimization assumes that ξ is a random variable (hence
the bold font), with known law. Bridging both approaches is the distributionally robust optimization
paradigm that assumes that ξ is a random variable whose probability law is chosen adversarially from a
set Q.

In abstract form, the problems we study are formulated as

Min
x∈X

ρ(J(x, ξ)), (1.1)

where x is the decision variable, J the objective function (including constraints), and ξ represents the
uncertain variable. Here, ρ is an operator that maps functions of ξ, parametrized by x, into R.

On the one hand, Robust optimization, with uncertainty set R, considers the following choice of ρ:

(RO) ρ(J(x, ξ)) = sup
ξ∈R

J(x, ξ). (1.2)

On the other hand, a classical operator ρ for stochastic optimization would be, for some probability
measure P,

(SO) ρ(J(x, ξ)) = EP

[
J(x, ξ)

]
:=

∫
Ξ
J(x, ξ) dP(ξ). (1.3)

When ρ is actually an expectation with respect to some probability, as in (1.3), we say that we have a
risk-neutral stochastic optimization problem. Aggregators such as ρ are known as risk measures; see
e.g., [ADEH99, RS06b, PP12].

Definition 1.2 (risk measure). Let (Ω,A,P) be a probability space, and L0(Ω,A,P;R∪{+∞}) the set
of measurable random variables with values in R∪{+∞}. We call any function that mapsL0(Ω,A,P;R∪
{+∞}) into R a risk measure.

Further, we say that1 ρ is

1. monotone if X ⩽ Y =⇒ ρ
[
X
]
⩽ ρ
[
Y
]
;

2. translation-equivariant if ρ(X + c) = ρ
[
X
]
+ c for all c ∈ R;

3. convex if it is monotone, translation-equivariant and satisfies

ρ
[
tX + (1− t)Y

]
⩽ tρ

[
X
]
+ (1− t)ρ

[
Y
]
, ∀t ∈ [0, 1], ∀X,Y .

4. positive homogeneous if, for all t > 0, ρ
[
tX
]
= tρ

[
X
]
;

5. law invariant if, for any two identically distributed random variables X and Y , we have ρ
[
X
]
=

ρ
[
Y
]
.

Finally, a coherent risk measure is a monotone, translation-equivariant, convex, positive homogeneous
and law-invariant risk measure.

A Fenchel-Moreau convex analysis result allows, with some light topological requirement,2 to give
a dual representation of the coherent risk measures.

1Unfortunately the community has not been able to agree on a single sign convention for these definitions. I choose here to
adopt the convention that X represents an uncertain cost—to be minimized, and ρ

[
X

]
represents a certain equivalent, meaning

a determinist cost considered equivalent to the uncertain one.
2locally convex paired topological space with a technical condition on the coupling, satisfied by all Lq spaces coupled with

their topological dual.



1.1 How to approach a decision under uncertainty problem? 3

Theorem 1.3 (Thm 2.2 [RS06b]). Let p ∈ [1,+∞], and ρ : Lp(Ω,A,P;R ∪ {+∞})→ R be a proper,
lower semicontinuous,1 convex function. Then ρ is a coherent risk measure if and only if there exists a
set Q of probability measure such that, for all X ∈ Lp(Ω,A,P;R ∪ {+∞}), we have

ρ
[
X
]
= sup

Q∈Q
EQ
[
X
]
.

Further Q can be chosen as a closed convex set.2

The most well-known, and largely used law-invariant coherent risk measures is the Average Value at
Risk.3

Definition 1.4 (Average Value at Risk (AVAR)). Let X be an integrable, real-valued random variable.
Then its value at risk of level α ∈ (0, 1) is defined as

V aRα = min{z ∈ R | FX(z) ⩾ α}, (1.4)

where FX(z) := P(X ⩽ z). Then its average value at risk of level α is given by one of the following
equivalent formulas.

AV aRα =
1

1− α

∫
[α,1)

V aRβ(X) dβ (1.5a)

= min
s∈R

(
s+

1

1− αE
[
(X − s)+

])
(1.5b)

= max
Q∈Q

EQ[X]. (1.5c)

with Q =
{

probability measures Q such that
∥∥∥ dQ

dPX

∥∥∥
∞

⩽ 1
1−α

}
Further, if P(X = V aRα) = 0, then

AV aRα = E[X | X ⩾ V aRα]. (1.5d)

The 4 formulas for the AVAR have different interpretations and use cases. Consider that X is a
random cost. Equation (1.5a) might be seen as the original definition of AVAR. Equation (1.5b) is
introduced by Rockafellar and Uryasev in [RU+00] as an efficient way to estimate the AVAR (and VaR,
given by the optimal s). It is a useful reformulation from an optimization perspective, allowing to cast
risk-averse problems as risk-neutral with a new optimization variable. Equation (1.5c) explicitly gives
the dual formulation of AVAR. Equation (1.5d) might be the most intuitive interpretation of AVAR:
AV ARα(X) is the expected value of the cost X knowing that we are in the 1− α worst cases.

There are other widely used coherent risk measures. For example, a great choice for both modeling
and mathematical properties is a convex combination of expectation and AVAR

ρ(X) = (1− θ)E[X] + θAV ARα(X).

Another good choice is upper semideviation [OR99, OR01], for α ∈ [0, 1],

ρ(X) := E[X] + αE
[
(max(0,X − E[X])p

]1/p
.

Remark 1.5 (Distributionally Robust Optimization). There is a third, recent and very active paradigm
that bridges robust and risk-neutral stochastic optimization: Distributionally Robust Optimization (DRO).
The aggregator ρ in DRO assumes that ξ is a random variable whose law P is chosen adversarially in

1Equivalent to the Fatou condition required by some authors.
2more precisely choose Q = dom(ρ⋆).
3Commonly called Conditional Value at Risk (CVAR) which might be an ill-fated choice when we want to consider condi-

tional risk measures. Is also known as Tail Value at Risk (TVAR), Expected Shortfall (ES) or superquantile.



4 An introduction to optimization under uncertainty

a set Q. Thus, if Q contains all Diracs in R, it is equivalent to a robust optimization problem; if it
contains a single probability measure, it is equivalent to a risk-neutral stochastic optimization approach.
Finally, mathematically speaking1, DRO is equivalent to risk-averse stochastic optimization with (lower
semicontinuous) coherent risk measure, as both consider a supremum of expectations against multiple
probability measures.

1.1.2 Uncertainty and constraints

To illustrate the difficulty of modeling constraint under uncertainty, consider the following toy problem:

Min
(ut,ht)t∈[T ]

T∑
t=1

ht

s.t. ht ⩾ ht ∀t ∈ [T ],

ht = ht−1 + ut ∀t ∈ [T ],

|ut| ⩽ ∆ ∀t ∈ [T ].

where h0 = 0, which can model the altitude of a drone, with fixed ground speed, going from a point A
at time 0 to a point B at time T while needing to stay above the ground (of altitude ht) to avoid crashing,
with some constraint over the vertical speed. Now, if the drone vertical speed control is imprecise and
has an error of about σ0, one might be inclined (with very good theoretical and practical reasons) to
model the dynamics of the system as

ht = ht−1 + ut + ξt, ∀t ∈ [T ],

where ξt is a centered Gaussian of standard deviation σ0, and the constraint is satisfied almost surely,
that is,

P(ht ⩾ ht) = 1, ∀t ∈ [T ].

Unfortunately, this would lead to an empty set of feasible solutions. Indeed, whatever the current altitude
ht and (bounded) vertical speed chosen there is a positive probability, albeit potentially very small,2 of
crashing.

In this example, we saw that uncertainty in constraints can easily lead to an empty set of feasible solu-
tions, in which case any optimization method will either be useless or provide a solution of questionable
meaning.

There are alternatives to almost sure constraints, among which are chance constraints, which require
a solution to satisfy a constraint with at least some probability; penalization, which replaces the hard
constraint by a cost of not satisfying it3; recourse variables which allow correcting one’s decision after
observing the uncertain parameter.

Remark 1.6 (Chance constraint). A chance constraint is a constraint of the form

P[g(x, ξ) ⩾ 0] ⩾ 1− ε, (CC)

where x is the decision variable and ξ the uncertain parameter modeled as a random variable.
This type of constraint has drawn a lot of interest in the optimization community, especially since it is

seemingly intuitive: if x satisfies (CC), then it has at least probability 1− ε to be satisfied for the actual
(unknown) value of ξ.

1They are different in the way the set Q is chosen: in risk-averse optimization, it is given a priori as a representation of
the subjective risk-sensitivity of the decision maker, while in DRO it is a set representing our lack of knowledge of the true
probability law P, so typically given as a ball around an empirical distribution.

2A security margin of 10σ0 yields a probability of crashing lower than 7.5 10−24, which is very small, but still positive.
3Most non-physical constraints are actually soft constraints and can be accurately modeled by an adequate cost.
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Unfortunately, this type of constraint also has its downsides. First, it is mathematically difficult
to deal with (e.g., one can lose the convexity of the admissible set of solutions without adequate as-
sumptions). Second, it can be misunderstood by practitioners. In particular, chance constraints do not
distinguish, for a given scenario g(x, ξ), between violating the constraint by a small or a large margin
(i.e., g(x, ξ) > 0 small or not), when, in most practical cases, there is a practical difference between the
two.

1.1.3 Information structure

The question of known information when making (part of) a decision is crucial in optimization under
uncertainty. Intuitively, there is a difference between a decision that we are committed to from the start
(sometimes called here-and-now decisions), and recourse (sometimes called wait-and-see) decisions that
can adapt to the uncertainty.

In multistage stochastic (or robust) optimization the question is even more complex as the uncertainty
is progressively revealed, meaning that some decisions are taken with no information1 on the uncertainty,
some with part of the information, and some with full information. Those information constraints are
often modeled through measurability constraints (or scenario trees) as formally introduced in Section 1.2.

Remark 1.7 (Uncertainty law modeling). One of the most unsettling points for newcomers to stochastic
optimization might be the need for an uncertainty law. To understand this point let’s denote by (ξt)t∈[T ]
our uncertainty variables, e.g., representing demand at time t for a given product.

Practitioners are often required to produce the "best prediction", which in our case would be a
forecast of demand (ξt)t∈[T ]. But a single prediction leads to deterministic optimization, and overfitting
of the solution to this prediction. Thus, in addition to the "best prediction" (often the expected value)
(ξt)t∈[T ] we need some model of "prediction error" εt := ξt − ξt.

This can be thought, at least in the two-stage setting, as requiring quantiles of (ξt)t∈[T ]. However, in
multistage optimization, quantiles are not enough: we also need the stagewise dependence of the error
(εt)t∈[T ]. In other words, one has to answer the following question: If, at time t, the actual demand ξt is
above the predicted demand ξt, does the actual demand at time t + 1 have more chance of being above
ξt+1 (because the product is more appreciated than forecast), or under it (because more people have
already satisfied their need) or neither?

Even harder, one’s best prediction (ξt)t∈[T ], is probably updated as time passes. Properly modeling
a multistage stochastic optimization requires one to model this update, that is determine how one’s
prediction is evolving knowing one’s past errors. Finding data and fitting a model for that is always
challenging.

1.1.4 Of the importance of a simulator

Multistage optimization under uncertainty problems are difficult from a modeling, theoretic and practical
point of view. When faced with a practical problem in this class, there are two routes. One can look for
heuristics (e.g., reinforcement learning) with few to no convergence guarantee. Or one can simplify the
problem, solve the simplified version through dedicated methods and then reconstruct a solution to the
original problem. In the end, this is also a (mat)heuristic.

We could compare this need with (large-scale) combinatorial optimization, which is also often nu-
merically intractable and require some (mat)heuristics. There is, however, a key difference: in combi-
natorial optimization, the admissibility of a solution and its associated costs are often easy to compute.
For example, consider multidimensional bin-packing: checking admissibility and evaluating the cost of
a candidate solution is straightforward. This is not the case in decision under uncertainty: evaluating
cost is often subjective (especially regarding risks, see § 1.1.1), and can be numerically challenging, as
it often requires at least to compute an expectation. Checking admissibility is even worse.

1Except its distribution law / uncertainty set.
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Remark 1.8 (Monte Carlo simulation). Even in the discrete case, computing an expectation - which
includes probability of events - can be a numerically challenging task. Indeed, if we have 10 possible
realization per week over a week, then computing the expectation consists in doing a sum over 1052

values, which is roughly a hundred times the number of atoms on earth.
Fortunately, probability theory provides a simple way to make precise statistical estimations. Indeed,

if C is a real-valued random variable with finite variance σ2, e.g., the cost induced by a given solution
of a multistage program, we can always estimate its expectation by its empirical average using the law
of large number, the error made being controlled through the central limit theorem.

More precisely, if we draw NMC independent realizations of C, denoted (Cn)n ∈[NMC ], then denot-

ing the average cost CNMC
:=

1

NMC

∑
n ∈[NMC ]Cn, we have that,

P
(
E[C] ∈

[
CNMC

− β σ√
NMC

, CNMC
+ β

σ√
NMC

])
−−−−−−→
NMC→∞

P(G ∈ [−β, β]),

where G is a centered reduced Gaussian law. If the standard deviation σ is unknown but can be replaced
by a convergent estimator (for example the empirical standard deviation). In practice, we often use
β = 1.96 which yields a confidence of 95%.

That is why it is important when considering a decision under uncertainty problem, to decide on a
simulator and a scenario generation procedure. Scenario generation can be done by using historical data
or a (maybe complex) stochastic model and produces possible realizations of the uncertain parameters.1

The simulator in itself is a bit of computer code that takes as input multiple uncertainty realizations,
a policy (i.e., a function that uses available information to make a decision), and applies it to compute
the associated costs and various other Key Performance Indicators. The simulator is, in the end, what
decides which heuristic or simplification yields the best result for the problem at hand.

1.2 Multistage stochastic optimization

Multistage stochastic optimization is concerned with problems where the set of admissible decisions X
is a set of stochastic processes. More precisely, we want to model a problem where the decision maker
makes a first decision x1, then observes some part of the uncertainty ξ1 before making a second decision
x2, and observing a second part of the uncertainty ξ1 and so on.

We start by giving some technical background, before detailing the two main approaches that are
used to tackle such problems.

1.2.1 Technical set-up

In Problem (1.1) we did not detail the set X , and the reader might have implicitly assumed that it was a
subset of Rn so that x represents a deterministic decision. To address multistage stochastic problem we
consider that X is a set of stochastic processes, or equivalently a set of measurable functions.

Consider a probability space (Ω,A,P). Let
{
ξt
}
t∈[T ] be a sequence of random variables with support

Ξt := supp(ξt). For notational consistency, we also define a deterministic initial condition as a random
variable x0 whose support is supp(x0) = {x0} and further assume that supp(ξ1) = {ξ1}. We consider
the following2 (risk-neutral) Multistage Stochastic Program (MSP)

1Including predictions of primitive parameters, as well as their updates.
2We assume here that distribution and function are chosen such that the expectation is defined (with potentially non-finite

value).



1.2 Multistage stochastic optimization 7

Min
(xt)t∈[T ]∈L0(Ω,A,P;RnT )

EP

[ T∑
t=1

ct(xt−1,xt, ξt) + VT+1(xT )

]
(1.6a)

s.t. (xt−1,xt) ∈ Pt(ξt) ∀t ∈ [T ], (1.6b)

xt ≼ At := σ(ξ1, . . . , ξt) ∀t ∈ [T ]. (1.6c)

where constraint (1.6b) is the dynamic constraint that links together decision at time t and t+1, i.e.,Pt(ξt)
is the set of possible transition for the state at stage t under realization ξt, and constraint (1.6c) is an
information constraint, the so-called non-anticipativity constraint, that states that the decision variable
xt is measurable with respect to the past noises (ξ[t]). By the Doob–Dynkin lemma, Problem (1.6), where
the decision variables are random processes, can be equivalently written in the following functional form

Min
(ϕt)t∈[T ]

EP

[ T∑
t=1

ct(xt−1,xt, ξt) + VT+1(xT )

]
(1.7a)

s.t. (xt−1,xt) ∈ Pt(ξt) ∀t ∈ [T ], (1.7b)

xt = ϕt(ξ1, . . . , ξt) ∀t ∈ [T ]. (1.7c)

where the decision variable is now a vector of measurable functions ϕt mapping the past noises realiza-
tions into Rn.

Remark 1.9 (Explicit Control). Problem (1.6) is presented in a state-only formulation with an implicit
dynamic implied by constraint (1.6b).

In some settings it is more natural and practical to consider a controlled stochastic dynamical system,
that is assuming that the sequence of random variables (xt)t∈[T ] satisfies

xt = dynt(xt−1,ut, ξt) ∀t ∈ [T ], (1.8)

where dyn is the dynamics of the system, x is the state, u is the control and ξ the noise.
With explicit controls, a MSP is formulated as:

Min
(ut)t∈[T ]∈L0(Ω,A,P;RnT )

EP

[ T∑
t=1

Lt(xt−1,ut, ξt) + VT+1(xT )

]
(1.9a)

s.t. xt = dynt(xt−1,ut, ξt) ∀t ∈ [T ] (1.9b)

ut ∈ Ut(xt−1, ξt) (1.9c)

ut ≼ At ∀t ∈ [T ]. (1.9d)

We formally recover Problem (1.6) by setting

ct(xt−1, xt, ξt) = inf
{
Lt(xt−1, ut, ξt) | ut ∈ Ut(xt−1, ξt), xt = dynt(xt−1, ut, ξt)

}
, (1.10a)

Pt(ξ) =
{
(xt−1, xt) | ∃ut ∈ Ut(xt−1, ξt), xt = dynt(xt−1, ut, ξt)

}
. (1.10b)

Going from Problem (1.6) to Problem (1.9) is also possible with measurable selection theorems. Thus,
overlooking the technical details, we can say that both formulations, with or without explicit control,
have the same modeling power. For a given application one might feel more natural than the other. In
this manuscript, we generally choose the implicit control formulation mainly for notational conciseness
reasons.

Remark 1.10 (Final cost VT+1). In Problem (1.6), we assumed that we are in a finite horizon setting.
However, some problems do not naturally have a finite horizon T , or a final cost function VT+1. To
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address these problems we usually resort to using methods for infinite horizon problems, often with
discounted costs (see, e.g., [Ber12]).

Alternatively, we need to define a relevant VT+1, which represents the cost associated with the final
state of the system. There are various elements one can consider when modeling VT+1: it can be seen
as the cost of dismantling the project once it has reached its end; it can be used as a way of inducing
the final state to be in a reasonable place (e.g., a quadratic cost to push the final state toward a nominal
value); it can represent the cost of managing the system after VT+1.

In the last case, T does not represent the actual end of the system, but only the horizon considered
for practical reasons. Let’s illustrate a simple procedure to derive a reasonable final cost VT+1 in this
case. For the sake of clarity consider the problem of managing a system over one year (T = 365),
we also assume that x0 is an admissible state for T = 365. We can solve the one-year problem with
V 0
T+1 = 0, for all initial states reachable at time T . We can solve again the one-year problem, but

using this time as final cost V 1
T+1 = V 0

0 − V0(x0). The solution obtained is also an optimal solution
over a two-year problem.1 We can repeat the process until two successive end-of-horizon costs are close
enough, i.e., ∥V k+1

T+1 − V k
T+1∥ ⩽ ε.

Having set up the optimization problems we now present solution approaches.

1.2.2 Stochastic programming

In its simplest form, the stochastic programming (SP) approach makes the following assumption.

Assumption (FSN) (Finitely supported noise). The support of the random process (ξt)t∈[T ] is finite.

The noise can then be described through a scenario tree.

Definition 1.11 (scenario tree). Let (ξt)t∈[T ] be a sequence of finitely supported random variables, with
supp(ξt) = Ξt. The associated scenario tree2 T is defined as follows.

n0 = {∅} is the root node of T . We construct Nt, the set of nodes of T of depth t, by induction,
starting with N0 = {n0}. For t ∈ [T − 1], and n ∈ Nt, the set of children of n is given as

{
(n, ξ) | ξ ∈

Ξt+1

}
. Further, we define πn = P((ξτ )τ∈[t] = n).

The leaf nodes of T are called the scenarios of the tree and denoted by L.

Thus,3 a node n ∈ Nt is defined as the collection ξ[t] = (ξ1, . . . , ξt) of the noises realizations up to
time t.

With this definition the functional formulation of MSP (1.7) simply consists in associating a decision
variable to each node of the tree, leading to what is known as the extended formulation:

Min
(xn)n∈T

T−1∑
t=1

{ ∑
n∈Nt−1

∑
ξ∈Ξt

π(n,ξ)Lt(xn, x(n,ξ), ξ)

}
+
∑
m∈L

πmVT+1(xm) (1.11a)

s.t. (xn, x(n,ξ)) ∈ Pt(ξ) ∀ξ ∈ Ξt+1, ∀n ∈ Nt−1, ∀t ∈ [T ]. (1.11b)

Thus, this problem is a large structured deterministic problem, that can either be solved through standard
deterministic software or dedicated methods like the L-Shaped methods [VSW69, Bir85] or Progressive
Hedging [RW91].

The main drawback of this approach is that the number of variables in the extensive formulation is
proportional to the number of nodes in T which is exponential in the number of stages T , and highly
sensitive to the branching size i.e., the size of the support of the noises Ξt.

1The optimal value differ by V0(x0).
2Another, equivalent, construction of the scenario tree is given in § 5.1.1.
3Up to straightforward abuse of notation.
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Remark 1.12 (Sample Average Approximation). Without the finite noise Assumption (FSN), or if the
number of scenarios is too large, we usually proceed by sampling. Note that Chapter 2 presents, in the
linear setting, a way of obtaining exact, non-statistical, discretizations.

More precisely we simulate, independently, N realizations (ξs)s∈[N ] of ξ, and replace the true prob-
ability P by the empirical law, i.e., the uniform (discrete) law on (ξs)s∈[N ]. In other words, we solve the
sampled problem instead of the original one.

For a two-stage problem, a uniform law of large number ensures that, under light assumptions, this
sample average approximation converges toward the original problem in various sense. We refer to
[SDR14, Chap. 5] for details.

For multistage problem sampling is more complicated, as sampling ξ[T ] in bulk does not represent
correctly the information structure of the problem. For example, with continuous distributions, there
is no reason to have two different sampled scenario having the same second-stage noise, meaning that
every decision for t > 1 has full knowledge of the noise realization on the sampled problem. The solution
consists in using conditional sampling: first, draw N realizations of ξ2, then draw N realizations of ξ3
conditionally on each realization of ξ2, etc. With this conditional sampling, we again obtain convergence
results, but at the price of an exponential number of scenarios.

1.2.3 Dynamic Programming

To tackle problems with a large (or even infinite) number of steps we need some assumption on the
stochastic process in order to compress the information required to make an optimal decision. Indeed,
we have seen that, in the generic setting of Problem (1.6), an optimal decision x♯t at time t is a function
of all past noises (ξ[t]). Dynamic Programming relies on finding a sufficient statistic st, called the state,

for x♯t, i.e., on describing the optimal solution x♯t as a function of st.
This can be done by using the structure of the problem’s constraints (see Eq. (1.6b)), and making

some sort of Markovian assumption on (ξt)t∈[T ]. We thus introduce the following assumption, that holds
for most of this manuscript.

Assumption (SWI) (Stagewise independence). (ξt)t∈[T ] is a sequence of independent exogeneous ran-
dom variables, i.e., such that the law of ξt is independent of all decisions variables.

Under Assumption (SWI), st = (xt−1, ξt) is a state of Problem (1.7) which is equivalent to

Min
(ψt)t∈[T ]

EP

[ T∑
t=1

ct(xt−1,xt, ξt) + VT+1(xT )

]
, (1.12a)

s.t. (xt−1,xt) ∈ Pt(ξt) ∀t ∈ [T ], (1.12b)

xt = ψt(xt−1, ξt) ∀t ∈ [T ]. (1.12c)

Remark 1.13 (Limited memory). The stagewise independence of noises is one of the main limits of the
Dynamic Programming approach. This can be relaxed by extending the state. Indeed, if (ξt)t∈[T ] is (part
of) a Markov Chain, then it is enough to consider the state st = (xt−1, ξt−1, ξt). More generally if
(ξt)t∈[T ] has limited memory of depth ℓ,1 then we can consider the state st = (xt−1, ξt−ℓ, . . . , ξt).

We now introduce the set of admissible next states,

Xt(xt−1, ξ) :=
{
xt | (xt−1, xt) ∈ Pt(ξ)

}
∀ξ ∈ Ξt, ∀t ∈ [T ], (1.13)

and the collection of reachable sets

Xr
0 = {x0}, (1.14a)

Xr
t =

⋃
xt−1∈Xr

t−1

⋃
ξ∈Ξt

Xt(xt−1, ξ) ∀t ∈ [T ]. (1.14b)

1That is ξt is independent of (ξτ )τ∈[t−ℓ−1] conditionally to (ξτ )τ∈Jt−ℓ,t−1K.
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Leveraging Assumption (SWI), we can rewrite Problem (1.12) in a nested form

Min
x1∈X1(x0,ξ1)

c0(x0, x1, ξ1) + EP

[
Min

x2∈X1(x1,ξ2)
c1(x1,x2, ξ2) + EP

[
. . . (1.15)

+ EP

[
Min

xT∈XT (xT−1,ξT )
cT (xT−1,xT , ξT ) + VT+1(xT )

]]
,

]
which leads to a recursive equation, known as Bellman’s equation:

Vt(xt−1) = Eξt

[
inf

xt∈Xt(xt−1,ξt)
ct(xt−1,xt, ξt) + Vt+1(xt)

]
, VT+1 given. (1.16)

In the fully finite case, i.e., when, for all t ∈ [T ], the reachable set Xr
t , the admissible next-state

Xt(·, ·), and noise support Ξt are finite set, we can easily use the above Bellman equation to solve the
MSP problem. This is described in Algorithm 1. In particular, we can see that solving MSP through DP
requires O(T ×Xr × X × Ξ) elementary operations, where the overline stands for an upper bound on
the cardinality of associated sets, for example |Ξt| ⩽ Ξ for all t ∈ [T ].

Data: Transition costs ct, final cost VT+1,
Result: Optimal policy (ψt)t∈[T ] and cost-to-go functions (Vt)t∈[T ];

1 for t : T → 0 do
2 Vt ≡ 0
3 for x ∈ Xr

t do
4 for ξ ∈ Ξt do
5 V̂t(x, ξ) =∞;
6 for x̃ ∈ Xt(x, ξ) do
7 vx̃ = ct(x, x̃, ξ) + Vt+1(x̃);
8 if vx̃ < V̂t(x, ξ) then
9 V̂t(x, ξ) = vx̃ ;

10 ψt(x, ξ) = x̃ ;
11 Vt(x)← Vt(x) + P(ξt = ξ)V̂t(x, ξ)

Algorithm 1: Stochastic Dynamic Programming algorithm - finite case

Remark 1.14 (Dynamic programming with explicit control). Consider the set-up of Problem (1.9), with
stagewise independent noise (Assumption (SWI)). Assume that, at time t ∈ [T ], Xt is the set of possible
states, and Ut the set of possible controls. Then Algorithm 1 can be straightforwardly adapted as follows.

Data: Loss functions Lt, final cost VT+1,
Result: Optimal policy (ψt)t∈[T ] and cost-to-go functions (Vt)t∈[T ];

1 for t : T → 0 do
2 Vt ≡ 0
3 for x ∈ Xt do
4 for ξ ∈ Ξt do
5 V̂t(x, ξ) =∞;
6 for u ∈ Ut(x, ξ) ⊆ Ut do
7 x̃ = dyn(x, u, ξ);
8 vu = Lt(x, u, ξ) + Vt+1(x̃);
9 if vu < V̂t(x, ξ) then

10 V̂t(x, ξ) = vu ;
11 ψt(x, ξ) = u ;
12 Vt(x)← Vt(x) + P(ξt = ξ)V̂t(x, ξ)

Algorithm 2: Stochastic Dynamic Programming algorithm - dynamical system formulation
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Remark 1.15 (Curse(s) of dimensionality). Algorithm 1 and Algorithm 2 underline the curses of di-
mensionality faced by the Dynamic Programming approach to MSP: its time complexity is linear in the
number of states at time t which is often exponential in the dimension of the state vector.

More precisely, assume that the MSP problem has dx independent dynamical systems, each with
nx possible values at time t, du independent controls, each with nu possible values at time t, and dξ
independent noises each with nξ possible values. Then the number of elementary operations required by
Algorithm 1 is O(T × ndxx × nduu × n

dξ
ξ ). This illustrates the three curses of dimensionality:

state which is the most commonly thought about, and most difficult to contend with;

control or equivalently admissible next state, which is due to brute force minimization, and can be limited
by using more advanced minimization tools;

noise which can always be reduced by estimating the expectations using Monte Carlo methods.

Remark 1.16 (Stochastic Programming or Dynamic Programming?). The Stochastic Programming (SP)
and Dynamic Programming (DP) approaches both tackle MSPs, but their numerical limits are quite
different.

On one hand, SP is numerically limited by the horizon T and branching size |Ξt| and relies on our
capacity to solve large-scale deterministic problems (in particular linear problems), but the state vector
dimension is not very impactful, and no stagewise independence assumption on the noises is required.

On the other hand, DP complexity is linear in the horizon [T ] and branching size, but exponential
in state dimension and requires some Markovian assumption for the noises. However, the algorithm is
made of elementary operations and does not rely on any deterministic solver. 1

Further, SP mainly provides an estimation of the value of the problem, as well as a good first-stage
control. DP mainly provides cost-to-go function estimation, hence the estimation of the value of the
problem as well as policies.

In a nutshell: stochastic programming is adapted to problems with small horizon T of 3 or 4 and
specific form (typically linear), while dynamic programming is adapted to problems with independent
noise and small state dimension (3 or 4). These limits are illustrated in Example 1.17.

Example 1.17 (Illustrating the numerical limits). To illustrate the numerical limits of both approaches,
we consider the problem of managing a hydroelectric valley made of 7 interconnected dams, over a year,
with a weekly time-step. There is one state and one control per dam, and the random variable is the
inflows, assumed to be stagewise independent and discretized in 10 values per time-step.

An SP approach requires a scenario tree of depth 52 leading to 1052 scenarios. It is currently
estimated that the global internet will have 2× 1023 bytes of stored data by 2025. Thus, we will never be
able to write, let alone pass to a solver, the extended formulation of Problem (1.11) with 52 time steps.

