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Summary

Chapter 1:

The first chapter focuses on what the introduction of ramping costs in a theoretical
framework brings to the table. Ramping costs represent the fact that electricity sup-
pliers incur costs when their production varies over time. Our main contribution is to
build and justify how these ramping costs can be tackled theoretically. First, we note
that going to a continuous time description of the problem allows us to bring to the
literature about supply function equilibria powerful mathematical tools mostly used in
option pricing, that is stochastic dynamics: we want to model ramping costs, i.e. costs
associated to the variation in production, while retaining the key ingredient brought by
[Klemperer and Meyer, 1989], i.e. the uncertainty, through the use of brownians, and
more precisely, 1t6 processes. In so doing we face the issue that one cannot derive a
brownian, and bring our second contribution, a physical argument about how power
plants function that effectively operates as a low pass filter on our stochastic processes,
and allow us to continue to build a tractable model of ramping costs under uncertainty.
Third, we find in the literature a specification of Ito processes that allows the model to

remain tractable.

From these technical contributions we obtain our economic contributions in having
a rich tractable model that yields results that contrast strongly with past results from
the literature. First, in the specific case of linear demand and linear costs we obtain

a unique Nash equilibria, which contrasts with the usual continuum of Nash equilibria



in the supply function equilibria literature. Second, our solutions are not ex-post opti-
mal, meaning that gathering information about the expected future evolution of demand
yields different optimal strategies for suppliers, which in turn means that producers in
our framework have a motive for submitting different supply functions from one time
step to the next. Third, we have closed form solutions which yield specific predictions
about the evolution of bids under uncertainty, namely that when uncertainty increase,
suppliers submit steeper supply schedules in order to transmit more of these shocks to
changes in price and not quantities, which are costly due to the existence of ramping
costs. [inally, and less importantly, our framework justifies the existence of negative
prices ! by producers being willing to pay consumers to consume more in order to avoid
[acing large variations in production, in contrast to everywhere positive schedules in the
case of the supply function equilibria literature. These results open the door to models
being able to differentiate between day-ahead and intraday markets and therefore to offer

a framework in which their interactions might be possible.

Chapter 2:

In the second chapter our main focus is on analyzing our data, on building a way to
describe it, and on building proxies for the uncertainty that producers face about the

residual demand they have to anticipate when bidding on the day-ahead market.

First, we note that aggregate supply functions on the day ahead market cannot be
well captured by parametric functions. Therefore, we devise a way to describe them
non-parametrically: we note that although they cannot be captured parametrically, they
still have a rough S shape, and therefore four main parts, two extremal sections, and
two interior ones separated by the inflection point of the curve in its middle section. We

define the transition points between these sections as the points of maximal absolute

INote that such negative prices happen, a few hours a year for example in France or Germany, for
example in 2017 there were 146 such hours, spread over 24 days in Germany [EPEX, 2018a]
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value for the derivative and second derivative of the supply schedules. This definition
relies on kernel density estimates and is therefore non-parametric. We observe that by
using 5 such points, we are able to capture about 98% of the intrinsic variability of the
supply schedules, and stop there although our method can be used to define more non-
parametric points. This method allows us to define points that we consider comparable
across auctions, that allow use to perform cross-sectional analysis of our data in the third

chapter.

Second, we build proxies for the amount of weather uncertainty that producers face
and variables that capture information that suppliers have before bidding and should
therefore be controlled for. For the information available to suppliers, we note that the
effect of weather on the demand, and more importantly temperature, is well understood
and that we need to control for it. To do so we build an effective temperature for France,
as an average of the localised temperature weighted by the population of the spatial region
considered, in order to capture the overall effect temperature has on heating.? The rest of
our focus is on building a proxy for the uncertainty concerning renewable production. To
do so we analyze spatialized wind and sunlight data, and study it’s spatial structure. We
argue that spatial autocorrelation is a proxy for the uncertainty associated with weather
forecasts, noting that if this data displays more spatial gradients, it is likely to be of a
lesser quality due to the numerical nature of the weather simulations used to predict the

weather, and therefore more uncertain.

Our contribution in the second chapter is to provide a non parametric way to de-
fine comparable points across auctions, and a measure of the uncertainty associated with

weather forecasts.

2France has a high level of electric heating overall, which means that demand for electricity is quite
sensitive to temperature.
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Chapter 3:

In this empirical chapter, we study the impact that uncertainty about the demand plays
on the shape of the aggregate supply functions bidden by suppliers on the French electric-
ity market. We segment our analysis to different parts of the supply functions in order to
show how the overall shape changes with respect to our explanatory variables. We test
some of the predictions from our first chapter, mainly that the supply function should

see its slope increase when uncertainty increases.

We note that the main uncertainty is about the shape of the demand schedules itself.
Therefore, we consider data available to the producers and regress the demand schedules
on these variables. Next, we study the residuals of these regressions, and more specifi-
cally note that they are heteroskedastic. We leverage this, regressing the square of these
residuals on our variables, in order to predict the expected amplitude of the residuals,

that is the amplitude of the uncertainty of the demand schedule regression.

We then study the effect of our different proxies for uncertainty on the slope of the
supply schedules, and note that if our proxies about the weather uncertainty (through the
channel of renewable production) have the expected effect, the results are less clear cut
for our residuals on the demand schedules. As we are working with full-blown schedules
in the quantity-price plane, we perform our residual analysis both on the prices and the
quantities. We therefore obtain estimates for the uncertainty pertaining to the position
of a given point of our demand schedule either in price or in quantity. In our theoretical
framework, we make the strong assumptions that demand schedules are linear, and that
demand shocks are additive, i.e. they do not impact the slope of the demand schedules.
These assumptions yield that we cannot differentiate between shocks in price or quan-
tity, and that they should have effects in the same direction: more uncertainty implying
steeper supply curves to reduce the amount of fluctuation in production. However, we
observe that the effects of price and quantity uncertainty as estimated by our residuals’

method yield opposite effects. Both of these assumptions, although required to obtain
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closed form results, are clearly not satisfied by our data, and we think that this is a clear

path for improvement of the model.

The contribution of the third chapter is to provide a way to estimate the uncertainty
about the demand schedules faced by suppliers, and to estimate how this uncertainty
affects the shape of the supply schedules at different points along its overall length, i.e.
we provide a framework to describe how the functional form of schedules is affected by

estimates of the uncertainty faced by suppliers.
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Introduction

General Introduction

The electricity markets and their modelization over time
Public utility pricing

The interest for modelling the electricity markets can be traced back to the reference
work by Marcel Boiteux, vice president in charge of economic studies at Electricité de
France, at the outset of the second world war. The question at the time was mainly that
of public utility pricing: in the context of a public monopoly, which price should the

consumers face in order to allow the producers to recover their costs.

There are two main concerns that electricity producers have to face: the uncertainty of

demand and the cyclicity of demand, for a commodity that essentially cannot be stored.?

The first question is addressed in [Boiteux, 1951]. In this paper, Boiteux considers
a constant expected demand with fluctuations. The goal is to find the correct marginal
pricing so that consumers internalize the additional cost that an uncertain demand entails
for the producer. With a certain probability that demand is above its expected value by
a given amount, how much more reserve capacity has to be kept in order to insure an

accepted failure probability.*

The second question is addressed in [Boiteux, 1960]. Contrary to the previous sit-
uation, demand is now considered to change over time in a deterministic and cyclical
fashion. The question is to price electricity in order for consumers to be sensitive to the

additional investment cost implied by higher demand peaks.

3Electricity can be stored in hydroelectric dams, but the total energy stored is not enough to stabilize
completely the demand faced by the other generation units, and only a fraction of the hydroelectric
storage capacities can be actively replenished: the pumped storage facilities, which have two lakes and
can therefore pump from the lower lake to the upper one on demand to store more electricity that that
naturally stored in a lake that would be naturally replenished by a river.

4In the context of electricity, as production has to match demand at every point in time, every national
grid is built with the notion of an acceptable probability of mismatch which translates in curtailments
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Introduction

These contributions have sparked a larger literature on the question of the pric-
ing of economically non-storable commodities whose demand varies periodically, first in
[Brown and Johnson, 1969] which studies the impact of stochastic demand on expected

welfare. We refer the interested reader to the following review [Crew et al., 1995].

This literature has been mainly interested in questions of optimal pricing when the
agent choosing the pricing tries to maximize the consumer’s welfare, that is in the case

of public monopolies.

Regulatory evolution

The previous litterature took as an assumption the fact that these commodities were
produced by public monopolies. Network utilities, such as gas, telecoms and electricity

were thought to require to be organised as vertically integrated monopolies.

This view started to change in the 80s, with pressure to create competition. In 1984,
access to gas pipelines was opened to competition in the USA and in 1990 Britain priva-
tised electricity, separating generation and transmission. It was indeed thought that the
natural monopoly emerged from the network, and that by separating generation from the

network, generation could be opened to competition.

The overall argument for liberalization is that private competition is considered a
safer road towards efficiency than regulation of a monopoly. In a situation of perfect
competition, actors would be strongly incentivized for efficiency gains, and these gains
would be transferred to consumers [Schmidt, 1996]. As perfect competition is a very
rare situation, a new branch of the literature started to coalesce around the questions of

modeling competition in the case of electricity markets [Newbery, 1997].

Although this liberalization movement is empirically considered to bring at least mod-
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est medium-term efficiency [Fabrizio et al., 2007], it has been somewhat slowed down after
the California crisis in the early 2000s [Jamasb and Pollitt, 2005], which mainly concen-
trated on wholesale electricity markets. Because of very little price responsiveness of
demand as well as interactions with forward contracts, there was very high fluctuations
in price as well as shortages [Borenstein, 2002]. In Europe, the European Commission has
pushed with success for the continuation of the program of liberalization and integration,
and wholesale markets for electricity are now ubiquitous, without further instances of

failure as in California.

The markets for electricity

The way the markets for electricity are organised stem from two main characteristics:
m The market has to reflect the changing demand for electricity.

m The form of the bids has to allow them to cope with the uncertain nature of demand

at the time of bidding.

These ingredients have pushed for the creation of hourly or half-hourly markets, where
suppliers are asked to submit supply schedules for a set number of bids (generally every
24 hours, that is 24 or 48 supply schedules once a day depending on whether the bids
are hourly or half-hourly). These supply schedules take the form of a set of monotonous
price quantity pairs, that can be considered as forming step functions? or linear functions

by parts.%

In the 1980s, a theoretical push was made to model competition in supply functions.
The first occurrences of this approach can be found in [Grossman, 1981] and [Hart, 1982].
They consider situations where producers compete in supply curves when facing a given
demand curve. The main result is that such problems can be solved and one can obtain

specifications for optimal strategies in supply functions, but that there exists a very large

®as in the case of the England and Wales pool in the 1990s
6Where price-quantity pairs are considered to be joined by lines instead of steps, which is the case
for the French electricity day-ahead market, as well as the UK day-ahead market (half-hourly). Both of
these markets are exchanged through EPEX Spot as of 2017.
=
jlin
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multiplicity of equilibria in this setting.

Around the same time, [Klemperer and Meyer, 1986] introduce a setting in which
firms choose endogenously to compete either in quantity or prices. This too yields a large
multiplicity of outcomes, but the key insight comes from the fact that this multiplicity is

drastically reduced when uncertainty is introduced.

This insight brings along the seminal paper [Klemperer and Meyer, 1989] which stud-
ies supply function competition under uncertainty. In this paper, it is shown that although
there is still a continuum of equilibria, this continuum has a structure that can be studied
when suppliers face an uncertain demand. In the rest of this thesis, we denote supply

function equilibria as SFE.

The setting introduced by Klemperer and Meyer is then rapidly put to use in the
context of electricity markets, where [Green and Newbery, 1992] studies the competition

in the British spot market through the SFE framework.

This use of SFE sparks some debate as to whether a smooth function approxima-
tion can or not capture the correct effects in markets which are largely at the time asking
bidders to submit step functions: [von der Fehr and Harbord, 1993] argue that step func-
tions of finite length are different to continuous functions.” In addition, there is empirical
evidence that strategies predicted by SFE and actual observed strategies are significantly
different, sce [Willems ct al., 2009] and [Willems ct al., 2009]. These results question
whether the SFE is the correct approach that only needs to be perfected, for example
by using functions that are affine by parts and not only affine [Baldick et al., 2004], or a

framework that is not adapted to describing these markets.

However, this approach is still considered relevant by a number of authors, although

"This debate is largely obsolete now that most of the market rules imply bids that are linear by parts
and not step functions anymore.



Introduction

the multiplicity of equilibria makes it difficult to obtain clear results. In addition, the solu-
tions are not exactly easily usable, these functions being defined as solutions to a differen-
tial equation, therefore without an analytical formula. To overcome this issue, a number of
authors either consider competition in simpler settings, for example Cournot competition
settings applied to the electricity market in the case of [Borenstein and Bushnell, 1999],
or choose to restrict themselves to one special solution out of the continuum of possible
solutions that come out of the SFE framework: the supply function that is the unique
linear solution out of this continuum. In so doing these authors pick arbitrarily one solu-
tion with a functional form and then use it to further analyze some economic questions.
For example, [Green, 1996] focuses on the linear supply solution out of the SFE multiple
equilibria in order to have analytical tractable forms and study the effect of three dif-
ferent policies on competition, where [Hobbs et al., 2000] is able to model transmission

constraints with an affine supply function.

We also want to note that day-ahead markets do not exist in a vacuum, and in fact elec-
tricity can be traded through forward contracts, on the day-ahead market, as well as on
the intraday markets. Capacity markets on which guaranteed online capacity is traded for
also exist. All these markets interact with one another, and part of the literature focuses
on modelling these interactions. Generally the SFE considered are simplified to be able
to perform such analysis, for example to linear functions [Green, 1999] to study the inter-
action with forward markets, or to linear asymmetric function [Anderson and Hu, 2012]
for the same purpose. Generally speaking, these papers focus on the interaction between
day-ahcad markets and forward contracts because the SFE framework docs not allow

differentiating between day-ahead and intraday markets.

Overall, we refer the interested reader to the review by [Ventosa et al., 2005] for a
more detailed overview. In this thesis we rely heavily on the work by Klemperer and
Meyer, and comment and contrast their results to ours. In order to make this easier to

follow, we summarize in the following section the results of their paper that will be used
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in this thesis.

Klemperer and Meyer 1989

Consider a setting in which firms bid supply functions while facing an uncertain demand.

Let D(p,0) be the demand function as a function of demand shock 6. Consider that

for all (p,0), —oo < D, <0, D,, <0 and Dy > 0.

All firms are considered to be facing the same cost function C(-), with C’(¢) > 0 and

0 < C"(q) < oo for all ¢ > 0.

The timing is such that suppliers have to bid simultaneously a supply function prior
to the realization of demand shock @ being known. Consider for now two firms ¢ and j
with S*(p) the supply function of supplier £ and that these supply functions are twice
differentiable. After this shock is known, every firm produces quantity S*(p*(6)) at price
p(6), such that D(p"(6)) = S(p"(6)) + S7(p"(60)).

Firm i’s residual demand is given by the total demand from which the supply of firm
j is subtracted, D(p,0) — S’(p). As 6 is considered a scalar, the set of profit-maximizing
points for every possible shock 6 define a curve. If there is a unique intersection between
1’s supply curve and every possible demand curve, then such a supply curve is ex-post

optimal, meaning that it is pointwise optimal for every realization of the shock 4.

Given the assumption that supply curves indeed behave in this way, then maximizing
the expected profit for the distribution of shocks can be abstracted away from the dis-
tribution of shocks, and i’s optimal supply curve solves for every shock 6 the following

program:

maxp (D(p,0) = 5(p)) = C (D(p,0) = 5(p)) (1)
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which F.O.C writes:

D(p,0) — 57 (p) + (p — C" (D(p,0) — S (p))) (Dy(p,0) — S (p)) =0 (2)

with eq 1 being strictly concave in p (we refer the reader to the original paper for
more justifications), then eq 2 defines the unique profit maximizing p*(6) for every 6,

which parametrizes the optimal supply function.

Consider that Dy, = 0, that is that 6 is an additive shock, and that we focus on
symmetric equilibria, which allows us to drop the firms’ superscripts. In addition, consider

the fact that eq 2 has to hold for every shock, it can therefore be rewritten as:

S'(p) = — 2 1+ D,(p) = f(p.5) 3)

This differential equation defines the supply function equilibria, the role of uncertainty
being to ensure that this equation has to hold for every shock, therefore for every possible
price. However, we can see that this differential equation is not accompanied by an initial

condition. Therefore, there exists many admissible solutions to this equation.

Supply functions are therefore bounded by possible values of their slope, namely
that the functions have slopes bounded between 0 and +o0o. By solving the differential
equation, one can define the locus of points for which the solutions have slopes equal
to these bounds and thus obtain a region of admissible solutions, in the context of our
problem:

Therefore, the admissible set of solutions is defined by the upper bound of the demand
shocks @, in that if the solutions cross the slope boundaries before reaching the maximal
shock, they cannot be accepted as solutions to the problem which constrains the solutions
more strictly than the differential equation alone. In figure 1 the demand associated with

the upper bound of the shocks D(p,0) is represented in orange, and solutions A and B

to the differential equation are not solutions to the problem as they reach the boundaries

1 9
|/
‘,/ T R




Introduction

P f(p,S) =0
-0<f(p,S) <0
N
» 7 4
\\ ,/
\ s f(p,S) =0
N \ -~ (P=C(s)
\ 0 <f(p,S) <0
\ ’
\ N //
A\\ / P
/ g -w0<f(p,S) <0
!y P
!/ // P -
!t 7 -~
(e
e -
7 B "~ D(p,0)

Figure 1: This graph is adapted from the original paper by Klemperer and Meyer and illustrates
the admissible region of solutions to the differential equation so as to verify the constraints on
the slope of the supply function.

for smaller values of shocks.

The last result we will review here, is that in the case of an unbounded support of
shocks, the set of equilibria is at its smallest, as it means that solutions have to have a
positive finite slope for every value of the shocks, and not only for a segment of the real

line.

In some cases, for example for linear demand schedules, this set can collapse to a

unique solution.

The case for ramping costs

This framework models the costs as depending only on the quantity produced. In the
context of electricity generation, an important type of costs that cannot be captured in
such a specification of the cost function is that of ramping costs. These ramping costs

refer to the fact that making production change over time induces specific costs.

To explain how such costs can arise, consider a thermal power plant (fossil fuels, nu-
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clear, etc.), and more precisely its core. Physically, to produce a given level of electricity,
one has to maintain the core at a given temperature. To increase production. the tem-
perature of the core has to increase. This means that when production is increased some
fuel has to be lost to simply increase the temperature, this energy expenditure is not

attached to any additional production.

This issue of ramping costs is at the heart of the choice of ”quick” gas power plants
to match sudden peaks in demand, where nuclear plants are more generally used for low
frequency adjustments. Therefore these ramping costs are important technically on the
electricity market. They are important enough for the project of European Power Ex-
changes named “Price Coupling of Regions” (PCR), which aims to develop a single price
coupling solution to be used to calculate electricity prices across Europe, to consider the
possibility to use load gradient orders, that is orders that condition their availability on
the change in production from one hour to the next. However, at the moment of writing,

PCR is still very much a work in progress [EPEX, 2018c].

Some papers have tried to estimate their values empirically, [Wolak, 2007] and more
recently [Reguant, 2011]. There is also a strand of literature concerned with ramping
costs, looking at the optimal price that allows to maximize the overall social welfare
[Tanaka, 2006], that is, which price schedule allows to maximize the consumer welfare
from which the production costs are subtracted. This literature does not use game-
theoretical frameworks, but concerns itself with the best price signal to use in order to
limit the ramping costs incurred duc to varying demand, while still considering that the
trajectory of demand is known. To our knowledge, there is no game-theoretical framework
that has been brought to take ramping costs into account, and describe their effects on

optimal strategies for the agents bidding on the market.
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Contribution

This thesis focuses on the question of these ramping costs. In the first chapter, I tackle
this question in a theoretical framework which yields predictions on the change of shape
in supply functions over time as a function of the underlying uncertainty about demand
shocks. The second chapter then introduces methods to study the shape of supply func-
tions as observed on the French electricity market for data from 2011 to 2013, as well
as methods to estimate the uncertainty contributed by the weather. The third chapter
applies these methods to test these theoretical predictions on actual market data. The
second and third chapters have been co-written with Henri de Belsunce, who finished his
PhD in 2015 at the Munich-based Max Planck Institute for Innovation and Competition,

under the supervision of Prof. Dr. Klaus M. Schmidt [Belsunce, 2015].

The first chapter focuses on what the introduction of ramping costs in a theoretical
framework brings to the table. Our main contribution is to build and justify how these
ramping costs can be tackled theoretically. First, we note that going to a continuous
time description of the problem allows us to bring to the literature about supply function
equilibria powerful mathematical tools mostly used in option pricing, that is stochastic
dynamics: we want to model ramping costs, i.e. costs associated to the variation in pro-
duction, while retaining the key ingredient brought by [Klemperer and Meyer, 1989], i.e.
the uncertainty, through the use of brownians, and more precisely, Ito processes. In so
doing we face the issue that one cannot derive a brownian, and bring our second contri-
bution, a physical argument about how power plants function that effectively operates as
a low pass filter on our stochastic processes, and allow us to continue to build a tractable
model of ramping costs under uncertainty. Third, we find in the literature a specification

of Ito processes that allows the model to remain tractable.

From these technical contributions we obtain our economic contributions in having
a rich tractable model that yields results that contrast strongly with past results from

the literature. First, our solutions are unique, which contrasts with the usual continuum
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of Nash equilibria in the supply function equilibria literature. Second, our solutions are
not ex-post optimal, meaning that gathering information about the expected future evo-
lution of demand yields different optimal strategies for suppliers, which in turn means
that producers in our framework have a motive for submitting different supply functions
from one time step to the next. Third, we have closed form solutions which yield specific
predictions about the evolution of bids under uncertainty, namely that when uncertainty
increase, suppliers submit steeper supply schedules in order to transmit more of these
shocks to changes in price and not quantities, which are costly due to the existence of
ramping costs. Finally, and less importantly, our framework justifies the existence of neg-
ative prices ® by producers being willing to pay consumers to consume more in order to
avoid facing large variations in production, in contrast to everywhere positive schedules
in the case of the supply function equilibria litterature. These results open the door to
models being able to differentiate between day-ahead and intraday markets and therefore

to offer a framework in which their interactions might be possible.

At the bottom of all right pages, there is a small graph showcasing the optimal strat-
egy for a given set of parameters of the model, in the plane quantity-price, with an insert
illustrating the evolution of the support of demand shocks over time. The vertical line in
the insert represents the point in time for which the strategy is presented in the actual
graph. This forms a flipbook, which allows the reader to get a feeling for the evolution of
strategies with the evolution of the support of shocks by flipping rapidly the pages and
observing the graph becomes animated, just like a cartoon. This serves only an illustra-

tive purposc.

In the rest of the thesis, the goal is to test our predictions on data from the French
day-ahead market. In so doing, as our theoretical predictions are mainly about the ef-
fect that the amount of uncertainty has on the slope of the optimal supply schedule, we

separate the issue of building proxies for this uncertainty in our second chapter and the

8Note that such negative prices happen, a few hours a year for example in France or Germany, for
example in 2017 there were 146 such hours, spread over 24 days in Germany [EPEX, 2018a]

/
/
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actual analysis of the evolution of bids on these proxies in the third chapter.

In the second chapter our main focus is on analyzing our data, on building a way to
describe it, and on building proxies for the uncertainty that producers face about the

residual demand they have to anticipate when bidding on the day-ahead market.

First, we note that aggregate supply functions on the day ahead market cannot be
well captured by parametric functions. Therefore, we devise a way to describe them
non-parametrically: we note that although they cannot be captured parametrically, they
still have a rough S shape, and therefore four main parts, two extremal sections, and
two interior ones separated by the inflection point of the curve in its middle section. We
define the transition points between these sections as the points of maximal absolute
value for the derivative and second derivative of the supply schedules. This definition
relies on kernel density estimates and is therefore non-parametric. We observe that by
using 5 such points, we are able to capture about 98% of the intrinsic variability of the
supply schedules, and stop there although our method can be used to define more points.
This method allows us to define points that we consider comparable across auctions, that

allow use to perform cross-sectional analysis of our data in the third chapter.

Second, we build proxies for the amount of weather uncertainty that producers face
and variables that capture information that suppliers have before bidding and should
therefore be controlled for. For the information available to suppliers, we note that the
cffeet of weather on the demand, and more importantly temperature, is well understood
and that we need to control for it. To do so we build an effective temperature for France,
as an average of the localised temperature weighted by the population of the spatial region
considered, in order to capture the overall effect temperature has on heating.” The rest of
our focus is on building a proxy for the uncertainty concerning renewable production. To

do so we analyze spatialized wind and sunlight data, and study it’s spatial structure. We

9France has a high level of electric heating overall, which means that demand for electricity is quite
sensitive to temperature.
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argue that spatial autocorrelation is a proxy for the uncertainty associated with weather
forecasts, noting that if this data displays more spatial gradients, it is likely to be of a
lesser quality due to the numerical nature of the weather simulations used to predict the

weather, and therefore more uncertain.

Our contribution in the second chapter is to provide a non-parametric way to define
comparable points across auctions, and a measure of the uncertainty associated with

weather forecasts.

In the third chapter, we focus on building the main proxy for the uncertainty faced

by producers, and then on analyzing how the bids evolve relative to these proxies.

We note that the main uncertainty is about the shape of the demand schedules itself.
Therefore, we consider data available to the producers and regress the demand schedules
on these variables. Next, we study the residuals of these regressions, and more specifi-
cally note that they are heteroskedastic. We leverage this, regressing the square of these
residuals on our variables, in order to predict the expected amplitude of the residuals,

that is the amplitude of the uncertainty of the demand schedule regression.

We then study the effect of our different proxies for uncertainty on the slope of the
supply schedules, and note that if our proxies about the weather uncertainty (through the
channel of renewable production) have the expected effect, the results are less clear cut
for our residuals on the demand schedules. As we are working with full-blown schedules
in the quantity-price plane, we perform our residual analysis both on the prices and the
quantities. We therefore obtain estimates for the uncertainty pertaining to the position
of a given point of our demand schedule either in price or in quantity. In our theoretical
framework, we make the strong assumptions that demand schedules are linear, and that
demand shocks are additive, i.e. they do not impact the slope of the demand schedules.

These assumptions yield that we cannot differentiate between shocks in price or quan-

1=V
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tity, and that they should have effects in the same direction: more uncertainty implying
steeper supply curves to reduce the amount of fluctuation in production. However, we
observe that the effects of price and quantity uncertainty as estimated by our residuals’
method yield opposite effects. Both of these assumptions, although required to obtain
closed form results, are clearly not satisfied by our data. and we think that this is a clear

path for improvement of the model.

The contribution of the third chapter is to provide a way to estimate the uncertainty
about the demand schedules faced by suppliers, and to estimate how this uncertainty
affects the shape of the supply schedules at different points along its overall length, i.e.
we provide a framework to describe how the functional form of schedules is affected by

estimates of the uncertainty faced by suppliers.
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Introduction Générale

Evolution de la modélisation des marchés de 1’électricité
Tarification des services publics

L’intérét pour la modélisation des marchés de I’électricité remonte aux travaux de référence
de Marcel Boiteux, vice-président en charge des études économiques d’EDF au sortir de
la Seconde Guerre Mondiale. La question principale a I’époque est celle de la tarification
d’un service public : dans le contexte d’'un monopole d’état, a quel prix les consomma-

teurs devraient-ils faire face afin que les producteurs recouvrent leurs couts.

Les producteurs d’électricité font face a deux contraintes particulieres : le caractere
incertain de la demande ainsi que sa périodicité, le tout pour un bien qui ne peut essen-

tiellement pas étre stocké.!”

La premiere contrainte est traitée dans [Boiteux, 1951]. Dans cet article, Boiteux con-
sidere une demande constante en moyenne, mais sujette a des fluctuations. L’objectif est
de trouver la tarification marginale permettant au consommateur d’internaliser le cott
supplémentaire qu’une demande incertaine fait peser sur le producteur. Etant donné une
certaine probabilité que la demande soit au-dessus de sa valeur espérée d’'une certaine
quantité, il s’agit de trouver quelle capacité de reserve doit étre maintenue en ligne pour

garantir une probabilité cible de défaillance.

La seconde contrainte est traitée dans [Boiteux, 1960]. Contrairement & la situation

précédente, la demande est ici considérée comme périodique et déterministe. L’objectif

107] est possible de stocker de 1’électricité grace a des barrages, mais I’énergie totale ainsi stockable n’est
pas suffisante pour completement stabiliser la demande a laquelle les moyens de production font face.
Par ailleurs, seule une fraction de 1’énergie ainsi stockée est renouvelable volontairement : les stations de
transfert d’énergie par pompage disposent de deux lacs ce qui permet de pomper de 'eau d’un lac situé
en aval vers un lac en amont et ainsi de reconstruire les réserves plus rapidement qu’en attendant que
les affluents naturels du lac amont ne le remplissent.

HDans le contexte de 1'électricité, comme la production doit étre égale & la demande & chaque instant,
chaque réseau national est dimensionné avec un niveau de probabilité de défaillance acceptable.
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est de trouver la tarification permettant de transmettre aux consommateurs le cotit

d’investissement supplémentaire associé a une demande présentant des pics plus élevés.

Ces contributions nourrissent une large littérature sur la question de la tarifica-
tion de biens non-stockables faisant face a une demande cyclique, tout d’abord par
[Brown and Johnson, 1969] qui étudie 'impact d'une demande stochastique sur le bien-
étre social espéré. Nous renvoyons la lectrice intéressée a la revue de littérature suivante

: [Crew et al., 1995].

Cette branche de la littérature se concentre principalement sur la question de la tar-
ification optimale lorsque 'agent fixant le prix a pour objectif de maximiser le bien-étre

des consommateurs, dans le cas de monopoles d’état.

Evolutions de la régulation

Cette branche de la littérature prend pour hypothese que ces biens sont produits par des
monopoles d’état. Il est alors admis que les services de réseau, comme le gaz, I’électricité

ou les télécoms doivent étre organisés sous la forme de monopoles verticalement intégrés.

Cette position évolue dans les années quatre-vingt, avec 'ouverture a la compétition
de ces monopoles d’état. En 1984, 'acces aux gazoducs est ouvert a la compétition
aux Etats-Unis et en 1990, la Grande-Bretagne privatise la fourniture d’électricité, en
séparant production et transmission. Il est alors considéré que la condition de monopole
naturel est liée au réseau, et qu’en séparant production et transmission. la production

peut s’ouvrir a la compétition.

L’argument général en faveur de la libéralisation est que la compétition privée est
considérée comme une voie plus stre vers lefficacité économique que la régulation d'un

monopole. Dans une situation de compétition parfaite, les agents seraient ainsi fortement
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incités a rechercher des gains d’efficacité, et ces gains seraient transmis aux consomma-
teurs [Schmidt, 1996]. La compétition parfaite étant une situation rare, une nouvelle
branche de la littérature émerge autour de la question de la modélisation de la compétition

dans le marché de I'électricité [Newbery, 1997].

Bien que ce mouvement de libéralisation soit considéré comme permettant a minima
des gains d’efficacité modestes & moyen terme [Fabrizio et al., 2007], il ralentit apres la
crise californienne du début des années 2000 [Jamasb and Pollitt, 2005], qui se concentre
principalement sur les marchés de gros de l'électricité. De trés grandes fluctuations de
prix ainsi que des pénuries ont lieu, principalement induites par une tres faible elasticité-
prix de la demande, ainsi que 'interaction entre le marché de gros et les contrats a terme
[Borenstein, 2002]. En Europe, la Commission européenne pousse avec succes pour la
poursuite du programme de libéralisation et d’intégration européenne, et les marchés de
gros de l'électricité sont maintenant répandus sur le continent, sans que ne se produise

de défaillances semblables a celles observées en Californie.

Les marchés de ’électricité

L’organisation des marchés de I’électricité est tres fortement induite par deux caractéristiques

importantes :
m Le marché se doit de refléter les changements rapides de demande.

s La forme des encheres doit leur permettre de se satisfaire de la nature incertaine de

la demande au moment de ’enchere.

Ces ingrédients sont a la source de la construction de marchés horaires voire méme
demi-horaires, au sein desquels les producteurs doivent soumettre des courbes d’offre
pour un nombre déterminé d’enchéres (en général une fois par jour, soit 24 ou 48 courbes
d’offre & la fois selon que 'enchere est horaire ou demi-horaire). Ces courbes d’offres

prennent la forme d’un ensemble de paires de prix et de quantités monotone, qui peuvent
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12

définir des fonctions constantes par morceaux “* ou des fonctions linéaires par morceaux.

13

Dans les années quatre-vingt, une impulsion théorique cherche a modéliser ces marchés
sous forme d’équilibres en courbes d’offres. Cette approche est introduite en premier lieu
par [Grossman, 1981] and [Hart, 1982]. Ils considerent une situation ot des producteurs
rivalisent via des courbes d’offres en faisant face a une courbe de demande connue et
donnée. Le principal résultat de cette approche est que ces modeles peuvent étre résolus,
que les stratégies optimales en courbe d’offre peuvent étre spécifiées, mais qu’il existe une

forte multiplicité d’équilibre dans ce contexte.

Peu de temps apres, [Klemperer and Meyer, 1986] introduisent un modeéle dans lequel
les producteurs choisissent d’entrer en concurrence en prix ou en quantité de facon en-
dogene. Cette approche donne également lieu & une grande multiplicité d’équilibre, mais
le résultat clef est que cette multiplicité est drastiquement réduite lorsque de l'incertitude

est introduite dans le modele.

Ce résultat inspire le papier fondateur [Klemperer and Meyer, 1989] qui étudie une
situation de compétition en courbes d’offres face a une demande incertaine. Dans cet
article, bien qu'’il y ait toujours un continuum d’équilibres, ce continuum posséde une
structure qui peut étre étudiée lorsque la demande est incertaine. Dans le reste de cette

these, nous appelons les équilibres en courbes d’offre des SFE (supply function equilibria).

Le modele général proposé par Klemperer et Meyer est rapidement mis a profit pour
décrire les marchés de I’électricité, la compétition sur le marché spot anglais est ainsi

étudiée avec des SFE par [Green and Newbery, 1992].

2Comme dans le cas du marché de gros d’Angleterre et du Pays de Galles dans les années quatre-
vingt-dix

I3Les paires prix quantité sont considérées comme étant reliées par des linéaires, comme dans le cas du
marché day-ahead frangais, mais aussi le marché anglais actuel (demi-horaire). Ces deux marchés spot
sont gérés par la bourse EPEX Spot.
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Cet usage des SFE déclenche des débats sur la validité qu’il y a a décrire le marché de
I’électricité, a I’époque encore principalement caractérisé par des enchéres constantes par
morceaux, avec des fonctions continues et dérivables : [von der Fehr and Harbord, 1993]
présente un argument montrant qu’une compétition via des constantes par morceaux de
tailles finies exhibe des comportements fondamentalement différents du cas de fonctions
continues. !4 Des résultats empiriques montrent également que les stratégies prédites
par cette classe de modeles different de facon significative des stratégies effectivement ob-
servées sur les marchés, voir [Willems et al., 2009] et [Willems et al., 2009]. Ces résultats
interrogent sur la validité de I'approche SFE pour décrire les marchés de 1'électricité,
plus précisément la question est de savoir si les modeles de SFE sont valides, mais atten-
dent d’étre perfectionnés, par exemple en les modélisant explicitement sous la forme de
fonctions affines par morceaux [Baldick et al., 2004], ou si cette approche est fondamen-

talement incapable de capturer les stratégies observées.

Cette approche est toutefois encore considérée comme pertinente par nombre d’auteurs,
bien que la multiplicité des équilibres complique 'analyse des résultats théoriques. Par
ailleurs, les solutions ne sont pas directement exploitables, étant définies implicitement
comme solution d’équations différentielles, et donc sans forme analytique dans la majorité
des cas. Pour dépasser ces limites, la littérature cherche a décrire la compétition dans des
cadres plus simples, par exemple dans des modeles de compétition de Cournot appliquée
au cas des marchés de 1'électricité dans le cas de [Borenstein and Bushnell, 1999], ou
choisissent de se restreindre a une solution particulicre parmi le continuum de solutions
obtenu dans un contexte de SFE: I'unique solution linéaire du lot. Ces auteurs choisissent
donc arbitrairement une solution tractable et s’en servent pour pousser le raisonnement
économique plus loin qu’habituellement possible en conservant le continuum de solutions.
A titre d’exemple, [Green, 1996] se focalise sur la courbe d’offre linéaire parmi le contin-

uum obtenu dans le cadre des SFE et se sert de son expression analytique pour étudier

14Ce débat est principalement obsolete maintenant que la plupart des marchés sont passés a des
linéaires par morceaux et plus des constantes par morceaux.
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les effets de trois politiques d’encadrement de la compétition, quand [Hobbs et al., 2000]

fait de méme pour étudier les contraintes de transmission.

Par ailleurs, il est important de noter que les marchés day-ahead n’existent pas hors-
sol, et que Iélectricité peut étre échangée sur ces marchés, mais aussi par des contrats
a terme ou encore sur les marchés intraday. Il existe aussi des marchés de capacité ou
une garantie de capacité disponible a une certaine date s’échange. Tous ces marchés
interagissent les uns avec les autres, et une partie de la littérature s’attache a décrire
ces interactions. Les SFE utilisés & cette fin sont généralement simplifiés, par exem-
ple en ne considérant que les équilibres linéaires pour étudier l'interaction entre marché
day-ahead et contrats a terme [Green, 1999], ou encore en considérant des équilibres
asymétriques linéaires dans le méme but [Anderson and Hu, 2012]. Ces articles se con-
centrent généralement sur les interactions entre contrats & terme et marché day-ahead,

car les SFE ne sont pas en mesure de distinguer le marché day-ahead du marché intraday.

Nous renvoyons la lectrice intéressée vers la revue de littérature [Ventosa et al., 2005
pour une vue d’ensemble plus détaillés. Dans cette thése, nous nous appuyons fortement
sur le travail de Klemperer et Meyer, et contrastons souvent nos résultats aux leurs. Pour
faciliter la lecture au lecteur qui ne serait pas familier avec leurs travaux, nous résumons

ci-apres leurs résultats sur lesquels nous nous appuyons.

Klemperer et Meyer 1989

Soit un marché sur lequel des producteurs enchérissent des courbes d’offre tout en faisant

face & une demande incertaine.

Soit D(p, ) la courbe de demande comme fonction du prix p et du choc 6. Con-

sidérons que pour tout (p,#), —oo < D,, < 0, D,, <0 et Dy > 0.

Les producteurs font face a la meéme fonction de cott C(-), avec C'(¢) > 0 et
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0 < C"(q) < oo pour tout ¢ > 0.

Les producteurs soumettent leurs offres en méme temps avant la réalisation du choc
de demande 6. Considérons pour l'instant deux producteurs i et j avec S*(p) la courbe
d’offre du producteur £ différentiable deux fois. Une fois le choc connu, chaque produc-

teur produit la quantité S*(p*(6)) au prix p*(8), tel que D(p*(0)) = S*(p*(9)) + 57 (p*(h)).

La demande résiduelle du producteur ¢ est donnée par la demande totale a laquelle
la production du producteur j est soustraite, D(p,6) — S7(p). Comme 6 est un scalaire,
I’ensemble de points maximisant le profit pour chaque choc 6 possible définit une courbe.
Si il existe une intersection unique entre la courbe d’offre de 7 et toute courbe de demande
possible, alors cette courbe d’offre est ex-post optimale, c’est a dire qu’elle est optimale

point & point pour chaque réalisation possible de 6.

Sous I’hypothese que les courbes d’offres se comportent effectivement de cette maniere,
la maximisation du profit espéré devient indépendante de la distribution des chocs de
demande, et la courbe d’offre optimale de 4 résout pour chaque choc 6 le programme de

maximisation suivant :

maxp (D(p,0) - 57(p)) — C (D(p,0) — S (p)) (4)

dont la condition du premier ordre s’écrit :

D(p,0) — S (p) + (p — C" (D(p,0) — 57 (p))) (Dp(p,0) — 57" (p)) =0 (5)

Comme ’équation 4 est strictement concave en p (nous renvoyons le lecteur vers le
papier original pour plus de détails), I’équation 5 définit un unique prix p*(#) maximisant

le profit pour chaque choc 6, qui paramétrise la courbe d’offre optimale.

Considérons que Dy, = 0, c’est a dire que 6 est un choc additif, et concentrons nous
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sur les équilibres symétriques, ce qui nous permet de ne plus faire attention aux exposants
i et j caractérisant la productrice. Sachant que 'eq. 5 doit étre vérifiée pour tout choc,

elle peut se réécrire :

iy Sp) _
S'(p) = T + Dy(p) = f(p,S) (6)

Cette équation différentielle définit 1’équilibre en courbes d’offres, I'incertitude ayant pour
conséquence que cette équation doit étre vérifiée pour tout choc, et donc pour tout prix
possible. Cette équation ne s’accompagne toutefois pas d’'une condition initiale. Il existe

donc une multiplicité de solutions admissibles.

Les courbes d’offres sont bornées par les possibles valeurs de leur pente, qui doit étre
comprise entre 0 et +oo. Il est possible de définir le lieu des points pour lesquels les
solutions de I’équation différentielle ont pour pente ces valeurs extrémales, qui définit

donc la région des solutions admissibles dans notre contexte :

f(p,S) =0

-0« f(p,S) <0

s
7

’ f(p,S) =0

” (p=C'(S)

-0<f(p,S) <0

Figure 2: Ce graphique est adapté du papier original de Klemperer et Meyer et illustre la région
de solutions de I’équation différentielle admissibles dans le cadre de notre probleme, c’est-a-dire
vérifiant les contraintes sur leur pente.

L’ensemble des solutions admissibles est donc définit par la borne supérieure de nos
chocs de demande 6, en cela que si une solution de ’équation différentielle devait traverser
les frontieres définies ci-dessus pour un choc inférieur au choc maximal, elle ne serait pas

pour autant solution de notre probleme qui contraint plus fortement les solutions que

24



Introduction

I’équation différentielle seule. Dans la figure 2, la demande associée avec le choc maximal
D(p, ) est représenté en orange et les solutions A et B de I’équation différentielle ne sont
pas solutions de notre probleme, car elles franchissent nos frontieres pour des valeurs de

chocs inférieures & ce maximum.

