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Chapter 1

Viscous scalar conservation laws and free

energy

This chapter presents the results of the article [A1] and discusses research perspectives related to the
works [JR13, Rey15, Rey17] from my PhD thesis.

1.1 Introduction

1.1.1 Rank-based interacting diffusions

Systems of one-dimensional rank-based interacting diffusions are defined by the system of stochastic
differential equations (SDEs)

dXi
t =

n∑

k=1

1
{Xi

t=X
(k)
t }

(
bn(k)dt+ σn(k)dB

i
t

)
, i = 1, . . . , n, (1.1)

where bn(1), . . . , bn(n) ∈ R, σn(1), . . . , σn(n) > 0, B1, . . . , Bn are independent Brownian motions

and, for any t ≥ 0, the notation X(1)
t ≤ · · · ≤ X

(n)
t denotes the order statistics of X1

t , . . . ,X
n
t . In

this system, each process (Xi
t)t≥0 describes the position of a particle on the real line; the particle with

rank k has a constant drift coefficient bn(k) and diffusion coefficient σn(k); and particles exchange
their drift and diffusion coefficients when they cross each other. Such systems appear in particular in
mathematical finance [Fer02, BFK05]. The fact that both the order statistics (X

(1)
t , . . . ,X

(n)
t )t≥0 and

the gap process (X
(2)
t − X

(1)
t , . . . ,X

(n)
t − X

(n−1)
t )t≥0 write as multidimensional reflected Brownian

motions [Tan79, Wil87] also makes them connected with the study of spin glasses models [RA05, AA09]
or queuing systems [HW87a, HW87b, Wil95]. More references on applications and extensions of (1.1)
may be found in the review paper [Rey17].

The mean-field scaling, under which the coefficients bn(1), . . . , bn(n) and σn(1), . . . , σn(n) are
given by

bn(k) = b

(
k

n

)
, σn(k) = σ

(
k

n

)
, (1.2)

for some continuous functions b : [0, 1] → R, σ : [0, 1] → (0,+∞), has the peculiarity to allow the study
of the n → +∞ limit using the notion of propagation of chaos originating from statistical mechanics
and kinetic theory [Kac56, Szn91]. Indeed, the system of SDEs (1.1) then rewrites

dXi
t = b

(
H ∗ µnt (Xi

t)
)
dt+ σ

(
H ∗ µnt (Xi

t)
)
dBi

t, i = 1, . . . , n,

where H(x) = 1{x≥0} denotes the Heaviside function and

µnt =
1

n

n∑

i=1

δXi
t
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is the empirical measure of X1
t , . . . ,X

n
t . Therefore, it may be expected that when n → +∞, any finite

collection of particles behaves as independent copies of the diffusion process X solution to the SDE

dXt = b (H ∗ µt(Xt)) dt+ σ (H ∗ µt(Xt)) dBt, µt := Law(Xt). (1.3)

Such a process is usually called nonlinear in McKean’s sense [McK66, McK67] because the evolution
of its time-marginal distribution µt is given by the nonlinear Fokker–Planck equation

∂tµt =
1

2
∂xx

(
σ2(H ∗ µt)µt

)
− ∂x (b(H ∗ µt)µt) . (1.4)

Remarkably, the fact that the interaction kernel H be the Heaviside function allows one to integrate both
sides of (1.4) on (−∞, x] and deduce that the Cumulative Distribution Function (CDF)

u(t, x) := H ∗ µt(x)

of Xt satisfies the local, nonlinear PDE

∂tu = ∂xxA(u)− ∂xB(u), (1.5)

where

A(u) :=

∫ u

v=0

σ2(v)

2
dv, B(u) :=

∫ u

v=0
b(v)dv.

The equation (1.5) is a one-dimensional, scalar conservation law with nonlinear viscosity A and flux
function B. Convergence results of the empirical CDF un(t, x) = H ∗ µnt (x) to u(t, x) were obtained,
under various assumptions on A, B and the initial condition u0, by Bossy and Talay [BT96, BT97], Jour-
dain and coauthors [Jou97, Jou00b, Jou00a, Jou02b, JM08, JR13], Shkolnikov [Shk12]. These results
were also complemented with Central Limit Theorems [Jou00a, KS18] and a Large Deviation Princi-
ple [DSVZ16], and rates of convergence for numerical methods were studied in [Bos04, BJb].

1.1.2 Link with McKean–Vlasov equation and free energy

Another well-studied class of particle systems with mean-field interaction is the so-called McKean–
Vlasov particle system

dXi
t = −∇V (Xi

t)dt−
1

n

n∑

j=1

∇W (Xi
t −Xj

t )dt+ σdBi
t, i = 1, . . . , n, (1.6)

in Rd, where σ > 0 and V,W : Rd → R are respectively called the external and interaction potentials.
Their mean-field limit is described by the nonlinear Fokker–Planck equation

∂tµt =
σ2

2
∆µt + div (µt (∇V +∇W ∗ µt)) , (1.7)

which we shall call the McKean–Vlasov equation1 — it is also known as the granular media equa-
tion [BCP97, BCCP98, Mal03, CGM08].

Dawson and Gärtner [DG89] observed that the large deviations of the empirical measure µnt of the
particle system (1.6) around µt are described with a formalism similar to the Freidlin–Wentzell theory
of finite-dimensional SDEs [FW12], where the role of the quasipotential is played by the free energy
function. The latter is defined on the space P(Rd) of probability measures on Rd by

F[µ] := S[µ] + (V[µ] +W[µ]) , (1.8)

1In this chapter, we take the convention to reserve the denomination ‘McKean–Vlasov equation’ for (1.7), while in the
litterature this denomination sometimes refers to more general nonlinear Fokker–Planck equations.
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where

S[µ] :=
σ2

2

∫

x∈Rd

(log µ(x))µ(dx) (1.9)

is Boltzmann’s entropy, and

V[µ] :=

∫

x∈Rd

V (x)µ(dx), W[µ] :=
1

2

∫

x,y∈Rd

W (x− y)µ(dx)µ(dy), (1.10)

respectively denote the potential energy and the interaction energy. Notice that in the definition of S[µ],
we implicitly assume that µ is absolutely continuous with respect to the Lebesgue measure and we keep
the notation µ(x) to refer to its density — otherwise, we set S[µ] = +∞. The free energy function is
also central in the study of the long time behaviour of µt, since the McKean–Vlasov equation (1.7) is
known to be the gradient flow, with respect to the metric structure induced on P(Rd) by the quadratic
Wasserstein distance, of this function [JKO98, Ott01, CMV03, CMV06, AGS08].

The purpose of Section 1.2 is to discuss the derivation of a similar free energy function for the system
of rank-based interacting particles (1.1). We first do so from a large deviation perspective, presenting
the results of [A1]. In Section 1.3, we then sketch perspectives for the application of the gradient flow
approach to study the long time behaviour of (1.4).

1.2 The free energy of viscous conservation laws

1.2.1 Free energy for the McKean–Vlasov equation

In the Freidlin–Wentzell theory, the quasipotential associated with a small noise SDE is known to be
closely related with the large deviation rate function of its stationary distribution, see [FW12, Theo-
rem 4.3, p. 111 and Chapter 6]. We do not enter into the details of this theory here but take as a starting
point of our study the equivalent question for the empirical measure of the particle system (1.6): if
(X1

∞, . . . ,X
n
∞) is a random vector in (Rd)n, distributed according to the stationary distribution2 of the

McKean–Vlasov particle system (1.6), how to describe the asymptotic (in the n → +∞ regime) distri-
bution of the empirical measure

µn∞ :=
1

n

n∑

i=1

δXi
∞
, (1.11)

which is a random variable in the space P(Rd)?

Formal derivation

Let us first assume that the interaction potential W in (1.6) vanishes, so that X1, . . . ,Xn are independent
diffusion processes, with drift −∇V . Then it is known that these processes have a unique stationary
probability distribution if and only if

z :=

∫

x∈Rd

exp

(
− 2

σ2
V (x)

)
dx < +∞, (1.12)

and that this distribution ν has density

q(x) :=
1

z
exp

(
− 2

σ2
V (x)

)

with respect to the Lebesgue measure dx on Rd. Under this condition, let us denote by Qn := ν⊗n the
stationary distribution of the process (X1

t , . . . ,X
n
t )t≥0 and by Qn := Qn ◦ π−1

n the pushfoward of Qn

2The existence and uniqueness of which is discussed below, see (1.14).
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by the mapping

πn :





(Rd)n → P(Rd)

(x1, . . . , xn) 7→ 1

n

n∑

i=1

δxi
.

(1.13)

In other words, Qn is the law of the random probability measure µn∞ defined in (1.11) when W ≡ 0. The
classical Sanov theorem then states that the sequence (Qn)n≥1 satisfies a large deviation principle (LDP)
on the space P(Rd), endowed with the topology of weak convergence, with rate function the relative
entropy with respect to ν, defined by

R(µ|ν) :=





∫

Rd

dµ

dν
log

(
dµ

dν

)
dν if µ≪ ν,

+∞ otherwise.

Let us now come back to the general case where W does not vanish. We assume that W is smooth
on Rd, bounded from below, and even. Then it is easily observed that the system of SDEs (1.6) rewrites
under the form

dXt = −n∇Un(Xt)dt+ σdBt

in (Rd)n, with Xt = (X1
t , . . . ,X

n
t ), Bt = (B1

t , . . . , B
n
t ), ∇ = (∇x1 , . . . ,∇xn) and, for x = (x1, . . . , xn) ∈

(Rd)n,

Un(x) := Vn(x) +Wn(x), Vn(x) :=
1

n

n∑

i=1

V (xi), Wn(x) :=
1

2n2

n∑

i,j=1

W (xi − xj).

As a consequence, under the condition (1.12), we have

Zn :=

∫

x∈(Rd)n
exp

(
−2n

σ2
Un(x)

)
dx < +∞,

and the process (Xt)t≥0 has a unique stationary distribution Pn, which has density

pn(x) :=
1

Zn
exp

(
−2n

σ2
Un(x)

)
(1.14)

with respect to the Lebesgue measure dx on (Rd)n.
At this point, two important observations are to be made: on the one hand, the probability measure

Pn is absolutely continuous with respect to Qn, with a density such that3

dPn

dQn
(x) ∝ exp

(
−2n

σ2
Wn(x)

)
;

on the other hand, the functions Vn and Wn appearing in the definition of Un satisfy the identity

Vn = V ◦ πn, Wn = W ◦ πn,

where V and W are the potential and interaction energies introduced in (1.10), while πn is the empirical
measure operator defined in (1.13).

As a consequence of these two facts, we deduce that the pushforward measure Pn := Pn ◦ π−1,
which is the law of µn∞ defined in (1.11) in the presence of an interaction potential W , satisfies

dPn

dQn
[µ] ∝ exp

(
−2n

σ2
W[µ]

)
.

3Only proportionality relations will be relevant in the sequel, so we no longer write normalisation constants.



1.2 The free energy of viscous conservation laws 9

Rewriting the LDP for Qn, given by Sanov’s theorem, under the formal expression

dQn[µ] ∝ exp (−nR(µ|ν)) ,

we may expect to deduce from the identity

dPn[µ] = dQn[µ]
dPn

dQn
[µ] ∝ exp

(
−nR(µ|ν)− 2n

σ2
W[µ]

)

that the sequence (Pn)n≥1 satisfies a LDP with rate function R(µ|ν) + 2
σ2W[µ], up to a normalising

additive constant. It then follows from the form of ν and the definition of the relative entropy that this
rate function rewrites

R(µ|ν) + 2

σ2
W[µ] =

2

σ2
S[µ] +

2

σ2
V[µ] + log(z) +

2

σ2
W[µ],

where S is defined in (1.9), so that the rate function for Pn finally writes

I[µ] :=
2

σ2
(F[µ]− F⋆) ,

with F the free energy introduced in (1.8) and F⋆ := infµ∈P(Rd) F[µ].

Rigorous results

The rigorous formulation of such a transfer of LDPs to absolutely continuous measures is usually called
the Laplace–Varadhan lemma, or tilted LDP. In its most basic formulation (see for instance [dH00,
Theorem III.17, p. 34]), it requires the function W to be continuous and bounded from below on the
topological space on which the LDP for Qn holds. Therefore, if W is continuous and bounded on Rd,
then W is continuous on P(Rd), endowed with the topology of weak convergence, so that combining
Sanov’s theorem with the Laplace–Varadhan lemma already allows to make the LDP for Pn rigorous on
P(Rd).

When W is not bounded, the function W is no longer continuous on P(Rd), although under our
assumptions, it remains bounded from below and lower semicontinuous. Still, continuity can be recov-
ered on stronger topologies. For instance, for any p ∈ [1,+∞), let Pp(R

d) denote the set of probability
measures on Rd with a finite p-th order moment, equipped with the p-Wasserstein topology. The latter
is defined as the weakest topology making all maps µ 7→

∫
fdµ continuous for f : Rd → R such that

|f(x)| ≤ C(1 + |x|p). As a consequence, if W (x) ≤ C(1 + |x|p) then the mapping W can be shown to
be continuous on Pp(R

d). In order to recover the LDP for Pn on Pp(R
d) through the Laplace–Varadhan

lemma, it then becomes necessary to know whether Sanov’s theorem holds on Wasserstein topologies. A
complete answer was given by Wang, Wang and Wu [WWW10]: the sequence (Qn)n≥0 satisfies a LDP
on Pp(R

d) if and only if

∀λ > 0,

∫

x∈Rd

exp(λ|x|p)dν(x) = 1

z

∫

x∈Rd

exp

(
λ|x|p − 2

σ2
V (x)

)
dx < +∞.

As a consequence, to obtain the LDP for Pn on some Pp(R
d) by combining Sanov’s theorem with the

Laplace–Varadhan lemma, one has to assume that V grows to infinity faster that |x|p while W does not
grow to infinity faster than |x|p. In short, the external potential has to have a stronger confining effect
than the interaction potential.

This dissymmetry between the roles of V and W is a clear consequence of the two-step structure
of our argument, which is common in the literature on large deviations and, in the context of (1.6), was
originally employed in the work by Dawson and Gärtner [DG89, Section 4] — see also the introduction
of the article by Léonard [Léo87] for a discussion of the topological aspects. However, in the expres-
sion (1.14) for the invariant measure of (Xt)t≥0, V and W seem to have comparable contributions to
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the tails of Pn: said otherwise, if V (x) ∝ |x|p and W (x) ∝ |x|q then Un has a maximal growth rate of
order max(p, q) at infinity. Using the so-called weak convergence approach to large deviations [DE97],
Dupuis, Laschos and Ramanan [DLR20] provided a different proof of the LDP for Pn, which implies in
particular that if

∀λ > 0,

∫

x,y∈Rd

exp

(
λ(|x|p + |y|p)− 2

σ2
(V (x) + V (y) +W (x− y))

)
dxdy < +∞,

then the LDP for Pn holds on Pp(R
d). In this formulation, which clearly generalises the result by Wang,

Wang and Wu to the case W 6= 0, the dissymmetry between the external and confining potential has
vanished: if both V and W grow faster than |x|p then the LDP holds on Pp(R

d). This remark will be
important in the proof of the results of the next section.

Remark 1.2.1 (Singular interactions). The assumption that W be smooth excludes from our study all
models with singular interactions, such as Coulomb gases. The reason for this choice, beyond the fact
that it makes several parts of the analysis simpler, is that we chose to focus on particle systems which
exhibit features similar to systems of rank-based interacting diffusions, as will be detailed in the next
section. However, the techniques evoked above, namely the combination of Sanov’s theorem with the
Laplace–Varadhan lemma, or the weak convergence approach to large deviations, may also applied
to models with singular interactions, and rates in n which are different from the mean-field scaling:
see [CGZ14, DLR20] and the references therein.

1.2.2 Equilibrium large deviations for translation invariant systems

There is an immediate and obvious problem for the transposition of the results of Subsection 1.2.1 to the
system of rank-based interacting diffusions (1.1): this system does not admit an invariant (probability)
measure. Indeed, for this system, the centre of mass

Ξt :=
1

n

n∑

i=1

Xi
t

is a one-dimensional Brownian motion with drift 1
n

∑n
k=1 bn(k) and variance 1

n2

∑n
k=1 σn(k)

2, and
therefore it cannot converge to some invariant measure. Under assumptions on the coefficients bn(k)
which will be detailed below (see also [PP08, JM08]), a stationary behaviour can however be recov-
ered for the system seen from its centre of mass X̃i

t := Xi
t − Ξt. The same remark also applies to the

McKean–Vlasov particle system (1.6) when the external potential V vanishes [Mal03]. We shall address
these two classes of models simultaneously, by placing ourselves in a general framework in which an
abstract interaction potential function W is required to satisfy a certain number of conditions, deriving
our results in this framework, and then checking that both the rank-based model and the McKean–Vlasov
model without external potential satisfy these conditions.

General framework

For d ≥ 1, we let W : P(Rd) → [0,+∞] be a function satisfying the following conditions:

(TI) translation invariance: for any y ∈ Rd, for any µ ∈ P(Rd), we have W[τyµ] = W[µ], with τy the
translation operator defined by

∫

x∈Rd

f(x)dτyµ(x) =

∫

x∈Rd

f(x+ y)dµ(x);

(σF) σ-finiteness: if µ has compact support then W[µ] < +∞;

(LSC) lower semicontinuity: the function W is lower semicontinuous on P(Rd) (endowed with the topol-
ogy of weak convergence);
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(GC) growth control: there exists ℓ ≥ 1 and κℓ > 0 such that W[µ] = +∞ if µ 6∈ Pℓ(R
d), and

∀µ̃ ∈ P̃ℓ(R
d), W[µ̃] ≥ κℓ

∫

x∈Rd

|x|ℓdµ̃(x),

where P̃ℓ(R
d) denotes the set of centered probability measures on Rd with a finite ℓ-th order

moment.

Given such a function W, for all n ≥ 2, we define the energy of a configuration x = (x1, . . . , xn) ∈
(Rd)n by

Wn(x) := W[πn(x)],

where we recall the definition (1.13) of πn.
For some temperature parameter σ > 0 which we shall keep fixed in the sequel, the (σ-finite) measure

with density exp(− 2
σ2Wn(x)) is formally invariant for the system of SDEs

dXi
t = −n∇xi

Wn(Xt)dt+ σdBi
t, i = 1, . . . , n, (1.15)

but by Assumption (TI), it cannot be normalised to a probability measure on (Rd)n. However, under
Assumptions (TI), (σF), (LSC) and (GC), this density is integrable with respect to the Lebesgue measure
dx̃ on the linear subspace

Md,n := {x̃ = (x̃1, . . . , x̃n) ∈ (Rd)n : x̃1 + · · · + x̃n = 0},

and we denote by P̃n the associated probability measure on Md,n. The diffusion process defined on Md,n

by

X̃i
t := Xi

t − Ξt, Ξt :=
1

n

n∑

i=1

Xi
t , (1.16)

then turns out to be reversible with respect to P̃n.

Example 1.2.2 (MKV-model). Let W : Rd → [0,+∞) be an even and lower semicontinuous function
and define the function WMKV by

WMKV[µ] :=
1

2

∫

x,y∈Rd

W (x− y)dµ(x)dµ(y).

This function satisfies Assumptions (TI), (σF) and (LSC). Besides, if there is ℓ ≥ 1 and κℓ > 0 such that
W (x) ≥ 2κℓ|x|ℓ, then Assumption (GC) is satisfied with these parameters. If, in addition, W is C1, then
the corresponding particle system (1.15) is the McKean–Vlasov particle system (1.6) with interaction
potential W and no external potential.

Example 1.2.3 (RB-model). Let B : [0, 1] → [0,+∞) be a C1 function such that

B(0) = B(1) = 0; ∀u ∈ (0, 1), B(u) > 0; B′(0) > 0 > B′(1); (1.17)

and let WRB be defined on P(R) by

WRB[µ] :=

∫

x∈R
B(Fµ(x))dx,

where Fµ := H ∗ µ denotes the cumulative distribution function of µ. This function satisfies Assump-
tions (TI), (σF), (LSC) and Assumption (GC) with ℓ = 1. Let us insist on the fact that, whatever the
choice of B, Assumption (GC) is never satisfied with some ℓ > 1. Besides, the corresponding particle
system (1.15) is the system of rank-based interacting diffusions (1.1), with drift coefficients

bn(k) = n

∫ k/n

u=(k−1)/n
b(u)du, b := B′, (1.18)

and constant diffusion coefficients σn(k) = σ.
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Remark 1.2.4 (On the coefficients in the RB-model). As far as the drift coefficients are concerned, the
modification from (1.2) to the ‘finite-difference approximation’ (1.18) allows for simpler computation but
does not affect the results: all LDP statements below would be equally valid with bn(k) = b(k/n). On
the other hand, the assumption that the diffusion coefficients be constant is important as it provides an
explicit formula for the invariant measure P̃n. This assumption could however be relaxed: indeed, it is
known that if the coefficients σ2n(1), . . . , σ

2
n(n) are in arithmetic progression, then the invariant measure

P̃n of the centered particle system remains explicit [IPB+11, Theorem 2]. More precisely, taking bn(k)
given by either (1.2) or (1.18), and σ2n(k) := σ20 + ρk/n with ρ > −σ20, we then have

P̃n(dx̃) ∝ exp

(
− 2

σ20
Wn(x̃)

)
dx̃,

for some function Wn such that Wn = WRB
σ2
0 ,ρ

[πn] + o(1/n) and

WRB
σ2
0 ,ρ

[µ] =

∫

x∈R

B(Fµ(x))

1 + ρ
σ2
0
Fµ(x)

dx,

see also the introduction of [Rey15]. In this case we also expect our LDP statements to remain true.

Remark 1.2.5 (Intersection between both models). Taking d = 1 and W (x) = |x| in the MKV-model
yields

WMKV[µ] :=
1

2

∫

x,y∈R
|x− y|dµ(x)dµ(y) =

∫

x∈R
Fµ(x)(1 − Fµ(x))dx,

so that this model coincides with the RB-model with B(u) = u(1 − u). In this case, the conservation
law (1.5) on u writes

∂tu =
σ2

2
∂xxu− ∂x(u(1 − u)),

which is a variant of Burgers’ equation and the solution to which may be computed analytically thanks
to the Cole–Hopf transform [JM08, Example 2.5].

Remark 1.2.6 (On the conditions in (1.17)). The first condition in (1.17) ensures that WRB is not identi-
cally equal to +∞. Under this first condition, the second condition equivalently rewrites

∀u ∈ (0, 1),
1

u

∫ u

v=0
b(v)dv >

1

1− u

∫ 1

v=u
b(v)dv.

The latter identity has the following interpretation for the particle system (1.1) with drift coefficients
given by (1.18): in the large n limit, 1

u

∫ u
v=0 b(v)dv is the average drift of the group of the nu left-most

particles, while 1
1−u

∫ 1
v=u b(v)dv is the average drift of the group of the n(1 − u) right-most particles.

If the former average is larger than the latter, then both groups tend to drift toward each other, which
ensures the global stability of the system around its centre of mass. The discrete version of this condition
is actually known to be necessary and sufficient for the existence of the invariant measure P̃n, see the
discussion in [Rey17, Section 2.2]. In the terminology of scalar conservation laws, this stability condition
is called Oleinik’s entropy condition. Likewise, the third condition in (1.17) is called Lax’ entropy
condition.

Main results

Under Assumptions (TI), (σF), (LSC) and (GC), let us define the pushforward measure

P̃n := P̃n ◦ π−1
n .

Our purpose is now to study the large deviations of the sequence (P̃n)n≥2. Compared with the McKean–
Vlasov particle system of Subsection 1.2.1, there are two main differences: there is no external potential
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V , and P̃n gives full weight to the space P̃(Rd) of centered probability measures on Rd. Therefore, a
natural conjecture is that the sequence (P̃n)n≥2 satisfies a LDP on P(Rd) with rate function

Ĩ[µ] =





2

σ2
(F[µ]− F⋆) if µ ∈ P̃(Rd),

+∞ otherwise,
(1.19)

where the free energy F is defined by

F[µ] := S[µ] +W[µ],

and F⋆ := inf
µ̃∈P̃(Rd)

F[µ̃].