On the other hand, a DP approach where each state is discretized into 100 points and each control
is discretized into 10 points leads to O(52 × 10 × 1007 × 107) ≈ 5 × 1022 floating point operations.
As of November 2021, the fastest supercomputer in the TOP500 (Fugaku) boast 4.42 × 1017 floating
point operations per second. We would need around 2 days of computation on it to solve this problem by
Algorithm 2 with Fugaku, and 3 million years for a 10 dams problem.

This problem is easily solved to reasonable precision through algorithms like Stochastic Dual Dy-
namic Programming that are discussed in Part I of the manuscript.

1.2.4 Some settings of interest

We present here some extensions and specifications of the MSP problem (1.6) that are of interest in this
manuscript.

1Although the TFDP algorithms of Chapter 3, tends to address problems with larger state dimension by using more structure
and relying on solvers.
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First, to extend the scope of Problem (1.6), consider a multistage risk measure (see [RS06a]) ϱ which
associate to a sequence of random cost (Ct)t∈[T+1] a real number. To simplify things, we are only
considering recursive multistage risk measures of the form

ϱ((Ct)t∈[T+1]) = ρξ1

(
C1 + ρξ2|ξ[1]

(
C2 + · · ·+ ρξT |ξ[T−1]

(
CT + ρξT+1|ξ[T ]

(CT+1)
)))

. (1.17)

where each ρξt+1|ξt is a (coherent) conditional risk measure in the sense of [RS06a].
Then, the risk-averse MSP problem reads

Min
(xt)t∈[T ]

ϱ
(
c1(x0,x1, ξ1), c2(x1,x2, ξ2), . . . , cT (xT−1,xT , ξT ), VT+1(xT )

)
(1.18a)

s.t. (xt−1,xt) ∈ Pt(ξt) ∀t ∈ [T ], (1.18b)

xt ≼ At := σ(ξ1, . . . , ξt) ∀t ∈ [T ]. (1.18c)

Definition 1.18 (risk-neutral / convex / linear settings). Problem (1.18) is said to be nested if the multi-
stage risk measure is of the form (1.17).

Problem (1.18) is said to be risk-neutral if, for all t ∈ [T ], ρξt+1|ξ[t](X) is the conditional expectation
E
[
X| ξ[t]

]
.

Problem (1.18) is said to be convex if it is nested and, for all t ∈ [T ], and all relevant ξ, i) ct(·, ·, ξ)
is (jointly) convex, Pt(ξ) is a closed convex set, and iii) VT+1 is convex.

Problem (1.18) is said to be linear, denoted MSLP, if it is risk-neutral and for all t ∈ [T ], and all
relevant ξ, i) ct(·, ·, ξ) is linear, Pt(ξ) is a polyhedron, and iii) VT+1 is polyhedral.

It is also interesting to discuss some recourse settings that are sometimes useful for algorithms.
Recall that Xr

t , defined in (1.14) represents the set of states that can be attained at time t by satisfying
the constraints up to time t, but with no guarantee after that. To guarantee that all reachable states can be
part of an admissible trajectory, we introduce the notion of relatively complete recourse.

Definition 1.19 (Relatively Complete Recourse). We say that Problem (1.18) satisfy a relatively complete
recourse (RCR) assumption if, for all t ∈ [T ], all xt−1 ∈ Xr

t−1, all ξ ∈ supp(ξt), there exists an
admissible next state xt ∈ Xt(xt−1, ξ) such that ct(xt−1, xt, ξ) <∞.

Remark 1.20 (Non-decomposable contraints). According to our current convention, the above con-
straint (1.18b) is implicitely understood as almost sure, with Pt(ξt(ω)) being a deterministic set. In
other words, in a splitted extensive formulation1 of problem (1.18), constraint (1.18b) is duplicated in-
dependently for each scenario.

However, in some cases, constraint (1.18b) should be allowed to couple scenarios. One use-case
would be to model (conditional) expectation constraints, asking that the conditional value of xt knowing
xt belongs to some deterministic set. This appears naturally when using duality, as in Chapter 4. An-
other use-case would be to model measurability constraints, to allow for finer information representation
than (1.18c).

Finally, for the sake of completeness, recall that Assumption (SWI) ensures that the noises are stage-
wise independent, while Assumption (FSN) ensures that the noises are finitely supported.

1.3 Bellman operators

In order to discuss more advanced DP approaches, and most results of Part I, we now introduce some
Bellman operators on cost-to-go functions. The Backward Bellman operator is a way of approximating
cost-to-go functions over horizon Jt, T K from an approximate cost-to-go function over horizon Jt +
1, T K. The operator takes as argument a function Ṽt+1 and returns a function Ṽt. Forward Bellman
operators form a method of determining the best next state given the current state, noise realization and
approximated cost-to-go. Where backward Bellman operators return approximated cost-to-go functions,
forward Bellman operators return admissible policies.

1see Chapter 5 for definitions
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1.3.1 Backward Bellman operator

For a measurable proper l.s.c function Ṽ : Rnt → R ∪ {+∞}, we denote the Bellman operator of
Problem (1.12) applied to Ṽ by

B̂t(Ṽ ) =

Rnt−1 × Ξt → R
(xt−1, ξt) 7→ inf

xt∈X (xt−1,ξt)
ct(xt−1, xt, ξt) + Ṽ (xt)

, (1.19a)

and
Bt(Ṽ ) : xt−1 7→ E

[
B̂t(Ṽ )(xt−1, ξt)

]
. (1.19b)

With this notation, the Bellman equation (1.16) reads

Vt = Bt(Vt+1) ∀t ∈ [T ], VT+1 given, (1.20)

and the value of Problem (1.12) is simply V1(x0).

Remark 1.21 (Convex/Linear Bellman operator). A large part of the results presented here rely on a
convex or linear setting introduced in § 1.2.4.

We say that Bt is a Convex Bellman operator (CBO) if, for almost all ξ, ct(·, ·, ξ) is a (jointly) convex
function, and Pt(ξ) is convex. In particular, for every convex function Ṽ , evaluating B̂t(Ṽ ) is a convex
optimization problem.

A CBO Bt is a Linear Bellman operator (LBO) if, for almost all ξ, ct(·, ·, ξ) is a (jointly) convex
function, and the graph of Pt(ξ) is polyhedral. In particular, for every polyhedral function Ṽ , evaluating
B̂t(Ṽ ) is a linear optimization problem.

Remark 1.22 (risk-averse backward Bellman operators). A classical extension of the Bellman operator
defined in Eq. (1.19b), is its risk-averse counterpart. Indeed, consider nested risk-averse problem (1.18)

Min
x1∈X1(x0,ξ1)

c0(x0, x1, ξ1) + ρ2|ξ1

[
Min

x2∈X1(x1,ξ2)
c1(x1,x2, ξ2) + ρ3|ξ[2]

[
. . .

+ ρT |ξ[T−1]

[
Min

xT∈XT (xT−1,ξT )
cT (xT−1,xT , ξT ) + VT+1(xT )

]]]
. (1.21)

Then, the backward Bellman operator associated is, as in the risk-neutral case replacing the expectation
by ρt, that is

Bt(Ṽ ) : xt−1 7→ ρt
[
B̂t(Ṽ )(xt−1, ξt)

]
. (1.22)

Remark 1.23 (Abstract Bellman operators). Following Remark 1.20, the backward Bellman operators
Bt that we use are not always given as an aggregation (expectation or risk-adjusted) of parametrized
Bellman operators B̂t. In this case Bt(Ṽ ) shall be seen as an aggregated optimization problem (with
one decision variable per possible realization of ξt) instead of the average of disaggregated optimization
problem parametrized by ξt.

Without providing details we give two possible reasons.

• For some problem we can consider a specific information structure (sometimes called decision-
hazard-decision structure) where some coordinates of the decision xt are measurable with respect
to At−1 instead of At. In this case, those coordinates are common to all possible realizations of
ξt, leading to an aggregated two-stage problem.

• When using duality theory on Bt(Ṽ ), as in Chapter 4, we naturally obtain some constraints in
expectation, thus preventing disaggregation.

We can easily derive some useful properties of the (backward) Bellman operators.

Proposition 1.24 (Properties of Bellman operator). Consider a Bellman operator B, and two canditate
cost-to-go functions Ṽ and R̃. We have the following properties:
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monotonicity If Ṽ ⩽ R̃, then B(Ṽ ) ⩽ B(R̃).

translation equivariance For any constant k ∈ R, B(Ṽ + k) = B(Ṽ ) + k.

convexity Assume that B is a CBO. If Ṽ is convex, then B(Ṽ ) is also convex;

polyhedrality Assume that B is a risk-neutral (abstract) LBO with finitely supported ξ. If Ṽ is polyhe-
dral, then B(Ṽ ) is also polyhedral.

1.3.2 Forward Bellman operator and induced policy

Whereas backward Bellman operators convert an estimation of the cost-to-go Ṽt+1 from time t+ 1 into
an estimation of the cost-to-go from time t, knowing ξt+1, the forward Bellman operator, F̂t, converts
Ṽt+1 into a policy. In other words, B̂t(Ṽ ) computes the value of (1.19a), whereas F̂t return an optimal
solution of (1.19a). In some sense, a choice of forward Bellman operator can be seen as choosing a
solver (e.g., for linear or mixed integer linear problems), and a set of parameters, that deterministically
returns a solution to a problem of the form (1.19a). We actually need additional technical assumptions,
that we do not discuss here, on F̂t ensuring, for example, that for all reasonable Ṽ and x, the function
ξ 7→ B̂t(Ṽ )(x, ξ) is measurable. The interested reader can find a possible set of assumptions in [VL16].

Once we have chosen, for a given problem (1.6), a collection of forward Bellman operators {Ft}t∈[T ],
any (adequate) approximate collection of cost-to-go functions (Ṽt)t∈[T ] determines a strategy. Dynamic
Programming principle ensures that if (Ṽt)t∈[T ] is the collection of true cost-to-go functions, then the
associated strategy is optimal. Further, any strategy can be simulated to estimate an upper bound, see
Remark 1.8. This idea of approximating the cost-to-go functions is key in Chapters 3 and 4.

1.4 Going further

In this chapter, we present only some of the possible approaches toward decisions under uncertainty.
Most notably we always assumed that the state of the uncertain variable was known. When we only
have a belief on the state of the uncertainty (or of the state of the system itself), we fall into the class
of Partially Observable Markov Decision Problem (POMDP) [Spa12, OA16]. They are a special case of
Influence Diagrams (see [KF09]) which incorporate more complex information relations.

In a recent stream of papers, W. Powell (see, e.g., [Pow14, Pow19]) tried to classify the various
approaches to stochastic optimization. His analysis covers multiple communities and links them to a
stochastic optimal control framework (1.12). The crux of the discussion is to explain how different
communities provide tractable policies, classifying them in 4 classes: policy function approximations
where the policy itself ψ is approximated through a parametrized function (linear, logistics or neural
network); cost function approximation where the global cost (present and to come) is approximated;
value function approximation where the cost-to-go function is approximated and the policy is given by a
forward Bellman operator; and direct look-ahead where one approximate the remainder of the problem
and not just the cost-to-go.



Part I

Exact methods in multistage stochastic
optimization
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Introduction to Part I

In the first part of this manuscript we consider multistage stochastic optimization problems (MSP) of the
form (1.6), satisfying the stagewise independence Assumption (SWI), and thus amenable to some Dy-
namic Programming approaches. Attacking such problems often requires multiple layers of approxima-
tions and heuristics. The methods presented in this Part have in common that they are exact approaches
that tackle MSPs, by opposition to statistical or heuristics methods.

Often, the first approximation made consists in quantizing the law of the noises ξ[T ]. Indeed, most
stochastic programming or dynamic programming algorithm requires a finite noise assumption Assump-
tion (FSN). The most classical approach is the Sample Average Approximation (SAA) method that sam-
ples the costs and constraints. It relies on probabilistic results based on a uniform law of large numbers
to provide statistical guarantees, which requires numerous scenarios. Various methodologies aim at re-
ducing the number of scenarios either by quasi-Monte Carlo generation, or by first randomly generating
scenarios and then reducing the number with or without guarantees on the approximation made by this
reduction. On the other hand, leveraging convexity or monotonicity, we can construct scenario trees
that provide lower or upper bounds to the non-finitely supported problem. Chapter 2 takes another path
that aims at constructing a finite scenario tree that is equivalent, for the problem considered, to the non-
finitely supported distribution. To this aim, we study the higher-order polyhedral structure of linear MSP,
using polyhedral geometry tools. This chapter is based on a collaboration with Stéphane Gaubert and
our Ph.D. student Maël Forcier, detailed in [VL13, VL12].

Even with a finite, and stagewise independent, noise assumption, solving a MSP is generally in-
tractable and requires approximations. For example, the standard Dynamic Programming algorithm (see
Algorithm 1) considers a pre-defined grid of the state-space where the value function are estimated. By
contrast, Chapter 3 present a framework of Trajectory Following Dynamic Programming (TFDP) algo-
rithms, (including the well-known and widely used Stochastic Dual Dynamic Programming (SDDP))
that uses an adaptive grid. More precisely, a TFDP algorithm works iteratively, first simulating a state
trajectory, and then refining an exact lower approximation of the cost-to-go functions. The framework
presented in this chapter was developed for [VL16] building on contributions made in [VL3] and [VL10].

Note that even simply computing an exact upper bound for a MSP is a challenge. Obviously, in the
risk-neutral case, once we have chosen an admissible policy, we can always estimate the expected cost by
Monte Carlo simulation. For the risk-averse case this approach is rougher, and requires an exponential
(in the horizon) number of samples. In any case the upper bound obtained is statistical. Chapter 4 shows
how to use duality theory to compute exact, non-statistical, upper bounds in both the risk-neutral and
risk-averse case. These results derive from [VL10] and [VL14].

Finally, in [VL11], with A. Parmentier, V. Cohen, G. Obozinski and J. Salmon, we contributed to the
field of Influence Diagram where we proposed a MILP formulation. With this approach we can tackle
problems with complex information structure (partially observable, weakly coupled, etc.), but assume
the set of actions to be discrete and of reasonable size. In addition to an MILP reformulation relying on
classical linearization techniques, we proposed valid cuts that derive from the information structure. We
do not present this exact method here as the tools used are quite different from the other works.
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Chapter 2

Exact quantization of linear stochastic
problems

In this chapter, we are considering linear MSPs with not necessarily finitely supported noises. Lever-
aging polyhedral geometry tools we show how to exactly quantize the MSLP. This chapter is based on
a collaboration with Stéphane Gaubert and our Ph.D. student Maël Forcier. This work is detailed in
[VL13, VL12].

Roughly speaking, a quantization of an MSLP consists in providing a discrete scenario tree that
replaces the original noise distribution. The quantization is said to be locally exact at (t, x) if both cost-
to-go functions, at time t, of the original and quantized problem are equal at x. The quantization is said
to be uniformly exact if the value functions of both problems match for all states. Finally, we say that a
quantization procedure is universal if it does not depend on the distribution of the noises.

2.1 Motivation and setting

Following the definition of § 1.2.4, we consider here a risk-neutral MSLP not necessarily satisfying As-
sumption (FSN). More precisely, given a sequence of random variables ξt = (ct, ζt), ct ∈ L1(Ω,A,P;Rnt)
and ζt = (At,Bt, bt), indexed by t ∈ [T ], we consider the MSLP given by

min
(xt)t∈[T ]

c⊤1 x1 + E
[ T∑
t=2

c⊤t xt
]

s.t. A1x1 ⩽ b1,

Atxt +Btxt−1 ⩽ bt a.s. ∀t ∈ [T ],

xt ∈ L∞(Ω,A,P;Rnt) ∀t ∈ [T ],

xt ≼ Ft ∀t ∈ [T ].

(2.1)

In this section, we wonder how to deal with general (thus non-finitely supported) distribution in
stochastic linear programming. The main question is then

How to solve exactly multistage stochastic linear problems with general distributions ?

In other words, do there exist analytical formulas and algorithms to compute exact solutions of
stochastic programs with general distribution?

Here, we aim at solving exactly the original problem, by finding an equivalent formulation with
discrete distributions. This notion of equivalent formulation is best understood through the dynamic pro-
gramming approach of MSLP. Recall that the cost-to-go functions Vt are defined inductively as follows.
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We set VT+1 ≡ 0 and for all t ∈ [T ]:

Vt(xt−1) := E
[
V̂t(xt−1, ξt)

]
,

B̂t(R)(xt−1, ξt) := min
xt∈Rnt

c⊤t xt +R(xt)

s.t. Atxt +Btxt−1 ⩽ bt,

V̂t := B̂t(Vt+1).

(2.2)

where xt−1 ∈ Rnt−1 , and ξt = (ct, At, Bt, bt) ∈ Rnt × Rqt×nt × Rqt×nt−1 × Rqt .
Note that the results presented here require (At,Bt, bt) to be finitely supported, while ct can have a

continuous distribution. This separation does not preclude correlation between ct and ζt. However, we
require (ξt)}t∈[T ] to be a sequence of independent random variables to leverage Dynamic Programming,
even though some results can be extended to dependent noises (ξt)t∈[T ].

Definition 2.1 (Exact quantization). We say that an MSP (with stagewise independence) admits a local
exact quantization at time t on xt−1 if there exists a finitely supported (ξ̌t)t∈[T ] that yields the same
expected cost-to-go functions i.e., such that

Vt(xt−1) = E
[
V̂t(xt−1, ξt)

]
= E

[
V̂t(xt−1, ξ̌t)

]
.

In particular, we have Vt(xt−1) =
∑

ξ∈supp(ξ̌t)
P
[
ξt = ξ

]
V̂t(xt−1, ξ).

We call a quantization uniformly exact if it is locally exact at all xt−1 ∈ Rnt−1 , and all t ∈ [T ].
We say that a quantization is partition-based if there exists a (measurable, finite) partition Pt,xt−1 of

the uncertainty set Ξt such that, for P ∈ Pt,xt−1 ,

P
[
ξ̌t = ξ̌t,P

]
= p̌t,P with p̌t,P := P

[
ξt ∈ P

]
, ξ̌t,P := E

[
ξt | ξt ∈ P

]
1.

In particular, the partition-based quantization reads

Vt(xt−1) =
∑

P∈Pt,xt−1

p̌t,P V̂t(xt−1, ξ̌t,P ).

SAA Jensen/Edmundson-Madansky Exact quantization

Setting General Convex Linear

Approximations Confidence interval Upper and lower bounds Exact values

Table 2.1: Comparison of advantages and drawbacks of approximation methods with exact quantization

An obvious necessary condition for uniform exact quantization is that the value function Vt is a
polyhedral function, meaning that it takes value in R ∪ {+∞} and its epigraph is a (possibly empty)
polyhedron. Indeed, for each ζ ∈ supp(ζ), Qζ : (x, y) → c⊤y + IAx+By⩽h is polyhedral. Thus,
V̂ (·, c, ζ) := miny∈Rm Qc,ζ(·, y) is polyhedral as epi V̂ (·, ζ) is a projection of epiQζ . Hence, the fol-
lowing example shows that if the constraints have non-discrete distributions, there is no hope to have a
uniform exact quantization theorem. We shall see, however, that this is the case without restrictions on
the cost distribution.

Example 2.2 (Stochastic constraints). In this example, u denotes a uniform random variable on [0, 1].

1When p̌t,P := P
[
ξt ∈ P

]
is equal to 0, E

[
ξt | ξt ∈ P

]
is not well-defined. Then, we take an arbitrary ξ̌t,P in P . This

choice does not matter since ξ̌t,P will only appear in functions multiplied by p̌t,P = 0 in formulas.
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We first consider a stochastic right-hand side b

V (x) = E


min
y∈Rm

y

s.t. u ⩽ y

x ⩽ y

 = E
[
max(x,u)

]
=


1
2 if x ⩽ 0
x2+1
2 if x ∈ [0, 1]

x if x ⩾ 1

. (2.3)

We now consider a stochastic constraint matrix B.

V (x) = E


min
y∈Rm

y

s.t. ux ⩽ y

1 ⩽ y

 = E
[
max(ux, 1)

]
=

{
1 if x ⩽ 1
x
2 + 1

2x if x ⩾ 1
. (2.4)

In both cases the value function is not polyhedral, preventing the existence of a universal exact
quantization.

We now turn to an example of random recourse matrix W = 1+u, showing that there does not exist
even a locally exact partition-based quantization.

V̂ (x, u) =
min
y∈Rm

y

s.t. (1 + u)y ⩾ 1
=

1

u
. (2.5)

Thus, V̂ is constant in x and convex in ζ. In particular, by the law of total expectation and Jensen’s
inequality for all partition P of Ξ:

V (x) = E
[
V̂ (x, ζ)|P

]
=
∑
P∈P

P
[
P
]
E
[
V̂ (x, ζ)|P

]
⩾
∑
P∈P

P
[
P
]
V̂
(
x,E

[
ζ|P

])
(2.6)

We can then argue by strict convexity that any partition-induced quantization yields a strict upper esti-
mation of the true cost function.

In the remainder of this chapter, we make the main following contributions. In Section 2.2 we
briefly introduce some polyhedral geometry tools that are used to derive the results of this section. In
Section 2.3 we show that the expected cost-to-go functions are piecewise affine on explicit and universal
polyhedral complexes when the constraints are finitely supported and the costs have general distributions.
In Section 2.4, we give local and universal exact quantization results for 2SLP with fixed recourse. We
also present a generalized adaptive partition-based method (GAPM) to solve 2SLP with fixed recourse
but stochastic constraints.

2.2 Polyhedral tools

Our proofs rely on the notions of normal fan and chamber complex of a polyhedron recalled here. These
polyhedral objects reveal the geometrical structure of MSLP. Both the normal fan and the chamber com-
plex are special polyhedral complexes. We intend here to make a brief introduction to these objects.
A more complete, didactic and self-contained, introduction to polyhedral geometry tools for stochastic
optimization can be found in [For22, Chapter 3].

2.2.1 Polyhedral complexes

Polyhedral complexes are collections of polyhedra satisfying some combinatorial and geometrical prop-
erties. In particular, the relative interiors of the elements of a polyhedral complex (without the empty
set) form a partition of their union. We refer to [DLRS10] for a complete introduction to polyhedral
complexes and triangulations.
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Definition 2.3 (Polyhedral complex). A finite collection of polyhedra C is a polyhedral complex if it
satisfies i) if P ∈ C and F is a non-empty1 face of P then F ∈ C and ii) if P and Q are in C, then
P ∩ Q is a (possibly empty) face of P and Q. Polyhedron in a polyhedral complex are called cells. We
denote by supp C :=

⋃
P∈C P the support of a polyhedral complex. Further, if all the elements of C are

polytopes (resp. cones, simplices, simplicial cones), we say that C is a polytopal complex (resp. a fan, a
simplicial complex, a simplicial fan).

We recall that a simplex of dimension d is the convex hull of d + 1 affinely independent point and
that a simplicial cone of dimension d is the conical hull of d linearly independent vectors.

Proposition 2.4. For any polyhedral complex C, the relative interiors of its elements (without the empty
set) form a partition of its support: supp(C) = ⊔P∈C ri(P ) where the symbol ⊔ denotes a disjoint union.

For example, the set of faces F(P ) of a polyhedron P is a polyhedral complex.

Definition 2.5 (Refinements and triangulation). Let C and R be two polyhedral complexes, we say that
R is a refinement of C, denoted R ≼ C, if for every cell R ∈ R there exists a cell C ∈ C containing R:
R ⊂ C.

Note that ≼ defines a partial order on the space of polyhedral complexes, and the meet associated
with this order is given by the common refinement of two polyhedral complexes C and C′ defined as the
polyhedral complex of the intersections of cells of C and C′:

C ∧ C′ := {R ∩R′ |R ∈ C, R′ ∈ C′}. (2.7)

A triangulation T of a polytope Q is a refinement of F(Q) such that the cells of dimension 0 of T are
the vertices of Q and T is a simplicial complex. A triangulation T of a cone K is a refinement of F(K)
such that the cells of dimension 1 of T are the rays of K and T is a simplicial fan.

2.2.2 Normal fan

The normal fan is the collection of the normal cones of all faces of a polyhedron. See [LR08] for a review
of normal fan properties.

Recall that the normal cone of a convex set C ⊂ Rd at the point x is the set NC(x) := {α ∈
Rd | ∀y ∈ C, α⊤(y − x) ⩽ 0}. More generally, for a set E ⊂ C, NC(E) :=

⋂
x∈E NC(x).

P
P ′

Figure 2.1: Two normally equivalent polytopes P and P ′ and their normal fan N (P ) = N (P ′). The
green circle represents the singleton {0} which is the normal cone NP (x) for every x ∈ ri(P ).

Definition 2.6 (Normal fan). The normal fan of a convex set C is the collection of normal cones

N (C) := {NC(x) | x ∈ C}. (2.8)

We say that two convex setsC andC ′ are normally equivalent if they have the same normal fan: N (C) =
N (C ′), see Fig. 2.1.

1For some authors, a polyhedral complex must contain the empty set. We do not make this requirement.
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2.2.3 Chamber complex

The affine regions of the cost-to-go function will correspond to cells of a chamber complex. Projections
of polyhedra, fibers and chamber complexes are studied in [BS92, RZ96, Ram96].

Definition 2.7 (Chamber complex). Let P ⊂ Rd be a polyhedron and π a linear projection defined on
Rd. For x ∈ π(P ) we define the chamber of x for P along π as

σP,π(x) :=
⋂

F∈F(P ) s.t.x∈π(F )

π(F ). (2.9)

The chamber complex C(P, π) of P along π is defined as the (finite) collection of chambers, i.e.,

C(P, π) := {σP,π(x) | x ∈ π(P )} . (2.10)

Further C(P, π) is a polyhedral complex such that supp C(P, π) = π(P ). In particular,
{
ri(σ) |σ ∈

C(P, π)
}

is a partition of π(P ).
More generally, the chamber complex of a polyhedral complex P is

C(P, π) := {σP,π(x) | x ∈ π
(
supp(P)

)
} . (2.11)

with σP,π(x) :=
⋂

F∈P s.t.x∈π(F )

π(F ).

Im(π)

Ker(π)

• • • ••••
C(P, π)

x

π
−
1
({
x
})
∩
P

•

Px

•

•
F

•

•
π(F )

•
•

π(P )
•

Figure 2.2: A polytope P and its projection in green, its chamber complex in red on the x-axis and a
fiber Px in blue on the y-axis, for the orthogonal projection π on the horizontal axis, a face F and its
projection in purple.

Lemma 2.8 (Chamber complex monotonicity with respect to refinement order). Consider two polyhedral
complexes of Rd and a projection π. IfR ≼ S then C(R, π) ≼ C(S, π).

Recall that the fiber Px of P along π at x is the projection of P ∩ π−1(x) on the space Ker(π) (see
figure 2.2). An important property of a chamber complex is that all fibers are normally equivalent in
each relative interior of cells of the chamber complex. More precisely, let σ ∈ C(P, π) be a chamber, and
x and x′ two points in its relative interior, then, Px and Px′ are normally equivalent, i.e., they have the
same normal fan N (Px) = N (Px′), see [BS92]. Thus we define the normal fan Nσ aboveσ ∈ C(P, π)
by :

Nσ := N (Px) for an arbitrary x ∈ ri(σ). (2.12)



24 Exact quantization of linear stochastic problems

2.3 Universal and uniform exact quantization of MSLP with random costs

Leveraging these tools, our aim here is to provide a universal and uniform exact quantization method for
MLSP with non-finitely supported random cost. To do so we first study the 2-stage, with deterministic
(A2, B2, b2) case before discussing its extension.

2.3.1 Chamber complexes arising from 2-stage problems

Let (Ω,A,P) be a probability space, c ∈ L1(Ω,A,P;Rm) be an integrable random vector, and as-
sume that (A2, B2, b2) is deterministic. We study the cost-to-go function of the 2-stage stochastic linear
problem1, written as

V2(x) := E
[
V̂2(x, c2)

]
with V̂2(x, c2) := min

y∈Rm
c⊤2 y

s.t. A2y +B2x ⩽ b2

(2.13)

The dual of the latter problem, for given x and c2, is

max
µ∈Rq

(B2x− b2)⊤µ (2.14a)

s.t. A⊤
2 µ = −c2, (2.14b)

µ ⩾ 0. (2.14c)

We denote the coupling constraint polyhedron of Problem (2.13) by

P := {(x, y) ∈ Rn+m | A2y +B2x ⩽ b2}, (2.15)

and π the projection of Rn × Rm onto Rn such that π(x, y) = x.
The projection of P is the following polyhedron :

π(P ) = {x ∈ Rn | ∃y ∈ Rm, A2y +B2x ⩽ b2}, (2.16)

and for any x ∈ Rn, the fiber of P along π is

Px := {y ∈ Rm | A2y +B2x ⩽ b2}. (2.17)

We first provide a local exact quantization result. Note that, if x /∈ π(P ), then V̂2(x, c) = +∞, if
x ∈ π(P ) and −c /∈ cone(A⊤

2 ), then V̂2(x, c) = −∞. Assume now that x ∈ π(P ) and −c ∈ cone(A⊤
2 ).

For each cone N ∈ N (Px), and vector cN ∈ ri(−N), there exists a vector yN (x) which achieves the
minimum in the expression of V̂2(x, cN ) in (2.13). Further, for any selection of such a yN (x), we have

V̂2(x, c) =
∑

N∈N (Px)

1c∈− riN c⊤yN (x) . (2.18)

Assumption 2.1. The cost c ∈ L1(Ω,A,P;Rm) is integrable with c ∈ − cone(A⊤
2 ) almost-surely.

Theorem 1 (Uniform quantization of the cost distribution). Let x ∈ π(P ), and σ be a cell of C(P, π)
the chamber complex of the coupling constraint polyhedron P along the projection π on the x-space.
Assume that x ∈ ri(σ).

Under assumption 2.1, for every refinementR of −Nσ, we have:

V2(x) =
∑
R∈R

p̌RV̂2(x, čR) with V̂2(x, čR) := min
y∈Rm

č⊤Ry + IA2y+B2x⩽b, (2.19)

where p̌R := P
[
c ∈ ri(R)

]
and čR := E

[
c | c ∈ ri(R)

]
if p̌R > 0 and čR := 0 if p̌R = 0.