Le dernier résultat que nous évoquerons ici est que dans le cas d’un support de choc
infini, 'ensemble d’équilibres symétriques est le plus petit possible, car il faut dans ce cas
que toute solution ait une pente positive et finie pour tout choc positif et plus seulement

pour un segment de la droite des réels.

Dans certains cas, par exemple pour des courbes de demande linéaires, cet ensemble

peut converger vers une solution unique.

Les couits de variation

Ce modele choisit de considérer des cotits ne dépendant que de la quantité produite. Dans
le contexte de la production d’électricité, il existe un type de colts qui ne peut pas se
modéliser ainsi, les cotts de variation. Ces couts sont induits lorsque la production varie

dans le temps.

Afin d’expliquer ces coiits, considérons une centrale thermique (fossile, nucléaire, ete.)
et plus précisément son réacteur. Physiquement, pour produire une certaine puissance, il
faut maintenir le réacteur a une température donnée. Afin d’accroitre la production, la
température du réacteur doit augmenter. Cela implique que lorsque la production aug-
mente, du combustible doit étre perdu afin de simplement réchauffer le réacteur, cette

dépense énergétique n’étant pas associée a une production d’énergie.

L’existence de ces colits est au coeur du choix d’utiliser des centrales gaz "rapides”

afin de suivre une hausse soudaine de la demande, 1a ou les centrales nucléaires sont plus
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généralement utilisées afin de suivre les changements basse fréquence de la demande.
Ces colits sont suffisamment importants pour que le projet des bourses européennes
d’électricité EPEX intitulé “Price Coupling of Regions” (PCR), qui cherche a développer
un unique mécanisme de couplage des prix européens de 1'électricité, considere la possi-
bilité de soumettre des ordres conditionnés sur les gradients de charge, c’est-a-dire des
ordres dont la disponibilité serait conditionnée sur le respect de valeurs maximales de
variation de la production d’'une enchere a lautre. Le projet PCR n’est toutefois qu’a

I'était d’ébauche au moment de I’écriture de ces lignes [EPEX, 2018¢].

Des articles se sont attachés a estimer la valeur de ces couts de variation empirique-
ment, [Wolak, 2007] et plus récemment [Reguant, 2011]. 1l existe également une branche
de la littérature s’intéressant a ces cotits a travers le prisme de leur impact sur le prix opti-
mal maximisant le bien-étre social [Tanaka, 2006], ¢’est-a-dire s’intéressant a la chronique
temporelle de prix permettant de maximiser 'utilité des consommateurs a laquelle sont
soustraits les couts de variation. Ces travaux ne s’inscrivent pas dans une approche de
théorie des jeux, mais cherchent & trouver le signal prix permettant de limiter les cotits de
variation induits par une demande variant de fagon déterministe. A notre connaissance
il n’existe pas de modele de ces colits dans un contexte de théorie des jeux permettant
de décrire leur impact sur les stratégies optimales des producteurs jouant sur le marché

de 1'électricité.

Contribution

Cette these se concentre sur la question des couts de variation. Dans le premier chapitre,
cette question est abordée dans un modele théorique produisant des prédictions sur
I’évolution de la forme des courbes d’offres optimales dans le temps en fonction de la
dynamique sous-jacente des chocs de demande. Le deuxieme chapitre introduit ensuite
des techniques permettant d’étudier empiriquement la forme des courbes d’offre observées
sur le marché de I’électricité francais entre 2011 et 2013, ainsi que des méthodes perme-

ttant d’estimer 'incertitude sur la demande associée a la météo. Le troisieme chapitre
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applique ces méthodes afin de tester empiriquement les prédictions théoriques du premier
chapitre. Ces deux derniers chapitres sont issus d’une collaboration avec Henri de Bel-
sunce, qui a soutenu son doctorat en 2015 au Max Planck Institute for Innovation and

Competition de Munich, sous la supervision de Prof. Klaus M. Schmidt.

Le premier chapitre se concentre sur ce que la prise en compte des colts de varia-
tion apporte dans un contexte théorique. La contribution principale est de construire
et de justifier comment tenir compte théoriquement de ces coiits. En premier lieu, nous
passons a une description du probléme en temps continu afin d’apporter a la littérature
sur les SFE des outils mathématiques puissants surtout utilisés en finance, a savoir la
dynamique stochastique : nous cherchons en effet a modéliser les colits de variation, en
conservant I'ingrédient clef introduit par [Klemperer and Meyer, 1989], i.e. I'incertitude,
grace a 'utilisation de browniens, plus précisémment des processus d’It6. Ce faisant, nous
faisons face au caractere non-dérivable des processus stochastiques, et apportons notre
deuxieme contribution, un argument physique concernant la mode de fonctionnement
des centrales de production qui operent effectivement comme des filtres passe-bas sur nos
processus stochastiques et qui nous permet de continuer a construire un modele tractable
de cofits de variation avec incertitude. Troisiemement, nous trouvons une spécification

d’un processus d’Ito nous permettant de conserver une forme analytique.

De ces contributions techniques, nous obtenons nos contributions économiques grace
a un modele riche et tractable qui propose des résultats contrastant fortement avec
les résultats passés de la littérature. Tout d’abord, nos solutions sont uniques, con-
trairement aux continuums d’équilibres de Nash habituels dans la littérature des SFE.
Deuxiemement, nos solutions ne sont pas ex-post optimales, c¢’est-a-dire qu’acquérir de
Iinformation sur I’évolution attendue de la demande induit des stratégies optimales
différentes pour les producteurs, ce qui a pour conséquence que les producteurs dans
notre modeéle ont une justification pour soumettre des enchéres variant dans le temps.

Troisiemement, nous obtenons des formes analytiques faisant des prédictions précises sur
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I’évolution des stratégies avec la dynamique des chocs de demande, a savoir que lorsque
Iincertitude sur la demande augmente, les producteurs soumettent des courbes d’offre
de plus en plus pentues afin de transmettre une plus grande part des chocs de demande
aux prix plutot qu’aux quantités dont les variations sont cotiteuses. Enfin, notre modele
justifie 'existence de prix négatifs'® avec des producteurs étant préts & subventionner la
demande pour ne pas avoir a faire face de forts cotlts de variation, ce qui contraste avec
les courbes d’offre partout positives dans les modeles de SFE. Ces résultats ouvrent la
porte a des modeles capables de différencier entre marchés day-ahead et intraday et donc

potentiellement de modéliser leurs interactions.

Au bas des pages de droite de la these, il y a de petits graphiques présentant la
stratégie optimale pour un certain jeu de parametres de notre modele, dans le plan quan-
tité-prix, avec un insert illustrant I’évolution dans le temps du support des chocs de
demande, dans le plan temps-choc. La ligne verticale dans l'insert représente le point
dans le temps pour lequel la solution optimale est représentée dans le reste du graph.
Ceci forme un folioscope, ce qui permet au lecteur de se rendre compte de la dynamique
de I'évolution des stratégies optimales en fonction de I’évolution du support des chocs en
feuilletant rapidement la theése et en animant ainsi ce graphique a la maniere d’un dessin

animé. Ceci ne remplit qu'un réle d’illustration.

Dans le reste de la these, I'objectif est de tester ces prédictions sur des données issues
du marché day-ahead francais. Comme ces prédictions portent avant tout sur 'impact de
I’incertitude sur la forme des courbes d’offre, nous séparons en deux chapitres la contruc-
tion de proxies pour cette incertitude dans le deuxiéme chapitre et ’analyse de 1’évolution

des encheres en fonction de cette incertitude dans le troisieme chapitre.

Dans le second chapitre nous nous concentrons sur l’analyse de nos données, sur le

15De tels prix négatifs s’observent sur les marchés de I’électricité quelques heures par an en moyenne
pour I’Allemagne et la France, par exemple en 2017 il y a eu 146 heures en Allemagne pour lesquelles
les prix étaient négatifs, répartis sur 24 jours [EPEX, 2018a]
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développement d’une méthodologie permettant d’utiliser des données dont chaque ob-
servation est une fonction, et sur la construction de proxies pour I'incertitude a laquelle
les producteurs font face vis-a-vis de la demande résiduelle qu’ils se doivent d’anticiper

lorsqu’ils jouent leurs enchéres sur le marché day-ahead.

Nous notons d’abord que les courbes d’offre agrégées sur le marché day-ahead ne sont
pas bien capturées par des fonctions paramétriques. Nous construisons une approche
non-paramétrique pour les décrire : nous notons que malgré leur mauvaise approxima-
tion par des fonctions paramétriques, elles sont néanmoins grossierement en forme de S, et
donc constituées de quatre grandes parties, les deux sections extrémales, et deux sections
intérieures séparées par le point d’inflexion de la fonction. Nous définissons les points de
transition entre ces sections comme étant les points pour lesquels les valeurs absolues des
premieres et secondes dérivées de nos courbes d’offres sont maximales. Cette définition
repose sur des estimations de densité de kernels, et est donc bien non paramétrique.
Nous remarquons qu’en utilisant 5 de ces points, nous sommes en mesure de capturer
environ 98% de la variabilité intrinseque des courbes d’offre, et nous contentons donc de
ces b points bien que notre méthode peut servir a définir plus de points. Cette méthode
nous permet de caractériser des points que nous considérons comparables d'une enchere

a lautre et nous permet de réaliser ’analyse de nos données dans le chapitre 3.

Nous construisons ensuite des proxies pour le degré d’incertitude associée a la météo a
laquelle les producteurs doivent faire face ainsi que des variables capturant I'information
disponible aux productcurs avant les encheres ot que nous devons contréler. La météo
étant connue au moment d’enchérir et ayant une influence sur la demande résiduelle,
il nous faut en tenir compte. Néanmoins la météo influence la demande par des effets
locaux la ou le marché a lieu au niveau national, il nous faut donc construire des proxies
nationaux des variables météo localisées sur le territoire frangais dont nous disposons.
Nous construisons notamment un proxy national de température basé sur une moyenne

de la météo localisée pondérée par la population afin de capturer I’effet de la température
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sur la demande & travers le chauffage notamment. '8 Le reste de notre travail consiste a
construire des proxies pour l'incertitude concernant la production renouvelable qui vient
réduire la demande résiduelle. Pour ce faire, nous analysons la structure spatiale de nos
données de vent et de rayonnement. Nous défendons le fait que ’autocorrélation spatiale
de ces variables est un proxy de l'incertitude, en notant que plus les gradients spatiaux
sont élevés, moins la prédiction météo sur laquelle se basent les producteurs au moment

de jouer sur le marché sera de qualité.

Dans ce second chapitre nous développons une méthode non-paramétrique permettant
de comparer les observations fonctionnelles dont nous disposons les unes aux autres, ainsi

que des proxies pour 'incertitude associée a la météo.

Dans le troisieme chapitre, nous nous concentrons sur la construction du proxy prin-
cipal pour l'incertitude a laquelle les producteurs font face, I'incertitude sur la courbe de
demande agrégée, et nous attachons ensuite a décrire comment les encheres évoluent avec

nos différentes sources d’incertitude.

Nous considérons les informations accessibles aux producteurs au moment d’enchérir
et régressons les courbes de demandes sur ces variables. Nous étudions ensuite les résidus
de cette régression et notons qu’ils sont hétéroskédastiques. Nous nous servons de cette
propriété en régressant le carré de ces résidus sur nos variables explicatives, afin de prédire
I'amplitude attendue de ces résidus, c’est-a-dire 'amplitude de I'incertitude sur la courbe

de demande au moment d’enchérir.

Nous étudions ensuite 'effet de nos différentes sources d’incertitude sur la pente de
nos courbes d’offre, et notons que nos proxies pour l'incertitude météo se comportent
comme attendus selon nos résultats théoriques obtenus dans le premier chapitre, alors

que les résultats sur I'incertitude associée aux courbes de demande sont moins tranchés.

16Une large proportion du chauffage en France est électrique, ce qui induit que la demande électrique
en France est assez météo-sensible.
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Comme nos courbes de demande sont des fonctions completes dans le plan prix-quantité,
nous réalisons ’analyse de nos résidus tant en prix qu’en quantité. Nous obtenons donc
des estimations de l'incertitude associée a la position d’un point de nos courbes de de-
mande en prix et en quantité. Dans notre modele théorique, nous faisons des hypotheses
fortes sur la forme de la demande, que nous supposons linéaire, et nous supposons que
les chocs de demande sont additifs, i.e., ils ne changent pas la pente de la demande.
Ces hypotheses ont pour conséquence qu’il est impossible de différencier 'impact d’une
incertitude en prix ou en quantité, et que ces deux incertitudes devraient avoir des effets
de méme signe : plus d’incertitude induit une pente plus grande de la courbe d’offre pour
réduire la variation de la production. Nous observons néanmoins que les effets estimés
de l'incertitude sur la quantité et le prix sont de signe opposés. Ces deux hypotheses,
bien que nécessaires pour obtenir des solutions analytiques, sont évidemment violées par

nos données, et nous pensons qu'il s’agit d'une piste importante d’amélioration du modele.

La contribution du dernier chapitre est de proposer une méthodologie estimant I'incertitude
directe sur la courbe de demande et d’estimer comment cette incertitude impacte la forme
des courbes d’offre en différents points de son graph, i.e. nous proposons une approche

permettant d’estimer comment les courbes d’offre se déforment sous 'effet de 'incertitude.
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Dynamics of the Electricity Day-Ahead Market : Supply Function Equilibria and
Ramping Costs

1.1 Introduction

In this chapter, we introduce ramping costs to the theoretical framework of supply func-

tion equilibria.

Supply function equilibria are used as a theoretical approach to describe the electric-
ity market on which suppliers bid actual functions contrary to most markets, where one’s
assumptions about demand and supply curves never translate to agents actually bidding
on these objects. The most striking results of this literature are that there exists many
(in fact a continuum) of Nash equilibria, that all of those equilibria are ex-post optimal,

and that they exhibit always positive prices.

The ex-post optimality implies that once an equilibrium is reached, this equilibrium
shouldn’t change from auction to auction, given that the cost structure remains constant,
even when new information is gathered. However, the observation of the hourly bids on
the day-ahead electricity market shows that bids indeed do change from hour to hour.

There are many reasons for which the bids might change from one another.

The first is that power plants are brought online or offline to face varying levels of
demand for electricity. In so doing, the cost structure of the suppliers changes, which can
justify changes in bids. The sccond is that changes in production arc costly in and of
themselves, that is, there exists ramping costs associated to the production of electricity.
This effect, although technically well supported, also sees support from the existence of
negative prices from time to time on the electricity market, on days of high production
and low demand. These cases show that subsidizing consumption is less costly than not

producing for suppliers.
In this chapter, we propose a theoretical framework to account for these ramping costs.

We choose to model the discrete time bidding as a continuous time process. This
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allows us to bring to the literature about supply function equilibria powerful mathemat-
ical tools mostly used in option pricing, that is stochastic dynamics: we want to model
ramping costs, i.e. costs associated to the variation in production, while retaining the
key ingredient brought by [Klemperer and Meyer, 1989], i.e. the uncertainty, through the
use of brownians, and more precisely, 1t6 processes. These tools are the same introduced
in the recent literature on dynamic games, see for example [Sannikov et al., 2016]. How-
ever, where the focus of this literature is to revisit classical results of repeated games in
the context of a time-continuous framework as well as to describe real-world cases more
appropriately captured by continuous time models (for example trading), our focus is to
be able to capture the effects of ramping costs on the electricity day-ahead market, a

market which is discrete in nature.

We obtain a rich and tractable model that yields results that contrast strongly with
past results from the literature. First, in the specific case of linear demand and linear
costs we obtain a unique Nash equilibria, which contrasts with the usual continuum of
Nash equilibria in the supply function equilibria literature. Second, our solutions are
not ex-post optimal, meaning that gathering information about the expected future evo-
lution of demand yields different optimal strategies for suppliers, which in turn means
that producers in our framework have a motive for submitting different supply functions
from one time step to the next. Third, we have closed form solutions which yield specific
predictions about the evolution of bids under uncertainty, namely that when uncertainty
increase, suppliers submit steeper supply schedules in order to transmit more of these
shocks to changes in price and not quantities, which are costly due to the existence of
ramping costs. Finally, and less importantly, our framework justifies the existence of neg-
ative prices 2 by producers being willing to pay consumers to consume more in order to
avoid facing large variations in production, in contrast to everywhere positive schedules

in the case of the supply function equilibria literature.

2Note that such negative prices happen, a few hours a year for example in France or Germany, for
example in 2017 there were 146 such hours, spread over 24 days in Germany [EPEX, 2018a]
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At the bottom of all right pages, there is a small graph showcasing the optimal strat-
egy for a given set of parameters of the model, in the plane quantity-price, with an insert
illustrating the evolution of the support of demand shocks over time. The vertical line in
the insert represents the point in time for which the strategy is presented in the actual
graph. This forms a flipbook, which allows the reader to get a feeling for the evolution of
strategies with the evolution of the support of shocks by flipping rapidly the pages and
observing the graph becomes animated, just like a cartoon. This serves only an illustra-

tive purpose.

1.1.1 Litterature review

The electricity markets flourished in Europe during the 1990s during the wave of priva-
tization. The argument for their creation was one of competition, that was supposed to

bring lower prices to the end consumer of electricity.

An important specificity to the economics of electricity is that electricity cannot be
stored in large amounts, which in turn implies that at every moment production and
consumption have to match. This means that in order to have a working electric grid,
that is one that can produce electricity at higher levels during the winter and lower levels
in summer, one has to have production units ready to be turned on if the demand is
high enough, but turned off otherwise. This, in turn, means that although their existence
is required, it is difficult to see how marginal cost pricing can cover their investment
costs, which has been a long running argument in the litterature [Boiteux, 1960]. For
this reason, from the very beginning, the issue of the market design was deemed to be
crucial to insure that the wished for outcome of the privatization wave came to fruition

[Green, 1991].

Most countries having opened the production of electricity to competition have im-

plemented day-ahead markets. As said above, the production and the consumption have
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to match constantly. The very short term matching is done by automating tiny adjust-
ments around what a producer is already producing in order to match the fluctuating
consumption. To plan which plant should be online at which hour of the day however, the
day-ahead markets come in. The idea is that producers and big consumers of electricity
(either for themselves, or as aggregators of the individual consumptions) are asked to
bid demand or supply functions respectively. The market operator then aggregates the
demand and supply curves, which yields an equilibrium giving the price and quantities

to be produced for each producer.

There has been an active literature trying to model and measure the market power of
oligopolists on these newly created markets [Green and Newbery, 1992, Newbery, 1998,
Green, 1999]. The models have mainly been based on Klemperer and Meyer 1989’s Econo-
metrica founding paper about supply function equilibria [Klemperer and Meyer, 1989]

(henceforth known as KM).

This paper builds upon previous results about competition in supply schedules with-
out uncertainty [Grossman, 1981], which yielded a very high multiplicity of equilibria.
KM add a key ingredient: uncertainty about the demand schedule facing the suppliers.
This addition greatly reduces the multiplicity, and adds more structure to it, although
in this framework there is still a continuum of Nash equilibria, which are always pinned

between Cournot and Bertrand outcomes.

Groundbreaking and fertile, the original model by KM studied how demand uncer-
tainty collapses dramatically the set of available supply function equilibria to a well-
defined continuum when contrasted to the case of competition in supply schedules with-
out uncertainty [Grossman, 1981]. These equilibria are always pinned between Cournot
and Bertrand outcomes. This continuum collapses further to a single Nash equilibria by
considering an infinite support of demand shocks, that is an unbounded distribution of

shocks. All of these equilibria are ex-post optimal, meaning that changes in anticipated
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demand shocks do not impact the actual solutions, but only the parts of the solutions

that are actually explored as shocks realize, a very strong result.

The electricity markets literature has embraced this framework because it is consid-
ered to capture some of the structure at play in the electricity markets: the producers do
not know what demand they are going to face when they choose their supply schedule,
the demand side is considered much less sophisticated than the supply side, and their
demand schedules can therefore be considered to some extent as being exogenous. Some
have argued that the schedules submitted in the real markets are discrete and that this
discrete nature makes their modelling as continuously differentiable schedules is both in-
correct and yields different results from discrete ones [von der Fehr and Harbord, 1993].
However, recent results suggest that with a sufficient number of steps both approaches
converge [Holmberg et al., 2008], and indeed we see that recent implementations of the
market rules increase the number of steps allowed for a single bid, and consider that these

points are linearly joined instead of stepwise.

One of the most striking aspects of the supply function equilibria approaches is, as
was alluded to above, the multiplicity of Nash equilibria. This result has been generally
viewed as the source of the danger of tacit collusion in electricity markets: if there is
a continuum of nash equilibria, repeated interactions are feared to be conducive to a

convergence of bidding strategies towards the most profitable equilibria [Bolle, 1992].

Furthermore, these models abstract away some of the details of the actual markets,
reason for which authors which try and evaluate the market power of producers on the
electricity markets view their endeavour as painting the situation with an optimistic brush

[Green and Newbery, 1992].

Here we will tackle the points raised in the last two paragraphs to some extent. We

propose to consider a technical reality of the operating of power plants: their cost struc-
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ture is history-dependant, more precisely, producing a quantity g; does not entail the
same cost if the previous quantity produced was already ¢; or if the previous quantity
was different from it. Raising or decreasing production in and of itself imply costs. By
introducing these costs we aim to produce a model capable of capturing more precisely
the competition that arises in the electricity markets, and in so doing we will show that
the continuum of equilibria characteristic of supply function equilibria under uncertainty
collapses to unique equilibria, which in turn allows us to comment on the question of

tacit collusion.

1.1.2 The day-ahead markets

On the electricity day-ahead markets, producers are generally required to submit sup-
ply schedules once a day for all the auctions taking place during the next day. The
APX (England) and the EPEX (Austria, France, Germany and Switzerland) markets al-
low hourly auctions [APX, 2017, EPEX, 2015], and EPEX allows for bids comprising up
to 256 price quantity combinations, effectively approximating smooth supply functions.
Producers can submit different supply schedules for each individual auction, but every
bid must be placed at the same time one day in advance for each block of 24 hours.
Customers go through the same process and submit their demand schedules, then the
market operator matches supply and demand for each auction. Producers thus have to
submit schedules facing uncertain demand, which is the reason for the popularity of sup-

ply function equilibria approaches to the electricity market.

However, on this market, bids change from auction to auction. Irom the point of
view of KM’s model, this should happen only through a coordination of agents agreeing
to collectively swap from one Nash equilibrium to another in the available continuum.
Describing these dynamics, however, is increasingly important as the energetic mix is
bound to include an increasing fraction of renewables. Power production can be sep-

arated in two classes: dispatchable and non-dispatchable technologies. Nuclear, coal,

40



Dynamics of the Electricity Day-Ahead Market : Supply Function Equilibria and
Ramping Costs

land-fill gas or hydroelectric power generation are mainly dispatchable as one can actu-
ally choose their level of production whereas the two rising stars of renewable energy,
namely wind and solar, are non-dispatchable: they react to weather conditions. Having
these technologies in the mix introduces uncertainty on the production side, which comes
down to dispatchable units facing a more uncertain residual demand [Boyle, 2007]. In

this paper we want to explore how to model these dynamics.

Electricity production faces very specific technological constraints. These constraints,
generally labelled as ramping costs, vary across production technologies and have yet to
be captured in a model. We propose to do so by introducing a multivariate cost function,
depending as always on the quantity produced, but also on the rate at which production
varies: C(S, %) We call this class of cost functions dynamic cost functions. We detail

which form these costs take, and its shape in section 1.3.2.

All power plants face maintenance costs. However, part of these maintenance costs
is induced by the dynamics of production, and can be seen as ramping costs. More
precisely, whatever the production technology, fluctuations in production are costly. In-
deed, they imply fluctuations in the temperature of the core of the power plant, thus
dilation and contraction cycles of the different parts, which cause wear and tear. The
industry is aware of these effects [GE, 2015], as well as the literature, although it focuses
mainly on other types of effects, such as the impact on shutdowns due to maintenance
[Rothwell et al., 1995], some B2B companies even specialize in minimizing the related
long term costs. For example, Wartsila Power Plants, a supplier of power plants and

tools to forecast long term costs, explains in a white paper [Arima, 2012]:

Increased variability in net load demand means that dispatchable generating
units have to ramp considerably more steeply and deeper than traditionally,

thus increasing wear and tear to components.

We are going to model these ramping costs through a dynamic cost function, increasing

in the absolute value of its second argument: any change in production is costly. This
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paper will focus on the implications of considering this type of ramping costs. Other
types of ramping costs exist, for example startup costs, but they will not be studied in

this paper.

These effects cannot be captured by traditional cost functions depending on the level
of production alone. One needs to take into account the actual path leading to a given
quantity produced, and more precisely in the instantaneous variation, not the whole his-
tory. This implies that we need to impose structure on the dynamics of the system while
retaining uncertainty, the key ingredient of KM’s paper. To do so, we use stochastic

dynamics.

This seemingly small addition to KM’s framework has a lot of implications on the re-
sults obtained. The solutions are not ex-post optimal anymore, allowing to account more
satisfactorily for the dynamics of optimal supply schedules, and our solutions are unique,
even for bounded demand shocks. We also define a novel selection rule to choose from
KM’s continuum of equilibria. Finally these results open the possibility to distinguish

intraday and day-ahead markets.

In section 1.2 we will present a heuristic approach to get the intuition of the model.
Then, in section 1.3 we will introduce the mathematical tools needed to use stochastic
dynamics in this context, in section 1.4 and section 1.5 we will solve the monopoly and
the symmetric oligopoly cases while considering that producers have information about
the overall distribution of shocks during the day, but do not have information about
differences in the shocks at different dates. Finally in section 1.6 we will discuss the
dynamic variation of the optimal bids, while sections 1.7 and 1.8 will respectively cover

some limits of this approach and conclude the paper.

42



Dynamics of the Electricity Day-Ahead Market : Supply Function Equilibria and
Ramping Costs

1.2 Heuristic Description of the Model

In this section the essence of the model is presented before introducing the proper math-
ematical tools needed to treat this problem rigorously in the next section. It is thought
of as an overview of the mathematical methods that are going to be used, as a way to

give a sense of the intent of the modelling choices.

As in KM’s setup, the aim is to model an oligopoly facing uncertain demand, taken
as exogenous. Before the demand shocks are realized, each firm needs to commit on a
strategy. Firms also incur costs that not only depend on the level of production but also

on the evolution of the production given its anterior level produced.

More formally, the producer, as in KM, faces uncertain demand, D(0,p), with 0 a
stochastic shock to the demand and p the price. We add to that both ramping costs
and uncertain dynamics of demand. As we want to keep the key ingredient of KM, the
introduction of uncertainty, but take into account the dynamics of this uncertainty, of

these demand shocks, we need to add more structure.

Consider the following notation, where 0(¢) denotes the value of the stochastic shock
at time ¢, whereas © denotes the family of all available time trajectories of our demand

shocks.

In the real market, bidders submit a finite number of bids once a day, and face the
ramping costs inter-period, that is, when production has to be adjusted to reach the sub-
sequent market outcome. The first bit of structure we introduce is that we are going to
assume that time is continuous. The second is that ramping costs are incurred continu-
ously and can be thought of as costs depending on the variation of production over time.
Finally, we consider that bidders are allowed to submit a different supply schedule for
every point in time between 0 and 7. This amounts to being asked to submit a surface

of strategy in the price-quantity-time space for the next day.

S
: /
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The producer maximises her expected profits, and we consider the simplest case here
in which the distribution of shocks is static, that is that the distribution of probability
of shocks does not depend on time, and the producer is asked by the market operator
to submit the same supply schedule for every point in time a day in advance. In an

oligopoly, the program maximised by producer 7 is, therefore:

Si(p)

max B | [ (sooyson) - ¢ (s.poe), S0 )il

with p(0(t)) the price given the demand shock 0(t) at date t, S;(-) the supply schedule of
producer ¢ and C(-,-) the dynamic cost function. Note that the price depends on ¢ only

through 6(t), i.e. a given level of demand shock implies a given price.

The goal of this section is to provide a first run through of the model, therefore we
will not describe here the conditions that must be verified by the different terms of the
model. We will simply assume that the dynamic cost function is additively separable
between a static and a ramping term, C(S;, 2) = C,(S;) + C,(£%), and that the de-
mand shocks 6 are bounded in [6,]. Lastly we require the ramping term C,(-) = 1(-)*

for clarity, and k > 2 an integer. We distribute the expectation operator and write that

d%‘ = ‘%%Z—f =S-p- fl,—f, with X’ the derivative of univariate function X with respect
: - dX
to its argument, X = <.

With this setup, by distributing the expectation operator over all possible trajectories
of shocks, we are able to rewrite the problem without having time ¢ appear explicitly.
This point is crucial, as it is what will let us use mathematical tools that will yield our

unicity results. The maximization program can indeed be written as follows:

e]) 0 (12

Si(p)

’ k
max T/9 f(9) <p(9)5'i(p(9)) — Cs(Si(p(9))) — % (8- 5)" Ee [(%)
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with f(#) the distribution of shocks, and « the ramping cost parameter capturing the
magnitude of the ramping costs. The expected value on the trajectory of shocks of
any of the terms above that only depends on #(t), that is the value of the shock at a

point in time, can be rewritten simply as an integral over the possible values of the shock.

We are left with Eg [(%)k‘ﬁ] as the only term that depends on the trajectory of
shocks. Take for granted that this term can only depend on 6 for now, this result will be

justified properly in the next section.

Note now that producer ¢ faces a residual demand so that S;(p(6(t))) = D(0,p(0(t)))—
S_i(p(6(t))) which depends only on # and p, ¢ does not intervene directly, with S_; the
aggregate supply schedule of all the other producers, taken as given by producer i. This
implies that the integrand in eq. 1.2 depends only on three variables: 6, p and p. The
maximization program is therefore equivalent to an Euler-Lagrange problem, a very well
described mathematical object: max, [ £(0,p,p)df.*> The information obtained from

taking the first-order condition of an Euler-Lagrange problem yields a second order dif-

3The Euler-Lagrange equation is an equation satisfied by a function p of a real argument 6, which is
a stationary point of the functional:

b
S(a) = [ £0.5(0).50)at
where:

1. p is the function to be found:

p:la,b) CR— X
0 — x=p(9)

s.t. p is differentiable
2. p is the derivative of p w.r.t. 6:

P [(L, b] — TP(Q)X
60— v=p)

T, )X denotes the tangent space to X at the point p(f).

3. L is a real-valued function with continuous first derivatives:

L:]a,b) xTX =R
(0,2,v) = L(0,7,v)

Tp9)X denotes the tangent space to X at the point p(0).

I\

T
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ferential equation as well as two boundary conditions: ‘g—ﬁ = d%%

oL| _ o0L| __
and ETplQ = 8_p|§ = 0.
This is why we obtain unique solutions: if the boundary conditions are not verified, there

exists profitable deviations.

In less mathematical term, taking ramping costs into account as specified above means
that for a given level of shock, the producer not only cares about the optimal level of
production for this shock, but also about the optimal slope of the supply schedule at this
level of production. Effectively, this means that optimal levels of production cannot be
chosen independently for different level of shocks as is the case in KM, thus shrinking the
continuum of equilibria. The boundary conditions’ argument explains why the continuum

not only shrinks, but collapses to a unique equilibrium.

Note that if the ramping cost parameter 7 is taken equal to 0 we are back to KM’s
model: one doesn’t care about the slope of the supply schedule anymore, and the problem
comes down to a pointwise maximization which therefore yields ex-post optimal equilib-
ria. We want to stress that this means that it is not sufficient to specify the dynamics
of the shocks to obtain a supply function model that would react to these dynamics, one

needs to take into account ramping costs.

The maximization program 1.2 is a heuristic description of the situation. We want to
model the stochastic nature of demand and of its dynamics. We do this by using It6 pro-
cesses, a class of stochastic processes built through brownians, to describe the stochastic
trajectory of the demand shocks with respect to time. The difficulty is that brownians
are everywhere continuous but nowhere differentiable, therefore the way program 1.2 is
written, with a term in %}, is a shortcut.

In the next section we introduce the stochastic dynamics properly without using the

concept of a derivative.
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1.3 Stochastic Dynamics

As described in the previous section, we consider that bidders submit surfaces, that is
supply schedules for every point in time. The reason to describe a discrete dynamic
market as a continuous one is that although discrete time is conceptually more easily
understood, continuous time allows to use much more powerful mathematical tools and
to obtain closed form solutions, which we think are crucial in gaining intuitive insights
about these dynamics. Therefore, we consider that demand fluctuates continuously and
that ramping costs are incurred instantaneously. This approximation would need to be
tested, although it should be noted that day ahead markets operate with hourly or half-
hourly periods and producers are therefore facing a reasonable number of periods each

day.

We want our shock variable to evolve over time in a random fashion. The class of
mathematical objects used to describe this are stochastic processes. The simplest stochas-
tic process one can think of, and indeed the most important historically, is a Brownian

motion process.

Unfortunately, Brownian processes are unbounded and cannot therefore be used to
describing the dynamics of the electricity market in which demand shocks, denoted 0(¢),
are bounded: there are no days for which demand is null nor are there days for which
demand tends towards infinity. The structure to be imposed on the dynamics of the

shocks has to imply bounded shocks.

1.3.1 The stochastic process

A regular candidate for richer stochastic dynamics than a simple brownian process is an
Ornstein—Uhlenbeck process. Unfortunately for us, such a process has unbounded sup-

port. We are going to use a richer set of stochastic processes: It6 processes.
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The simplest [td process one can consider that leads to bounded shocks is defined by

the following stochastic differential equation (SDE) [Hertzler, 2003]:

dO(t) = —20(t)dt + /1 — 0()2dB, (1.3)

with B, a brownian and dX an infinitesimal variation of quantity X. Its extended ver-
sion will happen to be very useful in the rest of this chapter, as it leads to a quadratic

distribution of shocks, a property that will allow us to obtain closed form solutions.

Observe that this SDE is formed by a deterministic mean-returning term —260(¢)dt
and a bounded stochastic one /1 — 0(t)2dB,. As 6(t) approaches —1 or 1 the stochastic
term goes to 0, thus 6(¢t) € [—1,1]. Without loss of generality we can restrain ourselves

to this special case. Other bounded supports, 0 € [0, 0], can be captured through renor-

malizations of 6.

Such a stochastic process has a distribution of probability f(0) given by Fokker-
Planck’s equation, easily solved here. In the general case of an Ito process given by
SDE 1.4, one obtains in 1.5 the generic Fokker-Planck equation for its distribution of
probability f(6,t). This equation allows, given an initial condition on the distribution of
probability of the variable, to observe how this distribution evolves to reach the steady-
state distribution, that is the limit distribution that any initial condition yields. If one
knows the value of the stochastic variable at one point in time, one can use this equation

to obtain the spread in its distribution over time.

df = p(0,t)dt + o(6,t)dB, (1.4)
9 0.0y = Lo, 0700 + 22 (00,0270, (15)
ot ’ 00 ’ ’ 2 002 ’ ’ '

Here, for SDE 1.3, this yields that f(6) = 2(1 — 62) on [—1,1] and 0 elsewhere.

48



Dynamics of the Electricity Day-Ahead Market : Supply Function Equilibria and
Ramping Costs

1.3.2 The ramping costs

In the rest of the chapter, we are going to consider quadratic ramping costs. More pre-
cisely we consider the costs induced by fluctuations in the production level. As described
in the introduction, fluctuations imply increased wear and tear, whether the production is
increasing or decreasing. In addition, these ramping costs are null in the absence of fluc-
tuations. This means that they can be captured by a function C.(-) verifying C.,.(0) = 0,
Cy(-) > 0 and increasing in the absolute value of its argument. In the absence of more
detailed knowledge about the actual shape of these ramping costs, it seems reasonable
to consider a quadratic cost function, that is the first term in a Taylor expansion of the
actual real ramping cost function.

We cannot compute % as it appears in Eq. 1.2, as a stochastic process, although
everywhere continuous, is nowhere differentiable. The goal of this section is to express
properly the maximization program of the producer that we presented rapidly in Eq. 1.2,
and most importantly, to introduce properly how we can work in continuous time with
a cost function which depends on fluctuations, which, importantly, are nowhere differen-

tiable.

We are therefore going to first consider the discrete case of a random walk of timestep
At which converges towards the [t6 process 1.4, using the Euler-Maruyama approxi-
mation [Kloeden and Platen, 2011]*, a generalization of the Euler method to stochastic

differential equations. We consider a Markov chain Y defined as follows:

AY, =Y, 1 =Y, = pu(Y,,nAt)At + o(Y,,nAt)AB, (1.6)

where AB, = B(nt1)at — Buae. These AB,, are 1.i.d. normal random variables of mean

0 and variance At. Note that as Af is taken towards 0, this Markov chain converges

4This formula can be found on page 305. This book focuses on numerical approximations of continuous
stochastic processes, which is the reverse of what we are doing here, but it is only in such numeric-centric
books that this scheme is introduced. For a more general approach to stochastic differential equations,
see |[Oksendal, 2003]

gliam
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towards its underlying stochastic process defined by eq.(1.4).

The ramping costs are taken as quadratic in the variation of the production, and
also depend on a ramping cost parameter I'(At), that is the cost per unit of quadratic

variation at horizon At, so we compute the following quantity:

_T(AY) o (Y, nAt)?

E
2 At

Y,

T(Al) <Yn+l - Yn>2 (1.7)

2 At

For this quantity to converge to a finite value when the Markov chain is taken towards
its underlying stochastic process we have to consider that for small enough timescales,
the ramping cost parameter I'(At) is linear in At, i.e. ['(At) = vAt + o(At). Mathe-
matically, if I'(At) had a slower than linear relationship at small timescales, the ramping
costs would diverge, and if it was faster they would converge to 0. A physical constraint,
namely thermal inertia, ensures that the ramping cost parameter does actually behave

in this way.®

Consider for now that the mean function p and the variance function o from eq. 1.4
do not depend on time explicitly and are therefore written p(6) and o(#). Consider now

a transformation 7'(-) that we apply to the Markov chain Y. Then:

E =E

Y, Y,

F(QAt) , (T(Yn+1>A - T<Yn>)2

D(At) (T(Yoy) =T(Y,) Y — Y\’
2 Yo — Y, At

(1.8)
And in the limit where the markov process Y converges towards the 1t process 6 of

equation 1.4:

Iim E

Y,
At—0 "

I'(Al) (T(Ynﬂ) - T(Yn)> _ % ST'(0(t))? - 0(0)? (1.9)

2 At

SRamping costs come from thermal fluctuations in the core of the plant. Therefore, we have to
describe how temperature responds to fluctuations in production. Thermal inertia acts as a low pass
filter, meaning that it smoothes out fluctuations on short timescales. Think about heating a saucepan
full of watcr: although lighting the stove is almost instantancous, the temperaturc of the water being
heated increases only progressively, in an exponential fashion that is therefore linear in time for short
timescales.
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We apply this result to the problem at hand, that is we evaluate the ramping costs in

the case where the demand shocks are given by eq. 1.3:

A0 2 At

o E [rmw | (Asxpw(t))))?

H(t)] = % - Si(p(0())*p(O()*(1 = 6%)  (1.10)

with X’ the derivative of quantity X with respect to its argument and X its derivative
with respect to 6. Note that we considered here that the variance term o(f) = 1 — 62
depends only on 8 and not explicitly on ¢, which in turn implies that the strategy .S; does

not depend explicitly on ¢ either.

Let us consider the case where the strategy and the variance depend explicitly on
time and are thus written S;(p(0(t),t),t) and o(60,t) respectively. By using a first order

expansion as before, the ramping cost function can be approximated as follows:

, AG?

lrmt) (Asxpw(t),t),t))?
At

At—0

= @S EO). 1), )op(0(1). 1)) (0.1)?

with 0;X the partial derivative of quantity X with respect to its i argument. See

Annex. 1.A for more details on this derivation.

Now, we can write down the instantaneous expected value of the profit of producer ¢
if the demand shock is 0(t), 7¢(t,0(t)), that is the profit that one expects to obtain when

demand is at 6(t) given the expected value of the ramping costs:

T (t,6(t) = p(H(t),t)Si(p(H(t),t),t)—Cs(Si(p(H(t),t),t))—%@ls’i(p(ﬁ(t),t),t)zﬁlp(e(t),t)zo(ﬁ,t)z
(1.12)

Lastly, we have to write down the expected profit for a day’s worth of submitted
strategies. Let us consider that the chosen unit of time is the day. Therefore, the total

expected profit II{ writes:

H(t)] = lim E B(@lS(p(G(t),t),t)f)lp(ﬁ(t),t)) AL + O(At)

(1.11)
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e - /Ee [re(t, 0(1))dt
_ //f@f) (0,)5:(p(6.1).£) — Cu(Si(p(0). 1)

15:(p(0,1),1)01p(0,t)%0(0,1)* | dodt (1.13)

We want to note that all the stochastic calculus presented here is very standard,
our contribution is in noting the low-pass filter effect of the physical power plant on

fluctuations which allow us to obtain convergent expressions.

1.3.3 Discussion of the approximations

We want a tractable mathematical formulation of the dynamic problem faced by pro-
ducers on the electricity market. To achieve this, we seek to describe the discrete real-
life problem by an approximated continuous one. We first use two technological facts:
fluctuations in production are costly and these costs decrease linearly in time for short
timescales. We then rely heavily on first order expansions of the different terms we have

to compute.

1.3.4 The maximization program

Here, we consider that the dynamics of demand shocks are given by eq.(1.3), and that

therefore o(0,t)* = 0(6)* = (1 — 6?).

We now introduce the different conditions that have to be satisfied by the various terms
in this problem. First, on most electricity markets, schedules must be increasing, therefore
here we take S!(-) > 0. Second, the aggregate demand is non negative as consumers do
not have production facilities at their disposal: D(6(2),p(6(t))) = >, Si(p(6(t))) > 0.