In order to formalise this statement, we proceed as follows. Let us first introduce the following
supplementary assumption.

(CC) Chaos compatibility: for any µ ∈ P(Rd), if (Yn)n≥1 is a sequence of independent random vari-
ables with law µ on some probability space (Ω,A,P), then

lim
n→+∞

E [Wn(Y1, . . . , Yn)] = W[µ].

For any η > 0, let us consider the probability measure P η
n defined on (Rd)n by

P η
n (dx) ∝ exp

(
−2n

σ2
(ηVn(x) +Wn(x))

)
dx, Vn(x) =

1

n

n∑

i=1

|xi|ℓ,

with the index ℓ ≥ 1 given by Assumption (GC). This is the invariant measure of the particle sys-
tem (1.15) to which a small external potential η|x|ℓ has been added, in order to break the translation
invariance and recover the existence of a stationary distribution. The next result, obtained in [A1], fol-
lows from the adaptation of the proof of [DLR20, Theorem 2.9].

Proposition 1.2.7 (Large deviations for Pη
n). Let Assumptions (TI), (σF), (LSC), (GC) and (CC) hold.

Let ℓ ≥ 1 be the index given by Assumption (GC). Let η > 0, and for all n ≥ 1, let Pη
n := P η

n ◦ π−1
n .

(i) The sequence (Pn)n≥1 satisfies a LDP on P(Rd) with rate function

Iη [µ] :=
2

σ2
(Fη [µ]− Fη

⋆) ,

where

Fη[µ] := S[µ] + ηV[µ] +W[µ], V[µ] :=

∫

x∈Rd

|x|ℓdµ(x), Fη
⋆ := inf

µ∈P(Rd)
Fη [µ].

(ii) If ℓ > 1, then for any p ∈ [1, ℓ), the LDP holds on Pp(R
d), equipped with the p-Wasserstein

topology, with the same rate function.

For any p ≥ 1, let T : Pp(R
d) → P̃p(R

d) be the centering operator defined by

Tµ = τ−ξµ, ξ :=

∫

x∈Rd

xdµ(x).

This operator is continuous on Pp(R
d), therefore by the contraction principle, we deduce that under the

assumptions of Proposition 1.2.7 (ii), for any p ∈ [1, ℓ), the pushforward measure P̃
η
n := P

η
n ◦ T−1

satisfies a LDP on Pp(R
d) with rate function

Ĩη[µ] :=





inf
µ′:Tµ′=µ

Iη[µ′] if µ ∈ P̃p(R
d),

+∞ otherwise.

It is then easy to see that when η → 0, Ĩη converges, in an appropriate sense, to the function Ĩ defined
in (1.19). But on the other hand, when η → 0, P̃η

n converges to P̃n, and under the following last (and
more technical) assumption:



14 Viscous scalar conservation laws and free energy

(SH) sub-homogeneity: for all ǫ ∈ (0, 1), for any x ∈ (Rd)n, (1− ǫ)Wn(x) ≥Wn((1 − ǫ)x);

this convergence can be controlled sufficiently accurately, at the exponential scale, so as to ensure the
continuity of the LDP and to yield the following statement, which is the first main result of [A1].

Theorem 1.2.8 (LDP in the Wasserstein topology). Let Assumptions (TI), (σF), (LSC), (GC), (CC)
and (SH) hold. If the index ℓ ≥ 1 given by Assumption (GC) is such that ℓ > 1, then for any p ∈ [1, ℓ),
the sequence (P̃n)n≥2 satisfies a LDP on Pp(R

d) with rate function Ĩ defined by (1.19).

Remark that since the injection from Pp(R
d) to P(Rd) is continuous, the LDP of Theorem 1.2.8 also

holds on P(Rd), with the same rate function.
The requirement that ℓ > 1 in Theorem 1.2.8 is rather annoying since it excludes the RB-model, for

which ℓ = 1, and which was the initial objective of our study. In the case ℓ = 1, Proposition 1.2.7 only
provides a LDP on the space P(Rd), on which the centering operator T is not continuous, and not even
well defined. This prevents the application of the contraction principle. In fact, it can be directly observed
that if ℓ = 1, the function Ĩ defined in (1.19) does not have compact level sets, so the conjectured LDP
cannot hold.

In order to reconnect the function Ĩ with the large deviations of P̃n, let us adopt the following slightly
different point of view. We first denote by P(Rd) the quotient space of P(Rd) defined by identifying
measures which are translations of each other. For any µ ∈ P(Rd), we then denote by tµ ∈ P(Rd) the
equivalence class of µ. For any n ≥ 2 and t ≥ 0, there is a one-to-one correspondance between the
empirical measure µ̃nt = 1

n

∑n
i=1 δX̃i

t
of the centered particle system (1.16), and the equivalence class

tµnt of the empirical measure µnt = 1
n

∑n
i=1 δXi

t
of the original particle system (1.15), since the former

is the unique centered element of the latter. Therefore, the stationary behaviour of the centered particle
system (1.16) is equivalently described by the probability measure

Pn := P̃n ◦ t−1

on P(Rd), which no longer involves neither the centering operator T nor even the notion of centre of
mass. Providing P(Rd) with the quotient topology, defined as the strongest topology making the quotient
map t : P(Rd) → P(Rd) continuous, we may now combine the LDP of Proposition 1.2.7 (i) with the
contraction principle to obtain a LDP, on P(Rd), for P

η
n := P

η
n◦t−1. Replacing the pair (T, P̃p(R

d)) with
(t,P(Rd)), the same arguments as for the proof of Theorem 1.2.8 now yield the following statement,
which is the second main result of [A1].

Theorem 1.2.9 (LDP in the quotient topology). Let Assumptions (TI), (σF), (LSC), (GC), (CC) and (SH)
hold. The sequence (Pn)n≥2 satisfies a LDP on P(Rd) with rate function I defined by

I[µ] =
2

σ2
(
F[µ]− F⋆

)
,

where the free energy F[µ] is defined by F[µ] = S[µ] + W[µ] for any µ ∈ µ, both functions S and W

being translation invariant.

The use of this quotient procedure was partially inspired by a recent work by Mukherjee and Varad-
han [MV16] on the study of translation invariant functionals of the Brownian occupation measure.

Application to rank-based interacting diffusions

Let us complete this section by discussing the application of Theorems 1.2.8 and 1.2.9 to the MKV- and
RB-models of Examples 1.2.2 and 1.2.3. We already noted that Assumptions (TI), (σF), (LSC) and (GC)
are satisfied in these two models. It turns out that Assumption (CC) is satisfied without further condi-
tion for both models, and that Assumption (SH) always holds for the RB-model (in fact, the demanded
inequality is an equality), while it holds for the MKV-model as soon as (1 − ǫ)W (x) ≥ W ((1 − ǫ)x)
for any ǫ ∈ (0, 1) and x ∈ Rd. We single out the application of Theorem 1.2.9 to the RB-model in
the next statement, thereby completing our task to define a free energy function for this model through
equilibrium large deviations.
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Corollary 1.2.10 (Equilibrium large deviations for rank-based particle systems). Let B : [0, 1] →
[0,+∞] be a C1 function satisfying the conditions (1.17).

(i) For any σ > 0, the system of rank-based interacting diffusions with drift coefficients bn(k) given
by (1.18) and constant diffusion coefficients σn(k) = σ, seen from its centre of mass, possesses a
unique stationary distribution

P̃n(dx̃) ∝ exp

(
−2n

σ2
Wn(x̃)

)
dx̃

on the hyperplane M1,n, where

Wn(x̃) = − 1

n

n∑

k=1

bn(k)x̃(k), x̃(1) ≤ · · · ≤ x̃(n).

(ii) Let Pn refer to the law of the equivalence class of the empirical measure of a random vector with
distribution P̃n. The sequence (Pn)n≥2 satisfies a LDP on P(R) with rate function equal, up to an
additive constant, to 2

σ2F
RB

, with

F
RB
[µ] := S[µ] +

∫

x∈R
B(Fµ(x))dx,

for any µ ∈ µ, where we recall that Fµ refers to the CDF of µ.

This LDP complements the Law of Large Numbers of [Rey15], where under the same assumptions
the sequence P̃n = P̃n ◦ π−1

n was proved to converge to δµ̃∞
, with µ̃∞ the unique centered stationary

distribution of the nonlinear diffusion process

dXt = b(Fµt(Xt))dt+ σdBt, µt = Law(Xt).

It may also be seen as an infinite time horizon complement to the LDP obtained by Dembo, Shkol-
nikov, Varadhan and Zeitouni [DSVZ16] on the trajectories (µnt )t∈[0,T ] for the system (1.1–1.2) (with
a general, non-constant diffusion coefficient σ : [0, 1] → (0,+∞)). Last, it also has practical applica-
tions in Stochastic Portfolio Theory [Fer02, BFK05, JR15], where each process Xi in (1.1) represents
the log-capitalisation of a stock, and such quantities as the market weight of a stock are invariant un-
der translations, so that Corollary 1.2.10 can be employed to describe their stationary fluctuations, see
Section 5.3 in [A1]. To conclude in this direction, let us mention that mean-field models such as the
McKean–Vlasov equation, with or without external potential, also arise in mathematical finance as a
model for systemic risk, see [FL13] and also [GPY13] for large deviation estimates.

1.3 Gradient flow approach to the long time behaviour of (1.5)

1.3.1 Case of the McKean–Vlasov equation

The McKean–Vlasov equation (1.7) formally rewrites

∂tµt = div

(
µt∇

δF

δµ
[µt]

)
, (1.20)

where F is the free energy function defined by (1.8), and δF
δµ is (still formally) the Gâteaux derivative of

F with respect to µ. It easily follows from this interpretation that

d

dt
F[µt] = −

∫

Rd

∣∣∣∣∇
δF

δµ
[µt]

∣∣∣∣
2

dµt ≤ 0,
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so that F acts as a Lyapunov function and the study of its minimisers, wells, curvature, saddle-points...
becomes of interest in order to describe quantitatively the long time behaviour of µt.

This rather formal description finds its rigorous formulation in the theory of gradient flows in spaces
of probability measures presented in the monograph by Ambrosio, Gigli and Savaré [AGS08] and pre-
figurated in the articles by Jordan, Kinderlehrer and Otto [JKO98] and Otto [Ott01]; more precisely, the
identity (1.20) can be interpreted as the fact that (µt)t≥0 is the gradient flow of F in the space P2(R

d),
metrised by the quadratic Wasserstein distance [Vil09, Chapter 15]. As a consequence, many results
on the long time behaviour of µt may be expected to follow from the analogy between (1.20) and the
finite-dimensional dynamical system

ṁt := −∇F (mt),

for some function F : Rk → R. In particular, if F is uniformly convex and has a unique minimiser
m∞, then both F (mt) − F (m∞) and the Euclidean norm ‖mt −m∞‖ converge at an exponential rate
to 0. In the infinite-dimensional space P2(R

d), the suitable generalisation of the notion of convexity is
called displacement convexity and was introduced by McCann in [McC97]. Under conditions over the
potentials V and W ensuring that the function F is uniformly displacement convex, there exists a unique
minimiser µ∞ of F, which obviously is the unique stationary solution of (1.7), and the exponential decay
of both F[µt]−F[µ∞] and W2(µt, µ∞) was proved by Carrillo, McCann and Villani [CMV03, CMV06].

1.3.2 Long time behaviour of conservation laws

Let (Xt)t≥0 be a solution to the nonlinear SDE (1.3). As soon as, ds-almost everywhere, the CDF u(s, ·)
of Xs is continuous on R, the expectation of Xt satisfies

E[Xt] = E[X0] +

∫ t

s=0
E[b(u(s,Xs))]ds = E[X0] + tB(1),

so that the first condition in (1.17) ensures that the expectation of Xt remains constant. Under this con-
dition, the Oleinik entropy condition, namely the second condition in (1.17), ensures that the nonlinear
Fokker–Planck (1.4), or equivalently the scalar conservation law (1.5), possesses a stationary solution
µ∞, which is unique up to spatial translation. The convergence of µt to µ∞ has been extensively studied
in relation with the notion of stability of traveling waves for the conservation law (1.5). In particular,
it follows from results by Osher and Ralston [OR82], Freistühler and Serre [FS98], and Serre [Ser02],
that if the diffusion coefficient σ is constant, then the CDF u(t, ·) of µt converges, in L1(R), to the CDF
u∞ of the stationary solution µ∞ with the same expectation as the initial condition. This result was then
extended to a nonconstant diffusion coefficient by Gasnikov [Gas09].

The convergence of u(t, ·) in L1(R) is actually directly related with the Wasserstein topology on
P(R). Indeed, we recall that in general, for any p ∈ [1,+∞), the Wasserstein distance of order p
between two probability measures µ, ν ∈ Pp(R

d) is defined by

Wp(µ, ν) := inf E[|X − Y |p]1/p,

where the infimum is taken over all pairs of random variables (X,Y ) with marginal distributions µ and
ν. In dimension d = 1, an optimal coupling (for all values of p) is given by

X = F−1
µ (U), Y = F−1

ν (U),

where U is a uniform random variable on [0, 1] and, for any CDF F , the pseudo-inverse F−1 is defined
by

∀u ∈ (0, 1), F−1(u) := inf{x ∈ R : F (x) ≥ u}.
As a consequence, for any µ, ν ∈ Pp(R),

Wp(µ, ν) =

(∫ 1

u=0
|F−1

µ (u)− F−1
ν (u)|pdu

)1/p

, (1.21)
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and when p = 1, the right-hand side coincides with ‖Fµ − Fν‖L1(R). Therefore, convergence results
in L1(R) for (1.5) are equivalently expressed as convergence results in P1(R) for (1.4). These results
were extended to Wasserstein distances of order p ≥ 1 in [JR13], in the spirit of previous works [CT04,
CGT04, CDFL07].

1.3.3 Gradient flow approach for conservation laws

In order to connect the study of the long time behaviour of (1.4-1.5) with the gradient flow approach
described above for the McKean–Vlasov equation, let us now observe that for a constant diffusion coef-
ficient σ2, the nonlinear Fokker–Planck equation (1.4) rewrites, at the same formal level as (1.20),

∂tµt = ∂x

(
µt∂x

δF

δµ
[µt]

)
,

with the free energy function F := S+W given by

S[µ] :=
σ2

2

∫

x∈R
(log µ(x))µ(x)dx, W[µ] :=

∫

x∈R
B(Fµ(x))dx.

Following the gradient flow approach [CMV03, CMV06, AGS08], rates of convergence of µt to µ∞
can then be expected to be derived from the study of the displacement convexity of the function F.
The one-dimensional setting allows for a technical simplification here: indeed, the identity (1.21) shows
that the mapping µ 7→ F−1

µ induces an isometric embedding of the metric space Pp(R) into the linear
space Lp(0, 1), such that displacement convexity in Pp(R) reduces to standard convexity in Lp(0, 1).
Rewriting the entropy and the interaction energy under the form

S[µ] = −σ
2

2

∫ 1

u=0

(
log(F−1

µ )′(u)
)
du, W[µ] = −

∫ 1

u=0
F−1
µ (u)b(u)du,

we then observe that S is convex but not uniformly convex, and that W appears as a linear perturbation
of S. Therefore, while the assumptions on B make this perturbation ‘strong enough’ for the function F

to admit global minimisers (which S does not have), it does not have any effect on its curvature and this
function is never uniformly convex. Hence, at least from this formal analysis, no exponential convergence
of µt to µ∞ can be expected to be observed without more restrictions on the initial condition µ0.

In fact, it is known that the rate of convergence of solutions to (1.4) strongly depends on the tail
of the initial condition µ0 (see for instance [JGK93, MN94, How99, NZ02] and the references therein),
therefore a general study of the rate of convergence of µt to µ∞ within the gradient flow interpretation
would probably require finer estimates on the dissipation of S[µt] and W[µt]. This question is currently
being investigated by means of Poincaré inequalities, which are known to be related with the curvature
of S [CG03].
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Chapter 2

Rate of convergence for sticky particle

dynamics

This chapter presents the results of [A2], written in collaboration with Benjamin Jourdain.

2.1 Introduction

This chapter is dedicated to the study of systems of finitely many particles evolving on the real line at
constant velocity between collisions, and sticking together into clusters at collisions, with preservation of
total mass and momentum. Such collisions are called perfectly inelastic, and the resulting (deterministic)
dynamics is called the sticky particle dynamics in one dimension. The latter is known to be relevant in
the modelling of pressureless systems, which makes it of interest in astrophysics or gas dynamics [Zel70,
VDFN94].

Let us denote by m1, . . . ,mn > 0 the respective masses of the particles, and by x01 ≤ · · · ≤ x0n
and v01, . . . , v

0
n ∈ R their respective initial positions and velocities. If at some time t ≥ 0, a cluster is

composed by the particles of indices k, k + 1, . . . , l − 1, l, then its velocity vk:l is given by

vk:l :=
mkv

0
k + · · · +mlv

0
l

mk + · · · +ml
, (2.1)

and a necessary condition for the existence of the cluster is the fact that, for any k′ ∈ {k + 1, . . . , l},

vk:k′−1 ≥ vk′:l, (2.2)

otherwise the cluster would split into diverging parts.
Let us then denote by x1(t) ≤ · · · ≤ xn(t) the respective positions of the particles at time t and

introduce the mass distribution

ρ(t) :=
n∑

k=1

mkδxk(t).

We finally call velocity distribution any measurable function v : [0,+∞) × R such that, dt-almost
everywhere, for all k ∈ {1, . . . , n}, v(t, xk(t)) = ẋk(t). The pair (ρ, v) turns out to solve, in the
distributional sense, the system of partial differential equations

{
∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2) = 0,

which respectively encode the preservation of mass and momentum. We refer to the recent survey by
Hynd [Hyn19] for developments on the mathematical study of this system and bibliographical references.
We also mention that there is an important litterature, in the probability theory community, dedicated to
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the study of sticky diffusions, see for instance [BRHC20] and the references therein, but the questions of
interest in this context are quite different.

Another description of the sticky particle dynamics in terms of partial differential equations was
provided by Brenier and Grenier [BG98]. Let us assume, for simplicity, that the total mass of the system
m1 + · · ·+mn is normalised to 1. Let Bn : [0, 1] → R be defined by

∀u ∈ [0, 1], Bn(u) :=

∫ u

v=0

n∑

k=1

v0k1{m1+···+mk−1<v<m1+···+mk}dv,

and for all t ≥ 0, let

un(t, x) :=

n∑

k=1

mk1{xk(t)≤x} ∈ [0, 1]

be the cumulative distribution function (CDF) of the particle system. Then un is the unique entropy
solution to the scalar conservation law{

∂tun + ∂xBn(un) = 0,

un(0, x) = u0n(x),
(2.3)

where u0n(x) :=
∑n

k=1mk1{x0
k
≤x}. This follows from the fact that particles, or more generally clusters

of particles, can be seen as shocks for the solution un, and collisions between these clusters satisfy the
entropy condition. As a consequence of this observation, it turns out that if one takes a sequence of
particle systems with parameters (mk,n, x

0
k,n, v

0
k,n)1≤k≤n such that the initial condition u0n and the flux

function Bn converge to some functions u0 : R → [0, 1] and B : [0, 1] → R, then the associated CDF
un converges to the entropy solution u to the scalar conservation law

{
∂tu+ ∂xB(u) = 0,

u(0, x) = u0(x).
(2.4)

This result can be seen either from a ‘kinetic theory’ point of view as the hydrodynamic description
of large sticky particle systems, or from a ‘numerical analysis’ point of view as the convergence of
a discretisation of the conservation law (2.4)1. From both points of view, the quantification of this
convergence is of interest, and this is the purpose of this chapter.

We first establish a Wasserstein stability result for conservation laws with different flux functions,
from which convergence rates are then deduced. The results presented in this chapter are slight exten-
sions of [A2], in which multitype sticky particle dynamics, which are related to diagonal systems of
conservation laws, are also addressed.

Remark 2.1.1 (Link with systems of rank-based interacting diffusions). When all masses are equal to
1/n, the sticky particle dynamics is known [JR14] to describe the ǫ → 0 limit of the solution to the
system of rank-based interacting diffusions (1.1) studied in Chapter 1, with coefficients bn(k) = v0k and
σn(k) = ǫ. From this perspective, the condition (2.2) for the existence of clusters is reminiscent of the
stability condition discussed in Remark 1.2.6, and the convergence of un to u is a zero-noise version of
propagation of chaos results.

2.2 Stability and rate of convergence

Similarly to Chapter 1, we endow the space of CDFs on the line with Wasserstein distances, which we
directly define, for p ∈ [1,+∞) and two CDFs u, u : R → [0, 1], by

Wp(u, u) :=

(∫ 1

v=0
|u−1(v)− u−1(v)|pdv

)1/p

,

1The sticky particle dynamics is extremely simple to simulate exactly. In particular, an elementary convexity ‘trick’ enables
one to compute the positions of particles at time t ≥ 0 in O(n) operations without having to simulate explicitly all trajectories
and collisions on [0, t], see Section 4 in [BG98] or Section 5.1 in [A2].
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where u−1, u−1 denote the pseudo-inverses of u, u. We recall that for p = 1, the Wasserstein distance
coincides with the L1(R) distance. The following result was proved in [A2], Proposition 1.4, only in the
case p = 1, but the arguments can actually be adapted to the case p ≥ 1 as is sketched below.

Theorem 2.2.1 (Wasserstein stability). Let u0, u0 be CDFs on the real line, and B,B : [0, 1] → R be
Lipschitz continuous functions. Let u and u be the respective entropy solutions to the scalar conservation
laws {

∂tu+ ∂xB(u) = 0,

u(0, x) = u0(x),

{
∂tu+ ∂xB(u) = 0,

u(0, x) = u0(x).

For all 0 ≤ s ≤ t, for all p ∈ [1,+∞),

Wp(u(t, ·), u(t, ·)) ≤Wp(u(s, ·), u(s, ·)) + (t− s)

(∫ 1

v=0
|B′(v) −B

′
(v)|pdv

)1/p

.

In the case where B = B, this result was first obtained by Bolley, Brenier and Loeper [BBL05], for
all values of p.

The basic ingredient of the proof of Theorem 2.2.1 is the following discrete version of this stability
estimate, for the sticky particle dynamics.

Proposition 2.2.2 (Wasserstein stability of the sticky particle dynamics). Let un and un denote the
empirical CDFs of sticky particle dynamics with respective initial positions and velocities x01 ≤ · · · ≤
x0n, v01 , . . . , v

0
n and x01 ≤ · · · ≤ x0n, v01, . . . , v

0
n, and pairwise equal masses m1 = m1, . . . ,mn = mn.

For all 0 ≤ s ≤ t, for all p ∈ [1,+∞),

Wp(un(t, ·), un(t, ·)) ≤Wp(un(s, ·), un(s, ·)) + (t− s)

(
n∑

k=1

mk|v0k − v0k|p
)1/p

.

Theorem 2.2.1 is then deduced from Proposition 2.2.2 by an approximation argument using the
Brenier–Grenier convergence result, see Appendix A in [A2] for details.

Proof of Proposition 2.2.2. Let us denote by x1(t) ≤ · · · ≤ xn(t) and x1(t) ≤ · · · ≤ xn(t) the respec-
tive positions of particles in both systems. It follows from the definition of Wasserstein distances that,
for any t ≥ 0 and p ∈ [1,+∞),

W p
p (un(t, ·), un(t, ·)) =

n∑

k=1

mk|xk(t)− xk(t)|p. (2.5)

Let ck(t) := {k′ ∈ {1, . . . , n} : xk′(t) = xk(t)} denote the cluster in which the k-th particle lies at
time t ≥ 0 in the first system. For almost every t ≥ 0, set

γk(t) :=
∑

k′∈ck(t),k′≤k

mk′
(
v0k′ − ẋk′(t)

)
, k = 1, . . . , n,

and γn+1(t) := 0. Then it follows from (2.1) and (2.2) that γk(t) ≥ 0, and if xk(t) < xk+1(t) then
γk(t) = 0; besides, by construction,

mkẋk(t) = mkv
0
k + γk(t)− γk+1(t), dt-almost everywhere.