In particular, ifR is a refinement of
∧
σ∈C(P,π)−Nσ, Eq. (2.19) holds for all x ∈ π(P ).

1following traditional two-stage notation, the letter y is used to denote the recourse x2.
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This is a local exact quantization result, since (2.19) shows that V2(x) coincides with the value
function of a second stage problem with a cost distribution supported by the finite set {čR | R ∈ R}.

Note that R =
∧

σ∈Cmax(P,π)

−Nσ satisfies the condition of Theorem 1 since if τ is a face of σ in the

chamber complex, Nσ refines Nτ by [RZ96, Lemma 2.2].

Corollary 2.9. Under assumption 2.1, let x ∈ π(P ) and σ ∈ C(P, π) such that x ∈ ri(σ), then for every
refinementR of −Nσ, the subgradient of V at point x is given by the Minkowski sum

∂V2(x) =
∑
R∈R

p̌RB2D(x, čR, (2.20)

where D(x, c) := argmax
{
(B2x − b2)⊤µ : A⊤

2 µ = −c, µ ⩾ 0
}

, p̌R := P
[
c ∈ ri(R)

]
and čR :=

E
[
c | c ∈ ri(R)

]
if p̌R > 0 and čR := 0 if p̌R = 0.

In particular, if R is a refinement of
∧
σ∈C(P,π)−Nσ, the subgradient formula Eq. (2.19) holds for

all x ∈ π(P ).
Corollary 2.10 (Exact quantization fo 2-stage stochastic linear problem). The 2-stage stochastic problem

min
x∈Rn,y∈L∞(Ω,A,P;Rm)

c⊤1 x1 + E
[
c⊤2 y

]
(2.21a)

s.t. A1x+ b1 ⩽ 0, (2.21b)

A2x+B2y ⩽ b2 a.s., (2.21c)

y ≼ c2, (2.21d)

is equivalent, for every refinementR of
∧
σ∈C(P,π)−Nσ, to the deterministic linear problem

min
x∈Rn,(yR)∈(Rm)R

c⊤x+
∑
R∈R

p̌Rq̌
⊤
RyR (2.22a)

s.t. A1x+ b1 ⩽ 0, (2.22b)

A2x+B2yR ⩽ b2 , ∀R ∈ R, (2.22c)

where p̌R := P
[
c ∈ ri(R)

]
and q̌R := E

[
c | c ∈ ri(R)

]
if p̌R > 0 and q̌R := 0 if p̌R = 0.

Note that the chamber complex R is obtained only from a geometrical analysis of the coupling
constraint polyhedron P , we see that the exact quantization methodology presented here is universal in
the sense that it does not depend on the distribution of c. This is exemplified in the following theorem.

Theorem 2 (Universal affine regions). For all distributions of c satisfying assumption 2.1, the expected
cost-to-go function V2 is affine on each cell of the chamber complex C(P, π).

More precisely, for all x ∈ π(P ),
V2(x) = max

σ∈Cmax(P,π)
α⊤
σ x+ βσ, (2.23)

with 
ασ =

∑
N∈−Nσ

B⊤
2 µσ(čN ),

βσ =
∑

N∈−Nσ

−b⊤2 µσ(čN ),
(2.24)

where µσ(čN ) ∈ D(x, čN ) (defined in Corollary 2.9) for x ∈ ri(σ).

Remark 2.11. Theorem 2 shows a finite partition such that V2 is affine on each of its cells. This partition
is the coarsest partition satisfying this property. However, for a given cost distribution V2 can be affine on
a coarser partition. Actually, we can exactly describe the affine region of V2 through the use of weighted
fiber polyhedron, which is an extension of the fiber polytope of Billera and Sturmfels [BS92]. We refer
to [For22, §4.2.2] for the precise results. Finally, in [For22, §4.3.3] we can find an extension of this
characterization to the multistage case.



26 Exact quantization of linear stochastic problems

2.3.2 Propagating chamber complexes through Dynamic Programming

We next show that chamber complexes are propagated through dynamic programming in a way that
is universal with respect to the cost distribution. The following Lemma, whose non-trivial proof is
illustrated in Fig. 2.3, shows how to obtain (a refinement of) the affine regions of the cost-to-go function
Vt. This refinement depends on the affine regions of Vt+1 and not on the value of Vt+1. This enables the
construction of a universal exact quantization result, by recursion, for the multistage case.

Lemma 2.12. Let R be a polyhedral function on Rm and denote Flow

(
epi(R)

)
the set of lower faces

of epi(R). Then, R := πy,zy
(
Flow

(
epi(R)

))
is a coarsest polyhedral complex such that R is affine on

each element ofR. Let ξ = (A,B, b) be fixed and assumption 2.1 holds. Define, for all x ∈ Rn

Q(x, y) := R(y) + IAy+Bx⩽b, (2.25a)

V (x) := E
[
min
y∈Rm

c⊤y +Q(x, y)
]
. (2.25b)

Let V := C(F(P ) ∧ (Rn ×R), πx,yx ) ⊂ 2R
n

with P := {(x, y) | Ay +Bx ⩽ b}.
Then, V ≼ C(epi(Q), πx,y,zx ) and V is a polyhedral function which is affine on each element of V .

x

y

z

•

•

•

P

Q

epi(R)

•
•

•
•

R
• •

• •

• •

•

epi(Q)

• •
• •

• •
•

•
•

•• • • •• • ••V

Figure 2.3: An illustration of the proof of Lemma 2.12: the epigraph epi(Q) of the coupling function in
blue in the (x, y, z) space, the epigraph of R in yellow in the (y, z) plane, the affine regions R of R in
green on the y axis, the coupling polyhedron P in orange and brown in the (x, y) plane, the polyhedral
complex Q in red and brown in the (x, y) plane and the chamber complex V in violet on the x axis.

Remark 2.13. In Lemma 2.12, the complex V is independent of the distribution of c. However, for
special choices of c, V might be affine on each cell of a coarser complex than V . For instance, if R = 0
and c ≡ 0, we have that V = Iπx,y

x (P ), V is affine on πx,yx (P ). Nevertheless, V = C(P, πx,yx ) is generally
finer than F

(
πx,yx (P )

)
.

2.3.3 Exact quantization of MSLP

We next show that the multistage program with arbitrary cost distribution is equivalent to a multistage
program with independent, finitely distributed, cost distributions. Further, for all step t, there exist affine
regions, independent of the distributions of costs, where Vt is affine. assumption 2.1 is naturally extended
to the multistage setting as follows
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Assumption 2.2. The sequence (ξt)2⩽t⩽T is independent.1 Further, for each t ∈ J2, T K, ζt = (At,Bt, bt)
is finitely supported, and ct ∈ L1(Ω,A,P;Rnt) is integrable with ct ∈ − cone(A⊤

t ) almost surely.

Note that assumption 2.2 does not require independence between ct and ζt. Let t ∈ [T ]. For any
ζ := (A,B, b) ∈ supp(ζt) we define the coupling polyhedron

Pt(ζ) := {(xt−1, xt) ∈ Rnt−1 × Rnt | Atxt +Btxt−1 ⩽ bt}, (2.26)

and consider, for xt−1 ∈ Rnt−1 ,

Ṽt(xt−1|ζ) := E
[

min
xt∈Rnt

c⊤t xt + Vt+1(xt) + IAtxt+Btxt−1⩽bt | ζt = ζ
]
. (2.27)

Then, the cost-to-go function Vt is obtained by

Vt(xt−1) =
∑

ζ∈supp(ζt)

P
[
ζt = ζ

]
Ṽt(xt−1 | ζ). (2.28)

The next two theorems extend the quantization results of Theorem 1 to the multistage settings: an
MSLP with non-finitely supported, but independent, random noises is equivalent to an MSLP given on a
finite tree.

Theorem 3 (Universal exact quantization, multistage). Assume that (ξt)t∈[T ] is a sequence of inde-
pendent, finitely supported, random variables. We define by induction PT+1 := {RnT } and for t ∈
{2, . . . , T}

Pt,ζ := C(Rnt × Pt+1 ∧ F
(
Pt(ζ)

)
, πxt−1,xt

xt−1
), (2.29a)

Pt :=
∧

ζ∈supp(ζt)

Pt,ζ . (2.29b)

Then, for all costs distributions (ct)2⩽t⩽T such that (ct, ζt)2⩽t⩽T satisfies assumption 2.2 and all t ∈
{2, . . . , T}, we have supp(Pt) = dom(Vt), and Vt is polyhedral and affine on each cell of Pt.

Further, for all xt−1 ∈ Rnt−1 and all ζ ∈ supp(ζt), we have a quantized version of Eq. (2.27):

Ṽt(xt−1|ζ) =
∑

N∈Nt,ζ

p̌t,N |ζ min
xt∈Rnt

{
č⊤t,N |ζxt + Vt+1(xt) + IAxt+Bxt−1⩽b

}
, (2.30)

where Nt,ζ :=
∧
σ∈Pt,ζ

−Nt,ζ,σ (with Nt,ζ,σ := N (epi(Qζt )xt−1) for an arbitrary xt−1 ∈ ri(σ)) and for
all ζ ∈ supp(ζt) and N ∈ Nt,ζ we denote

p̌t,N |ζ := P
[
ct ∈ riN | ζt = ζ

]
, (2.31a)

čt,N |ζ :=

{
E
[
ct | ct ∈ riN, ζt = ζ

]
if P
[
ζt = ζ,x ∈ riN

]
̸= 0

0 otherwise
. (2.31b)

This theorem then allows to derive complexity results for MSLPs. From Hanasusanto, Kuhn and
Wiesemann [HKW16] we have that 2SLP is ♯P-hard, by reducing the computation of the volume of a
polytope to the resolution of a 2-stage stochastic program. We show in [VL13] that for a fixed dimension
of the recourse space, 2-stage programming is polynomial. We also extend this result to MSLPs. There-
fore, the status of 2-stage programming seems somehow comparable to the status of the computation of
the volume of a polytope – which is also both ♯P-hard and polynomial when the dimension is fixed (see
[Law91]). Another example of ♯P-hard problems that are fixed dimension polynomial is the problem of
counting the integer points in a given polytope (see [LJ83]).

More precisely, we show in [§6 VL13] that MSLP with general cost can be solved approximately in
polynomial time in log(1/ε), when T , n2, · · · , nT are fixed for a large class of regular density functions.

1The results can be adapted to non-independent ξt as long as ct is independent of (cτ )τ<t conditionally on (ξτ⩽t).
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2.4 Local quantization for stochastic constraints

In Section 2.3 we focused on 2SLP (and MSLPs) with stochastic cost. We now take a dual approach to
consider 2SLPs with stochastic constraints. Recall that Example 2.2 proved that we could not obtain a
uniform exact quantization in this case, thus we derive a local exact quantization result for 2SLP with
generally distributed constraints and fixed recourse.

The main contributions of this section are the following: i) using polyhedral geometry tools we
provide a general adapted partition oracle, ii) we give a new necessary and sufficient condition for a
partition to be adapted to x̌ even in the non-finitely supported case, iii) by casting APM methods as
accelerated L-Shaped algorithms where tangent cones are added instead of tangent planes (affine cuts),
we give convergence and complexity results for APM methods.

Setting, framework and oracle

We consider the following 2-stage stochastic linear problem with fixed recourse:

min
x∈Rn

+

{
c⊤x+ E

[
V̂ (x, ξ)

]︸ ︷︷ ︸
:=V (x)

| Ax = b
}
, (2SLP)

where the expectation is with respect to ξ = (T ,h) an integrable random variable on (Ω,A,P) taking
values in Ξ ⊂ Rℓ×n × Rℓ, and the recourse cost is

V̂ (x, ξ) := min
y∈Rm

+

{
q⊤y | Tx+Wy = h

}
. (2.32)

The dual formulation of the recourse problem is

V̂ D(x, ξ) := max
λ∈Rℓ

{
(h− Tx)⊤λ |W⊤λ ⩽ q

}
. (2.33)

We define
X := {x ∈ Rn+ | Ax = b}, (2.34a)

D := {λ ∈ Rℓ |W⊤λ ⩽ q}. (2.34b)

In the rest of the chapter, we assume D ̸= ∅ which implies by duality: V̂ (x, ξ) = V̂ D(x, ξ).
For the sake of simplicity, we assume throughout the chapter that we are in a relatively complete

recourse setting, that is X ⊂ dom(V ). Most results can be obtained without this assumption if we add
feasibility cuts (see § 2.4.2).

Let P be a measurable subset of Ξ. We denote by E
[
· |P
]

the conditional expectation E
[
· |ξ ∈ P

]
and P

[
P
]

the probability P
[
ξ ∈ P

]
. For technical reasons, we consider that two measurable subsets of

E,F ⊂ Ξ are P-equivalent, if and only if they differ by a P-negligeable set, and work with the class of
equivalence of these subsets, thus extending the definition of partition to P-partitions, and refinement of
partitions. Details can be found in [§2 VL12].

Definition 2.14 (Expected recourse cost of partition). For P a P-partition of Ξ ⊂ Rℓ×m ×Rℓ we define

VP : x 7→
∑
P∈P

P
[
P
]
V̂
(
x,E

[
ξ|P

])
. (2.35)

Let x̌ ∈ dom(V ). We say that a P-partition P is adapted to x̌ if

• VP is valid, i.e., VP(x) = V (x) := E
[
V̂ (x, ξ)

]
for all x ∈ Rn.

• and VP is tight at x̌ i.e., VP(x̌) = V (x̌) := E
[
V̂ (x̌, ξ)

]
.

The following lemma shows that, by convexity, a finer partition yields a larger expected cost-to-go
function.
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Lemma 2.15. Let P andR two P-partitions of Ξ then

P ≼P R =⇒ VP ⩾ VR. (2.36)

Moreover,
VP∧R ⩾ max(VP , VR). (2.37)

Finally,
V̂
(
·,E
[
ξ
])

⩽ VP ⩽ V. (2.38)

In particular, in this setting with deterministic recourse matrix W and cost q, for all partition P , VP
is valid. We then only have to prove VP(x̌) = V (x̌) to prove that P is adapted to x̌. However, this would
not be the case when we extend to general cost q.

With those definitions, we present in Algorithm 3 a generic framework for APM methods.

1 k ← 0, z0U ← +∞, z0L ← −∞, P0 ← {Ξ} ;
2 while zkU − zkL > ε do
3 k ← k + 1;
4 Solve zkL ← minx∈X c

⊤x+ VPk−1(x) and let xk be an optimal solution ;
5 Call the oracle on xk yielding Pxk ;
6 Pk ← Pk−1 ∧ Pxk ;

7 zkU ← min
(
zk−1
U , c⊤xk + VPk(xk)

)
;

Algorithm 3: Generic framework for APM.

2.4.1 Coarsest adapted partition

In this section, we define Rx̌, a particular P-partition, and prove that it is, in a generic case, the coarsest
partition adapted to x̌ ∈ X , i.e., the only partition adapted to x̌ that refines Rx̌ is Rx̌ itself. Indeed, we
are looking for partitions that yield a precise approximation of recourse cost (exact at x̌ in the adapted
case), while having the smallest possible number of elements.

When the distributions have finite support, [SL15] characterized the partitions adapted to x̌. Building
on this result, a sufficient condition for continuous distribution can be found in [RPM21, Prop. 2]. We
now prove that, for any distribution, a partition is adapted to x̌ if and only if it refines the collection Rx̌
defined in (2.40b). Unfortunately, Rx̌ is not necessarily a P-partition, thus we also provide a partition
Rx̌ ≼ Rx̌ (see Figure 2.4 for an illustration).

Recall that D = {λ ∈ Rℓ | W⊤λ ⩽ q} and that the normal cone of D at λ is the set ND(λ) :=
{ψ ∈ Rℓ |ψ⊤(λ′ − λ) ⩽ 0,∀λ′ ∈ D}. We denote by ri(N) the relative interior of a cone N . Let
N (D) := {ND(λ) |λ ∈ D} be the normal fan of D, i.e., the (finite) collection of all normal cones of
D. We denote by N (D)max := {N ∈ N (D) | ∀N ′ ∈ N (D), N ⊂ N ′ ⇒ N = N ′} the collection of
the maximal elements of N (D) (i.e., full dimensional cones up-to lineality spaces).

Theorem 4. Fix x̌ ∈ dom(V ) and N a cone in Rm. We define EN,x̌ and EN,x̌, subsets of Ξ, as

EN,x̌ := {ξ ∈ Ξ | h− T x̌ ∈ ri(N)}, (2.39a)

EN,x̌ := {ξ ∈ Ξ | h− T x̌ ∈ N}. (2.39b)

We defineRx̌ andRx̌ as

Rx̌ :=
{
EN,x̌ | N ∈ N (D)

}
, (2.40a)

Rx̌ :=
{
EN,x̌ | N ∈ N (D)max

}
. (2.40b)
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Then,

P ≼P Rx̌ =⇒ VP(x̌) = V (x̌), (2.41a)

P ≼P Rx̌ ⇐⇒ VP(x̌) = V (x̌). (2.41b)

ξ1

ξ2

•

(a)Rx̌

ξ1

ξ2

••

(b)Rx̌

ξ1

ξ2

•

(c) P

ξ1

ξ2

•

(d) P ′

Figure 2.4: Rx̌ is a partition of Ξ into 6 elements,Rx̌ is not a partition, P and P ′ are two distinct coarsest
partitions (into 2 elements) withRx̌ ≼ P ≼ Rx̌ andRx̌ ≼ P ′ ≼ Rx̌.

Remark 2.16. When the distribution of ξ is absolutely continuous with respect to the Lebesgue measure
of Ξ,Rx̌ ∼P Rx̌, thusRx̌ is the coarsest partition adapted to x̌ ∈ dom(V ).

If ξ does not admit a density,Rx̌ is still an adapted partition but not necessarily the coarsest, which
might not exist (see Fig. 2.4). Nevertheless, any adapted partition should refine Rx̌. Unfortunately, we
cannot useRx̌ in Algorithm 3, as we cannot guarantee thatRx̌ is a P-partition.

Remark 2.17. Note that Proposition 2 of [RPM21] implies that all partition oracle returning partitions
satisfying assumption (7) of [RPM21] must be refinements of Rx̌ by Theorem 4. In the finite scenario
case, our adaptedness condition is equivalent to Song and Luedtke’s condition [SL15].

The proof of Theorem 4 relies on the following technical lemma which underlines the difference
betweenRx̌ andRx̌.

Lemma 2.18. Consider a set P ⊂ Ξ such that P(P ) > 0, and a first-stage control x̌ ∈ dom(V ). Then,

∃R ∈Rx̌, P ⊂P R (2.42)

=⇒ V̂ (x̌,E
[
ξ|P

]
) = E

[
V̂ (x̌, ξ)|P

]
, (2.43)

∃R ∈Rx̌, P ⊂P R (2.44)

⇐⇒ V̂ (x̌,E
[
ξ|P

]
) = E

[
V̂ (x̌, ξ)|P

]
. (2.45)

2.4.2 Comparison with other algorithms and convergence

We show that the partition-based methods can be seen as an acceleration of the cutting plane method,
which yields a finite convergence proof with a bound on the number of steps.

The following lemma shows that for any first-stage control x ∈ X , if the partition is adapted to x,
then the subdifferential of approximate expected recourse cost coincides with the subdifferential of the
true expected recourse cost.

Lemma 2.19. Let x̌ ∈ dom(V ) and P be a refinement ofRx̌, i.e. P ≼ Rx̌, then

∂VRx̌(x̌) ⊂ ∂VP(x̌) ⊂ ∂V (x̌). (2.46)
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Furthermore, if x̌ ∈ ri(dom(V )),

∂VRx̌(x̌) = ∂VP(x̌) = ∂V (x̌). (2.47)

The classical L-shaped method (see e.g. [BL11, Chapter 5]) is a specification of Benders decompo-
sition to 2SLP with finitely supported distributions. The core idea consists in representing the expected
recourse cost in (2SLP), by a lift variable

min
x∈X,θ∈R

{
c⊤x+ θ | (x, θ) ∈ epi(V )

}
. (2.48)

We then relax the epigraphical representation (x, θ) ∈ epi(V ), replacing it by a set of valid inequalities
called cuts, i.e.

min
x∈X,θ∈R

c⊤x+ θ (2.49a)

s.t. g⊤x+ v ⩽ θ, ∀(g, v) ∈ O, (2.49b)

f⊤x ⩽ f, ∀(f, f) ∈ F . (2.49c)

More precisely, assume that we have such a relaxation of (2SLP). Let xk be an optimal first-stage
control of this relaxation. If it is admissible, meaning that for all scenario ξ there exists an admissible
recourse control yξ, we compute, through duality, a subgradient gk ∈ ∂V (xk). This yields a new op-
timality cut θ ⩾ (gk)⊤(x − xk) + V (xk), which is added to O. If xk is not admissible we can add a
feasibility cut to F instead by using dual optimal extreme ray (see [BL11, §5.1.b]). We then solve our
strengthened relaxation to obtain xk+1.

The L-Shaped method specifies that the subgradient gk can be obtained as an average over ξ of
subgradients gk,ξ ∈ ∂xQ(xk, ξ). In particular, it means that, to compute the subgradient, we can solve
| supp(ξ)| smaller LP instead of a large one.

Remark 2.20 (L-shaped for continuous distribution). When the distributions are non-finitely supported,
we cannot apply naively this method as there is a non-finite number of scenarios. Nevertheless, we can
still approximate epi(V ) with cuts. We can compute θ = VRx̌(x̌) and a subgradient g ∈ ∂VRx̌(x̌)
by solving |Rx̌| linear problems of the form (2.33) through exact quantization. By Theorem 4, θ =
VRx̌(x̌) = V (x̌). Further, g ∈ ∂VRx̌(x̌) ⊂ ∂V (x̌) by Lemma 2.19. Then (θ, g) defines an optimality cut.

Lemma 2.19 shows that at each step k of Algorithm 3, we add a collection of valid cuts which
are exact at xk to our collection of cuts. This means that APM methods can be seen as a Bender’s
decomposition method where we add more than one exact cut per iteration. In particular, when xk ∈
ri
(
dom(V )

)
we add the whole tangent cone of epi(V ) at x instead of a single cut. Thus, as the bounds

generated by Algorithm 3 are monotonic, we can adapt the classical proof of Kelley’s cutting plane
algorithm to APM and derive the following convergence theorem.

Theorem 5. Assume that the partition oracle used is adapted. IfX ⊂ Rn+ has a finite diameterM ∈ R+

and x 7→ c⊤x+V (x) is Lipschitz with constantL then the partition-based Algorithm 3 finds an ε-solution
in at most

(
LM
ε + 1

)n iterations.

Remark 2.21. The results presented here are given for deterministic cost q. By taking the common
refinement we can easily extend them to the finitely supported q case. Perhaps more surprisingly we
can also extend the result to any distribution of q. Indeed, we can exactly quantize the cost q through
the collection of relative interiors of the secondary cones of W . This theoretical, and quite technical,
derivation can be found in [§2 VL16].
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Chapter 3

Exact lower bounds in multistage
stochastic problem

In this chapter we are going to discuss a class of algorithms for MSP, satisfying Assumption (SWI),
called Trajectory Following Dynamic Programming (TFDP) algorithms, which encompass the well-
known Stochastic Dual Dynamic Programming (SDDP) algorithm and numerous variants.

This class of algorithm works by constructing lower bounds of the value functions, and sometimes
also maintaining upper bounds. The framework presented here was developed for [VL16] building on
contributions made in [VL3] and [VL10]. The convergence proof given here follows [VL16], as the re-
sults are more precise than in previous contributions, and do not require the finitely supported noise As-
sumption (FSN). Construction of upper bounds is discussed in Chapter 4.

We first present in Section 3.1 the algorithmic framework, various required assumptions, and discuss
variants. Then, in Section 3.2 we provide convergence results for this class of algorithm.

3.1 Trajectory Following Dynamic Programming algorithms framework

For ease of reference, we recall the risk-neutral multistage stochastic Problem (1.1)

Min
(xt)t∈[T ]∈L0(Ω,A,P;RnT )

EP

[ T∑
t=1

ct(xt−1,xt, ξt) + VT+1(xT )

]
(MSP)

s.t. (xt−1,xt) ∈ Pt(ξt) ∀t ∈ [T ],

xt ≼ At := σ(ξ[t]) ∀t ∈ [T ].

With stagewise independent noise assumption, we recall the Bellman equation (1.20)

Vt = Bt(Vt+1), ∀t ∈ [T ],

where Vt is the expected, or more generally risk adjusted, cost-to-go function defined in Eq. (1.19).
The main idea of TFDP algorithms consists in iteratively refining lower (and sometimes upper) ap-

proximations of the risk-adjusted cost-to-go functions Vt. More precisely, at each iteration, we determine,
in a forward phase, trial points at which the approximations should be refined. Then, in a backward phase,
we construct cuts, which are functions that under-approximate Vt. These cuts are as close as possible to
the true risk-adjusted cost-to-go functions around the trial points. The lower approximations are finally
defined as the maximum of computed cuts.

3.1.1 Assumptions

We describe here the required assumption to prove the convergence of a TFDP algorithm. First, we make
assumptions over the MSP problem, and then over elements of the TFDP algorithm.
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Setting assumption

Using notations from Chapter 1, we make the following assumptions.

Assumption 3.1 (Compatibility of constraints). We make the following assumptions, for all t ∈ [T ],

i) ct is a proper normal integrand;

ii) for all (xt−1 ∈ Xr
t−1) (see (1.14)), and all (xt ∈ Xt(xt−1, ξt)) the random variable ct(xt−1,xt, ξt)

is integrable (in particular ct(xt−1, xt, ξt) < +∞ P-almost surely);

iii) for all xt−1 ∈ Xr
t−1 and almost all ξt ∈ Ξt−1, Xt(xt−1, ξt) (see (1.13)) is a non-empty compact

subset of Rnt .

Assumption 3.1 ensures that (MSP) is well-posed and admits an optimal solution. It also guarantees
that we are in a relatively complete recourse setting (see Definition 1.19) in the sense that any sequence
of variable (xτ )τ⩽t satisfying xτ ∈ Xτ (xτ−1, ξτ ), for τ ⩽ t can be completed into an admissible policy
(xτ )τ⩽T such that E

[∑T
t=1 ct(xt−1,xt, ξt)

]
< +∞.

As we are considering Dynamic Programming methods, the stagewise independence Assumption (SWI)
is assumed to hold true.

We have a last non-trivial assumption over the problem setting.

Assumption 3.2 (Lipschitz). For t ∈ [T ], we assume that1

i) Xr
t has a diameter smaller than Dt < +∞;

ii) the expected cost-to-go function Vt is Lt-Lipschitz.

Both parts of assumption 3.2 are strong requirements, needed for the convergence results, while still
being natural in most settings. Part i) is satisfied for example if assumption 3.1 holds, Xt(xt−1, ·) is
Lipschitz for all xt−1 ∈ Xr

t−1 and all Ξt are bounded. Part ii) is satisfied under assumption 3.1 in the
linear case, or through an extended relatively complete recourse assumption, in the convex case (see
[VL3]), which requires that state xt that are slightly outside Xr

t are still admissible.

Requirement of TFDP algorithms

As said above, TFDP algorithms maintain approximations of the risk-adjusted cost-to-go. These approx-
imations need to be admissible as defined next.

Assumption 3.3 (Admissible approximations). The computed cuts fkt of Bt(V k
t+1) at xkt satisfy:

i) fkt is γ
t
-tight, i.e. fkt (x

k
t ) ⩾ Bt(V k

t+1)(x
k
t )− γt

ii) fkt is valid, i.e. fkt ⩽ Bt(V k
t+1)

iii) V k
t is Lt-Lipschitz

On the other hand, the upper approximation V k
t , not necessarily computed, shall satisfy the following

properties:

iv) V k
t (x

k
t ) ⩽ Bt(V

k
t+1)(x

k
t ) + γt (tightness)

v) V k
t ⩾ Bt(V

k
t+1) (validity)

vi) V k
t ⩽ V

k−1
t (monotonicity)

1We do not necessarily require the knowledge of the diameters or Lipschitz constants.
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vii) V k
t is Lt-Lipschitz

For the algorithm to be well-defined we need to guarantee the existence of cuts and upper approxi-
mation satisfying previous assumptions, as formally assumed now:

Assumption 3.4. For every t ∈ [T ] and k ∈ N⋆, there exists at least one cut fkt of Bt(V k
t+1) satisfying

assumption 3.3.

To prove convergence we finally need some assumption over the node selection process that is dis-
cussed in Section 3.2, satisfied for example if the nodes are selected randomly as usual in SDDP.

3.1.2 Algorithm framework

To define a TFDP algorithm, we need to define a node selection procedure, a forward Bellman operator, a
cut computation procedure and an upper bound update. With these elements defined, the algorithm goes
iteratively as follows: in a forward phase, we construct a trial state trajectory along the node selected by
the node selection process using the forward Bellman operator. Then, in a backward phase, we update
the lower approximation around the trial point (and the upper approximation if needed). This is made
formal in Algorithm 4.

Data: Random variables ξt, cost function at each step ct, constraints set-valued function Xt,
initial state x0, γFt -forward operators Ft.

1 V 0
t ≡ −∞ and V 0

t ≡ +∞ for t ∈ [T ];
2 for k ∈ N do

/* Forward phase */
3 Set xk0 = x0;
4 for t = 1 : T − 1 do
5 Choose ξkt ∈ supp(ξt) ; // node selection
6 Let xkt = Ft−1(V

k−1
t )(xkt−1, ξ

k
t ) ;

/* Backward phase */

7 Set V k
T ≡ V

k
T ≡ 0;

8 for t = T − 1 : −1 : 1 do
9 Find a Lt-Lipschitz on Xr

t , valid and γ-tight cut fkt of Bt(V k
t+1) at xkt , i.e. such that

fkt (x
k
t ) ⩾ Bt(V k

t+1)(x
k
t )− γt and fkt ⩽ Bt(V k

t+1) ;
10 Set V k

t = max(V k−1
t , fkt );

11 Define V k
t satisfying assumption 3.3, Items iv) to vii) ;

Algorithm 4: A general framework for TFDP algorithms

Remark 3.1 (Asymmetry of upper and lower approximations). The framework is not symmetrical in its
treatment of the upper and lower cost-to-go approximations. Indeed, Line 6 should not be done with
the upper approximations1 as it would restrict the exploration of the state space. For example, assume
that V t are (slightly Lipschitz-regularized) indicator functions of a single point, then the forward phase
would always produce the same trajectory, and the upper bound would not be updated.