Last, we consider that the shocks 6 are ordered so that the demand is increasing in 6,

ie. %—]g > 0, and that the price has to weakly increase with the shocks, i.e. p > 0,
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which guaranties that the supply function increases with shocks. Our initial stochastic

maximization program can thus be rewritten as a regular optimal control problem:

max / £0) (O)Si(p(8)) = Cu(Silp(8)) = 3(1 =63 (S{p(O)p(O)°) a0 (114)

Si(p) 1

s.t. Si()=>0

p=0 (1.15)

(1.16)

The next section solves this problem for a monopoly.

1.4 The Monopoly

Let us consider that the aggregate demand is linear, that is:

D(0(t),p(0(1))) = ab(t) + b — p(0(1))

with a and b parameters taken to describe any bounded support of shocks given the
stochastic dynamics introduced in the previous section for which § € [—1,1]. Here

(ah +b) € [b—a,b+al.

In a monopoly situation we have S = D(6(t), p(6(t))), therefore the constraints reduce
to:

p(0) €10,a], and p(0) < af +b

where X corresponds to %

Consider in addition that the static cost function is also quadratic: Cy(S;) = ES?

V
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The maximization program is rewritten as:

1

max | £(0) (pw)(ae b p(0)

(") -1

- Sla4 b= p(0)? - 20 ) (a0 ) ao
(1.17)

s.t. p(0) € [0, d

p(@) <abd+0b

1.4.1 Results

Proposition 1.4.1 The solution erists, is unique, and has the following form.:

Ay 14N 14
—1.1] p*(0) = + 1.1
Vo € [—1,1] p*(0) a47 5y b2 3 (1.18)

The optimal schedule is parametrised by 6 so that S(p(0)) is formed by the points of

coordinate (af + b — p(0),p(0)). Its equation is given by:

)= — (e
5(p)47+1+A(p+2+A> (1.19)

These expressions depend explicitly on our parametrization of the shocks by the parameters

a and b.
Proof See annex 1.3. A

Proposition 1.4.2 When taking v — 0, the above solution converges towards the so-
lution obtained in the Klemperer and Meyer framework, which for a monopoly is also

unique.
Proof See annex 1.C.

We present in Fig. 1.1(a) the results obtained for increasing values of the ramping
cost parameter «y, starting at v = 0 in black and moving progressively from black to blue

to red to green.
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As the ramping costs increase, a given change in quantity is more costly. To mitigate
this effect out, the supplier bids a steeper supply curve, which in turn means that for a
given demand shock, more of this shock is transferred to a change in price, which is not
costly, than to a change in quantity, which is costly. Adding ramping costs narrows down
the domain of attainable quantities produced, as a larger quantity domain implies larger

incurred ramping costs.

Solutions are steeper than the traditional monopoly situation, bringing the schedules
ever closer to a Cournot-like situation (fixed quantity, i.e. a vertical bid). In addition,
the optimal supply schedules do not depend on a, the parameter determining the width
of the possible shocks, but only on b which defines the average value of the shocks. This
result is very strong, but is very much a consequence of our choice of specification: linear
demand with additive shocks. In this case the increase in costs due to larger shocks is
exactly counterbalanced by larger possible demand, so that the slope of the solution is

unaffected. It is very likely that this result is not robust to other specifications.

In Fig. 1.1(b), we illustrate the impact of the specification of shocks on the optimal
solution. First, if we consider an increase in a without changing b, that is a change in
the amplitude of the possible shocks, without changing their expected value, as explained
above the solution is essentially unaffected: a larger region of the solution is simply ex-
plored. This is illustrated by the red supply function changing to the rose one as a is
increased. On the other hand, if we consider a fixed a but an increasing b, that is a con-
stant amount of uncertainty, so to speak, but with larger expected values, the explored
length is kept constant, but the optimal schedule is translated towards the north-east
region of the plane. This is quite intuitive: more demand implies higher supplied quanti-
ties and higher prices. This is illustrated by the red supply function changing to the blue

one.

Note that all schedules cross at a single point. These quadratic ramping costs imply

1
(@
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a symmetric deformation of the solution obtained in the case of an absence of ramping
costs. The limit of extremely high ramping costs is a Cournot-like schedule, i.e. a vertical
one, taken at this crossing point: any demand shock is too costly to be accommodated

by changes in quantities, and yields only changes in price.

Lastly, our solutions exhibit organically the possibility for negative prices.

Proposition 1.4.3 With v > 0, their exists values of shocks for which the prices are
negative. More precisely, there cxist negative prices if the following condition on the

parameters of the shocks holds:

dy+2+X 142X dy+2+ A
<a<—b>
24N Ady+1+A 2+ A

Proof We want the condition under which our solutions exhibit negative prices. First,
our supply schedule needs to be positive. Second, for there to exist possible negative
prices, one needs the smaller possible price, the one obtained for # = —1, to be negative.

This can be rewritten as conditions on the shocks, using the expressions from eq. 1.18

and eq. 1.19:
Sx*(p(=1)) >0
4y
-1 —>b>0
P )+2+A
4y 4+ 14+ A 1+)\> 4~
—a
dy+ 24X 24+ 24+ A
4'y+2+)\b
24+ A
and:

p(=1) <0
v+ 14+ A 1+ A

— <0
“Srzea T2

dy+24+X1 14N
24X 4Ay+14 A
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We will discuss the existence of negative prices more in detail in the following sections.

p(6) PO
7t : i :
y increases | ﬁ: g b increases
| : s
- a increases y S
4f e /:’/ o
I- /e 4@
20 253 33 7540
(a) S~ *(p) (b) S~ *(p)

Figure 1.1: (a) Four optimal supply schedules are plotted. In black (full line) v = 0. As
v increases we transition from the black curve to the blue curve (large dashes), then the red
curve (mixed dashes) and then finally for v — oo to the green one (small dashes). The range
of production is highlighted for each curve through the thin vertical dotted lines.

(b) The thin black dotted lines represent the extremal demand functions given a and b, i.e.
D(8,p) and D(0,p). In red (dashed) the solution for a given value of b. As a increases, the
solution widens from the thick deep red region to the thick light red one. In the case for which
a is kept constant and b is increased the solution shifts from the dashed deep red region to the
full thick blue one.

1.5 The Symmetric Oligopoly

We keep the same linear demand specification as in the monopoly, therefore, with n

competitors one has to consider the residual demand faced by each producer:

S(p(0)) = a0 +b— (n—1)S((0)) — p (1.20)
sy = 0L (1.21)
/ _ a— p Y
S'(p(9)) = T3 (1.22)

" _ _%
S O) = ot (1.23)
JE=]
% 57
4




Dynamics of the Electricity Day-Ahead Market : Supply Function Equilibria and
Ramping Costs

For concision, we drop the explicit dependencies of the different functions on their ar-
guments in the following equations; f(6), p(¢#) and S(p(#)) will be noted f, p and S

respectively. The maximization program now writes:

Iﬂ(@)}( /_ f (p(a()—l—b—p—(n—l)ﬁ')—g(a@—l—b—p—(n—l)S)Q—%(1—92) (@a—pA+(n— 1)S’))2>d9

1

(1.24)
s.t. p € [0,d]
p<al+b
with, as before, X = % and X' is the derivative of function X with respect to its
argument.
Results
Proposition 1.5.1 The solution exists, is unique, and has the following form:
Vo € [-1,1], p*(6) = ak,10 + bK, (1.25)
with
4~ 4+ A 2—dn+4— 4y + A -2
2(4y + A+ 2n)
—1
K, — An—1)+ Ki(A+n) (127)

(A+n)(n—1)+ Ki(A+2n)

and the supply schedule has the following expression:

S*(p) = % <p (Kil _ 1> ) (1 _ %)) (1.28)

Proof See Annex 1.D. B

Proposition 1.5.2 The slope of the supply schedule is increasing with v and the schedule

is shifted to the right of the plane (q,p) as v increases. This is to say that the schedule

o8
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rotates around a point in the positive quadrant of the plane.
Proof See Annex 1.E. B

We are now going to focus on the graphical representation of these solutions. As in
the monopoly case we obtain unique solutions of increasing steepness in the ramping cost
parameter v. When the ramping costs increase, it becomes more and more costly to allow

for a large domain of potential quantities to be produced.

The black curve in Fig. 1.2 corresponds to the limit solution when v — 0, for which
the problem gets closer to that of KM, i.e. no ramping costs. Note that as long as
~v # 0 the solutions are unique. This contrasts with the case of v = 0 which is the
model presented in KM, for which there is a continuum of solutions. There is no smooth
transition between our sets of solution: when considering ramping costs, there is a single

Nash equilibria, even in the limit of small such costs.

Secondly, in their paper, Klemperer and Meyer show that in the limit of a diverging
upper bound for their shocks, their continuum of solutions converges towards a unique
solution. Our unique solution in the limit of small ramping costs is the same as that ok

KM in the limit of infinite support of demand shocks.

Proposition 1.5.3 When v — 0, with v > 0, the solution remains unique and converges
towards the linear schedule available in KM’s set of solutions, that is the same schedule
selected with KM’s selection rule obtained when considering an infinite support for the

shocks.

Proof It is straightforward to check that K; and K, have the same values as KM for
v — 0.
More intuitively the argument is as follows. When v — 0, with v > 0, we retain a unique

solution although the problem itself converges towards that of KM. When v = 0, we are

back to the KM situation with a continuum, however we can come as close to 0 as we want
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while maintaining a unique solution. We should therefore select an equilibrium present in
KM’s continuum. When KM take the limiting case of an infinite support of shocks, they
select a unique equilibrium. In our case we can do the same thing by taking a — oo. In
the limit, our solution being in their set which converges to a unique equilibrium, those
two selected equilibria should be equal. Now note that our solution does not depend
explicitly on a so that when the support is finite, we still select the same equilibria out

of what is now a continuum of equilibria in KM’s framework. H
g
0

6t 1 '_ N

Y increases

O - q()

Figure 1.2: This graph plots S*(p) for different values of the ramping cost parameter, and
compares them to the set of equilibria obtained in KM’s framework. Four optimal supply
schedules are plotted. The black curve (full line) corresponds to the case where v — 0. As
before, as v increases the optimal schedules get steeper and steeper until in the limit of v — oo,
the optimal schedule attains a vertical slope. In addition, we show the set of available equilibria
in KM’s model in light green, and the extremal demand schedules in dashed black.

Intuitively, as we take v to 0 we come closer to the situation captured in KM, but
as long as v > 0, the producer still faces ramping costs, and therefore converges towards
the only linear schedule available in KM’s set, as shown in Fig. 1.2, in which we plot our

solutions on top of KM’s solution set in order to clarify the comparison.

Note that it isn’t possible to transition smoothly from our model to that of KM,
although they are obviously closely related. Indeed, Vv > 0, our model yields unique

solutions, but for v = 0 we return to KM’s model for which there is a continuum of

60



Dynamics of the Electricity Day-Ahead Market : Supply Function Equilibria and
Ramping Costs

equilibria. There is an intrinsic discontinuity between these two models, namely, the
correspondence 1'(y) associating the set of equilibria to the symmetric oligopoly problem
obtained for a given value of the ramping cost parameter - is not lower hemicontinuous

at v =0.

In addition to proposing a way to take into account dynamic technological constraints,
our model provides a selection rule to choose from the continuum of equilibria described

in KM’s seminal work, i.e. the solutions’ stability to ramping costs.

Proposition 1.5.4 With v > 0, their exists values of shocks for which the prices are
negative. More precisely, there exist megative prices if the following condition on the

parameters of the shocks holds:

K.
b?j<a<b(1—Kl)

Proof The method is exactly the same as that used in prooving proposition 1.4.3, noting

that (K1, K3) € (0,1)2. B

As in the monopoly case, we have the property that there exists situations in which
our model can exhibit negative prices. This is interesting because negative prices are
observed on the electricity market, and is often described as a way for non-flexible com-
mitted producers to subsidize consumption in order to avoid reducing production too

much.

To sum up, we have here a model whose solutions depend on the distribution of
shocks, therefore we are able to capture the interday variation of bids by assuming that
the distribution of shocks varies from day to day. In this case, there exists only one

symmetric equilibria each day, function of the distribution of shocks.
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1.5.1 Discussion

This result sheds some light on one of the questions that the electricity market literature

focuses on.

Accounting for ramping costs induces a collapse of the equilibria set from a continuum

to a unique element.

Most of the tacit collusion concern that is present in the literature is based on the
existence of a continuum of solutions [Bolle, 1992]. This continuum is thought as being
conducive of tacit collusion because the electricity market entails repeated interactions
between producers. In this case, producers can be feared to be able to learn to pick the
most profitable Nash equilibria. Although a Nash equilibrium is not usually considered
conducive to collusion, as each player’s strategy is the best response to the other’s and
there is no profitable deviation, a multiplicity of Nash equilibrium lets open the possibil-
ity to pick and choose the most profitable one out of the available options, as compared

to the one leading to the strongest competition.

Our result implies this pathway for tacit collusion is not available anymore. With only
one Nash equilibrium at any given time no learning can bring about tacit collusion. This
is a strong result about the structure of competition in our framework. The existence of
ramping costs leads to a model in which no tacit collusion can exist, suggesting that the
policy recommendations about such collusion stemming from the supply function equi-

libria literature might be strongly dependent on not taking into account ramping costs.

Our solutions are also not ex-post optimal contrary to the traditional results. As our
solutions depend explicitly on the structure of the uncertainty around demand shocks,
any additional information shifting the expected distribution of shocks would imply a
different bid. Ex-post optimality is a very strong result, and, one could argue, more of a

quirk from the usual models than its absence in ours.
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We are also able to account for negative prices which was impossible in the previous
framework. Such negative prices are actually observed, although rarely, on the market:
producers prefer to subsidize consumption instead of decreasing production by a lot. In
our framework, if the ramping costs are large enough, and the demand shocks can reach
a small enough value, our solutions can yield negative values: the equilibrium price might
even be below the marginal cost of production, understood here as 9,C' which by defini-

tion does not capture our ramping costs.

In the next section we are going to present how to capture richer dynamics, and
especially how the surface of bids should evolve with time when the producers have

information about the anticipated variation of shocks during the day.

1.6 Dynamic Behavior of the Bids

The classical supply function equilibria models, as described before, yield a continuum of
Nash equilibria, and each one of those equilibria is ex-post optimal. This a very strong

result that we are going to take some time to describe and comment.

Consider for a moment that firms competing in supply schedules reach one of the
many possible Nash equilibria under such a setup, and that they commit to their sched-
ules. Now consider that the firms face a succession of demand shocks, and that this yields
a succession of market outcomes. As the Nash equilibria are ex-post optimal, it means
that given the strategies played by the other firms, no firm has any regrets concerning
its strategy. Knowing about the realized demand shocks does not imply any willingness
to change strategy as long as other firms keep their strategies fixed, and as long as the
support of shocks is not reduced to a point (one could think of observed realizations
of shocks as helping to narrow down the expected range of shocks without implying a

pinpoint accuracy).
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A corollary to this observation is that the distribution of anticipated shocks does not
play any role in KM’s paper, apart from its bounds. Knowing that the demand shocks are
going to be drawn from distributions of high or low values does not affect the willingness
to play a given strategy, as long as the support does not evolve. The little role that is
played by information about shocks in KM’s paper is even more counter-intuitive: to
a certain extent, information about demand shocks gives rise to a larger continuum of
solutions. Indeed, if one compares the equilibria available to firms for a given support
{6}, = [6,,61], noted S*;, to those obtained for a support strictly included in the first one
{0}5 = [0,,05] C {0}1, noted S*3, then the set of equilibria will be larger in the second
case, in the sense that S*y [{53,C S*» (where [(g), denotes that the supply functions are

restricted to values over {6}2).

However, actual firms bidding on the electricity markets are known to be actively en-
gaged in forecasting the future demand levels in order to build their strategies. Bids that
we can observe on the electricity markets change from hour to hour even when demand
does not vary enough to warrant a change of online plants, a consideration that could

explain some of the supply schedules variations.

The general interpretation of KM’s paper when applied to electricity markets is that
for some unknown underlying process, strategies converge towards different equilibria of
the set of available equilibria from hour to hour. One can note that the general intuition
for strategies converging towards Nash equilibria in the first place is through either a
high degree of sophistication on the part of firms, or through a more organic learning
process. Neither of these two explanations can account for frequent switching from one
Nash equilibrium to another, out of a myriad of available options, without considering
some communication among firms. Furthermore, if such communication existed, it should

be expected to yield the most profitable equilibria out of the available lot.
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We think that this strand of argument trying to explain bids’ dynamics in the light
of the supply function equilibria framework is unsatisfying and we argue that forecasting
demand becomes important for firms when one considers dynamic effects, that is effects
that are history dependent, of which ramping costs which we model in this paper are
an instance (one can think of start-up and shut-down costs as another instance of such

dynamic effects).

The model described in the previous section doesn’t account for these hourly dynam-
ics. Here we present a way to capture these intraday variations, by considering bids that
depend continuously on the time ¢. We will show that our results imply that firms are
not oblivious to information about the distribution of shocks anymore, and more than
that, that their strategies directly evolve with the evolution of their knowledge about

uncertain future shocks.

1.6.1 The setup

Previously, the SDE (stochastic differential equation) defining the dynamics of the prob-

lem was written as:

do(t) = —20(t)dt + /1 — 0(t)2dB,

This specification implied a stochastic trajectory for the shocks, bounded by a constant
envelope. That is to mean that, lacking any knowledge of the value of the shock at a
point in time close to the period under consideration, the distribution of shocks does not

depend on time.

To account for these intraday variations, we are going to define a richer SDE, a non-

stationary one.

SDEs have been well studied and as a consequence there exists a number of families

of SDEs satisfying numerous characteristics [Hertzler, 2003]. The goal here is to find one
=
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SDE that will allow us to capture some of the dynamics of shocks and how this might
influence strategies, while keeping it as simple as possible. Just as in the previous section,
the first characteristic that we want is to consider SDEs that imply a bounded support
of shocks. This restricts our possible choice to four families out of the classical ones:
Generalised Beta I, Beta, Power, Uniform. We also consider that a desirable property is
that the distribution reaches 0 continuously at the bounds of its support, because there
is no boundary condition on the demand for electricity that would justify that one has
a positive probability of reaching a given bound, but a zero probability of reaching an
infinitesimally close value to this bound. This restricts us further to only two families:
Generalised Beta I and Beta. For tractability reasons we will focus here on the Beta
family of SDEs, and more precisely on one of the simplest Beta SDE. However, we want
to note that this choice stems from our focus towards solving analytically the problem at
hand and obtain closed form solutions. If one were to try and estimate the distribution
of shocks anticipated by firms from market data one might want to try and find which of
the Beta or Generalised Beta I SDEs might match the distribution of errors between the
published day -1 estimates for demand and the observed quantities.

Define the evolving envelope of shocks by two functions, (8(t),0(t)), respectively the
lower and upper bounds of the shocks. These two functions, although very easy to com-
prehend, are not the most useful way to define the boundary. Instead, we are going to
use the average value of the shocks, and the half width of the envelope, (0(t),w(t)). This
means that 0(t) = 0(t) — w(t) and 0(¢) = 0(t) + w(t). The only restriction we impose on

the envelope is that we require it to be continuously differentiable, that is (6,w) € C}(R).

Consider the following SDE which is the simplest Beta SDE that we can pick that still
allows us to have a free choice of the bounds of shocks. We want the simplest possible
form to make it possible to obtain closed form solutions, yet still account for free dynamics

of the bounds. For readability, we drop the explicit dependency of the different functions
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on time, that is (¢), 6(t) and w(t) will be noted 6, 6 and w:

R 1dw\ 0 dw
df = [(9—w—9)+<1+;E) (9+w—9)+<E—E>] - dt

+\/<1+£‘;—":) (0 —0+w)(0+w—0) dB,

(1.29)

The distribution of the shocks can be obtained through Fokker-Planck’s equation 1.5

and we obtain:

—(0(t) — B(t) + w(t))(B(t) + w(t) — O(t)) (1.30)

In the following analysis, we are going to rely on the fact that the term (1 + %%) > 0.
The justification for this inequality comes from the following remark: if one were to rescale
time in the above equations, there wouldn’t be any explicit change in the equilibrium dis-
tribution 1.30. The only effect that such a rescaling would play is in the variance of the
Brownian term. In order to insure that our inequality is correct, one has to make sure
that the variation of the envelope term occurs on longer timescales than the characteristic
timescale of fluctuations in our problem. that is the timescale that fixes the rate at which
information leaks out of the knowledge of the value of one shock at a given point in time.
We are trying to capture the hourly changes in firms strategies when demand fluctuates
at higher frequencies (think of the collection of individuals that choose to switch lights on
or off at any given point in time in an entire country for instance). We therefore consider

that this assumption is sound in this situation.

More formally, one can define 7 a rescaling parameter allowing to change the rate
at which the brownian process blurs information pertaining to an initial condition. We

rescale time using this parameter, so that time ¢ and the rescaled time ¢, verify ¢, = 7t.
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We can rewrite the above equations as:

do = [(é—w—9)+<1+zj—tw> (é+w—9)+r<d—é—d—w>] - dt,

wdt, dt, di,
(1.31)
+\/(1+537“> O —0+w)(f+w—0)- dB,
and
f(0,t) = 4w(3tr)3 (O(t:) = 0(t,) + w(t,) (0(t:) + w(t,) = 0(t,)) (1.32)

By assumption, 7 is small enough for the loss of information due to the stochastic
nature of the process to be faster than the typical timescale of variation of strategies,
therefore by hypothesis (1 + 55—::) > ( is valid. We will drop this rescaled time index
in the following sections as equations 1.30 and 1.32 are equal, it was just a temporary
definition to justify the sign of the term that depends on the time derivative of the
envelope. We will keep this 7 parameter explicit however, in order to allow discussions
differentiating effects related to the speed of variation of the envelope or to the relative

timescales of this variation and the underlying stochastic process.

1.6.2 Results
Dynamics in the case of the Monopoly and of the oligopoly

We start by describing the dynamics of the monopoly case because the oligopoly case is

not richer dynamically, but it is more complex to describe.

Our stochastic maximization program can thus be rewritten as a regular optimal

control problem as in section 1.4, but taking into account the time dependency:

T Y 2 U . 2
mas [ 100 (50.05.000.0,8) = CLS 00,0, = Jo10,7 (S1000.0),1900.0) ) do
(1.33)
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st. SI() = 0

p=0 (1.34)

(1.35)

Proposition 1.6.1 In the case of an envelope evolving with time, that is shocks belonging
to the bounded support [é(t) —w(t), é(t) + w(t)], there exists a unique optimal solution to

the monopoly problem. It can be expressed as as surface in the price-quantity-time space:

i Ay (1T ZE@) + 1+ A I+X
p (e(t)at)_ Ay (1+£d—<§(t))+2+)\ e(t)_me(t) (136)

Tdw(y R
7 (I+5%0) +1+A (p(t) +2 (12++W>\dt 9. ‘9('5)> (1.37)

Proof See Annex 1.G. R

Note that if %t’ = (0 equations 1.36 and 1.37 are equal to equations 1.18 and 1.19
respectively as expected. Note also that the solution is exactly the same as in the static
monopoly case in which one replaces the ramping cost parameter v by ~ (1 + 5%(1&))
This surprising fact, that our dynamic optimal strategy is simply a naive version of the

static one with a specified dynamic stochastic process, can be understood as a conse-

quence of the assumptions we have had to make in section 1.3.2.

That is because in section 1.3.2, in Annex. 1.A in which we develop the argument
in more detail, and in section 1.6.1 we end up in effect making a scale separation ar-
gument: the ramping costs are completely driven by the very short-term fluctuations,
whereas the evolution of these ramping costs is driven by the longer timescale at which

our information about the demand shocks evolves over time. This means that we make
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a version of what physicists call a quasi-static argument: because of this time-scale sep-
aration between what drives our ramping cost and our information about the shocks, we
can effectively reason in two steps, first solving for the static situation, and then injecting
naively the slow changes in the static results with confidence as to the validity of this

approximation as long as the assumption about this separation of scale is verified.

The consequence of this is that we have a dynamic version of our static oligopoly of

the same nature as for the monopoly above.

Proposition 1.6.2 The solution exists, is unique, and has the following form.:

with
n\/(4*y(1+£cfl—‘:) +)\—|—n)2—4n+4— (Ay(1+Z%) + X +n)(n—2)
Ki(t) =
2(4y (1+ Z92) 4 X+ 2n)
(1.39)
Ko(t) = An—1)+ K (t)(A+n) (1.40)

A+ n)(n—1) + K1 (t)(A + 2n)

and the supply schedule has the following expression:

S*(p,t) = % (p <%@) - 1) +40 (1 - Eg)) (1.41)

Proof See Annex 1.H.H

o . . . . . dw §
Proposition 1.6.3 The slope of the supply schedule is increasing with <> and the sched-

ule is shifted to the right of the plane (q,p) as ‘fl—f increases. This is to say that the
schedule rotates around a point in the positive quadrant of the plane when the uncertainty

increases over time.

Proof See Annex 1.F. B

70



Dynamics of the Electricity Day-Ahead Market : Supply Function Equilibria and
Ramping Costs

We remind the reader that at the bottom of all right pages, there is a small graph
showcasing the optimal strategy for a given set of parameters of the model, in the plane
quantity-price, with an insert illustrating the evolution of the support of demand shocks
over time. The vertical line in the insert represents the point in time for which the strat-
egy is presented in the actual graph. This forms a flipbook, which allows the reader to
get a feeling for the evolution of strategies with the evolution of the support of shocks by
flipping rapidly the pages and observing the graph becomes animated, just like a cartoon.

This serves only an illustrative purpose.

1.6.3 Discussion

In both situations, the optimal supply schedule is shifted uniformly following the expected
shock é(t), which is a rather intuitive result: if on average demand shifts upwards, the
producers want to extract more profit and shift their supply curve accordingly, but there

is no reason to change slope.

What is less trivial is the way the slope behaves. Let us focus on the monopoly result
for a start. The slope is affected as if the ramping cost parameter was fluctuating with

the relative change in the width of the bounds of the shocks (term in %‘é—f

). The transition
between a low uncertainty region to a higher uncertainty one behaves as if during the

transient regime the ramping cost parameter had a higher value, implying a higher slope.

The optimal supply schedule depends on the relative rate of change of the width %‘fl—‘j
and on the average shock 6. More precisely, with a constant width, the optimal supply
schedule varies according to variations in the expected average value of the shocks. This
is quite standard, if demand is higher, the price and quantities both increase, and here
this increase occurs with a constant slope. The behavior of the supply schedule when the

width varies is less trivial.

71




Dynamics of the Electricity Day-Ahead Market : Supply Function Equilibria and
Ramping Costs

Remember that when describing the slope of the schedule, we are considering the
plane (quantity, price) while the schedule as defined by S*(p) represents the same curve
but in the plane (price, quantity). An increase in width is equivalent to a higher ramping
cost parameter while a decrease in width is equivalent to a lower ramping cost parameter.

These results are illustrated in Fig. 1.3.

To understand the economic intuition behind this result, consider first an increase in
the width of the envelope on the graphic on the right, the uncertainty level given by the
orange line. At this point in time, the uncertainty is increasing, therefore the shocks are
going to be larger, the variations in demand too, and to face this increase, the slope is
larger so as to reduce this expected increase in ramping costs. In the case of the green
line, the uncertainty is decreasing, the ramping costs incurred are expected to decrease,
thus this constraint being relaxed the slope can reduce to extract more profit through

more variations in quantity than if the slope had remained high.

One can contrast this behaviour to the one described on the left hand side of the
figure, where the uncertainty is constant, but the average shock is not. This implies only
a vertical translation of the curve, without changes in the slope. Here the slope is fixed
by a given level of uncertainty, to exploit an increased demand, the supplier simply in-
creases its prices, but it doesn’t need to hedge against increased variation by encouraging

or discouraging variations in quantity by playing with the slope.

All of this reasoning applies to the dynamic oligopoly result as well as the effect can
be understood in the same way as for the monopoly: changes in the width of the shock’s
bounds behave as if there was an effective dynamic cost that was higher than the baseline
when information about the shocks is lost, and lower than the baseline when information

is gained.
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Figure 1.3: On the left, this graph plots an envelope of constant width w(¢) but varying average.
The insert represents this envelope, while the graph itself represents the supply curves associated
with the points in time represented by the green and orange dotted lines on the insert. On the
right, this graph plots an envelope of constant average but varying width w(t).

1.7 Limits

This section aims at discussing whether or not one can consider that the mapping of

these results on the real world is a set of non-zero measure, to put it bluntly.

Further avenues of research would be to generalize our results to larger classes of
demand functions. One could also solve the static case for different SDE’s in order to
test the sensitivity of our results on the underlying "mechanics” of the stochastic process.
This has also been pursued without conclusive results: solving the optimization problem
becomes quickly extremely difficult, as the second order differential equations exhibit

poles, and divergences are difficult to cope with in optimization problems.

The nature of these avenues of research is testament to the fact that our results are
obtained for a very narrow setting, one chosen to obtain closed form formulas. However,
although a healthy dose a skepticism as to the applicability of the closed form formulas
is therefore warranted, I would like to argue that the results hint towards at least one

more general takeaway message, namely the collapse of the set of equilibria.

This result stems from the nature of the mathematical problem and not from the way

we set up the problem in order to maximize our chances of closed-form success per se.

1/
i /

/
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Therefore, I think it hints towards possible more general results. The problem is the
complexity of the maths as soon as one deviates from the simplest version of the problem

presented here.

The question then becomes one of the method to employ to obtain those results.
There is one tool that might prove useful: numerical simulations. One can solve the
differential equations involved here numerically, check ex-post whether they satisfy the
other conditions, and in so doing provide boundaries around possible solutions. If the
unicity is a characteristic that is indeed more general than our model here, there is 0
probability of finding such a solution by the method proposed, quite literally. However
providing such bounds, although not demonstrating the existence of a solution, could

provide circumstantial evidence towards such a result.

More generally, I think numerical methods as a guide for theoretical results have not

been exploited to the fullest of their potential.

1.8 Concluding Remarks

In this chapter we have introduced a supply function equilibria model of ramping costs

under uncertainty.

By introducing technological constraints previously neglected we are able to take into
account the effects of the dynamics of demand shocks on the supply function frame-
work. We restrict ourselves to linear demand. The optimal supply schedules obtained are
unique. This is a striking result when compared to traditional multiplicity of equilibria.
Although we do not solve the model in the case of a general demand function, we think
that our results make a strong case for the reduction of the set of equilibria, in our case
to a unique equilibrium, when taking into account dynamic effects, that is strategies that

are history dependent.
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We introduce a mathematical toolbox that was absent from this literature in the past,
and notably classes of stochastic differential equations that can be used to pick and choose

processes yielding specific closed form distributions of probability of shocks at equilibrium.

Our methodology further introduces the notion of time-scale separation to our prob-
lem, which allows to transcribe quite simply static solutions to the case of dynamic
envelopes of shocks, as long as the static case is solved for the same functional form of
stochastic processes. In our case we focus our study to quadratic distributions, which we
then extend to cope with any functional form for the time dependency of the envelope of

shocks.

Our results are congruent with the economic intuition one can have about ramping
costs: when they increase, the slope of the supply schedule increases in order to reduce

the range of variation in production for a given range of variation of demand shocks.

Although mathematically more demanding than the traditional model by Klemperer
and Meyer, we consider that this new model, while conceptually sparing (we only add
ramping costs) allows for a richer, more realistic description of the electricity market, and
opens new research avenues. It yields precise and testable predictions on the dynamics of

the electricity market with tractable functional forms, at least in the linear demand case.

In addition, by explicitly modeling the dynamics, our work opens the possibility to
explore interactions between intraday and day-ahead markets, markets that were indistin-
guishable in the previous framework, which explains why the analysis of the interaction
between different ways to trade electricity focused on day-ahead markets and forward
contracts: if solutions are ex-post optimal, there is no need to create a second type of

spot market with a shorter time horizon, the bids of the previous day should suffice.
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Further avenues of research would be to generalize our results to larger classes of
demand functions. One could also solve the static case for different SDE’s in order to
test the sensitivity of our results on the underlying ”mechanics” of the stochastic process.
This has also been pursued without conclusive results: solving the optimization problem
becomes quickly extremely difficult, as the second order differential equations exhibit

poles, and divergences are difficult to cope with in optimization problems.

Finally, and more generally, we think that this concept of ramping costs, the fact that
change is costly, is ubiquitous and could fuel interesting research into the dynamics of a
large range of markets. Such avenues have been pursued in the case of stochastic optimal
control, that is, instantaneous reactions to stochastic shocks. Here we are describing a
market on which agents are forced to optimize in advance, so that they have to react to
continuous changes in the anticipated shocks, but not the shocks themselves, which can

be understood as stochastic optimization with periodic commitment.

The goal of the second and third chapter is to test these theoretical predictions on
French day-ahead data. The next chapter focuses on building methods to be able to
perform such tests in the third chapter. As the actual supply schedules are not linear,
we need to be able to define their local slopes and to define points that can be compared
to one another across schedules. We also describe how we build the different controls
that need to come into play to estimate properly the impact of uncertainty on the slope,
but more importantly we introduce one class of uncertainty estimates associated with
weather. With these elements in place, we have a way to compare schedules to one
another, and to estimate uncertainty for a given schedule, and therefore look into the

effect of uncertainty in the third chapter.
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Appendix

Appendix 1.A Proof of Equation 1.11

We are here going to detail how we obtain the result in equation 1.11 on which the proofs
of our dynamic results rely heavily. Recall that we are computing the continuous time
limit of our ramping cost term which can be quite simply defined in the case of discrete
dynamics but for which one has to work a bit more in order to cope with the non differ-

entiable nature of stochastic processes.

We are therefore going to first consider the discrete case of a random walk of timestep
At which converges towards the [to6 process 1.4, using the Euler-Maruyama approxi-
mation, a generalization of the Euler method to stochastic differential equations. We

consider a Markov chain Y defined as follows:

AY, =Y, — Y, = p(Yo, nA)At + o (Y, nAt)AB, (L.A.1)
We want to derive the following:

lim E 0(15)] = %(015(])(9(75),1‘,),t)@lp((-)(f),t))Q(r(H,t)Q (1.A.2)

I(At) <Asi(p<e<t),t>,t)>2
2 At

Let us first compute the first order expansion of AS;(p(Y,, nAt),nAt), by assuming

that both S; and p are continuously differentiable with respect to their arguments:

AS(p(Yndtndn = 3 (

Ap AY Ap

AS;

2
At O(AP) (1.A3)

Using our differentiability assumption, note that the terms that do not depend on AY

scale with At, and that the term depending on AY cannot be grouped in the same way,
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due to its stochastic nature, therefore:

AS; (p(Yn, nAt), nAt) AS; Ap AY

ASi(p(Ya,nAt), nAt)\? _ (AS; Ap AYN? | AS; Ap AY
< Al = \apavar) 79 aparar 100 (LAS)

with C' a term that does not depend on AY or At.

Now by considering the specification of our stochastic process we know that E [% |Yn] =

Y,] = u(Y,, nAt)? + o(Vanat)? Using the fact that I'(At) =

p AY 2
w(Y,, nAt) and that E [E .

~vAt + o(At) we obtain the result of equation 1.11.

Appendix 1.B Proof of Proposition 1.4.1

Define the following Hamiltonian:

A (40 +b— p(0))?

H(p(0),5(0), u(0),0) = f(0) (p(é’)(aﬁ +o-p(0) -3

(1.B.1)
_%(1 —0°) (a— u(@))2> + u(0)u(0)

where u(f) is the control variable defined through the following equation of motion:
u(f) = p(d), u(d) € [0,a]. We do not consider the non-negative demand constraint and

will check ex-post that our solution verifies this condition.

Now note that:

Vo € (—1.1), (ij = —(2+N)f(0) <0 (1.B.2)
%ig = (1 -0*f0) <0 (1.B.3)

The Hamiltonian is therefore strictly concave in p(0) and u(6). Let (p*(0),u*(0)) be an

admissible pair to the problem, that is a pair such that u*(0) = p*(0). If there exists a
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continuous and piecewise continuously differentiable function y(é) such that:

OH*
1(0) = ——— 1.B4
o) =~ (1B.1)
p(=1) =p(l)=0 in order for prices to be free at the boundaries (1.B.5)

*

V(0. u) € [-1,1] x [0, al, on (u(0) —u) >0 (1.B.6)

ou

with %—IJ* = %—Z(p*(é‘),u*(é‘), 1(0),0), then the Mangasarian sufficiency theorem ensures
that (p*(#),u*(#)) is the optimal solution [Seierstad and Sydsaeter, 1987, p.105]. Let us

check that eq. 1.18 defines the optimal solution.

Equation 1.B.4 defines p(6) up to a constant. Through direct integration we obtain:

dy+1+ A

u(f) = 3a ((2 + /\)m

-1- )\> (207 — 0*) + const.

This expression is symmetric in 6 therefore by choosing the adequate value for the con-
stant, we ensure that eq. 1.B.5 is satisfied. The slope of the proposed p* is in [0, d]

ofor epirag O
therefore eq. 1.B.6 requires 5 to be null.

vl € [-1,1], %—IZ:O — %%—Z:O
ie. i(0) = — fe (0 —u(6) - L+ N@+b) | 2+1p0) (1.B.7)

7(1—-6?) v(1—-06?)

It is straightforward to see that the proposed solution satisfies this differential equation,
thus we know that %—5 is a constant and as pu(—1) = 0 it is in fact null. Lastly, we see

that p*(6) < af + b.

The proposed p*(#) therefore defines the unique optimal supply function, i.e. the

parametrized curve (af + b — p*(6),p*(6)).
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Appendix 1.C Proof of Proposition 1.4.2

Consider the following profit:

Now take a linear demand schedule D(6,p) = a -6 + b — p and a quadratic cost function

C(D(9,p)) = 3D(0,p)* = 3(a- 0+ b—p)* The F.O.C. with respect to p(f) writes:

DO.p) +p-0,D(0.9) — C'(D(6,p))3,D(6.p) = 0 (1.C.1)
O'ww,pn—% o (1.C2)
(I+X(a-0+b—p) = p (1.C.3)

14+ A
p= S8 (L)
(1.C.5)

This result is the same as that of proposition 1.4.1 with v — 0.

Appendix 1.D Proof of Proposition 1.5.1

As for eq. 1.24, for the sake of concision, we do not write the explicit depencies of the
different functions on 6, thus f(0), p(#), u(0), u() and S(p(#)) will be written as f, p,

u, p and S respectively. Define the following Hamiltonian:

H(p,u, u,0) :f<p(a¢9+b—p—(n—l)S)—%(au9+b—p—(n—1)3)2
(1.D.1)
20— a1+ (n - 1)5/))2) T

where u is the control variable defined through the following equation of motion: v = p,
u € [0,a]. We do not consider the non-negative demand constraint and will check ex-post

that our solution verifies this condition.
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If a symmetric equilibria exists, egs. 1.20 through 1.23 imply that the regular condi-

tions for an admissible pair to be optimal write:

u=pe|0,a (1.D.2)
O,H<0 — u=0 (1.D.3)
o0H>0 = u=ua (1.D.4)
OyH=0 = u€l0.a] and

L _40(@ -p) B Aab +b—p) B n'p(aﬁ +b—2p)—aln—1)p (1.D.5)
R e T I (TR V)

ji = —8,H (1.D.6)
p(=1)=p(l)=0 (1.D.7)

It is easy to check that (K;,K5) € (0,1) and that the solution 1.25 solves eq. 1.D.5
subject to the boundary conditions 1.D.7. The supply schedule is therefore also linear,

with equation:

S(p) = % (p (Kil - 1> +b (1 _ %)) (1.D.8)

We can now use the Mangasarian theorem to obtain that our admissible pair is indeed
solution, H(p,u, u,d) being concave in (p,u) for linear supply schedules. However the
Mangasarian cannot yield that this solution is unique because for a symmetric equilibria,
if supply schedules are modified, the hamiltonian changes alongside and we are faced with

a new maximization program.

To obtain that the solution is unique we are going to show explicitly that no other

candidate solution exists.
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First, note that:

a

. ald +b—2 n—1
#:_f< p ! )p
n np

(1.D.9)

0+b— —1)+7p —p ap
A2 p'a(n ) p—7(1—92)(n—1)a pa_;;)
n np nonp

If (p*, w*) maximises the program then the maximum principle implies that there exists a
continuous and piecewise continuously differentiable function p, as shown in [Seierstad and Sydsaeter, 1¢

Theorem 2 p.85]. This combined with the above equation implies that p # 0 a.e.

Assume now a solution of the form V4 € [—1,1], p = af + 3, by injecting this expres-

sion in eq. 1.D.9 there is no g such that the boundary conditions 1.D.7 are verified.

In addition:

0’H
ou?

Vo € (—1,1), =—fy(1-6*)(1+(n-1)3)?<0 (1.D.10)

The Hamiltonian is therefore strictly concave in u and [0, a] is convex. These two prop-
erties yield that u* is continuous, as shown in [Seierstad and Sydsaeter, 1987, Note 2.b.

p.86]. We have proved the following result:

Lemma 1.D.1 For any symmetric equilibrium 3A C [—1,1] s.t. A is the union of
segments of [—1,1] and V0 € A, 0,H =0

Assume the following hypothesis is true, H; : 36, € (—1,1) s.t. [-1,0,] C A, then
knowing that p € C°([—1,1], [0, a]) we can rewrite differential equation 1.D.5 around the
value § = —1 by defining 0 = —1 + € with € = o(1):

d*p

= C o) with C £ 0 if p(0) # aK10 + VK, (1.D.11)
€ €

This means that locally around —1, any solution to eq. 1.D.5 but solution 1.25 di-
verges. Hypothesis H; is therefore wrong and 36, € (—1,1) s.t. V8 € [-1,6.], 35 s.t.
p(f) = ab + 5.
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At 0. we have 9,H = 0 and as p is continuous, p(#.) = a. For the solution to be

interior we need p(6.) < 0.

GH(p,p,p.0:) =0 < pd.) =0 (1.D.12)

$0.) <0 b(1+A) —Bn+1+A)>nad (1.D.13)

Straightforward computations show that both conditions are mutually exclusive, there-

fore there doesn’t exist another candidate symmetric equilibria, and our solution is unique.

Lastly, to compute the optimal supply function, we inverse the optimal price in order
to get the shock as a function of the price at the equilibrium, and we inject this expression

in Eq. 1.21.