Obviously, a similar identity also holds for the second system. As a consequence,

d

dt

n∑

k=1

mk|xk(t)− xk(t)|p ≤ p

n∑

k=1

mksgn(xk(t)− xk(t))|xk(t)− xk(t)|p−1(v0k − v0k),
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which by Hölder’s inequality yields

d

dt

n∑

k=1

mk|xk(t)− xk(t)|p ≤ p

(
n∑

k=1

mk|xk(t)− xk(t)|p
)1−1/p( n∑

k=1

mk|v0k − v0k|p
)1/p

,

and the claimed estimate finally follows from Gronwall’s lemma combined with (2.5).

The application of Theorem 2.2.1 to the study of the rate of convergence of the sticky particle dynam-
ics is obvious: letting un and u be the respective entropy solutions to the scalar conservation laws (2.3)
and (2.4), we get, for any t ≥ 0 and p ≥ 1,

Wp(un(t, ·), u(t, ·)) ≤Wp(u
0
n, u

0) + t

(∫ 1

v=0
|B′

n(v) −B′(v)|pdv
)1/p

.

From the numerical analysis point of view, this shows that if one wants to discretise (2.4) thanks
to a sticky particle scheme, then the global discretisation error naturally decomposes as the sum of
discretisation errors for the initial condition and the flux. In [A2] (see also [Jou02a, JR16]), all particles
are taken to have the same mass 1/n. In this case, the optimal discretisation of the initial condition was
thoroughly studied by Bencheikh and Jourdain in the recent work [BJa]; apart from the case where u0 is
the CDF of a Dirac mass, the best rate of convergence that can be expected is 1/n (see also [XB19]). On
the other hand, as soon as B′ is Lipschitz continuous, then defining the initial velocities for the sticky
particle dynamics by

v0k = n

(
B

(
k

n

)
−B

(
k − 1

n

))
or B′

(
k

n

)

also yields a rate 1/n for the flux term. Overall, we deduce that the sticky particle dynamics converges to
the conservation law at rate 1/n, with a constant which grows linearly in time, for Wasserstein distances
of all orders. This rate is optimal in the sense that there are examples for which the discretisation error
is indeed of order 1/n. The sticky particle dynamics was also proved to display the same computational
cost, for a given required level of precision, as such standard methods as upwind schemes, see Section 5
in [A2] for details.

The arguments detailed in this chapter can be generalised to study the rate of convergence, together
with a simple numerical algorithm, for the multitype sticky particle dynamics introduced in [JR16] to
approximate diagonal systems of conservation laws. In any case, the assumption that the initial condition
u0 be a CDF, and thus nonincreasing, is rather restrictive for practical applications. In [Jou02a], Jourdain
introduced a system of sticky particle dynamics with signed masses and proved the convergence of the
latter to the entropy solution of scalar conservation laws with bounded and BV initial conditions. The
estimation of the rate of convergence for such a system (in L1(R), since in this case Wasserstein distances
no longer make sense) is therefore a natural perspective for the continuation of the works presented in
this chapter.



Chapter 3

Finite-Volume approximation of stationary

distributions of stochastic conservation

laws

This chapter presents the results of the articles [A3] and [A4], written in collaboration with Sébastien
Boyaval and Sofiane Martel during Sofiane Martel’s PhD thesis.

3.1 Introduction

3.1.1 Stochastic scalar conservation laws in statistical hydrodynamics

Stochastic conservation laws play a particular role in the study of the turbulence phenomenon. In partic-
ular, the field of statistical hydrodynamics [AFS08] aims at understanding the behaviour of the solution
u(t, x) ∈ Rd to equations of fluid mechanics, such as the Euler or Navier–Stokes equation

∂tu+ (u · ∇)u = ν∆u−∇p+ ξ, div u = 0,

{
ν = 0 (Euler)

ν > 0 (Navier–Stokes)
(3.1)

perturbed by a source term ξ(t, x) which is stochastic. In contrast with other domains of physics, such as
statistical mechanics or quantum field theory, where white-in-space noise is a natural model and leads to
singular SPDEs [Hai14, GIP15], here the noise term is usually sufficiently spatially correlated to make
the realisations of the random field ξ(t, x) smooth in the d-dimensional space variable [Zam21]. This
does not however necessarily imply that the solution u(t, x) is smooth itself, since when the viscosity
parameter ν vanishes, the effect of the nonlinear transport term (u · ∇)u may create shocks and result in
the loss of spatial regularity.

When the solution u(t, x) evolves as a Markov process, which typically requires the noise to be
white-in-time, its stationary distribution is of particular interest since it describes the statistics of the fluid
independently from the arbitrary choice of an initial condition. We refer for instance to [HM06, KS12]
for a thorough exposition of the ergodic theory of the stochastic Navier–Stokes equation in dimension
d = 2. In the sequel of this chapter, we focus on the case d = 1, so that (3.1) reduces to the one-
dimensional stochastic Burgers equation

∂tu+ u∂xu = ν∂xxu+ ξ, (3.2)

the turbulent behaviour of which is sometimes referred to as Burgulence [FB01, BK07, Bor13b]. When
ν > 0, the Laplacian operator provides a dissipation mechanism which yields the existence of a stationary
distribution [Sin91, Sin96]. Related quantitative estimates independent from ν were obtained in [Bor12,
Bor13a]. In the inviscid case ν = 0, E, Khanin, Mazel and Sinai showed in [EKMS00] that shocks in the
entropy solution to (3.2) dissipate enough energy to maintain an ergodic behaviour.
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The stochastic Burgers equation (3.2) is a particular case of a stochastic conservation law

∂tu+ ∂xA(u) = ν∂xxu+ ξ, (3.3)

with the specific choice of a quadratic flux function A(u) = u2/2. Still in the inviscid case ν = 0,
Debussche and Vovelle proved in [DV15] that under some nondegeneracy condition on A, which is in
particular satisfied for uniformly convex flux functions, the solution u still admits a unique stationary
distribution, thereby extending the results of [EKMS00] from the Burgers equation to the whole family
of scalar conservation laws (3.3).

This result was the starting point of our collaboration with Sébastien Boyaval and of the PhD the-
sis of Sofiane Martel. Seeing scalar conservation laws of the form (3.3) as simplified models for more
physically relevant systems of conservation laws, such as the shallow water equations1 , we wanted to
construct a numerical scheme for (3.3) which would allow, under the assumptions of [DV15], to approx-
imate the stationary distribution of the solution to this equation. We decided to study the Finite-Volume
method [EGH00] which is particularly suitable for conservation laws.

3.1.2 Finite-Volume semidiscretisation and long time behaviour

Let us consider the stochastic scalar conservation law (3.3) on the one-dimensional torus T := R/Z,
which we identify with the interval (0, 1]. For the moment we do not give a precise meaning to the noise
term ξ(t, x). In order to explain the idea of the Finite-Volume method, we also leave the Laplacian term
apart temporarily and thus assume that ν = 0.

Fix N ≥ 1, divide T into N intervals Ii = ((i − 1)/N, i/N ] for i ∈ TN := Z/NZ (which is
identified with {1, . . . , N}), and call xi = i/N ∈ T the interface between Ii and Ii+1. Averaging both
sides of (3.3) on the interval Ii leads to the identity

d

dt

(
N

∫ xi

x=xi−1

u(t, x)dx

)
+N (A(u(t, xi))−A(u(t, xi−1))) = N

∫ xi

x=xi−1

ξ(t, x)dx.

Let us denote by UN
i (t) a quantity whose purpose is to approximate the average value of u(t, x) on the

interval Ii. The basic idea of the Finite-Volume method (in dimension 1) then consists in approximating
the flux A(u(t, xi)) at the interface xi by a function A(UN

i (t), UN
i+1(t)) of the approximate value of the

solution on both sides of the interface. The function A : R2 → R is called a numerical flux, and it is
typically required to satisfy the following assumptions:

(NF1) consistency: for all v ∈ R, A(v, v) = A(v);

(NF2) monotonicity: A(v,w) is nondecreasing in v and nonincreasing in w.

Example 3.1.1 (The Engquist–Osher scheme). Let A : R → R be a C1 flux function. Assume, without
loss of generality, that A(0) = 0. The Engquist–Osher numerical flux, defined by

A(v,w) := A+(v)−A−(w), A±(v) :=

∫ v

v′=0
[A′(v′)]±dv

′,

satisfies the assumptions (NF1) and (NF2).

As a result, if ν = 0 then the spatial discretisation of (3.3) by the Finite-Volume method leads to the
system of differential equations

d

dt
UN
i (t) +N

(
A(UN

i (t), UN
i+1(t))−A(UN

i−1(t), U
N
i (t))

)
= ξNi (t), i ∈ TN , (3.4)

1These equations constitute the basis of the industrial computer code TELEMAC developed by Laboratoire d’Hydraulique
Saint-Venant, a joint laboratory between École des Ponts ParisTech, EDF R&D and CEREMA.
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where ξNi (t) is the average of ξ(t, x) on Ii. When ν > 0, the Laplacian operator may be discretised
by a simple finite difference approximation which adds the term νN2(UN

i+1(t)− 2UN
i (t) + UN

i−1(t)) to
the right-hand side. From now on, we shall call semidiscrete schemes such systems of time-continuous
differential equations as (3.4). A fully discrete scheme is then obtained by applying any classical time
discretisation method to it.

If ξ(t, x) is a Gaussian white-in-time noise, then (3.4) writes more naturally under the form of the
Itô SDE

dUN
i (t) = −N

(
A(UN

i (t), UN
i+1(t))−A(UN

i−1(t), U
N
i (t))

)
dt+ dWN

i (t), i ∈ TN , (3.5)

where (WN
1 (t), . . . ,WN

N (t))t≥0 is a Wiener process with a certain covariance structure inherited from
the spatial correlations of ξ(t, x). In the purpose to approximate the stationary distribution of (3.3), the
following two questions related with this semidiscrete scheme are then natural.

(i) Does the diffusion process (UN
1 (t), . . . , UN

N (t))t≥0 defined by (3.5) has a stationary distribution?

(ii) If so, does this stationary distribution converge, when N → +∞, to the stationary distribution of
the original conservation law (3.3)?

The same questions obviously also arise for the fully discrete scheme, additionally taking the time dis-
cretisation into account.

3.1.3 Outline of the chapter

Unsurprisingly, these questions are easier to address when the viscosity ν is positive. We shall therefore
give a complete treatment of this case first. In Section 3.2, we set up the framework of our study by
introducing precisely the SPDE in which we are interested. In Section 3.3, we state our results on the
Finite-Volume approximation of the stationary distribution. We finally discuss the inviscid case ν = 0 in
Section 3.4.

3.2 Strong solutions and stationary distribution in the viscous case

In this section, we discuss the well-posedness of (3.3) on the one-dimensional torus T when the viscosity
parameter ν is positive, as well as the existence and uniqueness of a stationary distribution for its solution.
Our purpose is to prepare the numerical analysis of this stationary distribution by the Finite-Volume
method, which will be presented in Section 3.3. In this perspective, it shall be particularly convenient to
look for solutions which are smooth enough for the higher order derivative ∂xxu appearing in the right-
hand of (3.3) to be classically defined. This requires the noise term ξ(t, x) to be sufficiently correlated
in space, in contrast with seminal well-posedness results for the stochastic Burgers equation [DPDT94,
BCJL94]. However, the latter works were (at least partially) motivated by the link between this equation
and the celebrated KPZ equation [KPZ86, Cor12], in which white-in-space noise accounts for local
fluctuations, a phenomenon which is not predominant in the statistical hydrodynamics context.

The regularity of the noise is imposed by defining ξ(t, x) as the (formal) time derivative of a Wiener
process taking its values in a given Sobolev space H on T, as is explained in Subsection 3.2.1. This leads
us to interpret (3.3) as a SDE with values in H , in accordance with the so-called semigroup approach to
SPDEs [DPZ14]. In this context, we choose the Sobolev space H with an index large enough to enable us
to work with strong solutions to (3.3). This notion is introduced in Subsection 3.2.2, where we also state
our well-posedness result. Finally, the existence and uniqueness of a stationary distribution is addressed
in Subsection 3.2.3.

This section summarises the results from [A3].
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3.2.1 Sobolev spaces and Wiener process

Sobolev spaces

As a preliminary remark, let us observe that taking the integral of both sides of (3.3) on T yields

d

dt

∫

x∈T
u(t, x)dx =

∫

x∈T
ξ(t, x)dx,

because of the periodicity of the boundary conditions. As a consequence, if both the initial condition u0
and the noise ξ(t, ·) have mean zero, then so is expected to have the solution u(t, ·). This incites us, for
all p ≥ 1, to denote by Lp

0(T) the set of Lp functions v on T such that
∫

x∈T
v(x)dx = 0.

The restriction of the Lp norm to Lp
0(T) is denoted by ‖ · ‖Lp

0(T)
.

For any integer m ≥ 0, we denote by Wm,p
0 (T) the intersection of the Sobolev space Wm,p(T) with

Lp
0(T). Thanks to the Poincaré inequality

∀p ≥ 1, ∀v ∈W 1,p
0 (T), ‖v‖Lp

0(T)
≤ ‖∂xv‖Lp

0(T)
,

we define a norm on Wm,p
0 (T) by letting ‖v‖Wm,p

0 (T) := ‖∂mx v‖Lp
0(T)

. In the particular case p = 2,

the space Wm,2
0 (T) is denoted by Hm

0 (T) and the norm ‖ · ‖Hm
0 (T) is defined accordingly. This norm is

associated with the scalar product

∀v,w ∈ Hm
0 (T), 〈v,w〉Hm

0 (T) :=

∫

x∈T
∂mx v(x)∂

m
x w(x)dx,

which makesHm
0 (T) a separable Hilbert space. More generally, for any real number s ≥ 0, the fractional

Sobolev space Hs
0(T) is defined by Fourier series; it remains a separable Hilbert space.

Wiener processes

Let {(W k(t))t≥0, k ≥ 1} be a family of independent standard Brownian motions. Fix s ≥ 0 and let
{gk, k ≥ 1} be a sequence of elements of Hs

0(T) such that

Ds :=
∑

k≥1

‖gk‖2Hs
0(T)

< +∞. (3.6)

Then there exists a continuous, Hs
0(T)-valued process (WQ(t))t≥0 such that for all T > 0, the series

(
∑

k≥1 g
kW k(t))t∈[0,T ] converges in L2(Ω;C([0, T ];Hs

0 (T))) to (WQ(t))t∈[0,T ]. Besides, this process
is a Wiener process in Hs

0(T) with covariance given by the trace class operator Q : Hs
0(T) → Hs

0(T)
defined by

∀v,w ∈ Hs
0(T), 〈Qv,w〉Hs

0 (T)
=
∑

k≥1

〈gk, v〉Hs
0 (T)

〈gk, w〉Hs
0 (T)

.

In short, we shall write that WQ is an Hs
0(T)-valued Wiener process [DPZ14, Section 4.1], and call

{gk, k ≥ 1} the set of its covariance functions.

Remark 3.2.1. The notation WQ =
∑

k≥1 g
kW k is inspired from [DV15] and allows to rewrite (3.3)

under the form
∂tu(t, x) + ∂xA(u(t, x)) = ν∂xxu(t, x) +

∑

k≥1

gk(x)Ẇ k(t),

which although more informal is perhaps the most intuitive formulation of the equation. A similar pre-
sentation is employed in [A3].
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3.2.2 Mild and strong solutions

Let s ≥ 0 and WQ be an Hs
0(T)-valued Wiener process. From now on, we rewrite (3.3) as the Hilbert-

valued SDE
du = (ν∂xxu− ∂xA(u)) dt+ dWQ, (3.7)

following the formalism of [DPZ14].

Mild solution

Let Sν(t) = exp(tν∂xx) be the semigroup generated by the operator ν∂xx; it is well-defined on (at least)
all spaces Hs

0(T), s ≥ 0. Given u0 ∈ Hs
0(T), a mild solution to (3.7) with initial condition u0 is a

process (u(t))t≥0 in Hs
0(T) which satisfies the identity

u(t) = Sν(t)u0 −
∫ t

s=0
Sν(t− s)∂xA(u(s))ds +

∫ t

s=0
Sν(t− s)dWQ(s).

Since this expression does not involve the second-order derivative of u, mild solutions may be sought
in Sobolev spaces Hs

0(T) with index s smaller than 2, so that ∂xxu need not be defined in the classical
sense. Recent results on the Sobolev regularity for mild solutions to equations of the form (3.3) can for
instance be found in [JLP]; see also [GH18] in a related context.

Strong solution

Following [DPZ14, Section 5.1], we call strong solution to (3.7) a process (u(t))t≥0 with values in
H2

0 (T) such that

u(t) = u0 +

∫ t

s=0
(ν∂xxu(s)− ∂xA(u(s))) ds+WQ(t).

Strong solutions are mild solutions, and mild solutions which belong to H2
0 (T) are strong solutions.

Boritchev [Bor12] studied strong solutions to (3.7) for flux functions A which are uniformly convex,
and Hofmanová [Hof13] for globally Lipschitz continuous flux functions. Our first result (Theorem 1
in [A3]) is obtained under the following assumptions.

(F1) The function A : R → R is C2 on R.

(F2) There exist CA, pA ≥ 0 such that |A′(v)| ≤ CA(1 + |v|pA) for all v ∈ R.

(F3) The function A′′ is locally Lipschitz continuous on R.

Theorem 3.2.2 (Well-posedness of (3.7)). Consider the equation (3.7) with ν > 0. Assume that the flux
function A satisfies the conditions (F1), (F2) and (F3), and that WQ is an H2

0 (T)-valued Wiener process.

(i) For any u0 ∈ H2
0 (T), there is a unique strong solution (u(t))t≥0 to (3.7) with initial condition u0.

(ii) For all T > 0, almost surely, the mapping u0 7→ (u(t))t∈[0,T ] is continuous from H2
0 (T) to

C([0, T ];H2
0 (T)).

Following the semigroup approach [DPDT94, DPZ14], the first step of the proof of Theorem 3.2.2
consists in proving the existence of a mild solution by writing a fixed point problem in H1

0 (T). Because
the flux function is not necessarily globally Lipschitz continuous, this procedure only yields a local-in-
time solution, which however is unique and depends continuously on u0. This solution is then proved
to be global thanks to uniform in time Lp

0(T) and H1
0 (T) estimates on u, which follow from the appli-

cation of the (infinite-dimensional) Itô formula and rely crucially on the positivity of the viscosity. The
regularity of u is finally improved from H1

0 (T) to H2
0 (T) by a bootstrapping argument [Bor12].
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3.2.3 Stationary distribution

Our second theoretical result concerning (3.7) (Theorem 2 in [A3]) is related to stationary distributions.

Theorem 3.2.3 (Existence and uniqueness of a stationary distribution). Under the assumptions of Theo-
rem 3.2.2, the process (u(t))t≥0 has a unique stationary distribution µ.

We briefly sketch the proof of Theorem 3.2.3. The energy estimate

d

dt
E
[
‖u‖2L2

0(T)

]
= −2νE

[
‖u‖2H1

0 (T)

]
+D0,

combined with the compactness of the embedding of H1
0 (T) into L2

0(T) allows to deduce the existence
of µ from the Krylov–Bogoliubov Theorem [DPZ96, Theorem 3.1.1]. The uniqueness is obtained by
a coupling argument on two solutions u and v driven by the same Wiener process WQ. On the one
hand, the presence of viscosity implies that on time intervals where WQ remains small, both u and
v are exponentially attracted to 0. On the other hand, it is a standard property of conservation laws
that ‖u − v‖L1

0(T)
does not increase, so that once u and v are close enough to 0, they remain close to

each other forever. The use of such a so-called small noise argument to get the uniqueness of station-
ary distributions appears under various formulations in the study of conservation laws [DV15], related
Hamilton–Jacobi equations [DS05] or the Navier–Stokes equation [Deb13]. Other possible approached
are reviewed in [CP19].

3.3 Finite-Volume approximation of the stationary distribution

Under the assumptions of Theorem 3.2.3, let µ be the stationary distribution of the solution (u(t))t≥0

to (3.7). Several quantities of interest in statistical hydrodynamics, transposed to the context of (3.7),
write under the form

IF :=

∫

v∈H2
0 (T)

F (v)µ(dv),

for some observable function F : H2
0 (T) → R, see [Bor12, Mar19] for instance. By the ergodic theorem,

we have

IF = lim
T→+∞

1

T

∫ T

t=0
F (u(t))dt, almost surely,

so that IF can be numerically computed by simulating one trajectory of (u(t))t∈[0,T ] over a long enough
time interval and taking the empirical average of F along this trajectory. This naturally raises the question
of the efficiency of the discretisation of (3.7) with respect to the time horizon T .

For finite-dimensional SDEs, where only time is discretised [KP99], this issue was first addressed
by Talay [Tal90], who obtained rates of convergence with respect to the time step by analysing the
associated Kolmogorov equation. Other methods rely on Poisson equations [MST10], Meyn–Tweedie-
like approaches [MSH02, LS16], or stochastic algorithms with decreasing time steps [LP02]. These
results were extended to SPDEs in several rather recent works [Bré14, BK17, CHW17, CGW20, CHS21],
in which the space variable is discretised either by a general Galerkin approximation or a specific Finite-
Element method.

On the other hand, Finite-Volume schemes for stochastic conservation laws have been developed
in [KR12, BCG16b, BCG16a, FGH18, DV19], but only on finite time intervals. In the present section,
we describe the results obtained in [A4] on the approximation of µ by the Finite-Volume method, under
the assumptions of Section 3.2. In Subsection 3.3.1, we present the study of the semidiscrete scheme,
while Subsection 3.3.2 is dedicated to the fully discrete scheme.

Throughout this section, we use bold symbols to refer to vectors and matrices, and introduce the
notation

RN
0 := {v = (v1, . . . , vN ) ∈ RN : v1 + · · · + vN = 0}
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to denote the space in which both the semidiscrete and the fully discrete schemes naturally take their
values. We also define the projection operator ΠN : L1

0(T) → RN
0 by

∀i ∈ TN , (ΠNv)i = N

∫ xi

x=xi−1

v(x)dx.

3.3.1 Semidiscrete scheme

Following the discussion of Subsection 3.1.2, the semidiscrete scheme associated with (3.7) with ν > 0
takes the form of the solution (UN (t))t≥0 = (UN

1 (t), . . . , UN
N (t))t≥0 to the SDE

dUN
i (t) = νN2

(
UN
i+1(t)− 2UN

i (t) + UN
i−1(t)

)
dt

−N
(
A(UN

i (t), UN
i+1(t))−A(UN

i−1(t), U
N
i (t))

)
dt

+ dWQ,N
i (t),

where the numerical flux function A : R2 → R satisfies Assumptions (NF1) and (NF2), and

WQ,N = ΠNW
Q. (3.8)

IfWQ is an L2
0(T)-valued Wiener process with covariance functions {gk, k ≥ 1}, then it is easy to check

that WQ,N is a Wiener process in RN
0 with covariance

E

[
WQ,N

i (t)WQ,N
j (t)

]
= t

∑

k≥1

gki g
k
j , gk := ΠNg

k. (3.9)

Some notation

We endow the space RN with the scaled scalar product

〈v,w〉 := 1

N

N∑

i=1

viwi,

and for all p ≥ 1 and v ∈ RN
0 , we denote

‖v‖p
ℓp0(TN )

:=
1

N

N∑

i=1

|vi|p.