Further, multiple TFDP algorithms do not actually compute V t, simply setting it to the true expected
cost-to-go Vt (for iterations bounds).

Remark 3.2 (The standard SDDP algorithm). The most common TFDP algorithm is the stochastic dual
dynamic programming (SDDP). It was originally designed by Pinto and Pereira ([PP91]) for multi-
stage stochastic linear problems. In SDDP, the value of the noise ξkt , chosen in Line 5, is drawn ran-
domly on supp(ξt) which is assumed to be finite. The lower approximations are defined as the max-
imum of affine cuts. For each ξ ∈ supp(ξt), computing B̂t(V k−1

t+1 )(x
k
t , ξ) consists in solving an LP,

1The upper approximations (V
k
t )t∈[T ] still provide an admissible policy through the forward Bellman operators which has

interesting properties, see Section 4.3, or [VL10].
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and standard linear programming duality yields a subgradient α̂kt (ξ) ∈ ∂B̂t(V k−1
t+1 )(x

k
t , ξ) and value

β̂kt (ξ) = B̂t(V k−1
t+1 )(x

k
t , ξ). Taking the expectation, we set αkt = E

[
α̂kt (ξt)

]
and βkt = E

[
β̂kt (ξt)

]
, to

define the so-called Benders’ cut

fkt : xt 7→ αk⊤t (xt − xkt ) + βkt . (3.1)

Under relatively complete recourse assumption, the cuts can be assumed to be Lt-Lipschitz. Further, in
this simple setting, all errors are null: γ

t
= γt = γFt = 0. Note that no upper bounds are computed and

the complexity results of Section 3.2 are obtained by taking V k
t = V k

t .

Algorithm 4 is a flexible framework, and some lines remain to be detailed, which we now discuss.

Node selection choice in Line 5 Most TFDP algorithms choose ξkt by drawing it randomly according
to the law of the random variable ξkt . The forward phase can then be seen as a Monte Carlo method for
finding a trajectory xk[T ]. Then, it is also possible to choose ξkt thanks to quasi-Monte Carlo methods.

Another way of choosing ξkt consists in picking the ξ ∈ supp(ξt) that maximizes a certain criterion.
In [BDZ17], Baucke, Downward and Zakeri suggested to chose ξkt such that xkt maximizes the gap
between the upper and lower approximations, i.e., V k

t (x
k
t )− V k

t (x
k
t ). They called this choice of ξkt , the

problem child node selection. In [Lan20], Lan presented the Explorative Dual Dynamic Programming
algorithm, where ξkt is chosen so that xkt is the most distinguishable point, i.e. such that xkt is far from
the previously computed points, we speak of explorative node selection.

The proofs of convergence are harder to derive when ξkt is chosen randomly, and the best upper bound
known on the number of iterations of these algorithms are exponential in the horizon T . In comparison,
when ξkt is chosen deterministically as the problem child or as the most distinguishable point, the number
of iterations is bounded by a polynomial in T . However, random sampling is often more efficient in
practice (and easier to implement).

Forward operator choice in Line 6 In most algorithms, we assume that γFt = 0 for all t ∈ [T − 1],
thus Ft−1(Ṽ )(x, ·) is a measurable selection of argminy∈∈Xt(x,·) ct(y, ·) + Ṽ (y). There has also been
propositions to use inexact cuts [Gui20] to alleviate the computational burden of each iteration.

Further, there have been various propositions to regularize the SDDP algorithm, see [AP18, VAdOS19,
GLT20]. They mostly boil down to choosing a different forward operator, e.g., by adding a regularization
term, which can be seen as γFt -forward operator with γFt ̸= 0.

Finally, it is important that the algorithm use a single γFt -forward operator. Indeed, if the set of
γFt -optimal solutions X ♯

γFt ,t
(Ṽ )(x, ξ) is not reduced to a single point, the convergence results only hold

for the points selected by the forward operator. This remark is not only theoretical and has implications
in practice1: to be safe one should use the same solver (and parameters) during the training phase and
exploitation phase of the algorithm.

Cuts fkt choice in Line 9 We need to compute cuts fkt to approximate Bt(V k
t+1) in the neighborhood

of xkt−1. Recall that in Eq. (1.19b), Bt is defined as an expectation of parametric Bellman operators
Bt(V k

t+1) = E
[
B̂t(V k

t+1)(·, ξt)
]

Eq. (1.19a). Then, we can compute the average cut fkt thanks to para-
metric cuts f̂kt,ξ. In the finitely supported case, we can compute the average cut fkt directly by taking
fkt = E

[
f̂kt,ξ
]

whereas in the convex, non-finitely-supported case, there exists methods to approximate
E
[
fkt,ξ
]
. Finally, exact methods for linear problems are developed in [VL16]. Furthermore, depending

on the problem structure, there exist several types of parametrized cuts f̂kt,ξ in the literature. We recall
them in [VL16].

1For example, consider a problem with two equivalent storage and that only one of them is required to provide an optimal
solution. Consider two forward operators, the first one, F1

t−1, prefers using the first storage while the second, F2
t−1 prefers

using the second storage. Now assume that the algorithm ran until convergence with F1
t−1 yielding the approximations V ∞

t .
Then, V ∞

t correctly evaluates the value of the first storage, but has no information on the second. Consequently, a trajectory
given by F2

t−1(V
∞
t ) might be far from optimal.
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V (x)

V (x)
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x

V (x)

Figure 3.1: An example of upper and lower approximations

Upper approximations V k
t choice in Line 11 In most TFDP algorithms, no upper bound function is

computed. In that case, we just set V k
t ≡ Vt in the convergence proof. However, some algorithms rely

on the computation of these upper bounds, for example for computing a problem-child node selection.
Chapter 4 is dedicated to computing upper bound.

3.1.3 Extensions of the framework

Although we tried to present a general framework, for the sake of simplicity, Algorithm 4 does not inte-
grate every variant of SDDP. We now discuss how this framework can be extended and if the complexity
results and proofs are still valid with these new extensions.

Multiple forward phases. In practice, SDDP is often implemented with multiple forward phases,
i.e., at iteration k we compute N forward phases (xk,it )t∈[T−1],i∈[N ], in parallel. Consequently, in the
backward phase we compute, for each time step t ∈ [T − 1], N tight and valid cuts (fk,it )i∈[N ]. This
variation is included in the framework of Algorithm 4 by considering that the cut fkt is the maximum
over i ∈ [N ] of all cuts fk,it . The complexity results follow directly (in iteration number).

Multicut. In the finitely supported case, instead of computing an average cut fkt of the expected cost-
to-go function Vt, it is possible to store for each ξ ∈ supp(ξt) a cut f̂t,ξ of the cost-to-go function
V̂t(·, ξ). Unlike the single-cut case where V k

t (·) = maxκ⩽k f
κ
t (·), in the multicut case, we compute

approximation function as V k
t (·) =

∑
ξ∈supp(ξt) P

[
ξ
]
maxκ⩽k f̂

κ
t,ξ(·). Up to a slight reinterpretation,

by considering a global cut ft(·) =
∑

ξ∈supp(ξt) P
[
ξ
]
maxκ⩽k f̂t,ξ(·), this variation is covered by our

framework.
However, with continuous random variables, the notion of multiple cuts is not well-defined.

Cut computation in forward. Another variation of SDDP consists in computing the cuts during the
forward phase (and no backward phase). In this variant, the cuts do not approximate Bt(V k

t+1) and

Bt(V k
t+1) in the neighborhood of xkt , but approximate Bt(V k−1

t+1 ) and Bt(V k−1
t+1 ) in the same neighbor-

hood. Although this variant is not handled by the framework, all proofs can be adapted straightforwardly.

Cut selection. After many iterations, the number of cuts can slow down the new iterations. To speed
up SDDP iterations, another idea is to delete some cuts. For example, we can decide to delete only the
dominated cuts, i.e., the cuts that do not affect the values of the approximations V k

t . The monotonicity
property and the complexity results are still valid in this setting. Unfortunately, finding which cut is
dominated is time-consuming which does not make this method numerically efficient. Instead, we often
use some heuristics to delete cuts that are probably dominated. However, these heuristics do not guar-
antee that we have the monotonicity property of approximations. Then, the complexity and convergence
results seem harder to obtain.
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Adaptive partition-based methods In [SL15], Song and Luedtke presented the adaptive partition-
based methods (APM) to solve 2-stage linear problems by partitioning the set of scenarios. It was
then adapted to the multistage case in [SS22] where Siddig and Song proposed an adaptive partition-
based SDDP, in both case under the finitely supported noise Assumption (FSN). The idea of APM is
to replace the expected cost-go-function V = E

[
V̂ (·, ξ)

]
by a partitioned expected cost-to-go function

VP =
∑

P∈P P
[
ξ ∈ P

]
V̂ (·,E

[
ξ | ξ ∈ P

]
) where P is a partition of the uncertainty set Ξ. A partition P

is said to be tight at x̌, if VP(x̌) = V (x̌), valid if VP(x) ⩽ V (x) for all x ∈ Rnt and adapted to x̌ if it
is valid and tight at x̌ (see § 2.4.1). Then, when P is a partition adapted to x̌, we can see the partitioned
expected cost-to-go function VP as a valid and tight cut of V at x̌. Such cuts represent the tangent cone
of epi(Bt(V k

t+1)) at x where Benders’ cut represents a single tangent plane (see [§3.2 VL12]). APM
methods were extended to general distribution in [RPM21]. In [VL12], the authors provided a necessary
and sufficient condition for a partition to be adapted (without Assumption (FSN)) as well as a geometric
method to obtain a valid and adapted partition. In particular, the APM SDDP algorithm of [SS22] is a
TFDP algorithm falling in the framework of Algorithm 4.

3.1.4 Risk-averse setting

We now briefly discuss extensions involving a maximization problem in the dynamic programming equa-
tion, arising for example from multistage risk-averse, robust or distributionally robust problems. Algo-
rithm 4 can be adapted to such problems, by changing the definitions of the Bellman operators.

Further, in the risk-neutral case, Algorithm 4 is not symmetrical in its treatment of lower and upper
approximations. As noted in Remark 3.1, for a minimization problem, in Algorithm 4, the forward phase
Line 6 should be done using the lower approximations V k

t . More generally, one should use an outer
approximation (that is under approximation for min sub-problems and upper approximations for max
sub-problems) during the forward phase to be able to explore the state space. Thus, for those min-max
problems, the computation of upper-approximations V k

t is not optional.

Minimax problems. Baucke, Downward and Zakeri, in [BDZ17], presented a convergent problem-
child algorithm to solve stochastic minimax dynamic programs. Although our framework of Algo-
rithm 4 do not handle such minimax problem, we can extend it to do so. More precisely, we consider
a problem where the decision maker chooses xt ∈ Xt(xt−1, yt−1, ξt), and then an adversary chooses
yt ∈ Yt−1(xt−1, yt−1, xt, ξt). Thus, the Bellman operators are now defined as

Bt−1(Ṽ )(xt−1, yt−1) = E
[

min
xt∈Xt(xt−1,yt−1,ξt)

max
yt∈Yt−1(xt−1,yt−1,xt,ξt)

ct(xt−1, xt, yt, ξt) + Ṽ (xt, yt)
]
.

(3.2)
We can adapt the definition of reachable sets Xr

t and Y r
t (see [§5 VL16] for details), and forward

Bellman operators. Then, assuming that the reachable sets Xr
t and Y r

t have finite dimensions dx and dy
and diameterD, and that the objective functions are L-Lipschitz, the convergence and complexity results
still hold developing on the ideas of [ZS22]. The upper bound on the number of effective iterations then

becomes Kε :=
(

2DL
ε−γΣ

)dx+dy
(T − 1)dx+dy+1.

Robust Closely related, in [GTW19], Georghiou, Tsoukalas and Wiesemann presented the Robust
Dual Dynamic Programming algorithm (RDDP) to solve multistage robust optimization problems. In
such problems, instead of minimizing the expectation, we minimize considering the worst-case scenario
ξt ∈ Ξt. Note that this robust setting can be seen as a particular case of minimax problems where
we have deterministic random variables. The upper bound on the number of effective iterations then

becomes Kε :=
(

2DL
ε−γΣ

)dx+dξ
(T − 1)dx+dξ+1.

risk-averse Multistage stochastic problems in the risk-averse setting are MSP where the expectation is
replaced by a multiperiod risk measure.
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We consider the risk-averse MSP Eq. (1.18), that is, a risk-averse MSP with nested coherent risk
measures. Using the dual representation of risk measures (see Theorem 1.3), we get

Bt−1(Ṽ ) = max
y∈QAρ

EP

[
min

xt∈Xt(xt−1,ξt)
y ct(xt−1, xt, ξt) + yṼ (xt)

]
. (3.3)

Up to a slight change of notation, we can write this problem as a minimax problem. In particular, a
sufficient condition to obtain convergence and complexity bounds for risk-averse MSP is that the set Qρ
has a finite dimension and a finite diameter. For example, if Ω is finite, Qρ is contained in the space of
random variables in Ω, isomorphic to a simplex of dimension |Ω| − 1 which has a finite diameter. More
generally, if Qρ is contained in the convex hull of n random variables (yk)k∈[n], then Qρ has a finite
diameter smaller than maxk,ℓ∈[n](∥yk−yℓ∥∞) and a finite dimension smaller than n− 1, we can obtain
complexity results similar to the risk-neutral case.

We now comment on the particular case of the average value at risk (see Definition 1.4). We cannot
use the dual representation to derive complexity bounds as QAV@R has, in general, a non-finite dimen-

sion. However, note that in the min-formulation of AVAR, see Eq. (1.5b), sinceAV@Rα(z) ⩽
EP
[
z
]

1−α the
infimum on s over R can be replaced by a minimum on the compact interval [0, 1

1−αEP
[
z
]
]. To obtain an

upper bound that does not depend on k and xt−1, we set z = min
xt∈X (xt−1,ξt)

ct(xt−1, xt, ξt)+V
k
t (xt) then

EP
[
z
]

is upper bounded by minxt∈Xr
t
E
[
ct(xt, ξt)+V

1
t (xt)

]
which has a finite value by assumption 3.2.

Thus, MSP with nested average value at risk measure can also be handled and yield similar complexity
results.

3.2 Convergence of TFDP algorithms

There are two main approaches to convergence theory of TFDP algorithms. The first, initiated by Philpott
and Guan [PG08], and generalized in [ACdC20], argues that there is a finite number of cuts that can
be generated and that they are generated at most once. Then, leveraging the fact that each scenario
is sampled an infinite number of times, they prove the almost-sure convergence in a finite number of
iterations, without any bound on this number.

Another path, pioneered in [VL3], (then reformulated and adapted to the risk-averse setting in
[Gui16], and extended to abstract Bellman operators in [VL10]) is based on the compactness of the
(reachable) state space and the Lipschitz property of the value function. These convergence proofs rely
on the compactness of the (reachable) state space to extract converging subsequenceq. Technical deriva-
tions relying on Lipschitz regularity of the value function prove asymptotic convergence.

To go further than asymptotic convergence, two recent papers ([Lan20, ZS22]) quantify how the gap
between estimated and true value function at a given point can be back propagated and extended to a ball
of small radius r around this point. By bounding the number of non-intersecting balls of radius r that
can be contained in the reachable state space they deduce a convergence speed. This is the approach that
is extended in [VL16], and presented here.

First, it can be noted that all previous convergence proofs relied on the finite noise Assumption (FSN).
Indeed, the first proofs used some sort of Borel-Cantelli lemma showing that every possible scenario is
almost surely selected an infinite number of times during the forward pass1; while the more recent proof
of [Lan20, ZS22] shows that a given scenario is reducing the gap, thus the expected gap is reduced by at
least the (non-zero, but very small) probability of selecting this scenario multiplied by the gap reduction.
The proof presented here does not require the finitely supported noise Assumption (FSN) replacing it
with a nested Hoeffding lemma.

In this section, we give convergence and complexity results for various instances of Algorithm 4.
In § 3.2.1, we first define the notion of effective iteration and deduce an upper bound on the number

1While these proofs are sound they remain quite theoretical as, in most practical cases, the number of possible scenarios is
tens of orders of magnitude higher than the number of selected scenario, thus a given scenario has a very low probability to be
selected once, let alone multiple times.
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of effective iterations required by Algorithm 4 to get an ε-solution. We then distinguish between deter-
ministic and randomized selection processes for the choice in Line 5 of the algorithm. For deterministic
selection processes, namely the problem-child and explorative node selections, we show in § 3.2.2 that
all iterations are effective. Finally, when the node selection is randomized, we show in § 3.2.3 the exis-
tence of a positive probability for an iteration to be effective. We then deduce a complexity bound on the
expected number of iterations.

3.2.1 Bounding the number of effective iterations

We first recall that the value of Problem (MSP) can be written in a more concise form, (keeping in mind
that ξ1 is deterministic):

val (MSP) = min
x1∈X1(x0,ξ1)

c1(x0, x1, ξ1) + V1(x1). (3.4)

Our aim is to show that, for some iteration k, the solution xk1 is a ε-solution of Eq. (3.4), and the lower
bound V 0(x0) is ε-tight. Unfortunately, assumptions 3.1 to 3.4 and Assumption (SWI) are not enough
to ensure convergence of Algorithm 4: we need a further assumption on the node selection process.

Regardless of node selection, we define the notion of effective iteration. Recall that γFt , γ
t
, γt are

errors in forward Bellman operator and approximation update (see Algorithm 4) at time t ∈ [T ], and Lt
(resp. Lt) are Lipschitz bounds on the cuts (resp. upper-approximation) at time t. In the remains of the
section we consider a sequence (V

k
t , V

k
t , x

t
k)t∈[T ],k∈N produced by Algorithm 4.

We consider a sequence of positive real number (δt)t∈[T ], seen as precision diameter in the state
space. We then construct an adequate sequence of value errors (εt)t∈[T ]1.

An effective iteration, as defined in the following definition, is an iteration that produces at least a
new trial point with a small gap, and is significantly different from past trial points (with a small gap).

Definition 3.3 (effective iteration). For t ∈ [T − 1] and k ∈ N, we say that

• xkt is εt-saturated, if V k
t (x

k
t )− V k

t (x
k
t ) ⩽ εt,

• xkt is δt-distinguishable if ∥xkt − xκt ∥ > δt for all κ < k such that xκt is εt-saturated,

• an iteration k ∈ N is effective if it generates either a new εt-saturated and δt-distinguishable point
for at least one t ∈ [T ], or a ε0-solution to the first-stage problem.

As a first step tower showing a convergence speed, the following theorem bound the number of
effective iterations required to obtain an ε1 lower bound.

Theorem 6 (bound on effective iterations number). Let assumptions 3.1 to 3.4 and Assumption (SWI) be
satisfied and t ∈ [T − 1], assume that δt ⩽ Dt, and let

K :=

T−1∑
t=1

(
Dt

δt
+ 1

)nt

. (3.5)

After at most K + 1 effective iterations we have an ε1-lower bound of Problem (MSP).

V k
0(x0) = c1(x

k
1, ξ1) + V k

1(x
k
1) ⩾ val (MSP)− ε1. (3.6)

1More precisely, εT−1 := γ
T−1

+ γT−1, εt := εt+1 + (Lt+1 + Lt+1)(δt+1 + ηt+1) + γF
t+1 + γ

t
+ γt for t ∈ [T − 2],

and ε0 := ε1 + (L1 + L1)(δ1 + η1) + γF
1 .
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Remark 3.4. Finally, although the theorems of this section state that we find an ε0-optimal solution at
stage 1, we have no guarantee that the approximations V k

t converge to Vt. We cannot hope that these
approximations converge to the true expected cost-to-go functions far from the optimal and reachable
trajectories.

Nevertheless, by considering the sets of points that are δt-close to every optimal and reachable
trajectories, we could hope to have a convergence of strategies generated by F(V k

t ) on those sets. If we
add a finite diameter of the support of ξt and Lipschitz assumptions for ξt, we are confident that the proof
can be adapted. However, the general case looks harder and might require different ideas for proving
complexity results for the convergence of strategies at every stage.

We now show that for some deterministic node selection methods, each iteration is effective.

3.2.2 Deterministic node selection

In this section, we present sufficient conditions for an iteration to be effective. Consequently, for two
algorithms with deterministic node selections (namely problem-child node selection [BDZ17] and ex-
plorative node selection [Lan20]), we show that each iteration is effective, yielding a complexity result.

The following technical lemma, whose proof can be found in [Appendix C VL16], shows that if the
new state xkt (resulting from the choice of ξkt ) is either i) far enough from the set of saturated points, or
ii) yielding a large enough gap, then iteration k is effective.

Lemma 3.5. We denote by dkt the distance function to the set of εt-saturated points until iteration k,
i.e., dkt (x) := minκ<k|xκt is εt-saturated ∥x − xκt ∥. In particular, xkt is δt-distinguishable if and only if
dkt (x

k
t ) > δt. Further, we denote ykt the possible next state starting from the current trajectory point and

applying the current strategy, i.e., ykt := Ft−1(V
k−1
t )(xkt−1, ξt).

Assume that assumptions 3.1 to 3.4 and Assumption (SWI) are satisfied. Let k ∈ N∗. If, for all
t ∈ [T − 1], at least one of the following inequalities is satisfied

E
[
V
k−1
t

(
ykt
)
− V k−1

t

(
ykt
)]

⩽ V
k−1
t (xkt )− V k−1

t (xkt ) + (Lt + Lt)ηt, (3.7a)

E
[
dkt (y

k
t )
]
⩽ dkt (x

k
t ) + ηt, (3.7b)

then, iteration k is effective.

The following lemma shows that two deterministic node selection, i) the problem-child method of
Baucke, Downward and Zakeri [BDZ17, BDZ18], which select the node yielding a state maximizing
the current gap estimate; and ii) the explorative method of [Lan20], which select the node leading to the
most distinguishable point, both satisfy the condition of Lemma 3.5. Thus, both node selection processes
ensure that each iteration is effective.

Lemma 3.6. We say that we have a problem-child node selection if for all k ∈ N⋆, and t ∈ [T − 1], ξkt
is chosen such that it maximizes the current gap, i.e.,

ξkt ∈ argmax
ξ∈supp(ξt)

V
k−1
t

(
Ft−1(V

k−1
t )(xkt−1, ξ)

)
− V k−1

t

(
Ft−1(V

k−1
t )(xkt−1, ξ)

)
. (3.8a)

We say that we have an explorative node selection if for all k ∈ N⋆, and t ∈ [T − 1], ξkt is chosen
such that xkt maximizes the distance to previous εt-saturated points, i.e.,

ξkt ∈ argmax
ξ∈supp(ξt)

dkt
(
Ft−1(V

k−1
t+1 )(x

k
t−1, ξ)

)
. (3.8b)

Then, with a problem-child or an explorative node selection method, each iteration of Algorithm 4 is
effective.

As each iteration is effective, Theorem 6 provides a complexity bound given in the following corol-
lary.
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Corollary 3.7. For simplicity, let the total error be γΣ :=
∑T−1

t=1 γt + γt + γFt and choose n,D,L such
that, for all t ∈ [T − 1], nt ⩽ n, Dt = D, Lt = Lt = L. Then, for every ε > γΣ, sufficiently small (e.g.
such that ε ⩽ 2DL + γΣ), Algorithm 4 finds an ε-first-stage solution xk1 within at most Kε iterations
where

Kε :=

(
2DL

ε− γΣ

)n
(T − 1)n+1. (3.9)

3.2.3 Randomized algorithms

When the choice of ξkt is made randomly, there is no guarantee that the iteration will be effective. Thus,
we work in two steps: first, we show that there is a probability p > 0 for an iteration to be effective, then,
by comparing the time to obtain an effective iteration to a geometric random variable of probability of
success p, we deduce a bound on the expected number of iteration required to get an ε-optimal solution.

Remark 3.8 (Notational difficulty of randomized algorithm on stochastic problem). We are now consid-
ering a stochastic algorithm for solving the Problem (MSP). Thus, there are two sources of randomness:
the intrinsic ξ[T ] and the node selection ξkt = ξ̃kt . To distinguish both, we denote in bold random vari-

ables that are ξ[T ] measurable, with a tilde random variables that are (ξ̃kt )t∈[T ],k∈N∗ measurable (and
with both if they are neither).

For example, the trajectory determined during the forward phase (x̃kt )t∈[T ] only depends on the past
node selections, whereas the tentative points ỹkt depends both on the past node selections and the actual
realization of ξt.

Under Assumption (FSN), this discussion is usually avoided by representing the dependence on ξ[T ]
with a (finite) scenario tree, and indexing the variables by the tree nodes.

Let (Ak)k∈N⋆ be the filtration such that Ak := σ
(
ξ̃κt
)
t∈[T−1],κ∈[k], and A∞ =

⋃
k∈NAk. In particu-

lar, a random variable measurable with Ak knows all node selection up to iteration k, which include, for
example, V k

t for all t ∈ [T ]. Using a technical nested Hoeffding lemma, we give a lower bound over the
probability of an iteration to be effective.

Lemma 3.9. Assume that in Algorithm 4, Line 5, we draw ξkt randomly according to the distribution of
ξt, and independently of all other ξ̃κτ as well as (ξτ )τ∈[T−1].

Then, for all iteration k ∈ N of Algorithm 4 and all event Ak−1 ∈ Fk−1 such that P
[
Ak−1

]
> 0, we

have

P
[
Iteration k is effective.

∣∣∣Ak−1
]
⩾

T∏
t=1

(
1− e

−2η2t
D2
t

)
. (3.10)

This lemma shows that the time to obtain an effective iteration is stochastically dominated by a
binomial distribution, which yields the following bound on the expected number of iterations required
for convergence.

Theorem 7. Let assumptions 3.1 to 3.4 and Assumption (SWI) be satisfied and assume that in Line 5, we
draw ξkt randomly according to the distribution of ξt, and independently of the previous ξκτ .

Further, for simplicity, let the total error be γΣ :=
∑T−1

t=1 γt+γt+γ
F
t and choose n,D,L such that,

for all t ∈ [T − 1], nt ⩽ n, Dt = D, Lt = Lt = L.
Then, for ε > γΣ , sufficiently small (e.g., such that ε ⩽ 4DL + γΣ), the expected number of

iterations of Algorithm 4 required to find an ε-solution xk1 to the first-stage problem is bounded by

(T − 1)
(
4DL(T−1)
ε−γΣ

)n+2(T−1)
.



Chapter 4

Exact upper bounds in multistage
stochastic problem

Computing upper bounds of MSPs has always been challenging, which is somewhat surprising when
coming from the deterministic world. Indeed, the easiest way to compute an upper bound is to evaluate
the cost of an admissible solution, which is often easy in deterministic optimization. In risk-neutral
stochastic optimization evaluating the cost of a solution requires computing an expectation, which is
usually intractable for MSPs with a large horizon. For example for the hydroelectric valley problem of
Example 1.17 it would require computing a sum over 1052 scenarios. The usual answer is to rely on
the Monte Carlo method, which yields a statistical error. Unfortunately, this approach usually fails for
risk-averse problems.

Further, in Chapter 3, we described a framework for Trajectory Following Dynamic Programming
algorithms for solving (MSP) under the stagewise independence assumption. In this framework, even if it
is mainly concerned with lower bounds, we also used upper bounds approximations of the value functions
Vt. These upper bounds are sometimes simply theoretical, to enable the derivation of complexity results,
and sometimes used as part of the algorithm itself, e.g., for the problem-child node selection approach
([BDZ17]).

In this chapter, we are discussing how to compute and leverage such upper bounds. While some con-
siderations hold true without the finite support Assumption (FSN), we assume that it holds true through-
out the chapter. First, Section 4.1 briefly recalls the classical computation of upper bounds, either through
statistical methods or by backward propagation. Then, Section 4.2 shows how we can use duality theory
to write a Bellman recursion for the dual problem and then compute upper bounds. These results derive
from [VL10] and [VL14]. Finally, Section 4.3 present possible uses for these upper bounds.

Note that there exist other methods, not discussed here, to determine upper bounds for MSPs. For
example, partitioning methods coupled with Jensen’s and Edmundson-Madansky’s bounds yield efficient
bounds, see [Kuh06] for a broad review and presentation. Moreover, we can approximate the information
structure as in [MAB14, MP16] or do both simultaneously e.g., in [Kuh08].

4.1 Primal computation of upper bounds

First, let’s recall the setting considered here. We consider a, potentially risk-averse, (MSP) problem as
in (1.21) with stagewise independent noise, and its associated Bellman operators

B̂t(Ṽ ) =

Rnt−1 × ξt → R ∪ {+∞}
(xt−1, ξt) 7→ inf

xt∈X (xt−1,ξt)
ct(xt−1, xt, ξt) + Ṽ (xt)

, (4.1a)

and
Bt(Ṽ ) : xt−1 7→ ρt

[
B̂t(Ṽ )(xt−1, ξt)

]
. (4.1b)
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where ρt are (conditional) coherent risk measures. The (MSP) is risk-neutral if all ρt are (conditional)
expectations.

Recall that the associated Bellman equation reads

Vt = Bt(Vt+1), ∀t ∈ [T ], VT+1 given. (4.2)

and the value of the (MSP) is given by V1(x0).
Our objective here is to compute upper bounds, and especially exact upper bounds, over the value of

(MSP) V1(x0), and more generally over the value function Vt.

4.1.1 Statistical upper bounds

A classical method to compute an upper bound for any minimization problem consists in evaluating
the cost associated with an admissible solution. However, with multistage problem computing the cost
associated with a policy is numerically challenging. The most classical approach then is to rely on
statistical methods, especially straightforward in a risk-neutral setting.

risk-neutral problem

Consider a risk-neutral (MSP) problem, and an admissible policy, that is a measurable function that,
given any current state xt−1 and noise realization ξt, returns an admissible state xt ∈ Xt(xt−1, ξt). A
policy, for example, is induced by a collection of forward Bellman operators F̂t, which is a way of solving
each stage-problem (see § 1.3.2), and a collection of value functions approximation (Ṽt)t∈[T ]. We can
simulate such a strategy along any scenario. For strategy induced by approximate value functions, this
corresponds to a forward pass in TFDP Algorithm 4, with random node selection.