Appendix 1.E Proof of proposition 1.5.2

We want to prove that the slope of the supply schedules increases as the ramping cost

parameter increases. As a reminder:

ny/ @y +A+n)?2 —dn+4— (4y+ A +n)(n—2)
2(4y + A+ 2n)

A -1+ Ki(A+n)

(A +n)(n—1) + K (A +2n)

K, = (1.E.1)

K, (1LE.2)

and the supply schedule has the following expression:

S (p) = % (p (Kil - 1> +b (1 _ %)) (LE.3)

Let us study how K varies with . Note first that if one defines G = 4y + A + n, then

0Ky _ 0Ky 0G _ 90K,
Oy ~ 0G oy T T oG-
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therefore the sign of 86—121 is given by that of:

OK; 0 [n/G*—dn+4-G(n-2)

oG~ oG 2(G +n) (LE4)
(VG —dn+4)(G+n)(nG — (n =2)VG? —4n +4) — (nV/G? —4n +4 — G(n - 2)))
= 4G 1 n)?
(1.E.5)
(VG? — 4n +4)(n?G + 4n? — 4n — n(n — 2)VG? — 4n + 4)
= 4G i) (1.E.6)
2 _4n y n—: - 2 _8G —4n — 1¢
_ (VG2 —An+ 4)(2G + 4+ ( 42()C(:i:;12 V(G +4)2 —8G — 4n — 12)) -0 (LE7)

Therefore 252

< 0 which implies that schedules see their slope increase with v in

the plane (g, p).

We can perform the same type of computation for the ratio %, using the fact that
OvKl > 0:
OK»/K1 Oy Ki(KP(A+2n)(A+n) + 2K1(A +2n)(n — DA+ A(A +n)(n — 1)?) “0
Oy K2(A+n)(n—1) + K1 (A +2n))?
(LE.S)

This implies that the schedule is shifted to the right in the plane (g, p) when ramping

costs increase.

Appendix 1.F Proof of proposition 1.6.3

The proof is exactly the same as that detailed in annex 1.E, by replacing v by ~(1+ 5%)

and noting that under our assumptions, 1 + ifl—“f“ > 0.
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Appendix 1.G Proof of proposition 1.6.1

Define the following Hamiltonian:

A0 p(0.0)y

H0.0),500.0,10.0).0.1) = 6.0 (10,000~ (0.1) - 5

(1.G.1)
~J0(0.7 (L= ul6.0)* ) + u(0.0u(0.1)

where u(0,t) is the control variables defined through the following equation of motion:

w(f,t) = p(0,t), u(6,t) € [0,1].

Note that the methods used previsouly generalize to multi-dimensional problems, and
that here, our problem depends on € and t instead of only 6 as in the case of the static

monopoly problem.

Further note that the problem does not depend on the time derivative of p(6,t).

This means that what would be a general Euler-Lagrange formulation expressed as

oL 0 oL 0 oL

dp 960 op ot 00tp’

reduces to 26 — 292 where L£(t,0,p,p) = H(p,p,0,0,t). This is the exact same problem
dp 96 Op

which is the equation that has to be solved for interior solutions,

as before, with the only addition that our parameters now vary with ¢, but the partial

differential equation is the same one as before.

Therefore the problem can be solved exactly as before by replacing the variance term
by its new dynamic version, that is that it is as if the ramping cost parameter v was
replaced by - - (1 + g‘é—f) in the static solution.

This can be seen by noting that o(6,¢)? = (14 Z%) (9 — 0 + w)(0 + w — ) which
has to fall back to the static case in the limit, therefore we see that we simply get an

additional (1 + g‘ﬁl—f) term that appears on the ramping cost term, that is that multiplies

-
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Appendix 1.H Proof of proposition 1.6.2

The exact same reasoning as the one in Annex 1.G applies here and we only have to take

Tdw

Z4) 0 obtain the dynamic results.

our static oligopoly result and replace v by = - (1 +
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1Joint work with Henri de Belsunce.
The weather data was obtained through a research convention with Météo-France - ref. DIRIC/13/024
JEL Classification Numbers: C10, C57, C81, L94, Q41
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2.1 Introduction

In the previous chapter, we have introduced a model of supply function equilibria under
uncertainty that takes ramping costs into account, and we derived solutions that depend
on the information the firms have about the future demand at the time of bidding. Here,
we will focus on introducing tools that will allow us to perform an empirical analysis of
the French day ahead market and test these theoretical predictions, which will be the

focus of our third chapter.

In this short chapter we develop a methodology to analyze data of two specific for-
mats. The focus lies on the methodological details as well as evaluating the performance
of our technique. The aim is first to extract points of interests from functional data in
order to be able to compare functions to one another across bids, and second to describe a
methodology that will allow us take into account the uncertainty related to the weather.
The economic interpretation is secondary in this chapter. Chapter 3 will use the method-

ology developed here for a case study of the French electricity market.

2.2 Point Selection on Functional Data: a Non-Parametric
Approach

Reduced form models often rely on exploiting market outcomes for their analysis, i.e.
equilibrium prices and quantities, in order to identify the determinants of firm behaviour
and test predictions of the theory. On a few markets, sufficient information is available to
get around the problem of using endogenous equilibrium data. For example on the govern-
ment bond markets, both the full aggregate demand and supply functions are observed.
This market is of a specific type, it is a divisible goods auction (also called multi-unit or
share auctions). These are auctions where multiple units of a good are sold in a single

auction. The exact quantity is not predetermined but endogenous and depends on the
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price. Furthermore, the auction format is more complex than for indivisible, single unit
auctions and most notably requires that bidders simultaneously submit full bid functions
for the goods, i.e. multiple price-quantity combinations at which each bidder is willing to
buy or sell the goods. The market price and quantity are determined by the intersection

of the aggregate demand and supply functions.

The aggregate bid functions are very rich in information and the reduced form mod-
els can be adapted to use this data. However, the literature on exploiting functional
data is limited. This idea has been applied to investigate the determinants of de-
mand bid functions in French government bond auctions [Préget and Waelbroeck, 2005].
They rely on the propositions first put forward in [Boukai and Landsberger, 1998] and
[Berg et al., 1999], who identified that aggregate bid functions in divisible goods auctions
follow an S-shaped curve that can be estimated by a logistic function. The fluctuations
across auctions are claimed to be due to random shocks on the parameters of the es-
timated logistic function. The methodology is applied in [Ozcan, 2004] to investigate
the revenue superiority of the discriminatory price auction format over the uniform price

auction format for the Turkish government bonds market.

More generally, their methodology consists of a two-stage regression. The first stage
summarises the (presumably parametric) functional data of the aggregated demand func-
tion as parameters of an estimated smooth logistic function. The second stage reuses the

information (concentrated in the estimated parameters) for cross-sectional analyses.

Although the auction mechanism is identical to that of the Treasury market and data
availability is comparable, the logistic function approach does not suit the context of the
electricity market due to the strong heterogeneity of the bid functions and their devia-

tions from such logistic shapes, as can be seen in the example of Figure 2.2.1.

The heterogeneity arises from the fact that the bid functions for the electricity auc-
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Figure 2.2.1: Example of an asymetric aggregate supply function. The x axis is the
quantity in MWh, the y axis if the price in €. In red is the actual aggregate function, in
green is an estimated logistic function showcasing the large discrepancies that can arise
with this parametric approach. The blue point is the market outcome.

tions are much richer since we have multiple, strategic players on both the demand and
the supply side of the market (unlike the market of government bonds, where the supply
is monopolistically determined by the Treasury itself). Furthermore, supplier bidding is
strongly influenced by the underlying cost of the production technologies. The observed
data is consequently less homogeneous and the fitting of the logistic model not convinc-
ing. Furthermore, the economic interpretation of the logistic function parameters is very
difficult and reducing the whole bid function to two parameters of interest discards a lot
of the original information of the bid functions. Finally, we are uncomfortable with the
strong assumption of smooth underlying functions and want to circumvent the problems

of fitting these.

Instead, we develop a non-parametric, functional data analysis approach to select
comparable data points from the original bid functions. In our case, this selection of
points will yield 4 regions for every curves. Each region can be thought of as linear.
These selected points are comparable across repetitions of the market (i.e. auctions for

different hourly contracts) and can then be used to run a cross-sectional reduced form
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model. The interest of this approach is threefold. First, it aims to use as much of the
original information as possible without distorting it into parameters of a logistic func-
tion. What we mean by distortion is the example displayed in Fig. 2.2.1, where one
can see that the fitted logistic function in green is very far from the data (in the sense
that the integral of the absolute value of the difference of the two curves is very large)
because the underlying data simply does not have the proper shape. Also, information
about different parts of the bid function does not influence one another, contrary to a
parametrized form in which one tries to fit a specified function to data. This implies
that the error between the functional form and the data at any point of the curve in-
fluences the fitted parameters, therefore “mixing” information from the whole curve into
the choice of a given value for the parameter. Second, our approach can be extended to
as many points as necessary. The cross-sectional analyses are then conditioned on the
type of comparable points selected. Third, while our analysis provides support for an
underlying tri-linear or S-shaped functional form, we do not need to assume a specific
functional form nor impose overly simplistic assumptions, such as symmetry of the func-

tional forms, to ensure convergence of the estimator.

Here we present the methodology of our point selection and apply it to data from
the French electricity market. For now, we ignore specificities of the market for the sake
of concentrating on the methodology. We briefly introduce the data and the market in
section 2.2.1. For a full explanation of the data and the market, we refer the reader to
chapter 3. In section 2.2.2, we explain the point selection algorithm. In section 2.2.3 we

discuss the results of the methodology. Section 2.2.5 concludes.

2.2.1 Information about our data

Our methodology is general and can be applied to any market where the structure of data
observations is similar. Here, we present and discuss the performance of the methodology
on data from the electricity market. For the purposes of this chapter, we will focus only

on the statistical properties of the data, not on the economic interpretation.
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We apply our methodology to data from a divisible goods auction. In this auction,
each buyer and seller submits a full individual bid function, i.e. a demand or a supply
function, which consists of 2 to 256 monotone price-quantity combinations. The final
bid function consists of these explicitly submitted bid points and all linearly interpolated

points between them.

The market is cleared by computing the intersection of the aggregate demand and
aggregate supply functions, which are each obtained by summing up all individual bid
functions for the demand and supply side of the market respectively. In a uniform pricing

format, the determined equilibrium price is applied to all units sold in that auction.

2.2.2 Point selection algorithm

To briefly fix ideas, let’s assume that we are interested in a regression a la:

S =a+BX +e¢

where S’ is the steepness of the bid function, X the stacked vector of exogenous variables
(not specified further here), a the regression constant, 3 the stacked vector of regression

coeflicients and € the error term.

The information S’ is drawn from the bid functions of the electricity market, and

varies along the different points of the bids.

For comparability, we require that a chosen point k from a supply function must be
comparable to the £™ point from the supply functions of another auction. The same
goes for chosen points of the demand functions. The reason for this assumption is that
comparing those points across auction allows us to describe how the functions, that is

the aggregate strategies, change shape when our independent variables vary. Note that

I\

7
[
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we do not impose comparability between a pair k of points from a supply and a demand
function of the same auction.
Non-parametric technique to compare bid functions

Consider two demand functions (as shown in figure 2.2.2). We have to identify ”features”

Agg. D function H1 on 16/11/2011 Agg. D function H1 on 31/12/2011

Price

0 000 4000
Price

0 000 4000

2000
2000

-4000
4000

¥ T T T ¥ T T T
0 5000 10000 15000 0 5000 10000 15000
Volume Volume

Figure 2.2.2: Comparison of two aggregate demand functions for the same hour

of the different functions in order to determine which points can be compared to one
another. We aim to reproduce the type of analysis that the brain performs automatically
when faced with such curve: we clearly identify three regions of different slopes, where

the central region is less steep than the left and right regions.

To recognise these features, we perform two successive kernel density analyses.? For
details on the bandwidth and kernel selection as well as algorithm specificities, see ap-
pendix 2.A.1. This allows us to access estimates of the absolute values of the first and

second derivatives of the demand functions as shown in graphs B and C of figure 2.2.3.

We arc therefore able to identify the regions of very high curvature, which define the
transition between the three characteristic regions of these functions. We assume that
these maxima can be compared across different auctions. This hypothesis is commonly

made in functional data analysis and known under the method of landmark registration

2Bandwidth in the first estimation = 45, bandwidth in the second estimation = 2, kernels: epanech-
nikov.
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Figure 2.2.3: Steps of the point selection process

Top left (A): The full original aggregate demand bid function for hour 8 on 15.01.2011 in the
quantity - price dimension. Top right (B): Kernel density estimates of the first derivative,
zoomed on the relevant price range. Bottom left (C): Zoomed kernel density estimates of the
second derivative. Bottom right (D): The full original bid function with the K = 5 selected
points.

[Silverman and Ramsay, 2005]. This has been applied in [Wolfing, 2013], chapter 4, to
day-ahead electricity data, in order to identify the effect of fuel price shocks on supply

curves. Ilowever, this landmark registration was applied in a parametric form: the re-

gions of high steepness were identified as any part of the curve above 90€/MWh.

We can develop this method further and define intermediary points® that can again
be compared to one another. This method allows to define as many points as needed, for

computational reasons we limit ourselves to K = 5 points.*

3 As an example, we could extract those points corresponding to half the density value of the maximum
density of the second order derivative. The four points selected, one for each monotone portion of the
graph of second derivative estimates, would then correspond to those where the curvature of the function
is halved. Together with the maximum, the additional point would contain information on the speed
(radius of the curvature) at which the function changes.

4The point selection algorithm took 2 weeks runtime to complete its task of selecting 5 points per
function. Defining intermediary points would have taken disproportionately more time since many sorting
and interpolation steps are necessary for each intermediate point.
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Graph D of figure 2.2.3 visualises an original demand bid function and the selected
points that we retain as an informative summary of the original curve. Once this work is
done we are left with K = 5 points per observed aggregate function, those points being

defined in such a way that they can be compared from one auction to another.

In our setting, the selected points are the two end-points of the curves (where bidding
is imposed by the auction rules at the minimum (k = 1) and maximum (k = 5) Price),
the point corresponding to what can be thought of as the point of inflection (determined
by the maximum of the first derivative, (k = 3) in the plane (p,q)) and the points sepa-
rating the regions of high and low elasticity in price (determined by the maximum second

derivatives to the left (k = 2) and right (k = 4) of the POI).

We described the technique here for the case of a demand function. The information
measured at these points can thereby be compared across demand bid functions of dif-
ferent auctions. The method is used analogously for selecting comparable points on the
supply function. We are hence able to extract slopes at these selected supply bid points,

which are again comparable across auctions.

2.2.3 Results of the point selection methodology
Precision of point selection

We have selected K = 5 types of comparable points for each of the 37500 demand and
supply functions present in our dataset. This section details the results of the point selec-
tion methodology and presents evidence why the point selection algorithm has produced

comparable points reliably.

The graphs in figure 2.2.4 show the local density of selected points in the price - quan-

tity space for the demand (left) and supply (right) curves. The fact that the groups of
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data points are disjoint from one another indicates that the points selected are distinctly

different across groups.

Distribution of selected points Distribution of selected points
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Figure 2.2.4: Heat map on selected, comparable demand and supply points

Note: Please note the discontinuity in the scale of the y-axis. The three seperate graphs are
arranged to be understood as a single one. The warmer the colours of the heat map, the higher
the frequency of selected price-quantity pairs. The colour legend is omitted for brevity. Density
changes between contours are of the order of 107%.

In figure 2.2.4, selected points of type k£ = 1 manifest at the bottom of the graph with
prices fixed at —3000€/MWh. Similarly, & = 5 points appear at the top of the graph
with prices fixed at +3000€/MWh. The three distinct groups of data points refer to
points of type k = 4, k = 3 and k = 2, respectively, when reading the zoomed, center

part of the graph from top to bottom.

We note that the point selection for the demand curves has produced groups of points
that are more distinct (and thus more robustly attributed to a certain type k) then for

the supply function.
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Our methodology only relies on assuming that the first derivative is uni-modal and
that sufficient variation exists in the data to distinctly identify the regions of different
slope. Overall, this is strong evidence that the algorithm is able to distinctly differentiate

between points of different types.

2.2.4 Observations of bidding frictions

Distinct point selection is further supported by the evidence in figure 2.2.5. These graphs
show the distribution in the price-quantity space of the selected points separately for the
demand and supply function. Distinct clouds are an indication that selected points are

different across types k.
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Figure 2.2.5: Distribution of selected demand (left) and supply (right) points

However, a feature of the graphs is striking: patterns (horizontal lines) seem to exist
for the selected points of type® k = 2 and k = 4. Many selected points accumulate at
certain prices of regular intervals of 10€/MWh, i.e. there seem to be focal price points
for the bidders at the curvature points of the bid functions. The pattern is present for
selected points of both the supply and demand functions, although the selected points

from the supply function exhibit this pattern slightly less.

The points following the pattern (types k& = 2,4) represent the points of maximum

5Types k = 1 and k = 5 do not exhibit variation in price, because bidding at the extreme prices of
+-3000€/MWh is imposed by the auction rules. We thus neglect their analysis here.
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curvature of the aggregate bid functions, i.e. the region where the aggregate bid function
transitions from a price elastic center portion to the price inelastic extremities of the bid

function.

Without prioritizing any explanation®, we acknowledge the existence of bid point pat-

terns in the values (i.e. prices and quantities) of selected points.

We are, however, interested in S/, the slope at each selected point - an information
measured at the selected point. We therefore investigate whether the values of the first
derivative at the selected points display a pattern. Figure 2.2.6 shows the histograms of
slopes of supply functions for the points £ = 2,3 and 4. No pattern in the values of the

derivatives is apparent.
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Figure 2.2.6: Histogram of slopes per point type
Note: Histograms of extracted slopes at points of type k = 2 (left), k¥ = 3 (middle) and k = 4
(right).

Although values of the selected points are possibly biased due to focal price points,
we do not observe patterns in the variable of interest (i.e. the first derivatives of the

selected points) and deem the methodology adequate for our purposes.

Finally, we emphasize that the observed patterns are not caused by the point selection

6We do not investigate the origins of bidding frictions in this section, we focus purely on the method-
ology. For the electricity market, a few possible explanations are that (1) bid functions are driven by
marginal costs consideration towards the extremes of the bid curve, (2) bidders bid coarsely since they
have used up much of their bid point allowance (256 points) on the center portion of the curve, (3)
bidders spend less effort on adequately bidding at extremes since the likelihood of the market outcome
occurring at the extremes is much lower.
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mechanism since the algorithm can only choose between explicitly bid points or linearly
interpolated points, that could be part of a market equilibrium under the reigning price
setting algorithm. The pattern arises from many horizontal steps occurring at the same

prices in different auctions.

Value of selected points (determining K)

We remind the reader that the aim is to recover points that summarize well the be-
haviour of the full aggregate bid functions in different auctions. Our technique allows
us to extract representative and comparable points across bid functions of different auc-
tions. Form the selected points, we can also go back to infer the original bid function
from which the points were selected. In order to evaluate the utility of our methodology,

we investigate the added bencefit of an additional point in our point sclection.

By selecting K = 5 points per curve, rather than fewer points per curve, we are able
to significantly reduce the degrees of freedom for inferring the original bid function. In
other words, our information (as captured by the selected points) about the original bid

function is more precise.

In order to investigate the marginal gain of information for additional points, we first
define the mean registered curve. Consider a set of curves that each has N registered
points. Take the average coordinates of every point across curves. Rescale linearly every
curve by parts so that the registered points fall on their average.” Define the mean reg-
istered curve as the averaged rescaled curves. Now, separate the data into two groups:
curves that are above or below this average curve. Take the averages of these two groups:
this defines a measure of the variability of the curves around the total average which is

able to capture asymmetries between the two groups.

"We rescale all points between the reference points by a vector obtained as a linear combination of
the displacement vectors of the closest reference points, of which weights are obtained as the inverse of
the distance of the considered point to the enclosing reference points.

100



Methodological Tools for Non-Parametric Functional data Evaluation and Weather
Data Usage

Now that these quantities are defined, we can display how much information is cap-
tured by the successive addition of registration points for X = 0 to K = b points. We
look at the decrease in uncertainty achieved by including an additional point, obtained
using our technique. Figure 2.2.7 shows the mean registered curves (red lines) and the
mean inferior or superior curves (pink shaded interval above and below the mean regis-

tered curves) as a function of the number of reference points.
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Figure 2.2.7: Error bars as a function of the number of extracted points

Note: The graphs represent the master curve with the error interval for inferring the original bid
function, conditional on the number of extracted reference points (RP). Top left (A): Computed
without any RP. Top right (B): Computed using 2 RP. Bottom left (C): Computed using 3 RP.
Bottom right (D): Computed using 5 RP.

We can see that as we include an increasing number of points the shaded areas shrink:
this is a measure of how much of the information contained in the raw curves is captured
by the registration points. We see that at 5 registration points, the shaded area is very
small, so much so that one can consider that by registering these 5 points, we capture a
so-called "master curve”: most of the information about the curves is contained in those

5 points.
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More quantitatively: without any reference point, inferred bid functions would lie in
the interval shown in graph A of figure 2.2.7. With two reference points (namely the
minimum an the maximum quantity), the uncertainty is reduced as shown by the smaller
error interval in graph B. Graph C adds a third point (the inflection point) and Graph
D adds another two points (the two points of maximum curvatures). Figure 2.2.7 shows
clearly that with an increasing number of reference points, we obtain a more precise infor-
mation about the original bid function. We quantify the informational gain by measuring
the pink shaded area in each graph A to D. The result is shown in figure 2.2.8 and reveals
decreasing marginal information for each additional point. By selecting K = 5 points,
we are able to reduce the shaded area by a factor of about 50 when compared to figure

A (see figure 2.2.8). We see this insight as support for using K = 5 points for further work.
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Figure 2.2.8: Proxy for degrees of freedom on master curve

Note: The graph plots a proxy for the number of degrees of freedom for the inference of the
original bid function on the number of reference points. Specifically, it plots the size of the pink
shaded area in figure 2.2.7 against the number of points.

While the graphs in figure 2.2.7 are displayed on inverted axes and rescaled units, we
show the final master curve and uncertainty interval on the original axes and units in

figure 2.2.9.
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Figure 2.2.9: Overall (left) and zoomed (right) Mastercurve with confidence interval

Note: Master curve in the quantity - price dimension.

2.2.5 Discussion

In this section, we have developed an alternative technique to run a cross-section reduced
form model on data generated by a market that keeps track of the full aggregate demand
and/or supply functions. While we apply it to aggregate demand functions, the method-
ology is fit for the analysis of aggregate supply functions and individual bid functions of

either market side.

The methodology is inspired by the techniques used in the literature on Treasury
auctions, but has been set up from scratch to allow treatment of more heterogenous data.
Furthermore, the hard assumption of an underlying logistic function is relaxed, and our
non-parametric point selection avoids the storing of bid function information in the form

of estimated function parameters, which are difficult to interpret.

Smoothing of the original bid functions is a component in both the traditional logis-
tic function approach and our comparable point selection methodology. The smoothing
enables the user to abstract of small bid function particularities and imprecision, e.g.
steps in the function. However, in the traditional approach, the reduction of plus 1000
bid points into very few parameters resulted in the blurring of “local” bid function in-
formation from all parts of the function at once. Our non-parametric approach allows
specifically to control the extent to which one smoothes the underlying data through the

amount of registration points considered.
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The results of the comparable point selection are encouraging. We show that each type
of point is distinctly chosen and that patterns of the original bid functions do not influence
the quality of derivative information extracted at the selected points. We acknowledge
the existence of bidding frictions in the original data and highlight this observation for

further work.

2.3 Methodology to Aggregate Geographically Dis-
persed Information on a National Level

The theoretical results of chapter 1 indicate that a key ingredient in explaining the dy-
namics of the bids submitted by suppliers on the electricity market is the uncertainty

about demand shocks.

Energy demand addressed to the electricity markets depends on temperature (through
the heating of buildings), on wind speed (through the production of wind turbines which
reduces the net demand) and on luminosity (through the production of solar panels which
reduces the net demand). However, these three weather variables vary in space, whereas
the market is at the national level. We introduce here the methodology with which we

estimate the associated uncertainty.
We have two types of meteorological data: observations and forecasts. We use both

types of data to estimate the underlying uncertainty. The methodologies for each differ

slightly.
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2.3.1 Dealing with meteorological data
Interpolation methodology on weather observations

Observations are obtained from MétéoFrance for three parameters of particular interest:
temperature, wind speed and light intensity. These observations take the form of tables
of hourly observations for a given set of weather stations. Each parameter is observed on

a different set of stations.

Due to their hourly nature, the analysis of the electricity market’s sensitivity to
weather requires a very high number of observations. Therefore, we select between one
and two stations per Département®, a French administrative unit of roughly 6000 km?,
i.e. of a typical lengthscale of about 75 km. We have 161 stations for temperature, 113

stations for wind speed and 106 for light intensity, as shown in Fig 2.3.1.

Figure 2.3.1: Stations for which we have hourly data. Left: temperature, center: wind
speed, right: light intensity.

For each hour, we select the corresponding observations and interpolate them in or-
der to reconstruct the weather on the entire French territory. An interpolation consists
on inferring the value of a variable at query points using a reference data set of known
values. One very important underlying assumption of interpolation methods is that of
the continuity of the process underlying the data generation. The easiest interpolation

method is the linear interpolation: think about a dataset of hourly observations with

8There are 95 Département in France

=
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one missing value; to reconstruct the missing value, take the average of the value of the
preceding and following hour. There are numerous methods of interpolation, even more
so when the data is spatial in nature, all revolving around two main steps. First, given
a query point at which one would like to infer the value of the variable, there needs to
be a selection rule to know which of the points from the reference data set should be
used (in our example the preceding and following values). Second, once these points are
selected, one needs a weighting function to know their relative importance in order to ob-

tain the interpolated value (in our example it is a simple averaging, that is weights of 0.5).

We use the natural neighbor interpolation method, well known for its good balance
between speed and accuracy. In short, in this case, the first step makes use of the Voronoi
tessellation algorithm?, one is able to define the natural neighbors of a point for which one
secks an interpolated value. These natural neighbors are used in the second step, which
performs the actual interpolation as a weighted average of the values of these natural

neighbors using a ratio of surfaces as weights (see Fig 2.3.2 for more details).

Figure 2.3.2: Left: Voronoi’s algorithm is applied once on the reference points highlighted in
green to obtain the white surfaces, and a second time on the same points to which is added the
query point in the center to obtain the new blue cell. The green circles, which represent the
interpolating weights, are generated using the ratio of the shaded area to that of the cell area
of the surrounding points. Center left: example of a reference surface (color mapped) to be
reconstructed through a natural neighbor interpolation. Center right: interpolated surface with
a reference set of 16 evenly organized points, represented in black. Right: interpolated surface
with a reference set of 16 unevenly organized points, represented in black. From 16 points one
is able to reconstruct the color mapped surfaces which are approximations of the reference one,
represented in the center left image.

9The Voronoi tessellation algorithm takes a collection of points {p;} in the plane, and then partitions
the plane as regions ”belonging” to each point, called cells. A Voronoi cell associated with a given point
pi is defined as the collection of every point in the plane whose distance to py is less than or equal to its
distance to any other p_j. Each such cell is a convex polygon.
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Image transformation to recover weather forecasts

Forecasts are obtained from the Global Forecast System (GFS), and come in the form
of colormaps, as shown in Fig 2.3.3. We are going to illustrate our methodology on
temperature data, but the same exact approach is performed on wind speed data. The
general idea is that the pointwise precision is low (2°C' per color) but that the overall
map contains quite a lot of information through the topology of the colored regions. We

describe below how to extract this information.
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Figure 2.3.3: Temperature forecast from a simulation run by the GFS at 6 a.m. on the 3rd of
November 2011, for a forecast at 22 p.m.

First: image cleaning To extract the relevant data we first clean the color map
from its irrelevant information, namely the temperature in numbers and the administra-
tive borders. Note that this step introduces a small amount of high spatial frequency

noise, see Fig 2.3.4 left and center left.

Second: removal of redundant information A lot of information is lost from the
actual GFS simulations by using a color map representation, as temperature is described
as a discontinuous variable: each color has a precision of 2°C'. In order to correct for this,
we leverage the fact that all the information contained in this color map, that is the color
at each pixel, is actually contained in a smaller set of points. Consider the value at the

boundaries between different color regions: by knowing that the interior of a constant
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color region has a constant value, one is able to represent all the information contained
in the original image by keeping only track of the values at the boundaries. To recognise
those boundaries, we perform image analysis, more precisely we use edge recognition

methods based on finding high gradient regions, thus obtaining Fig 2.3.4 center right.

Third: surface fitting Once we represent the information in this denser form we
can perform the last step, which consists in fitting a surface to our newly defined dataset,
i.e. the temperature values at the boundaries, which take the form of (z,y,7T") triplets.
We could perform an interpolation, but these methods are not well suited to reference sets
having so much structure. Here, data points lie on curves representing iso-temperatures,
so that along such a curve there is a lot of data points, whereas the information is very
sparse along the direction of the gradient. In addition the first step introduced some
spatial noise which we want to correct to some extent: we allow our fitted surface to take
different values than our data points, so as to smoothen out this noise. We define the
rigidity of our fitted surface, i.e. a penalty associated to fast changes in the value of the
surface, and therefore reduce the importance of the high-frequency noise introduced in

the first step. The end result is presented in Fig 2.3.4 right.

It is key to understand that this image is displayed using a colormap close to the one
in the original picture to facilitate comparison but that its underlying data is continuous
whereas the original image describes temperature by bins of 2°C. It can therefore be
used to query the value at any given point, and these values will change continuously in

space instead of discrete jumps in the raw format.

Autocorrelation lengthscale

We use this dataset to build measures of the weather uncertainty. To do so we measure
the auto-correlation lengthscale of our three weather variables of interest: temperature,
wind speed and light intensity. This lengthscale measures how much are the weather

variables correlated spatially. Our hypothesis is that the auto-correlation lengthscale is
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Figure 2.3.4: Left: reference image. Center left: borders and numbers are removed. Center
right: edge recognition. Right: final fitted surface.

inversely proportional to uncertainty about the variable we are interested in. When it is
small, the variable is less spatially correlated, which we interpret as being more difficult
to forecast. Conversely, when the auto-correlation lengthscale is large, the variable is
very correlated spatially, that is that the informational content of one datapoint is higher

for the prospect of using it for the evaluation of a national effect.

More precisely, the argument is as follows:

First, renewable production is built by aggregating the forecast of all individual re-
newable sources. This means knowing the position and capacity of every renewable source,
querying weather forecasts for all of these points, modeling the renewable’s response to

the forecasted weather and adding the forecasted productions.

Second, we note that weather is spatially correlated, which means that the closer two
points are, the closer the values for a given weather variable (the air temperature at your
left hand is very close to that at your left hand, but less so across the city, and even less so
across the country). This correlation roughly follows an exponential law: the difference
between the values of a weather variable between two points behaves in a linear fashion

for small distances and saturates at large distances.'® The transition between those two

0Tntuitively, the characteristic lengthscale of autocorrelation represents the distance required between
two geographical points on a map of weather forecasts to observe a decorrelation of half of its maximum
value. For example on the wind speeds prediction, a characteristic length of 80 km means that if we
observe two very distant points (say 1000km) to have a difference in wind speeds of, on average, 50km/h
(this being the maximum difference, we are in the saturated regime), then we will observe, on average,
wind speed differences of 25km/h for points distant from each other by 80km.
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regimes is given by a characteristic lengthscale, a bit less than 200km on average.

Third, we observe that the average distance between production points is large

enough that the relevant regime of autocorrelation is the saturated part.t

Fourth, we note that there are two main channels through which the overall uncer-
tainty about renewable production is related to the weather. There is an issue of error
averaging, which means that if the weather becomes very spatially uncorrelated, one can
expect errors to cancel out relative to a given bias in the forecast. This channel would
tend to imply that more spatial variations imply a smaller uncertainty about production.
There is also the issue that weather forecasts are numerical simulations and that the mesh
size for such simulations, typically 5km for the high precision ARPEGE model of Météo
France, implies that the errors are higher as the simulated phenomenons have higher
gradients. This means in our case that the uncertainty about the forecast increases as

the weather becomes more spatially uncorrelated.

Fifth, these two effects are of opposite signs, but our third point is an argument for
considering that the averaging of errors is smaller than the simulation errors. Therefore,
we expect our uncertainty to increase as the spatial autocorrelation decreases (i.e. more

spatial variation).

This can be summed up with the following hand-waving argument: when there is

more spatial variations, the weather is more messy, therefore more difficult to predict.

To understand what the autocorrelation lengthscale captures, take two points on a
plane and a spatially correlated bounded variable. If those points are infinitely distant,

the value of the variable at these points should be uncorrelated. That is that the abso-

HTFor N production points, we compute the N(N-1)/2 pairs of points, consider their distances and
compute the average of these distances weighted by the production capacity at every point. In the case
of the wind, we have an average distance of 459 km, in the case of the photovoltaic production we have
an average distance of 499km.
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lute difference between the variable taken at those two points should have a given average
value. Conversely, two points infinitely close should have the same value, i.e. a zero ab-
solute difference between the variable taken at those two points. The question is how
fast is the transition between those two limit cases. First, we define the average absolute
difference between two points when distant of a given value. Second we extract a typical

lengthscale.

To define the average absolute difference between two points when distant of a given
value, we consider at a given point in time every possible pair of points in our dataset.
For a given pair we compute its distance and its absolute difference in value (in black in
Fig.2.3.5). For 100 datapoints we obtain 4950 pairs. We then use a kernel smoother in

order to obtain the average non-parametric autocorrelation function (in blue in Fig.2.3.5).

To recover a typical lengthscale, we make the parametric assumption that the auto-
correlation is exponential in nature. We fit an exponential function through our smoothed
data (in red in Fig.2.3.5), and recover the exponential decay parameter as our lengthscale
(in green in Fig.2.3.5). We perform this operation for every hour in our dataset and
every weather variable. The results are time series for the characteristic lengthscale of

the weather parameters.

2.3.2 Aggregation of local information

Wind1DA Wind speed (average speed in km/h): Wind speeds influence the pro-
ductivity of wind turbines, which are a source of unreliable electricity generation. In
general, renewable technologies benefit from a feed-in guarantee by the state. That is,
regardless of the trading outcome on all markets, renewable energies will be the first to

be fed into the power grid at a guaranteed price.

Consequently, the electricity production of renewable technologies represents a pro-

duction shock for all actors on the market. The production shock means that the demand

1TE—V
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Figure 2.3.5: Auto-correlation lengthscale computation. In black are the points obtained
from all the pairs from our original data, that is absolute wind speed differences as a
function of the distance between the two points. In blue is the kernel smoothed function
from those points. In red is the exponential fit. In black are the derivatives of the fit
at 0 and oco. In green is the recovered auto-correlation lengthscale. The unit for the
lengthscale is in km.

to be served by traditional electricity producing firms is reduced by the amount that is

serviced by the electricity gained from renewable sources.

In the case of wind turbines, the average speed of the wind per hour allows to proxy

for the size of the production shock due to the electricity generation from wind energy.

We use hourly windspeed forecast in the form of color maps from the Global Forecast
System (GEFS), giving the speed by bin of 5 km/h at 10m above ground, and the location
and production capacity of the wind turbines present on the French territory, given by
the SOeS (service d’observations et d’études statistiques - observations and study depart-

ment) a department of the French environment ministry.

We consider that all turbines in France are of the same type, that is that they have

the same response curve and height.
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A typical response curve is represented in Fig. 2.3.6. It has three main characteritics:
the wind speed at which the turbine starts to produce electricity, called the cut-in speed,
the speed at which the turbine reaches its rated output, called the rated output speed,
and the speed at which the turbine has to stop to avoid damage, called the cut-out speed.
We use data publicly available!? to obtain a rough estimate of the French average wind
turbine characteristics. We use a cut-in speed of 2.5 m/s, a rated output speed of 14
m/s, and reduce arbitrarily the cut-out speed from an estimate of 24 m/s to 20 m/s to
account for the fact that a turbine is shut down not when the average speed is too high

but when the maximal speed becomes dangerous for the turbine.

Wind speed also increases with height, and turbines are typically between 60 and 80m

high. We therefore apply a multiplier to the reconstructed wind speed at 10m.

We seek to reconstruct the French wind energy production from meteorological data.
The two adjusted values, the cut-out speed and the speed multiplier, are adjusted by
hand to obtain reasonable fits. The reason for this is that the reconstruction of wind
speed and aggregate production is computationally intensive, therefore we cannot per-
form a full-blown estimation. We choose these values with a precision of roughly 10%

with respect to their admissible range of values.

We obtain a reconstruction of wind production from day-ahead wind speed forecasts
that we compare to actual observed production and to day-ahead wind production fore-
cast computed by RTE, the French grid operator as shown in Fig.2.3.7. We stress here
that our aim is two-fold: to link wind turbines’ production to weather data and to use
forecast data as the market actors only possess this information when bidding. We do
not aim at producing better forecasts than the grid operator, the figure is only displayed

to show that our methodology produces reasonable estimates (we obtain a correlation co-

2http://www.thewindpower.net
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Figure 2.3.6: Typical response curves of different wind turbines

efficient between our forecast and the observation of 0.85 where the grid operator obtains

0.97).

—Wind production observed by RTE
"l —Wind production J-1 by RTE 7
—Wind production J-1 from weather data

W

Figure 2.3.7: All curves are hourly production data. The origin of the hours is the first of
January 2011, and the production is in MWh. In blue: the observed wind production. In dark
red: the day-ahead predictions from the grid operator. In light red: the day-ahead predictions
from weather data.

Tempeff15 We focus on the effect of temperature on the demand of electricity first.
In France, a high percentage of the population heats their housing with electricity, there-
fore cold waves have a high impact on electricity consumption: 2300MW of additional
power consumption for every drop of 1°C' below 15°C', as shown in Fig.2.3.8 sourced from

[RTE, 2014], the French grid operator.
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Figure 2.3.8: Daily electricity consumption in France as a function of the temperature,
[RTE, 2012]

We apply this information to our observed meteorological data in order to build an
effective temperature for France aimed at capturing its effect on consumption. To do so,
we reconstruct temperature data for every French commune, the smallest administrative
unit in France (there are around 36000 of those). We consider population as being a good
proxy for potential heat consumption, therefore we apply it as a weight to the commune
temperature. Lastly, we consider that temperatures saturate at 15°C. This allows us to
build an effective temperature taking into account where the population is located and
the nonlinearity of heat start up which in turn allows us to account at the country-level

for the local impact of temperature on the electricity consumption.

Solar Light intensity (in W.m™2) impacts the electricity market through multiple
channels. The most obvious one is the associated electric production from photovoltaic
panels. But there is another channel through which lighting can be seen as impacting
electricity consumption: more sunlight decreases artificial light usage. In France, annu-
ally, the electric consumption that can be attributed to lighting represents roughly 50

TWh where solar production is roughly 4 TWh.'?

13These estimates are computed by the authors based on numbers coming from

[Bertoldi and Atanasiu, 2007], INSEE and EDF
=)/
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We have photovoltaic production data, which in itself is a blackbox. As we aim to link
meteorological data to consumption, we first want to validate the quality of our meteoro-
logical data. To do so we reconstruct the photovoltaic production from weather data. We
know what are the hourly luminosity conditions on the French territory but also where
is installed the photovoltaic production capacity. The SOeS (statistical observation and
study department), a branch of government, publishes each year a file containing the
installed capacity of renewable energy sources per communes, a French administrative

unit with a typical size of roughly 3 km.

We use observed luminosity data from MétéoFrance, as there is no hourly forecast
of luminosity, and assume a sigmoid response from photovoltaic panels to light intensity
with a saturation towards high light intensity, that is approximately a linear response up

to a certain threshold. The results are shown in Fig.2.3.9.

o0
—Solar production observed by RTE
—Solar production from weather observed data
00 |

I m
1 | |

UUUuUUyuUUuUu Uy

nnnnn

Figure 2.3.9: Hourly solar production in MWh. The time origin is the first of January
2011. In blue: observed production by RTE. In dark red: reconstructed production from
observed weather data.

We observe that solar production is much more regular than wind production, there-
fore it is not possible to build a proxy for lighting consumption that would allow us to

decorrelate the effects from production and lighting. We therefore stick to this proxy to
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capture the net effect of both channels.

Other controls

Tempeff We also build an effective temperature that does not account for the non-

linearity at 15°C following the same methodolgy otherwise as a control.

Roll TempH Variable capturing seasonal trends by using the rolling average tem-

perature on effective temperature (Tempeff15) over the last H hours.

Roll,,,rg Variable capturing scasonal trends by using the rolling average tempera-

ture on temperature Tempeff (no kink) over the last H hours, i.e. the last H/24 days.

suncycle Variable capturing intraday seasonality by measuring the intensity of sun-
light as a percentage of the maximum daily observation. Midday is defined at the max-
imum sun intensity every day, i.e. Midday = max(Solar). Thus, suncycle; = Solary /

Midday.

deltasun Variable computed to proxy for dusk and dawn. It is computed as the

absolute difference between suncycley - suncycley_;.

SolarRest Solar represents estimates of solar production. Therefore, it is highly
collinear to the daily suncycle variable since solar production is light dependent. SolarRest
is the residual from a regression of Solar on suncycle and captures the unexplained part of
solar production on top of pure light intensity considerations. Table 2.1 gives the results

of the regression.
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Solar SE
suncycle 1,500%**  3.903
Constant 0.876**  0.383

Observations 150,959
R? 0.702

5 50,01, ** p<0.05, * p<0.1

Table 2.1: Regression of Solar on suncycle

RteBlackBox RTE, the French grid operator gives day ahead predictions of the
total hourly consumption, which are available at the time of bidding. This variable is

called PrevConsoH.

We do not have access to the exact definition of the index and it is thus a black box.
However, it is available to the firms at the time of bidding and we want to include it in

the demand estimations.

At the same time, it is evident that this variable uses much of the information that
we explicitly control for in the regressions, the variables defined above, therefore in addi-
tion to the possibility that we might not have all the variables that go into building this
prediction for the hourly consumption, collinearity is an issue. In order to have correct
coefficient estimates, we adopt an instrumental variable approach by regressing the RTE
prediction on our exogenous factors, extracting the residuals and only including the un-
explainable component of the RTE prediction in the demand estimation in the form of a

separate variable called RteBlackBox.