We define the discrete derivative operators D(1,−)
N ,D

(1,+)
N ,D

(2)
N : RN → RN

0 by, for v ∈ RN ,

(D
(1,−)
N v)i = N(vi − vi−1), (D

(1,+)
N v)i = N(vi+1 − vi), (D

(2)
N v)i = N2(vi+1 − 2vi + vi−1).

Well-posedness and stationary distribution

Introducing the operator A
N

: RN → RN defined by

(A
N
(v))i = A(vi, vi+1),

we may now rewrite the semidiscrete scheme under the compact form

dUN (t) = νD
(2)
N UN (t)dt−D

(1,−)
N A

N
(U(t)) dt+ dWQ,N(t). (3.10)

The conditions on the numerical flux yield the following important properties.
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Lemma 3.3.1 (Dissipation and contraction of the drift). Let b(v) := νD
(2)
N v−D

(1,−)
N A

N
(v) ∈ RN

0 be
the drift of the SDE (3.10). Under Assumptions (NF1) and (NF2), we have:

(i) for any v ∈ RN
0 , 〈v,b(v)〉 ≤ −ν‖D(1)

N v‖2
ℓ20(TN )

;

(ii) for any v,w ∈ RN
0 , 〈sgn(v −w),b(v) − b(w)〉 ≤ 0, where (sgn(v −w))i = sgn(vi − wi).

Lemma 3.3.1 ensures that the SDE (3.10) possesses L2
0 dissipation and L1

0 contraction properties
similar to the SPDE (3.7), which under the following regularity assumption:

(NF3) the function A is locally Lipschitz continuous on R2,

allows to prove the following result.

Proposition 3.3.2 (Well-posedness for (3.10)). Let ν > 0, A : R2 → R satisfy Assumptions (NF1),
(NF2) and (NF3), and let WQ,N be the RN

0 -valued Wiener process obtained from some L2
0(T)-valued

Wiener process WQ by (3.8). For any UN
0 ∈ RN

0 , the SDE (3.10) possesses a unique strong solution
(UN (t))t≥0 with initial condition UN

0 . This process takes its values in RN
0 and has a unique stationary

distribution ϑN , which satisfies the uniform discrete H1
0 estimate

E

[
‖D(1,+)

N UN
∞‖2ℓ20(TN )

]
≤ D0

2ν
, UN

∞ ∼ ϑN ,

where we recall from (3.6) that D0 =
∑

k≥1 ‖gk‖2L2
0(T)

.

Convergence in the N → +∞ limit

Let ΨN : RN
0 → L∞

0 (T) denote the reconstruction operator, which to any v ∈ RN
0 associates the

piecewise constant function Ψnv defined by

∀x ∈ (xi−1, xi], ΨNv(x) = vi.

Under the assumptions of Proposition 3.3.2, we denote by µN the pushforward measure of ϑN by ΨN .
Under the assumptions of Theorem 3.2.3, our purpose is now to show that µN converges, when N →
+∞, to the stationary distribution µ of the solution (u(t))t≥0 to the SPDE (3.7).

A first step is provided by the uniform discrete H1
0 estimate of Proposition 3.3.2, which by compact-

ness of the embedding of H1
0 (T) into L2

0(T) yields the tightness of the sequence (µN )N≥1 on L2
0(T).

Under the following strengthening of Assumption (NF3):

(NF3’) the function A is C1 on R2, and there exist CA, pA ≥ 0 such that

∀v,w ∈ R, |∂vA(v,w)| ≤ CA (1 + |v|pA) , |∂wA(v,w)| ≤ CA (1 + |w|pA) ,

and assuming that the SPDE (3.7) is driven by an H2
0 (T)-valued Wiener process WQ, we derived in [A4]

various a priori higher-order uniform discrete Sobolev estimates on ϑN , which first enabled us to prove
that any limit µ∗ of the sequence (µN )N≥1 gives full weight to H2

0 (T). We then used the Skorokhod
representation theorem to define on a common probability space:

• a random variable u∗0 with distribution µ∗;

• a sequence of random variables (UN
0 )N≥1 such that, for all N ≥ 1, UN

0 ∈ RN
0 is distributed

according to ϑN , and up to the extraction of a subsequence (which we still denote by N for
convenience), ΨNUN

0 converges almost surely to u∗0;

• a Wiener process WQ from which we defined WQ,N = ΠNW
Q;

and called:
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• (u∗(t))t≥0 the solution to (3.7) driven by WQ with initial condition u∗0;

• (UN (t))t≥0 the solution to (3.10) driven by WQ,N with initial condition UN
0 ;

• (uN (t))t≥0 the process defined by uN (t) = ΨNUN (t).

In this construction, the process (uN (t))t≥0 is stationary, and we aim to prove that so is the process
(u∗(t))t≥0. This fact is deduced from the following finite-time trajectorial convergence result: for any
t ≥ 0,

lim
N→+∞

E
[
‖uN (t)− u∗(t)‖2L2

0(T)

]
= 0, (3.11)

which is the main technical point of [A4]. This allows to identify all limits of (µN )N≥1 and yields the
following final statement.

Theorem 3.3.3 (Convergence of the semidiscrete scheme). Under the assumptions of Theorem 3.2.3, let
µ be the unique stationary distribution of the solution to the stochastic conservation law (3.7). Consider
the associated semidiscrete scheme with a numerical flux function satisfying Assumptions (NF1), (NF2)
and (NF3’). Let µN be the probability measure given by Proposition 3.3.2. We have

lim
N→+∞

µN = µ,

weakly on L2
0(T).

Remark 3.3.4 (Convergence in Wasserstein distance). The fact that the finite-time trajectorial conver-
gence (3.11) is established in the L2 sense actually allows to express the convergence of µN to µ in the
quadratic Wasserstein distance on the space of probability measures on L2

0(T).

Remark 3.3.5 (On Assumptions (NF1), (NF2) and (NF3’)). From a practical point of view, if the flux
function A satisfies Assumptions (F1), (F2) and (F3) (and, without loss of generality, is assumed to
be such that A(0) = 0), then the Engquist–Osher numerical flux introduced in Example 3.1.1 satisfies
Assumptions (NF1), (NF2) and (NF3’).

Complementing the convergence result of Theorem 3.3.3 with a rate of convergence in N is the
natural next step to be addressed. In the ‘perturbative’ case where the flux function A is assumed to
be globally Lipschitz continuous with a small Lipschitz norm, the proof of the finite-time convergence
result (3.11) can be adapted in order to become uniform in time and yield a rate of convergence, namely
we obtain the existence of a constant C such that for all N ≥ 1,

W2(µN , µ) ≤
C

N
,

where W2 denotes the quadratic Wasserstein distance on the space of probability measures on L2
0(T).

This rate is the same as for deterministic Finite-Volume schemes (see for instance [EGH00, Theo-
rem 17.1]), which indicates that in contrast with standard results on the discretisation of SPDEs with
white-in-space noise [Gyö99], here the noise is smooth enough not to deteriorate the order of conver-
gence (in space).

However, this result remains a ‘strong’ error estimate, in the sense that a bound on the distance
between the probability measures µN and µ is derived from a bound on the distance between the realisa-
tions uN (t) and u∗(t). In order to go beyond this perturbative case, and compute directly a ‘weak’ type
of error, one may consider coming back to the analysis of (infinite-dimensional) Kolmogorov or Poisson
equations associated with (3.7) and (3.10), in the spirit of [Bré14] and [BK17], respectively. This is left
as a perspective for future works.
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3.3.2 Fully discrete scheme

We now fixN ≥ 1 and address the time discretisation of the SDE (3.10) with the purpose to approximate
the stationary distribution ϑN obtained in Proposition 3.3.2. The main difficulty here is that under the
assumptions of the latter proposition, the drift b of this SDE need not be globally Lipschitz continuous.
It is known that in such a case, the explicit Euler–Maruyama scheme may fail to preserve the ergodicity
of the SDE. An example of such a situation is presented in [MSH02], where the authors introduce a
split-step scheme which recovers suitable ergodic properties. We follow their approach, and for a given
time step ∆t > 0, define the sequence (UN,∆t

n )n≥0 by





U
N,∆t

n+ 1
2

= UN,∆t
n +∆tb

(
U

N,∆t

n+ 1
2

)
,

U
N,∆t
n+1 = U

N,∆t

n+ 1
2

+∆W
Q,N
n+1 ,

(3.12)

where ∆W
Q,N
n := WQ,N (n∆t)−WQ,N ((n− 1)∆t). Under our assumptions on b, the existence and

uniqueness of UN,∆t

n+ 1
2

, which is defined implicitly, follows from a topological degree argument and holds

without any smallness condition on ∆t. Besides, it turns out that this scheme still preserves some kind
of L2 dissipation and L1 contraction, which allows to prove the existence and uniqueness of a stationary
distribution ϑN,∆t, and the weak convergence of ϑN,∆t to ϑN when ∆t → 0 with similar arguments to
Subsection 3.3.1. Overall, the main result of [A4] thus writes as follows.

Theorem 3.3.6 (Convergence of the fully discrete scheme). Under the assumptions of Theorem 3.2.3, let
µ be the unique stationary distribution of the solution to the stochastic conservation law (3.7). Consider
the associated fully discrete scheme (3.12) with a numerical flux function satisfying Assumptions (NF1),
(NF2) and (NF3’). Let ϑN,∆t be the unique stationary distribution of this scheme, and let µN,∆t be the
pushforward of ϑN,∆t by the reconstruction operator ΨN . We have

lim
N→+∞

lim
∆t→0

µN,∆t = µ,

weakly on L2
0(T).

Once again, the lack of quantitative error estimate with respect to ∆t is a major shortcoming of this
result. A possible approach to progress in this direction might be to adapt the so-called backward error
analysis of the split-step scheme (3.12) carried out by Kopec [Kop14] for gradient SDEs, which would
yield a weak error of order ∆t.

3.4 The inviscid case

Most arguments used in Sections 3.2 and 3.3 heavily rely on the positiveness of the viscosity parameter
ν > 0 and somehow eclipse the role of the transport mechanism by the flux function A in (3.7). Still,
[EKMS00] and [DV15] show that the presence of viscosity is not necessary for the SPDE

du = −∂xA(u)dt+ dWQ (3.13)

to be ergodic, so that identifying the role of the numerical flux in the long-time behaviour of the Finite-
Volume scheme (3.10) when ν = 0 remains a natural question. For the sake of simplicity we shall only
discuss the space discretisation, that is to say the SDE

dUN (t) = −D
(1,−)
N A

N (
UN (t)

)
dt+ dWQ,N (t) (3.14)

with the notation of Section 3.3.
Some parts of this section are discussed in the perspectives of [Mar19] but mostly remain works in

progress.
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3.4.1 Existence and uniqueness of the stationary distribution

Following [KR12], we say that a C1 numerical flux function A : R2 → R is strongly monotone if there
exists λ > 0 such that the function A

0
: R2 → R defined by

A(v,w) = A
0
(v,w) + λ(v − w) (3.15)

is monotone in the sense of Assumption (NF2). Notice that any numerical flux function A
0

which
satisfies Assumptions (NF1) and (NF2) can be turned into a strongly monotone numerical flux, which
remains consistent (in the sense of Assumption (NF1)), simply by adding the term λ(v − w) to it.

The assumption that A be strongly monotone induces some numerical viscosity in the scheme,
since (3.14) may then be rewritten

dUN (t) =
λ

N
D

(2)
N UN (t)dt−D

(1,−)
N A

0,N (
UN (t)

)
dt+ dWQ,N (t),

with the notation of Section 3.3 and an obvious definition for A
0,N

. As a consequence, the same ar-
guments as in Section 3.3 may be employed to show that, for fixed N , this SDE has a unique strong
solution, which possesses a unique stationary distribution. However, since the viscosity ν = λ/N van-
ishes when N goes to +∞, the uniform discrete H1

0 estimate of Proposition 3.3.2 no longer holds. This
is not surprising since in the absence of viscosity, the solution to (3.13) is expected to develop shocks
and therefore its stationary distribution should not be concentrated on H1

0 (T).

3.4.2 W
1,1
0 estimate in the uniformly convex case

While L2
0(T) is a natural space for the energy estimates associated with the parabolic equation (3.7) with

ν > 0, the standard theory of hyperbolic conservation laws [Ser99, Ser00] indicates that L1
0(T) is likely

to be better suited to (3.13) for which ν = 0.
Under the assumptions that A be uniformly convex and subcubic, Boritchev [Bor13a, Corollary 4.3]

obtained a W 1,1
0 estimate on the stationary distribution of (3.7) uniform in ν. Adapting his proof, which

is based on a stochastic version of the so-called ‘Kruzhkov maximum principle’, one may show the
following result.

Proposition 3.4.1 (Uniform discrete W 1,1
0 estimate). Assume that the flux function A is C2 and such that

A′′(v) ≥ cA > 0, |A′(v)| ≤ CA(1 + |v|pA) for some pA < 2. Let ϑN be the stationary distribution of
the SDE (3.14) with the numerical flux function

A(v,w) = A
0
(v,w) + λ(v − w),

where λ > 0 and A
0

is the Engquist–Osher numerical flux2 associated with A. Assume finally that the
covariance functions {gk, k ≥ 1} appearing in the expression (3.9) on the covariance of the Wiener
process WQ,N satisfy the condition that

D∗ :=
∑

k≥1

‖gk‖2
W 1,4

0 (T)
< +∞.

If UN
∞ is a random variable distributed according to ϑN , then for all q ≥ 1, there exists a constant C1,1,q

which depends on q, on CA, cA, pA, on D∗ and on λ but not on N such that

E

[
‖D(1,+)

N UN
∞‖q

ℓ10(TN )

]
≤ C1,1,q. (3.16)

2See Example 3.1.1.
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If one takes q = 1 in (3.16), one obtains a uniform discrete W 1,1
0 estimate3 on ϑN which may

play a similar role as the W 1,2
0 estimate from Proposition 3.3.2 and imply that the associated sequence

(µN )N≥1 is tight on L1
0(T). As a consequence, one might then consider following the same program

as in Section 3.3 and deriving the convergence of µN to the stationary distribution of (3.13) from a
finite-time trajectorial convergence result in L1

0(T) for the Finite-Volume scheme (3.14). But, again, this
method would probably not be appropriate to yield quantitative weak error estimates.

3.4.3 Kinetic formulation and averaging lemma

The ergodicity results by Debussche and Vovelle [DV15] for (3.13) hold under a nondegeneracy condi-
tion for the flux function A which can be seen as a relaxation of the uniform convexity assumption made
in the previous subsection. They are obtained thanks to the kinetic formulation [LPT94, Per02] of (3.13),
which we first briefly describe.

For all v, ξ ∈ R, let us define

χ(ξ, v) =





1 if 0 < ξ ≤ v,

−1 if v ≤ ξ < 0,

0 otherwise.

A formal application of the Itô formula shows that if u is a solution to (3.13), then f(t, x, ξ) :=
χ(ξ, u(t, x)) satisfies df(t, x, ξ) = ∂vχ(ξ, u)du+ 1

2∂vvχ(ξu)d〈u〉, which then rewrites

∂tf +A′(ξ)∂xf = ∂ξ

(
m− 1

2
〈ẆQ〉δu=ξ

)
+ δu=ξẆ

Q, (3.17)

for some distribution m(t, x, ξ) which depends on f . Kruzhkov’s entropy condition is then essentially
equivalent to m(t, x, ξ) being a nonnegative measure, whose support can be described in terms of the
discontinuities of u.

This formulation turns the nonlinear conservation law on u into a linear transport equation on f ,
which may be addressed by semigroup techniques; more precisely, calling P (t, x, ξ) the right-hand side
of (3.17), the Duhamel formula shows that

f(t, x, ξ) = e−tA′(ξ)∂xf0(x, ξ) +

∫ t

s=0
e−(t−s)A′(ξ)∂xP (s, ξ, x)ds, (3.18)

with f0(x, ξ) = χ(ξ, u0(x)). Of course, for a fixed value of ξ, the semigroup e−tA′(ξ)∂x is generated by
the linear transport equation with constant velocity A′(ξ) and no regularisation nor mixing effect can be
expected from its application. But the fact that u is recovered from f by the formula

u(t, x) =

∫

ξ∈R
f(t, x, ξ)dξ

may bring forth such effects for the ‘integrated semigroup’
∫
ξ∈R e−tA′(ξ)∂xdξ, as soon asA is ‘sufficiently

nonlinear’, which is precisely ensured by nondegeneracy conditions. Quantifications of these effects are
called averaging lemmas in kinetic theory [BD99, CP19]. The proof of the existence of a stationary
distribution for (3.13) by Debussche and Vovelle [DV15] relies on such a lemma, which allows to control
the t→ +∞ behaviour of the convolution appearing in the right-hand side of (3.18).

A natural application of this formalism would therefore be to proceed similarly at the level of the
Finite-Volume scheme in order to obtain uniform in N estimates on its stationary distribution. A ki-
netic formulation of Finite-Volume schemes for deterministic conservation laws was worked out by
Makridakis and Perthame [MP03], and recently extended to the stochastic framework by Dotti and
Vovelle [DV19]. The next step is the formulation of averaging lemmas adapted to these schemes. It
is left for future works.

3Since we expect the solution u to (3.7) with ν = 0 to display shocks under its stationary distribution, it would actually be
more appropriate to call (3.16) a uniform discrete BV estimate rather than W

1,1
0 .



Chapter 4

Eyring–Kramers formula for

nonreversible diffusion processes

This chapter presents the results of the articles [A5] and [A6], written in collaboration with Freddy
Bouchet. These articles were published in, or submitted to, statistical physics journals. Our arguments
are not mathematically rigorous and our results are purely heuristic. Throughout the chapter, we shall
emphasise the assumptions and approximations under which we work, and try to sketch the program
towards a mathematical formalisation of these results.

4.1 Metastability and the Eyring–Kramers formula

4.1.1 Reversible diffusion processes

Many models of equilibrium statistical physics are described by the stochastic differential equation

dXǫ
t = −∇U(Xǫ

t )dt+
√
2ǫdWt (4.1)

in Rd, where U : Rd → R is the potential of the system, ǫ > 0 is a temperature parameter and (Wt)t≥0

is a standard d-dimensional Brownian motion. If

Zǫ :=

∫

x∈Rd

exp

(
−U(x)

ǫ

)
dx < +∞, (4.2)

then the process (Xt)t≥0 is reversible and ergodic with respect to the Gibbs measure with density

pǫst(x) =
1

Zǫ
exp

(
−U(x)

ǫ

)
(4.3)

with respect to the Lebesgue measure. In particular, it is recurrent, therefore it visits infinitely often
any subset of R with positive Lebesgue measure. However, if ǫ is small and U possesses several local
minima, it takes a long time for the process to exit neighbourhoods of such local minima: this is the
metastability phenomenon. In this chapter, we focus on the asymptotics of the mean transition time
between local minima in the small temperature regime ǫ→ 0.

For the sake of simplicity, let us assume that U is smooth and possesses two local minima x1 and x2
which are separated by a unique saddle-point x⋆. We shall refer to this situation as the double-well case,
see a two-dimensional example on Figure 4.1. Assume that Xǫ

0 = x1, and for 0 < δ ≪ |x2 − x⋆|, let

τ ǫ := inf{t ≥ 0, |Xǫ
t − x2| ≤ δ}.

A first asymptotic description of the mean transition time E[τ ǫ] is called Arrhenius’ law [Arr89] and
writes

lim
ǫ→0

ǫ logE[τ ǫ] = U(x⋆)− U(x1) =: ∆U. (4.4)
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x1

x⋆

x2

∆U

Figure 4.1: Example of a double-well potential in dimension d = 2. The potential barrier to escape from
the well corresponding to the local minimum x1 is ∆U = U(x⋆)− U(x1).

In this expression, ∆U is called the potential barrier that the process has to ‘climb’ in order to escape
from the potential ‘well’ containing x1. This statement provides an approximation of the mean tran-
sition time on a logarithmic scale and can be obtained thanks to the so-called pathwise approach to
metastability [OV05], which exploits the following two features of the process (Xǫ

t )t≥0:

(i) on a short time scale, the process reaches a seemingly stationary distribution, concentrated around
x1: this is the thermalisation phase;

(ii) on a long time scale, the process performs seemingly independent and identically distributed at-
temps to jump from x1 to x2: this is the tunnelling phase.

Estimates on the mean transition time can then be deduced from estimates on the large deviations of
the trajectory (Xǫ

t )t∈[0,T ] on finite time intervals, which are provided by the Freidlin–Wentzell the-
ory [FW12].

The Eyring–Kramers formula, named after the seminal articles [Eyr35, Kra40] in the physics lit-
terature, gives the value of the prefactor for the mean transition time, that is to say terms in front of
exp(∆U/ǫ) which do not appear on the logarithmic scale. Denoting by ∇2U(x) the Hessian matrix of
U at some point x ∈ Rd, we assume that ∇2U(x1) is positive and that ∇2U(x⋆) has exactly one negative
eigenvalue −µ⋆ and d− 1 positive eigenvalues. Then the Eyring–Kramers formula reads

E[τ ǫ] ∼ 2π

µ⋆

√
|det∇2U(x⋆)|
det∇2U(x1)

exp

(
∆U

ǫ

)
, (4.5)

when ǫ → 0. In dimension d = 1, the quantity E[τ ǫ] can be explicitly determined by an ODE method,
and the formula above follows from the application of the Laplace method. In higher dimensions, this
formula was proved in 2004 by Bovier, Eckhoff, Gayrard and Klein [BEGK04] by a potential theoretic
approach [BdH15], and simultaneously by Helffer, Klein and Nier [HKN04] through semiclassical anal-
ysis. We refer to the review article by Berglund [Ber13] for a short introduction to both approaches. In
each case, the fact that the solution (Xǫ

t )t≥0 to (4.1) is reversible with respect to the explicit station-
ary distribution pǫst given by (4.3) plays an important role, because then its infinitesimal generator Lǫ is
symmetric in L2(pǫst).

4.1.2 Extension to nonreversible processes

Let n ≥ 1 and σ ∈ Rd×n. Define a = σσ⊤ ∈ Rd×d and let J ∈ Rd×d be an antisymmetric matrix.
Under the assumption (4.2), the process (Xǫ

t )t≥0 given by the SDE

dXǫ
t = −(a+ J)∇U(Xǫ

t )dt+
√
2ǫσdWt, (4.6)
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where (Wt)t≥0 is now a n-dimensional Brownian motion, remains ergodic with respect to the stationary
distribution pǫst defined by (4.3), but when J 6= 0 it is no longer reversible. Yet, it still displays a
metastable behaviour in the neighbourhood of each local minimum of U .

Such a process is of particular interest in various fields of application. For example, in numerical
probability, it is widely accepted that in order to sample from the probability measure pǫst, adding the
nonsymmetric term −J∇U(Xǫ

t ) in the drift of reversible processes increases the speed of their conver-
gence, see for instance [HHMS93, HHMS05, LNP13, GM16, LS16]. A somehow related remark is that
kinetic processes such as the Langevin dynamics (qt, pt)t≥0 in Rn × Rn, defined by

{
dqt = ptdt,

dpt = −∇u(qt)dt− γptdt+
√

2γβ−1dWt,
(4.7)

where u : Rn → R and γ, β > 0 are respectively called the friction and inverse temperature parame-
ters [LS16], can formally be rewritten under the form (4.6) by letting d = 2n and

x =

(
q
p

)
, U(x) = u(q) +

|p|2
2
, σ =

(
0√
γ

)
, ǫ = β−1, J =

(
0 −1
1 0

)
.

A generalisation of the Eyring–Kramers formula to (4.6) was proposed by Ariel and Vanden-Eijnden
in [AVE07]. It reads

E[τ ǫ] ∼ 2π

λ⋆

√
|det∇2U(x⋆)|
det∇2U(x1)

exp

(
∆U

ǫ

)
, (4.8)

where λ⋆ refers to the positive eigenvalue of the matrix −(a + J)∇2U(x⋆), which is assumed to be
unique. A rigorous proof of this formula was recently obtained by Landim, Mariani and Seo [LMS19],
based on a suitable extension of the potential theoretic approach to processes with nonsymmetric in-
finitesimal generators, developed in the series of papers [Slo, GL14, LS18]. The semiclassical analysis
approach was also recently extended to (4.6) by Le Peutrec and Michel [LPM20].