For risk-neutral problems, the value of an admissible strategy is simply the expectation of the asso-
ciated cost. While this expectation often cannot be computed in a reasonable time, it can almost1 always
be estimated by Monte Carlo see Algorithm 5.

Data: Random variables ξt simulator, initial state x0, forward operators At, Monte Carlo
simulation number N , confidence level α.

1 for k ∈ [N ] do
2 Draw a scenario ξkt t∈[T ];
3 Set xk0 = x0;
4 Ck = 0 ;
5 for t = 1 : T − 1 do
6 Let xkt = Ft−1(V

k−1
t )(xkt−1, ξ

k
t ) ;

7 Ck ← Ck + ct(x
k
t−1, xt, ξ

k
t ) ;

8 Cest =
∑N

k=1 C
k

N ;

9 σest =

√∑N
k=1(C

k−Cest)2

N−1 ;

10 ub = Cest + z1−α
σest
√
N

Algorithm 5: Computation of statistical upper bound ub by Monte Carlo with asymptotic confi-
dence level of α, and z1−α such that P(G ⩽ z1−α) = 1− α for G ∼ N (0, 1).

This method is quite straightforward, and provides numerically good results. It can also be improved
through a variety of methods (e.g., variance reduction methods, quasi-Monte Carlo sampling methods...)
Unfortunately the upper bound obtained remain statistical and given only with a confidence level. Fur-
ther, risk-averse settings are more delicate.

1As the strategy is assumed to be admissible the associated cost is almost surely finite. However, for the Monte Carlo
method to be relevant we should ensure that the cost has a finite variance, which is the case in most MSP settings.



4.1 Primal computation of upper bounds 45

risk-averse problem

The computation of statistical upper bounds for risk-averse problems is significantly harder than in the
risk-neutral setting. Indeed, the statistical convergence theory exists but often requires, for nested risk
measures, estimating the conditional risk measures at each time-step, meaning that the number of sce-
narios required is exponential in the number of stages see for example [Sha11]. In [KM15], Kozmík
and Morton introduce an importance sampling scheme, dedicated to nested AVAR model, and lever-
aging a user-defined approximation function, that can improve convergence. Finally, [GSC21] suggest
a statistical method for risk measure that can be written as the minimum of expected cost, with addi-
tional variables, that is, such that ρ(X) = minz EP

[
Ψ(X, z)

]
for some adequate function Ψ, AV@R

(or convex combination of AV@R and expectation) being the most common example. At its heart, this
methodology use a decision rule approach for the additional variable z, and then classical Monte Carlo
estimation.

4.1.2 Backward propagation of convex upper bounds

Another approach consists in propagating upper bounds through convexity. The approach, which seems
to have been proposed by [PdMF13], consists in using basic property of Bellman operators: monotonicity
and conservation of convexity (see Proposition 1.24). Indeed, if, for some t ∈ [T ], V t+1 is convex and
above Vt+1 on the reachable states, i.e., , Vt+1 ⩽ V t+1 + IXr

t+1
, then, for a convex Bellman operator,

Bt(V t+1) is also convex and above Vt on Xr
t .

More precisely, let t ∈ [T ], and choose N trial points xnt−1 ∈ Xr
t−1. From a given upper bound

function V t+1 ⩾ Vt+1, compute vnt = Bt(V t+1)(x
n
t ). By monotonicity, we have (xnt , v

n
t ) ∈ epi(Vt). By

convexity of Vt we can define a function V t ⩾ Vt such that its epigraph is conv(xnt , v
n
t ) + {0}nx × R+,

which can be expressed as

V t : x 7→ min
α∈∆n−1

{ N∑
n=1

αnv
n
t |

N∑
n=1

αnx
n
t = x

}
, (4.3a)

where ∆n−1 is the simplex of Rn, i.e., , ∆n−1 =
{
α ∈ [0, 1]n | ∑N

n=1 αn = 1
}

. Equivalently, we have
the dual expression

V t : x 7→ max
λ,µ

{
λ⊤x+ µ | λ⊤xnt + µ ⩽ vnt , ∀n ∈ [N ]

}
. (4.3b)

The approach proposed in [PdMF13] consists in first running SDDP to obtain lower bounds, and uses
the computed forward trajectory as trial points xnt . The upper bounds can thus be computed inductively
Backward. Problem-child approaches (e.g., [BDZ17]) use the same idea to iteratively refine the upper
bounds.

We end with some refinement when we can ensure that Vt is L-Lipschitz continuous on the reachable
set Xr

t−1.

Remark 4.1 (Lipschitz regularization). Let f and g be two proper functions of Rn. Their inf-convolution
is defined as f□g : x 7→ infy∈Rn f(y) + g(x − y). A standard result of convex analysis ensures that
fL := f□L∥ · ∥1 is the largest L-Lipschitz function, for the L1 norm, that is lower than f , also called
the L-Lipschitz regularization of f .

Assume that Vt is L-Lipschitz on Xr
t−1, then if V t ⩾ Vt on Xr

t−1, then its L-Lipschitz regularization

V
L
t := V t□L∥ · ∥1 is also above Vt on Xr

t−1. If V t is obtained by Eq. (4.3), then we can compute V L
t (x)

as follows:

V
L
t (x) = min

α∈∆n−1,y

{ N∑
n=1

αnv
n
t + L∥x− y∥1 |

N∑
n=1

αnx
n
t = y

}
, (4.4a)

= max
λ,µ

{
λ⊤x+ µ | ∥λ∥∞ ⩽ L, λ⊤xnt + µ ⩽ vnt , ∀n ∈ [N ]

}
. (4.4b)
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4.2 Dual upper bounds

In this section, we choose to work with the linear setting (MSLP), as we heavily rely on convexity
and duality. Some results can be extended to the non-linear convex setting but would require technical
discussion to guarantee strong duality that is made simpler by the linear setting. For the same reason, we
make the finite noise assumption Assumption (FSN).

Thus, we consider the following MSLP

min
xt,yt

ρ1

(
c⊤1 y1 + ρ2|ξ1

(
· · ·+ ρT |ξ[T−1]

(c⊤T yT )
))

(4.5a)

s.t. Atxt +Btxt−1 + T tyt = dt ∀t ∈ [T ], (4.5b)

0 ⩽ xt ⩽ xt, 0 ⩽ yt ⩽ yt ∀t ∈ [T ], (4.5c)

xt,yt ≼ ξ[t] ∀t ∈ [T ]. (4.5d)

where ξ[t] = (ξt)t∈[T ] is a sequence of stagewise independent, exogenous, finitely supported random
variables. Further, ρt|ξ[t] is a coherent risk measure conditional on the past noises ξ[t], all equalities hold
almost surely, and constraint (4.5d) is the non-anticipativity constraint.

In particular, contrary to Chapter 2, we chose to explicitly give a state xt and a control variable yt.
In a large part of the stochastic programming literature, the control y is considered part of the state x.
However, as we have seen in Chapter 3, the complexity of TFDP algorithms depends on the dimension
of the state xt and not of the control yt.

In this section, we first tackle in § 4.2.1 the risk-neutral case by showing a Bellman recursion between
the Fenchel transform of the expected-cost-to-go functions. For the risk-averse case, in § 4.2.2, we follow
a different path, by writing Problem (4.5) in an extensive form, computing its dual and recognizing a
Bellman recursion. We finally link with a transformation of the risk-adjusted cost-to-go functions.

4.2.1 risk-neutral case

In the risk-neutral case, that is when ρt|ξ[t−1]
:= E[·|ξ[t−1]], the cost-to-go function Vt satisfy the Bellman

equation Vt = Bt(Vt+1) with1

Bt(R) : xt−1 7→ min E
[
c⊤t yt +R(xt)

]
(4.6a)

s.t. Atxt +Btxt−1 + T tyt = dt, (4.6b)

0 ⩽ xt−1 ⩽ xt−1, 0 ⩽ xt ⩽ xt, 0 ⩽ yt ⩽ yt. (4.6c)

The main idea of the approach presented here relies on being able to obtain a Bellman recursion for
the Fenchel transform of the value function, that is an equation of the form V ⋆

t = B‡t (V ⋆
t+1) where B‡t is

a Bellman operator. This is a straightforward, if tedious, computation. With this Bellman recursion, we
can then run a TFDP algorithm, for example an SDDP algorithm, that computes outer approximations
of V ⋆

t instead of Vt. Taking again the Fenchel transform, we obtain inner approximation of Vt. Unfortu-
nately, this approach, developed in [VL10], is not completely straightforward. Indeed, the dual recursion
obtained does not satisfy the compactness assumption required for SDDP (or more generally TFDP) to
converge. We overcome this difficulty through Lipschitz regularization, which can also be interpreted
as an exact penalization of some constraints. The remainder of this section brushes off the main steps
toward this goal.

1For technical reasons we chose to incorporate a constraint on xt−1 in the definition of the Bellman operator, to easily bound
its domain.
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Remark 4.2 (Fenchel transform). Let E be a topological vector space and E⋆ it’s topological dual. The
Fenchel transform of a function f : E 7→ R, is defined as

f⋆(x⋆) := sup
x∈E

〈
x⋆ , x

〉
− f(x). (4.7)

We recall here a few elementary properties:

1. f⋆ is a convex function;

2. if f ⩽ g then f⋆ ⩾ g⋆;

3. if f is L-Lipschitz, then ∥f⋆∥∞ is bounded by L.

Recall that (see Remark 1.21) a Bellman operator is an (abstract) Linear Bellman operator (LBO) if
it has the form of (4.6), where constraint (4.6b) can be extended to any linear constraint on the random
vector (xt,yt). This allows to consider expectation constraints that naturally appear in the dual of a
standard LBO (see below).

Recall that the reachable set Xr
t is the set of states that can be attained at time t (see Eq. (1.14)). The

domain of Bt, defined in (4.6), is the set of xt−1 such that there exists (xt,yt) satisfying (4.6b)-(4.6c).
We say that a LBO Bt is Ṽ -compatible, for a proper polyhedral function Ṽ , if for all xt−1 ∈ dom(Bt),
and all ξ ∈ supp(ξt) the attainable states xt ∈ X (xt−1, ξ) are such that Ṽ (xt) < +∞. We say that the
sequence of LBO associated with (4.5) is compatible if Bt is compatible with Vt+1 for all t, or, in other
words, if, for all t ∈ [T ], Xr

t ⊂ dom(Bt). We can show that, for any proper polyhedral function R such
that Bt is R-compatible, [

Bt(R)
]⋆

= B‡t
[
R⋆
]
, (4.8)

where

B‡t (Q) : x⋆t−1 7→ inf
λ,ζ,x⋆

t

E
[
d⊤λ+ xtζ

x + ytζ
y + xt−1(ζ

x−)+ +Q(x⋆t )

]
(4.9a)

s.t. c+ T⊤
t λ+ ζy ⩾ 0, (4.9b)

x⋆t +A⊤
t λ+ ζx ⩾ 0, (4.9c)

x⋆t−1 = E
[
B⊤
t λ
]
+ ζx− , (4.9d)

ζx, ζy ⩾ 0. (4.9e)

From this, we have that V ⋆
t = B‡t

[
V ⋆
t+1

]
. Unfortunately, this recursion does not satisfy our need as

B‡t is not compact, more precisely we are lacking bounds constraints on the dual variables.
This problem is solved by compacting the dual Bellman operator. More precisely, through technical

lemma (see [VL10], Proposition 2.8) we can guarantee that Vt is Lt-Lipschitz, on Xr
t for the L1 norm,

and hence that we can constrain the dual variable to be bounded by Lt. Thus, we define the compactified
operator B‡t,Lt

(Q) which adds to (4.9) the following bound constraint

∥x⋆t ∥∞ ⩽ Lt. (4.9f)

Remark 4.3 (Lipschitz regularization and dual bound). Let f be a proper convex function. Recall that
fL := f□L∥ · ∥1 is the largest L-Lipschitz function, for the L1 norm, that is lower than f . Standard
convex analysis ensure that (fL)⋆ = f⋆ + IB∞(0,L).

Note that if Vt is Lt-Lipschitz on Xr
t , then V Lt

t = Vt on Xr
t , and taking the Fenchel transform yields

a sequence of compatible, compact, abstract LBOs such that{
V ⋆
T+1 = I0
V ⋆
t = B‡t,Lt

(V ⋆
t+1)

(4.10)
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With this Bellman recursion, any TFDP algorithm, for example SDDP, can be run over (4.10) to obtain a
lower bound over V ⋆

t , which in turn yields (after Fenchel transform), an upper bound of Vt.

We end with small comments on the required elements to run a TFDP algorithm on the dual recursion.

Remark 4.4 (Compacity of the dual operator). In the primal problem, relatively complete recourse
yields compatibility (up to some additional explicit constraint) and compactness is ensured by (4.6c).
However, compactness of the domain of Vt directly implies Lipschitz regularity of V ⋆

t , and in particular
that the domain of V ⋆

t is not compact. To circumvent this difficulty we have to consider the Lipschitz
regularization V Lt

t , whose Fenchel transform has a compact domain. In other words, bounding the
dual variables is equivalent to considering Lipschitz’s regularization of the primal. This technicality is
unavoidable to ensure the compactness of the dual.

Remark 4.5 (Dual Relatively complete recourse). Compatibility of the dual Bellman operator, or rela-
tively complete recourse in the dual, was not discussed here. In fact, this can be a non-trivial difficulty
in some classical settings (see [GSC21]). Here, this assumption is satisfied by having explicitly written
bounds on the state and control variables in (4.6c). These explicit bounds result in dual variables ζ
which can equivalently be interpreted as slack variables for the dual problem with exact penalization
cost given by the primal upper bounds see Eq. (4.9a).

4.2.2 risk-averse case

As discussed in § 4.1.1, risk-neutral upper bounds can easily be estimated through statistical means,
while risk-averse upper bounds are more challenging. We have thus extended the previous approach to
encompass polyhedral risk-averse setting in [VL14]. We take a different approach than in § 4.2.1 which
dodges some technical difficulties and offers another understanding of the method. Indeed, we consider
an extensive formulation of Problem (4.5), seen as a large linear program. Standard linear programming
duality theory yields an extended formulation of the dual problem, we then recognize a Bellman recursion
to solve it. The main trick here is to consider a dual function with two arguments: the dual state value,
and the worst-case probability. We can then apply a TFDP algorithm, e.g., SDDP, on this dual, concave,
formulation to obtain upper bounds of the dual problem, which are upper bounds of the primal problem
through strong duality of linear programs.

We present the main arguments here.

Polyhedral risk measures and duality

We consider a polyhedral risk measure ρ, that is, a coherent risk measure of the form

ρ : t 7→ sup
Q∈Q

EQ[t] = max
k∈[K]

{EQk [t]}, (4.11)

where Q = conv({Qk}k∈[K]). Polyhedral risk measures can be either chosen as interpretable risk-
measures (e.g. AV@R in a finite setting) or as the worst case among a set of probabilities estimated by
various experts. Since we don’t assume a reference probability, we resort to describing the extremal risk
measures, which may be very numerous.

We denote the elements of the support of ξ by ξ1, . . . , ξJ , and Qk[ξ = ξj ] = qkj . Now, Vt(xt−1) (as
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recalled in Eq. (4.2)) is given by:

inf
x,y;z,θ

z (4.12)

s.t. z ⩾
∑
j∈[J ]

qkj θj ∀k, [ϕk]

θj ⩾ c⊤j yj + Vt+1(xj) ∀j, [γj ]

Ajxj +Bjxt−1 + Tjyj = dj ∀j, [λj ]

xj , yj ⩾ 0 ∀j, [µj , νj ]

xj ⩽ xt, yj ⩽ yt ∀j. [ζxj , ζ
y
j ]

Using the dual multipliers denoted with Greek letters as indicated, we obtain the following dual
problem

sup
ϕk,γj ,λj ,
µj ,ζ

y
j ,ζ

x
j

∑
j∈[J ]

[
λ⊤j (Bjxt−1 − dj)−xtζxj −ytζyj (4.13)

+ inf
xj
γjVt+1(xj) + (A⊤

j λj − µj+ζxj )⊤xj
]

s.t.
∑
k

ϕk = 1, ϕk ⩾ 0,∑
k

ϕkq
k
j = γj ∀j,

γjcj + T⊤
j λj+ζ

y
j ⩾ 0 ∀j,

µj ⩾ 0 ∀j.

The constraints on ϕk are equivalent to describing the vector of γj’s as a convex combination of the ex-
treme probabilities Qk. Therefore, one can rewrite problem (4.13) to include the constraint {γj}j∈[J ] ∈
Q instead of the first two lines. This, shows that the variables γj correspond to one supporting the prob-
ability of the risk measure ρ. In particular, if a given scenario is effective, in the sense of [RBHdM19],
then there exists an optimal γ which charge this scenario.

Multistage risk-averse problem duality

We now extend the duality to the full multistage problem. In the stagewise independent setting, we let
Ωt be the set of all possible realizations of ξt, and the risk measure ρt is defined by ρt = supQ∈Qt

EQ[·],
for a polyhedral subset Qt of probability measures on Ωt. The tree T describing the stochastic process
is such that each node n of depth t is associated with a possible value of ξ[t]. For any node n, the set of
its children is denoted by Cn, and L is the set of leaves of T .

We introduce variables zn to stand for the risk-adjusted value of our problem starting from node n,
and θm represents the cost-to-go following the branch of node m ∈ Cn. To reduce the notational burden,
we assume that, for all t, ρt = ρ. Then, the risk-averse problem (4.5), with value Vn0(x̃n0), can be
written as the following linear program:
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min z0 (4.14)

s.t.
∑
m∈Cn

qkmθm ⩽ zn ∀n ∈ T \L, ∀k ∈ [K], [Φkn]

c⊤mym + zm ⩽ θm ∀m ∈ T \{n0}, [γm]

Amxm +Bmx̃n + Tmym = dm ∀n ∈ T \L, ∀m ∈ Cn, [λm]

zℓ = 0 ∀ℓ ∈ L, [ηℓ]

xn = x̃n ∀n ∈ T \L, [πn]

xm ⩾ 0, ym ⩾ 0 ∀m ∈ T \{n0}, [µm, νm]

x̃m ⩽ xm, ym ⩽ ym ∀m ∈ T \{n0}, [ζxm, ζ
y
m]

where x̃n0 is a parameter and not a variable, and we add the equalities xn = x̃n to highlight the time
dynamics. Defining γn0 = 1, the linear programming dual of the above problem is

sup
Φ,γ,π,λ

π⊤n0
x̃n0 −

∑
m∈T \{n0}

λ⊤mdm − x⊤mζxm − y⊤mζym (4.15)

∑
k∈[K]

Φkn = γn ∀n ∈ T \L, [zn]∑
k∈[K]

Φknq
k
m = γm ∀n ∈ T \L, ∀m ∈ Cn, [θm]

πn = ζxn +
∑
m∈Cn

B⊤
mλm ∀n ∈ T \L, [x̃n]

πℓ = ζxℓ ∀ℓ ∈ L, [zℓ]

πm +A⊤
mλm ⩾ 0 ∀m ∈ T \{n0}, [xm]

γmcm + T⊤
mλm + ζym ⩾ 0 ∀m ∈ T \{n0}, [ym]

Φkn ⩾ 0, γn ⩾ 0 ∀n ∈ T ,
ζxm ⩾ 0, ζym ⩾ 0 ∀m ∈ T \{n0}.

Note that Φn can be seen as barycentric coordinates of the extreme points of Q. Thus, the first two
constraints can be more compactly written as (γm)m∈Cn ∈ γnQ.

By backward recursion, this problem can be solved through the following recursive equations, where,
for all leaves ℓ ∈ L, and n ∈ T \L,

Dℓ(πℓ, γℓ) = I{πℓ⩾0} + ζ⊤ℓ xℓ, (4.16a)

Dn(πn, γn) = sup
ζxn,πm,γm,λm,ζ

y
m

1{n=n0}π
⊤
n0
x̃n0 − x⊤n ζxn+ (4.16b)∑

m∈Cn

−λ⊤mdm − y⊤mζym +Dm(πm, γm)

s.t. (γm)m∈Cn ∈ γnQ,
ζxn +

∑
m∈Cn

B⊤
mλm = πn,

πm +A⊤
mλm ⩾ 0, ∀m ∈ Cn,

γmcm + T⊤
mλm + ζym ⩾ 0, ∀m ∈ Cn,

ζxm ⩾ 0, ζym ⩾ 0, ∀m ∈ T \{n0}.
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By the independence assumption, a backward induction shows that Dn = Dn′ for all nodes n and n′

of the same depth. Thus, defining, we obtain the following recursion for the dual value functions:

DT (πT , γT ) = I{πT⩾0} + ζ⊤T xT , (4.17a)

Dt(πt, γt) = sup
(γj ,λj ,πj ,ζ

y
j )j∈[Jt]

,ζx
−x⊤t ζx +

∑
j∈[Jt]

−d⊤j λj − y⊤t+1ζ
y
j − x⊤t ζx (4.17b)

+
∑
j∈[Jt]

−d⊤j λj − y⊤t+1ζ
y
j +Dt+1(πj , γj)

s.t. (γj)j∈[Jt] ∈ γtQ,
ζx +

∑
j∈[Jt]

B⊤
j λj = πt

πj +A⊤
j λj ⩾ 0, ∀j ∈ [Jt],

γjcj + T⊤
j λj + ζyj ⩾ 0, ∀j ∈ [Jt],

ζyj ⩾ 0, ζx ⩾ 0.

This decomposition satisfies the RCR conditions. Indeed, for every πt and every γt ⩾ 0, any γ ∈
γtQ and λ = 0 are admissible, using slack variable ζx as needed. Then, πj are chosen to satisfy the
inequalities πj +A⊤

j λj ⩾ 0, and the remaining constraints can be adjusted using ζyj .

Remark 4.6. Relatively complete recourse in a dual formulation is not guaranteed (see for example
[GSC19]). In our setting, the explicit upper bounds over x and y ensure RCR. The existence of such
upper bounds is equivalent to the existence of exact penalization coefficients in the dual, which is the
tool used in [GSC19] to deal with this difficulty. Alternatively, we could incorporate feasibility cuts in
the algorithm.

Bounding the dual state

With our boundedness assumption, we have relatively complete recourse in the dual. To prove conver-
gence, we still need to ensure that the dual state remains bounded through a compactification process
akin to the risk-neutral case.

By assumption, we know that there exists an optimal primal solution. Further, by linear programming
duality, we know that there exists an optimal dual solution. The marginal interpretation of the Lagrange
multiplier π (see Problem (4.14)) states that, for each node, the optimal dual πn is a subgradient of the
primal value function for γn = 1. In particular, πn/γn can be bounded by the Lipschitz constant of the
primal value function Vn. In the independent setting, assuming that Vt is Lt-Lipschitz continuous on its
domain, we can add the constraint |πj | ⩽ γjLt+1 to (4.17) for each j, without changing its value.

Therefore, we use the compactified recursion presented in (4.18). Since it has RCR and bounded
states, the SDDP algorithm on this recursion converges.

Dt(πt, γt) = inf
ζx,γj ,λj ,πj ,ζ

y
j

x⊤t ζ
x +

∑
j∈[J ]

d⊤j λj + y⊤t+1ζ
y
j +Dt+1(πj , γj)

s.t. γ ∈ γtQ,
ζx +

∑
j B

⊤
j λj ⩾ πt,

πj +A⊤
j λj ⩾ 0 ∀j ∈ [Jt],

γjcj + T⊤
j λj + ζyj ⩾ 0, ∀j ∈ [Jt],

|πj | ⩽ γjLt+1, ∀j ∈ [Jt],
ζx ⩾ 0, ζyj ⩾ 0, ∀j ∈ [Jt].

(4.18)

Dual risk-averse Bellman operator

We start with some convex analysis recalls.
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Let f : Rn → (−∞,∞] be a proper lower semicontinuous convex function. Recall (see [Com18] for
more details) that the perspective function of f , denoted f̃ , is a convex, lower-semicontinuous function
of R1+n, such that

f̃ : R× Rn → (−∞,+∞]

(γ, x) 7→


γf(x/γ), if γ > 0

rec(f)(x), if γ = 0

+∞ otherwise

(4.19)

where rec(f) is the recession function of f defined as

rec(f) : Rn →]−∞,+∞] : x 7→ lim
t→+∞

f(z + tx)

t
, (4.20)

where z can be chosen as any point in the domain of f . Both the recession and the perspective function
of proper lower semicontinuous convex function are proper lower semicontinuous convex function as
well.

Inspired by the recurrences in (4.13), we introduce the coperspective function. Let f : Rn → R.
The coperspective of f is the perspective of the Fenchel conjugate, that is (f⋆)∼, that we denote f⊠. In
particular, for ψ ∈ Rn and γ ∈ R++, we have

f⊠(ψ, γ) := sup
x∈Rn

ψ⊤x− γf(x). (4.21)

Remark 4.7. The coperspective is jointly convex in ψ, γ, lower semicontinuous, and a positively homo-
geneous function of degree 1: for all t > 0,

f⊠(t · ψ, t · γ) = t · f⊠(ψ, γ).

Further, cuts for a convex function and its perspective are essentially equivalent. If f(x) ⩾ f(x0) +
g⊤(x− x0) = θ + g⊤x, then

f̃(x, t) = t · f(x/t) ⩾ tf(x0) + tg⊤(x/t− x0)
⩾ tf(x0) + g⊤(x− t · x0)
⩾ θ · t+ g⊤x

Similarly, if f̃(x, t) ⩾ θ · t+ g⊤x+ β, then f(x) ⩾ g⊤x+ θ + β. Note that if the cut for f̃ is exact we
can assume β = 0.

Consider a polyhedral risk measure ρ and the associated risk-averse Bellman operator B that, to any
cost-to-go function V and initial state xt−1 associates the value of Problem (4.12).

The coperspective of B(V ) can be calculated using (4.13). Leveraging positive homogeneity, for
ψ0 ∈ Rn and γ0 > 0, we get that B(V )⊠(ψ0, γ0) is given by

sup
x0

ψ⊤
0 x0 (4.22)

+ inf
γ,λ,µ
ζx,ζy

∑
j∈[J ]

λ⊤j (dj −Bjx0) + ζyj
⊤
yt+1

+ζxj
⊤xt+1 + V ⊠(µj −A⊤

j λj − ζxj , γj)
s.t. γ ∈ γ0Q

γjcj+ζ
y
j + T⊤

j λj ⩾ 0 ∀j
µj , ζ

x
j , ζ

y
j ⩾ 0.
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Note that, if V is polyhedral, so are its Fenchel dual and its perspective. Thus, by linear programming
duality, we can interchange sup and inf to obtain

[B(V )]⊠(ψ0, γ0) = inf
γ,λ
ζx,ζy

∑
j∈[J ]

λ⊤j dj + ζyj
⊤
yt+1 + ζxj

⊤xt+1+V
⊠(ψj , γj) (4.23)

s.t.
∑
j

B⊤
j λj = ψ0

γ ∈ γ0Q
γjcj + ζyj + T⊤

j λj ⩾ 0 ∀j
ψj + ζxj +A⊤

j λj ⩾ 0 ∀j.

This equation also defines a risk-neutral LBO B⊠ that takes a homogeneous recourse function V ⊠

and returns another homogeneous convex function of the same dimension. We call this operator the
projective dual Bellman operator associated with B.

Comparing (4.17) and (4.23), we notice the decomposition is not done at the same time-step for all
variables: in the first one, ζx is a single variable, relaxing the incoming dual state constraint; whereas
in the second, it relaxes the outgoing dual state constraint. Substituting πj = γj + ψj , we obtain the
following proposition, linking the coperspectives of the primal value functions with the value functions
of the dual problem.

Proposition 4.8. For t ∈ [T ], if the dual value function Dt is defined by (4.17), and Vt is the primal
value function

Dt(πt, γt) = − inf
ζxt +ψt=πt,ζxt ⩾0

xt
⊤ζxt + V ⊠

t (ψt, γt).

In particular, Dt is a concave, positively homogeneous, one-sided Lipschitz regularization of V ⊠
t .

Further, the value of primal Problem (4.5) is supπ0 π⊤0 x0 +D0(π0, 1).

4.3 Using upper bounds

In this section, we briefly discuss a few uses of upper bounds for MSPs, in addition to simply giving a
cost estimate: to stop the algorithm, to modify the algorithm and to construct new admissible policies.

4.3.1 Stopping test

For any algorithm, we need to have a stopping rule, which is a test that stops the algorithm. In some
cases (e.g., shortest path problem) the optimization algorithm stop because it reached the optimal solution
of the problem at hand. Most commonly, either because the convergence is asymptotic or too slow,
the algorithm is stopped before. A stopping test can be very pragmatic (e.g., running time, number of
iterations), linked with a slowing of the algorithm (e.g., small gradient norm) or more mathematically
precise, typically by guaranteeing some property of the returned solution. For example, providing upper
and lower bounds allow us to precisely characterize the value of the problem, and the algorithm can be
run until we get the desired precision ε. If in addition the upper bound also bound the cost associated
with the current solution we can guarantee that the solution returned is ε-optimal.

When to stop an SDDP algorithm is often a difficult question. The original suggestion [PP91] was to
stop when the exact lower bound reached the interval confidence of the upper bound obtained by Monte
Carlo with the current solution. This suggestion is mathematically flawed as an imprecise Monte Carlo
estimation results in an earlier stopping1. Shapiro [Sha11] improved this idea by suggesting stopping
when the difference between the (exact) lower bound and the upper bound of the Monte Carlo confi-
dence interval is small enough. This stopping test is mathematically sound2, but can slow the algorithm.

1Of course, good practitioners used it with a reasonable number of scenarios, keeping it relevant.
2Although one should be careful as to what this stopping test guarantees. Repeating the test means that the confidence

decrease.
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Shapiro suggested using past forward iterations, instead of new simulations, as a cheap proxy for this
upper bound estimation, reporting good numerical results.

In addition to the mathematical quality of the stopping test, we know from theory (see Chapter 3)
that the convergence of TFDP algorithm is slow. In practice, we observe that we improve the quality of
the lower bound up to a certain instance-dependent point after which the algorithm progress very slowly.
Hence, [HdMDMF11] discussed other statistical stopping criteria that test that the lower bound is not
improving anymore within any reasonable length of time.