Formally, RteBlackBox is equal to the predicted residuals (u) of the following regres-
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sion, where X stands for the vector of explanatory variables: Tempeff15, Roll_Temp24 ,

Roll_Temp240, suncycle, morning, deltasun and EWH.

PrevConsoH = a +bX 4+ u (2.3.1)

In table 2.2 we give the output of regression 2.3.1 in column 1, which is strong support
that our prepared data for exogenous variables is of very high quality. We highlight the

significance of all explanatory variables at the 1% level and the R? statistic of 85.3%.

(1) (2)
PrevConsoH PrevConsoH
Tempeff15 -682.6%**

Roll_Temp24 -802.0%**
Roll_Temp240  -1,175%**

SolarRest -0.860*** -0.345%**
suncycle 7,849%F* 7,41 8%F*
morning -4, TH9*** -4,398%**
deltasun 10,108%** 9,010%**
EWH 1,245%FF ] 54k
Tempell -301.4%**
Roll_avgT24 -687.3%**
Roll_avgT240 -918.27%%*
Constant T7,701%** 76,651%**
Observations 146,909 146,909
R? 0.853 0.816

% 50,01, ** p<0.05, * p<0.1

Table 2.2: "Black box” regression on RTE predicted consumption
Note: The dependent variable PrevConsoH is the day-ahead prediction by RTE of the
total consumption in France.

We highlight that the comparison of columns 1 and 2 gives very strong support to our
adjusted measure of effective temperature (Tempeffl5 instead of Tempeff), which takes
into account the demand behaviour as a function of the temperature. Temperatures

above 15°C are considered not to impact demand behaviour [RTE, 2014].
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2.4 Conclusion

In this methodological chapter we present the different methods that we developed to
study in the next chapter the impact that uncertainty about demand shocks can have on

suppliers’ bids.

We want to be able to describe how bids change shape as a function of a number of
regressors. To do so we apply functional data analysis to the bids and argue that the

landmark registration technique allows us to compare important features across bids.

Finally, as we are interested in the impact of uncertainty about demand shocks, we
note that weather is an important source of uncertainty and introduce a number of met-
rics, based on the intrinsic structure of weather data or on its relationship to the processes

at play when considering consumption or production of electricity.

In the next chapter we will therefore be able to focus on the econometric analysis of
our data. More specifically, now that we have defined points that allow us to compare
schedules to one another, and that we have defined proxies for the weather uncertainty,
we can measure how the slope of the schedules is impacted by the level of uncertainty,

and if it follows the predictions of the theoretical model presented in the first chapter.
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Appendix

Appendix 2.A Technical Details

2.A.1 Using the kernel density estimation (KDE) in our setting

In order to estimate the first and second derivatives of the bid functions, we use a kernel
density estimation. The estimator is essentially a smooth version of a histogram and
counts the number of points in moving intervals (called a window) of predefined width
along a dimension of the data. In our case, it counts bid points per price interval. In
addition, the KDE assigns a weight to each observation based on the distance from the

observation to the center of the window. The weighing function is called the kernel.

The observed bid functions are each a multitude of price-quantity combinations. How-
ever, a naive kernel density estimation on the observed points of the bid function would
be uscless since the number of points per price interval does not vary much with the slope

of the curve.

The supply and demand functions, although defined by discrete points, whose number
changes from bid to bid, are continuous functions. That is that between to successive
points, the function is considered to be linear. Strictly speaking, we can therefore define
a constant value of the first derivative, and we cannot define values for the second deriva-
tive. In order to circumvent this problem we want to smooth our data, which defines
functions that are not twice differentiable, by using a kernel density estimate. However,
this estimate needs to measure the “density of function”, so to speak, and not the density
of points: if the function has two successive but distant points, a naive kernel would count
no points in between them although our function is actually comprised of a segment of
a given length in this region. What such an estimate should instead measure is the arc

length of the function represented by the points we have, that is the summed length of

ig
/
/
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all segments present in the window of the kernel.*

This quantity can be computed exactly, however it does not play well with the regular
tools for kernel density estimates in stata, so we resolve to approximate it by adding a
large number of linearly interpolated points at the unit cent level (corresponding to the
minimum bidding unit). The kernel density estimation is then able to estimate the
absolute value of the slope of the function by simply counting the points in an interval
since the number of points per price interval of constant width varies proportionally with
the slope of the function over that interval. This effectively returns the estimates for the
absolute values of the first and second derivatives of a smoothed version of our supply

and demand functions.

Hard choices in the code of the KDE

A few specific choices have been made in the code and are detailed here.

Kernel choice: First, we use the default Epanechnikov kernel for simplicity. It is
generally considered that the kernel choice has significantly less impact than the choice
of the bandwidth. The use of the kernel is to weigh more the observations close to
the centre of the moving window. The performance of a kernel is judged on the trade-off

between variance and bias. The used Epanechnikov kernel is optimally efficient. However,

4 Consider a continuously differentiable function f:

fila,b) CR >R
=y = f(x)

Then the following parametrization defines the points of the graph of this function:

g:[a,b] CR—-R
L (t f(1))

The arc length of the graph of function f is then:
b
L) = [ 10t

- / i )
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even simplistic kernel functions, such as the rectangular, have a relative efficiency of 93%.
Thus, kernel choice is not important and other factors may influence the decision, such

as computational effort [Salgado-Ugarte et al., 1994, Silverman, 1986].

Bandwidth choice: Second, we hard code the bandwidth selection for computational
reasons. The bandwidth of the kernel (and thus the width of the price interval over
which points are counted) is determined on the basis of a trade-off between smoothing
the original bid function and mixing up information of different parts of the bid function.
By smoothing the original bid function, we obtain estimates of the information that our
KDE measures (i.e. points in the interval and thereby the slope) that are less sensitive to
local specificities of the bid functions. The larger the selected bandwidth, the larger the
interval over which points are counted and the stronger the smoothing of the estimates.
However, as the width of the interval increases, we mix up more information of a selected
point of interest with the information of its neighbouring points. Therefore, in setting the
bandwidth we aim to achieve smoothed estimates with a reasonable compromise between

respecting local curve information, while not being fragile to steps in the bid function.

For estimates of the first order derivative, these considerations are minor and we could
use the default bandwidth, optimal for a Gaussian distribution, to extract the point of
maximum slope from the distribution. However, one reason we slightly increase it is to
ensure that the distribution of the first derivatives is uni-modal.'® Furthermore, the se-
lection of the bandwidth in the first stage density estimation impacts both the precision
and speed of the second stage estimation. A better smoothing in the first stage gives
a large advantage in the second stage estimation!®, thus we have a further incentive to

increase the bandwidth.

15Uni-modal at the point of inflection in the price-quantity dimension. The smoothing ensures that
the selected point is not mistaken due to steps in the bid function that have a very large slope locally,
but which is not representative of the neighbouring portion of the bid function.

18The gain in computation in the sccond stage ariscs from the fact that a stronger smoothing in the
first stage produces a more homogenous dataset for the second stage estimation. By more homogenous,
we mean that fewer monotone regions of the graph of first derivatives must be interpolated at the unit
cent level to ensure that our algorithm works correctly.
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For the second derivative the trade-off is more critical: We want to obtain a reason-
ably broad smoothing to obtain a meaningful selection of points that is not driven by
random noise. On the other hand, a large bandwidth reduces the importance of local
information of a part of the curve as a consequence of which, selected points (points
k = 2 and k = 4) are pushed towards the point of inflection (¥ = 3). This is due to
the maximum point of the first derivative gaining more weight in the second derivative’s
estimation. The fact that first derivative estimates are already smoothed rather strongly,

we can choose a narrow bandwidth in the second stage KDE.

In the end, we select a rather broad bandwidth of 45 units in the first estimation.
This gains robustness of the point selection mechanism against noise in the data and
estimation speed in the second stage. The bandwidth in the second stage is set more
narrowly at a level of 2 units to keep as much information as possible from the first stage

estimation and allow sufficient variation to select the k points.

To support our choice, we illustrate the impact of different bandwidths on the first and
second stage estimation in figures 2.A.1 and 2.A.2. Our choice is based on an adequate
point selection and the fastest runtime.

In these graphs, the top row shows the first stage KDE, over the whole function on
the left and zoomed on the right. The large bandwidth in figure 2.A.1 shows the impact
of smoothing on the estimates of the first derivative as compared to figure 2.A.2. The
second row in both graphs shows the second stage KDE in two versions: Using a wide
kernel bandwidth on the left and a tight bandwidth on the right. Again, we disclose the

result as seen over the whole function (left) and zoomed on the central price range (right).

The third row details the original demand function with the final point selection given
the bandwidth selection as given by the two rows above. Regardless of the first stage
bandwidth, we see that a large bandwidth in the second stage KDE casily distorts the

point selection. Selected points of type k& = 2,4 are either two centred or too wide as a
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Figure 2.A.1: Comparison of bandwidths: Large bandwidth in first stage

Note: Large bandwidth in first stage (top row), large bandwidth in second stage (second
row left), small bandwidth in second stage (second row right), Resulting selection of points
Jor large bandwidth in stage one and two (bottow row left, A) and selection of points for
large bandwidth in stage one and small bandwidth in stage two (bottom row right, B).

result of the second derivatives being smoothed excessively and not precisely representing

the local specificities of the curve.

The right hand side of both figures show that a tighter bandwidth on the KDE can
easily mistake large slope changes due to steps in the bid functions as the appropriate
points of maximum curvature of the full bid function and thereby make an error. There-
fore, we apply a sensitive second stage KDE on rather smooth estimates of the first

derivatives, which yields an adequate point selection in our setting (figure 2.A.1B).

The bandwidth selection received much attention in this work in order to obtain a
reasonable selection of points based on local information of the curves, while achieving a
satisfying robustness to noise in the bid function. We are aware that this subjective setting

of the bandwidth is not without consequence for our work. However for computational
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Figure 2.A.2: Comparison of bandwidths: Small bandwidth in first stage

Note: Small bandwidth in first stage (top row), large bandwidth in second stage (second
row left), small bandwidth in second stage (second row right), Resulting selection of points
Jor large bandwidth in stage one and small bandwidth in stage two (bottom row left, C)
and selection of points for small bandwidth in stage one and two (bottow row right, D).

reasons'’, we do not run a full robustness test on this choice ex-post.

2.A.2 Outlier detection and removal

In some rare cases, our point selection mechanism does not work. This is the case when
curves have very small number of points at a kink and it is thus very difficult to detect

their curvature.

As a result, the selected points are then quasi in-differentiable from the next selected
point type, i.e. a point of type k = 2 is almost identical to the selected point k& = 3. The
code is unable to select the right points due to a data lack on the original curve (second

derivative on a constant slope up to POI is zero).

We screen for adjacent points that display quasi no variation in volumes. Figure 2.A.3

"The point selection algorithm ran for more than two weeks in the current setting.
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shows a histogram of volumes differences over 2 selected points (from k = 2 to k = 4) and
reveals a positive mass point at zero, indicating outliers that do not display any volume
variation between points of the same bid function. We use the histogram to identify and

drop those outliers from our dataset.

Density
1.0e-04 1.5e-04 2.0e-04
L L

5.0e-05

0 5000 10000 15000
diff2

Figure 2.A.3: Histogram of volume variation between points

Note: The histogram shows the volume difference between points k = 2 and k = 4 of the
same bid functions.
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Chapter 3

Investigating the Impact of
Uncertainty on Firms with Dynamic
Costs: A Case Study of the French

Electricity Market !

1 Joint work with Henri de Belsunce.
The weather data was obtained through a research convention with Météo-France - ref. DIRIC/13/024
JEL Classification Numbers: C10, C57, L94, Q41
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3.1 Introduction

In the last chapter, we have given some attention to a methodology that allows us to
use functional data for reduced form analysis. In this chapter, we focus on the economic
questions that can be asked using such a methodology. Specifically, we focus on an inves-
tigation of the effect of uncertainty on the behavior of electricity producers, and testing
the predictions of our first chapter, by leveraging the results of our second chapter that

allow us to compare schedules to one another.

There exists a consensus that dynamic costs, also referred to as ramping or adjust-
ment costs, are important on the clectricity market.? These are the costs incurred by a
producer when production varies. The importance of uncertainty for the expectation of
dynamic costs is shown in chapter 1. Uncertainty itself on the electricity market as well as
estimates for the value of ramping costs have been studied empirically by [Wolak, 2007],
in the case of step functions. We focus on two sources of uncertainty for traditional
electricity suppliers, namely uncertainty about the realization of the market demand and
uncertainty from the inherently unpredictable meteorological situation (which affects re-
newables generation), mainly because those are the two main sources of uncertainty in
the span of time covered by our data (2011-2013). There is one blind spot in our analy-
sis: we do not have data about the interconnected countries, which themselves affect the
French market and therefore introduce another important of uncertainty. Not taking this
effect into account essentially introduces noise in our data and means that we need more
data to infer the significance of an effect compared to a case where we would be able to
control for it. We propose a methodology to measure this uncertainty and its impact on

firm strategies on the electricity market.

Electricity as a market is very important in and of itself ($2 trillion in worldwide sales

in 2010). It is also a crucial input for many industries; power outages induce very large

2 [Anderson and Xu, 2005],  [Hobbs, 2001],  [Hortacsu and Puller, 2008],  [Reguant, 2011],
[Sewalt and De Jong, 2003].
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costs to society ([LaCommare and Eto, 2004], [Reichl et al., 2013]). The electricity mar-
ket is, however, quite different from the markets for other commodities in a few respects.
First, electricity cannot be efficiently stored. As a consequence, electricity markets are
high frequency (prices can update down to 15-min intervals) and firm strategies are purer

as they are free of stock management considerations.

Second and in addition to non-storability, a generation surplus cannot be disposed
of freely.®> Thus, generation of electricity must always be matched with consumption in
real time (modulo a small tolerance). This represents a hard constraint on the market*
and forces suppliers to be reactive. However, this reactivity is costly as plant operators
incur dynamic costs when adjusting production and the larger the adjustment made, the
larger the cost. Hence, suppliers face a trade-off between cheap generation of electricity
and costly reactivity to the demand realization. Indeed, no single generation technology
exists that satisfies both cheap generation and sufficient reactivity to allow production
fluctuations at a reasonable price. Existing generation techniques are either cheap and

unresponsive, e.g. nuclear plants, or expensive and flexible, e.g. gas turbines.

Interestingly, we also observe negative prices. In France for example, during the week-
end of the 15™ June 2013, the price per MWh dropped to —200€. This contrasts to the
yearly average of approx. 45€/MWh and is generally understood as a sign that sub-
sidizing consumption temporarily is cheaper for a supplier than shutting down a plant
[EPEX, 2014].> The increase of the share of renewable generation in the energy mix
contributes to the occurrence of negative prices on the market. The intermittency of
renewables causes large residual demand shocks [EPEX, 2014]. The unreliability of re-
newable generation also means that more flexible plants (i.e. plants with lower dynamic

costs) are required to provide rapid responses to fluctuations in production from renew-

3The common assumption of free disposal as made in standard microeconomics is violated.

4Mismatches between consumption and generation ultimately result in power outages.

5“Negative prices are a price signal on the power wholesale market that occurs when a high inflexible
power generation meets low demand. Inflexible power sources can’'t be shut down and restarted in a
quick and cost-efficient manner. Renewables do count in, as they are dependent from external factors
(wind, sun).”
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ables [REN21, 2013].

Furthermore, uncertainty arises from the fact that renewable production is a lo-
cal and dispersed production, but feeds into a national market with a single price.
When meteorological conditions change, the geographic production profile also changes.
This further complicates the predictability of renewables generation and contributes to
the uncertainty that electricity producers face when playing on the electricity market

[Meibom et al., 2009].

This paper explores the effect that the absolute level of uncertainty about residual
demand has on players’ strategies on the electricity market. In the light of the existence
of dynamic costs, which are inherent to the production technologies, uncertainty is costly
to suppliers as shown in chapter 1. Thus when faced with uncertainty, we expect that
electricity producers smooth production volume over time in order to minimize dynamic
costs. In a single market interaction with a symmetric oligopoly and linear demand func-
tions, this translates to playing a steeper supply function when uncertainty is high. The

detailed intuition behind the predictions tested is given in section 3.1.2.

We show that uncertainty does impact supplier strategies. However, this prediction
and result only apply locally to the central, flat and linear part of the supply bid function.
Towards the high and low volume extremities of the bid functions when capacity con-
straints start to matter, bid functions are stepper and the effect of uncertainty vanishes.
Furthermore, we observe results that indicate that demand-side bidding is also impacted

by uncertainty.

We focus on the French one-day ahead market, EPEX Spot. This market is a divisi-
ble goods auction and particularly suited for our analysis as we observe data on the full
aggregate bid functions for both supply and demand. We introduce the market’s auction

format and rules in section 3.2.
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The dataset and its sources are presented in section 3.3. We develop our identification
methodology in section 3.4. Our empirical strategy relies on the non-parametric, com-
parable point selection technique presented in chapter 3.3. We reuse the selected points
of the previous chapter for our analysis here. We present and interpret the results in
section 3.5. Finally, we discuss some overarching points in section 3.6 and conclude in

section 3.7.

3.1.1 Literature review and contribution

There exists a literature on supply function equilibria initiated by [Klemperer and Meyer, 1989].
In traditional models, firms choose between quantities (Cournot) or prices (Bertrand) as
their strategic quantities. In the intermediate case, firms choose a relationship between
quantities and prices, namely a supply function. This is the focus of the supply function

equilibrium models. A key ingredient of these models is uncertainty.

Supply function equilibrium models are very relevant for the analysis of electricity
markets, since many electricity market designs allow firms to submit a price-volume func-
tion rather than a specific price or quantity. [Green and Newbery, 1992], [Newbery, 1998]
and [Bolle, 1992] have used these models to analyze competition on the electricity mar-

kets.

These papers have contributed to a broader investigation of the competition on the
electricity markets, which has also been looked at from empirical perspectives [Wolfram, 1998,
Borenstein et al., 2002]. While those initial papers have focused on the supply function
equilibria of the market, they have abstracted from some technological specificities for

the sake for simplification.

One such aspect that we are interested in and that has been the subject of research

in recent years is the importance of dynamic costs for electricity production.
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Our first chapter extends [Klemperer and Meyer, 1989] to derive predictions on firms
facing dynamic costs in a supply function oligopoly under uncertainty. When varying
production is costly, suppliers take these costs into consideration by submitting steeper
functions when facing more uncertainty, in order to limit the range of variation in produc-
tion. [Reguant, 2011] develops a model and an empirical strategy to measure dynamic
costs on the Spanish one-day-ahead electricity market. She finds that “complex bids”,
which allow firms to minimize dynamic costs by linking production in one time period to
production in a subsequent time period, reduce the volatility and the level of prices on
the market. Her work is also unique in terms of data availability. By using individual bid
functions she is able to produce estimates of start-up and ramping costs per production

technology.

In order to quantify dynamic costs on the Australian electricity market, [Wolak, 2007]
derives a methodology to recover estimates of the parameters of parametric cost functions
at the level of the production unit. His identification is based on the assumption that
each profit maximizing supplier knows the distribution of shocks on the demand function
when playing on the market. Uncertainty is thus an explicit ingredient of his paper and
he captures two sources of uncertainty in a single index: (i) the uncertainty from not
knowing the aggregate supply function served by all other suppliers and (ii) the uncer-
tainty about the realization of the market demand. The recovered cost functions quantify
the cost of varying output. Forward contracts are useful to avoid output variations. By
comparing the observed level of forward contracting (assumed to be the profit maximizing
choice for production variation) with the theoretical minimum cost production pattern,

he does not find support for ramping costs.

We contribute to this literature by providing an empirical analysis of the French elec-
tricity market. Specifically, we look at the impact of uncertainty on supplier strategies
and take this as evidence that dynamic costs matter. Our approach to separate out
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the uncertainty from market demand expectations and predictability of renewables gen-
eration is novel. Both proxies for uncertainty used are new, uncertainty from market
demand is inferred from the prediction errors that firms make in a demand estimation
and uncertainty from renewable production is computed in a bottom-up approach from
local weather forecasts. Instead of opting for a time series regression, we understand all
hourly auctions as a cross-sectional dataset and control for the time of the day by using
continuous transition variables for daytime periods. Similarly, we control for seasonality
using continuous variables rather than dummies. Thereby, we are able to leverage our
dataset and increase the sample size for each of our regressions and improve the precision

of our estimates.

Furthermore, our work contributes to the empirical literature testing strategic be-
haviour of market participants. Generally, these studies focus on point-wise analyses for
reasons of data availability. Not only does this cause endogeneity problems when the
data used is equilibrium data, but also the analysis is restricted to an understanding of

the usually observed outcomes of the market.

In our setting, we benefit from an interesting dataset in which we observe full ag-
gregate bid functions of players. The functions describe the players’ behaviour both in
the region where the equilibrium is likely to occur as well as in regions that rarely have
an impact on the equilibrium outcome. As such, they provide a much fuller description
of the firms’ strategies. The additional information contained in the full aggregate bid
functions has been used extensively in theoretical work (notably in the supply function
equilibria literature mentioned above). However, few papers exploit these full bid func-

tions empirically.

For the government bond market, [Préget and Waelbroeck, 2005] and [Ozcan, 2004]
use a parametric approach to this functional data [or a description of the variation of bid

functions with respect to exogenous factors and an investigation of the revenue superior-
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ity of the uniform or discriminatory multi-unit auction mechanism, respectively. On the
electricity market, [Wolfram, 1999] leaves the analysis of equilibrium data to investigate
duopoly power of firms on the UK day-ahead spot market. Instead, she uses informa-
tion from the whole aggregate supply function to investigate the impact of price caps
for electricity producers. Using an analysis conditioned on 25 different demand levels,
she shows that the introduction of price caps resulted in a counter-clockwise rotation of
the aggregate supply function. She relates these results to produce a lower bound on
the extent to which firms can increase their prices above marginal costs when regulatory
pressure makes it advantageous to do so. Thereby, she contributes empirical evidence for

the distorting effects of price caps.

Our work adds to this empirical literature using the information contained in the full
bid functions by developing a non-parametric approach which allows to condition our
analyses on multiple, representative points of the bid functions. The statistical ingredi-
ents rely on [Silverman and Ramsay, 2005] and are detailed in chapter 3.3. Thereby we
are able to leverage our dataset, increase the sample size in individual regressions as well
as obtain a fuller picture of the effects of exogenous variables on the behaviour of elec-
tricity producing firms. We emphasize that out approach allows to overcome structural
restrictions underlying previous parametric approaches, e.g. the symmetry of the logistic

function used in [Préget and Waelbroeck, 2005].

3.1.2 Theoretical prediction

We test the impact of uncertainty of supplier strategies by testing the prediction that
suppliers bid steeper supply bid functions when faced with a larger uncertainty concern-
ing the outcome of the (residual) demand realization, for which the traditional supply
function equilibria framework provides no prediction at all, which means that our null
hypothesis, that there is no effect of uncertainty of the slope, corresponds to the regular

SFE framework.
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In a discontinuous setting, where the supplier produces volume Qg of electricity in
hour H, we assume that he faces a cost function Cj(.) for each production plant ¢. This
cost function depends on both marginal costs of production as well as the dynamic costs
for changing production rapidly: Ci((Q u),(Qu —Q H_1)2). The larger the variation in
production between hours, the larger the dynamic costs. Even when the expected residual
demand is constant, there are still fluctuations in the production due to possible shocks
to the residual demand. The larger the shocks, the larger the change in production and
thus the larger the dynamic costs. Consequently, increased uncertainty (as represented
by shocks on the demand function) translates into increased expected dynamic costs.
We assume that the profit maximizing supplier knows the distribution of shocks on the
demand function when choosing his supply function. In order to minimize these costs,
the producer can choose a steeper supply function when uncertainty is high. We want to

test this prediction.

We illustrate the intuition behind this prediction using a stylised case in figure 3.1.1.
The graphs depict a situation in which a single, risk-neutral supplier bids a supply func-
tion to supply electricity in the hours 9 and 10 of the next day. For both hours, the
supplier faces a constant expected residual demand function represented by E(D). In a

static optimization problem, the supplier would bid a supply function Sy in both auctions.

Auction for Hour 9 Auction for Hour 10

Figure 3.1.1: Illustrating the effect of increased uncertainty.

The uncertainty in the market is represented by the width of the envelope of shocks
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that affect the residual demand function (represented by the arrows on E(D)). Thus,
in each hour, the residual demand fluctuates between D,,;,, and D4, where the range

between the extremal demands may vary from one hour to the next.

Before submitting a supply function to the market, the supplier estimates the distri-
bution of probabilities of demand shocks that he will face. In hour 9, the supplier is able
to rather precisely predict the realization of the demand function in the auction, i.e. it
realises within a tight confidence interval. In hour 10, however, uncertainty in predicting
the outcome of the demand realization has grown strongly as represented by the much

wider confidence interval on the demand realization.

Given a fixed supply bid function Sy, the possible range of quantities to be produced
by the supplier when going from hour 9 to hour 10 has increased due to the increase in
the size of the uncertainty (interval on the Q-axis has grown from length A for hour 9 to

the dotted length B in hour 10).

Now, we assume that the supplier faces dynamic costs, i.e. it is costly for production
to vary on top of any traditional marginal cost consideration and the larger the variation,
the larger the cost. Then in the case of a fixed supply bid function (Sy in both auctions),

an increase in uncertainty implies an increase in expected dynamic costs.

The supplier’s reaction to increased uncertainty is therefore to bid a steeper supply
function S; in order to trade-off static optimality and dynamic effects. As a consequence,
the range of volumes produced in equilibrium is reduced (the firm produces in the range C
instead of B). When seen over time, these considerations lead to a smoother production
as compared to a constant supply curve: demand shocks are absorbed through a higher

price volatility and a lower production volatility.

If cautious behavior under high uncertainty is true for all firms on the market and

S
1=
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each firm has the same expectation of the probability distribution of the uncertainty, then
the reaction of bidding a more price inelastic supply function to increased uncertainty

should be observable on the aggregated supply function.

We emphasize that this prediction relies on linear demand and supply functions and
does not incorporate capacity constraint considerations (both upper and lower bounds on
the production volume of plants), which are also important on the market. Furthermore,
we have outlined our prediction using a discrete time-setting. The continuous version of

this analysis on dynamic costs is explored in detail in chapter 1.

The present paper tests this mechanism empirically and understands an increase in
the slope of aggregate supply bid functions due to an increased level of uncertainty as

evidence that firms minimize dynamic costs across auctions.

3.2 The EPEX Spot Market

3.2.1 General background

The EPEX Spot market is an auction market, which allows firms to trade electricity
12-36h ahead of delivery. It covers France, Germany with Austria and Switzerland. The
volume traded on EPEX Spot represents 12%, 40% and 30% of the total electricity con-

sumption in these countries respectively in 2013 [EPEX, 2014].

The EPEX Spot market has considerably gained in importance over time, and the
daily trading volume has almost quadrupled since 2005, whereas the total electricity
consumption has essentially remained constant. The graph in figure 3.2.1 shows these
trends very clearly. Furthermore, it shows the significant volatility of the market trading

volume (as indicated by the width of the grey-shaded confidence interval).

On the EPEX Spot market, the participants submit supply or demand bid functions
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Volumes evolution
in France from 22.04.2005 to 01.01.2014
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Figure 3.2.1: Traded volume plotted against total annual consumption
Note: Total consumption is netted of the electricity withdrawal at the level of the production
unit. The 95% confidence interval is based on a 150-days moving window and assumes that
volumes are normally distributed in the time window. GWh and TWh stand for giga and
terawatt hours, respectively.
to be able to meet their next day’s supply commitment. This market is important, be-
cause it allows the firms to adjust their portfolio to the upcoming demand. The market

matches business to business trades, where producers (the suppliers and transmission

system operators) and industrial consumers may participate.

The EPEX Spot market settles in a three-headed market that firms use to achieve
their desired power position: The long-term bilateral contracting market, the day-ahead
market and the intra-day market. Energy cannot be stored, thus a precise power position
must be achieved at each point in time. Firms thus face a trade-off between cheap up-front
sourcing and costly uncertainty. The closer the market gets to the delivery of its power,
the less uncertainty does the firm face in determining its power requirements (pushing
firms to wait until the last minute to fill their energy position). However, the imperfect
flexibility of the electricity production landscape cannot satisfy the whole demand short-
term at a reasonable price, hence firms must anticipate their requirements in order to
obtain cheaper power. Consequently, these three markets complement each other to allow

firms to gather a power position at a reasonable price.

1 i
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3.2.2 Auction rules and mechanism

We present the rules here that applied during the period for which we have data.

The EPEX Spot auction occurs daily, all year-round, and proceeds as follows: the or-
der book closes every day at noon for contracts of the following day, results are published
two hours later. Bids may be submitted 24/7 from 45 days prior until the closing of the
books.

Tradable contracts exist for each hour of the day and firms submit an individual bid
function for each of these hours, i.e. a separate, simultaneous auction is run for all hours

of the following day and trading is specific for each of these hourly tranches.

The bid submission must be a supply function (or a demand function depending on
the position of the firm) with at least 2 and at most 256 price/quantity combinations for
single contract orders. The final bid function, thus, consists of the explicitly submitted
points and all linearly interpolated points between them. The bid curves must be mono-
tonically increasing for a supply function and vice versa for a demand function. Orders
are transmitted via an online I'T-platform and a redundant confirmation process aims to
avoid erroneous bids. Bids are anonymous, and the final electricity distribution is done

via the French distribution network controlled by RTE EDF Transport SA.

Prices are specified in €/MWh with two decimal digits and must range from -3000€/MWh
to +3000€/MWh. Quantities are specified in whole MWh. In addition to single contract

orders for an individual hour, bidders may submit block orders.

These are combined single contract orders with a minimum of two consecutive hours.
The vital difference with multiple single contract orders is the ” All-or-None” condition,
namely that the executions of the individual contract orders forming the block are de-

pendent, on one another. That is for a block order covering hours 17 to 20, the quantity
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demanded for the hour 17 is only awarded if the corresponding quantity is also awarded
for the hours 18, 19 and 20. Each registered bidder account is limited to a maximum of
40 block orders per delivery day, each of which is limited in volume to 400 MWh (approx.

equal to 0.25% of total daily volume traded on EPEX Spot).

The price-quantity determining mechanism is a uniform price, multi-unit auction
mechanism: the summed demand and supply curves are computed and the intersection
of these gives the equilibrium price and quantity pair.® The market clearing mechanism
takes into account single and block orders simultaneously and hence solves the corre-
sponding programme by an algorithm of full enumeration of possible solutions, where
each partial solution is verified to provide real, compatible prices. The mechanism works
under a time limit. In the case of a curtailment, i.e. a disequilibrium with dispropor-
tionate prices due to unmatched supply and demand or an abnormal price for a specific

hourly contract, the system proceeds to a second price fixing.

Of particular interest is the clear distribution of information. Ex-ante bidding, firms
in the market know the identities of the rival bidders they face (but neither their individ-
ual bid functions nor their results in past auctions), the history of aggregated equilibrium
prices and quantities up to that day, their clients’ past demand realizations and their
individual long term contracting position. Upon the clearing of the market, the aggre-

gated supply and demand bid functions, equilibrium quantity and the equilibrium price

6

The Auction takes place daily, after the Order Book has closed. The price corresponds to
the Matching of Exchange Members’ aggregate supply and demand curves of both Single
Orders and Block Orders for each Contract. The price determined by the algorithm at the
time of Auction is the price at which all Trades will be executed. For price determination
purposes, the Exchange Member’s interest is assumed to be linear between two price/quan-
tity combinations. The price determination algorithm aims at optimising the total welfare,
i.e. the seller surplus, the buyer surplus and the congestion rent including tariff rates.
The algorithm determines the execution prices, the matched volumes and the net positions
of each coupled market if applicable. It also returns the selection of blocks that will be
executed and other complex Orders allowed in other Coupled Markets1 if applicable. The
presence of all-or-none Block Orders in the Order Book makes necessary the use of a specific
search algorithm, in order to determine a market clearing price.

[EPEX, 2018b)
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become common knowledge. Each bidding account is informed of the contracts it has

been awarded, i.e. the individual quantities to be sold and bought through the system.

3.3 Our Data Explained

Auction market data

We have data [rom the French EPEX Spot market for the period 01.01.2011 to 30.06.2013.
This is the latest period, where no significant changes in the auction rules have occurred

and where data for all variables can be observed.

We observe the full aggregate bid functions for the day-ahead auctions of each hourly
contract for both supply and demand. We understand the dataset as a cross-section
rather than a time-series” and focus on weekday trading contracts only. This sums up to
about 31 500 observations.® A single aggregate bid function is the sum of the individual
bid functions, which are not available. We also observe the equilibrium price and quantity
for each auction. Moreover, we observe the block bidding results at the equilibrium solu-
tion only. We ignore the blocked aspects and treat subsequent auctions as independent

from one another.

The two graphs in figure 3.3.1 show the aggregate supply and demand bid functions
for the same hour of the same day. For a glimpse at the variation of bid functions over
time, see figure 3.3.2. The table 3.1 sheds some light on the raw data. For further details

as well as the plotted distribution of realised market equilibria, refer to appendix 3.B.2.

Finally, we reuse the data output from chapter 2. Specifically, we reuse the specific
points extracted from the aggregate demand and supply bid functions, which are com-

parable across auctions. Why these points are useful for our analysis is explained in the

"This is supported by the graph in figure 3.2.1, which shows a flat total consumption and average
trading volume on EPEX Spot since 01.01.2011.

831 500 observations ~ 2.5 years of hourly (%365 % 24) demand and supply (*2) functions for weekday
trading (¥5/7).
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methodology section 3.4.

Aggregate bid functions
in France on 01.08.2011 for hourly contract 7am-8am
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Figure 3.3.1: Example aggregate demand and supply bid functions
Note: The right-hand-side graph is a zoom of the left graph on for the price range —50€/MWh

to +100€/MWh.
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Figure 3.3.2: Aggregate bid functions for 20 consecutive days

Note: The graph shows 20 consecutive aggregate demand and supply functions for the contracts
on hour 1 (between 12 am and 1 am) for the time period 11/12/2011 to 31/12/2011. The graph
on the right is a zoom on the price elastic region of the curves on the left.
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Mean Median Std. Dev Min Max

Total daily volume 161,912 159,313 25,059 99,054 277,531
Average realised daily price® 46.6 48.3 172 -39.0 381.2
Minimum demanded agg. volume!” 5,030 4,968 1,467 914 11301
Maximum demanded agg. volume 13,327 13,222 2,212 4,990 23,254

Minimum supplied agg. volume 3,721 3,526 1,344 618 10594
Maximum supplied agg. volume 14,390 14,142 3,061 6,580 35,356
Bid points per demand function 543 531 163 115 1,253
Bid points per supply function 640 632 143 184 1,283
Bidders per auction'! - - - 1 101

Table 3.1: Some descriptive statistics

Exogenous factors

Regarding weather statistics, we have hourly previsions for temperature, wind and cloudi-
ness from the GFS (Global Forecast System) as well as hourly observations for these
quantities and luminosity from Météokrance . The previsions from the GFS are in the
form of weather maps that are outputted from simulations that run one-day ahead at
6 am. This is the weather information that market participants have access to when
bidding on EPEX Spot.'? The weather observations are in the form of tables for specific

weather stations (between 100 and 200 depending on the specific parameter of interest).

Morecover, we have the location of the total installed capacity per generation type

9 Average price is volume weighted over the 24 hourly contracts of the delivery day.

10Minimum and maximum volumes for both demand and supply refer to the aggregate volume bid on
the market for a single hour contract at the extremal prices of +3000€/MWh or —3000€/MWh.

"Due to the anonymity of the auction procedure, it is unknown which bidders submitted bids. Con-
sequently, it cannot be deduced how many bid steps a typical bidder submits. Nuwmber of registered
bidders for the French EPEX Spot market as of 01.10.2014.

12The next weather simulation run takes place at 12 noon and is therefore not being used by the
bidders on the EPEX day-ahead market, as the deadline for submitting bids is precisely 12 noon.
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(i.e. wind turbines, solar panels, etc.) at the level of the postcode, that is roughly a
3km precision. We obtain this data from the SOeS, a branch of the French government

producing data on environmental issues at large.

Population data and data on the level of the domestic production from the manu-
facturing industry is obtained in monthly steps from the French National Institute of
Statistics and Economic Studies (INSEE). From the same source, we obtain the spot
prices for petrol and natural gas as well as the import prices at the border for coal, which
we use as a proxy for the domestic prices. Prices for the European CO2 emission certifi-
cates are taken from the Portuguese secondary market (SENDECO,) for European Unit
Allowances (EUA)."3

As a very coarse proxy for generation from hydro power plants, we have the total
weekly stock of water in domestic dams (in the form of the summed height of all dam

water levels in France) from RTE the grid operator.

3.4 Methodology

We want to identify the impact that the level of uncertainty has on the price elasticity
of the aggregate supply function. In data terms, this means that we aim to regress the
slope of (aggregate) supply bid functions on a proxy corresponding to the uncertainty
that existed at the time of bidding. The uncertainty may come from two different sources:
(1) uncertainty about the realization of market demand and (ii) uncertainty on the gener-
ation from renewables. Both types of uncertainty affect the residual demand curve faced

by each supplier.'*

This regression is able to explain how supply firms adjust their bidding strategies to

the expectation of demand shocks that they face. Statistical significance of the level of

13Fach unit EUA permit allows one tonne of CO2 emissions.
14Renewable generation benefits from a feed-in guarantee on the market and thus reduces the residual
demand for all traditional electricity producers.
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uncertainty on the slope of the supply function would be evidence that firms take the

strategic considerations of dynamic costs into account.

First, in section 3.4.1 we show the final regression of interest. Sections 3.4.1 and 3.4.1
then detail the theory and empirics underlying the variables that feed into the final re-

gression.

Some of the information used in our analysis is drawn from the bid functions of the
EPEX Spot market. As introduced in section 3.3, we observe the full aggregate bid func-
tions for both supply and demand, the shape of which (and thus the information that
we aim to extract from them, e.g. their slope) varies differently at different points (recall

the graphs in figure 3.3.2).

Generally speaking, a regression aims at quantifying the impact of some independent
variables on a dependent one. The dependent variable is most frequently numerical, and
the independent variables explain part of its value. Here the dependent variable is func-
tional in nature, that is that we aim to describe how the supply function changes shape
with respect to some independent variables. One observation is formed of one function
coupled to the value of some independent variables. We therefore adopt a functional data
analysis approach, which allows us to condition our analysis at specific points k = 1,.., K
of the functions. This approach allows us to define comparable points across auctions,

that is different functions, in order to derive insights.

More precisely we want to quantify how uncertainty affects the strategy of bidders
from one hour to the next. For this we cannot rely on a standard estimation of the overall
demand or supply functions from market outcomes, we want to actually measure how the

functions that we observe change shape.

The methodology to select comparable points across auctions is detailed in chapter 2.
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This appendix also evaluates the results when applying the technique to our data from
the EPEX Spot market. Figure 3.4.1 shows the selected points on an exemple of demand

and supply curve.

The different types of points selected capture different information of the aggregate
bid functions. The most important point is the one we label k = 3, which corresponds to
the central part of the bids. This point is most relevant for equilibrium determination.'®
The points k = 2,4 are the points of maximum curvature and represent the transition
points between the central (very price elastic) region and the outer (very price inelastic)

regions of the bid function. Last, we have the points & = 1,5 which are imposed by the

auction rules and are the endpoints of the bid functions.
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Figure 3.4.1: Selected points on original bid functions
Note: The demand function left, the supply function right, the graph superposes and
names the points selected according to the methodology of section 3.4.

In chapter 2, we also detail the choice of setting K = 5 and show that this choice
allows us to improve the precision of our analysis by a factor of 50 when it is conducted

on the 5 points simultaneously.!®

153ee figure 3.3.2 for a glimpse at the distribution of equilibrium outcomes.
16\We briefly mention that the evaluation of the point selection has revealed focal price points for the
points k = 2, 4. These points are however rarely relevant for equilibrium determination.
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3.4.1 Regression methodology
Identification

At each of these comparable points, we want to identify the effect of uncertainty on the

slope of the supply function.

Defining S; ; the slope of the supply function of auction i at point & in the quantity
(X-axis) - price (Y-axis) dimension, X being the vector of exogenous variables, PLUZ{’,C
being the proxy for the level of demand uncertainty, PLUZ being the proxy for the level
of uncertainty from renewables, what we called the width of our possible shocks in the
first chapter, « being the regression constant and € being the error term, we estimate the

following:
' = i + BEPLUD, +4SPLUR + 65 X5 + ¢, (3.4.1)

We are interested in the sign and magnitude of the coefficients 3° and 4°, which
identify the effects of the PLUs (PLU? and PLU®, respectively) on the shape of the
supply bid function. From the predictions outlined in section 3.1.2, we expect a positive

coefficient when uncertainty levels increase.!'”

Left-hand-side variables

We extract the slope of the aggregate supply function at any given point k& from a kernel

density estimation with a bandwidth of 45 units.!®

Effectively, this is a smoothed version of the slope. This makes our slope esti-

mates robust to steps in the bid function!®, which in turn allows us to test the pre-

17Specifically, we want 3° to be positive, 77 positive and 725 negative. For details on 7%, see section
3.4.1.

8The slope is a by-product of the point selection mechanism, and the bandwidth selection for the
smoothing thus follows the same considerations as for the latter. The details of this choice are specified
in chapter 2.

¥In our data, we observe that bid functions are effectively step functions. On EPEX spot 256 price-
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dictions from the theoretical paper. Steps in the bid functions mostly are much larger
towards the extremities of the bid functions and probably arise from capacity con-
straints considerations. Working with smoothed slopes is in line with previous work a la
[Préget and Waelbroeck, 2005] and [Ozcan, 2004], who also apply reduced form models

to aggregate bid function data.

Right-hand-side variables

We are regressing an ex-post measure of the auction market (realised slope of the supply
bid function) on ex-ante information that bidders have at the time of bidding, i.e. which
is available at midday of the day ahead of delivery. We thus keep a strict separation of
the ex-post and ex-ante information to the left and right hand side of equation 3.4.1,
respectively. This separation allows us to circumvent endogencity problems and validates

the use of simple OLS regressions.