The case of the Langevin dynamics (4.7) is not formally covered by these results, because the matrix
a is degenerate. However, the asymptotic behaviour of the small eigenvalues of the infinitesimal gener-
ator of (qt, pt)t≥0, which is closely related to the mean transition time between metastable states, was
studied by Hérau, Hitrik and Sjöstrand in the works [HHS08a, HHS08b, HHS11].

4.2 Formal extension to general diffusion processes

In the work [A5] with Freddy Bouchet, we addressed the generalisation of the Eyring–Kramers formula
to general diffusion processes of the form

dXǫ
t = b(Xǫ

t )dt+
√
2ǫσ(Xǫ

t )dWt, (4.9)

for arbitrary functions b : Rd → Rd and σ : Rd → Rd×n. We still assume that the process is ergodic with
respect to some stationary distribution pǫst, but the latter no longer needs to have an explicit expression
such as (4.3), and in general the process (Xǫ

t )t≥0 need not be reversible with respect to pǫst.

4.2.1 ‘Double-well’ case

For all x ∈ Rd, we denote by (ψx
t )t≥0 the relaxation dynamics defined by the ODE

ψ̇x
t = b(ψx

t ), ψx
0 = x.

A simple set of assumptions under which the solution (Xǫ
t )t≥0 to (4.9) displays a metastable be-

haviour is the following generalisation of the double-well case introduced in Section 4.1. The vector
field b has exactly three zeroes x1, x2 and x⋆ in Rd, and the space Rd is partitioned into two open sets
D1, D2 and a (d− 1)-dimensional closed surface S such that:
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• for i = 1, 2, xi ∈ Di and for any x ∈ Di, ψx
t remains contained in Di and converges to xi when

t→ +∞;

• x⋆ ∈ S and for any x ∈ S, ψx
t remains contained in S and converges to x⋆ when t→ +∞;

see Figure 4.2.

•
x⋆

S

•x1

D2

•
x2

D1

D′
1

D′
2

S′

instanton

Figure 4.2: The partition of Rd into the sets D1, D2 and S, with the attractors x1, x2 and x⋆ of the ODE
ẋ = b(x), and the trajectories of the relaxation dynamics (ψx

t )t≥0. The instanton joining x1 to x⋆ and
the separatrix S′ between D′

1 and D′
2, which will be introduced in Subsection 4.2.2, are plotted in blue.

In this setting, the Freidlin–Wentzell theory still provides a logarithmic description of the mean
transition time between x1 and x2, which is comparable to the Arrhenius law (4.4) and in which the role
of the potential U is played by a function V called the quasipotential. We first review some basic results
of this theory in Subsection 4.2.2 and present the main steps of our heuristic derivation of the associated
prefactor in Subsection 4.2.3.

4.2.2 Freidlin–Wentzell theory

From now on we assume that for all x ∈ Rd, the matrix a(x) := σσ⊤(x) is nondegenerate. This
assumption could however be relaxed, for precisions in this direction we refer to [Aze80]. The first
building block of the theory of large deviations for (4.9) is the action functional defined, for T1 < T2, by

∀φ = (φt)t∈[T1,T2], AT1,T2(φ) =





∫ T2

t=T1

L(φt, φ̇t)dt if φ is absolutely continuous,

+∞ otherwise,

where L(x, v) is the Lagrangian defined by

L(x, v) := 1

4

〈
v − b(x), a(x)−1 (v − b(x))

〉
.

For all T > 0, the action functional on [0, T ] is the rate function which describes the large deviations of
the trajectory (Xǫ

t )t∈[0,T ]. As a consequence, when Xǫ
0 = x1, the mean transition time E[τ ǫ] satisfies

lim
ǫ→0

ǫ logE[τ ǫ] = V (x1, x⋆),

where, for any x ∈ Rd, the quasipotential V (x1, ·) (with respect to x1) is defined by

V (x1, x) := inf {AT1,T2(φ) : T1 < T2, φ(T1) = x1, φ(T2) = x} .
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Comparing this result with (4.4) shows that V (x1, x⋆) = ∆U = U(x⋆) − U(x1), but this identity
can be recovered in a more direct, general and enlightening fashion as follows. Assume that the vector
field b can be written under the form

b(x) = −a(x)∇U(x) + ℓ(x), 〈∇U(x), ℓ(x)〉 = 0, (4.10)

with the condition that b(x) = 0 if and only if ∇U(x) = 0 (this is for instance the case in (4.6)).
Equivalently, this amounts to finding a solution U to the Hamilton–Jacobi equation

〈∇U(x), a(x)∇U(x)〉 + 〈b(x),∇U(x)〉 = 0 (4.11)

which only admits as critical points the set of zeroes of b. For any x ∈ Rd, define the fluctuation dynamics
(ϕx

t )t≤0 by
ϕ̇x
t = a(ϕx

t )∇U(ϕx
t ) + ℓ(ϕx

t ), ϕx
0 = x.

Notice that, besides being defined on the set of nonpositive times and having x as a terminal condition,
the fluctuation dynamics (ϕx

t )t≤0 differs from the relaxation dynamics (ψx
t )t≥0 by the fact that the sign

of the ‘symmetric’ part a∇U of the vector field b has been reverted.
An elementary computation then shows that

d

dt
U(ϕx

t ) = 〈∇U(ϕx
t ), a(ϕ

x
t )∇U(ϕx

t )〉 ≥ 0,

so that ϕx
t necessarily converges, when t → −∞, to a critical point of U , that is to say either x1, x2

or x⋆. We therefore assume that the space Rd can also be partitioned into two open sets D′
1, D′

2 and a
(d− 1)-dimensional closed surface S′ such that:

• for i = 1, 2, xi ∈ D′
i and for any x ∈ D′

i, ϕ
x
t remains contained in D′

i and converges to xi when
t→ −∞;

• x⋆ ∈ S′ and for any x ∈ S′, ϕx
t remains contained in S′ and converges to x⋆ when t→ −∞.

Notice that unless ℓ ≡ 0, the sets D′
1, D′

2 and S′ do not coincide with D1, D2 and S in general, see
Figure 4.2.

For any x ∈ D′
1, an important result is then that

V (x1, x) =

∫ 0

t=−∞
L(ϕx

t , ϕ̇
x
t )dt = U(x)− U(x1). (4.12)

Indeed, for any absolutely continuous trajectory φ = (φt)t∈[T1,T2] such that φT1 = x1, φT2 = x, we have

AT1,T2(φ) =
1

4

∫ T2

t=T1

〈
φ̇t − b(φt), a

−1(φt)
(
φ̇t − b(φt)

)〉
dt

=
1

4

∫ T2

t=T1

〈
φ̇t + a(φt)∇U(φt)− ℓ(φt), a

−1(φt)
(
φ̇t + a(φt)∇U(φt)− ℓ(φt)

)〉
dt

=
1

4

∫ T2

t=T1

〈
φ̇t − a(φt)∇U(φt)− ℓ(φt), a

−1(φt)
(
φ̇t − a(φt)∇U(φt)− ℓ(φt)

)〉
dt

+

∫ T2

t=T1

〈
φ̇t − ℓ(φt),∇U(φt)

〉
dt.

The first term in the right-hand side is nonnegative, while the orthogonality relation between ℓ and ∇U
implies that the second term rewrites

∫ T2

t=T1

〈
φ̇t,∇U(φt)

〉
dt = U(φT2)− U(φT1) = U(x)− U(x1).
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We deduce that V (x1, x) ≥ U(x) − U(x1). On the other hand, the second identity in (4.12) is an
immediate consequence of the definition of (ϕx

t )t≤0, and the final result (4.12) therefore follows from
finite-time approximations of the optimal, but time-infinite, trajectory (ϕx

t )t≤0.
As a consequence of (4.12), the fluctuation dynamics has the interpretation to be the typical path

taken by the process (Xǫ
t )t≥0 to reach the point x ∈ Rd. Similarly, if there exists a heteroclinic orbit of

the ODE ẋ = a(x)∇U(x) + ℓ(x) joining x1 to x⋆, that is to say a trajectory (ρt)t∈R such that

ρ̇t = a(ρt)∇U(ρt) + ℓ(ρt), ρ−∞ = x1, ρ+∞ = x⋆,

then the transitions of (Xǫ
t )t≥0 from x1 to x⋆ concentrate around this path in the ǫ → 0 limit. The path

(ρt)t∈R is then called an instanton, see Figure 4.2.
Overall, we have shown that assuming the existence of a solution U to the Hamilton–Jacobi equa-

tion (4.11) allows to define, through the fluctuation dynamics, two sets D′
1 and D′

2 in which we have
the respective identities V (x1, x) = U(x)− U(x1) and V (x2, x) = U(x) − U(x2). As a consequence,
it is natural to expect, conversely, that a solution U to (4.11) might be constructed by piecing together
the quasipotentials V (x1, ·) and V (x2, ·), suitably balanced by additive constants representing the rel-
ative ‘heights’, in terms of quasipotential, of the attractors x1 and x2, in suitably chosen regions D′

1

and D′
2. This idea was implemented by Freidlin and Wentzell to construct the rate function of the sta-

tionary distribution pǫst [FW12, Section 6.4]. It is also related with the presence of singularities in large
deviation functions arising in nonequilibrium statistical mechanics [BK15] and the weak KAM theory
for Lagrangian dynamics [Fat]. A clarification of these connections would be an important step in the
formalisation of the results presented in this section.

4.2.3 Eyring–Kramers formula

Derivation of the formula

In order to compute the prefactor of the mean transition time, we follow the pathwise approach and
assume that there is a time scale separation between the thermalisation and tunnelling phases. It is com-
monly accepted that at thermalisation, the statistical behaviour of the process in D1 should be described
by its quasistationary distribution, the definition of which is given below. This statement already ap-
peared in Kramers’ original paper [Kra40], although a precise definition of a quasi-stationary distribution
was not introduced there, and we refer to [LBLLP12, BG16, DGLLPN19] for rigorous justifications. In
our present context, the quasistationary distribution pǫqst of (Xǫ

t )t≥0 inD1 can be defined by the so-called
Yaglom limit

pǫqst(·) = lim
t→+∞

P(Xǫ
t ∈ ·|τ ǫD1

> t),

where τ ǫD1
= inf{t ≥ 0 : Xǫ

t 6∈ D1}, see [CMSM13]. Our time scale separation assumption can then
be reformulated as the assertion that this convergence occurs much faster than the order of magnitude of
τ ǫD1

(which, by the Freidlin–Wentzell theory, is actually of the same order as the transition time τ ǫ), so
that on this short time scale, the event {τ ǫD1

> t} has a probability close to 1 and conditionning by this
event does not really affect the law of Xǫ

t .
The quasistationary distribution is the Perron–Frobenius eigenvector of the infinitesimal generator

Lǫ of (Xǫ
t )t≥0 in D1, with Dirichlet boundary conditions. Using nonrigorous WKB and boundary layer

approximations, similar to some developments in [Gar09, Sch10], we first obtained an approximation of
the quasistationary flux ǫ∇pǫqst in the neighbourhood of x⋆. Linearising b and σ in this neighbourhood, we
then computed explicitly the probability that the process arriving from D1 actually crosses the surface
S and reaches the neighbourhood of x2 — this computation is reminiscent of the capacity estimates
in [BEGK04]. Combining these two results, we finally obtained the Eyring–Kramers formula

E[τ ǫ] ∼ 2π

λ⋆

√
|detH⋆|

det∇2
xV (x1, x1)

exp

(
V (x1, x⋆)

ǫ
+

∫ +∞

t=−∞
F (ρt)dt

)
. (4.13)
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In this expression, λ⋆ is the positive eigenvalue of the matrix ∇b(x⋆). The matrix H⋆ plays the role of
the Hessian of the quasipotential V (x1, x) at the point x = x⋆, but in general the quasipotential is not
smooth at x⋆, so that we have to define

H⋆ = lim
t→+∞

∇2
xV (x1, ρt),

where we recall that (ρt)t∈R is the instanton joining x1 to x⋆. Finally, the function F is defined by

F (x) = div ℓ(x) + 〈div a(x),∇xV (x1, x)〉, (4.14)

where the vector field ℓ is defined by the assumption that b admits the transverse decomposition (4.10).
Similar results, based on various formal techniques, were already obtained in the physics litterature, see
for instance [CL67, Lud75, MS77, SM79, Gra87, MS93, MS97].

Integral term

The integral of F along the instanton is perhaps the most surprising term in this formula, when compared
with (4.5) or (4.8). Since, under the assumption that there exist a solution U to the Hamilton–Jacobi
equation (4.11), the stationary distribution pǫst is given by the explicit expression (4.3) if and only if
F = 0, this term can be interpreted as a measure of how far the system is from being described, in its
stationary state, by a Gibbs measure. In the sequel of this paragraph, we give the intuition of the origin
of this term by computing the prefactor of the stationary distribution rather than the quasistationary
distribution.

We therefore now leave the ‘double-well’ situation apart and rather assume that the vector field
b possesses a unique zero x, which is an attractor of all relaxation paths (ψx

t )t≥0, x ∈ Rd. In this
case, the quasipotential U(x) := V (x, x) is a solution to the Hamilton–Jacobi (4.11) and therefore the
transverse decomposition (4.10) holds in Rd. The Freidlin–Wentzell theory also asserts that the stationary
distribution pǫst satisfies a large deviation principle with rate function U . Defining the prefactor Cǫ(x) by
the identity

pǫst(x) = Cǫ(x)

√
det∇2U(x)

(2πǫ)d
exp

(
−U(x)

ǫ

)
,

so that by Laplace’s method we may anticipate that Cǫ(x) = 1, injecting this expression into the station-
ary Fokker–Planck equation associated with (Xǫ

t )t≥0 and using the Hamilton–Jacobi equation (4.11), we
get the equation

ǫ∆Cǫ = 〈∇Cǫ, a∇U + ℓ〉+ CǫF,

with F defined by (4.14). Let us assume that in the ǫ → 0 limit, Cǫ converges to some function C
solution to the transport equation

0 = 〈∇C, a∇U + ℓ〉+ CF.

Since a∇U + ℓ is the vector field driving the fluctuation dynamics (ϕx
t )t≤0, the latter is a characteristics

for this equation in the sense that
d

dt
logC(ϕx

t ) = −F (ϕx
t ).

As a consequence, the prefactor writes

C(x) = C(ϕx
0) = C(ϕx

−∞) exp

(
−
∫ 0

t=−∞
F (ϕx

t )dt

)
,

and since all fluctuation paths are also attracted to x, we conclude that C(ϕx
−∞) = C(x) = 1.

In the double-well situation, in order to compute the prefactor at the point x⋆ then the characteristics
is the instanton, which finally explains the occurrence of the integral along (ρt)t∈R in (4.13).
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Summary of cases and results

In a very recent work, Lee and Seo [LS] gave a proof, based on a new approach to potential theory
for nonreversible processes, of the formula (4.13) in the case where both terms in the right-hand side
of (4.14) vanish, so that there is no integral term in (4.13), and the stationary distribution of the process
(Xǫ

t )t≥0 remains explicitly given by the Gibbs measure (4.3). This situation is more general than the
case of (4.6) described in Subsection 4.1.2, as is summarised on Table 4.1.

Assumptions on ℓ (a) ℓ ≡ 0 (b) ℓ = −J∇U (c) div ℓ ≡ 0 (d) General case
Reversibility Yes No No No

Invariant measure (4.3) Yes Yes Yes No
EK formula (heuristic) [Eyr35, Kra40] [AVE07] [A5]

EK formula (proof) [BEGK04, HKN04] [LMS19, LPM20] [LS] To be done!

Table 4.1: Various assumptions over ℓ under which Eyring–Kramers (EK) formulæ were investigated.
Case (a): b = −∇U and σ is the identity.
Case (b): b = −(a+ J)∇U , with J an antisymmetric matrix and a = σσ⊤ does not depend on x.
Case (c): b = a∇U + ℓ, with 〈ℓ,∇U〉 = 0, div ℓ ≡ 0 and a = σσ⊤ does not depend on x.
Case (d): b = a∇U + ℓ, with 〈ℓ,∇U〉 = 0 and a = σσ⊤ may depend on x.
Notice that the cases are progressively ordered, in the sense that (a) ⊂ (b) ⊂ (c) ⊂ (d).

4.2.4 Riccati equations for the computation of the prefactor

In this paragraph, we present the results from [A6] which address the numerical computation of the
different terms involved in the formula (4.13). For the sake of simplicity, we take here n = d, and σ is
the identity matrix. We still work under the assumption that there exist a solution U to the Hamilton–
Jacobi equation (4.11), which is identified with the quasipotential V (x1, x) in the domain D′

1 and allows
to decompose the vector field b under the form (4.10), but neither U nor ℓ are assumed to be known: only
b is explicit. This already enables one to compute the eigenvalue λ⋆ in (4.13).

The numerical evaluation of the quasipotential V (x1, x) is a common topic in computational statisti-
cal physics. In particular, the geometric Minimum Action Method (gMAM) [HVE08], based on [ERVE02,
ERVE04], employs the Hamiltonian formalism of the Freidlin–Wentzell theory to compute fluctuation
paths (ϕx

t )t≥0, from which the quasipotential V (x1, x) is deduced as the action of this path. With
such a method, one may then compute the instanton (ρt)t∈R and deduce the value of the quasipoten-
tial V (x1, x⋆). It remains to compute the Hessian matrices ∇2

xV (x1, x1), H⋆ = limt→+∞∇2
xV (x1, ρt),

and the integral
∫ +∞

t=−∞
F (ρt)dt =

∫ +∞

t=−∞
div ℓ(ρt)dt =

∫ +∞

t=−∞
(div b(ρt) + ∆xV (x1, ρt)) dt.

All quantities which remain unknown depend on the matrix process (Ht)t∈R defined by Ht =
∇2

xV (x1, ρt). It turns out that, as a consequence of the Hamilton–Jacobi equation, the process (Ht)t∈R
satisfies the matrix Riccati equation

Ḣt = −2H2
t +Q⊤

t Ht +HtQt +Rt, (4.15)

where both matrices Qt andRt are explicit in terms of b and ρt. This fact was already noticed for example
in [Lud75, MS97], and recent studies also established connections between matrix Riccati equations and
large deviation prefactors for (4.9) [FG, GSVE]. Similar statements also appear in the litterature of
deterministic optimal control [CFS15].

As a consequence, the matrix Riccati equation (4.15), after a geometric reparametrisation in order to
replace the time interval (−∞,+∞) with the instanton length [0, L], can be solved by an Euler scheme
as soon as its initial condition H−∞ = ∇2

xV (x1, x1) is given. We compute the latter by remarking that
it solves the stationary version of (4.15), which is called a Continuous Algebraic Riccati Equation in
optimal control, and for which both numerical solvers and semi-analytic solutions are available.



Chapter 5

Quasistationary distributions in molecular

dynamics

This chapter presents the results of the article [A7], written in collaboration with Tony Lelièvre and Lou-
cas Pillaud-Vivien during Loucas Pillaud-Vivien’s masters internship, and of the articles [A8] and [A9],
written in collaboration with Tony Lelièvre and Mouad Ramil during Mouad Ramil’s PhD thesis.

5.1 Introduction

Let (xt)t≥0 be a homogeneous, time-continuous Markov process taking its values in some measurable
space E. For a given probability measure µ on E (resp. a given point x ∈ E), we use the notation Pµ

(resp. Px) to indicate that x0 has distribution µ (resp. δx). For any measurable subset D of E, we denote
by P(D) the set of probability measures on D and by M(D) the set of signed measures on D with finite
total variation.

5.1.1 Quasistationary distributions

Let D be a nonempty, measurable subset of E and let us define

τD := inf{t > 0 : xt 6∈ D}.

A probability measure π on D is called a quasistationary distribution (QSD) for (xt)t≥0 if

∀t ≥ 0, Pπ(xt ∈ ·|τD > t) = π(·). (5.1)

Generically, QSDs are known to describe the t → +∞ limit of conditional probability measures of the
form Pµ(xt ∈ ·|τD > t) for µ ∈ P(D), which makes them particularly relevant to study the metastability
phenomenon, described in the next subsection (see also Chapter 4). We refer to [CMSM13] for an
extensive introduction to the study of QSDs.

The combination of the definition (5.1) with the Markov property provides QSDs with several useful
properties. Indeed, if π is a QSD, then it is easily seen that there exists λ ∈ [0,+∞) such that under Pπ,
the random variable τD is exponentially distributed with parameter λ. We shall call this quantity the rate
associated with π, the case λ = 0 meaning that τD = +∞ almost surely, so that π is actually a stationary
distribution for (xt)t≥0. If λ > 0, then under Pπ, τD is independent from xτD . Last, let us define the
(nonconservative) semigroup (PD

t )t≥0 acting on measurable and bounded functions f : D → R by

PD
t f(x) := Ex

[
f(xt)1{τD>t}

]
,

and define the left product of PD
t with measures ρ ∈ M(D) by

ρPD
t f :=

∫

x∈D
PD
t f(x)ρ(dx).
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Then for any t ≥ 0, π is a left eigenvector of PD
t , with associated eigenvalue e−λt, which generally

implies that π is a left eigenvector of the infinitesimal generator of (PD
t )t≥0, with associated eigenvalue

−λ. This spectral description often proves useful in order to study the existence and uniqueness of QSDs.

5.1.2 Metastability

Loosely speaking, a metastable set for the process (xt)t≥0 is a subset D of E in which the process
typically remains trapped over ‘long periods of time’. For instance, many models of molecular dynamics,
such as protein folding, are encoded by multimodal probability distributions on a phase space E, of which
natural sampling processes (xt)t≥0 admit the modes as metastable sets [LS16, Sections 6.3 and 6.4].

A more formal description of metastability is the fact that, starting from some point x ∈ D, the
convergence of the conditional distribution Px(xt ∈ ·|τD > t) to the QSD of (xt)t≥0 in D occurs on a
much shorter time scale than the order of magnitude of τD. Based on this remark, accelerated dynamics
algorithms [Lel15] replace the simulation of the whole trajectory of (xt)t≥0 in metastable sets with
simulations under the QSD. This allows to use the properties of (τD, xτD) stated above, and is also more
amenable to parallelisation (see Subsection 5.2.4).

On the theoretical side, the justification of these algorithms raises two important questions.

(i) Given a set D, does there exist a QSD π in D? Is it unique, and what is the speed of convergence
of Px(xt ∈ ·|τD > t) to π?

(ii) How to numerically sample from π?

5.1.3 Outline of the chapter

In Section 5.2, we deal with the case where (xt)t≥0 is a continuous-time Markov chain with values in
a finite state space E. Under an irreducibility assumption on this chain in D, it is known that there is a
unique QSD π and the convergence of Px(xt ∈ ·|τD > t) to π is exponential, which answers the first
question above. We address the second and establish limit theorems for the Fleming–Viot particle system
which provides a numerical method to sample from π. These results were established during Loucas
Pillaud-Vivien’s masters internship and are reported in the article [A7].

In Section 5.3, we then address the first question for Langevin processes, which are commonly em-
ployed in molecular dynamics. These are diffusion processes in the phase space E = Rd × Rd of
position-velocity pairs, which have the peculiarity of being degenerate. Besides, the relevant metastable
sets are typically of the form D = O × Rd and are therefore not bounded. Both the degeneracy of the
process and the unboundedness of the set D require to develop appropriate tools to study quasistation-
arity. This work was carried out in Mouad Ramil’s PhD thesis [Ram20], from which the articles [A8]
and [A9] described below are extracted.