In [VL10] we argue that upper bounds, especially exact upper bounds, can be used to design precise
and reliable stopping tests. Indeed, we run both a primal and dual SDDP algorithm, and stop when the
difference between the exact upper and lower bound are smaller than ε. The same obviously holds true
for the risk-averse setting.

4.3.2 Algorithms variations

Computing upper bounds can be used to derive variations of the SDDP algorithm, which falls into the
TFDP framework. Recall that the forward phase of a TFDP Algorithm 4 consists in a node selection
(choosing ξkt ∈ supp(ξt)), and a forward step using the current lower approximation for a given forward
operator (xkt = At−1(V

k−1
t )(xkt−1, ξ

k
t )). Hence, upper bounds can be used in at least two ways: in the

node selection process, and in the forward operator definition.

Problem-child node selection

When maintaining both a lower and upper bound, problem-child node selection (e.g., [BDZ17]) consists
in selecting the node leading to the worst possible gap. That is, given a current state xkt−1, we compute,
for all ξ ∈ suppxit, the potential next state xkt = At−1(V

k−1
t )(xkt−1, ξ). For each potential next state

we compute the gap V t(x
k
t )−V t(x

k
t ). The state selected to go forward is the one with the maximal gap.

This node selection process has been shown to be efficient in some settings, while generally being
slower than random node selection. However, it is more flexible than random node selection, as it can be
adapted to some non-convex settings (e.g. [DDB20]).

Regularization

SDDP algorithm can be seen as a multistage extension of Kelley’s cutting plane methods, which are
known to be slow. Bundle methods add a regularization layer over the classical Kelley’s algorithm,
and have been shown to greatly improve its numerical efficiency. That is why there have been several
contributions made toward regularizing the SDDP algorithm, with some partial successes. Usually, reg-
ularization is obtained by adding a term penalizing the distance to the last iterate. Unfortunately, for
MSPs, the last iterate should be the stochastic process of the state, that is its value over the whole tree,
and not the realization on a single scenario, making a direct adaptation intractable.

Another path, known as level-regularization, consists in using an updated upper bound on the objec-
tive function. This approach has been adapted to SDDP algorithms in [VAdOS19], where the question
of having good upper bounds remained open. It fit the TDFP framework as a modification of the forward
operator At.

4.3.3 Inner approximation policy

A less explored use of upper bounds is to leverage them to define a policy. Indeed, in SDDP we ob-
tain a collection of lower-approximation of risk-adjusted cost-to-go functions (V t), which defines an
admissible policy

π
V t
t : x, ξ 7→ At(V t)(x, ξ) . (4.24)

If we are updating upper approximations (V t), we might alternatively use a policy πV t
t if it is well-

defined. It might not be if dom(V t) ⊊ dom(Vt), which is often the case for the upper bound generated
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Figure 4.1: Convergence of the exact lower and upper bounds, and Monte Carlo estimation of the cost
induced by the outer approximation (MC-OA) and inner approximation (MC-IA).

from the primal backward recursion (4.3). Indeed, in this case, the domain of the upper bound function
is the convex hull of the trial points, and a relatively complete recourse assumption does not guarantee
that we can get there. However, if we know that the value function is Lt-Lipschitz, we can use instead
the Lipschitz-regularized upper bound V L

t (see (4.4)).
This idea is explored in [VL10], Section 4. In particular, we can adapt the proof to show that V L

t (x)
is not only an upper bound on the optimal value of the problem Vt(x), but also on the risk-adjusted

cost incurred by the policy πV
L
t

t . Meaning that inner approximation induced strategy can guarantee the
quality of strategy in the risk-averse setting. This is in stark contrast with the usual risk-averse SDDP
methodology where not only estimating an upper bound to the optimal value of the problem is difficult,
but even estimating the risk-adjusted cost incurred by a given strategy is difficult.

Finally, numerical results have shown that inner approximation strategies are well-behaved. Indeed,
classical outer approximation based strategies can be non-monotone in iteration, meaning that the quality
of a strategy can decrease when adding cuts. It seems that inner approximation based strategies are better
behaved in this regard (see Fig. 4.1)
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Part II

Applications of optimization under
uncertainty





Introduction to Part II

Since the beginning of my academic life, I have had the opportunity to contribute to various industrial
collaborations that I would like to acknowledge here. They provide the scientific materials for the second
part of this manuscript.

Management of smart-grids

With Michel de Lara, Pierre Carpentier and Jean-Philippe Chancelier we produced a report [VL2] on the
optimization methods for the smart grid for the French Energy Council. The report covers various tools
for stochastic optimization to tackle the renewable energy and demand uncertainty, which are briefly
presented in Chapter 5.

The main idea is to cast smart-grid management problems as large-scale, structured, MSPs. The
goal is to present mathematical tools that allow decomposing these large-scale MSPs into smaller more
tractable ones. In particular, as part of a long-term collaboration with EdF, we developed a method
coupling a spatial decomposition approach, to cut the energy network into small elements, and a time-
decomposition approach using the Dynamic Programming tools presented in Part I.

Game for energy markets

Energy markets are very complex, for various reasons, and the subject of a large amount of work.
In collaboration with the Program Gaspard Monge for optimization (PGMO), I have worked on

various projects related to energy management and energy markets. Most of the work presented in Part I
has been motivated and supported in part by PGMO projects.

In Chapter 6, I present the result of a specific project, carried out with Andy Philpott. The objective
is to study the impact of risk aversion on the agents in energy markets. Indeed, in a risk-neutral setting,
an equilibrium in a complete market is equivalent to the social optimum problem. We show in [VL8]
that it is no longer the case if the agents are risk-averse. Furthermore, we show that risk-aversion, even
with strong convexity assumptions, there are multiple equilibria, and standard off-the-shelf tools might
select an unstable equilibrium.

Balancing service level, stock and cost in the supply chain

The Ph.D. grant of Etienne de Saint Germain, co-supervised with Frédéric Meunier, was funded by
Argon&Co, a management consulting company focusing on supply chain problems. The objective was
to provide mathematical models and optimization methods to find a balance between cost, inventory
stock and service level. This work is presented, in part, in Chapter 7.
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Chapter 5

Decomposition tools and applications in
energy management

In this chapter, we present decomposition techniques for large-scale multistage stochastic program (MSP)
and a use case in energy management. This work derives from my Ph.D. thesis work and long-term col-
laboration with P. Carpentier, J-Ph. Chancelier, M. De Lara as well as former student F. Pacaud.

We first give a generic presentation of decomposition methods in Section 5.1 for large-scale MSPs.
More details can be found in the technical report [VL2]. Section 5.2 is dedicated to the Dual Approximate
Dynamic Programming (DADP) approach, which can be understood as a Lagrangian decomposition
method for a relaxed problem. Finally, Section 5.3 presents a hydroelectric valley application of DADP
that can be found in [VL7].

For simplicity, and algorithmic reasons, we make in this chapter the finite noise assumption Assump-
tion (FSN), and stagewise independence assumption Assumption (SWI).

5.1 Decomposition methodologies for large-scale multistage problems

We present here a structured version of the risk-neutral MSP Problem (1.9). We aim to underlie how the
large-scale problem can be seen as a sum of independent problems linked by coupling constraints. First,
§ 5.1.1 introduces the setting and notations. Then, § 5.1.2 presents the Dynamic Programming approach
as a sequential time-decomposition method. § 5.1.3 use Lagrangian duality theory to decompose the
MSP in deterministic problems, ending with a quick presentation of the well-known Progressive-Hedging
algorithm of Rockafellar and Wets [Wet89]. Finally, § 5.1.4 also uses Lagrangian duality to decouple the
MSP problem. This last decomposition is then improved upon in Section 5.2.

Before diving in we give some notational pointers to ease understanding. Generically speaking,
i ∈ [I] represent a unit, t ∈ [T ] a stage, s ∈ S a scenario, k an iteration in an algorithm. As usual,
x represents a state, u a control and ξ a noise. For example, xit represents the local state of unit i at
stage t. When an index is omitted, it means that we consider the collection, e.g., xt = (xit)i∈[I] and
xi = (xit)t∈[T ].

5.1.1 Coupled multistage problem setting

Consider I controlled stochastic dynamic system following a dynamic equation

xi0 given. xit = dynit(x
i
t−1,u

i
t, ξt), ∀i ∈ [I], ∀t ∈ [T ].

As in Problem (1.9), each system have an instantaneous cost Lit, a final cost V i
T+1 and have their control

uit constrained to be in U it (xit−1, ξt). Further, these dynamical systems are coupled additively by the
following constraint

I∑
i=1

θit(x
i
t−1,u

i
t, ξt) = 0 ∀t ∈ [T ],
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where θit(x
i
t−1,u

i
t, ξt) can be understood as the output of system i which interact with the other stochas-

tic dynamical systems.
We aim to minimize the expected sum of costs over the I systems resulting in the following exten-

sion1 of Problem (1.9).

Min
(ui

t)t∈[T ],i∈[I]

EP

[ I∑
i=1

T∑
t=1

Lit(x
i
t−1,u

i
t, ξt) + V i

T+1(x
i
T )

]
(5.1a)

s.t. xi
t = dynit(x

i
t−1,u

i
t, ξt), ∀t ∈ [T ],∀i ∈ [I], (5.1b)

uit ∈ U it (xit−1, ξt), ∀t ∈ [T ],∀i ∈ [I], (5.1c)
I∑
i=1

θit(x
i
t−1,u

i
t, ξt) = 0, ∀t ∈ [T ], (5.1d)

uit ≼ At, ∀t ∈ [T ],∀i ∈ [I]. (5.1e)

Assume that the set of scenarios S is finite, each s ∈ S having probability πs. Each scenario s
defines a sequence of noise (ξst )t∈[T ]. We define the bundle of scenarios that coincides with s up to time
t as

nst :=
{
s′ ∈ S | ξs

′
τ = ξs

′
τ , ∀τ ∈ [t]

}
. (5.2)

Note that, for all scenario s′ ∈ nst , we have nst = ns
′
t . This stochastic structure can thus be represented on

a tree T 2, each node n being defined as a bundle of scenarios. We denoteW the set of non-anticipative
control, that is satisfying (5.1e), which we can denote

W :=
{
u | ui,s[t] = ui,s

′

[t] ∀s′ ∈ nst , ∀t ∈ [T ], ∀i ∈ [I]
}
. (5.3)

With these notations, we can give a splitted, extended formulation of the above Problem (5.1)

Min
(uit)t∈[T ],i∈[I]

∑
s∈S

πs
I∑
i=1

T∑
t=1

Lit(x
i,s
t−1, u

i,s
t , ξ

s
t ) + V i

T+1(x
s
T ) (5.4a)

s.t. xi,st = dynit(x
i,s
t−1, u

i,s
t , ξ

s
t ), ∀t ∈ [T ], ∀i ∈ [I], ∀s ∈ S, (5.4b)

ui,st ∈ U it (xi,st−1, ξ
s
t ), ∀t ∈ [T ], ∀i ∈ [I], ∀s ∈ S, (5.4c)

I∑
i=1

θit(x
i,s
t−1, u

i,s
t , ξ

s
t ) = 0, ∀t ∈ [T ],∀s ∈ S, (5.4d)

ui,s[t] = ui,s[t] , ∀s′ ∈ nst ,∀s ∈ S,∀t ∈ [T ], ∀i ∈ [I]. (5.4e)

Note, in particular, that for every t ∈ [T ] and i ∈ [I], we have one state and control variable per scenario.
The non-anticipativity constraint (5.1e) are represented here through the equality constraints (5.4e).

This large, coupled, Problem (5.4) is illustrated through Fig. 5.1, where each node of the cube rep-
resents an element of the sum in the objective, and each link a coupling constraint. More precisely, the
horizontal lines, parallel to "time" axis, represent the dynamic constraints (5.4b); the horizontal lines,
parallel to "uncertainty" axis, represent the non-anticipativity constraints (5.4e) coupling scenarios to-
gether; the vertical links, parallel to "unit" axis represent the spatial coupling constraint (5.4d).

The remainder of this section gives an overview of how this large-scale problem can be decomposed
into smaller problems that can be more efficiently solved. The key ingredient, except for Dynamic Pro-
gramming, consists in dualizing the coupling constraint - also known as Lagrangian relaxation - in order

1One could also claim that Problem (5.1) is a specific, structured, instance of Problem (1.9).
2The construction of the scenario tree presented here slightly differ from the one given in Definition 1.11, but there is a

one-to-one correspondence between both description.



5.1 Decomposition methodologies for large-scale multistage problems 63

unit

time

uncertainty

Figure 5.1: Illustration of the coupled large-scale optimization problem

(a) Time decomposition (b) Scenario decomposition (c) Spatial decomposition

Figure 5.2: Decomposition of large-scale multistage problems

to obtain a sum of decoupled problems. As such convexity is a key assumption. These decompositions
are illustrated in Fig. 5.2. Note that having links not parallel to the axes, for example, delay between the
action on one unit i and its impact on other units, would render the decomposition approaches presented
here more difficult.

5.1.2 Time-decomposition: Dynamic Programming

As seen in § 1.2.3, and largely exploited throughout Part I the Dynamic Programming principle en-
sures that, under a stage-wise independence assumption, we can reduce the T stage problem into T
(parametrized) one-stage problem. Thus, we can see dynamic programming as a time decomposition of
the large-scale MSP problem.

More precisely, solving Problem (5.4) by Dynamic Programming can be done through the use of a



64 Decomposition tools and applications in energy management

coupled Bellman operator Bt defined as

B̂t(R) : (x, ξt) 7→ Min
(uit)i∈[I]

I∑
i=1

Lit(xt−1, ut, ξt) + R
(
(xit+1)i∈[I]

)
(5.5a)

s.t. xit = dynit(x
i
t−1, u

i
t, ξt), ∀i ∈ [I],

uit ∈ U it (xt−1, ξt), ∀i ∈ [I],

I∑
i=1

θit(x
i
t−1, u

i
t, ξt) = 0,

and
Bt(R) : x 7→

∑
ξ∈supp(ξt)

P(ξt = ξ) B̂t(R)(x, ξ). (5.5b)

Note that, here, the stagewise independence assumption is required for the sequence of noise (ξt)t∈[T ],
that is across time. If the noise ξt is a vector of noises (ξit)i∈[I], then dependence between them would
not hinder Dynamic Programming. It could even help, by reducing the support of ξt. Due to the curse
of dimensionality (see Remark 1.15), this approach is numerically intractable if the number of unit I is
larger than 4 or 5, even if each unit is unidimensional.

Further, we define a coupled forward Bellman operator Ft(R) that return, for each xt−1, ξt the op-
timal xt of Problem (5.5a). Thus, any approximation Ṽt of the true coupled value function Vt defines
an admissible policy for the coupled Problem (5.1). Given (Ṽt)t∈[T ] simulating the corresponding policy
along a scenario consists thus in solving T deterministic, one-stage, coupled problem. This is used in
Sections 5.2 and 5.3 to reconstruct admissible policy from the approximation made.

5.1.3 Scenario-decomposition: Progressive Hedging

Scenario decomposition approaches consist in dualizing the non-anticipativity constraint, to see the
stochastic Problem (5.4) as a sum of spatially coupled, T -stage, deterministic problems (one per sce-
nario).

Remark 5.1 (Stagewise independence assumption). Scenario decomposition, either vanilla Lagrangian
decomposition, or Progressive-Hedging, does not require nor make use of the stagewise independence
assumption. Consequently, it does not use the dynamic programming principle to compress information,
and we need to consider all scenarios in S. In the end, these methods are only used for small horizon T .

The first step in this approach is to rewrite the non-anticipativity constraints (5.4e) as

ui,st =
1

πns
t

∑
s′∈ns

t

πs′u
i
t(s

′) ∀s ∈ S,∀t ∈ [T ], ∀i ∈ [I], (5.6)

where πns
t
:=
∑

s′∈ns
t
πs′ is the probability of node nst . Interestingly, we can then show that

M :=W⊥ =
{
λ |

∑
s′∈ns

t

πs′λ
s′
t = 0 ∀t ∈ [T ], ∀s ∈ S

}
. (5.7)

Finally, for notational sobriety we define, for s ∈ S, the state trajectory

xi,s0 (u) = x0, xi,st (u) = dynit(x
i,s
t−1(u), ut, ξ

s
t ), ∀i ∈ [T ], ∀i ∈ [I], (5.8)

and the scenario-cost function

J i,s(u) =

T∑
t=1

{
Lit(x

i,s
t−1(u), ut, ξ

s
t ) + I

ut∈U i
t (x

i,s
t−1,ξ

s
t )

}
+ VT+1(x

i,s
T (u)), (5.9a)

Js(u) =

I∑
i=1

J i,s(u). (5.9b)
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Combining all of this, and dualizing the non-anticipativity constraint we get

Max
λin∈M

∑
s∈S

πs Min
(uit)t∈[T ],i∈[I]

Js(u) +
∑
i∈[I]

∑
t∈[T ]

λi,st u
i,s
t (5.10a)

s.t.
I∑
i=1

θit(x
i,s
t−1, u

i
t, ξ

s
t ) = 0, ∀t ∈ [T ]. (5.10b)

Let D(λ, s) be the value of the inner minimization problem. By weak duality, for any λ ∈ M,∑
s∈S π

sD(λ, s) is a lower bound to the value of Problem (5.1). This lower bound is obtained by solving
|S| deterministic problems, but can also be estimated by Monte Carlo approaches. Further, under con-
vexity assumptions, and constraint qualifications, we can show that this lower bound is tight. It is then
natural to consider a dual ascent algorithm as presented in Algorithm 6. The name comes from the fact
that the multiplier update in Line 6 can be interpreted, through envelope theorems, as a (sub)-gradient
step for the maximization problem in Problem (5.10).

Data: Scenario tree, information price process λ(0) ∈M, parameter r > 0
1 for k ∈ N do
2 for s ∈ S do
3 v(k+1),s := argmin

v
Js(v) + ⟨λ(k), v⟩

4 for s ∈ S, t ∈ [T ] do

5 u
(k+1),s
t :=

1

πns
t

∑
s′∈ns

t

πs′v
(k+1),s′

6 λ(k+1),s = λ(k),s + r(v(k+1),s − u(k+1),s)

Algorithm 6: Dual ascent for scenario decomposition

where ⟨λ(k), v⟩ =∑s∈S π
s
∑T

t=1(λ
(k),s
t )⊤vst such that the scenario problem reads

Min
(ui,st )t∈[T ],i∈[I]

I∑
i=1

T∑
t=1

{
Lit(x

i,s
t−1, u

i,s
t , ξ

s
t ) + (λ

(k),s,i
t )⊤ui,st

}
+ V i

T+1(xT ) (5.11a)

s.t. xi,st = dynit(x
i,s
t−1, u

i,s
t , ξ

s
t ), ∀t ∈ [T ], ∀i ∈ [I], (5.11b)

ui,st ∈ U it (xi,st−1, ξ
s
t ), ∀t ∈ [T ], ∀i ∈ [I], (5.11c)

I∑
i=1

θit(x
i,s
t−1,

i,s
t , ξst ) = 0, ∀t ∈ [T ]. (5.11d)

This approach has been developed and popularized, in a more efficient version using augmented
Lagrangian duality, under the name Progressive Hedging [Wet89], with heuristic extensions to mixed-
integer problems [WW11]. It can be interpreted as a fixed-point method over a splitting operator [Rus97],
from which the convergence analysis was derived, and is still extended, for example to randomized
version [BLG+20]. The Progressive Hedging algorithm is presented in Algorithm 7.

Data: Scenario tree, decision process u(0) ∈ W , information price process λ(0) ∈M,
parameter r > 0

1 for k ∈ N do
2 for s ∈ S do

3 v(k+1),s := argmin
v

Js(v) +
r

2
∥v − u(k),s + 1

r
λ(k),s∥2

4 for s ∈ S, t ∈ [T ] do

5 u
(k+1),s
t :=

1

πns
t

∑
s′∈ns

t

πs′v
(k+1),s′

6 λ(k+1),s = λ(k),s + r(v(k+1),s − u(k+1),s)

Algorithm 7: Progressive Hedging algorithm
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Let’s end this section with a few comments on the Progressive Hedging algorithm, that decompose
the MSP into multiple deterministic problems (in Line 3), and then coordinates them (in Line 6):

i) if the MSP problem is convex, then the scenario problem is strongly convex and v(k),st uniquely
defined;

ii) the scenario problem in Line 3 can be written as, up to additive constant,

min
v

Js(v) + ⟨λ, v⟩+ r

2
∥v − u(k),s∥2,

which yields a quadratic regularization interpretation of the Progressive Hedging approach over
the vanilla Lagrangian decomposition presented above;

iii) the scenario problem is a deterministic large-scale problem, and, if needed, standard deterministic
decomposition methods could be applied to it;

iv) the projection step Line 5 is used to determine a non-anticipative solution from the |nst | available
at every step, this step is difficult to extend to the non-convex (especially integer) case;

v) to reduce the number of deterministic problems, one can consider extensive formulation on subtree
instead of on a single scenario.

In the end, the Progressive Hedging algorithm is an efficient tool to decompose an MSP problem
into deterministic problems and leverage available tools. One of its main limits is that we have to solve
|S| deterministic problems at each iteration. This usually restricts the use of Progressive Hedging to
problems of limited horizon T .

5.1.4 Spatial-decomposition

The third decomposition axis consists in separating the coupled large-scale MSP, into I independent
MSPs. To this end, we dualize the spatial coupling constraint (5.1d), to obtain the following dual problem

Max
λ

I∑
i=1

V i(λ) (5.12a)

V i(λ) = Min
ui

EP

[ T∑
t=1

{
Lit(x

i
t−1,u

i
t, ξt) + λtθ

i
t(x

i
t−1,u

i
t, ξt)

}
+ V i

T+1(x
i
T )

]
(5.12b)

s.t. xi
t = dynit(x

i
t−1,u

i
t, ξt), ∀t ∈ [T ],

uit ∈ U it (xit−1, ξt), ∀t ∈ [T ],

uit ≼ At ∀t ∈ [T ].

As before, for any multiplier process λ,
∑I

i=1 V
i(λ) is a lower bound to the value of the coupled MSP

Problem (5.1). If the coupled problem is convex, and under constraint qualification assumptions, we
can show that there exists an optimal multiplier λ such that this lower bound is tight. We then get a
dual-ascent algorithm.

Data: Spatial price process λ(0), parameter r > 0
1 for k ∈ N do
2 for i ∈ [I] do
3 Solve V i(λ(k)) for state and control trajectories (u(k),i

t ,x
(k),i
t )t∈[T ]

4 Define the slack process ∆(k)
t :=

∑
i∈[I]

θit(x
(k),i
t−1 ,u

(k),i
t , ξt)

5 Update spatial price process λ(k+1) = λ(k) + r∆

Algorithm 8: Dual ascent for spatial decomposition algorithm
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In this approach, λ is a stochastic process, such that λst is a vector of dimension the image of θit.
Without loss of generality, we can consider non-anticipative λ. Consequently, if the horizon T is small
enough, we can decompose the large-scale MSP into I MSPs, solve them independently and coordinate
them through the price process λ.

However, if we have a stagewise independence assumption for the large-scale MSPs, thus enabling
Dynamic Programming approaches, this is no longer possible on the decomposed problem. Indeed, when
solving V i(λ(k)), we have two different noises (ξt)t∈[T ], and (λ(k))t∈[T ], and there is no reason for
spatial multiplier λ(k) to be stagewise independent, which would allow dynamic programming methods.
The next section offers a possible solution.

5.2 Dual approximate dynamic programming (DADP)

The idea of the Dual Approximate Dynamic Programming, originated in [BCG10], then improved during
various Ph.D. theses, including my own, is to combine spatial and time-decomposition methods. More
precisely we want to use a spatial decomposition method as presented in § 5.1.4, in a way such that the
subproblems can be solved through Dynamic Programming.

5.2.1 DADP principle

We introduce a non-anticipative information process (ζt)t∈[T ], such that ζt is measurable with respect to
the noises up to time t, that isAt = σ(ξ[t]). We then consider a relaxed version of the coupled MSP (5.1),
where the almost-sure coupling spatial constraint is relaxed in a conditional expectation constraint, i.e.,

Min
(ui

t)t∈[T ],i∈[I]

EP

[ I∑
i=1

T∑
t=1

Lit(x
i
t−1,u

i
t, ξt) + V i

T+1(x
i
T )

]
(5.13a)

s.t. xi
t = dynit(x

i
t−1,u

i
t, ξt) ∀t ∈ [T ],∀i ∈ [I], (5.13b)

uit ∈ U it (xt−1, ξt) ∀t ∈ [T ],∀i ∈ [I], (5.13c)

E
[ I∑
i=1

θit(x
i
t−1,u

i
t, ξt)

∣∣∣ ζt] = 0 ∀t ∈ [T ], (5.13d)

uit ≼ At ∀t ∈ [T ],∀i ∈ [I]. (5.13e)

Dualizing the relaxed coupling constraint (5.13d) we get the following problem

Max
(µt≼ζt)t∈[T ]

I∑
i=1

V i(µ), (5.14a)

V i(µ; ζ) = Min
ui

E
[ T∑
t=1

{
Lit(x

i
t−1,u

i
t, ξt) + µtθ

i
t(x

i
t−1,u

i
t, ξt)

}
+ V i

T+1(x
i
T )

]
(5.14b)

s.t. xi
t = dynit(x

i
t−1,u

i
t, ξt), ∀t ∈ [T ],

uit ∈ U it (xt−1, ξt), ∀t ∈ [T ],

uit ≼ At, ∀t ∈ [T ],

where the spatial price µt can be chosen, without loss of generality, as measurable with respect to ζt. By
weak duality, the value of this dual problem is a lower bound of the value of the relaxed Problem (5.13),
which is itself a lower bound of the value of the coupled Problem (5.1). With convexity and constraint
qualification assumptions, we have equality between the value of Problem (5.14) and Problem (5.13).

Remark 5.2 (Interpretations of DADP). The Dual Approximate Dynamic Programming consists in de-
composing spatially the coupled problem in a way such that each subproblem can be solved by dynamic
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programming, which requires an approximation. There is three different interpretation of this approxi-
mation:

1. As presented here, it can be seen as a relaxation of the almost sure constraint in the primal problem.
Once relaxed, we can dualize the coupling constraint and have subproblems solvable by dynamic
programming.

2. It can equivalently be seen as a decision rule in dual. Indeed, relaxing primal constraint (5.1d) is
equivalent to asking the dual multiplier process λ in Problem (5.12) to be progressively measur-
able with respect to (ζt)t∈[T ].

3. Finally, it can be seen as an approximation method in the dual, where instead of using the dual
stochastic process λ we use its conditional expectation µt = E

[
λt
∣∣ ζt].

5.2.2 Algorithmic implementation of DADP

To go further, we assume that the information process follows a dynamic equation

ζt = ht(ζt−1, ξt), ∀t ∈ [T ], (5.15)

where ζ0 is arbitrarily set.
We can then solve each subproblem V i(µ, ζ) (see (5.12b)) through dynamic programming using the

local physical state and the information process, that is the couple (xit, ζt) as a state. More precisely, we
have the following local backward Bellman operator

B̂it(R;µ) : (xit−1, ζt−1; ξt) 7→ Min
uit

Lit(x
i
t−1) + µ(ζt)θ

i
t(x

i
t−1, u

i
t, ξt) +R(xit, ζt) (5.16a)

s.t. xit = dynit(x
i
t−1, u

i
t, ξt),

ζt = ht(ζt−1, ξt),

Bit(R;µ) : (xit−1, ζt−1) = E
[
B̂it(R)(xit−1, ζt−1; ξt)

]
. (5.16b)

We have, accordingly, local forward Bellman operators, which define a local policy, that is a function of
time t, local state xit, information process ζt and noise ξt that return a local control uit.

The DADP scheme is thus illustrated in Fig. 5.3

Remark 5.3 (Recovering an admissible strategy). When using the DADP algorithm, we obtain a lower
bound on the original MSP (5.1). We also obtain, from subproblems resolution, a local strategy that
is a function of the local physical state xit and the information process ζt. With strong convexity and
constraint qualification conditions, we can guarantee that the multiplier process µ(k) converges. Unfor-
tunately, even at convergence, the local strategy only satisfies the relaxed coupling constraint.

Consequently, as in TFDP algorithm (see Chapter 3), we use a forward Bellman operator associated
with the coupled Problem (5.1) to obtain an admissible solution from an approximate value function.
As the cost of the coupled problem is the sum of local cost, we use, for each t ∈ [T ], the approximate
coupled value function1

Ṽt =

T∑
i=1

V i
t .

Remark 5.4 (Market interpretation). The spatial Lagrangian decomposition presented in § 5.1.4 have a
market interpretation: we consider that the satisfaction of constraint (5.1d) is ensured through a market,
where the multiplier process (λt)t∈[T ] is the stochastic clearing price.

The DADP approach can be interpreted as ensuring that the price at time t µt is a function of the
information process ζt instead of a function of past noises ξ[t]. This constraint on the price process can
either be interpreted as the fact that the restricted clearing price µt is the conditional expectation of
the true clearing price λt, i.e., µt = E

[
λt
∣∣ ζt]. This restricted clearing price ensures that the relaxed

coupling constraint (5.13d) is satisfied.
1Technically we have to compute the information process and make straightforward modification to the equation.
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Figure 5.3: DADP flowchart.

5.2.3 Consistency theory

We have seen that the DADP algorithm provides, under strong convexity and constraint qualification
assumptions, an optimal solution to Problem (5.13), which is a relaxation of the coupled Problem (5.1).
This relaxation consists in replacing almost sure constraints θ(z) = 0 into conditional expectation con-
straints E

[
θ(z)

∣∣ ζ] = 0. The question of the consistency of this approximation is to determine under
which condition the relaxed problem converges toward the original problem. Under the finite noise
assumption considered in this chapter, the answer is simple, as adding more information end in recov-
ering the full almost sure constraint. In this section, we drop the finite noise assumption to provide a
consistency result based on the theory of epi-convergence. Details can be found in [VL9].

Setting

We consider a probability space (Ω,A,P), a sequence of σ-algebras (An)n∈N and a topological space
of controls U . Let V be the space of random variables with value in a Banach V with finite moment of
order p ∈ [1,∞), denoted V = Lp(Ω,A,P;V).