For this reason, we construct our PLUs on the basis of predicted uncertainty. How-
ever, for data availability reasons we cannot exclude endogeneity problems completely.

For details, see the discussion in section 3.6.3.

In this subsection, we first outline how we generate the proxies for the level of market
demand uncertainty (PLUP) in section 3.4.1. Second, we construct the proxies for the
level of uncertainty from renewables energies (PLU¥) in section 3.4.1. Third, we detail

how the vector of exogenous variables (X) is constructed in subsection 3.4.1.

Generating proxies for uncertainty from market demand (PLU”) We con-
struct a proxy for the level of the demand uncertainty (PLUP) by using the residuals

from a demand estimation on exogenous parameters as a measure of the uncertainty that

quantity combinations are allowed per bidder. When additional bid points are costly, then stepwise bid-
ding behaviour may be very different from a setting where continuous functions can be bid [Kastl, 2011].
Due to the fact that, on average, we do not observe that firms use up all available price-quantity com-
binations, the cost argument of an additional bid point seems weak. Hence, by smoothing the slope we
approximate the unconstrained, continuous bid function.
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bidders face in an auction. Specifically, our PLU? is the expected squared level of the
prediction errors that firms expect to make when anticipating the demand level of the
day ahead. We assume that the ex-post prediction errors give a reasonable estimate of

the uncertainty at the time of bidding.

The uncertainty proxy is obtained as detailed next in a three-step procedure. In the
first step, we explain what kind of uncertainty our PLU? refers to. The second step
details the conceptual details of constructing the PLU”. The third step computes the
PLUP.

In the first step, we focus the analysis to a fixed number K of comparable points
across auctions by using the non-parametric point selection technique outlined in section
3.4. Each k' point is defined by a price and a quantity, which we regress independently

on the exogenous variables.

Let us call Ple and ka the price and quantity of point k of the realised demand
function in auction 7, X f the vector of exogenous variables relevant for the demand

estimation.

Ph=al"+ 807X + " (3.4.2)

Qb =a?+ B %XP + e (3.4.3)

In regressions 3.4.2 and 3.4.3, firms try to anticipate the realization of the demand using
the exogenous information available. We consider that the producers are able to do such
an analysis at the time of bidding.

The prediction errors ef,;‘], J = {Q, P} are a consequence of the stochastic nature
of the demand and hence a manifestation of the uncertainty. We consider that more
uncertainty will lead to larger prediction errors being made in equilibrium and adopt the

square of the residuals (ef) ,;‘])2 as our measure for the realised level of demand uncertainty.
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In the second step, we recover the residuals from the demand estimation in regres-
sions 3.4.2 and 3.4.3 and test for heteroskedasticity using [White, 1980], which is clearly
confirmed (see tables 3.3 and 3.4).

Heteroskedasticity means here that the variation of error terms varies conditional on
the levels of the exogenous factors: E(e?|X;) = g(X;). However, they are still orthogo-
nal: E(e;|X;) = 0, thus ensuring that the prediction is unbiased, but not “best” in the
sense of the best linear unbiased estimator (BLUE). Thus, heteroskedasticity results in
inefficient regressions where the estimator is not minimum variance. Since we do not
interpret regressions 3.4.2 and 3.4.3 for causality, but only for predictive purposes, we

stick to the unbiased OLS.

The heteroskedasticity regression is given for J = { P, Q} by
(el ) =of” + B0/ XP + € (3.4.4)

In the third step, we compute the predicted PLUf?k that firms use when bidding

in the auction as:

—

(B ) =al + 80" xP (3.4.5)

PLU.
The idea is that by experience, firms in the market know that their predictions are more
or less accurate depending on the environmental conditions (in the sense of realizations of
exogenous factors). In other words, firms can use the realizations of X P to infer the accu-
racy of their demand predictions. Technically speaking, they can use the heteroskedastic

nature of the residuals to forecast the level of uncertainty that they face.

The PLUP subs into regression 3.4.1. For simplicity, we do not include the uncertainty
proxies PLUEk measured at all K = 5 points in regression 3.4.1 simultancously, but only
a single PLUEk, at a time. Therefore in the final regression 3.4.1, we regress the slope

at a point of the supply function on the PLU? estimated at the corresponding point on
1/

/

Lz
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the demand function. The pairing is done in the quantity dimension. This means that
the slope of the supply function at point k& = 2 is regressed on the uncertainty measured
at point & = 4 of the demand function (recall the labelling of the points as given in

figure 3.4.1). We indicate this quantity paring in the index k! of the PLU:

(3

—~D
PLU}, = PLU, . (3.4.6)

An increase in PLUP corresponds to an increase in the uncertainty about the market

demand realization. We thus expect 3° to be positive in regression 3.4.1.

Generating proxy for uncertainty from renewable energies (PLU%®) We
have already referred to the statement that the intermittency of renewables causes large
residual demand shocks [EPEX, 2014]. Suppliers are thus wary of the expected produc-

tion of renewables generation.

Given that renewable generation is an exogenous source of supply and is completely
injected on the network without being bidden for (fixed feed-in tariff), it affects the resid-
ual demand curve for each supplier, but does not enter the PLUP, which captures the

uncertainty on market demand only.

In predicting the generation from renewables, we assume that suppliers are able to

infer renewables generation from meteorological forecasts.?

When forecasting the residual demand shocks due to generation from renewables, we
consider that suppliers have an idea of the precision of their estimate based on the “look”
of the meteorological forecasts that they have. By look, we mean the geographical het-
erogeneity or homogeneity of the forecasts, i.e. if when looking at a weather map, one

sees a lot of spatial variations or not.

20We specify the technique in chapter 2 and use it to construct our controls in section 3.4.1.
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We consider that this notion of geographical heterogeneity of the forecasts correlates
to the uncertainty associated with the prediction of renewable production. The argument

is as follows:

First, renewable production is built by aggregating the forecast of all individual re-
newable sources. This means knowing the position and capacity of every renewable source,
querying weather forecasts for all of these points, modeling the renewable’s response to

the forecasted weather and adding the forecasted productions.

Second, we note that weather is spatially correlated, which means that the closer two
points are, the closer the values for a given weather variable (the air temperature at your
left hand is very close to that at your left hand, but less so across the city, and even less so
across the country). This correlation roughly follows an exponential law: the difference
between the values of a weather variable between two points behaves in a linear fashion
for small distances and saturates at large distances.?! The transition between those two

regimes is given by a characteristic lengthscale, a bit less than 200km on average.

Third, we observe that the average distance between production points is large

enough that the relevant regime of autocorrelation is the saturated part.??

Fourth, we note that there are two main channels through which the overall uncer-
tainty about renewable production is related to the weather. There is an issue of error
averaging, which means that if the weather becomes very spatially uncorrelated, one can

expect errors to cancel out relative to a given bias in the forecast. This channel would

2Mntuitively, the characteristic lengthscale of autocorrelation represents the distance required between
two geographical points on a map of weather forecasts to observe a decorrelation of half of its maximum
value. For example on the wind speeds prediction, a characteristic length of 80 km means that if we
observe two very distant points (say 1000km) to have a difference in wind speeds of, on average, 50km/h
(this being the maximum difference, we are in the saturated regime), then we will observe, on average,
wind speed differences of 25km/h for points distant from each other by 80km.

2ZFor N production points, we compute the N(N-1)/2 pairs of points, consider their distances and
compute the average of these distances weighted by the production capacity at every point. In the case
of the wind, we have an average distance of 459 km, in the case of the photovoltaic production we have
an average distance of 499km.
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tend to imply that more spatial variations imply a smaller uncertainty about production.
There is also the issue that weather forecasts are numerical simulations and that the mesh
size for such simulations, typically 5km for the high precision ARPEGE model of Météo
France, implies that the errors are higher as the simulated phenomenons have higher
gradients. This means in our case that the uncertainty about the forecast increases as

the weather becomes more spatially uncorrelated.

Fifth, these two effects are of opposite signs, but our third point is an argument for
considering that the averaging of errors is smaller than the simulation errors. Therefore,
we expect our uncertainty to increase as the spatial autocorrelation decreases (i.e. more

spatial variation).

This can be summed up with the following hand-waving argument: when there is

more spatial variations, the weather is more messy, therefore more difficult to predict.

We compute this characteristic lengthscale (L) as described in chapter 2. Our PLU¥

is defined as the two proxies

1

PLUY,, = where m = {Wind, Solar, Temperature} (3.4.7)

and PLUZ =(

2m

)° (3.4.8)

Ly’
1
Ly,
As explained above, we expect firms to face less uncertainty in predicting weather
conditions when the lengthscale of autocorrelation L is longer since the overall weather
conditions will be more homogenous. A longer length L (less uncertainty), will yield a

smaller PLU® and we expect a flattening of the supply curve. Le. we expect a positive

coefficient 77 on the PLUE  variables in the final slope regression.

However, we also expect the effect of L on the slope to be attenuated, if not coun-
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terbalanced, by the squared term.2?® This means that for very small L, we expect an
additional effect, that of the summation of errors, to become significant and reduce the
uncertainty, or at least its rate of increase: we thus expect a negative coefficient %S on

the squared PLU® term in the final slope regression (equation 3.4.1).

Controls This section details the exogenous variables, which we use for our study.
The stacked vector of exogenous variables is not identical for the supply and demand

regressions of equations 3.4.1 and 3.4.2.

The vector X P for the demand equation includes the variables: Tempeff15, Roll_Temp24,

Roll_Temp240, suncycle, morning, deltasun, EWH, SolarRest, RteBlackBox.

For the supply regression we include in X* the following variables?*: Coal, Brent,

Gas, IT2, EUA, Wind1DA, Hydro.

Table 3.2 gives a briel overview ol the controls used. Details on the computation of
some variables are given in the appendix (see links in table). The last column indicates

the frequency with which we observe the variable in question.

Name Explanation Unit Frequency

Wind1DA  The day-ahead predicted electricity volume gen- MWh  Hourly

erated from wind turbines. Details on p. 111.

Solar The electricity volume generated from photo- MWh  Hourly

voltaic sources. Details p. 115

Continued on next page...

23We expect the effects of L on the slope to be of the shape of a Laffer curve.
24We do not include the variables used for the demand estimation as they indirectly feed into the final
regression via the PLUP.
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... table 8.2 continued

Name Explanation Unit Frequency

Tempeffl5  Effective predicted temperature in France (with  °C Hourly
a cutoff point at 15°C to reflect demand pat-
terns), aggregated on a national level. Details
on p. 114.

Roll_Temp24 Mean of Tempeff15 over the last 24 consecutive °C Hourly
hours.

Roll_Temp24Mean of Tempeff15 over the last 240 consecu- °C Hourly
tive hours.

suncycle Luminosity as a percentage of maximum lumi- % Hourly
nosity of the day. Midday defined as suncy-
cle=1. Details on p. 117.

morning Indicator variable for hours before Midday. {0,1}  Hourly

deltasun Absolute value of the change in suncycle. De- [0,1] Hourly
tails on p. 117.

EWH Indicator variable for hours between 10 pm and {0,1}  Hourly
4 am.

SolarRest  The unexplained component of photovoltaic MWh  Hourly

generation. Specifically, the residuals from a
regression of Solar on suncycle. Details on p.

117.
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... table 8.2 continued

Name

Explanation

Unit Frequency

RteBlackBox The unexplained component of the day ahead

prediction of total consumption in France is-
sued by the grid operator (RTE). Specifically,
the residuals from a consumption estimation.

Details on p. 118.

MWh  Hourly

Coal Average coal import prices at the French bor- €/ton  Monthly
der.

Brent Average of spot prices for crude oil on the Lon- $/bl Monthly
don based stock exchange.

Gas Average of closing prices for natural gas at 1 £/ThermMonthly
month on the London market (NBP).

IT2 Interaction term between gas and demand: Gas £/ThermHourly
weighted by an hourly index for the demand
level 2°

EUA Price of CO? emissions. €/ton  Daily

Hydro Sum of dam level heights on a national level. % Weekly

Table 3.2: Overview of exogenous variables.

The rationale for the included variables is the following:

25Cas turbines generate electricity using natural gas as a fuel. We thus proxy for its input price using
a Gas variable for which we take the closing price for natural gas at 1 month on the London market
(NBP). Electricity generation from gas is expensive and flexible. In general gas plants are only called
upon to provide peak load electricity generation in moments of high demand. We, therefore, compute
an interaction term between Gas and an index for the hourly level of the demand. The index acts as
a weight on the gas price. The weight is computed as the percentage demand level as compared to the
maximum demand level observed in our dataset.
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First, Wind1DA and Solar control for the expected level of renewables generation26
on the day ahead market. These are computed using a novel bottom-up methodology

described in the appendix 2.3.1.

Second, Tempeffl5 controls for the demand patterns as a function of the tempera-
ture.?” Tempeff15 includes a cut-off at 15°C in order to take into account the demand
pattern as a function of temperature according to [RTE, 2014]. Table 2.2 reveals the
improved fit over a simple temperature variable without respecting the demand cut-off

(Tempeft).

Third, Roll_Temp24 and Roll_ Temp240 capture the demand seasonality via the tem-
perature. The former gives the daily average temperature, while the latter captures the
average temperature over the last 10 days. The demand cut-off at 15°C for Tempeffl5
is respected for these means. Including these as seasonality controls allows to get away
from using dummy variables for the seasonality. In short, avoiding dummies yields more
transparency of the results as we do not have the problem of interpreting the dummies,

which are often black boxes.2®

Fourth, we use the four variables suncycle, morning, deltasun and EWH collectively
to continuously control for the time of the day. The reasoning is again the ability to get
away from using dummies and being able to interpret the results. Figure 3.4.3 shows how

the controls describe the daily patterns continuously.

Fifth, SolarRest and RteBlackBox are the residual information gained from the vari-
ables Solar and the day ahead consumption prediction of RTE (PrevConsoH) over other

variables included in XP or X%, respectively.?”

26For data availability reasons, Solar is computed on realised luminosity values rather than forecasts
of luminosity.

2"Note that electric heating is widely spread in France. It is used in 32% of principal residences
(INSEE, RP2011 exploitation principale).

288ee section 3.6.2 for a full discussion on the advantage of avoiding dummies.

29E.g. Solar is strongly correlated with suncycle, thus SolarRest is the residual from a regression of
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Figure 3.4.2: Temperature based seasonality controls

Tempeff15

Roll_Temp24 Roll_Temp240 l

Note: The graph shows the evolution of the temperature based controls for seasonality
for the month of February 2012. The graph shows the lagged nature of the rolling average
temperature controls.

Controls for intraday seasonality

o [ D S S U — s D S —. o0—6—0—06
T T T T T T
0 5 10 15 20 25
Hour

———— suncycle —e—— deltasun
—O— morning - EWH

Figure 3.4.3: Continuous controls for daily patterns

Note: With the exception of EWH, all intraday seasonality controls (suncycle, morning,
deltasun) are determined endogenously by the prevalent luminosity as captured by Solar.
Sixth, Coal, Brent, Gas, I'T2 and EUA are rough proxies for the input prices for electricity
suppliers. Hydro is used as a crude proxy for dam operator’s ability to generate short

term electricity using hydro reserves.

We briefly emphasize that novel methodologies have been used to compute all vari-
ables derived from weather forecasts or observations. When tracing back the shape of
aggregate bid functions on exogenous factors in the second stage estimation, we use ag-

gregated statistics (at the national level) for the exogenous variables. We thus use an

the former on the latter. RteBlackBox is computed as the residuals from regressing PrevConsoH on
Tempeff15, Roll_Temp24, Roll_ Temp240, suncycle, morning, deltasun and EWH. See appendix 2.3.2 and
2.3.2 for details.
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aggregation methodology to summarize local information (collected at the level of the

individual postcodes) in order to generate an aggregate statistic at the national level.

The general methodology for the aggregation is explained using the example of Solar
and as follows: We observe the value of a weather parameter (e.g. luminosity) every
hour at known weather stations in France. We apply an interpolation technique in order
to obtain parameter values for all possible geographic locations in France. At any local
point, we can thus infer the electricity volume generated by using the information of the
locally installed capacity (of solar panels) and the renewable energy available (i.e. sun-
light inferred by the inverse of nebulosity). We then take the sum of all solar generated
electricity per hour in France and use this as our aggregate statistic at the national level in
our regression analyses. We used forecast data wherever possible in order to approximate
the level of information that bidders have at the time of bidding and circumvent endo-
geneity problems. For cases where forecast data was not available, e.g. Solar, realised

weather data was used.

Extensions and robustness checks

In order to test the robustness of our results and circumvent some drawbacks of the

baseline model, we use a few alternative specifications of our empirical model.

Bootstrapping standard errors

The set-up of our empirical analysis relies on stochastic variables, e.g. PLUP, which
are computed in the first stage of our identification. The assumption made for an OLS
regression of normally distributed residuals is a very strong one (particularly with the
forecast variable) and one which can flaw the precision of estimates in the second stage
regression. We therefore bootstrap the standard errors of the final regression by using
random sampling with replacement at cach stage of the analysis, i.c. for both the PLU

computation and the final slope regression with 300 repetitions.
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Bootstrapping allows us to non-parametrically approximate the distribution of the
forecast PLUs and thus enables us to correct the standard errors of our coefficient esti-

mates.

Kernel based uncertainty forecasts (PLU”) The PLUP computed as described
in section 3.4.1 is noisy since we assume a linear forecast model to be valid for any com-
bination of realizations of exogenous paarameters, i.e. the same model applies winter
and summer, day and night. While the results are as desired for the baseline PLU? | a
bootstrapping of the standard errors indicates that the first stage forecast is too imprecise

for effects of a satisfactory significance level.

We therefore develop an extension of the uncertainty prediction model in which we
use the idea of demand forecasts (equation 3.4.5) only locally, i.e. for a limited range
of variation in the exogenous parameters. In other words, we estimate the PLUP corre-
sponding to an auction only in the neighbourhood of this auction, i.e. over all auctions
that occurred in similar conditions. By conditions, we mean realizations of exogenous
parameters, and the neighbourhood refers to the concept of measuring the similarity of

these realizations by means of a range. The next step explains how this is done formally.

We consider that firms predict the level of the uncertainty by comparing it with the
level of uncertainty in past®® auctions of similar exogenous conditions. The methodology
is analogous to the computation of the baseline PLUP. The suppliers forecast the preci-
sion (squared residuals) of their demand estimation as before, but only on a subsample of
the data. The subsample is defined as all observations which lie within a distance by, of
the observation of interest with respect to each control variable X,, Ve = {1, .., E'}. Effec-
tively, this is a multi-variate kernel regression and subsequent forecast with a rectangular
(also called “boxcar”) weighting function. Observations within the kernel window are

given equal weight, while observations outside the kernel window are given zero weight.

30For data availability reasons, we pool all (past and future) auctions for the computation of this PLU.
This introduces some endogeneity. For a discussion of this choice, please see section 3.6.3.
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We set the bandwidth by, with respect to each variable equal to % of the range of that

variable.3!

At any arbitrary observation (auction) with the realization X for the stacked vector

of exogenous variables (X.), the simple weight function is

1, if|X, - X.| <bx,
=[[W(X.).  where W(X,) = (3.4.9)

0, otherwise.

and the subsample based regressions are then

D,P D,P
PP(X) = f + B W(X) +ey (3.4.10)
D, D,
QY (X) = ak}i + ﬁkgvv(X) 3 (3.4.11)
and the local uncertainty regressions and forecasts V.J = { P, Q} are given by
D,J\2 U,J U,J
(ekx) 7+ B xW(X) +e % (3.4.12)
DN U.J
(e0z) =ayx +6.3zX (3.4.13)
——
PO 5
When firms infer the upcoming uncertainty by looking at the uncertainty in past
auctions, the precision of their estimate depends on the number of comparable auctions
available, i.e. the sample size. Given that the sample size varies greatly across auctions,
we use a sample-size-weighted OLS regression in the final estimation of equation 3.4.1.

Finally, we bootstrap the standard errors on the kernel-based PLUs using 50 repetitions.3?

31See appendix 3.B.1 for details. Column 2 of table 3.14 indicates the choice of by, for each exogenous
variable considered.

32For computational reasons, we only bootstrap the kernel based PLUs for the point of inflection
(k = 3). We choose only 50 repetitions for the same reason. Given the size of our dataset, we consider
it acceptable. The general criterion for convergence is that each observation is selected at least once in
the bootstrapping exercise.
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3.5 Results

We first present the results for the demand estimation in both the Price and Volume
dimension since this step is identical for all PLU specifications. We then present the

results of the final regression in the baseline and alternative specifications.

3.5.1 Demand estimation

Table 3.3 gives the results for the demand estimation on volumes (equation 3.4.3). Table

3.4 shows the results for the demand estimation on prices (equation 3.4.2).

These tables are interesting for two reasons. First, they provide the basis for our
computation of the PLU”. Second and the reason why we disclose them in such detail,

they are already a result in themselves.

It is comforting to see that all variables used are significant and, more importantly, of
the expected sign. This significance provides support for our specification of the demand
estimation. For the interpretation here, we focus on the effects at the point of inflection®?

(k =3).

First, looking at the volume effects of the exogenous variables: All variables included
in the regression are highly significant at the 1% level. All temperature statistics (Temp-
eff15, Roll_temp24, Roll_temp240) bear coefficients with a negative sign and confirm that
electricity demand falls with increasing ambient temperature. All daytime controls show
up the expected sign as well: suncycle and deltasun have positive coeflicients. This is sen-
sible as electricity demand is higher during the day than at night (proxied for by suncycle)
and rush or activity hours (proxied for by deltasun) in the morning and evening are also
characterised by increased demand. The variables morning and EWH have coefficients

of a plausible negative sign. The morning as controlled for by our indicator variable3*

33 As mentioned, the point of inflection is the centre point of the bid curves and the most relevant for
equilibrium determination.
34The morning is defined as the hours before midday, which occurs when luminosity is at its daily
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is shorter than the afternoon and evening together, thus total electricity consumption is
lower as well. KWH stands for the deep night between 10 pm and 4 am and thus also
corresponds to low demand periods. SolarRest controls for selfgeneration to cover own
consumption and has a plausible negative coefficient. RteBlackBox, on the other hand,
has a very sensible positive coefficient and confirms that actual demand is higher when

the grid operator expects it to be the case.

The analysis of the price effects of these controls on demand functions is in line with
the analysis of volume effects. This is coherent since for a linear downwards sloping de-
mand curve, a left shift (volume decrease) is synonymous for a downwards shift (price
decrease) of the curve. We consider that at the point & = 3, the demand functions are
locally linear. We note the only exception for the coefficient of SolarRest which has a

positive price effect, while a negative volume effect.?®

Second, these tables already give a descriptive analysis of the effects of exogenous
variables on the shape of the demand bid function: We now compare all coefficients for
a specific variable on the K = 5 different points on the demand function (we read the

table horizontally and compare sign changes across columns).

In table 3.3, we observe for each row at most a single sign change across the coeffi-
cients for the different points. Furthermore (and with few exceptions), the magnitudes
of the coefficients generally increase or decrease monotonically along a row. This is very
convincing as it suggests that exogenous variables have a monotone effect on the shape of
the bid function. We thus only observe one-directional shifts (e.g. a unilateral left shift)
or two-directional shifts (extension or contraction) in the volume dimension induced by

the variation in exogenous variables. While the unilateral effects are explained analo-

maximum.

35We emphasize in the construction of our variable (appendix 2.3.2) that it is not possible to build a
proxy for lighting consumption that would allow us to decorrelate the effects from photovoltaic production
and lighting consumption. We therefore stick to the SolarRest proxy, which aims to capture the eflect
of Solar which is not captured by suncycle.
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gously to our point specific interpretation on the point k& = 3 above, we do not have a

story to tell about two-directional effects.

Tempeffl5 results in a contraction of the bid function in terms of volumes (right
shifts on low volume points, £ = 5,4 and left shifts on high volume points k£ = 3,2,1).
Roll_Temp24 has the opposite effect and results in a volume extension of the curve.
Roll_Temp240 induces a pure left shift of the whole function.?¢ For the intraday season-
ality controls, the results are very clear. While suncycle results in an extension of the
demand function®?, all other intraday controls (morning, deltasun, EWH) have unilat-
eral effects. When the indicators morning and EWH are positive, we observe volume
decreases at all points and thus a left shift of the function. Higher values of deltasun

induces volume increases at all points of the bid function.

Finally, we have SolarRest which induces an expansion of the curve and RteBlackBox

which has a unilateral right shifting effect on the aggregate demand bid function.

The price variation of the demand bid function yields interesting results, too. Given
that the prices of points k = 1,5 are fixed, we only observe effects for the interior points.
We thus focus on the effects on the points & = 4,3,2 only (called the “central demand
function” here). Again, we only observe at most a single sign change across columns for
any exogenous variable. Both Tempeff15 and Roll_Temp240 lead to an extension of the
central demand function (we are now looking at vertical variation of the bid function as
shown in fig. 3.4.1), while Roll Temp24 causes a unilateral downwards shift. For intra-
day seasonality controls, we see that suncycle and deltasun have a contracting effect on
the central demand function and morning a unilaterally negative effect. EWH leads to

an expansion of the central demand function. SolarRest and RteBlackBox indicate an

36Excluding interaction effects, we note that the net effect of a simultaneous 1°C increase for all three
temperature variables results in a net left shift of the function. In the price dimension (table 3.4) we
observe a net downwards shift. Both effects suggest that electricity demand decreases with the prevailing
temperature.

3TCombined with the observed price effects from table 3.4, this suggests that demand is more price
elastic during the day.
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extension of the central demand function in the price dimension.
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k=5 k=4 k=3 k=2 k=1
Volume Volume Volume Volume Volume
Tempeffl5 50.72%*%*  38.58*%**  _130.3%** _189.3%** _204.0***
(9.942) (10.13) (10.94) (13.32) (13.20)
Roll_. Temp24  -63.57*** _G7.13%** _48 7*** 19.76 34.16**
(11.78) (12.06) (13.14) (15.83) (15.76)
Roll_.Temp240 -60.15%** _68.38***  _78.49%** 78 44*** _R7 38***
(6.655) (6.867) (7.450) (10.05) (10.00)
suncycle -804.0%**  _G52.1%**  508.2%F*F  1.351**FF 1 .400%**
(44.27) (45.50) (48.52) (56.36) (55.73)
morning -101.2%F0F 0 1220.3FFF  _814.8%FF  _872.2%FF  _885.8%**
(27.52) (28.33) (30.44) (37.71) (37.28)
deltasun 2,659%** 2 850%HFK 3 201K 1 721FFK 1 821K
(153.5) (158.5) (166.1) (197.8) (196.5)
EWH S803.1%F*  _R33.1FHF TR THHE 354, TH¥E _322 8F**
(30.74) (31.91) (33.15) (42.09) (41.78)
SolarRest -0.595%**  _0.363*** -0.145***  -0.0137 0.246***

(0.0282) (0.0305) (0.0342) (0.0418) (0.0407)
RteBlackBox -0.00259  0.0127***  0.105%*%*  0.107***  (.0979***
(0.00235)  (0.00243)  (0.00255)  (0.00316)  (0.00317)

Constant 6,054%F%  7.086FFF  11,446%FF  15,215%FF 15 50245
(33.71) (35.04) (37.15) (48.68) (48.27)

Observations 14,691 14,691 14,691 14,690 14,691
R? 0.201 0.219 0.478 0.344 0.346
White 548.6 524.9 407.9 961.8 944.8

Robust standard errors in parentheses
K p<0.01, ** p<0.05, * p<0.1

Table 3.3: Estimation results for demand volumes

Note: The estimated constants of this table or the left graph of fig. 3.4.1 indicate
to which portion of the demand function the types of points k =1, .., 5 refer.
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k=5 k=4 k=3 k=2 k=1

Price Price Price Price Price
Tempeffl5 0 4.675%*F*F  _0.969*** -1.308%** 0
0) (1.523) (0.0599) (0.0980) (0)
Roll_Temp24 0 -10.07%** -0.124%* -0.0470 0
(0) (2.233) (0.0713) (0.116) (0)
Roll_Temp240 0 4.250%**  _0.0901** -0.353%** 0
(0) (1.147) (0.0404) (0.0607) (0)
suncycle 0 -10.98** 6.870%** 11.60%** 0
(0) (5.020) (0.258) (0.445) (0)
morning 0 -0.226 -5 T48*HE 10,009 H* 0
(0) (4.133) (0.173) (0.285) (0)
deltasun 0 -16.54 10.60%** 18.72%** 0
(0) (19.16) (0.881) (1.497) 0)
EWH 0 5.136 -1.756%** -3.014%** 0
(0) (4.448) (0.192) (0.302) (0)
SolarRest 0 0.000532  0.00192%*%*  (0.00253*** 0

(0) (0.00307)  (0.000193) (0.000326) (0)
RteBlackBox 0 9.91c-05  0.000906*** (0.00147*** 0

(0) (0.000301) (1.47e-05) (2.26¢-05) (0)
Constant 3,000  131.3%%* 39.45%%* -39.43***  _3 000
(0) (4.210) (0.217) (0.319) (0)
Observations 14,691 14,691 14.691 14,690 14,691
R? 0.005 0.463 0.420
White 138.2 640.9 761.2

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 3.4: Estimation results for demand prices

Note: The estimated constants of this table or the left graph of fig. 3.4.1 indicate
to which portion of the demand function the types of points k =1, .., 5 refer.
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Overall, we take away a solid R? with coefficients of the correct sign. We furthermore
have disclosed the White statistic which unanimously confirms heteroskedasticity in these

regressions. The significance levels have been measured using robust standard errors.

We point to the fact that the explanatory power of our demand estimations is highest
for the point of inflection, in line with our expectations. Points of maximum curvature
k = 2,4 reveal lower R? statistics. This is likely due to the underlying data patterns
that arise from bidding frictions, e.g. focal price points. For these points, it is thus not
surprising that we do not observe convincing demand estimates - we note in particular
the lack of explanatory power for the demand estimation in the price dimension for points

of type k = 4.

3.5.2 Final regression

For the final regression, we first lay the focus on the point of inflection (k = 3) for a
detailed interpretation of our results. We choose the point & = 3, because this type of
point is the most relevant for equilibrium determination. We then disclose the results
for all other points k # 3 to give an overview of the effects of uncertainty on the whole

aggregate supply bid function.

Each result table has four (three®®) columns to show the results for different estima-
tors and two specifications of the PLUP. All other variables remain unchanged across
the columns. In the tables, column 1 refers to the baseline specification of the PLU:/,
where standard errors are calculated using the Huber-White sandwich estimator. Column
2 reports the results for the baseline model using bootstrapped standard errors with 300
repetitions. Column 3 reports the results for the regression on the kernel based PLU?(’J,

using the sample size of each kernel as weights in the regression. Column 4 reports the re-

38For computational reasons, we do not run the bootstrapping of the kernel based PLUP for the points
k # 3, thus we only have three columns for these tables.
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sults of the kernel based model using bootstrapped standard errors using 50 repetitions.*?

Regarding notation: In the results tables, PLUvRvar‘m’ stands for PLUffm with ‘m’
being replaced by the initial of the variable in question (W, S and T, respectively). PLUgm
is indicated by the extension “sq”. PLUvDvar‘J’ stands for PLUP with J = {P,Q}
representing the dimension in which the demand uncertainty is measured. The kernel

based PLU)Q{ are given by PLUvDvarK*J’ in the tables. To facilitate the reading of the

tables, we adopt this notation for the discussion of the results.

For the point of inflection (k = 3), the results are shown in table 3.5. Regarding
uncertainty from renewables production, only that of wind has a significant and robust
impact. PLUvRvarW has a positive effect (significant at the 1% level) on the slope in
all specifications. PLUvRvarWsq has a negative effect on the slope in all specifications,
however this second effect is not robust to bootstrapping the standard errors. The signs
of the estimated coefficients are in line with our expectations. To show this, we recall that
both versions of the PLUvRvarW are based on the inverse of the characteristic length-
scale Ly, of autocorrelation of the wind speed measurements. Thus, when Ly, increases
(it represents a decrease in the uncertainty since wind speeds are homogenous over longer

distances), the PLU decreases (corresponding to a decrease in uncertainty).

While an increase in the PLUvRvarW leads to an increase in the slope of the supply
function, the effect is attenuated by the squared term PLUvRvarWsq for very small and
large Ly . The estimated coefficient for the latter is negative and suggests that for very
short Ly, (i.e. very heterogenous wind speeds over the country), prediction errors cancel

out. For very long Ly (i.e. very homogenous wind speed profile), the marginal impact

39Coefficients vary slightly (< 420%, no sign change), because the bootstrapping loop includes the
kernel-based prediction of the uncertainty and thus varies the kernel sample sizes, which are used as
weights in the final regression. Furthermore, the estimator has probably not yet fully converged with 50
repetitions, however for computational reasons we stick to this choice.

40By looking at the variation of our data, we see that the negative effect of the PLUvRvarWsq term
merely attenuates, rather than overrides, the positive effect of the PLUvRvarW term on the slope since
in our dataset we very rarely observe PLUvRvarW values sufficiently large to exceed the maximum of
the Laffer curve of the impact on the slope.

172



Investigating the Impact of Uncertainty on Firms with Dynamic Costs: A Case Study
of the French Electricity Market

of Ly on the level of uncertainty decreases.

With respect to the uncertainty from temperature forecasts, the results are insignifi-
cant (although of the anticipated sign). We expect the impact of temperature uncertainty
goes via the demand response, which we account for in our proxy for the uncertainty from
demand realization (PLUvD). Similarly, uncertainty from Solar production is attributed
no effect. This is not surprising as generation from solar is only a fraction of that gener-
ated from wind power and thus negligible. Furthermore, we are unable to disentangle the
effect of solar generation from the reduced demand effect from high luminosity (which
result in low demand for lighting). We do not find evidence for a direct response from

suppliers to uncertainty in temperature or solar predictions.

Uncertainty from the realization of market demand has a negative and significant
effect when proxied for by price-based PLUvDvarP (see table 3.5) as opposed to a pos-
itive and significant effect when proxied for by a volume-based PLUvDvarQ (see table
3.5). The positive effect on PLUvDvarQ is in line with our prediction made in section
3.1.2. This result supports the theory that firms take uncertainty when bidding into ac-

count and consequently adjust their bidding strategy in order to minimize dynamic costs.

However, our theory produces a prediction for volume based uncertainty only. We in-
clude the uncertainty proxy for price PLUvDvarP as a control and its effect seems rather
robust. The effects of PLUvD in either the price or volume dimension are robust to the
exclusion of the other.*! We try to explain the opposing signs for the coefficients of the

two proxies in section 3.6.1.42

Furthermore, table 3.5 gives support to our extension using kernel based PLUvDs.

4 Results available from the authors.

42The net effect cannot be precisely computed as the conversion of the PLUvVD from the price dimension
to the quantity dimension is not possible. We approximate the comparison however, by including both
PLUP simultaneously in the regression. All PLUvD are rescaled by their respective means to allow some
degree of comparison.
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Column 2 shows that the effects of the baseline PLUvD are not significant when boot-
strapped. Our alternative is to use a more elaborate uncertainty prediction model. These
kernel based PLUvD are more sophisticated in two respects: (i) the forecasting model
is only applied locally, that is auctions are only compared to similar auctions and (ii)
the obtained forecast is weighted by the sample size used for its prediction. Thereby, we
control for the confidence of the firms in making those predictions. The results of the
weighted regression are given in column 3. The results using the more elaborate predic-
tion model are in line with those from the baseline regression, while being more accurate
as indicated by the improved explanatory power of our model (we see a 16.5% increase of
the R? from columns 1-2 to columns 3-4). Finally, the results of our kernel based model
are more precise as indicated by the higher significance level for the PLUvDvarKP and

PLUvDvarKQ, which are now also robust to a bootstrap (column 4).

Finally, we explicitly include the controls for the levels of the input prices of elec-
tricity producers (X®). We do not interpret these coefficients since there are no ex-ante
expectations of their levels to affect the slope of the supply bid function. We briefly men-
tion that intraday seasonality controls as well as other demand related variables are not
included in this regression to avoid multicollinearity problems with the PLUvD, which

are themselves computed as a linear combination of the demand control variables (XP).

Overall, we take away a goodness of fit of > 20% for our empirical model as well as the
robust positive coefficients for both the demand based uncertainty proxy (PLUvDvarQ)
and the weather based uncertainty proxies (PLUvRvarW and PLUvRvarWsq). We note

the puzzling result for the PLUvDvarP.

For the other points (k =1,2,4,5), the results are given in tables 3.6, 3.7, 3.8 and

3.9, respectively.*> We comment on the effects over all points collectively in order to give

43Variables marked “(omitted)” are drop due to perfect collinearity.



an overview of the full bid function behaviour.

The specification of the proxies for the uncertainty from renewables as well as of the
controls does not vary across columns, we thus focus on column 2 for these (in order to
take bootstrapped standard errors into account). While we observe in table 3.5 a convinc-
ing effect for the uncertainty from wind predictions on the slope of the point of inflection
(k = 3), we cannot observe this effects on the other points of the bid function.** No other

proxy for the uncertainty from renewables has a significant effect on the slope at any point.

The proxies for uncertainty from market demand produce opposing effect depending
on the prediction model. PLUvDvarP has a negative and significant effect on all points
(with the exception of points £ = 1 and k£ = 5 of course, which do not exhibit variation
in prices due to the auction rules). PLUvDvarQ has a positive effect, when significant?®,

on all points (k =2 —5), but not on k = 1.

On the remaining controls, we do not observe a clear pattern on the effects at the
different points. We run the analysis without these controls and note that the signs of

all significant variables remain unchanged.*

3.6 Discussion

In this section we reflect on the results and use the opportunity to address a few issues,
drawbacks as well as qualities of the research conducted. We first discuss the findings of
the paper and their internal and external validity. We briefly review the design of the

empirical strategy and lend particular focus to how we deal with the issue of endogeneity.

44We note the exception of a negative effect for PLUvRvarW on the slopes at points k& = 2 and 5
(significant at the 5% level).

4SFor both the bootstrapped baseline results (col. 2) and the weighted kernel based specification (col.
3).
46Results available from the authors.



3.6.1 Findings

In this paper, we investigate whether uncertainty affects supplier bidding as predicted by
the theory. We find that uncertainty from weather forecasts indeed affects the suppliers’
bid function as expected. The aggregate supply function steepens when the level of un-
certainty increases. We take this as evidence that firms take dynamic cost considerations

into account and adjust their behaviour when facing increased expected dynamic costs.

We also find significant results for the effect of the level of uncertainty about the
realization of market demand on the suppliers’ behaviour. However, we observe a strong
discrepancy between the effect for uncertainty as measured on price volatility and the
effect of uncertainty as measured on volume volatility. While the former sees itself at-
tributed with a negative effect, the latter sees itself attributed with a positive effect on
the slope of the aggregate supply function. These opposing signs are robust in all speci-

fications and seem to be of too much importance to be neglected.

The two proxies in question (PLUPY and PLUP?) are two variables designed to
measure the same information, namely the prediction error of the demand function. As
such, they are identical with respect to the set-up, computation as well as point at which
they are extracted. They only differ with respect to the dimension in which the variation
of the demand function is measured, the former in the price dimension and the latter in

the volume dimension.

A theory using linear functions would predict that these measures of the shifts of
the demand line are identical and interchangeable (modulo a translation by the slope).
Also our data, i.e. the observed bid functions, suggests that, at least locally at the point
k = 3, the bid functions are linear.#” Furthermore, our demand estimation models for
both price and volume variation*® indicate that the prediction model used works well in

both dimension. In particular at k = 3, significance and equal signs on coefficients for

4TRecall the graph in figure 3.3.2.
48Precisely look at columns 3 of tables 3.3 and 3.4.
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all terms included as well as similar explanatory power® in both regressions confirms the

similar nature of the two proxies.

Our recovered PLUPY and PLUP? are, as expected, collinear.’® While OLS remains
unbiased in the presence of collinearity between two regressors, its precision is reduced.
We correct for the collinearity by dropping one proxy or the other, but the individual

results remain unchanged - the coefficients of the two proxies keep opposite signs.

Assuming that our empirical strategy is valid to test the relationship of interest, a
possible reason for our intriguing observations could be that the slope of the demand
function, which relates PLU”-? and PLU”* | is endogenous on the uncertainty. Un-
certain demand does not only unilaterally shift the demand function in one dimension
(either P or Q), but also affects the shape and thus the slope of the curve. This effect
is not accounted for in our research design and could drive the opposing results for both
proxies. The endogeneity of the slope of the demand curve could be accounted for in
our model by extracting the residuals from a regression of PLUP" on PLUP? in an
analysis to see if endogeneity exists and then reusing the residuals to control for slope ef-

fects of the demand curve in the final regression. We leave this avenue for further research.

Without having resolved the empirical discrepancy in the results, the stark contrast
between the two could also hint at the fact that we need new theories to explain both
demand and supplier bidding behaviour on the electricity market. This calls for new the-
oretical models to better explain the shape of aggregate bid functions, which are S-shaped
overall. Special attention in these models should be placed on the effect of uncertainty

and its importance for bidders via the link of dynamic costs.

Finally, our analysis relies strongly on the analysis of the point of inflection (k = 3),

but the functional analysis is important, too. While results on the whole bid function

49R2 of 0.463 for the price and 0.478 for the volume regression.

50Not perfectly, but with a correlation coefficient of 0,62
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are broadly speaking in line with the point-specific analysis on the point of inflection,
the significance of the results is weaker and the results less clear. Furthermore, we
often observe varying effects on low and high volume points.’® We conclude that the
impacts of variations in exogenous factors on the shape of the bid functions are not
uniform. Non-linear effects are neither predicted by our linear theory nor have been
shown in previous studies (with the exception of [Wolfram, 1999]). Our results hint at

more intricate mechanisms which drive the shape of these bid functions.

3.6.2 Internal and external validity

We believe that the work is credible due to many aspects of the research design.

First, our set-up is based on rather intuitive relations which we test exclusively using
simple OLS regressions. These regressions are econometrically unbiased given the data
impurities that we observe. To guarantee precision of our estimates, we use bootstrapping

techniques.