5.2 Limit theorems for Fleming–Viot particle systems

5.2.1 The finite state space framework

In this section, we let E be a finite set and (xt)t≥0 be a continuous-time Markov chain with infinitesimal
generator L given by

Lf(x) =
∑

y∈E

p(x, y)[f(y)− f(x)],

for any x ∈ E and f : E → R. Up to a global time change, there is no loss of generality in assuming that
the E× E matrix P with coefficients {p(x, y), x, y ∈ E} is stochastic, that is to say that

∀x, y ∈ E, p(x, y) ≥ 0, ∀x ∈ E,
∑

y∈E

p(x, y) = 1.
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We fix a nonempty subset D of E and take the convention to identify measures on D with row vectors.
Recall that we denote by P(D) the space of probability measures on D. The following proposition
follows from the Perron–Frobenius theorem and [DS67].

Proposition 5.2.1 (QSD in D). Assume that the D × D matrix PD with coefficients {p(x, y), x, y ∈ D}
is irreducible.

(i) There exists λ ∈ [0, 1) such that 1− λ is the spectral radius of PD.

(ii) There is a unique π ∈ P(D) such that πPD = (1− λ)π.

(iii) π is the unique QSD of the process (xt)t≥0 in D.

(iv) Under Pπ, τD is exponential with parameter λ.

Besides, for any µ ∈ P(D), Pµ(xt ∈ ·|τD > t) converges exponentially fast to π.

One might consider using Proposition 5.2.1 to approximate π numerically by implementing the fol-
lowing rejection sampling procedure: simulate n ≫ 1 independent copies of (xt)t≥0 — in the sequel,
we shall call these copies particles —, and at time t ≫ 1, approximate π with the empirical measure of
those particles for which τD > t. But of course, for a large value of t, the event {τD > t} becomes more
and more unlikely so that the required number of particles to simulate has to grow as well.

5.2.2 The Fleming–Viot particle system

Two classes of algorithms adapt the rejection sampling idea described above to improve its efficiency.
First, one may simulate a single particle (xt)t≥0, and when it attempts to exit D at some time t,

move it to some random location chosen in D according to the occupation measure 1
t

∫ t
s=0 δxsds. When

t→ +∞, the law of xt is expected to converge to π [AFP88, GJ13, BC15, BCP18].
Second, one may simulate n particles (x1t )t≥0, . . . , (x

n
t )t≥0, and when one of these particles attempts

to exit D, move it to the position of one of the n− 1 remaining particles, uniformly chosen. The process
(x1t , . . . , x

n
t )t≥0 in Dn is called the Fleming–Viot particle system [BHIM96, BHM00]. In our finite state

space setting, the following results are due to Asselah, Groisman and Ferrari [AFG11].

Proposition 5.2.2 (Laws of Large Numbers for Fleming–Viot particle systems). Under the assumptions
of Proposition 5.2.1, we have:

(i) for any probability measure µ on D, if the particles are initially iid according to µ then for any
t ≥ 0, the empirical measure 1

n

∑n
i=1 δxit converges to Pµ(xt ∈ ·|τD > t) when n→ +∞;

(ii) for any n ≥ 2, the process (x1t , . . . , x
n
t )t≥0 possesses a unique stationary distribution, under which

the empirical measure 1
n

∑n
i=1 δxi∞ converges to π when n→ +∞.

We refer to [BHM00, GK04, Rou06, FM07, Löb09, Vil14, CT16, OV17, JM, CV19] for various
extensions of these statements to Markov processes in countably infinite or continuous state spaces.

5.2.3 Central Limit Theorem for the stationary distribution in finite state spaces

The convergence of the empirical measure 1
n

∑n
i=1 δxit to Pµ(xt ∈ ·|τD > t) is complemented by a

Central Limit Theorem, first obtained by Del Moral and Miclo [DMM03] and then generalised by Cérou,
Delyon, Guyader and Rousset [CDGR20]. More precisely, the random variable

ξnt :=
√
n

(
1

n

n∑

i=1

δxit − Pµ(xt ∈ ·|τD > t)

)
,

which takes its values in the space M0(D) of signed measures on D with finite total variation and mass
zero, converges in distribution to some centered Gaussian random variable, with an explicit covariance
operator Kµ

t . This result holds in a very general setting. In [A7], we established a stationary version of
this theorem for finite state space Markov chains.
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Theorem 5.2.3 (Central Limit Theorem for the stationary distribution of the Fleming–Viot particle sys-
tem). Under the assumptions of Proposition 5.2.1, let n ≥ 2, (x1∞, . . . , x

n
∞) be distributed according to

the stationary distribution of the Fleming–Viot particle system, and

ξn∞ :=
√
n

(
1

n

n∑

i=1

δxi∞ − π

)
.

When n → +∞, ξn∞ converges in distribution to some centered Gaussian random variable in M0(D),
with an explicit covariance operator K∞.

The operator K∞ turns out to be the limit, when t → +∞, of the operator Kµ
t , for any ini-

tial distribution µ. This makes Theorem 5.2.3 consistent with a formal t → +∞ limit of the results
of [DMM03, CDGR20]. Our proof of Theorem 5.2.3 relies on the following remark. In the Fleming–
Viot particle system, the particles are exchangeable, so that the empirical measure

ηnt :=
1

n

n∑

i=1

δxit

defines a Markov process in P(D), whose infinitesimal generator is easily seen to write

Lnφ(η) =
∑

x,y∈D

nη(x)

(
p(x, y) +

nq(x)η(y)

n− 1

)
[φ (ηx,y)− φ(η)] , φ : P(D) → R,

where ηx,y := η+ 1
n(δy−δx) and q(x) :=

∑
y∈E\D p(x, y). Indeed, in a configuration η, there are nη(x)

particles located in x, and each of these particles may move to y ‘directly’ at rate p(x, y), or try to exit
D at rate q(x) and then be moved to y with probability nη(y) (the number of particles in y) divided by
n− 1 (the total number of particles among which the location of the exiting particle is chosen).

We then define ξnt :=
√
n(ηnt − π) ∈ M0(D). Since it is an affine, bijective transformation of ηnt ,

the process (ξnt )t≥0 remains Markov and its infinitesimal generator Mn can be written explicitly. It turns
out that for any smooth function ψ : M0(D) → R, Mnψ converges, when n → +∞, to Mψ, where
M is the infinitesimal generator of a linear diffusion process (ξt)t≥0 in M0(D). The unique stationary
distribution of (ξt)t≥0 is known to be Gaussian with a covariance operator K∞ given as the solution to
a Lyapunov equation involving the coefficients of M.

We now claim that the sequence of the stationary distributions of (ξnt )t≥0 is tight on M0(D). The
proof of this claim is a bit technical but merely relies on the combination of Proposition 5.2.2 (ii) with
estimates on Mn. It is then easy to deduce from the convergence of Mnψ to Mψ that necessarily, any
limit of this sequence is a stationary distribution for (ξt)t≥0, which completes the proof.

Remark 5.2.4 (Nonasymptotic variance estimate). Let ηn∞ be the empirical measure of n particles dis-
tributed according to the stationary distribution of the Fleming–Viot particle process. Theorem 5.2.3
shows that the asymptotic rate of convergence of ηn∞ to π is 1/

√
n. It is then natural to wonder whether

a nonasymptotic rate may be derived, that is to say whether there exists C ∈ [0,+∞) such that for all
n ≥ 1,

E
[
‖ηn∞ − π‖2

]
≤ C

n
, (5.2)

for some norm ‖ · ‖ on M0(D). Notice that such an estimate would make the tightness of (ξn∞)t≥0

immediate in the proof of Theorem 5.2.3.
Versions of (5.2) were for example obtained in [FM07, CT16] for continuous-time Markov chains

with countably infinite state spaces, but under specific mixing conditions on their jump rates. On the other
hand, Angeli, Grosskinsky and Johansen [AGJ] recently studied interacting particle systems associated
with nonlinear Feynman–Kac semigroups for pure jump Markov processes, based on a previous work by
Rousset [Rou06]. In our finite state space setting, their results imply (5.2) (and actually a quantitative,
uniform in time propagation of chaos estimate for ηnt ) for the following variant of the Fleming–Viot
particle system: when a particle tries to exit D, its location is drawn according to the current empirical
measure ηnt of the system, so that it has an extra 1/n probability to remain in its current location.
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5.2.4 Limit theorems for first exit times

Let us come back to the issue of simulating the trajectory of a metastable stochastic process (xt)t≥0.
Assume that given a metastable set D, one is interested in the sampling of the pair (τD, xτD) under Px,
for some x ∈ D. This assumption is for instance motivated by the so-called Transition State Theory,
the purpose of which is to reduce the dynamics of a metastable process in a continuous and possibly
high-dimensional state space to a pure jump Markov process between metastable sets. The rates of this
pure jump process then naturally depend on the law of (τD, xτD), see the introduction of [DGLLPN19]
and the references therein.

Based on the metastability assumption on D, one may first replace Px with Pπ, where π is the QSD
of (xt)t≥0 in D. One may then simulate n independent realisations (x1t )t≥0, . . . , (x

n
t )t≥0 of the process

under Pπ, call τ1
D
, . . . , τn

D
the corresponding exit times and define

I = argmin
1≤i≤n

τ iD.

Then, since τ1
D
, . . . , τn

D
are independent and exponentially distributed, and they are independent from

x1
τ1
D

, . . . , xnτn
D

, we have that

(
nτ ID, x

I
τI
D

)
= (τD, xτD) , in distribution. (5.3)

In other words, this paralellisation procedure divides by n the time needed to observe an exit event. This
algorithm is called the Parallel Replica Dynamics [LBLLP12, PUV15].

Of course, it requires one to be initially able to sample n independent realisations x10, . . . , x
n
0 from

the QSD π. Based on such convergence results as Proposition 5.2.2 (ii), a possible approach may be
to take the vector (x10, . . . , x

n
0 ) distributed under the stationary distribution of the Fleming–Viot particle

system. Because of the fact that, in this case, the particles are not initially independent, the relation (5.3)
no longer holds for finite values of n, but it may be shown to hold asymptotically, at least in the case of
continuous-time Markov chains in finite state spaces.

Proposition 5.2.5 (Limit theorem for exit times). Let the assumptions of Proposition 5.2.2 be in force.
Let (x10, . . . , x

n
0 ) be distributed under the stationary distribution of the Fleming–Viot particle system, and

conditionally on (x10, . . . , x
n
0 ), let (x1t )t≥0, . . . , (x

n
t )t≥0 evolve as independent copies of (xt)t≥0. With the

notation introduced above, we have

lim
n→+∞

(
nτ ID, x

I
τI
D

)
= (τD, xτD) , in distribution.

We do not detail the whole proof but outline the justification of the convergence of nτ I
D

to τD. For
any t ≥ 0, using the conditional independence of the processes given the initial condition, we have

P
(
nτ ID > t

)
= E

[
n∏

i=1

P(τ iD > t/n|xi0)
]
= E

[
exp

(
n
∑

x∈D

log u (t/n, x) ηn0 (x)

)]
,

where u(s, x) := Px(τD > s) and ηn0 is the empirical measure of x10, . . . , x
n
0 . On the one hand, Proposi-

tion 5.2.2 (ii) asserts that ηn0 converges to π. On the other hand, from Proposition 5.2.1 it is easy to show
that, denoting by ID the D × D identity matrix and by 1D the function x 7→ 1 on D (which is identified
with a column vector), we have

n
∑

x∈D

log u (t/n, x) π(x) = n
∑

x∈D

log
(
(et(PD−ID)/n1D)(x)

)
π(x) ≃ −λt

when n → +∞. In this finite state space setting, we therefore deduce that nτ I
D

converges to an expo-
nential random variable with parameter λ. The arguments virtually carry out in a general state space, but
then one has to study the asymptotic behaviour of

n

∫

x∈D
log u (t/n, x) ηn0 (dx).
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In this expression, the integrand n log u (t/n, x) depends on n, and generically converges towards a
(quite singular) distribution supported by ∂D, to which the empirical measures ηn0 do not give any mass.
It is therefore likely that quantitative estimates on the convergence of ηn0 to π will then be needed to
control this quantity. We leave this problem as a work in progress.

5.3 Quasistationary distribution for Langevin processes

5.3.1 Metastability in molecular dynamics

Let F : Rd → Rd be a smooth function, which shall play the role of a force field, and (Bt)t≥0 be
a d-dimensional Brownian motion. The overdamped Langevin process (qt)t≥0 in Rd, defined by the
stochastic differential equation

dqt = F (qt)dt+ σdBt, (5.4)

and the Langevin process (qt, pt)t≥0 in Rd×Rd, defined by the system of stochastic differential equations

{
dqt = ptdt,

dpt = F (qt)dt− γptdt+ σdBt,
(5.5)

are ubiquitous in molecular dynamics [LS16]. An important reason for this fact is that, in the case where
F = −∇V , σ =

√
2β−1 with β > 0, γ > 0 and σ =

√
2γβ−1, the overdamped Langevin process is

reversible and ergodic with respect to the so-called Gibbs measure

ν(dq) :=
1

Zβ

e−βV (q)dq, Zβ :=

∫

q∈Rd

e−βV (q)dq,

while the Langevin process is ergodic (but not reversible) with respect to the product measure

ν(dqdp) := ν(dq)Mβ(dp), (5.6)

where Mβ is the centered Gaussian measure with covariance matrix β−1Id, also called the Maxwell
distribution with inverse temperature β. Therefore, both processes may be employed to sample from
the Gibbs measure ν, which is often the quantity of interest for the statistical description of a physical
system.

When the potential V has several local minima, both processes (qt)t≥0 and (qt, pt)t≥0 exhibit metasta-
bility in sets with respective forms D = O and D = O × Rd, where O is a well of V . Accelerated
algorithms are thus needed to simulate trajectories over long time intervals, which motivates the theo-
retical study of QSDs in such sets. Known results for the overdamped Langevin process are recalled in
Subsection 5.3.2, and the study of the Langevin process carried out in [A8] and [A9] is summarised in
Subsection 5.3.3.

5.3.2 QSD for overdamped Langevin processes

Let us introduce precisely our assumptions on the force field F and the set O ⊂ Rd.

(F) The function F : Rd → Rd is C∞.

(O) The subset O ⊂ Rd is open, bounded, connected and has a C2 boundary.

Under these assumptions, and for any temperature parameter σ > 0, the stochastic differential equa-
tion (5.4) admits a unique strong solution, which is defined at least up to the stopping time

τO := inf{t > 0 : qt 6∈ O},
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as soon as the initial condition is taken in O. The associated infinitesimal generator writes

Lf =
σ2

2
∆f + F · ∇f, f ∈ C2(Rd),

and we introduce the operator

L
∗
ρ =

σ2

2
∆ρ− div (Fρ), ρ ∈ C2(Rd).

In the next statement, which should be compared with Proposition 5.2.1 in the finite state space
setting, we gather results from [GQZ88, LBLLP12, CCPV18, CV].

Theorem 5.3.1 (QSD for the overdamped Langevin process). Let Assumptions (F) and (O) hold, and
take σ > 0 in (5.4).

(i) The solution to (5.4) admits a unique QSD π in O, and the associated rate λ is positive.

(ii) The measure π admits a density ψ ∈ C(O)∩C∞(O) with respect to the Lebesgue measure on Rd.
This density is positive on O and satisfies

{
L
∗
ψ = −λψ on O,

ψ = 0 on ∂O.

(iii) Let θ ∈ R and ρ ∈ C(O) ∩ C2(O), such that ρ 6= 0 and

{
L
∗
ρ = −θρ on O,

ρ = 0 on ∂O.

Then θ ≥ λ, and the conditions

(a) θ = λ,

(b) ρ has constant sign over O,

(c) ρ is a multiple of ψ,

are equivalent.

(iv) There exists C ≥ 0 and α > 0 such that, for any µ ∈ P(O),

∀t ≥ 0, ‖Pµ (qt ∈ ·|τO > t)− π(·)‖TV ≤ Ce−αt,

with ‖ · ‖TV the total variation norm on M(O).

Theorem 5.3.1 relies on two main classes of arguments, analytic and probabilistic (often used in
combination with each other). For example, the existence of a nonnegative eigenvector forL

∗
, which then

yields the existence of a QSD, and the exponential convergence of conditional distributions toward the
QSD, can be obtained from a spectral analysis of the operator L with homogeneous Dirichlet condition
([LBLLP12] in the reversible case), or the associated semigroup ([GQZ88] in the general case). In
both cases, the fact that the domain O be bounded and the operator L be uniformly elliptic plays an
important role. Similar results may be obtained with a more probabilistic approach based on Lyapunov
functionals, where the boundedness of O is less crucial [CV]. Uniqueness, on the other hand, follows
from minorisation conditions or Harnack inequalities.
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5.3.3 QSD for Langevin processes

Statement of the main result

Under Assumptions (F) and (O), for any temperature parameter σ > 0 and friction parameter γ ∈ R, the
stochastic differential equation (5.5) admits a unique strong solution defined at least up to the stopping
time

τD := inf{t > 0 : qt 6∈ O}
as soon as the initial condition is taken in the cylindrical domain of the phase space

D := O× Rd.

The associated infinitesimal generator now writes

Lf =
σ2

2
∆pf + (F (q)− γp) · ∇pf + p · ∇qf, f ∈ C2(Rd × Rd),

and we define

L∗ρ =
σ2

2
∆pρ− div p ((F (q)− γp) ρ)− div q (pρ) , ρ ∈ C2(Rd × Rd).

Since the Laplacian in L and L∗ only acts on the velocity variable, these operators are called degenerate.
This makes the analysis of the exit event from D different from the overdamped Langevin process, as is
illustrated on the following result which is proved in [A8]. In this statement, for any q ∈ ∂O, we denote
by n(q) the outward normal vector to O.

Proposition 5.3.2 (Exit from D). Under Assumptions (F) and (O), for any x = (q, p) ∈ D and T ≥ 0,
we have

Px (n(qτD) · pτD ≤ 0, τD ≤ T ) = 0.

In other words, when the process leaves O, it is with a strictly outgoing velocity. As a consequence
of this probabilistic fact, boundary conditions in related partial differential equations are generally not
set on the whole boundary ∂D. In order to make this statement more precise, let us first introduce the
following partition of ∂D:

Γ+ := {(q, p) ∈ ∂O× Rd : n(q) · p > 0},
Γ− := {(q, p) ∈ ∂O× Rd : n(q) · p < 0},
Γ0 := {(q, p) ∈ ∂O× Rd : n(q) · p = 0}.

The main result of [A9] reads as follows.

Theorem 5.3.3 (QSD for the Langevin process). Let Assumptions (F) and (O) hold, and take σ > 0,
γ ∈ R in (5.5).

(i) The solution to (5.5) admits a unique QSD π in D, and the associated rate λ is positive.

(ii) The measure π admits a density ψ ∈ C(D) ∩ C∞(D) with respect to the Lebesgue measure on
Rd × Rd. This density is positive and bounded on D ∪ Γ+ and satisfies

{
L∗ψ = −λψ on D,

ψ = 0 on Γ− ∪ Γ0.

(iii) Let θ ∈ R and ρ ∈ C(D) ∩C2(D), such that ρ 6= 0 and
{
L∗ρ = −θρ on D,

ρ = 0 on Γ− ∪ Γ0.

Then θ ≥ λ, and the conditions
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(a) θ = λ,

(b) ρ has constant sign over D,

(c) ρ is a multiple of ψ,

are equivalent.

(iv) There exists C ≥ 0, α > 0 and a positive, continuous and bounded function φ on D such that, for
any µ ∈ P(D),

∀t ≥ 0, ‖Pµ ((qt, pt) ∈ ·|τD > t)− π(·)‖TV ≤ C∫
D
φdµ

e−αt,

with ‖ · ‖TV the total variation norm on M(D).

Outline of the proof

In the sequel, we denote by Cb(D) the set of continuous and bounded functions on D and endow this set
with the sup norm. For any t ≥ 0, let us define the operator PD

t by

∀f ∈ Cb(D), PD
t f(x) := Ex

[
f(qt, pt)1{t<τD}

]
.

The following statement is one of the main results of [A8].

Proposition 5.3.4 (Transition density). Let the assumptions of Theorem 5.3.3 hold.

(i) There exists a continuous function pD : (0,+∞) × D × D → [0,+∞) such that, for any t > 0,
x ∈ D and f ∈ Cb(D),

PD
t f(x) =

∫

y∈D
pD(t, x, y)f(y)dy.

(ii) For any t > 0 and x, y ∈ D,

• pD(t, x, y) > 0 if x 6∈ Γ+ ∪ Γ0 and y 6∈ Γ− ∪ Γ0,

• pD(t, x, y) = 0 if x ∈ Γ+ ∪ Γ0 or y ∈ Γ− ∪ Γ0.

(iii) The function pD is C∞ on (0,+∞)×D×D and satisfies the forward and backward Kolmogorov
equations

∂tp
D = L∗

yp
D = Lxp

D.

The proof of Proposition 5.3.4 is primarily based on the Feynman–Kac representation formula for
strong solutions to the problem 




∂tu = Lu in D,

u = f for t = 0,

u = g on Γ+,

(5.7)

as
u(t, x) = Ex

[
1{t<τD}f(qt, pt) + 1{t≥τD}g(qτD , pτD)

]
.

This representation is established as follows. First, weak solutions of (5.7) are constructed by parabolic
approximation and localisation in velocity, in order to bypass the degeneracy of the operator L and the
unboundedness of the set D. Second, the hypoellipticity of the operator L is used to obtain the regularity
of these solutions. Third, these solutions are identified with the probabilistic representation thanks to
Itô’s formula. This essentially yields the points (i) and (iii) of Proposition 5.3.4. For further results in the
litterature regarding weak and strong solutions to the problem (5.7), we refer to [Car98, HJV14, HJJ18,
AM].
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The point (ii) relies on quite different arguments. The positivity of the transition density in D × D

follows from a Harnack inequality for the operator ∂t − L, which is originally due to Imbert, Golse,
Mouhot and Vasseur [GIMV19] but was suitably generalised in [A8]. The behaviour of the transition
density on ∂D combines a detailed analysis of the trajectories of the process (qt, pt)t≥0 near the boundary,
the use of an adjoint process related with time-reversal, and the following Gaussian upper bound on pD.

Proposition 5.3.5 (Gaussian upper bound). Let the assumptions of Theorem 5.3.3 hold. For any α ∈
(0, 1) and T > 0, there exists a finite constant C(α, T ) (which also depends on F , σ2, γ and O) such
that, for all t ∈ (0, T ] and x, y ∈ D,

pD(t, x, y) ≤ C(α, T )p̂(α)(t, x, y), (5.8)

where p̂(α)(t, x, y) is the transition density of the Gaussian process (q̂(α)t , p̂
(α)
t )t≥0 defined by




dq̂

(α)
t = p̂(α)dt,

dp̂
(α)
t = −γp̂(α)t dt+

σ√
α
dBt.

(5.9)

Proposition 5.3.5 generalises a result by Konakov, Menozzi and Molchanov [KMM10], which would
only cover the case γ = 0 in our setting, based on the use of the parametrix method [Bal81, Fri64]. We
actually prove that the bound (5.8) holds for the transition density p(t, x, y) of the solution (qt, pt)t≥0

to (5.5) in the whole phase space Rd × Rd, under the condition that F be globally bounded. It is then
clear that the upper bound transfers to pD(t, x, y) because by construction, pD(t, x, y) ≤ p(t, x, y), and
the transition density pD(t, x, y) does not depend on the values of F outside O, so under Assumption (F),
the latter function can be modified in order to be globally bounded.

The first step of the proof of Proposition 5.3.5 consists in establishing the mild formulation of the
forward Kolmogorov equation satisfied by p(t, x, y):

p(t, x, y) = p̂(t, x, y) +

∫ t

s=0

∫

x′=(q′,p′)∈Rd×Rd

p(s, x, x′)F (q′) · ∇p′ p̂(t− s, x′, y)dx′,

where p̂(t, x, y) := p̂(1)(t, x, y) is the transition density of the process (5.9) taken with α = 1. The
double integral in the right-hand side above is then controllable in terms of p̂(α)(t, x, y) for any α ∈
(0, 1), so that iterating this mild formulation yields the claimed estimate.