We consider now a stochastic optimization problem

min
u∈U

J(u) , (5.17a)

s.t. Θ(u) ∈ C , (5.17b)

with J mapping U into R ∪ {+∞}, and Θ mapping U into V . We assume that C ⊂ V is a subset of V ,
and that V is a separable Banach space with separable dual.

To give an example of cost operator, assume that U ⊂ L1
(
Ω,A,P;U

)
, where U is a Banach space.

The usual choice for the objective function is the expected cost J(u) := E
[
j(u)

]
, for a suitable cost

function j : U → R. Other choices could be risk measures like Average-Value-at-Risk, worst-case or
robust approaches. The constraint operator Θ cover various cases, for example

• almost sure constraint: Θ
(
u
)
(ω) := θ

(
u(ω)

)
, where θ maps U into V and θ

(
u
)
∈ C is realized

almost surely, where C is a closed convex set;

• measurability constraint: Θ
(
u
)
:= E

[
u
∣∣ B] − u, with C = {0}, expresses that u is measurable

with respect to the σ-algebra B, that is, E
[
u
∣∣ B] = u;
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• risk constraint: Θ
(
u
)
:= ρ(u) − a, where ρ is a conditional risk measure, and C is the cone of

negative random variables.

We further assume that the set of constraint C is such that for all n ∈ N and all v ∈ C, E[v | An] ∈
C.

We now consider the following relaxation of Problem (5.17)

min
u∈U

J(u) , (5.18a)

s.t. E
[
Θ(u)

∣∣ An] ∈ C . (5.18b)

We denote Uad the set of admissible controls of Problem (5.17) and Uadn the corresponding set of
admissible controls of Problem (5.18). We further define J̃(u) := J(u) + IUad(u), and

Epi-convergence result

In this section, we show the epi-convergence of the sequence of approximated cost functions (J̃n)n∈N
towards J . For more details and properties of epi-convergence, see Rockafellar-Wets [RW98] in finite
dimension, and Attouch [Att84] for infinite dimension.

We start with some recall on the Kudo-convergence of σ-algebras. Let A be a σ-algebra and
(An)n∈N a sequence of subfields of A (not necessarily finite nor a filtration). It is said that the se-
quence (An)n∈N Kudo-converges toward the σ-algebra A∞, and denoted An → A∞, if for each set
F ∈ A,

(
E
[
1F

∣∣ An])
n∈N

converges in probability toward E
[
1F

∣∣ A∞
]
.

Extending a result of [Kud74, Pic98] we show in [VL9] the Kudo-convergence of (An)n∈N toA∞ is
equivalent to the convergence in Lp (strong or weak) of E

[
X
∣∣An] toward E

[
X
∣∣A∞

]
for any X ∈ Lp.

We further show that both the filtration and the random variable can be converging sequences. More
precisely, if An → A∞, and Xn →Lp X (resp. Xn ⇀Lp X) then E

[
Xn

∣∣ An] →Lp E
[
X
∣∣ A∞

]
(resp. E

[
Xn

∣∣ An]⇀Lp E
[
X
∣∣ A∞

]
).

With this result we derive the following convergence theorem where τ denotes the topology of U .

Theorem 5.5. Let V = LpLp(Ω,A,P;V) be endowed with the strong or weak topology. If the two map-
pings Θ and J are continuous, and if (An)n∈N Kudo-converges toward A, then (J̃n)n∈N epiconverges
toward J̃ .

The direct consequence of this epi-convergence result is that the sequence of Problems (5.18) ap-
proximates Problem (5.17) in the following sense. If (un)n∈N is a sequence of controls such that for all
n ∈ N,

J̃n(un) < inf
u∈U

J̃n(u) + εn, where lim
n
εn = 0 ,

then, for every converging sub-sequence (unk
)k∈N, we have

J̃
(
lim
k

unk

)
= min

u∈U
J̃(u) = lim

k
J̃nk

(
unk

)
.

Moreover if
(
An
)
n∈N is a filtration, then the convergences are monotonous in the sense that the optimal

value is non-decreasing in n.
The result is extended and adapted to the multistage case, by having multiple sequences of σ-algebra

Kudo-converging.

Example of continuous operators

The epi-convergence result of Theorem 5.5 is based on the continuity of the objective and constraints
operators. This continuity relies on the choice of operator and the topology used for the control space U .
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Using the following technical lemma1 we obtain examples of continuous operators.

Lemma 5.6. Let Θ : E → F , where (E, τP) is a space of random variables endowed with the topology
of convergence in probability, and (F, τ) is a topological space. Assume that Θ is such that if (un)n∈N
converges almost surely toward u, then Θ(un)→τ Θ(u). Then Θ is a continuous operator from (E, τP)
into (F, τ).

For the objective operator, we can choose a bounded cost function2 j and a lower-semicontinuous
convex risk measure ρ. More precisely, if U is endowed with the topology of convergence in probability,
and J(u) := ρ

(
j(u)

)
, where j : U → R is continuous and bounded, and ρ a proper lower semi-

continuous convex risk measure. Then, J : U → R is continuous.
As for the constraint operator, we can tackle, with the topology of convergence in probability: i)

almost sure constraint; ii) risk constraint with coherent risk measures; and iii) measurability constraints
(including non-anticipativity constraints) on a dominated subset of U . Measurability constraints are
better tackled if U = Lp

′
is endowed with the strong or weak topology, where 1/p+ 1/p′ = 1.

More details and examples can be found in [§3 VL9].

Consistency of DADP

Assume that we have strongly convex costs function Lit and final costs V i
T+1, linear dynamic function

dynit, bounded control sets U it and essentially bounded ξt. Then, by induction, we can show that the
random costs Lit(x

i
t−1,u

i
t, ξt), as well as the state xit and control uit processes are essentially bounded.

In turn, the previous discussion ensures that endowing the coupled control space with the topology of
convergence in probability, we can show that the objective and constraint operators are continuous.

Now, assume that we have a sequence of information process (ζ
(n)
t )t∈[T ],n∈N such that, for each

t ∈ [T ], the generated sequence of σ-algebra σ(ζ(n)t ) Kudo-converges toward the true information At.
Then the value of the relaxed Problem (5.13) converges toward the value of the original Problem (5.1).

This is a theoretical consistency result as in practice we choose only one information process (ζt)t∈[T ]
of small dimension, to be able to solve each subproblem by Dynamic Programming. The next section
details an application of the DADP method.

5.3 A hydroelectric valley application

In this section, we detail a practical use case of DADP for a hydroelectric valley application. The method-
ology is compared with coupled dynamic programming, and with SDDP.

5.3.1 Setting

We consider a hydroelectric valley constituted of I coupled dams as represented in Figure 5.4. We can
see each dam as a node, identified by an integer i ∈ [I] of a directed graph ([I], E), where E is the set
of edges identified by a couple (i, j) ∈ [I]2. More precisely, (i, j) ∈ E if the output of dam i goes into
dam j. We denote, for i ∈ [I], δ+(i) (resp. δ−) the set of edges starting (resp. ending) at i.

The water released by a dam produces energy which is sold on electricity markets, and then enters
the nearest downstream dam. The overall goal of the decision maker is to maximize the profit obtained
by selling the produced energy on a market. We consider that the hydro valley manager acts as a price
follower, in the sense that the energy prices are independent of the energy produced by the hydro valley.

1Even if (un)n∈N converges in probability toward u iff from any sub-sequence of (un)n∈N we can extract a sub-sub-
sequence that converges almost surely, this Lemma does not imply the equivalence between convergence almost sure and
convergence in probability. Indeed, one cannot endow U with the “topology of almost sure convergence” as almost sure
convergence is not generally induced by a topology.

2This assumption can be relaxed by using some dominated convergence theorem.



72 Decomposition tools and applications in energy management

SoulcemGnioure Izourt

Auzat

Sabart

(a) Vicdessos

Chastang

Bort

Mareges

Aigle

Sablier

(b) Dordogne

Figure 5.4: Two realistic hydro valleys from south of France.
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Figure 5.5: In order to use the decomposition scheme we duplicate variables, uit and sit are the local
output of dam i while zi+1

t is an inflow variable for dam i+ 1.

The representative variables of dam i at stage t are uit for the released water, xit for the current water
volume, ait for the natural water inflow entering dam i, pit for the market value of the water at dam i. The
randomness is given by ξit = (ait,p

i
t). The modeling of a dam takes into account a possible overflow:

the spilled water sit does not produce electricity, but enters the next downstream dam. The cost function
Lit is given as −pituit + ε(uit)

2 where ε > 0 model a small inefficiency of the turbine and ensures strong
convexity. The final cost function V i

T+1 is a quadratic penalization around a target value.
In order to introduce a spatial decomposition mechanism, we add a local decision variable zit repre-

senting the water obtain by dam i from the previous dams. Consequently, the local dynamic Eq. (5.1b)
reads xit = xit − uit + ait +

∑
e∈δ−(i) z

e
t − sit and the spatial coupling constraints Eq. (5.1d) reads

z
(j,i)
t = ujt + sjt , ∀t ∈ [T ],∀(i, j) ∈ E. (5.19)

This constraint is the one that is relaxed and dualized in the DADP approach.

5.3.2 DADP implementation

We use the simplest information process ζt = 0, which amounts to replacing the almost sure coupling
constraint by a constraint in expectation, or, equivalently, looking for deterministic spatial multiplier
(µet )t∈[T ],e∈E .
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Remark 5.7 (Market interpretation). Let’s illustrate the generic market interpretation of Remark 5.4 on
the hydroelectric valley problem at hand.

The spatial decomposition approach consists in replacing the physical constraint on each link (i, j) ∈
E, by a market where the total water output of dam i is sold to dam j at a price λ

(i,j)
t . With the

strong convexity and constraint qualification of the problem, we know that there exists a clearing price
(λ

(i,j)
t )t∈[T ],(i,j)∈E which is a progressively measurable stochastic process.
The DADP approach with constant information process ζt = 0 consists in considering a market

where the prices (µ(i,j)t )t∈[T ],(i,j)∈E are deterministic. In particular, for a given trajectory of prices (one
value per link and time-step) managing dam i consists in optimizing the sum over time of operational
cost Lit, and value of water sold to the downstream dam and bought to the upstream dams.

Note that restricting ourselves to deterministic prices means that the market will only satisfy the
coupling constraint in expectation, that is E

[
z
(i,j)
t

]
= E

[
uit + sit

]
.

For a given multiplier process µ, the local optimization Problem (5.14b) reads

V i(µ) = Min
ui,si,(ze)e ∈δ−(i)

E
[ T∑
t=1

{
− pitu

i
t + ε(uit)

2 − µ(i,i+)
t (uit + sit) +

∑
i−:(i−,i)∈δ−(i)

µ
(i−,i)
t z

(i−,i)
t

}
+ (xiT+1 − x̂iT+1)

2

]
(5.20a)

s.t. xi
t = xi

t−1 − uit − sit + ait +
∑

i−:(i−,i)∈δ−(i)

z
(i−,i)
t , ∀t ∈ [T ], (5.20b)

0 ⩽ uit ⩽ uit, 0 ⩽ sit, ∀t ∈ [T ], (5.20c)

0 ⩽ xit ⩽ xit, ∀t ∈ [T ], (5.20d)

uit ≼ At ∀t ∈ [T ]. (5.20e)

where i+ denotes the unique child of i. In particular note that, for a given µ, the subproblem (5.20) can
be solved by dynamic programming yielding local one-dimensional value functions V i

t which take as
argument only the local state xit.

The DADP process is summarized in Algorithm 9. As specified, this algorithm produces local value
functions V i

t . Indeed, the local policies are not admissible, as they verify, at convergence, the relaxed
coupling constraint, and not the almost sure coupling constraint. However, we can define, for all t ∈ [T ]
an approximate coupled value function

Ṽt : xt 7→
I∑
i=1

V i
t (x

i
t)

which in turn can be used to define an admissible policy through a coupled forward Bellman operator.

Data: Spatial price process λ(0), parameter r > 0
Result: Local value function V i

t

1 Set µ(0) = 0 for k ∈ N do
2 Draw NMC noise scenario ;
3 for i ∈ [I] do
4 Solve V i(µ(0)) by DP, returning local value function V (k),i

t ;

5 Simulate NMC local trajectories of
(
z
(i,j),n
t

)
t∈[T ],n∈[NMC ]

and
(
ui,nt
)
t∈[T ],n∈[NMC ]

,(
si,nt
)
t∈[T ],n∈[NMC ]

along the noise scenarios.

6 for (i, j) ∈ E, t ∈ [T ] do

7 Estimate ∆
(k)
t,(i,j) ≈

1

NMC

∑NMC
n=1

{
z
(i,j),n
t − ui,nt − si,nt

}
8 Update spatial price process µ(k+1) := µ(k) + r∆(k);

Algorithm 9: DADP algorithm for the dam network
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5.3.3 Numerical results

We briefly report here some numerical results detailed in [VL7].
On small academic valleys of increasing size, we compare a global Dynamic Programming approach

with DADP and SDDP. All these methods produce Bellman functions, whose quality is evaluated with
the same forward Bellman operator. The obtained results are given in Table 5.1. The lines “CPU time”
corresponds to the time (in minute) needed to compute the Bellman functions (optimization stage only),
whereas the lines “value” indicate the cost obtained by Monte Carlo on the coupled model (simulation
stage, performed using a 100,000 scenarios sample). The comparisons between the different cost val-
ues for the same valley are thus relevant. For both SDDP and DADP, we also give the lower bound
corresponding to the Bellman value obtained at the end of the optimization stage.

Valley 4-Dams 6-Dams 8-Dams 10-Dams 12-Dams
DP CPU time 1600 ’ ∼ 108 ’ ∼ ∞ ∼ ∞ ∼ ∞
DP value −3743 N.A. N.A. N.A. N.A.

SDDP CPU time 6 ’ 10 ’ 13 ’ 50 ’ 97 ’
SDDP value −3742 −7027 −11830 −17070 ∼ −17000
SDDP lower bound −3754 −7050 −11960 −17260 −19490

DADP CPU time 7 ’ 12 ’ 18 ’ 24 ’ 22 ’
DADP value −3667 −6816 −11570 −16760 ∼ −17000
DADP lower bound −3996 −7522 −12450 −17930 −20480

Gap DADP/SDDP 2.0% 3.0% 2.2% 1.8% ?

Table 5.1: Results obtained by DP, SDDP and DADP

On larger academic valleys, where the upper bound through simulation is not possible due to the
curse of dimensionality, we compare the lower bound obtained by SDDP and DADP in Table 5.2. We
notice that DADP seems to be less sensitive than SDDP to the curse of dimensionality.

Valley 14-Dams 18-Dams 20-Dams 25-Dams 30-Dams
SDDP CPU time 210 ’ 585 ’ 970 ’ 1560 ’ 2750 ’
SDDP lower bound −32024 −46917 −61454 −79440 −100430

DADP CPU time 40 ’ 50 ’ 75 ’ 140 ’ 150 ’
DADP lower bound −32981 −48095 −62802 −80993 −101990

Table 5.2: SDDP and DADP comparison for large academic valleys

Other applications and variations of DADP have since been proposed in [CCDLP20, PDLCC21] for
the management of microgrids. In [SAB+20], Seguret et al. , in the context of managing numerous ther-
mostatically controlled loads, develop the link with mean-field game, providing improved convergence
theory for a specific structure with numerous unit I .



Chapter 6

Games and energy market

In this chapter we consider the impact of risk-aversion on energy market. This work result from a
collaboration with Andy Philpott and Henri Gérard, details and proof can be found in [VL8].

We discuss risked competitive partial equilibrium in a setting in which agents are endowed with
coherent risk measures. In contrast to social planning models, we show by example that risked equilibria
are not unique, even when agents’ objective functions are strictly concave. We also show that standard
computational methods find only a subset of the equilibria, even with multiple starting points.

6.1 Introduction

Most industrialized regions of the world have over the last thirty years established wholesale electricity
markets that take the form of an auction that matches supply and demand. The exact form of these
auction mechanisms varies by jurisdiction, but they typically require offers of energy from suppliers at
costs they are willing to supply and clear a market by dispatching these offers in order of increasing
cost. Day-ahead markets such as those implemented in many North American electricity systems, seek
to arrange supply well in advance of its demand so that thermal units can be prepared in time. Since
the demand cannot be predicted with absolute certainty, day-ahead markets must be accompanied by
a separate balancing market to deal with the variation in load and generator availability in real-time.
These are often called two-settlement markets. The market mechanisms are designed to be as efficient as
possible in the sense that they should aim to maximize the total welfare of producers and consumers.

In response to pressure to reduceCO2 emissions and increase the penetration of renewables, electric-
ity pool markets are procuring increasing amounts of electricity from intermittent sources such as wind
and solar. If probability distributions for intermittent supply are known for these systems then it makes
sense to maximize the expected total welfare of producers and consumers in each dispatch. Then many
repetitions of this will yield a long-run total benefit that is maximized. Maximizing expected welfare
can be modeled as a two-stage stochastic program. Methods for computing prices and single-settlement
payment mechanisms for such a stochastic market clearing mechanism are described in a number of
papers (see [PZP10, WF07, ZPBB16]). When evaluated using the assumed probability distribution on
supply, stochastic market clearing can be shown to be more efficient than two-settlement systems.

If agents in these systems are risk-averse then one might also seek to maximize some risk-adjusted
social welfare. In this setting, the computation of prices and payments to the agents becomes more
complicated. If agents use coherent risk measures then it is possible to define a complete market for risk
in a precise sense. If the market is complete then a perfectly competitive partial equilibrium will also
maximize risk-adjusted social welfare, i.e. it is efficient. On the other hand, if the market for risk is not
complete, then perfectly competitive partial equilibrium can be inefficient. This has been explored in a
number of papers (see e.g. [dMdES17, ES11, RS15]).

In this chapter, we study a class of stochastic dispatch and pricing mechanisms under the assumption
that agents will attempt to maximize their risk-adjusted welfare at these prices. Agents have coherent
risk measures and are assumed to behave as price-takers in the energy and risk markets. We aim at
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enlightening some difficulties that arise when risk markets are not complete. We describe a simple
instance of a stochastic market that has three different equilibria. Two of these points are stable in the
sense of [Sam41] and are attractors of tatônnement algorithms. The third equilibrium is unstable, yet is
the solution yielded by the well-known PATH solver in GAMS (See [FM00]). Our example illustrates
the delicacy of seeking numerical solutions for equilibria in incomplete markets. Since these are used
for justifying decisions, the nonuniqueness of solutions in this setting is undesirable.

The chapter is laid out as follows. In Section 6.2 we present the equilibrium and optimization models
we are going to study. In Section 6.3 we give links between equilibrium and optimization problems in
the risk-neutral and complete risk-averse cases. Finally, in Section 6.4 we showcase a simple example
with multiple equilibria in the incomplete risk-averse case.

6.2 Statement of problem

We consider a probability space (Ω,P(Ω),P) with a finite sample space Ω.
Consider a two time-step single-settlement market for one good. In a single-settlement market, the

producer can arrange in advance for a production of x at a marginal cost cx as a first-step decision, and
choose the value of a recourse variable xr incurring an uncertain marginal cost crxr. We assume that
there are a finite number of scenarios ω ∈ Ω determining the coefficient cr(ω).

The product is purchased in the second step by a consumer with a utility function V(ω)y(ω) −
1
2r(ω)y

2(ω). The consumer has no first-stage decision, and the amount purchased y(ω) depends on the
scenario.

6.2.1 Social planner problem

Decisions x, xr(ω) and y(ω) can be made to maximize a social objective. We denote by

W p(ω) = −
1

2
cx2 − 1

2
cr(ω)xr(ω)

2 , (6.1a)

the welfare of the producer, and by

W c(ω) = V(ω)y(ω)− 1

2
r(ω)y(ω)2 , (6.1b)

the welfare of the consumer where both these expressions ignore the price paid for the good in scenario
ω. Then the welfare of the social planner can be defined by W sp = W p +W c.

Optimization of the social objective requires us to aggregate the uncertain outcomes from the sce-
narios. This can be done by taking expectations with respect to an underlying probability measure P or
using a more general risk measure.

risk-neutral social planner problem

Endow the set of scenario Ω with a probability P, then a risk-neutral social planner might seek to maxi-
mize the expected total social welfare under the constraint that supply equals demand. This problem is
denoted by RnSp(P) and reads

RnSp(P) : max
x,xr,y

EP[W sp] , (6.2a)

s.t. x+ xr(ω) ⩾ y(ω) , ∀ω ∈ Ω . (6.2b)

risk-averse social planner problem

Choosing expectation EP, assumes a risk-neutral point of view, where two random losses with the same
expectation but different variances are deemed equivalent. In practice a number of agents are risk-
averse. To model risk aversion we generally use a risk measure ρ, which is a functional that associates to
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a random welfare its deterministic equivalent, i.e. the deterministic welfare deemed as equivalent to the
random loss.

A risk-averse planner solves a maximization problem RaSp(ρ) defined by

RaSp(ρ) : max
x,xr,y

ρ[W sp] , (6.3a)

s.t. x+ xr(ω) ⩾ y(ω) , ∀ω ∈ Ω . (6.3b)

Recall that a risk measure ρ̌ is said to be polyhedral if its subdifferential at 0 is a polyhedron, in
which case Problem RaSp(ρ̌) can be written as follows

RaSp(ρ̌) : max
θ,x,xr,y

θ (6.4a)

s.t. θ ⩽ EQk

[
W sp

]
∀k ∈ [[1;K]] , (6.4b)

x+ xr(ω) ⩾ y(ω) ∀ω ∈ Ω . (6.4c)

In what follows we assume that all risk measures are coherent.

Remark on non-linearity of risk-averse objective function

By linearity of expectation, we have EP[W sp] = EP[W p] + EP[W c] hence the criterion of the social
planner is natural, which is not the case anymore with risk-aversion. The social planner criterion could
be either ρ[W sp] or ρ[W p] + ρ[W c]. Furthermore, by concavity and positive homogeneity, we have
ρ[W p +W c] ⩾ ρ[W p] + ρ[W c].

6.2.2 Equilibrium problem

We now define a competitive partial equilibrium for our model. This competitive equilibrium can be
risk-neutral or risk-averse. Definitions come from general equilibrium theory (See [AD54] or [Uza60]).

risk-neutral equilibrium

Given a probability P on Ω, a risk-neutral equilibrium RnEq(P) is a set of prices
{
π(ω) , ω ∈ Ω

}
such

that there exists a solution to the system

RnEq(P) :
max
x,xr

EP
[
W p + π

(
x+ xr

)]
, (6.5a)

max
y

EP
[
W c − πy

]
, (6.5b)

0 ⩽ x+ xr(ω)− y(ω) ⊥ π(ω) ⩾ 0 , ∀ω ∈ Ω . (6.5c)

Here, the producer maximizes its expected profit (6.5a), the consumer maximizes its expected util-
ity (6.5b) and the market clears with (6.5c) (which means that either prices are null or supply equals
demand). As the consumer has no first-stage decision, she can optimize each scenario independently and
so problem (6.5b) can be replaced by

max
y(ω)

W c(ω)− π(ω)y(ω) , ∀ω ∈ Ω .
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risk-averse equilibrium

Given two risk measures ρp and ρc over Ω, a risk-averse equilibrium RaEq(ρp, ρc) is a set of prices{
π(ω) : ω ∈ Ω

}
such that there exists a solution to the following system

RaEq(ρp, ρc) :

max
x,xr

ρp

[
W p + π

(
x+ xr

)]
, (6.6a)

max
y

ρc
[
W c − πy

]
, (6.6b)

0 ⩽ x+ xr(ω)− y(ω) ⊥ π(ω) ⩾ 0 , ∀ω ∈ Ω . (6.6c)

Since the coherent risk measure ρc of the consumer is monotonic, and noting that she has no first-
stage decision, she can optimize scenario per scenario. Thus, she is insensitive to risk as any monotonic
risk measure will lead to the same action (although not the same welfare). Since ρp is also monotonic, we
can endow both agents with the same risk measure. In that case, we denote problem (6.6) by RaEq(ρ).

We now consider polyhedral risk measure ρ̌, using formulation (6.4), the equilibrium problem (6.6)
reads

RaEq(ρ̌) : max
θ,x,xr

θ (6.7a)

s.t. θ ⩽ EQk

[
W p + π(x+ xr)

]
, ∀k ∈ [[1;K]] ,

max
y(ω)

W c(ω)− πy(ω) , ∀ω ∈ Ω , (6.7b)

0 ⩽ x+ xr(ω)− y(ω) ⊥ π(ω) ⩾ 0 , ∀ω ∈ Ω . (6.7c)

6.2.3 Trading risk with Arrow-Debreu securities

Until now, we have considered equilibrium problems in an incomplete market. Following the path
of [PFW16], we complete the market using Arrow-Debreu securities.

Definition 6.1. An Arrow-Debreu security for node ω ∈ Ω is a contract that charges a price µ(ω) in the
first-stage, to receive a payment of 1 in scenario ω.

The consumer now has a first-stage decision which is the number of contracts she buys, so the choice
of the consumer risk measure ρc has no consequences. For convenience, this risk measure ρc is chosen
to be the same as that of the producer ρp and will be denoted by ρ. Unless stated otherwise, from now on
we use polyhedral risk measures.

Denote a(ω) (resp. b(ω)) the number of Arrow-Debreu securities bought by the producer (resp. the
consumer). We denote by µ(ω) the price of the Arrow-Debreu securities associated with scenario ω.
In this case the producer pays

∑
ω∈Ωµ(ω)a(ω) in the first-stage, in order to receive a(ω) in scenario

ω. As a(ω) + b(ω) represents excess demand, requiring that supply is greater than demand consists in
requiring a(ω) + b(ω) ⩽ 0. Prices {π(ω),µ(ω)}ω∈Ω form a risk-trading equilibrium if there exists a
solution to:

RaEq-AD(ρ̌) :

max
θ,x,xr,a

θ −
∑
ω∈Ω

µ(ω)a(ω) (6.8a)

s.t. θ ⩽ EQk

[
W p + π(x+ xr) + a

]
, ∀k ∈ [[1;K]] , (6.8b)

max
ϕ,y,b

ϕ−
∑
ω∈Ω

µ(ω)b(ω) (6.8c)

s.t. ϕ ⩽ EQk

[
W c − πy + b

]
, ∀k ∈ [[1;K]] , (6.8d)

0 ⩽ x+ xr(ω)− y(ω) ⊥ π(ω) ⩾ 0 , ∀ω ∈ Ω , (6.8e)

0 ⩽ −a(ω)− b(ω) ⊥ µ(ω) ⩾ 0 , ∀ω ∈ Ω . (6.8f)
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6.3 Some equivalences between social planner problems and equilibrium
problems

We recall a trivial equivalence between problem RnSp(P) and problem RnEq(P) before showing an
equivalence between problem RaSp(ρ̌) and problem RaEq-AD(ρ̌).

6.3.1 Equivalence in the risk-neutral case

In the risk-neutral case, the social problem is equivalent to the equilibrium problem.
More precisely, let P be a probability measure over Ω. The elements x

♯
, x

♯

r and y
♯

are optimal
solutions to RnSp(P) if and only if there exist equilibrium prices π

♯
for RnEq(P) with associated optimal

decisions x
♯
, x

♯

r and y
♯
.

If both the producer’s and the consumer’s criterion are strictly concave and if P charges all ω, then
RnSp(P) admits a unique solution and RnEq(P) admits a unique equilibrium.

6.3.2 Equivalence in the risk-averse case

The following proposition is an extension of Theorem 7 of [RS15], to a model with producers and
consumers, in the special case of a finite number of scenarios with polyhedral risk measures. It is obtained
by direct manipulation of the KKT conditions of optimality.

Proposition 6.2. Let π and µ be equilibrium prices such that
(
x

♯
,x

♯

r,y
♯
,a,b, θ, φ

)
solves RaEq-AD(ρ̌).

Then
(i) µ is a probability measure, and x

♯
,x

♯

r,y
♯

solves the risk-neutral social planning problem when
evaluated using probability µ, RnSp(µ).

(ii) x
♯
,x

♯

r,y
♯

solves the risk-averse social planning problem, RaEq-AD(ρ̌) with worst case measure
µ.

Remark 6.3. Note that an equilibrium of RaEq-AD(ρ̌) consists of a price vector π, giving one price
per scenario, and a probability µ that is seen by both the producer and the consumer as a worst-case
probability for the welfare plus trade evaluation.

Remark 6.4. In Section 6.4 we give an example of three risked equilibriums without Arrow-Debreu
securities, each corresponding to a risk-neutral equilibrium with different measure µ(ω). However, if
Arrow-Debreu securities are included then two of these equilibria are no longer equilibria in a risk-
averse setting. The risk-averse consumer, who without Arrow-Debreu securities had no mechanism to
alter his outcomes will trade these securities to improve their risk-adjusted payoff.

Remark 6.5. Consider a set of prices π that gives a risked equilibrium in which agent i has payoff
W i(π) and risked payoff ρi

[
W i(π)

]
. Suppose that there exists a probability measure Q∗ such that

ρi
[
W i(π)

]
= EQ∗

[
W i(π)

]
. Observe that this does not imply that choosing actions x to maximize

E[Q∗]W i(π) will give maxx ρi
[
W i(π)

]
. This is because x∗ solves

max
x

ρi
[
W i(π)

]
= max

x
min
Q∈Q

EQ
[
W i(π)

]
,

and not

max
x

EQ∗

[
fi(x,π)

]
,

since Q∗ depends on x.
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Remark 6.6. Proposition 6.2 is easily extended to the case where the agents have different risk measures
ρp and ρc with non-disjoint risk set. In this case,

θ + φ = min
Qp∈Qp

EQp [π
(
x

♯
+ x

♯

r

)
+W

♯

p + a]

+ min
Qc∈Qc

EQc [W
♯

c − πy
♯
+ b] ,

⩽ min
Q∈Qp∩Qc

EQ[W
♯

c +W
♯

p] , (6.9)

and the social planner uses a risk measure with Q = Qp ∩Qc.

The following proposition (Theorem 11 [PFW16]) stands as a reverse statement for Proposition 6.2.

Proposition 6.7. Let the elements x
♯
, x

♯

r and y
♯

r be optimal solutions to RaSp(ρ̌), with associated worst
case probability measure µ. Then there exists prices π such that the couple (π,µ) forms a risk trading
equilibrium for RaEq-AD(ρ̌) with associated optimal solutions (x

♯
,x

♯

r,y
♯
).