Second, considerable effort has gone into the treatment of the information that goes
into the right hand side of our regressions. We do not only refer to the final PLUs used,
but also point at the precise use of our controls. See, for example, the treatment of the
variable RteBlackBox (details see page 118), which proxies for the information contained
in the day ahead demand estimates (PrevConsoH) given out by the grid operator RTE.
In order to extract the marginal information of the PrevConsoH estimate, which is not
explained by other controls variables that we include in our analysis, we compute the
residuals from a regression of PrevConsoH on our other controls, e.g. daytime controls
such as suncycle. These residuals (called RteBlackBox) enable us to achieve a more so-

phisticated understanding of our regression output.>?

51We refer specifically to the strengthening or weakening effects of exogenous variables on different
points a shown in demand level estimation tables 3.3 and 3.4 as well as in the slope regressions tables
3.6 -3.9.

52Gee, for example, the regression output of the demand estimation in tables 3.3 and 3.4.
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We also emphasize the aspect that we understand our dataset as a cross-sectional
dataset rather than a time-series. While we do segment our dataset into weekday and
weekend days and only run our analysis on the former, there is not reason why demand
on a Tuesday afternoon should not be comparable to demand on a Thursday afternoon.
We therefore ignore weekday dummies to increase our sample size. Furthermore, we avoid
the use of dummy variables to control for the hour of the contracts in our regressions
in order to further increase the sample size. However, we cannot compare electricity
consumption between 4 am and 4 pm within a day. Neither can we compare two 4 pm
hours of a day in winter and another in the summer. Using dummies would first restrict
our sample size, plus make our interpretation more difficult since the dummy variable
aggregates the effect over all conditions that change between samples. We use a bottom
up approach that allows us to circumvent the sample size restriction and interpretation
difficulties from daytime or seasonality dummies. Instead, we use continuous variables
to control for the daytime and season by means of short and longer term temperature
averages or other weather characteristics such as luminosity, which generates controls like

deltasun.”®

Finally, we point at the empirical framework that allows us to run reduced form re-
gressions on multiple regions of bid functions to better understand functional responses
of those bids to variation in exogenous factors. We use 5 points for our analysis and refer
to chapter 2 for the full details on this choice and the evaluation of the point selection.
With hindsight, we feel that an additional two points would have been useful to better
understand functional behaviour of the part of the bid functions, which is more relevant
in cquilibrium, i.e. on the centre part.>* We note the computational demands of more

points.

The methodology developed for our exercise on data from the French electricity mar-

53See section 3.4.1 for full details on our set of control variables for both demand and supply.
54For that we would recommend the points representing half of the maximum curvature between the
current points k = 2,4 and k = 3.
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ket has applications in other domains. This is valid for the non-parametric point selection
mechanism (section 3.4), the mechanism to aggregate local geographic data to a national

level (chapter 2) as well as the identification strategy based on purely ex-ante data.

In particular, we note that the possibility to run reduced form estimation strategies
for the analysis of markets which make access to functional data available. This includes

all markets which use a multi-unit, uniform (or discriminatory) auction mechanism.

3.6.3 Endogeneity

The set-up of this work is specifically aimed at circumventing problems of endogeneity.
For that sake, we keep a strict separation of ex-post and ex-ante information to the left

and right hand sides, respectively, of any regression.

To achieve this separation of ex-ante and ex-post information, both newly developed
methodologies are highly useful. The point selection methodology from section 3.4 al-
lows us to extract proxies for the level of uncertainty about the realization of market
demand, which are unaffected by the equilibrium interaction with the market supply.
The weather data treatment methodology from chapter 2 enables us to base our proxies
for the level of uncertainty from renewables on measures of the expected homogeneity
of weather forecasts. Both methodologies allow us to recover ex-ante information on the
prevailing uncertainty that firms have at their hands at the time of bidding. The infor-

mation contained in all other controls used is also available at the time of bidding.

However for data availability reasons, we are not able to keep this strict separation
at all times in practice and revert to using ex-post data to compute some variables that
should ideally be computed on ex-ante information only. This is the case twice in this

work: (i) we use observed weather data to compute the variable Solar® and (ii) we use

35Contrary to Wind1DA and Tempeff15, which we are able to compute purely on forecast data.

180



the pooled data over all auctions for the demand estimation and subsequent uncertainty

forecast of equations 3.4.2 - 3.4.5.

In both cases, we do not believe that this choice compromise our results. For the
case of Solar, we use realised luminosity instead of forecast data. This is as if weather
forecasts were perfectly accurate. Given that solar production only accounts for a small
fraction for of total electricity generation and that we extract the very informative com-
ponent of the Solar variable by using the variable suncycle (which is arguably very well

predictable), we do not see the use of ex-post data as problematic.

For the case of the PLUY” computation, we run the demand estimation pooled over
all observed auctions (i.e. past and future) and say that firms have this level of infor-
mation when bidding in each auction of our sample. We do so because we do not have
the necessary data before 01.01.2011 and thus cannot calibrate our forecasting model
on a “learning” dataset. Instead, we assume that demand patterns conditional on the
explanatory variables has remained constant over our 2.5 years time period of analysis.
The estimation based on pooled data then yields, on average, the same insights as an

analysis conducted purely on past data.

We could test robustness of our pooled approach by investigating the effect of a re-
striction on using only past data in the demand estimation. A learning effect could arise
from more precise estimations of demand functions. However, due to the long experi-
ence of most firms on the market in reality, this learning effect would be artificial and
not represent a real insight. We therefore accept the possibility of a (small) endogeneity
concern in this paper and further work could fully circumvent this issue by extending the

database appropriately.
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3.7 Conclusion

This paper is a sophisticated proof of concept of our methodology applied to the electric-
ity market. We observe that bidders take uncertainty from renewables generation as well
as uncertainty from demand realization into account. The results indicate that electricity
suppliers react to an increased level of uncertainty by bidding more volume eclastically
(steeper supply functions in the dimension Q (x-axis) - P (y-axis)) in order to minimize
expected dynamic costs, which increase with the uncertainty. The results also indicate
that not only supplier bidding is affected by uncertainty, but that the level of uncertainty

also impacts bidding from the demand side of the market.

Future empirical work should focus on investigating the endogeneity of the demand
function on uncertainty as well as better understand frictions in the bidding (e.g. focal
price points). Concurrently, the results also call for more advanced theoretical work on
the shape of bid functions of players, in particular to explain non-linear shapes. This
is also suggested by our bid functional analysis which hints at non-unilateral effects of
exogenous variables on the shape of the functions. The economic insight hidden in full
bid functions is vast and a better understanding of these could be applied to address

important welfare questions.”®

6Such an application, which the authors currently focus on is the question of the optimal choice of the
geographic installation of renewable electricity generation units (solar panels and wind turbines) with
respect to minimizing the intermittency of renewables generation. A clear understanding of the effects of
uncertainty on the market is vital to close the analysis on organizational questions of the market. This
is outside of the focus of this paper

182



Appendix

Appendix 3.A Summary Statistics of Selected Points

Mean Median StdDev Min Max

Prices for k=1 -3,000.0 -3,000.0 0 -3,000 -3,000
Prices for k =2 -56.7 -55.0 19 -97 70
Prices for k=3 27.6 26.8 11 27 93

Prices for k =4 120.2 105.4 193 -11 2,999
Prices for k=5 3,000.0 3,000.0 0 3,000 3,000

Table 3.10: Prices of selected demand points

Mean Median Std. Dev  Min Max

Volumes for k=1 13.328 13,222 2,213 4,990 23254
Volumes for k=2 12,919 12,824 2,238 3,321 23,001
Volumes for k=3 8779 8,664 2,028 1,958 18,335
Volumes for k =4 5777 5,730 1,558 987 12,773
Volumes for k =5  5.031 4,968 1,467 914 11,301

Table 3.11: Volumes of selected demand points

Mean Median Std. Dev. Min Max

Prices for k=1 -3,000.0 -3,000.0 0 -3,000 -3,000
Prices for k =2 -30.3 -25.0 219 -2,999 439
Prices for k=3 61.3 58.6 24 11 526
Prices for k =4 133.9 136.3 32 36 626
Prices for k=5 3,000.0  3,000.0 0 3,000 3,000

Table 3.12: Prices of selected supply points
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Mean Median Std. Dev.  Min Max

Volumes for k=1 3,721.7  3,526.0 1,344 618 10,594
Volumes for £k =2  4,432.8  4,226.0 1,602 844 11,765
Volumes for k=3  8,467.2 8,365.5 1,814 3,431 20,932
Volumes for k =4 11,849.5 11,717.7 2,411 3,641 27,810
Volumes for k=5 14,390.6 14,142.0 3,062 6,580 35,356

Table 3.13: Volumes of selected supply points

Appendix 3.B Computational Details and Descrip-

tives

3.B.1 Hard choices in the PLU computation

In computing the multi-variate kernel based prediction of the uncertainty for a given
auction, we select auctions of a sufficient degree of similarity. We base the forecast equa-
tion 3.4.5 on this subsample dataset. We thereby consider that firms use the forecasting

equation only locally in the neighbourhood of the auction of interest.

In order to define the size of the neighbourhood of an auction, we have to explicitly

specify the width of the kernel window used in selecting the respective subsamples.

The trade-off involved is that we want to have small kernels for a precise computation
of the PLU, while we want large kernels to make sure that we have a sufficient sample

size in each kernel in order to derive meaningful statistics.

We choose to use a constant kernel window length with respect to each conditioning
variable. We set the length of the window for each variable equal to % of the variation
of that variable. E.g. for Tempeffl5, we observe a range of values from —10°C to 14°C.

The subsample used to compute the PLU? corresponding to a specific observation will
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consist of all observations that are within a range of £4°C of that observation for Temp-
eff15. The same logic is applied to selecting the neighbourhood with respect to all other

conditioning variables.

Table 3.14 gives descriptive statistics about the conditioning variables for the kernel

and the explicit choice m, which determines the length of the kernel window for a variable

X, using the formula by, = —=—.

3.B.2 Descriptive Statistics

On realised market equilibria

Realised Volume per Hour Realised Prices per Hour
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Figure 3.B.1: Plotted average realised Volume (left) and Price (right) per Hour with 95%
confidence intervals.
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Figure 3.B.2: Distribution of observed market equilibria

Note: The warmer the colours of the heat map, the higher the frequency of realised price-
quantity schedules. The colour legend is omitted for brevity, density changes between contours

are of the order of 10~%.

On player bid functions
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Figure 3.B.3: Distribution of minimum and maximum production volumes (and corre-
sponding range) bid in an hourly auction.
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Figure 3.B.4: Distribution of number of bid function steps
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On exogenous factors
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Figure 3.B.5: Histogram of predicted wind (left) and predicted solar (right) generation
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For k=3 (Point of inflection)

(1) (2) (3) (4)
fxInvertQP  fxInvertQP  fxInvertQP  fxInvertQP
PLUvRvarT 0.000882 0.000882 0.00374** 0.00508
(0.00152) (0.00415) (0.00155) (0.00354)
PLUvRvarTsq -0.000529 -0.000529 -0.00161*** -0.00215
(0.000584) (0.168) (0.000603) (0.183)
PLUvRvarW 0.00790**F  0.00790***  0.00647*** 0.00574%**
(0.00123) (0.00257) (0.00121) (0.00207)
PLUvRvarWsq  -0.00235*** -0.00235 -0.00192%** -0.00170
(0.000373) (0.0644) (0.000370) (0.0479)
PLUvRvarS -5.20e-10 -5.20e-10 -2.28¢-09 -2.23¢-09
(2.68e-0) (3.58¢-08) (3.16¢-09) (3.69¢-08)
PLUvRvarSsq 0 0 0 0
(0) (0) (0) (0)
Coal 6.90e-06***  6.90e-06***  5.18e-06***  6.29e-06***
(4.356-07) (4.64e-07) (4.39¢-07) (6.87e-07)
Brent -2.36e-05%**  _2.36e-05%**  -1.18e-05%**  -1.40e-05***
(1.51e-06) (1.96e-06) (1.53¢-06) (2.01e-06)
Gas -2.82e-07 -2.82e-07 1.37e-05***  1.36e-05%**
(1.89¢-06) (9.41¢-06) (1.67¢-06) (2.46¢-06)
T2 -2.71e-05%** -2.71e-05 -1.73e-05%**  -1.99e-05%**
(2.176-06) (1.80e-05) (1.34e-06) (1.69e-06)
EUA 7.20e-05%**  7.20e-05%*F*F  2.62e-05%**  2.71e-05%**
(2.31e-06) (4.49¢-06) (3.34¢-06) (6.846-06)
Wind1DA 1.04e-07*%*  1.04e-07***  1.18e-07***  1.25e-07***
(6.456-00) (1.036-08) (6.51e-09) (7.63¢-09)
Hydro -7.55e-06*** -7 55e-06*** -4.08e-06***  -5.88e-06***
(8.33¢-07) (2.24¢-06) (8.61e-07) (1.116-06)
PLUvDvarP -0.000219***  -0.000219
(4.57e-05) (0.000203)
PLUvDvarQ 0.0005677*+* 0.000567
(9.446-05) (0.000585)
PLUvDvarKP -0.000600***  -0.000462***
(2.69¢-05) (4.24¢-05)
PLUvDvarKQ 0.000151*%**  0.000170**
(3.39¢-05) (6.80e-05)
Constant 0.00651***F  0.00651***  0.00513%** 0.00538***
(0.000208) (0.000789) (0.000195) (0.000257)
Observations 11,702 11,702 11,702 11,702
R? 0.200 0.200 0.233 0.234

(Standard errors in parentheses)
*** p<0.01, ** p<0.05, * p<0.1

Table 3.5: Regressions of the slope on PLU® and PLU? and PLU? at k =3
Note: Standard errors are reported in parenthesis. Column 1 refers to the baseline
specification. Column 2 reports bootstrappgd results for the baseline model. Column 3
reports the results for the (weighted) regression on the kernel based PLU)Q{. Column 4
reports bootstrapped results of the model in column 3.



For k=1 (Left extremal point)

(1) (2) (3)

fxInvertQP  fxInvertQP  fxInvertQP
PLUvRvarT -4.14e-05***  _4.14e-05 0.000277*
PLUvRvarTsq  1.56e-05%** 1.56e-05 -0.0122
PLUvRvarW -6.04e-06 -6.04e-06 -0.000138
PLUvRvarWsq 1.71e-06 1.71e-06 0.00738
PLUvRvarS 0 0 -5.70e-05
PLUvRvarSsq -0 -0 0.00172
Coal -8.54e-09***  -8.54e-09***  (omitted)
Brent 8.64e-08%**  8.64e-08%** (omitted)
Gas -6.20e-08%**  -6.20e-08***  (omitted)
IT2 4.95e-08%F*F  4.95e-(8*** 3.50e-08
EUA -3.14e-08%**  -3.14e-08***  4.43e-06***
Wind1DA -3.38e-10***  -3.38e-10*** 2.48e-10
Hydro 4.69e-08%*F*  4.69e-08%**  (omitted)
PLUvDvarQ -3.87e-06***  -3.87e-06***
PLUvDvarKQ -7.21e-10%**
Constant 2.11e-06***  2.11e-06**  -6.00e-05***
Observations 11,702 11,702 50
R? 0.152 0.152 0.681

Standard errors available from the authors
*¥x p<0.01, ** p<0.05, * p<0.1

Table 3.6: Regressions of slope on PLU® and PLU” and PLU? at k =1

For k=2 (Left point of maximum curvature)

(1) (2) (3)

fxInvertQP  fxInvertQP  fxInvertQP
PLUvRvarT -0.00252 -0.00252 0.292
PLUvRvarTsq 0.00106 0.00106 -17.27
PLUvRvarW -0.00549**%*  -0.00549** 0.339
PLUvRvarWsq  0.00158%** 0.00158 -21.86
PLUvRvarS -6.82e-10 -6.82e-10 0.0669
PLUvRvarSsq 0 0 -1.968
Coal 2.36e-06"**  2.36e-06***  (omitted)
Brent -1.86e-05***  -1.86e-05***  (omitted)
Gas -8.94e-06***  -8.94e-06***  (omitted)
IT2 1.98e-05***  1.98e-05***  6.92e-05
EUA 8.69e-05%**  8.69e-05%**  -0.000439
Wind1DA 6.13e-09 6.13e-09 6.70e-07
Hydro -5.82e-06***  -5.82e-06***  (omitted)
PLUvDvarP -4.81e-05%** -4 81e-05%**
PLUvDvarQ 0.000442*%%* 0.000442%***
PLUvDvarKP -9.62e-07*
PLUvDvarKQ -4.27e-07
Constant 0.00319%*%*  (0.00319*** 0.00279
Observations 11,702 189 11,702 50
R? 0.158 0.158 0.414

Standard errors available from the authors



For k=4 (Right point of maximum curvature)

(1) (2) (3)

fxInvertQP  fxInvertQP  fxInvertQDP
PLUvRvarT -0.00442*** -0.00442 0.000559
PLUvRvarTsq 0.00149** 0.00149 -0.000368
PLUvRvarW -0.000137 -0.000137 -0.00205
PLUvRvarWsq 0.000173 0.000173 0.000739*
PLUvRvarS 2.59e-09 2.59e-09 2.40e-09
PLUvRvarSsq -0 -0 -0
Coal 2.22e-07 2.22e-07 1.48e-06***
Brent -7.46e-06***  -7.46e-06™**  -1.30e-05***
Gas 9.04e-06***  9.04e-06***  2.04e-05%**
IT2 -1.96e-05%**  -1.96e-05%**  -2.61e-05%**
EUA 4.71e-05%*%F  4.71e-05%**  3.19e-05***
Wind1DA 1.64e-08** 1.64e-08** 1.50e-08**
Hydro -8.73e-06***  _8.73e-06***  -1.33e-05***
PLUvDvarP -0.000212***  -0.000212***
PLUvDvarQ 0.000110 0.000110%**
PLUvDvarKP -0.000163***
PLUvDvarKQ 4.08e-05
Constant 0.00370%** 0.00370*** 0.00406***
Observations 11,701 11,701 11,701
R? 0.086 0.086 0.117

Standard errors available from the authors
R p<0.01, ** p<0.05, * p<0.1

Table 3.8: Regressions of slope on PLU® and PLUP and PLU? at k =4

For k=5 (Right extremal point)

B ) 3)
fxInvertQP  fxInvertQP  fxInvertQP
PLUvRvarT -0.000252 -0.000252 0.000734*+*
PLUvRvarTsq 9.10e-05 9.10¢-05 -0.000280***
PLUvRvarW -0.000555%**F  -0.000555%*  -0.000545%**
PLUvRvarWsq 0.000169%** 0.000169 0.000163***
PLUvRvarS -4.17¢-10 -4.17¢-10 -3.07¢-10
PLUvRvarSsq 0 0 0
Coal -8.70e-07*** 8. 70e-07***  -4.90e-07***
Brent 1.72e-06%%*  1.72e-06***  4.90e-07**
Gas 4.53e-06***  4.53e-06*** 2.96e-06***
IT2 2.23e-06***  2.23e-06***  2.4Te-06***
EUA 2.89¢-06***  2.89¢-06***  8.35¢-06***
Wind1DA -5.41e-10 -5.41e-10 3.49e-09%**
Hydro 1.78e-06**F*  1.78e-06***  1.19e-06***
PLUvDvarQ 4.29¢-05%F*F  4,29¢-05***
PLUvDvarKQ 5.56e-05%**
Constant -0.000494*** -0.000494***  -0.000351***
Observations 11,702 190 11,702 11,702
R? 0.128 0.128 0.131

Standard errors available from the authors



X, m Mean Median Std. dev. Min Max
Tempefflh 6 7.7 8 5 -10 14
Roll_Temp24 6 7.7 9 4 -8 14
Roll_Temp240 1 7.6 8 4 -7 13
suncycle 6 0.3 0 0 0 1
morning 6 0.5 1 0 0 1
deltasun 6 0.1 0.1 0 0 04
EWH 6 0.3 0 0 0 1
SolarRest 6 5.4 -1 364 -1,337 2,241
RteBlackBox 6 -0.0 37 4,755  -16,966 18,209

Table 3.14: Variables used in the kernel based PLU? computation
Note:For the PLUv51, we have excluded the variable Roll_Temp240 from the conditioning
in order to increase the size of each subsample used for the calculation of the observation
specific PLUP. Version 52 also conditions on the variable Roll_Temp240 using m = 6.
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Conclusion

This thesis focused on the effect of ramping costs on the electricity market at a the-
oretical level, and then on the empirical analysis of market data to test the theoretical

predictions.

The first chapter focused on what the introduction of ramping costs in a theoretical
framework brings to the table. Ramping costs represent the fact that electricity suppliers
incur costs when their production varies over time. Our main contribution has been to
build and justify how these ramping costs can be tackled theoretically. First, we noted
that going to a continuous time description of the problem allowed us to bring to the
literature about supply function equilibria powerful mathematical tools mostly used in
option pricing, that is stochastic dynamics: we want to model ramping costs, i.e. costs
associated to the variation in production, while retaining the key ingredient brought by
[Klemperer and Meyer, 1989], i.e. the uncertainty, through the use of brownians, and
more precisely, Itd processes. In so doing we faced the issue that one cannot derive a
brownian, and brought our second contribution, a physical argument about how power
plants function that effectively operates as a low pass filter on our stochastic processes,
and allowed us to continue to build a tractable model of ramping costs under uncertainty.
Third, we found in the literature a specification of 1t6 processes that allowed the model

to remain tractable.

From these technical contributions we obtained our economic contributions in having
a rich tractable model that yields results that contrast strongly with past results from
the literature. First, in the specific case of linear demand and linear costs we obtained
a unique Nash equilibrium, which contrasts with the usual continuum of Nash equilibria
in the supply function equilibria literature. Second, our solutions were not ex-post opti-
mal, meaning that gathering information about the expected future evolution of demand
yielded different optimal strategies for suppliers, which in turn meant that producers in
our framework have a motive for submitting different supply functions from one time

step to the next. Third, we have closed form solutions which yield specific predictions




Conclusion

about the evolution of bids under uncertainty, namely that when uncertainty increase,
suppliers submit steeper supply schedules in order to transmit more of these shocks to
changes in price and not quantities, which are costly due to the existence of ramping
costs. Finally, and less importantly, our framework justified the existence of negative
prices °" by producers being willing to pay consumers to consume more in order to avoid
facing large variations in production, in contrast to everywhere positive schedules in the
case of the supply function equilibria literature. These results open the door to models
being able to differentiate between day-ahead and intraday markets and therefore to offer

a framework in which their interactions might be possible.

In the second chapter our main focus was on analyzing our data, on building a way
to describe it, and on building proxies for the uncertainty that producers face about the

residual demand they have to anticipate when bidding on the day-ahead market.

First, we noted that aggregate supply functions on the day ahead market cannot be
well captured by parametric functions. Therefore, we devised a way to describe them
non-parametrically: we noted that although they cannot be captured parametrically,
they still have a rough S shape, and therefore four main parts, two extremal sections,
and two interior ones separated by the inflection point of the curve in its middle section.
We defined the transition points between these sections as the points of maximal absolute
value for the derivative and second derivative of the supply schedules. This definition
relied on kernel density estimates, and was therefore non-parametric. We observed that
by using 5 such points, we were able to capture about 98% of the intrinsic variability
of the supply schedules, and stopped there although our method can be used to define
more non-parametric points. This method allowed us to define points that we considered
comparable across auctions, that allowed us to perform cross-sectional analysis of our

data in the third chapter.

5"Note that such negative prices happen, a few hours a year for example in France or Germany, for
example in 2017 there were 146 such hours, spread over 24 days in Germany [EPEX, 2018a]
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Conclusion

Second, we built proxies for the amount of weather uncertainty that producers face
and variables that capture information that suppliers have before bidding and should
therefore be controlled for. For the information available to suppliers, we noted that the
effect of weather on the demand and more importantly temperature, was well understood
and that we needed to control for it. To do so we built an effective temperature for
France, as an average of the localised temperature weighted by the population of the spa-
tial region considered, in order to capture the overall effect temperature has on heating.®®
The rest of our focus was on building a proxy for the uncertainty concerning renewable
production. To do so we analyzed spatialized wind and sunlight data and studied it’s
spatial structure. We argued that spatial autocorrelation is a proxy for the uncertainty
associated with weather forecasts, noting that if this data displays more spatial gradi-
ents, it was likely to be of a lesser quality due to the numerical nature of the weather

simulations used to predict the weather, and therefore more uncertain.

Our contribution in the second chapter was to provide a non-parametric way to de-
fine comparable points across auctions, and a measure of the uncertainty associated with

weather forecasts.

In the final chapter, we studied the impact that uncertainty about the demand plays
on the shape of the aggregate supply functions suppliers bid on the French electricity
market. We segmented our analysis to different parts of the supply functions in order to
show how the overall shape changed with respect to our explanatory variables. We tested
some of the predictions from our first chapter, mainly that the supply function should

see its slope increase when uncertainty increases.

We noted that the main uncertainty is about the shape of the demand schedules it-
self. Therefore, we considered data available to the producers and regress the demand

schedules on these variables. Next, we studied the residuals of these regressions, and

58France has a high level of electric heating overall, which means that demand for electricity is quite
sensitive to temperature.

V
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Conclusion

more specifically noted that they are heteroskedastic. We leveraged this, regressing the
square of these residuals on our variables, in order to predict the expected amplitude of

the residuals, that is the amplitude of the uncertainty of the demand schedule regression.

We then studied the effect of our different proxies for uncertainty on the slope of the
supply schedules and noted that if our proxies about the weather uncertainty (through the
channel of renewable production) have the expected effect, the results are less clear cut
for our residuals on the demand schedules. As we are working with full-blown schedules
in the quantity-price plane, we performed our residual analysis both on the prices and the
quantities. We therefore obtained estimates for the uncertainty pertaining to the position
of a given point of our demand schedule either in price or in quantity. In our theoretical
framework, we made the strong assumptions that demand schedules are linear, and that
demand shocks are additive, i.e. they do not impact the slope of the demand schedules.
These assumptions yielded that we cannot differentiate between shocks in price or quan-
tity, and that they should have effects in the same direction: more uncertainty implying
steeper supply curves to reduce the amount of fluctuation in production. However, we
observed that the effects of price and quantity uncertainty as estimated by our residuals’
method yield opposite effects. Both of these assumptions, although required to obtain
closed form results, are clearly not satisfied by our data. and we think that this is a clear

path for improvement of the model.

The contribution of the third chapter is to provide a way to estimate the uncertainty
about the demand schedules faced by suppliers, and to estimate how this uncertainty
affects the shape of the supply schedules at different points along its overall length, i.e.
we provide a framework to describe how the functional form of schedules is affected by

estimates of the uncertainty faced by suppliers.
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Avenues of research

The work presented in this thesis opens new possible avenues of research, that we will

outline here.

Theoretical model

m Generalize the functional forms of the demand: we developed our model in the
context of linear demand functions, and finding either general results, for example
for positive and decreasing demand functions, would lend more support to our
results. It would already be interesting to find whether these results hold for other
specific functional forms for the demand functions. The issue is that the second
order differential equations do not belong to solved for classes of equations in the
cases that were tested in the course of this thesis (power demand functions for
example). It is therefore unlikely that analytical results can be obtained, however

numerical approaches could prove useful in this context.

m Study the impact of other stochastic processes: our results hold in the case of
stochastic shocks leading to an equilibrium distribution of a quadratic form. The
processes that we use to obtain our results are part of a larger class of processes,
which can exhibit richer caracteristics, for example assymetric distributions. As
previously, the analytical nature of our results relies partly on the specific choice of
stochastic process we made, therefore analytical results are unlikely, but numerical

approaches could shed light on the effect of skewed distributions.

m Study how a time discrete approach converges towards our continuous time one: the
derivation is doable in the case of discrete states for demand shock. A toy model not
presented in this thesis was derived in the case of a two period two valued shocks
model. Although the results are consistent with those of our continuous model, the
expressions derived analytically are already horribly tedious. It is therefore once

again a strand of analysis that could profit from a numerical approach.
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Conclusion

m The interaction between intraday and day-ahead markets: knowing that when one

bids on the day-ahead market, it will still be possible to adjust one’s position to-
morrow on the intraday market is bound to impact the strategies of the suppliers.
Trying to tackle this problem, if challenging, could prove very interesting. Here are

key ingredients that should be taken into account:

First, intraday bids can be submitted anytime during the day with an expiry date
attached. Therefore, there is tension between, on the one hand, the will to start
and correct the outcome of the day-ahead market as soon as new information enters
about the demand shocks, so as to increase the likelihood for another agent to buy
the intraday bid, and on the other hand, the will to wait and see as information
enters to be as precise as possible on the submitted bid to correct the outcome of

the day-ahead market, but therefore decreasing the likelihood to find a buyer.

Second, the ramping costs associated with changing production are incurred only

after the net of the day-ahead market and intraday market is fixed.

= Implement the actual market clearing algorithm and study it numerically.

Empirical analysis

200

Take into account the block orders: these orders impact the bids and should be

accounted for.

Study in more detail the overall function without restriction to only 5 points, which

should be doable with the increase in computational power

Leverage the difference between weather prediction data and observations for more

accurate weather uncertainty.

Take into account the uncertainty associated with international interconnexions.



Conclusion

m Analyze the individual submitted points on the aggregate supply schedules to find
whether it is possible to attach some of them to specific power plants with any

certainty.
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Autocorrelation lengthscale

Overall, the Matlab code was written by Alexis Berges, whereas the Stata code was writ-
ten by Henri de Belsunce. All ideas, architecture choices, methods were co-developed

with equal contributions from both
This first bit of code builds the autocorrelation lengthscales introduced in chapter 2.

It takes data from Meteofrance, that comes as files containing a row per observation,
each row containing the timestamp of the observation, as well as the code of the station,
and the observation itself, to which was added the latitude and longitude of the current
station. For a given year, only data pertaining to this year is kept in memory, to avoid

running out of RAM.

Once this first step is done, and for every timestamp, all pairs of stations are taken,
and the difference of value in the observation is taken, as well as the distance between

the stations.

Once this treated data is generated, an exponential is fitted, and its coefficient is saved
as the autocorrelation lengthscale for this given variable, and this given timestamp. The

code to generate a graph of the cloud of points and the fitted function is also included.

clear all

filenamemaster=""/Desktop/Google Drive/Encheres Elec/For Matlab/Exogenous_treated_-03.2014/Vent/
ExoVent_numeric.csv '’

M = csvread (filenamemaster);

%7Keep only year of interest
yyyy=2011;
for i=l:size (M,1)
if mod(i,10000)==
disp (’y of interest ), disp(i)
end
if M(i,5)=—=yyyy&&(i==1||M(i —1,5)<yyyy)
yi=i;
end

if M(i,5)==yyyy&&(i==size (M,1) | |M(i+1,5)>yyyy)
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yvi=i;
end
end
Myyyy=M(yi:yf,:);
% clear M

kini=1;

kend =0;

lautocor =[];

for k=1:(size (Myyyy,1)—1)
if mod(k,1000)==

k
end
il Myyyy(k,8) =Myyyy(k+1,8 )
kend=k;
autocor =[];
for i=kini:(kend—1)
for j=(i+1):kend
ertemp=abs (Myyyy (i ,1)—Myyyy(j,1));
disttemp=sqrt ((Myyyy(i,9)-Myyyy(j,9)) 2+(Myyyy(i,10)-Myyyy(j,10)) " 2);
autocortemp=cat (2,disttemp ,ertemp) ;
autocor=cat (1,autocor ,autocortemp);
end
end
binranges =0:0.004:max(autocor (:,1));
[bincounts ,ind]=histc (autocor (:,1) ,binranges);
autocor=cat (2,autocor ,ind);
A=sortrows (autocor ,3);
rini=1;
rend =0;
meanstd =[];
for i=1l:size(bincounts 1)
if bincounts(i)>0
rend=rend+bincounts (i) ;
ml=mean(A(rini:rend,2));
m2=mean (A(rini:rend ,1));
meantemp=cal (2, bincounts (i) ,ml,m2);
meanstd=cat (1, meanstd ,meantemp) ;
rini=rend+1;
end
end
y=mecanstd (1l:round (4/5*sizc (mcanstd ,1)) ,2);
x=meanstd (1:round (4/5xsize (meanstd, 1)) ,3);
% y=meanstd (: ,2) ;
% x=meanstd (:,3);
% figure , plot(meanstd(2:size (meanstd,1) ,3),meanstd (2:size(meanstd,1) ,2))
g = fittype(’a*(l—exp(—x/b)) ', dependent’,{’y '}, independent’,{’'x’},...
‘coefficients’,{’a’,’b’});
myfit=fit (x,y,g, Lower  ,[0,0], Upper’ ,[10,0.3], Startpoint’ , [4.5 0.04]);
coefffit=coeffvalues (myfit);
% figure , plot (myfit,meanstd(2:size (meanstd,1) ,3) ,meanstd (2:size (meanstd,1) ,2))
kini=k+1;
lautocortemp=cat (2, coefffit (2) ,Myyyy(k,5) ,Myyyy(k,6) ,Myyyy(k,7) ,Myyyy(k,8));
lautocor=cat (1,lautocor ,lautocortemp) ;
end

end

% %7%Convert lautocor to string to be stata friendly
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dateseff =[];
for i=1:size (lautocor 1)
if lautocor (i,4)<10
dd=["0" num2str(lautocor (i ,4))];
else dd=num2str(lautocor(i,4));
end
if lautocor(i,3)<10
mm=["0" num2str(lautocor (i,3))];
else mm=num2str(lautocor (i,3));
end
if lautocor (i,5)<10
hh=[’0" num2str(lautocor(i,5))];
else hh=num2str(lautocor (i,5));
end
dated=[dd */  mm ’/  num?2str(lautocor (i,2))];
datesefftemp={dated ,hh,num2str (lautocor (i,1))};
dateseff=cat(l,dateseff ,datesefftemp);
end
%%Prepare the data to be written to .txt file
datcscff=datcscff;
fid = fopen ([’/Users/alexisberges /Desktop/Google Drive/Encheres Elec/For Matlab/lautocor_’ num2str(
yyyy) Totxt],wl);
fprintf (fid , %s, %s, %s\n’,dateseff{:,:});
fclose (fid);

V% graph lautocor well
houra=[0;M(:,8) ];
hourb=[M(:,8) ;0];

idxchange=find (houra—hourb) ;

lautocor =[];
hourlook =470;
kini=idxchange (hourlook) ;
kend=idxchange (hourlook+1)—1;
autocor =[];
k=1;
for i=kini:(kend—1)
for j=(i+1):kend
ertemp=abs (M(i,1)-M(j,1));
disttemp=sqrt ((M(i,9)-M(j,9)) 24+ M(i,10)-M(j,10))"2)*6371;
autocortemp=cat (2,disttemp ,ertemp) ;
autocor=cat (1,autocor ,autocortcmp) ;
end
end
binranges =0:0.004%6371:max(autocor (:,1));
[bincounts ,ind]=histc (autocor (:,1) ,binranges);
autocor=cat (2,autocor ,ind);
A=sortrows (autocor ,3) ;
rini=1;
rend=0;
meanstd =[];
for i=1:size(bincounts 1)
if bincounts(i)>0
rend=rend+bincounts (i);
ml=mean (A(rini:rend,2));
m2=mean (A(rini:rend,1));
meantemp=cat (2.bincounts (i) ,ml,m2);

meanstd=cat (1, meanstd ,meantemp) ;
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rini=rend+1;

end

y=meanstd (1:round (4/5x%size (meanstd 1)) ,2);

x=meanstd (1:round (4/5%size (meanstd ,1)) ,3);

% y=meanstd (:,2);
% x=meanstd (:,3) ;
% figure , plot(meanstd (2:size (meanstd,l) ,3) ,meanstd (2:size (meanstd,1) ,2),

g = fittype (’a*(l—exp(—x/b)) ", dependent’,{’y’}, independent ’

‘coefficients’,{’a’, b’ });

A

X'},

myfit=fit (x,y,g, Lower’ ,[0,0], Upper’,[10,0.3%6371], Startpoint ', [4.5

coefffit=coeffvalues (myfit);
figure
plotl=plot (mylit, 'r’);
set (plotl, LineWidth’ ,4)
hold on

0.04%6371]);

plot2=plot (meanstd (2:size (meanstd ,1) ,3) ,meanstd (2: size (meanstd ,1) ,2), b—+") ;

set (plot2, 'LineWidth ' ,4)
hold on

plot3=plot (autocor (:,1) ,autocor (:,2),’ko’, MarkcrSizc’

linel=line ([0, 0.02%6371], [0,coefffit(1)/coefffit (2)%0.02x6371],  Color’

——,’LineWidth’,2);

line2=line ([0, 0.2%6371], [coefffit (1),coefffit (1)], Color’

LineWidth’,2);

line3=line ([coefffit (2), coefffit (2)], [0,coefffit(1)], Color’

LineWidth’ ,2);

plotleg=legend ([ plot3 plot2 plotl linel line3],

{’Data from the pairs’® ’>Kernel smoothed

’Derivatives of the fitted curve at 0
D
>Location’, northwest );
set (plotleg , FontSize’ ,24);
kini=k+1;
lautocortemp=cat (2, coefffit (2) M(k,5) M(k,6) M(k,7) M(k,8)):

lautocor=cat (1,lautocor ,lautocortemp);
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Regressions

The next bit of code is the general do file for the regressions of chapter 3.

1 | * COMPUTE COMPARABLE TABLES FOR SQ-RESIDUALS.

2

3 | **x* VERSION FEBRUARY 2015

4

5 | * Final Do-file

6

7 /% Notes

8 |—mm MAKE SURE NORMAL VERSION RUNS LAST TO ENSURE CORRECT TABLES FOR DEMAND ESTIMATION

9 | %/

10

11 macro drop -all

12 global YearINIT = 2011

13 global YearFIN = 2013

14 global HourINIT = 1

15 global HourFIN = 24

16 global vINPUT= 7 v38”

17 global vOUTPUT= " v38”

18

19 global dofiledirectoryorig= Path to directory containing do files

20 global LATEXPATH = Path to directory containing latex for article

21 global CLOUDPATH = Path to directory containing data

22

23 global focusk = 5

24

25 | skokok ok ok ok ok ok ok

26 | * Data Drep

27 | wokokokkkok ko x

28

29 use ”${CLOUDPATH}v38/Temp_data/DataReady_Y${YearINIT}—Y${YearFIN}.dta” , clear

30 * manually merged Roll_avgT24 to dataset.