Beyond the completion of the proof of Proposition 5.3.4, the Gaussian upper bound (5.8) turns out
to be the cornerstone of the proof of Theorem 5.3.3. Indeed, an explicit computation shows that, for any
α ∈ (0, 1) and t > 0,

p̂(α)(t, ·, ·) ∈ L1 ∩ L∞(D× D),

which is far from being obvious since D is not bounded. The combination of this remark with the
estimate (5.8) then yields the following result, proved in [A9].

Proposition 5.3.6 (Compactness of the semigroup (PD
t )t≥0). Let the assumptions of Theorem 5.3.3 hold.

(i) For any t ≥ 0 and p, q ∈ [1,+∞], PD
t maps Lp(D) continuously into Lq(D) and into Cb(D).

(ii) For any t > 0 and p ∈ [1,+∞], PD
t is compact from Lp(D) to Lp(D), and from Cb(D) to Cb(D).

Similar results, in a much more general (and abstract) framework, are due to Nier [Nie18]. Propo-
sition 5.3.6 allows to apply the Krein–Rutman theorem, which is an infinite-dimensional generalisation
of the Perron–Frobenius theorem used to obtain Proposition 5.2.1, to the semigroup (PD

t )t≥0 acting on
Cb(D). This gives the existence of a QSD π as well as its spectral interpretation as an eigenvector, as-
sociated with the smallest eigenvalue λ, of −L∗. On the other hand, the regularity and positivity of the
density ψ are a consequences of the regularity and positivity of the transition density pD, which respec-
tively follow from hypoellipticity and the Harnack inequality. The positivity of ψ implies in particular
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that π is the unique QSD. Last, the compactness of PD
t and the Krein–Rutman theorem imply that there

exists α∗ ∈ (0,+∞] such that
e−(λ+α∗) = sup

z∈σ(PD
1 )\{e−λ}

|z|,

where σ(PD
1 ) denotes the spectrum of the operator PD

1 of Cb(D). The exponential convergence of
Pµ((qt, pt) ∈ ·|τD > t) to π can then be proved to hold for any rate of convergence α < α∗.

Remark 5.3.7 (Spectral gap). The definition of α∗ in terms of PD
1 may seem unusual, as spectral quan-

tities are often1 defined in terms of the infinitesimal generator L, complemented with suitable boundary
condition on ∂D. The spectrum of the latter operator is not directly studied in [A9], however the defini-
tion of α∗ can be formally seen to be equivalent to the spectral gap identity

λ+ α∗ = inf
θ∈σ(−L)\{λ}

Re(θ).

Remark 5.3.8 (Overdamped limit). Assume that F is globally Lipschitz continuous on Rd, and that for
some β > 0, σ =

√
2β−1 in (5.4) while γ > 0 and σ =

√
2γβ−1 in (5.5). Then it is known that

for any T > 0, the time-rescaled trajectory (qγt)t∈[0,T ] converges in distribution to (qt)t∈[0,T ], in the
overdamped limit γ → +∞. Using a refinement of this statement, Mouad Ramil [Ram] proved that the
QSD π of the Langevin process, given by Theorem 5.3.3, converges to the product measure π ⊗ Mβ ,
where π is the QSD of the overdamped Langevin process given by Theorem 5.3.1 and Mβ is the Maxwell
distribution with inverse temperature β.

The parallel between this result and the relation (5.6) between the stationary distributions of the
Langevin and overdamped Langevin processes is striking. However, it is worth noting that while the
identity ν = ν ⊗Mβ holds for any γ > 0 (in fact, ν does not depend on γ), the identity ‘π = π ⊗Mβ’
only holds in the γ → +∞ limit: indeed, since Theorem 5.3.3 shows that the density ψ of π satisfies
ψ > 0 on Γ+ and ψ = 0 on Γ− ∪ Γ0, the measure π does not admit a product structure.

During the preparation of [A8] and [A9], the work [GNW] was released by Guillin, Nectoux and
Wu. In this article, the existence of a QSD is established for a large class of hypoelliptic processes with
a Hamiltonian structure comparable to (5.5), at least in the case F = −∇V . Their proof is based on
the use of Lyapunov functionals, which allows to relax the assumption that the set O be bounded; in
return, the uniqueness of a QSD is merely proved to hold in the class of distributions satisfying certain
integrability conditions with respect to the Lyapunov functional, which even if O is bounded, does not
cover in general the whole space of probability measures on the set O× Rd.

Perspectives

An important difference between the statements of Theorem 5.3.1 and Theorem 5.3.3 is that in the former,
the convergence rate of Pµ(qt ∈ ·|τO > t) to π is uniform in the initial distribution µ, while in the latter
the prefactor depends on µ, and blows up when µ concentrates near the boundary of D. Whether this
prefactor can be made uniform in µ is known to be related with so-called two-sided estimates on the
transition density pD, see [CCPV18, CV] and the appendix of [BGL]. Establishing such estimates for
Langevin process is therefore a natural program for future research.

From the practical point of view, the law of the exit point (qτD , pτD) under Pπ is of major interest in the
implementation of accelerated algorithms. It can be derived through the following formal computation.
Let g : Γ+ ∪ Γ0 → R be a continuous and bounded function, and set u(q, p) := Eq,p[g(qτD , pτD)]. It can
be proved that u ∈ C(D) ∩ C∞(D), and

{
Lu = 0 in D,

u = g on Γ+.

1from the PDE point of view, one would even say ‘always’
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As a consequence, the Green formula yields

Eπ [g(qτD , pτD)] =

∫

(q,p)∈D
u(q, p)ψ(q, p)dqdp

= − 1

λ

∫

(q,p)∈D
u(q, p)L∗ψ(q, p)dqdp

=
1

λ

∫

(q,p)∈∂O×Rd

p · n(q)u(q, p)ψ(q, p)σ∂O(dq)dp−
1

λ

∫

(q,p)∈D
Lu(q, p)ψ(q, p)dqdp

=
1

λ

∫

(q,p)∈Γ+

p · n(q)g(q, p)ψ(q, p)σ∂O(dq)dp,

where σ∂O denotes the surface measure on O, since Lu = 0 on D, u = g on Γ+ and ψ = 0 on Γ− ∪ Γ0.
Therefore, one may expect the pair (qτD , pτD) to admit the law

1

λ
1{(q,p)∈Γ+}p · n(q)ψ(q, p)σ∂O(dq)dp

under Pπ. However, the rigorous justification of this integration by parts seems to require gradient
estimates on either ψ or u, which will be the subject of future works.



Chapter 6

Uncertainty propagation in a graph of

numerical models

This chapter presents the results of the articles [A11] and [A12], written in collaboration with Adrien
Touboul during his PhD thesis.

6.1 Introduction

6.1.1 Uncertainty propagation in Computer Experiments

The mathematical and numerical study of a process of interest (physical, biological, social, industrial...)
generally involves one or several models for the process, which are turned into computer codes and fed
parameters. Models almost always represent an incomplete description of the process, their transfor-
mation into computer codes generates numerical errors, and the parameters are often either inherently
variable, or only known up to a certain degree of precision. Loosely speaking, the field of Uncertainty
Quantification aims at taking into account all these discrepancies between the outcome of the numerical
analysis and the ‘real-world’ process, in a quantitative manner. It is naturally based on standard math-
ematical tools, ranging from probability theory and statistics to numerical analysis, optimisation and
computer science, but as a research area by itself it is quite young, see the references [Sul15, GHO17]
for an introduction from an academic point of view, as well as [DRDT08] for examples of industrial
applications.

In the specific context of computer experiments, where the numerical code is represented as a deter-
ministic function

f :

{
E× T → F

(x, θ) 7→ y

for which we call x the input, θ the parameter and y the output, the purpose of Uncertainty Propagation
is to quantify to which extent the uncertainty on the parameter propagates to uncertainty on the output.
Let us emphasise that in this introduction, we take the convention that θ is uncertain but x is not1. For
example, a basic task — but already nontrivial in practice if the evaluation of the function f is costly
— consists in postulating that Θ is a random variable with a prescribed probability distribution µΘ and
computing quantities of interest on the law of Y = f(x,Θ), such as moments, the probability to reach a
certain subset of F, or quantiles. If the uncertain parameter Θ = (Θ1, . . . ,Θd) is multivariate, the related
issue of Sensitivity Analysis aims at determining which components of Θ have the most influence on the
variation of Y . This can be done through the estimation of such quantities as

Var (E [f(x,Θ1, . . . ,Θd)|Θi1 , . . . ,Θik ]) , {i1, . . . , ik} ⊂ {1, . . . , d},
1This notational convention is more or less the opposite of the standard practice, according to which x often denotes

uncertain inputs. The consistency of this convention will be recovered in the next subsection, where both x and θ will be
random, but originating from different uncertainty sources.
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which are used in the definition of so-called Sobol indices.

6.1.2 Multicomponent models

In certain industrial fields, such as aircraft conception, design stages involve a large number of inter-
acting agents, which may represent subcontractors in charge of the design of different components of
the product, or at a finer scale, computer codes modelling different physical phenomena. The prop-
agation of uncertainty in such complex systems has motivated several recent research works, see for
instance [AW10, AAW14, MPGP19, SLC19, MG] and references therein. The PhD thesis of Adrien
Touboul, hosted by the project Agility and Design Margins at IRT SystemX, addresses this issue with
user cases provided by the aeronautics and automotive sectors.

At the abstract level, the design stage is represented by a finite set V of computer codes (which we
shall also call numerical models), such that the outputs of certain codes are taken as inputs of other
codes. This naturally provides the model with a directed graph structure G = (V, E). More precisely,
each vertex v ∈ V is associated with a deterministic function

fv :

{
Ev × Tv → Fv

(xv , θv) 7→ yv

and a pair of vertices (u, v) belongs to the set of edges E if the output yu of fu is then taken as an input
xu,v for the function fv. Thus, each edge (u, v) ∈ E is associated with a function

gu,v :

{
Fu → Eu,v

yu 7→ xu,v

which represents the actual information contained in yu which is taken as an input for v, and the vertices
satisfy the compatibility condition

∀v ∈ V, Ev =
∏

u∈I(v)

Eu,v,

where I(v) := {u ∈ V : (u, v) ∈ E} denotes the set of parents of v in G. When I(v) = ∅, we call v a
root of G and we denote by R ⊂ V the set of roots. Likewise, we denote by L ⊂ V the set of leaves, that
is to say vertices v such that there is no edge of the form (v,w).

In the sequel, we shall work under the standing assumption that G is a Directed Acyclic Graph, that
is to say that is does not contain oriented cycles. This excludes the situation, called strong coupling in
the industrial context, where two numerical models take as input the output of each other. This structural
assumption induces a partial order on V which then allows to define inductively, given (θv)v∈V :

• for any root v, the variable yv = fv(θv);

• for any edge (u, v) for which yu is defined, xu,v = gu,v(yu);

• for any vertex v such that the variables xu,v, u ∈ I(v) are defined, the variable yv = fv(xv, θv),
with xv = (xu,v)u∈I(v).

Thus, the vector yV := (yv)v∈V is well-defined as a (composite) function of θV := (θv)v∈V , which we
denote by

FV :

{ ∏
v∈V Tv → ∏

v∈V Fv,
θV 7→ yV .

These definitions are illustrated on Figure 6.1.
We shall from now on assume that all sets Ev, Tv and Fv are endowed with a σ-field (and in particular

that the σ-field over Ev is the product of the σ-fields over Eu,v, u ∈ I(v)), and that all functions fv, gu,v
are measurable. We define the canonical probability space (Ω,F ,P) by Ω =

∏
v∈V Tv, F the associated

product σ-field, and P = ⊗v∈VµΘv . On this canonical space, elements of Ω are generically denoted by
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yu3θu3

yu2θu2

yu1θu1

yv2

yv1

θv2

θv2

yw2

yw1

θw2

θw1

xu3,v2

xu2,v2

xu2,v1

xu1,v1

xv2,w2

xv1,w1

xv2,w1
xv1,w2

Figure 6.1: An example of a graph of numerical models with 7 vertices. The vertices u1, u2, u3 are roots,
and the vertices w1, w2 are leaves.

ΘV := (Θv)v∈V and, for any v ∈ V and (u, v) ∈ E , the random variables Xu,v, Xv , Yv are defined
according to the procedure above. Our purpose is then to estimate quantities of interest related with the
joint law of YV := (Yv)v∈V . Notice that for sensitivity analysis, quantities of interest related with the
joint law of {ΘV , YV} are also relevant.

6.1.3 Reweighting methods

Let Φ :
∏

v∈V Fv → R be a measurable (and, say, bounded) function. In order to estimate the quantity
of interest

QI := E [Φ (YV)] ,

an obvious direct Monte Carlo procedure consists in fixing n ≥ 1 and proceeding sequentially, following
the graph structure of G, as follows:

• each root v generates n independent realisations Θv,1, . . . ,Θv,n according to µΘv and computes a
sample Yv,1 = fv(Θv,1), . . . , Yv,n = fv(Θv,n) which we denote by Yv,n;

• for each v ∈ V such that the samples Yu,n, u ∈ I(v) have been computed, the vertex v gener-
ates n independent realisations Θv,1, . . . ,Θv,n according to µΘv and computes a sample Yv,1 =
fv(Xv,1,Θv,1), . . . , Yv,n = fv(Xv,n,Θv,n) which we denote by Yv,n, withXv,j = (gu,v(Yu,j))u∈I(v)
for any j ∈ {1, . . . , n};

and QI is estimated by

Q̂I
MC

n :=
1

n

n∑

j=1

Φ (YV ,j) , YV ,j := (Yv,j)v∈V .

Since this estimator directly rewrites

Q̂I
MC

n =
1

n

n∑

j=1

Φ (FV(ΘV ,j)) , ΘV ,j := (Θv,j)v∈V ,

and the vectors ΘV ,j, j ∈ {1, . . . , n} are iid according to P, it is clear that it is (strongly) consistent,
in the sense that when n → +∞, it converges almost surely to QI. Notice that all random variables
involved in this procedure need not be defined on the canonical probability space, but on the contrary it
is more natural to define them on some experimental probability space on which each vertex v ∈ V is
assumed to be able to generate a sequence (Θv,j)j≥1 of independent realisations of µΘv .
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This direct Monte Carlo procedure is generally difficult to implement in practice for large networks
because it requires each vertex v to wait for the results of all upstream codes before running its own code,
and if the evaluation of fv is time consuming then the whole process becomes intractable. In this chapter,
we study a decomposition method, partially inspired by [AW10, AAW14], in which all vertices work in
parallel with a synthetic sample X ′

v,1, . . . ,X
′
v,nv

which is generated locally, independently from the
results of other codes, during some offline phase. We however assume that during this offline phase, each
vertex remains able to sample independent realisations Θv,1, . . . ,Θv,nv from the ‘true’ distribution µΘv .
The offline phase results in a family of samples Sv,nv = (X ′

v,j , Y
′
v,j)1≤j≤nv , with Y ′

v,j = fv(X
′
j,v,Θj,v),

which are sent to a simulation architect. In an online phase, the simulation architect then has to construct
an estimator of QI based only on the collection of samples SV := (Sv,nv)v∈V .

6.1.4 Outline and main results

We address the estimation of QI in this offline/online context by looking for estimators of the form

Q̂InV
=

∑

jV∈NV

wjV (SV)Φ
(
Y ′
V ,jV

)
, (6.1)

with
nV := (nv)v∈V , jV := (jv)v∈V , NV :=

∏

v∈V

{1, . . . , nv}, Y ′
V ,jV := (Y ′

v,jv )v∈V . (6.2)

In this formula, (wjV (SV))jV∈NV
is some family of weights which somehow represent how likely each

observation Y ′
V ,jV

should be under P. We shall proceed in two steps.
In Section 6.2, which summarises the contents from [A12], we assume that for each vertex v and any

xv ∈ Ev, we are given a method to compute an estimator of the Markov kernel

ℓv(xv ,dyv) := P(Yv ∈ dyv|Xv = xv) = µΘv ◦ fv(xv, ·)−1(dyv)

of the form
nv∑

j=1

Wv,j(Sv,nv , xv)δY ′
v,j
(dyv).

When v is a root, that is to say Ev = ∅, we adapt the notation above and assume that we are given
estimators of

ℓv(dyv) := P(Yv ∈ dyv) = µΘv ◦ f−1
v (dyv)

of the form
nv∑

j=1

Wv,jδY ′
v,j
(dyv).

We call such a method a Weighted Linear Approximation Method (WLAM). The main results of Sec-
tion 6.2 are the formula (6.5), which defines the global weight wjV (SV) as a function of the local weights
Wv,j(Sv,nv , xv) and Theorem 6.2.7 which shows the consistency of this formula.

In Section 6.3, we then construct a particular instance of a WLAM, based on the Nearest Neighbour
regression method studied in [A11]. Combining this construction with the results from Section 6.2 finally
yields a consistent estimator of QI.

6.2 Reweighting procedure

In this section, we provide a practical algorithm to compute a family of weights (wjV (SV))jV∈NV
which

makes the estimator Q̂InV
defined in (6.1) consistent, in a certain sense, when the sizes nv, v ∈ V

of all samples go to +∞. The building brick of our method is the notion of WLAM introduced in
Subsection 6.2.1 on a single vertex, and then applied to the graph in Subsection 6.2.2.
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6.2.1 Weighted Linear Approximation Method

In this subsection we work at the level of a single vertex and therefore remove the subscript v from our
notation. We thus let E, T and F be three measurable spaces, f : E× T → F be a measurable function,
and µΘ be a probability measure on T.

We assume that, on some canonical probability space (Ω,F ,P), two independent random variables
X and Θ are defined, with respective distribution µX and µΘ, and let Y = f(X,Θ). For any x ∈ E,
the conditional distribution of Y given X = x, which is the pushforward measure of µΘ by the function
f(x, ·), is then denoted by ℓ(x,dy) (and simply ℓ(dy) if E = ∅).

We also assume that, on some experimental probability space (Ω∗,F∗,P∗), a sequence of indepen-
dent random variables (Θj)j≥1 distributed according to µΘ is defined.

Last, we denote by BF the space of real-valued, bounded and measurable functions on F.

Definition and consistency

Definition 6.2.1 (WLAM). In the setting described above, an n-Weighted Linear Approximation Method
(n-WLAM) is a pair (Wn,X

′
n) such that:

• X′
n = (X ′

j)1≤j≤n is a collection of E-valued random variables, defined on the probability space
(Ω∗,F∗,P∗), and independent from the sequence (Θj)j≥1;

• Wn = (Wj)1≤j≤n : (E × F)n × E → [0,+∞)n is a function such that, for any sn ∈ (E × F)n

and x ∈ E,
n∑

j=1

Wj(sn, x) = 1.

In the particular case where E = ∅, an n-WLAM is simply a vector Wn = (Wj)1≤j≤n of nonnega-
tive numbers whose sum equals to 1.

An n-WLAM naturally induces a random Markov kernel ℓ̂n(x,dy) from E to F, defined by

∀x ∈ E, ℓ̂n(x,dy) =

n∑

j=1

Wj(Sn, x)δY ′
j
(dy),

where the sample Sn is defined on the experimental probability space by Sn = (X ′
j , Y

′
j )1≤j≤n, with

Y ′
j = f(X ′

j ,Θj).

Definition 6.2.2 (Consistency). Let B be a linear subspace of BF. A sequence of n-WLAMs, n ≥ 1, is
called B-consistent if, for any x ∈ E and φ ∈ B,

lim
n→+∞

∫

y∈F
φ(y)ℓ̂n(x,dy) =

∫

y∈F
φ(y)ℓ(x,dy), in probability on (Ω∗,F∗,P∗).

In the sequel we shall always implicitly consider sequences of n-WLAMs, to which we shall simply
refer as ‘WLAM’.

Definition 6.2.2 rewrites, for any φ ∈ B, for any x ∈ E,

lim
n→+∞

n∑

j=1

Wj(Sn, x)φ(Y
′
j ) = E[φ(Y )|X = x],

in probability. In other words, a WLAM can be reinterpreted as a linear nonparametric regression esti-
mator for E[φ(Y )|X = x] = E[φ(f(x,Θ))] [Tsy09, Definition 1.7 in Section 1.5], which is consistent
for any function φ in the class B.
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Examples and comments

Example 6.2.3 (Case E = ∅). If E = ∅, the WLAM Wn defined by Wj = 1/n for any j ∈ {1, . . . , n}
is BF-consistent.

Example 6.2.4 (Discrete case). Assume that E is a discrete space and let µX′ be a probability measure
on E such that µX′(x) > 0 for any x ∈ E. Consider the WLAM composed by a sample X′

n of independent
random variables X ′

1, . . . ,X
′
n distributed according to µX′ , and the function Wn defined by

Wj(Sn, x) =





1

n
if Σ(x) = 0,

1{x=X′
j}

Σ(x)
if Σ(x) > 0,

where Σ(x) :=
∑n

j=1 1{x=X′
j}

. This WLAM is BF-consistent.

Example 6.2.5 (Nadaraya–Watson WLAM). If E = Rd, a natural generalisation of Example 6.2.4 would
be to draw an iid synthetic sample X ′

1, . . . ,X
′
n according to some probability measure µX′ , and set

Wj(Sn, x) =
δX′

j
(dx)

Σ(dx)
, Σ(dx) :=

n∑

j=1

δX′
j
(dx),

but of course this expression does not make sense. Smoothing the Dirac masses by convolution with a
kernel K > 0 and a bandwidth h > 0, we get

Wj(Sn, x) =
K(h−1(x−X ′

j))

Σh(x)
, Σh(x) :=

n∑

j=1

K(h−1(x−X ′
j)).

For any φ ∈ BF, the quantity
∫

y∈F
φ(y)ℓ̂n(x,dy) =

n∑

j=1

Wj(Sn, x)φ(Y
′
j )

then turns out to be the Nadaraya–Watson estimator of the regression function E[φ(Y )|X = x] [Tsy09,
Section 1.5]. From standard results in kernel density estimation, it can be checked that if µX′ has a
positive and continuous density with respect to the Lebesgue measure on Rd, and the bandwidth h = hn
is chosen so that hn → 0, nhn → +∞, then this WLAM is B-consistent, for any class B of measurable
and bounded functions φ for which the mapping x 7→ E[φ(f(x,Θ))] is continuous.

A WLAM based on another popular nonparametric regression method, the Nearest Neighbour method,
will be discussed in detail in Section 6.3. In contrast, parametric regression methods, such as linear or
logistic, may only be expected to yield consistent WLAMs for drastically restricted classes of functions
φ and f .

In the previous examples, the weights Wj(Sn, x) only depend on the sample Sn through X′
n, but

there are nonparametric regression methods, such as regression trees [HTF09, Section 9.2.2], for which
weights also depend on (Y ′

1 , . . . , Y
′
n). Last, let us also emphasise the fact that while in the examples

above, the design X′
n is iid, our framework also allows to work with deterministic, user-chosen designs,

as long as they fulfill the consistency property of Definition 6.2.2.

Toward WLAM composition

As a consequence of Definition 6.2.2, if a WLAM (Wn,X
′
n)n≥1 is B-consistent, then for any measur-

able and bounded function Φ : E× F → R such that Φ(x, ·) ∈ B for all x ∈ E, we have

lim
n→+∞

∫

x∈E

n∑

j=1

Wj(Sn, x)Φ(x, Y
′
j )µX(dx) = E[Φ(X,Y )],
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in probability. This suggests that if the probability measure µX is approximated by a finite sum of Dirac
masses

µ̂X,m =

m∑

i=1

wiδXi
,

then the joint law of (X,Y ) should be approximated by the probability measure

m∑

i=1

n∑

j=1

wiWj(Sn,Xi)δ(Xi,Y ′
j )
. (6.3)

This remark will be generalised in the next subsection.