Combining Proposition 6.2 and Proposition 6.7, we are able to state the following result of unique-
ness of equilibrium.

Corollary 6.8. If both the producer’s and consumer’s criterion are strictly concave, and if each of the
extreme points Qk charges all ω, then RaSp(ρ̌) admits a unique solution (x

♯
,x

♯

r,y
♯
). Furthermore,

RaEq-AD(ρ̌) admits unique optimal decisions (x
♯
,x

♯

r,y
♯
). If, in addition, solving RaSp(ρ̌) admit a

unique worst case probability measure µ, then equilibrium prices (π,µ) are unique.

We have shown a first equivalence between RnSp(P) and RnEq(P) and a second one between
RaSp(ρ̌) and RaEq-AD(ρ̌). These equivalences lead to uniqueness of equilibrium if there is unique-
ness of the solution of the social planner. A natural question arises: if RaSp(ρ̌) has a unique solution, is
there a unique equilibrium for RaEq(ρ̌)? The next section provides a simple counterexample.

6.4 Multiple risk-averse equilibrium

In this section, we present a toy problem where RaSp(ρ̌) has a unique optimum but there are three
different equilibria for RaEq(ρ̌). This equilibrium has been found both with classical methods (PATH
solver ([FDJM09, FM00]) and a tâtonnement algorithm), then derived analytically. An interesting point
is that the equilibrium found by PATH is unstable.

Let Ω = {1, 2} and Q = conv
{
(14 ,

3
4), (

3
4 ,

1
4)
}

. For simplicity of notation index by i ∈ {1, 2} the
realization of each random variable. We choose the following parameters: V1 = 4, V2 = 48

5 , c = 23
2 ,

c1 = 1, c2 = 7
2 , r1 = 2, r2 = 10.

First, we run the PATH solver from different starting points and always found the equilibrium
π = (π1, π2) = (1.23578; 2.10953) leading to risked adjusted welfare (2.134; 0.821) for producer
and consumer respectively (In blue in Fig. 6.2).

Then, compute the equilibrium using a tâtonnement algorithm (See [Uza60])1

Starting from (1.25; 2.06), respectively and (1.22; 2.18), we and found two new equilibria:

π = (1.2256; 2.0698) and π = (1.2478; 2.1564) ,

leading to risked-adjusted welfare for producer and consumer respectively (2.152; 0.798) and (2.113; 0.845).
Notice that neither equilibrium dominates the other.

Finally, we can analytically study this toy problem.

1For given prices (π(k)
1 , π

(k)
2 ), find (x(k), x

(k)
1 , x

(k)
2 ) that maximizes ρ

[
W p(π

(k)
1 , π

(k)
2 )

]
and (y

(k)
1 , y

(k)
2 ) that maximizes

ρ
[
W c(π

(k)
1 , π

(k)
2 )

]
. Then update the prices with π

(k+1)
i = π

(k)
i − τ max(0, yi − (x+ xi)) .
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condition x♯ x♯i y♯i

case a) xc ⩽
E
[
p
]
π

c

E
[
p
]
π

c
πi
ci

Vi−πi
ri

case b)
E
[
p
]
π

c ⩽ xc ⩽
E
[
p
]
π

c xc
πi
ci

Vi−πi
ri

case c)
E
[
p
]
π

c ⩽ xc
E
[
p
]
π

c
πi
ci

Vi−πi
ri

Table 6.1: Optimal control for producer and consumer problems

Consider two probabilities (p, 1−p) and (p, 1−p) Given prices 0 < π1 < π2, we solve the producer
(resp. consumer) optimization problem. Optimal decisions are summed up in Table 6.1 where xc is given
by

xc(π) =
1

2(π1 − π2)

[
π22
c2
− π21
c1

]
.

We see that there are three regimes, depending only on the prices (π1, π2), of optimal first-stage
solutions. Case a) (resp. case c)), corresponds to a set of prices such that Ep[W p] < Ep[W p] (resp.
Ep[W p] > Ep[W p]), and the optimal decision corresponds to an optimal risk-neutral decision with
respect to one of the two extreme points of Q. On the other hand, case b) corresponds to a set of
prices such that the expected welfare is equivalent for all probability in Q, i.e. Ep[W p] = Ep[W p]. In
Figure 6.1, the red area corresponds to case a), the blue to case b) and the red to case c), separated by
black lines of equations E[p]π

c = xc(π) and
E[p]π
c = xc(π) respectively.

We are now looking for prices (π1, π2) such that the complementarity constraints are satisfied. For
strictly positive prices, these constraints can be summed up as

zi(π) = x
♯
(π) + x

♯

i(π)− y
♯

i (π) = 0 , i ∈ {1, 2}.

Accordingly, we define excess supply functions zli for case l ∈ {a, b, c}, and i ∈ {1, 2}. The red,
blue and green lines correspond to manifolds of null excess supply function for scenario i, that is of
prices such that zli(π1, π2) = 0. When the lines cross we have z1l = z2l = 0, and thus we have candidate
equilibrium. If the lines cross in the area of the same color we have an equilibrium. This is the case with
the parameters chosen, and equilibrium can be derived in exact arithmetic.

We end with a few remarks derived from this example.

Remark 6.9. The PATH solver finds the blue equilibrium, tatônnement algorithm finds the green and the
red equilibrium as illustrated by Figure 6.2. Interestingly it can be shown that the blue equilibrium is
unstable in the sense that the dynamical system driven by π′ = z(π) is not locally stable (see [Sam41])
around the blue equilibrium.

Remark 6.10. No equilibrium dominates another: if going from one equilibrium to another increases
the (risk-adjusted) welfare of one agent, then it decreases the (risk-adjusted) welfare of the other.

Remark 6.11. Using the analytical results we check that there exists a set of non-zero Lebesgue measure
of parameters V1, V2, c, c1, c2, r1, and r2 (albeit small), that have three distinct equilibria with the same
properties.

Remark 6.12. We can show that the blue equilibrium is a convex combination of red and green equilib-
rium, illustrated in Figure 6.1 by the dashed blue line.
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Figure 6.2: Representation of vector field π′ = z(π)



Chapter 7

Applications in supply chain management

In this chapter, we address a production problem modeled as a stochastic multi-item lot-sizing problem
with bounded numbers of setups per period and without setup cost, cast as an MSP. While this formula-
tion seems to be rather non-standard in the lot-sizing landscape, it is motivated by concrete missions of
an industrial partner company. This work was carried as part of the CIFRE Ph.D. Thesis of Etienne de
Saint-Germain, co-supervised with F. Meunier in partnership with Argon Consulting. It was presented
in [VL6], and more complete results are to be found in [dSG18].

7.1 Problem motivation and formulation

Fixing the production level for the forthcoming week is a basic decision to be taken when managing
a production line. Usually, demand has to be satisfied at due dates but the limited capacity of the line
prevents last-minute production. On the other hand, too early productions may lead to unnecessary high
inventory costs. The challenge of this kind of problem, known as lot-sizing problems, consists in finding
a trade-off between demand satisfaction and holding costs. This is a well-studied topic, with many
variations (deterministic/stochastic, single/multi-item, etc.). When several references can be produced on
the same line (multi-item), the capacity is often all the more reduced as the number of distinct references
produced over the current week is high. Indeed, changing a reference in production stops the line for
a moment. This additional capacity reduction is usually modeled by setup costs contributing to the
total cost. We consider a stochastic multi-item lot-sizing problem where the capacity reduction due to
reference changes is not modeled by setup costs but instead by an explicit upper bound on the total
number of references that can be produced over a week. This represents a stochastic variation of the
Capacited Lot-Sizing Problem.

The assembly line produces a set R of references over T weeks. The number of distinct references
produced over a week cannot exceed N . There is also an upper bound on the total week production
(summed over all references). We normalize all quantities so that this upper bound is equal to 1. The
production of each reference r must satisfy a random demand drt over week t. Inventory can be stored
but incurs a unit holding cost hr > 0 per week. Note that there is no setup cost. For each reference r,
there is an initial inventory sr0 ∈ R+.

Finally, due to uncertainty or limited capacity, the demand is not always met. We first consider
an optimization problem under a service level constraint and then consider backorder costs. The later
formulation can be seen as an approximation of the first, and we offer a way to determine backorder
costs.
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7.1.1 Model with service level constraint

For each period t and each reference r, we introduce the decision variable d̃
r

t which is the part of demand
drt satisfied at the end of period t. We decide to model the service level constraint for all items by

E

[∑
r∈R

wr
∑T

t=1 d̃
r

t∑T
t=1 d

r
t

]
≥ β where wr =

hr∑
j∈R h

j
. (7.1)

Then, we can write the risk-neutral MSP (1.6) corresponding to our problem at time t

Min E

[
T∑
t′=t

∑
r∈R

hrsrt′

]
(7.2a)

s.t. srt′ = srt′−1 + qrt′ − d̃
r

t′ ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.2b)∑
r∈R

qrt′ ⩽ 1 ∀t′ ∈ Jt, T K, (7.2c)

qrt′ ⩽ xrt′ ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.2d)∑
r∈R

xrt′ ⩽ N ∀t′ ∈ Jt, T K, (7.2e)

E

[∑
r∈R

wr
∑T

t=1 d̃
r

t∑T
t=1 d

r
t

]
⩾ β (7.2f)

d̃
r

t′ ⩽ drt′ ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.2g)

xrt′ ∈ {0, 1} ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.2h)

qrt′ , s
r
t′ , d̃

r

t′ ⩾ 0 ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.2i)

qrt′ ≼ σ
((

dr1, . . . ,d
r
t′−1

)
r∈R

)
∀t′ ∈ Jt, T K, ∀r ∈ R. (7.2j)

Objective (7.2a) minimizes the future expected holding costs. Constraint (7.2b) is the inventory
dynamic. Capacity of the assembly line is ensured by constraint (7.2c). Constraint (7.2d) is both a “big-
M” constraint and a capacity of the production of a single item. Constraint (7.2e) limits the number of
setups at each period. Constraint (7.2f) ensures the service level. Constraint (7.2g) means that we cannot
satisfy more than the demand. Last constraint (7.2j) is the non-anticipativity constraint. Every constraint
of the problem, except the service level constraint (7.2f), holds almost surely.

Note that, even with the stagewise independent node Assumption (SWI), this problem cannot be
tackled by dynamic programming due to Constraint (7.2g). Even without this constraint, vanilla Dynamic
Programming approaches (see Algorithm 1) fail due to high dimensionality, and SDDP (see Chapter 3)
do not apply due to binary variables.

This formulation matches our industrial partner’s objective, but is not always feasible, because of the
service level constraint (7.2f). For this reason, as well as to have a formulation without time-coupling
constraints, we consider an alternative model with backorder costs. This new model can be seen as a
proxy of the previous one —in which case we suggest a way of setting the backorder costs— or be of
interest in itself.

7.1.2 Model with backorder costs

Instead of including a service level constraint, we decide to allow backorder and penalize it. We introduce
new decision variables. When a demand for reference r is not satisfied by the production of the current
period or by inventory, it can be satisfied later but incurs a unit backorder cost γr per period for some
coefficient γr > 0 and the backorder of reference r at the end of the period t is denoted by brt .
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The problem at time t can be written as follow.

Min E

[
T∑
t′=t

∑
r∈R

(hrsrt′ + γrbrt′)

]
(7.3a)

s.t. s̃rt′ = s̃rt′−1 + qrt′ − drt′ ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.3b)∑
r∈R

qrt′ ⩽ 1 ∀t′ ∈ Jt, T K, (7.3c)

qrt′ ⩽ xrt′ ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.3d)∑
r∈R

xrt′ ⩽ N ∀t′ ∈ Jt, T K, (7.3e)

s̃rt′ = srt′ − brt′ ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.3f)

xrt′ ∈ {0, 1} ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.3g)

qrt′ , s
r
t′ , b

r
t′ ⩾ 0 ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.3h)

qrt′ ≼ σ
((

dr1, . . . ,d
r
t′−1

)
r∈R

)
∀t′ ∈ Jt, T K, ∀r ∈ R. (7.3i)

An interesting feature of this model is that there always exists a feasible solution, which makes it
more amenable to real-world applications. However, it cannot guarantee a specified service level.

When backorder costs are not given by the clients, we propose a way to “price” backorder coefficients
γr for each reference r before the first period, with the idea to heuristically drive the model to choose
solutions satisfying service level constraint (7.2f). We set

γr :=
P [dr ⩽ qr(β)]

P [dr > qr(β)]
hr (7.4)

with

qr(β) := inf

{
q ∈ R+

∣∣∣∣∣ E
[
min(dr, q)

dr

]
⩾ β

}
(7.5)

where dr =
∑T

t=1 d
r
t is the demand of reference r aggregated over time. Since dr is non-negative,

qr(β) is well-defined (we set 0
0 = β, so that items with no demand would not impact the constraint).

Computing an approximate value of qr(β) at an arbitrary precision can easily be performed by binary
search.

To justify this choice, consider the second problem (7.3) with only one item and for a horizon of one
period. Assuming no initial inventory, it takes then the form of the famous newsvendor problem

min
q⩾0

E
[
hr(q − dr)+ + γr(dr − q)+

]
, (7.6)

where γr is a unit backorder cost specific to reference r.

Remark 7.1. If instead of controlling the fill rate service level, we want to control the cycle service level,
defined as the probability of satisfying the whole demand, then we can choose

γr =
β

1− βh
r. (7.7)

Indeed, in this case, the optimal solution qr∗ of (7.6) satisfies P(qr∗ ⩾ dr) = β. Interestingly, Eq. (7.7)
does not depend on the distribution of the demand, which contrasts with Eq. (7.4).

7.2 Solution method

We now propose a method to solve the CLSP problem with backorder (7.3). As even its deterministic
version is challenging (see Remark 7.2 below.), we turn to heuristic methods. The generic idea is to solve
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a (simplified) problem at time t = 1, decide the production variables for the first week, then reveal the
actual demand realization and evaluate the inventory at the end of week 1. We can then solve the problem
starting at t = 2 to determine the decision to be taken for week 2, and so on.

Remark 7.2 (Deterministic problem challenges). Note that the deterministic problem is already chal-
lenging. Indeed, it is NP-hard in the strong sense for any fixed N ⩾ 3, since there is a straightforward
reduction from 3-PARTITION, for N ⩾ 3. The complexity status of the deterministic version when
N = 1 or N = 2 seems to be a challenging open question.

It is also worth noting that the optimal value of the continuous relaxation is independent of N . In an
attempt of improving the quality of the continuous relaxation, one may consider the extended formulation
with the binary variables ypt for each p ∈

(R
N

)
and each t ∈ [T ] in place of the xrt ’s (indicating the

references produced on period t). Alternatively, we can consider the extended formulation with the
binary variables zrτ for each τ ⊆ [T ] (indicating the periods of production of the reference r). In both
cases, we can show that this does not improve the quality of the linear relaxation.

Remark 7.3 (Dynamic Programming). Problem (7.3) is an MSP. As such, if the demand process is
assumed to be stagewise independent (or with limited memory), they satisfy some Bellman’s equation,
and could be tackled by Dynamic Programming approaches. Unfortunately, as seen in Remark 7.2, the
binary variables here are key, and the relaxed version might not be very informative. Thus, classical
SDDP approaches are not relevant, and their integer counterpart often slow in practice. Nevertheless,
some recent work [QGKS22] has been able to use SDDiP, with dedicated improvements, on a related
problem.

The heuristic presented here is a repeated two-stage approach (or stochastic model predictive con-
trol). More precisely, for each stage t, we solve a two-stage approximation of Problem (7.3), denoted
(2SA), where the non-anticipativity constraint (7.3i) is relaxed into{

σ
(
qrt
)
⊂ σ

(
∅
)

r ∈ R
σ
(
qrt′
)
⊂ σ

((
dr

′
t , . . . ,d

r′
T

)
r′∈R

)
t′ ⩾ t+ 1, r ∈ R.
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Figure 7.1: Scheme of the scenario approximation

The (2SA) relaxation is then approximated by a classical sample average approximation, illustrated
in Fig. 7.1. More precisely we draw a set Ξ of m sampled Ξ, each of these scenarios representing
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a possible realization of (drt ,d
r
t+1, . . . ,d

r
T ) for each r, and solve, with any standard MIP solver, the

following mixed integer program (2SA-m).

min
1

m

∑
ω∈Ξ

T∑
t′=t

∑
i∈R

(
hrsrt′,ω + γrbrt′,ω

)
(7.8a)

s.t. s̃rt′,ω = s̃rt′−1,ω + qrt′,ω − drt′,ω ∀ω ∈ Ξ, ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.8b)∑
i∈R

qrt′,ω ⩽ 1 ∀ω ∈ Ξ, ∀t′ ∈ Jt, T K, (7.8c)

qrt′,ω ⩽ xrt′,ω ∀ω ∈ Ξ, ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.8d)∑
i∈R

xrt′,ω ⩽ N ∀ω ∈ Ξ, ∀t′ ∈ Jt, T K, (7.8e)

s̃rt′,ω = srt′,ω − brt′,ω ∀ω ∈ Ξ, ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.8f)

xrt,ω = xrt ∀ω ∈ Ξ, ∀r ∈ R, (7.8g)

qrt,ω = qrt ∀ω ∈ Ξ, ∀r ∈ R, (7.8h)

xrt , x
r
t′,ω ∈ {0, 1} ∀ω ∈ Ξ, ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.8i)

qrt , q
r
t′,ω, s

r
t′,ω, b

r
t′,ω ⩾ 0 ∀ω ∈ Ξ, ∀t′ ∈ Jt, T K, ∀r ∈ R, (7.8j)

The validity of this method for solving (2SA) is supported by the standard theory of SAA (see
[SDR14]), declined in the following proposition.

Proposition 7.4. The following three properties hold when m goes to infinity:

(i) The value of (2SA-m) converges almost surely to the optimal value of (2SA).

(ii) For every m, we consider the values (q̂rt,m, x̂
r
t,m)r∈R of the decision variables for week t of an

optimal solution of (2SA-m). Any limit point of these values is an optimal solution of (2SA).

(iii) Let ε > δ > 0. Assume that the random demand (drt′)t′⩾t,r∈R is such that

∃C,K, ∀u ∈ R, E[eu∥d∥] ⩽ Ceu
2K . (7.9)

Denote by Qδm (resp. Qε) the set of all possible values of (q̂rt,m)r∈R in a δ-optimal solution of
(2SA-m) (resp. in an ε-optimal solution of (2SA)). Then for every α ∈ (0, 1), we have P(Qδm ⊆
Qε) > 1− α for m large enough.

If the random demand d is bounded or Gaussian then it satisfies (7.9). For our results we used an
expanded Dirichlet distribution which satisfies (7.9).

7.3 Numerical experiments

The instances used are realistic and have been provided by a client of the partner. We consider two lines,
one experiencing overcapacity (line L2), and the other experiencing under capacity. More complete
results can be found in [dSG18, Chap. 7].

Remark 7.5 (Expanded Dirichlet distribution). The expanded Dirichlet distribution used in [dSG18,
chapter 7] to generate random demand is well suited to our purpose as it allows us to define the expected
demand for each product, and an additional volatility parameter that scales the covariance matrix.
Further, the sum over all products is constant, thus underlining the flexibility of each approach to adapt
to market distribution instead of being driven by the global capacity of the line. Moreover, as conditional
expanded Dirichlet distribution is an expanded Dirichlet distribution, and as it is easy to sample an
expanded Dirichlet distribution, we can easily generate scenarios for the problem at time t knowing the
past demand realizations.
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7.3.1 Benchmark heuristics

We present here three other heuristics used to benchmark our approach.

The first heuristic is a Model Predictive control approach, where we solve at time t a deterministic
version of (S), where the random demand is replaced by its expectation.

The second one, the lot-size heuristic, consists in determining before the first week once and for all
a value ℓ∗r for each reference r ∈ R. At time t, if the inventory of reference r is below a precomputed
safety level, the quantity qrt is chosen so that the inventory of reference r exceeds the safety level of
exactly ℓ∗r . In case of capacity issues, the production is postponed and thus backorder costs appear. In
addition, if some capacity issues are easily anticipated, the production of a reference r can be activated
even if the inventory is not below the safety level.

The third one, the cover-size heuristic is almost the same, but instead of precomputing a fixed quantity
for each reference, a duration τ∗r is fixed before the first week. When the inventory of reference r is below
the safety level, the quantity qrt is computed so that the inventory of reference r exceeds the safety level
of the expected demand for the next τ∗r weeks. These heuristics are illustrated in Fig. 7.2.

Safety stock

Lot-size ℓi

TIME

STOCK

1st cover 2nd cover 3rd cover 4th cover 5th cover

(a) lot-size

Safety stock

Lot-size ℓi

TIME

STOCK

cover-size τi cover-size τi cover-size τi cover-size τi

(b) Cover-size

Figure 7.2: Computation of produced quantities using lot-size and cover-size heuristics

The values ℓ∗r and τ∗r are determined as follows. (τ∗r )r∈R is actually chosen to be the optimal solu-
tion of the following convex program, which somehow considers the problem at a “macroscopic” level.
(Similar convex programs in the same context have been considered in the literature; see [Zie82] for
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example.)

min
∑
r∈R

hrd
r
τr

s.t.
∑
r∈R

1

τr
⩽ N

τr > 0 r ∈ R,

where d
r
= E

[∑T
t=1 d

r
t

]
.

The parameter ℓ∗r of the lot-size heuristic is then set to d
r
τ∗r .

7.3.2 Numerical results

We present here numerical results on industrial data. The demand is generated through a stochastic
process with a "volatility" parameter v ∈ {20, 50}, the smaller value representing more predictable
demand. We consider three backorder costs γ. Details are given in [§5.1 VL6] or [dSG18].

The results are provided in Table 7.1. All quantities are given with a confidence interval of 95%. The
Column LB provides the lower bound obtained by the optimal value at time t = 1 of program (2SA-m)
(with m = 1000 and a time limit of 24 hours for the solver). The column 2SA-m is the estimated cost of
the method proposed in Section 7.2. (We remind the reader that we propose m = 20 in this case.) The
next three columns provide the results for the three heuristics described in Section 7.3.1.

Instances LB 2SA-m Det. Cover-size Lot-size
L2_v20_13 0.53 0.89± 0.03 1.17± 0.10 6.95± 0.17 7.79± 0.14
L2_v20_81 0.94 2.29± 0.06 2.36± 0.07 8.12± 0.19 9.65± 0.14
L2_v20_203 1.00 3.05± 0.07 3.25± 0.08 9.35± 0.29 10.99± 0.19
L2_v50_48 0.97 2.73± 0.11 3.06± 0.21 8.03± 0.26 8.37± 0.21
L2_v50_154 1.36 4.54± 0.20 5.06± 0.33 10.83± 0.53 11.20± 0.38
L2_v50_341 1.51 5.91± 0.25 7.90± 0.66 15.17± 1.21 14.65± 0.77
L6_v20_3 0.54 0.61± 0.01 0.70± 0.02 1.71± 0.08 1.74± 0.08
L6_v20_19 1.41 1.81± 0.06 1.86± 0.06 3.51± 0.12 3.20± 0.08
L6_v20_55 2.67 3.57± 0.24 3.71± 0.30 7.49± 0.39 6.24± 0.34
L6_v50_11 1.33 2.00± 0.11 2.14± 0.12 3.42± 0.15 3.03± 0.13
L6_v50_42 2.99 4.45± 0.53 4.48± 0.51 7.99± 0.62 6.57± 0.60
L6_v50_98 6.13 8.29± 1.23 7.94± 1.04 16.34± 1.61 12.96± 1.45

Table 7.1: Results - Inventory costs (in Me)

Our method clearly outperforms lot-size and cover-size heuristics and is better than the determin-
istic approximation for all but one instance. By running our method instead of a usual heuristic at the
beginning of each week, the inventory costs can be reduced often by more than 50%. For the instance
L2_v20_13, the inventory costs have been divided by more than 6 (which corresponds to several Me).

The 2SA-m algorithm requires 90 seconds to output a solution, while lot-size and cover-size heuris-
tics take less than a second and the deterministic approximation less than 10 seconds. The 2SA-m
algorithm is thus slower, but note that 90 seconds to be run only once at the beginning of each week re-
mains very short. Moreover, even with improved computers, the lot-size and cover-size heuristics and the
deterministic approximation will not change their output (in all our experiments, Gurobi always found
the optimal solution of the deterministic approximation). This is not the case for 2SA-m, which means
that it would benefit from improved computational capacities.

Finally, we present in Fig. 7.3 the trade-off between service level and cost, for our approach and the
three heuristics.
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We see that our approach offers significantly better inventory costs than the ones obtained by the
heuristics used by the clients of our partner. These two heuristics are however able to provide almost
always very good fill rate service level – at the price of very high holding costs.
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β = 95%

75 80 85 90 95 100
0

2

4

6

8

85%

95%
98%

85%
95%98%

85%
95%
98%

85%

95%
98%

Fill rate service level (in %)

H
ol

di
ng

co
st

s
(i

n
M
e

)

2SA-m Det.
Cover-size Lot-size

(b) Average results for L2 for various values
of desired service level β and v = 0.5

Figure 7.3: Representation of the numerical results of our proposed approach and three different heuris-
tics.



Perspectives

A) Open theoretical questions

I gathered here some open theoretical questions I hope to contribute to.

TFDP convergence polynomial in the horizon

In my opinion, the asymptotic convergence result of [VL3] for SDDP algorithms was limited for various
reasons: it did not provide any estimation on the number of iterations required to get an ε-solution, made
the finitely supported noise assumption, and argued that the algorithm would randomly select every
possible scenario an infinite number of times. The first bounds on iteration number were given in 2019
([Lan20, ZS22]) and we extended the convergence theory to non-finitely supported noise in [VL16].

However, these convergence analyses first consider a specific deterministic node selection which
provides an iteration bound that is polynomial in the horizon T . To extend the analysis to random
sampling, we consider the probability of exactly selecting a single scenario (or a joint event for the
non-finitely supported case), which yields a bound exponential in the horizon.

Open question: can we prove a bound, polynomial in the horizon T , on the expected number of
iterations required for a TFDP algorithm, with random node selection, to return an ε-solution to a
(Lipchitz) MSP problem?

A primal-dual SDDP algorithm

The SDDP algorithm is an extension of Kelley’s cutting plane algorithm to the stochastic multistage
case. Kelley’s algorithm is known to be slow and unstable and has been greatly improved by adding
some regularization scheme, resulting for example in the bundle methods. SDDP is also known to be
slow, both in theory and practice. More precisely, we numerically observe that, after some time, the
algorithm makes almost no more progress.

Therefore, adding a regularization procedure is an active idea in the community, and multiple propo-
sitions have been made recently ([VAdOS19, BFFdO20]), mostly relying on level-set regularization
which requires upper bounds.

Open question: can we design a provably faster SDDP algorithm that would run both a primal and
dual SDDP (see Chapter 4), using the value of one to compute upper bounds for the other?

Multi-scale MSLPs

The MSP setting considered in this manuscript tackles decisions taken at stage t that only impact the
system through its next stage state xt+1. However, there is a large class of problems where strategical or
design decisions (e.g., size or number of batteries bought in a microgrid) taken at stage t = 0 impact the
system on all stages, while still having operational decisions that have an impact limited to one stage.
More generally, there are problems with investment decisions taken, say every year, and operational
decisions taken every week, that we call multiscale problems.

In the convex setting, using envelope theorems, we can obtain subgradients of the value function
with respect to the strategical decisions, thus paving the way to cutting plane algorithms. However, these
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subgradients are given as an expectation over the whole horizon of the system, which makes the exact
computation intractable.

Open question: can we design an efficient multiscale SDDP algorithm that allows for statistically
estimated subgradients instead of exact ones?

B) New applications and challenges

I present here some mathematical challenges stemming from industrial applications.

MSLP with a few binary variables: application to industrial microgrids

Due to the environmental crisis, the world of energy is fast changing. More renewable energies need to
be integrated into the energy mix, in particular at a local, decentralized level to satisfy local consump-
tion. Industrial microgrids are industrial complexes that mix energy system storage, local production
(renewable or not), and potentially adjustable industrial demands. They can be connected to the grid, or
isolated.

Some of these problems can be cast as MSLPs with a few binary variables representing semi-
continuous variables, minimal uptime of downtime, maximum number of start-ups or shared resources
constraints. Current TFDP algorithms are either dedicated to continuous variables or often slowly con-
verging. I believe that there is ground for improvement for heuristics of exact methods based on SDDP,
coupled with branching methodology, and exploiting specific structures of the problems.

This path of research is motivated by contracts with Metron Energy and TotalEnergies. The first part-
nership, funding the Ph.D. thesis of Zoé Fornier, is concerned with providing a central digital solution
for industrial complexes. This solution shall jointly optimize the production planning and energy pro-
curement of the complex. The second partnership, funding the Ph.D. thesis of Vitor Luiz Pinto Pereira,
is concerned only with energy procurement planning, but for an isolated system where demand has to be
satisfied for security reasons.

Challenges in supply chain

The supply chain is a vast area of challenges for optimization under uncertainty.
In addition to the lot-sizing problem presented in Chapter 7, we also discussed during Etienne thesis,

a multi-sourcing problem, which decide to allocate production capacity to various center, balancing cost,
stock level and flexibility of the supply chain. The proposed approach was a two-stage model with a
service level constraint modeled as an AVAR constraint.

I believe that there is more work to be done on the subject, maybe leveraging multi-objective tools,
to design a supply chain that simultaneously optimizes costs, stock, resiliency and sustainability. This is
motivated by a contract with the Chair Supply Chain of Tomorrow funded by 4 companies (CDiscount,
Louis Vuitton, Michelin and Renault), that funds the Post Doctorate internship of Carlos Moreno.

Another interesting challenge comes from Vehicle Routing Problems. This is motivated by a research
contract, carried out in collaboration with Axel Parmentier, that aims at optimizing a large-scale (multi-
depot, multi-item, split delivery) inventory routing problem as part of the backward logistics of Renault.
In particular, Renault is using partners to deliver their products, and wants to contract some routes in
advance. This constitutes a two-stage problem, where the recourse problem in itself is numerically
challenging. As such, classical two-stage approaches fail, and we hope to leverage recent advances in
structured machine learning to develop a heuristic method.
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