6.2.2 Computing weights on the graph

In this subsection, we come back to the study of the graph of numerical models G = (V, E) and assume
that each vertex v ∈ V is provided with a consistent WLAM (Wv,nv ,X

′
v,nv

) defined on some experi-
mental probability space (Ω∗

v,F∗
v ,P

∗
v). We denote by Sv,nv = (X ′

v,j , Y
′
v,j)1≤j≤nv the associated sample,

defined on the product (Ω∗
V ,F∗

V ,P
∗
V) of all experimental spaces.

Our purpose is now to describe an ‘online’ algorithm taking as an input the WLAMs of all vertices
and returning a family of weights (wjV (SV))jV∈NV

making the estimator Q̂InV
of QI defined in (6.1)

consistent.

Markov property and factorisation formula

Let us recall that we denote by L ⊂ V the set of leaves, and introduce the sub-σ-field of the canonical
probability space

F− := σ
(
(Θv)v∈V\L

)
,

which is generated by the family of random variables Θv which are not located on leaves. Clearly, for
any v ∈ L, the random variable Xv is F−-measurable, while Θv is independent from F−. Therefore,
since the random variables (Θv)v∈L are independent, the conditional distribution of (Yv)v∈L given F−

is the product measure2
∏

v∈L

ℓv(Xv ,dyv),

where we recall that, for each v ∈ L,Xv = (gu,v(Yu))u∈I(v). This fact can be seen as a Markov property
for the graph structure of G.

We deduce that the joint law µYV
(dyV) of the complete vector YV = (Yv)v∈V satisfies the disintegra-

tion formula

µYV
(dyV) = µYV\L

(dyV\L)
∏

v∈L

ℓv(xv,dyv), xv = (gu,v(yu))u∈I(v),

where µYV\L
(dyV\L) refers to the law of the vector YV\L = (Yv)v∈V\L. Since G is a Directed Acyclic

Graph with a finite number of vertices, it is easily seen that L 6= ∅. Therefore, the disintegration formula
may be iterated to yield inductively

µYV
(dyV) =

∏

v∈R

ℓv(dyv)
∏

v∈V\R

ℓv(xv,dyv), xv = (gu,v(yu))u∈I(v), (6.4)

where we recall that R denotes the set of roots of V .

2In this expression, the terms corresponding to vertices v which are roots should write ℓv(dyv) rather than ℓv(Xv ,dyv). In
order not to overload the presentation, we shall often keep this distinction implicit in the sequel.
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Definition of weights and consistency theorem

We recall that, for each root v ∈ R, the law ℓv(dyv) of Yv is approximated by

ℓ̂v,nv(dyv) =

nv∑

j=1

Wv,jδY ′
v,j
(dyv),

and for any v ∈ V \ R and x ∈ Ev, the conditional distribution ℓv(xv ,dyv) of Yv given Xv = x is
approximated by

ℓ̂v,nv(x,dyv) =

nv∑

j=1

Wv,j(Sv,nv , x)δY ′
v,j
(dyv).

It is therefore natural to approximate the joint law µYV
(dyV), which satisfies the factorisation for-

mula (6.4), by the measure

µ̂YV ,nV
(dyV) :=

∏

v∈R

ℓ̂v,nv(dyv)
∏

v∈V\R

ℓ̂v,nv(xv,dyv), xv = (gu,v(yu))u∈I(v).

The latter rewrites
µ̂YV ,nV

(dyV) =
∑

jV∈NV

wjV (SV)δY ′
V,jV

,

where we recall the notation from (6.2) and, for any jV ∈ NV , we set

wjV (SV) :=
∏

v∈R

Wv,jv

∏

v∈V\R

Wv,jv(Sv,nv , (gu,v(Y
′
u,ju))u∈I(v)). (6.5)

This definition generalises the derivation of (6.3).
We now study the consistency of the estimator Q̂InV

, defined in (6.1), with weights wjV (SV) given
by (6.5). We shall state a rather weak form of consistency, in which the limits nv → +∞, v ∈ V must be
taken in the reverse order induced by G, see Theorem 6.2.7 below. We believe that stronger conditions
on the model and the WLAMs may be imposed in order to make the consistency hold in the joint limit
(nv)v∈V → +∞, but stick to this simple statement as a first theoretical justification of the approximation
of QI by Q̂InV

. From now on, we denote by N the cardinality of V .

Definition 6.2.6 (G-coherent enumeration of V). An enumeration v1, . . . , vN of V is G-coherent if, for
any pair of indices (k, l) such that k < l, there is no oriented path from vl to vk in G.

Given such an enumeration, to any measurable and bounded function Φ :
∏

v∈V Fv → R we associate

the family of measurable and bounded functions Φl :
∏l

k=1 Fvk → R, l ∈ {0, . . . , N}, defined by
ΦN := Φ and, for l ∈ {0, . . . , N − 1},

Φl ((yvk)1≤k≤l) :=

∫

yvl+1
∈Fvl+1

Φl+1

(
yv1 , . . . , yvl , yvl+1

)
ℓvl+1

(
xvl+1

,dyvl+1

)
,

with xvl+1
= (gu,vl+1

(yu))u∈I(vl+1), and ℓvl+1
(xvl+1

,dyvl+1
) replaced with ℓvl+1

(dyvl+1
) if vl+1 ∈ R.

This expression is well defined because xvl+1
can only depend on the values of yv1 , . . . , yvl ; besides,

Φ0 = QI.

Theorem 6.2.7 (G-consistency of Q̂InV
). Assume that for each v ∈ V , the WLAM (Wv,nv ,X

′
v,nv

) is
Bv-consistent, for some linear subspace Bv of the space of bounded and measurable functions BFv

on Fv. Let v1, . . . , vN be a G-coherent enumeration of V . Let Φ :
∏

v∈V Fv → R be a measurable
and bounded function, and assume that for any l ∈ {1, . . . , N}, for all (yvk)1≤k≤l−1, the function
yvl 7→ Φl(yv1 , . . . , yvl−1

, yvl) belongs to Bvl . Then we have

lim
nv1→+∞

· · · lim
nvN

→+∞
Q̂InV

= QI, in probability on (Ω∗
V ,F∗

V ,P
∗
V).
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Proof. Let us define the family of functions Φ̂l, l ∈ {0, . . . , N} by the same formulæ as Φl but replacing
each ℓv with ℓ̂v,nv , so that in particular Φ̂0 = Q̂InV

. It follows from a backward inductive argument over
l ∈ {0, . . . , N}, the consistency of each WLAM and the dominated convergence theorem that for any
(yvk)1≤k≤l,

lim
nvl+1

→+∞
· · · lim

nvN
→+∞

Φ̂l ((yvk)1≤k≤l) = Φl ((yvk)1≤k≤l) ,

in probability. For l = 0, this yields the claimed identity.

Let us assume that all roots v ∈ R are provided with the WLAM described in Example 6.2.3. On
the one hand, if all spaces Ev, v ∈ V \ R are discrete, and provided with a WLAM as described in
Example 6.2.4, then the assumptions of Theorem 6.2.7 hold for any measurable and bounded function
Φ :

∏
v∈V Fv → R, without any more condition over the functions fv and gu,v than mere measurability.

On the other hand, if some spaces Ev, v ∈ V \R are continuous and provided with the Nadaraya–Watson
WLAM from Example 6.2.5, then more intricate uniform continuity conditions must be imposed over Φ
and the functions fv and gu,v for the assumptions of Theorem 6.2.7 to hold.

Algorithmic remarks

From a computational point of view, the formulæ (6.1) and (6.5) defining Q̂InV
are severely demand-

ing, since in order to evaluate the latter quantity, the simulation architect has to compute the
∏

v∈V nv
weights wjV (SV). It is therefore likely that the combinatorics of the problem become prohibitive quickly.
However, if Φ only depends on a few of the random variables Yv, v ∈ V , then the formula (6.5) can be
marginalised so as to display fewer terms. We treat a somehow extreme case in the next example.

Example 6.2.8 (Composition of WLAMs on the line graph). Let us consider the case of the line graph
V = {v1, . . . , vN}, E = {(vl, vl+1), 1 ≤ l ≤ N − 1}, and assume that the quantity of interest writes

QI = E[φ(YvN )].

The estimator Q̂InV
then writes

Q̂InV
=

nvN∑

jvN=1

wvN ,jvN
φ(Y ′

vN ,jvN
),

with weights given by
wvN ,jvN

= (Wv1Wv2 · · ·WvN )jvN , (6.6)

where Wv1 is the (row) vector with coordinates (Wv1,jv1
)1≤jv1≤nv1

while, for l ≥ 2, Wvl is the nvl−1
×

nvl matrix with coordinates (Wvl,jvl
(Svl,nvl

, gvl−1,vl(Y
′
vl−1,jvl−1

)))1≤jvl−1
≤nvl−1

,1≤jvl≤nvl
. Computing

the matrix product Wv1Wv2 · · ·WvN from the left to the right requires nv1nv2+nv2nv3+· · ·+nvN−1
nvN

operations. Assume for simplicity that all samples have the same size n, then the computational cost of
the method reduces from computing the nN weights wjV (SV) to simply (N − 1)n2 operations for this
chain matrix product.

In the general case, such a marginalisation procedure can still be implemented, with the matrix
product appearing in (6.6) replaced with tensor contraction, but it becomes a combinatorial optimisation
problem. The theory of Bayesian networks provides algorithms for this task. Indeed, let us still denote
by Wv the (

∏
u∈I(v) nu)× nv array with coefficients

Wv,jv

(
Sv,nv , (gu,v(Y

′
u,ju))u∈I(v)

)
, ∀u ∈ I(v), 1 ≤ ju ≤ nu, 1 ≤ jv ≤ nv.

Then, for each v ∈ R, the vector Wv can be interpreted as the probability mass function of a random
variable Yv which takes its values in the set {Y ′

v,jv , 1 ≤ jv ≤ nv}, while for each v ∈ V \ R, the array
Wv can be interpreted as the conditional probability table of a random variable Yv, which takes its values
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in the set {Y ′
v,jv

, 1 ≤ jv ≤ nv}, given all possible values of the variables Yu, u ∈ I(v). The joint
law of (Yv)v∈V is then given by the factorisation formula (6.5), which makes the pair (G, (Yv)v∈V ) a
Bayesian network [KF09, Definition 3.5, p. 62]. In this context, the marginalisation procedure described
above amounts to computing the joint law of a subset of all variables (Yv)v∈V . This task is called exact
inference in Bayesian networks [KF09, Chapter 9], and therefore dedicated algorithmic tools can be
readily employed in our context to compute Q̂InV

as efficiently as possible.

6.3 Nearest Neighbour WLAM

In this section, we first describe in Subsection 6.3.1 the results of [A11] where a simplified version of
the uncertainty propagation problem from Section 6.2, with a single numerical model involved, was
studied. An estimator of the quantity of interest, based on the Nearest Neighbour nonparametric regres-
sion method, is introduced and rates of convergence are derived. In Subsection 6.3.2, these results are
employed to construct and study the consistency of a Nearest Neighbour-based WLAM.

6.3.1 Nearest Neighbour approach to covariate shift

Let us consider the reweighting procedure for one numerical model. The quantity of interest is

QI = E[φ(Y )],

with Y = f(X,Θ) ∈ Re the output of the numerical model, X ∈ Rd the input and Θ ∈ T the parameter.
Both X and Θ are random, with respective distributions µX and µΘ, and they are independent. In order
to reproduce the offline/online phases of Section 6.2, we assume that:

• in an offline phase, a synthetic iid sample X′
n = (X ′

1, . . . ,X
′
n) is generated from some user-

chosen probability measure µX′ , together with an independent sample Θ1, . . . ,Θn from µΘ, and
the numerical model f is used to compute Y ′

1 , . . . , Y
′
n defined by Y ′

j = f(X ′
j ,Θj);

• in an online phase, an independent sample Xm = (X1, . . . ,Xm) from µX becomes available, but
evaluations of the numerical model f are no longer allowed.

In this subsection, we describe an estimator of QI based on the so-called Nearest Neighbour method in
nonparametric statistics [BD15].

Remark 6.3.1 (Covariate shift). From a statistical learning point of view, we are in a situation where the
regression function ψ(x) = E[Y |X = x] is learned on a training set X′

n and must then be applied on an
evaluation set Xm with a different law. This situation is called covariate shift, or domain adaptation, in
the litterature.

Density ratio estimation

A natural importance sampling estimator of QI is

1

n

n∑

j=1

ρ(X ′
j)φ(Y

′
j ), ρX,X′ :=

dµX
dµX′

.

However, in the Computer Experiments context which motivates our study, the measure µX′ is user-
chosen, but the true law µX of the input variable X is not known, hence neither is ρX,X′ . The problem
of estimating the latter function based on the samples X′

n and Xm is known in the statistical learning
litterature as density ratio estimation [SSK12]. A rather generic procedure to proceed consists in fixing
a distance-like function d on the set of probability measures on Rd, writing

ρX,X′ = argmin
ρ

d (ρµX′ , µX) ,
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and estimating ρX,X′ by

ρ̂Xm,X′
n
:= argmin

ρ
d
(
ρµ̂X′

n
, µ̂Xm

)
, µ̂X′

n
:=

1

n

n∑

j=1

δX′
j
, µ̂Xm :=

1

m

m∑

i=1

δXi
. (6.7)

This approach has been applied with several choices of distance-like functions d, such as moment/kernel
matching, L2 distance between densities, Kullback–Leibler divergences; we refer to [SSK12] for an
extensive review supplemented with a detailed list of references. Since the primary purpose of these
methods is the approximation of the density ratio ρX,X′ , the existence of this ratio (and often the existence
of positive densities for µX and µX′ with respect to the Lebesgue measure, at least on some bounded
subset of Rd) is almost always a necessary condition for their theoretical analysis. In our context, this
ratio need not exist: indeed, while some prior information on the law µX may be known, such as bounds
on its support, mean or dispersion, it may happen for example that some components of the vector X be
tied to each other by deterministic relations of the form h(X) = 0, so that the actual support of µX might
be contained in a low-dimensional manifold and difficult to determine precisely. Therefore, designing
a synthetic probability distribution µX′ with respect to which µX is absolutely continuous may actually
turn out to be impossible.

Wasserstein distance minimisation and Nearest Neighbour estimation

Since the quantity which is minimised in (6.7) only depends on ρ through the measure ρµ̂X′ , and thus
through the values ρ(X ′

1), . . . , ρ(X
′
n), the actual output is a vector of weights ŵn := (ŵ1, . . . , ŵn) which

approximate the values of ρX,X′ at the points X ′
1, . . . ,X

′
n, and (6.7) rewrites

ŵn := argmin
wn

d


 1

n

n∑

j=1

wjδX′
j
,
1

m

m∑

i=1

δXi


 . (6.8)

In Proposition 6.3.2 below, we solve this problem for d = Wq, the Wasserstein distance of order q
on Rd. A practical advantage of this distance with respect to the L2 distance between densities or the
Kullback–Leibler divergence is that it is not sensitive to whether the measures are absolutely continuous
with respect to each other or with respect to the Lebesgue measure, which makes it quite robust with
respect to the choice of µX and µX′ . Before proceeding, we note that, in the minimisation problem (6.8),
the first argument of d(·, ·) is a probability measure if and only if the vector wn = (w1, . . . , wn) satisfies

∀j ∈ {1, . . . , n}, wj ≥ 0, and
n∑

j=1

wj = n. (6.9)

The resolution of (6.8) for the Wasserstein distance involves the notion of Nearest Neighbour. For
x ∈ Rd and k ∈ {1, . . . , n}, we denote by NN

(k)
X′

n
(x) the k-th Nearest Neighbour (k-NN) of x, that is to

say the k-th closest point to x, among the sample X′
n (for a given norm | · | on Rd). If there are several

such points, we define NN
(k)
X′

n
(x) to be the point X ′

j with lowest index j. Last, for any x ∈ Rd and

l ∈ {1, . . . , n}, we denote by j(l)(x) the (lowest) index j such that X ′
j = NN

(l)
X′

n
(x). The next statement

is the first main result from [A11].

Proposition 6.3.2 (Optimal vector of weights for Wasserstein distance). Let the NN vector of weights

w
(1)
n = (w

(1)
1 , . . . , w

(1)
n ) be defined by, for all j ∈ {1, . . . , n},

w
(1)
j :=

n

m

m∑

i=1

1{j=j(1)(Xi)}
.
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The vector w
(1)
n is optimal for the problem (6.8)–(6.9) with Wasserstein distances of any order, in the

sense that for any q ∈ [1,+∞),

W q
q


 1

n

n∑

j=1

w
(1)
j δX′

j
,
1

m

m∑

i=1

δXi


 = infW q

q


 1

n

n∑

j=1

wjδX′
j
,
1

m

m∑

i=1

δXi


 ,

wn = (w1, . . . , wn) satisfies (6.9).

In the sequel we shall consider more generally the k-NN vector of weights w(k)
n = (w

(k)
1 , . . . , w

(k)
n )

be defined by, for all j ∈ {1, . . . , n},

w
(k)
j :=

n

km

m∑

i=1

k∑

l=1

1{j=j(l)(Xi)}
, (6.10)

which although suboptimal for the problem (6.8)–(6.9), will prove to induce better convergence proper-
ties, in the regime k = kn → +∞ when n→ +∞, for the estimation of QI.

Convergence analysis

The estimator of QI based on the k-NN vector of weights (6.10) writes

Q̂I
(k)

n,m :=
1

n

n∑

j=1

w
(k)
j φ(Y ′

j ) =
1

m

m∑

i=1

1

k

k∑

l=1

φ
(
Y ′
j(l)(Xi)

)
.

We now discuss the convergence of Q̂I
(k)

n,m, in the n,m → +∞ limit, toward QI. As an intermediary
step, we first study the convergence of the reweighted measure

µ̂
(k)
X′

n
:=

1

n

n∑

j=1

w
(k)
j δX′

j

to µX . To this aim, we use Jensen’s inequality to write, for q ∈ [1,+∞),

E

[
W q

q

(
µ̂
(k)
X′

n
, µX

)]
≤ 2q−1

(
E

[
W q

q

(
µ̂
(k)
X′

n
, µ̂Xm

)]
+ E

[
W q

q (µ̂Xm , µX)
])
.

The second term in the right-hand depends on m but not on n, and under suitable moment conditions
over µX , it is known to converge to 0 when m → +∞, with explicit rates [FG15]. The asymptotic
behaviour of the first term is described by the next result, from [A11]. For any probability measure ν on
Rd, we define the support of ν by

supp(ν) := {x ∈ Rd : ∀r > 0, ν(B(x, r)) > 0}.

Proposition 6.3.3 (Consistency of µ̂(k)
X′

n
). Assume that supp(µX) ⊂ supp(µX′) and that there exists an

integer m0 ≥ 1 such that E[min1≤j≤m0 |X ′
j |] < +∞. Then, for any q ∈ [1,+∞) such that µX has

a finite q-th order moment, and for any sequence of positive integers (kn)n≥1 such that kn/n → 0, we
have

lim
n→+∞

E

[
W q

q

(
µ̂
(kn)
X′

n
, µ̂Xm

)]
= 0,

uniformly in m.

Under various assumptions on µX and µX′ , rates of convergence for E[W q
q (µ̂

(kn)
X′

n
, µ̂Xm)] are also

obtained in [A11]. We do not detail these results, and turn our attention to the convergence of Q̂I
(k)

n,m.
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A first striking result is that under the assumptions of Proposition 6.3.3, the estimator Q̂I
(1)

n,m need
not be consistent. Indeed, consider the case where X is actually deterministic and always equal to some
x0 ∈ Rd. Then we have

Q̂I
(1)

n,m =
1

m

m∑

i=1

φ
(
Y ′
j(1)(Xi)

)
,

where we recall that j(1)(Xi) is the index of the closest X ′
j to Xi. But since Xi = x0 for all i, all indices

j(1)(Xi) are equal to some j(1) and the estimator rewrites

Q̂I
(1)

n,m = φ
(
Y ′
j(1)

)
= φ

(
f(X ′

j(1)
,Θj(1))

)
.

While the support assumption from Proposition 6.3.3 ensures that X ′
j(1)

converges to x0 when n→ +∞,

in general Θj(1) remains random and thus Q̂I
(1)

n,m does not converge to a deterministic limit.

As is evidenced on this example, the presence of an atom in the law of X makes the estimator Q̂I
(1)

n,m

depend on a single realisation of Θ and therefore prevents this estimator from displaying an averaging
behaviour with respect to the law of Θ. In Proposition 6.3.4 below, adapted from the results of [A11],

we clarify this point by exhibiting a necessary and sufficient condition for the estimator Q̂I
(1)

n,m to be

consistent, and then we show that replacing Q̂I
(1)

n,m with Q̂I
(kn)

n,m , for kn → +∞, allows to recover such
an averaging behaviour and make the estimator consistent, even when µX has atoms.

In the next statement, we denote ψ(x) := E[φ(f(x,Θ))] and ϑ(x) := Var(φ(f(x,Θ))). We also
denote by AX the set of atoms of µX , that is to say the set of x ∈ Rd such that µX({x}) > 0.

Proposition 6.3.4 (Consistency of Q̂I
(k)

n,m). Let the assumptions of Proposition 6.3.3 hold, and assume
that:

• the function φ is bounded;

• the function ψ is Lipschitz continuous.

(i) Case k = 1: assume in addition that the function ϑ is continuous. Then Q̂I
(1)

n,m converges to QI in
probability if and only if ϑ(x) = 0 for all x ∈ AX .

(ii) Case kn → +∞: for any sequence of positive integers (kn)n≥1 such that kn → +∞ and kn/n→
0, Q̂I

(kn)

n,m converges to QI in probability.

6.3.2 The Nearest Neighbour WLAM

From the results of Subsection 6.3.1, we naturally infer the construction of the following WLAM: X′
n is

the synthetic sample X ′
1, . . . ,X

′
n, taken iid according to µX′ , and for any sn = (x′

n,yn) and x ∈ Rd,

we let W(k)
n = (W

(k)
j )1≤j≤n be defined by

W
(k)
j (sn, x) =

1

k

k∑

l=1

1{j=j(l)(x)},

with j(l)(x) the (lowest) index j such that x′j is the l-th closest point to x, among the sample x′
n. The

consistency of this WLAM follows from the results from Subsection 6.3.1 with µX = δx.

Proposition 6.3.5 (Consistency of the Nearest Neighbour WLAM). Assume that the synthetic sample
X′

n is drawn according to a probability measure µX′ with support Rd and such that there exists m0 ≥ 1
for which E[min1≤j≤m0 |X ′

j |] < +∞. Then for any sequence of positive integers (kn)n≥1 such that

kn → +∞ and kn/n→ 0, the WLAM (X′
n,W

(kn)
n ) is B-consistent, for any class B of measurable and

bounded functions φ for which the mapping x 7→ E[φ(f(x,Θ))] is Lipschitz continuous.
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More explicitly, if the mapping x 7→ f(x, θ) is assumed to be Lipschitz continuous, uniformly in θ,

then under the assumptions of Proposition 6.3.5, the WLAM (X′
n,W

(kn)
n ) is B-consistent with B the

class of bounded and Lipschitz continuous functions.

6.4 Summary

The whole reweighting method presented in Sections 6.2 and 6.3, using Nearest Neighbour WLAMs
at each node and Bayesian network algorithms to compute global weights, was implemented on an
industrial test case, provided by Airbus, by Adrien Touboul in his PhD thesis [Tou21]. While the method
is currently only designed to approximate quantities of interest of the form QI = E[Φ(YV)], we believe
that it may be combined with sensitivity analysis numerical techniques in order to approximate such
quantities as Var(E[Φ(YV)|U ]), where U is a subset of the variables Θv,Xu,v, Yv, . . . involved in the
numerical design phase. This would allow to screen which of those quantities are actually influential in
the variability of Φ(YV) and would hopefully help to reduce the computational complexity of this phase
by neglecting the variability of those variables which are not deemed influential. This task is a natural
perspective for the continuation of the works presented in this chapter.
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