31 * manually merged winddiffonly to dataset

32

33 destring YYYY MM DD, replace

34 drop Year Month

35 gsort YYYY MM DD Hour SalePurchase select

36 order Date Hour Price Volume SalePurchase select

37

38

39 rename COALIMPORTPRICE_.EURpTON Coal

40 rename EST_PRICE_ELEC_.EXPORT EExportPrice /+in EURx/

41 rename BRENT.LDN_AVG Brent

42 rename GASSPOT_.GBPpTHERM Gas

43 rename LcWind2011 LcWind

44

45 label var Roll.Temp24 " Roll\_Temp24”

46 label var Roll-Temp240 ” Roll\_-Temp240’

47 label var Roll_.Temp720 " Roll\_-Temp720”

48 label var Roll_avgT24 ” Roll\_avgT24”

49 label var Roll_avgT240 " Roll\_avgT240”

50

51 | *x dataprep:

52 gen IT2 = (PrevConsoH / 99400) = Gas /*PrevConsoH mnot included in supply, 99400 is max of
PrevConsoH x/




Code Annex

76 ok ok K Kk K K

109 | skokwoskoskokxk

gen EWH = 0

replace EWH = 1 if Hour<=4

replace EWH = 1 if Hour>=22

gen dfaT1l5 = Roll.Temp24 —Roll.Temp240

*+ generate slope of opposite function (on Demand, add fx of supply
gsort select Datestata Hour SalePurchase
capture drop errorindic

gen errorindic = 1 if SalePurchase[-n

=SalePurchase [-n+1]
drop if errorindic == 1 & SalePurchase=="Purchase”

drop errorindic

capture drop fxInvertPQ_viaP fxInvertQP_viaP

capture drop Price_S_viaP Volume_S_viaP

gen [xInvertPQ_viaP = 1/( [x[-n+1]) il SalePurchase=="Purchasc”

gen fxInvertQP_viaP = fx[_n+1] if SalePurchase=="Purchase”

gen Price_S_viaP = Price[-n+1] if SalePurchase Purchase”
gen Volume_S_viaP = Volume[_n+1] if SalePurchase=="Purchase”
gsort SalePurchase select Datestata Hour

gen fxInvertQP = fxInvertQP_viaP

gen fxInvertPQ = fxInvertPQ_viaP

*+ make points comparable by volume (not by price!)

s xxxkkxxkk*% remove to do other dimension 4+ must rename fxinvertQP
gen selectQ = select

capture drop lowpk

capture drop selectviaP

gen lowpk = 1 if select <6 & SalePurchase=="Purchase”

replace selectQ =9 if selectQ ==1 & SalePurchase=="Purchase”
replace selectQ =7 if selectQ ==3 & SalePurchase=="Purchase”
replace selectQ =3 if selectQ ==7 & SalePurchase=="Purchase”
replace selectQ =1 if selectQ ==9 & SalePurchase=="Purchase”

rename select selectviaP

rename selectQ select

* generate slope of opposite function (on Demand, add fx of supply function)

gsort select Datestata Hour SalePurchase

capture drop errorindic

gen errorindic = 1 if SalePurchase| =SalePurchase [ -n+1]
drop if errorindic == 1 & SalePurchase=="Purchase”

drop errorindic

capture drop fxInvertPQ_viaQ fxInvertQP_viaQ

capture drop Price_S_viaQ Volume_S_viaQ

gen fxInvertPQ_viaQ = 1/( fx[-n+1]) if SalePurchase=="Purchase”

gen fxInvertQP_viaQ = fx[_n+1] if SalcPurchasec=="Purchasc”

gen Price_S_viaQ = Price[-n+1] if SalePurchase=="Purchase”
gen Volume_S_viaQ = Volume[_n+1] if SalePurchase=="Purchase”
gsort SalePurchase select Datestata Hour

capture drop fxInvertQP fxInvertPQ

gen fxInvertQDP = fxInvertQDP_viaQ

gen fxInvertPQ = fxInvertPQ_viaQ

drop fxInvertPQ_viaP fxInvertQP_viaP

order Date Hour Price Volume SalePurchase select selectviaP

s sk sk sk sk ok ok ok ok ok ok ok K ok ok K sk k ok ok ok sk ok ok ok

* ok

110 | * Solar1DA prediction

T11 | sorokskwrok®

112

216

* %

capture drop IT1

function)

lowpk =

lowpk
lowpk
lowpk
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113
114
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116
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sk s sk sk sk sk ke sk sk ke

* Black box prediction

sk sk sk sk sk sk ok sk sk ok

capture drop SolarRest

gen IT1 = suncycle % Roll_.avgT240 /«Interaction term 1
temp no cutoff at 15 = proxy for sunangle decided
change in ry of rte black box and easier interpretation x/
global solarestimationvariables 7 suncycle”
reg SolarlDA $solarestimationvariables , robust

est store Black-3
capture drop SolarBlackBox
capture drop blackepsilon

capture mat drop blackalpha

mat blackmat = e(b)
mat li blackmat
scalar blackalpha = blackmalt [1,3]

di blackalpha
predict blackepsilon if e(sample),

gen SolarRest = blackepsilon /*+ b

drop blackepsilon

residuals

lackalpha*/

suncycle =x

average

against as no

btoutreg2 [Black_-3] using 7${LATEXPATH} SolarBlack.tex”, replace tex(frag pretty )
/*stats (coef Var sec)*/ label(proper) level (953) sideway noparen
*drop irrelevant OBS and variables
drop -est=x
drop if SolarRest==.
RTE
global blackestimationvariablesl Tempeffl5 Roll_Temp24 Roll_Temp240
SolarRest suncycle morning deltasun EWH’
global blackestimationvariables2 7 Tempeff Roll_avgT24 Roll_avgT240
SolarRest suncycle morning deltasun EWH ”
global blackestimationvariables3 Tempeffl5 Roll_.Temp24 Roll_-Temp240

SolarRest suncycle morning delt

global blackestimationvariables4

SolarRest suncycle morning delt

sx% INTERPRETATION cocff on tcmpctfl5 muc

reg PrevConsoH
est store Black_1

capture drop RteBlackBox
capture drop blackepsilon

capture mat drop blackalpha

mat blackmat = e(b)
mat 1i blackmat
scalar blackalpha = blackmat[1,9]

di blackalpha
predict blackepsilon if e(sample),

gen RteBlackBox = blackepsilon  /%+

drop blackepsilon

$blackestimationvariablesl ,

asun IT1 EWH CZlag EExp

Tempeffl5 Roll_Temp24

asun IT1

h larger

robust

residuals

blackalphax/

than tcmpcff —> positive

ortPlag”

Roll_-Temp240

for us
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165
166
167
168
169
170
171
172
173
174
175

176

193

197

198

211
212
213
214
215
216
217
218
219
220
221

reg PrevConsoH $blackestimationvariables2, robust

est store Black-2

reg PrevConsoH $blackestimationvariables3 , robust

est store Black_3

reg PrevConsoH $blackestimationvariables4 , robust

est store Black_4

btoutreg2 [Black_-1 Black_2 ] using "${LATEXPATH}Blackl.tex”, replace

pretty ) stats(coef) label(proper) level(95) sideway noparen

tex (frag

btoutreg2 [Black_1 Black_2 Black_.3 Black_4] using 7${LATEXPATH}Black2.tex” , replace

tex (frag pretty ) stats(coef) label(proper) level(95) sideway noparen

#*drop irrelevant OBS and variables
drop -est=*

drop if RteBlackBox==.

xsave

save 7 ${CLOUDPATH}v38/Tcmp_data/Prcdand5.dta”, rcplacc

EEE LT
#* Generate PLU using forecast model

ok K ok kR R Kk R

EEEE RS
* DEMAND ESTIMATION + generate residuals for PLU.D

o+ ok ek Kk

+ DEMAND ESTIMATION (no CZlag)
local version 7527

¢

global runversionD ‘version’
global demandestimationvariables ‘version’ 7Tempeffl5 Roll_-Temp24 Roll_-Temp240
suncycle morning deltasun EWH SolarRest RteBlackBox

# run do [ile for demand estimation

do ”${CLOUDPATH}v38/DoFiles /107 _Eqnddemand .do”

>k 3k 3k K ok ok
% PLUVD : predicted uncertainty directly using regression
% %k %k K k K

#* Only predict uncertainty for demand function

* Cannot do so for supply function since mixed with ex—post own bidding strategy .

global DEV ${demandestimationvariables${runversionD }}

capture drop PLUvDvarP
capture drop PLUvDvarQ
gen PLUvDvarP =.
gen PLUvDvarQ =.

forvalues k = 1(2)9{
foreach s in /#Sell*/ Purchase{

di "Point 7 ‘k’ ” Curve ” " ‘¢s’7”

reg sqresVolume ${DEV} if select==‘k’ & SalePurchase==""'s""
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predict PLUvDvartmpQ ‘k’a‘s’ if e(sample), xb
est store predictuncQa ‘k’a‘s’
replace PLUvDvarQ = PLUvDvartmpQ ‘k’a‘s’ if e(sample)

drop PLUvDvartmpQ ‘k'a‘s’

forvalues k = 1(2)9{

foreach s in /*Sellx/ Purchase{

di ”"Point 7 ‘k’ ” Curve ” 7 ‘s’”
reg sqresPrice ${DEV} if select==‘k’ & SalePurchase==""‘s""
predict PLUvDvartmpP ‘k’a‘s’ if e(sample), xb
est store predictuncPa‘k’a‘s’

replace PLUvDvarP = PLUvDvartmpP ‘k’a‘s’ if e(sample)
drop PLUvDvartmpP ‘k "a‘s’

capture drop PLUvDvarPabs
capture drop PLUvDvarQabs
gen PLUvDvarPabs =.
gen PLUvDvarQabs =.

forvalues k = 1(2)9{
foreach s in /% Sellx/ Purchase{

di "DPoint 7 ‘k’ 7 Curve 7 7 ¢s’7”

reg absresVolume ${DEV} if select=

predict PLUvDvartmpQ‘k’a‘s’ if e(sample), xb

est store predictuncQa ‘k’a ‘s ABS

replace PLUvDvarQabs = PLUvDvartmpQ ‘k’a‘s’ if e(sample)
drop PLUvDvartmpQ ‘k "a‘s’

forvalues k = 1(2)9{
foreach s in /+Sellx/ Purchase{
di ?Point 7 ‘k’ 7 Curve 7 7 fs’7”

reg absresPrice ${DEV} il select==‘k’ & SalePurchase==""s

predict PLUvDvartmpP ‘k’a‘s’ if e(sample), xb

est store predictuncPa ‘k’a ‘s’ ABS

replace PLUvDvarPabs = PLUvDvartmpP ‘k’a‘s’ if e(sample)
drop PLUvDvartmpP ‘k "a ‘s’

* (generating) tables on PLUvVD

‘k’ & SalePurchase=="‘s’"

btoutreg2 [predictuncPab5aPurchase predictuncPa5aPurchaseABS /spredictuncPa3aSells*/]

using " ${LATEXPATH} predictuncl.tex”, replace tex(frag pretty )
label (proper) level (95)

stats (coef)

btoutreg2 [predictuncQab5aPurchase predictuncQa5aPurchaseABS /xpredictuncQabaSellx/]

using 7 ${LATEXPATH} predictunc2.tex”, replace tex(frag pretty )
label (proper) level (95)

* drop table data

drop -estx

stats (coef)
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278

279 * take sqrt of squared PLUs to get other order of magnitudes

280 gen PLUvDrtP = sqrt (PLUvDvarP)

281 gen PLUvVDrtQ = sqrt (PLUvDvarQ)

282

283

284 ok ok ok ok K

285 * PLUVR: LongueurCorrel Temp:

286 s sk ok sk ok ok

287

288 gen PLUvRvarT = 1 / LcTemp

289 gen PLUvRvarW = 1 / LcWind

290 gen PLUvRvarS = 1 / LcSolar

291

292 * add u—shaped term

293 gen PLUvRvarTsq = 1/(LcTemp * LcTemp)

294 gen PLUvRvarWsq = 1/(LcWind * LcWind)

295 gen PLUvRvarSsq = 1/( LcSolar % LcSolar)

296

297

298 /* tablc of cxtracted slopcs

299 capture mat drop M

300 local variables 7”1 3 5 7 97

301 local FUNC ”r(mean) r(p50) r(sd) r(min) r(max)”

302 local i=0

303 foreach var of local variables{

304 local i=‘i"+1

305 }

306 local j=0

307 foreach var of local FUNC{

308 local j=%j +1

309 }

310 di 57 7 S

311 mat M = J(‘i’,5,.)

312

313 local c¢=1

314 foreach FF of local FUNC{

315 local r=1

316 foreach VV of local variables{

317 su /x IxInvertPQ #/ /= f[xInvertQP if select==VV', detail

318 mat M[‘r’, ‘c’]= ‘FF’

319 local r=‘r’+1

320 }

321 local c=‘c’+1

322 }

323 mat rownames M ‘variables’

324 mat colnames M = Mean Median StdDev Min Max

325 mat 1i M

326

327 btouttable using ”${LATEXPATH}extractedslopes”, replace mat(M) asis nobox
caption (” Estimated slopes of the supply function per point k”) format
(%9.4fc %9.4fc %9.4fc %9.4fc %9.4fc %9.4fc) x/

328

329 *save

330 save ”${CLOUDPATH}v38 /Temp-data/Finaldataset.dta”, replace

331

332

333

334 k% K ok ok ok

335 * generate kernel based PLUs
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336 | wokokokkok

337 use " ${CLOUDPATH}v38/Temp_data/Finaldataset.dta”, clear
338
339 kxkkkkkxkxkx*xx generate kernel PLUS

340 * do ”${CLOUDPATH}v38/DoFiles /107 _kernelbucketreg .do”
341 o oK ok ok oK ok oK oK K K K K K

342
343 *xxxkxxxx*xxxx dataset manipulations to obtain final dataset

344 do ”${CLOUDPATH}v38/DoFiles /107 _PrepkerneclPLUdata .do”
345 koK K ROk K Rk

346
347 *save

348 save ”${CLOUDPATH}v38 /Temp_data/Finalrundataset.dta”, replace

366
367
368
369
370
371
372
373
374
375
376 | wokkoxok

377 | * Columns based on kernel PLUvD

378 | mkkxk

379 * do 7 ${CLOUDPATH}v38/DoFilcs/107_BootstrapKecrnecl2702.do”
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
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400

401

402
403

sk sk sk sk ok ok ok sk ok sk sk sk sk sk k sk sk ok Sk sk ok oK ok sk sk sk Sk sk ok Sk Sk ok 3K ok oK K ok Kk kR ROk

* START OF BASELINE RESULTS + BOOTSTRAP
ROBUSTNESS

sk sk sk sk ok ok ok ok ok KR kK Rk Sk sk Sk Sk Sk ok 3K ok R SRk K ROk kR Sk K R 3K K K KK KK KRR Ok

404 | s kxxxk+%+x BASELINE

405
406

407 | global [ocusk =

409
410
411
412
413
414
115
416 | ook ok ok ok ok ok

417 | x FOCUS POINT

A18 | ok

419 local k=

420 keep if
421
422 | + MACROS:
423
424

3k 3k 3k ok ok K ok ok 3k ok k %k ok k ok ko
* Some regressions: ————— on point k only —— -

sk 3k ok ok ok ok ok ok oK ok oK ok ok K K K

use ”${CLOUDPATH}v38/Temp_data/Finalrundataset .dta”, clear

${focusk}

select==‘k’ & SalePurchase=="Purchase”

global PLUsR "PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq”
global SupCo ?Coal Brent Gas IT2 EUA WindlDA Hydro”

426 | *x*x*x Program bootstrap of baseline

427 capture
428 program
429
430
431
432

440
441
442
443

444
445
446

222

program drop my2slsforbaselinebootstrap

my2slsforbaselinebootstrap

local k=${focusk}

capture drop PLU_P_boot PLU_Q_boot

capture drop PLUvDvarP‘k’resc PLUvDvarQ‘k’resc

capture noisily reg sqresPrice Tempeffl5 Roll.-Temp24 Roll-Temp240 suncycle morning
deltasun EWH SolarRest RteBlackBox if select ==‘k’ & SalePurchase=="Purchase” |
robust

predict PLU_P_boot, xb

su PLU_P_boot, mcanonly

scalar tmpP = r (mean)

capture noisily gen PLUvDvarP ‘k’resc = PLU_P_boot / tmpP

reg sqresVolume Tempeffl5 Roll-Temp24 Roll-Temp240 suncycle morning deltasun EWH
SolarRest RteBlackBox if select =—‘k’ & SalePurchase=="Purchase”, robust

predict PLU_Q-boot, xb

su PLU_Q_boot, meanonly

scalar tmpQ = r(mean)

gen PLUvDvarQ ‘k’resc = PLU_Q_boot / tmpQ

if ‘k’==1 | ‘k’==9 {

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq
Coal Brent Gas IT2 EUA WindlDA Hydro /+PLUvDvarP‘k’resc+/ PLUvDvarQ‘k’resc
if select ==‘k’ & SalePurchase=="Purchase” , robust

}

else {

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq
Coal Brent Gas IT2 EUA WindlDA Hydro PLUvDvarP ‘k’resc PLUvDvarQ‘k’resc if

e ok sk sk ok ok

e ok ok ok ok ok
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467
168
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
191
492
493
494
495

497

499

end

*FIRST TABLE:

select

}

capture

*col 1

*col 2

*col 3

*col 4

drop

local

—‘k’ & SalePurchase=="Purchase” , robust

PLU_P_boot PLUvDvarP ‘k’resc PLU_Q-boot PLUvDvarQ ‘k’resc

k=${focusk}

capture drop PLUvDvarP ‘k’resc

capture drop PLUvDvarQ ‘k’resc

su PLUvDvarP ‘k’, meanonly

scalar tmpresc = r(mean)

capture noisily gen PLUvDvarP‘k’resc = PLUvDvarP‘k’ / tmpresc

su PLUvDvarQ‘k’, meanonly

scalar tmpresc = r(mean)

gen PLUvDvarQ ‘k’resc = PLUvDvarQ‘k’ / tmpresc

reg f

if k==l | ‘k==9 {
xInvertQP ${PLUsR} 8{SupCo} /+«PLUvDvarP‘k’rescs/ PLUvDvarQ ‘k’

cst storc dlshortl_‘k’

else{

reg f

}

xInvertQP ${PLUsR} ${SupCo} PLUvDvarP‘k’resc PLUvDvarQ‘k’resc

est store dlshortl_‘k’

}

local

k=${focusk}

bootstrap _b, reps(200) seed(12345): my2slsforbaselinebootstrap

est store bs_baseline. ‘k’

est s

local

ave 7 ${CLOUDPATH}v38/Temp_data/bs_baseline_ ‘k’.ster”, replace

k=${focusk}

estimates use ”${CLOUDPATH}v38/Temp._data/kernelweigthed_ ‘k’.ster”

regress

estimates esample

estimates store kerneld4_ ‘k’

local k=${focusk}
if ko ==5{

* table

estimates use ”${CLOUDPATH}v38/Temp_data/kernelbootstrap ‘k’.ster”

regress

estimates esample:

cstimatcs storc kerncl5_ ‘k’

}

main

local k=${focusk}
if k==5{

btoutreg2 [dlshortl_‘k’ bs_baseline_‘k’ kerneld4_‘k’ kernel5_°‘k’] usin

resc

g " ${

LATEXPATH} mainl_‘k’. tex”, replace tex(frag pretty ) stats(coef se)

label (proper) level(95) title(For k=‘k’)

btoutreg2 [dlshortl-‘k’ bs_-baseline-‘k’ kernel4_‘k’ kernel5-‘k’] usin

LATEXPATH} mainNS1_‘k . tex”, replace tex(frag pretty ) stats(coef

(proper) level(95) title(For k=‘k’)

btoutreg2 [dlshortl-‘k’ bs_baseline-‘k’ kernel4_‘k’ kernel5_°‘k’] usin

LATEXPATH} mainoS1-‘k’. tex”, replace tex(frag pretty ) stats(se)

}

else{

proper) level (95) title (For k=‘k’)

g "8{
) label

g "¥{
label (
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501

509
510
511
512

513

522

btoutreg2 [dlshortl.‘k’ bs_baseline-‘k’ kerneld4_‘k’ /sxkernel5_‘k’%/] using
P ${LATEXPATH} mainl_‘k . tex”, replace tex(frag pretty ) stats(coef se)
label (proper) level(95) title(For k=‘k’)

btoutreg2 [dlshortl_‘k’ bs_baseline_ ‘k’ kerneld4_‘k’ /xkernel5_ ‘k’%/] using
P {LATEXPATH} mainNS1_‘k’. tex”, replace tex(frag pretty ) stats(coef)
label (proper) level(95) title(For k=‘k’)

btoutreg2 [dlshortl.-‘k’ bs_baseline-‘k’ kermnel4_‘k’ /«xkernel5_‘k’ /] using
P ${LATEXPATH} mainoS1_‘k’. tex”, replace tex(frag pretty ) stats(se)
label (proper) level(95) title(For k=‘k’)

* table compare
forvalues k=1(2)9{
estimates use 7 ${CLOUDPATH}v38/Temp_data/bs_baseline_ ‘k’.ster”
regress
estimates esample:
estimates store bs_basecline.‘k’
}
btoutreg2 [bs_baseline_l1 bs_baseline_3 bs_baseline_.5 bs_baseline_T
bs_baseline_9] using ”S${LATEXPATH}compare_col2.tex”, replace tex(frag
pretty ) stats(cocf sc) labcl(proper) level (95) title (Comparison of
col. 2)
btoutreg2 [bs_baseline-1 bs_baseline_-3 bs_baseline.5 bs_baseline_7
bs_baseline_9] using 7${LATEXPATH}compareNS_col2.tex”, replace tex(frag
pretty ) stats(coef) label(proper) level (95) title (Comparison of col.
2)

forvalues k=1(2)9{
estimates use ”${CLOUDPATH}v38/Temp_data/kernelweigthed_‘k’'. ster”
regress
estimates esample

estimates store kernel4d_‘k’

btoutreg2 [ kerneld_1 kerneld4_3 kerneld_5 kerneld_7 kerneld_9] using "${
LATEXPATH} compare_col3 . tex”, replace tex(frag pretty ) stats(coef se)
label (proper) level (95) title (Comparison of col. 3)

btoutreg2 [ kernel4_1 kernel4d_3 kerneld_5 kerneld_7 kerneld_9] using 7 ${
LATEXPATH} compareNS_col3 . tex”, replace tex([frag pretty ) stats(coel)

label (proper) level(95) title(Comparison of col. 3)

s sk sk sk ok sk ok ok ok ok K Sk K sk sk sk sk sk sk sk ok ok ok oK ok K R Rk R S sk ke sk Sk ok Sk oK oK K ok o K K

+ END OF BASELINE RESULTS + BOOTSTRAD
ROBUSTNESS

s sk s sk sk ok ok ok ok ok sk ok sk skl sk sk ok sk sk ok ok ok ok ok sk ok ok ok sk sk ok sk sk ok sk ok ok ok ok ok K ok

sk sk sk sk sk ok ok ok ok K K ok skl sk sk ok sk sk ok K ok K Rk K kO sk sk ok sk ok K K ok K kR R ROk

% START OF DROPPING 1 PLUvDvarP or Q

sk sk sk sk ok ok ok ok ok ok ok ok ok sk sk ok sk sk ok ok ok ok ok ok R R R R s sk ok sk ok ok ok ok ok ok o ok ok ok

s sk sk o ok

s sk ok ok ok

e ok ok ok ok ok

s sk ok ok ok
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565
566
567
568
569

570
571
572
573
574
575

576
577
578

global focusk =

ok kR KK
* FOCUS POINT

sk sk sk s s e ke ok

5

ok ok K K K KK K KK K R KK K

* Some regressions: —— on point k only ———————

Sk s Sk sk ok sk ok Sk Sk Ok ok Sk oK 3K K K

use " ${CLOUDPATH}v38/Temp-data/Finalrundataset.dta”, clear

local k=${focusk}

keep if

* MACROS:

select==‘k’ & SalePurchase=="Purchase”

global PLUsR "PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq”
global SupCo ?Coal Brent Gas IT2 EUA WindlDA Hydro”

xxx%% Program bootstrap of baseline

capturc

program

program drop my2slsforbasclincbootstrap

my2slsforbaselinebootstrap

local k=${focusk}

capture drop PLU_P_boot PLU_Q_boot

capture drop PLUvDvarP ‘k’resc PLUvDvarQ ‘k’resc

capture noisily reg sqresPrice Tempeffl5 Roll-Temp24 Roll-Temp240 suncycle morning

deltasun EWH SolarRest RteBlackBox if select ‘k’> & SalePurchas

Purchase” ,

robust

predict PLU_P_boot, xb

su PLU_P_boot, meanonly

scalar tmpP = r(mean)

capture noisily gen PLUvDvarP‘k ' resc = PLU_P_boot / tmpP

reg sqresVolume Tempeffl5 Roll_-Temp24 Roll-Temp240 suncycle morning deltasun EWH
SolarRest RteBlackBox if select ==‘k’ & SalePurchase==

predict PLU_Q_boot, xb

" Purchase” , robust

su PLU_Q-boot, meanonly

scalar tmpQ = r(mean)
gen PLUvDvarQ ‘k 'resc = PLU_Q_boot / tmpQ
i kr==1 | ‘k'==9 {

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq
Coal Brent Gas IT2 EUA WindlDA Hydro /#*PLUvDvarP‘k’rescx/ PLUvDvarQ‘k’resc
if select ==‘k’ & SalePurchase=="Purchase” , robust

}

clsc{

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq
Coal Brent Gas IT2 EUA WindlDA Hydro /+PLUvDvarP ‘k’resc+/ PLUvDvarQ‘k’resc
if select ==‘k’ & SalePurchase=="Purchase” , robust

}

capture drop DPLU_DP_boot PLUvDvarl ‘k’resc PLU_Q-boot PLUvDvarQ ‘k’resc

*col 1
local k=${focusk}
capture drop PLUvDvarP ‘k’resc
capture drop PLUvDvarQ ‘k’resc
su PLUvDvarP ‘k’, meanonly
scalar tmpresc = r(mean)

capture noisily gen PLUvDvarP‘k’resc = PLUvDvarP‘k’ / tmpresc

su PLUvDvarQ‘k’, meanonly
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592
593
594
595
596
597
598
599
600
601
602
603
604
605
G606
607
608
609
610
611
612
613
611
615
616
617
618
619
620
621
622
623
624
625

626

627

628
629
630

631

632

633
634
635
636
637
638
639

sk sk sk ok o ok ok ok

* FOCUS POINT

226

scalar tmpresc = r (mean)
gen PLUvDvarQ ‘k’resc = PLUvDvarQ‘k’ / tmpresc
i Ckr==1 | ‘k'==9 {

reg fxInvertQP ${PLUsR} ${SupCo} /+«PLUvDvarP‘k’ rescx/ PLUvDvarQ‘k’resc

est store dlshortl_‘k’

}
else{

reg fxInvertQP ${PLUsR} ${SupCo} /*PLUvDvarP‘k’rescx*/ PLUvDvarQ‘k’resc

est store dlshortl_-‘k’
}
*col 2
local k=${focusk}
bootstrap _b, reps(200) seed (12345): my2slsforbaselinebootstrap
est store bs_baseline_ ‘k’
est save ”${CLOUDPATH}v38/Temp-data/bs_baseDROP_P_‘k’.ster”, replace
*col 3
local k=${focusk}
estimates use ”${CLOUDPATH}v38/Temp_data/kernelweigDROP_P_‘k’.ster”
regress
estimates esample
cstimatcs storc kecrncld_ ‘k’
*col 4
local k=${focusk}
if ‘k’==5{
estimates use ”${CLOUDPATH}v38/Temp-data/kernelbootDROP_P_‘k’.ster”
regress
estimates esample:
estimates store kernelb5_ ‘k’

}x/

* table main
local k=${focusk}
if ko==5{

btoutreg2 [dlshortl_‘k’ bs_baseline_‘k’ kerneld_‘k’ /«kernel5_‘k’ /] using
?${LATEXPATH} mainlDROP_P_‘k’.tex”, replace tex(frag pretty ) stats(coef
se) label(proper) level(95) title(For k=‘k’)

btoutreg2 [dlshortl_‘k’ bs_baseline_.‘k’ kerneld_‘k’ /xkernel5_ ‘k’ /] using
P {LATEXPATH} mainNS1IDROP P_‘k . tex”, replace tex([frag pretty ) stats(
coef) label(proper) level(95) title(For k=‘k’)

btoutreg2 [dlshortl.-‘k’ bs_baseline-‘k’ kerneld4_‘k’ /xkernel5_ ‘k’ /] using

P ${LATEXPATH} mainoSIDROP_P_‘k’ . tex”, replace tex(frag pretty )
) label(proper) level (95) title (For k=‘k’)

}

clsc{

btoutreg2 [dlshortl_.‘k’ bs_baseline_‘k’ kerneld_‘k’ /xkernel5_ k' /]

stats (se

using

P ${LATEXPATH} mainlDROP_P_‘k’. tex” , replace tex(frag pretty ) stats(coef

se) label(proper) level(95) title(For k=‘k’)

btoutreg2 [dlshortl_‘k’ bs_baseline_‘k’ kerneld_‘k’ /sxkernel5_ ‘k’ /]
7 ${LATEXPATH} mainNS1IDRODP P_‘k’. tex”, replace tex(frag pretty )
coef) label(proper) level(95) title(For k=‘k’)

btoutreg2 [dlshortl-‘k’ bs_baseline-‘k’ kernel4_‘k’ /skernel5_ ‘k’ /]
P ${LATEXPATH} mainoSIDROP_P_‘k . tex” , replace tex(frag pretty )
) label(proper) level (95) title (For k=‘k’)

use ”${CLOUDPATH}v38/Temp-data/Finalrundataset.dta”, clear

using

stats (

using

stats (se
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640
641
642
643
644
645
646
647

649

660
661
662
663
664
665

666
667
668

669
G670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

EEE R ]
local k=${focusk}

keep if select==‘k’ & SalePurchase=="Purchase”

* MACROS:
global PLUsR ”"PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq”
global SupCo ?Coal Brent Gas IT2 EUA WindlDA Hydro”

s«*x%% Program bootstrap of baseline
capture program drop my2slsforbaselinebootstrap
program my?2slsforbaselinebootstrap
local k=${focusk}
capture drop PLU_P_boot PLU_Q_boot
capture drop PLUvDvarP ‘k’resc PLUvDvarQ‘k’resc
caplure noisily reg sqresPrice Tempelll5 Roll-Temp24 Roll-Temp240 suncycle morning
deltasun EWH SolarRest RteBlackBox if select ==‘k’ & SalePurchase=="Purchase” ,
robust
predict PLU_P_boot, xb
su PLU_P_boot, meanonly
scalar tmpP = r(mean)
capturc noisily gen PLUvDvarP‘k’recsc = PLU_P_boot / tmpP
reg sqresVolume Tempeffl5 Roll.Temp24 Roll_.Temp240 suncycle morning deltasun EWH
SolarRest RteBlackBox if select =—‘k’ & SalePurchase=—="Purchase”, robust
predict PLU_Q_boot, xb
su PLU_Q_boot, meanonly

scalar tmpQ = r (mean)
gen PLUvDvarQ ‘k ’resc = PLU_Q_boot / tmpQ
if ‘k’'==1 | ‘k’==9 {

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq
Coal Brent Gas IT2 EUA WindlDA Hydro PLUvDvarP ‘k’resc /+PLUvDvarQ‘k’ rescs/
if select ==‘k’ & SalePurchase=="Purchase” , robust

}

else{

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq
Coal Brent Gas IT2 EUA WindlDA Hydro PLUvDvarP ‘k’resc /+*PLUvDvarQ‘k’resc#*/
if select ==‘k’ & SalePurchase=="Purchase” | robust

}

capture drop PLU_P_boot PLUvDvarP ‘k’resc PLU_Q_boolt PLUvDvarQ ‘k’resc

end

*col 1
local k=${focusk}
capturc drop PLUvDvarP ‘k’recsc
capture drop PLUvDvarQ ‘k’resc
su PLUvDvarP ‘k’, meanonly
scalar tmpresc = r (mean)
capture noisily gen PLUvDvarP‘k’resc = PLUvDvarP‘k’ / tmpresc
su PLUvDvarQ‘k’, meanonly

scalar tmpresc = r(mean)
gen PLUvDvarQ‘k’resc = PLUvDvarQ‘k’ / tmpresc
if ‘k'==1 | ‘k’==9 {

reg fxInvertQP ${PLUsR} ${SupCo} PLUvDvarP ‘k’resc /+«PLUvDvarQ‘k resc =
est store dlshortl_‘k’

}
else{
reg fxInvertQP ${PLUsR} ${SupCo} PLUvDvarP ‘k’resc /«PLUvDvarQ 'k’ resc =
est store dlshortl_-‘k’

}

*col 2
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693
694
695
696
697
698
699
700
701
702
703
704 | /=
705
706
707

709
710
711
712
713
714
715

716

717

718
719
720

721

722

723
724
725
726
727
728
729
730
731
732

733
734

736

737

228

local k=${focusk}
reps (200)

bs_baseline- ‘k’

bootstrap _b, seed (12345): my2slsforbaselinebootstrap

est store

est save ”${CLOUDPATH}v38/Temp_data/bs_baseDROP_Q_‘k’.ster”, replace
*col 3
local k=${focusk}
estimates use ”${CLOUDPATH}v38/Temp-data/kernelweigDROP_Q_‘k’. ster”
regress
estimates esample
estimates store kerneld_ ‘k’
*xcol 4
local k=${focusk}
ir k'==5{
estimates use 7${CLOUDPATH}v38/Temp_data/kernelbootDROP_Q_‘k’.ster’

regress
estimates esample:

estimates store kernel5_ ‘k’

Y/

* table main

local k=${focusk}

it ‘k’==5{

btoutreg2 [dlshortl.‘k’ bs_baseline.‘k’ kerneld_‘k’ /«kernel5_ ‘k’ /] using
7 ${LATEXPATH}mainlDROP_Q_‘k . tex” , replace tex(frag pretty ) stats(coef
se) label(proper) level (95) title (For k=‘k’)

btoutreg2 [dlshortl_‘k’ bs_baseline-‘k’ kerneld4_‘k’ /xkernel5_‘k’ /] using
P ${LATEXPATH} mainNSIDROP_Q_‘k ' . tex”, replace tex(frag pretty ) stats(
coef) label(proper) level(95) title (For k=‘k’)

btoutreg2 [dlshortl.‘k’ bs_baseline_ ‘k’ kerneld_‘k’ /ikernel5_ ‘k’+/] using

P {LATEXPATH} mainoSIDROP_Q_‘k’. tex”, replace tex(frag pretty )

title (For k=‘k’)

stats (se
) label(proper) level(95)

i

else{

btoutreg2 [dlshortl_‘k’ bs_baseline_‘k’ kerneld_‘k’ /«kernel5_‘k’ /] using
P ${LATEXPATH} mainlDROP_Q_‘k’. tex”, replace tex(frag pretty ) stats(coef
se) label(proper) level(95) title(For k=‘k’)

btoutreg2 [dlshortl_‘k’ bs_baseline_.‘k’ kerneld_‘k’ /xkernel5_ ‘k’ /] using
P {LATEXPATH} mainNSIDROP_Q_‘k . tex”, replace tex([frag pretty ) stats(
coef) label(proper) level(95) title(For k=‘k’)

btoutreg2 [dlshortl.-‘k’ bs_baseline-‘k’ kerneld4_‘k’ /xkernel5_ ‘k’ /] using

? $ {LATEXPATH} mainoS1IDROP_Q_‘k’. tex” ,
level (95)

replace tex(frag

title (For k=‘k’)

pretty ) stats(se

) label(proper)

sk sk sk sk ok ok ok ok ok Kk Rk sk sk Sk sk sk Sk sk ok Sk ok R SRk K ROk Ok Sk K Ok 3K K K Kk KK KRR Ok

* END OF DROPPING 1 PLUvDvarP or Q

sk sk sk sk sk ok ok ok ok K K ok skl sk sk ok sk sk ok K ok K Rk K kO sk sk ok sk ok K K ok K kR R ROk

sk sk sk sk ok ok ok ok ok ok ok ok ok sk sk ok sk sk ok ok ok ok ok ok R R R R s sk ok sk ok ok ok ok ok ok o ok ok ok

#* REST NOT RELEVANT

e ok ok ok ok ok

e ok ok ok ok ok

s sk ok ok ok
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738

739
740
741
742
743
744
745
746
74T
748

767
768
769
770
771
772

773
774
775
776
T
778
779
780
781
782
783

s sk sk sk ok ok ok ok ok ok ok ok K ko ok sk ok sk sk ok ok ok ok ok ok ok R Kk s sk ok sk ok ok oK ok ok ok ok o K

*x*xx*k%*x*k testing on combined PLU using new ones.

global focusk = 5

e ke ok e ek ok ke ke ke sk ke ke ke ok ke
* Some regressions: —————————— on point k only —m————

sk sk sk sk sk sk ok sk sk ok ok ok ok ok ok ok

use ”${CLOUDPATH}v38/Temp_data/Finalrundataset.dta”, clear

* kK
* scalcfactor to adjust fx to slopc
ok
capture drop group
egen group= group(Datestatafrac)
gsort group Datestata Hour SalePurchase select
capture drop slopeDpost slopeDpre slopeDatk fxscalefactor
gen slopeDpost =.
gen slopeDpre =.
gen slopeDatk =.

gen fxscalefactor =.

forvalues k= 1(2)9{

*note in p—q dimension!

by group: replace slopeDpost = (Volume|[_.n+1] — Volume[_n]) /(Price[_n+1]— Price[_-n]) if select==‘k’

by group: replace slopeDpre = (Volume[_n] — Volume[.n—1])/(Price [-n]— Price[_n—1]) if select
=<k’

by group: replace slopeDatk = abs(slopeDpost[-n]+ slopeDpre[_n])/2 if

capture drop tmpl tmp2

egen tmpl = mean(slopeDatk ) if select==‘k’
egen tmp2 = mean(fx) if select==‘k’
replace fxscalefactor = tmpl / tmp2 if select==‘k’

drop tmpl tmp2
}
capture drop fxscaled

gen fxscaled = fx x fxscalefactor

* scalefactor to adjust fx to slope
capture drop group

egen group= group(Datestatafrac)

gsort group Datestata Hour SalePurchase select

capture drop slopeDpostQP slopeDpreQP slopeDatkQP fxscalefactorQP

gen slopeDpostQP =.

gen slopeDpreQP =.

gen slopeDatkQP =.

gen fxscalefactorQP =.

gen fxQP = (1/fx)

e ok ok ok K
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796 | forvalue
797
798

799

800
801
802
803
804
805
806
807
808
809

s k= 1(2)9{

*note in gq—p dimension!

by group: replace slopeDpostQP = (Price[-n+1]— Price[-n])/(Volume[-n+1] — Volume[_n]) if
select=="k’

by group: replace slopeDpreQP = (Price[-n]— Price[-n—1])/(Volume[-n] — Volume[.n —1]) if
select=="‘k’

by group: replace slopeDatkQP = abs(slopeDpostQP[_n]+ slopeDpreQP[-n]) /2 if select==‘k’
capture drop tmpl tmp2

egen tmpl = mean(slopeDatkQP ) if select==‘k’

egen tmp2 = mean(fxQP) if select=—=‘k’

replace fxscalefactorQP = tmpl / tmp2 if select==‘k’
drop tmpl tmp2

}

capture drop fxscaledQP

gen [xscaledQP = [xQP * [xscalelactorQP

gen comparisonfx = 1/ fxscaled

810 | * SCALING ONLY APPROPRIATE FOR K=5. otherwise too much mixing flat and vertical section.

811
812
813
814
815
816
817
818
819
820
821
822
823

824

826
827
828
829
830
831
832
833
834
835
836
837
838
839 | **x* REGS
840

841

842
843
844
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local k=${focusk}

keep if select=—‘k’ & SalePurchase——"Purchase”

*gen checkl = sqrt (PLUvDvarP) / (1 / fxscaled )

*gen check2= sqrt (PLUvDvarQ)

capture drop PLUvDcomb

capture noisily gen PLUvDcomb = (( sqrt(PLUvDvarP) / (1 / fxscaled ) ) + sqrt(PLUvDvarQ)
)2

capture drop PLUvDcombK

capture noisily gen PLUvDcombK = (( sqrt(PLUv5lavarPsq) / (1 / fxscaled ) ) + sqrt(
PLUvblavarQsq) )"2

#*rescale combined
capture drop PLUvDvarC
su PLUvDcomb, meanonly
scalar tmpresc = r(mean)

capture noisily gen PLUvDvarC = PLUvDcomb / tmpresc

capture drop PLUvDvarCK
su PLUvDcombK, meanonly
scalar tmpresc = r(mecan)

capture mnoisily gen PLUvDvarCK = PLUvDcomb / tmpresc

reg fxInvertQDl PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal Brent
Gas IT2 EUA WindlDA Hydro PLUvDvarC if select ==‘k’ & SalePurchase=="Purchase”
robust

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal Brent
Gas IT2 EUA WindlDA Hydro PLUvDvarC if select ==‘k’ & SalePurchase=="Purchase”
vce (bootstrap , reps(300) seed(12345))

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal Brent
Gas IT2 EUA WindlDA Hydro PLUvDvarCK if select ==‘k’ & SalePurchase=—"Purchase”

aweight = PointsInBinv5la]
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867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

897
898
899
900
901
902
903
904

$ok ok ok Kk
* generate 1—dim PLUs:
*ok ok kKK

capture drop PLU.COMB=#

capture noisily gen PLU_COMBa_Dresc =

capture

2 )

noisily gen PLU_-COMBa_Dabsresc

capture noisily gen PLU_-COMBa_Drtresc

sqrt ( (PLUvDvarPresc) "2 + (PLUvDvarQresc) 2 )
= sqrt ( (PLUvDvarPabsresc) "2 + (PLUvDvarQabsresc)

= sqrt ( (PLUvDrtPresc) "2 4+ (PLUvDrtQresc) "2 )

/% version b: translation approach — not allowed for rescaled variables!!
capture mnoisily gen PLUCOMBbD  =((PLUvDvarP)/ (1 / fxscaled ) ) 4+ (PLUvDvarQ)
capture noisily gen PLU.COMBb.Dabs = ((PLUvDvarPabs)/ (1 / fxscaled) ) + (PLUvDvarQabs)
capture mnoisily gen PLU.COMBb.Drt = ((PLUvDrtP)/ (1 / fxscaled ) ) + (PLUvVDItQ) =/
/ capture noisily gen PLU.COMBb.D  =((PLUvDvarP)/ (fxscaledQP ) ) + (PLUvDvarQ)
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905
906
907
908
909
910
911
912
913
914

915

916

917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949

capture noisily gen PLU.COMBb.Dabs = ((PLUvDvarPabs)/ (fxscaledQP) ) + (PLUvDvarQabs)
capture noisily gen PLU.COMBb_Drt ((PLUVDrtP)/ (fxscaledQP ) ) + (PLUVDrtQ) =/

ok 3k kK
* defining variables
3 %k ok
local versionS 7617
global runversionS ‘versionS’
global demandestimationvariables ‘version’ ”"Tempeffl5 Roll-Temp24
Roll_Temp240 suncycle morning deltasun EWH SolarRest RteBlackBox ”
global supplyestimationvariables ‘versionS’ ”Coal Brent Gas IT2 EUA suncycle morning
deltasun EWH Wind1DA SolarRest Hydro RteBlackBox”
global uncertaintyproxies ‘versionS’ "PLUvDvarP PLUvDvarQ PLUvDvarPabs PLUvDvarQabs
PLUvDrtP PLUvDrtQ PLUvRvarT PLUvRvarW PLUvRvarS PLUvRvarTsq PLUvRvarWsq
PLUvRvarSsq PLUvDvarQresc PLUvDvarQabsresc PLUvDvarPresc PLUvDvarPabsresc
PLUvDrtPresc PLUvDrtQresc PLU_.COMBa_Dresc PLU_.COMBa_Dabsresc PLU_COMBa_Drtresc
PLU_COMBb.D PLU_COMBb_Dabs PLU_COMBb_Drt
global PLUsD ”"PLUvDvarP PLUvDvarQ PLUvDvarPabs PLUvDvarQabs PLUvDrtP PLUvDrtQ
PLUvDvarPresc PLUvDvarQresc PLUvDvarPabsresc PLUvDvarQabsresc PLUvDrtPresc
PLUvDrtQresc PLU_COMBa_Dresc PLU_COMBa_Dabsrcsc PLU_COMBa_Drtrecsc PLU.COMBb_D
PLU_COMBbL_Dabs PLU_COMBbDL_Drt
global PLUsDP ”"PLUvDvarP ‘k’ PLUvDvarPabs‘k’ PLUvDrtP‘k’
global PLUsDQ ” PLUvDvarQ‘k’ PLUvDvarQabs‘k’ PLUvDrtQ‘k’
global PLUsR "PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq”
global SEV ${supplyestimationvariables${runversionS}}
global UCP ${uncertaintyproxies${runversionS}}
di $SEV
di $UCP

**xreg on demand slope as cross check to interpretation from level functional regressions:

capture drop negfx

gen negfx = —fx
reg negfx S$demandestimationvariables ‘version’, robust
reg fx $demandestimationvariables ‘version’, robust

est store demandslopepred${focusk}
btoutreg2 [demandslopepred${focusk} ] using "${LATEXPATH}demandslopepred${locusk }.
tex”, replace tex(frag pretty ) stats(coef) label(proper) level(95) title(
Demand—slope—regression at k=${focusk})

drop _estx*

s sk ke ok ok o

* REGRESSION 1

reg fxInvertQP ${PLUsR}, robust

est store onlyplus

# all plu-renouvelable are significant , only plu wind of correct sign

reg fxInvertQP ${PLUsR} $SEV, robust

est store onlyplurl

reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro, robust

est store onlyplur2

reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro $SEV, robust

est store onlyplur3

# when adding supply controls, only wind stay significant with correct sign, others non—sig. thats

good. :)

foreach UCP of global PLUsD{
reg fxInvertQP  ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro  ‘UCP’
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953
954
955
956
957
958

959
960
961
962
963
964
965
966

967
968

969
970

971
972

973
974
975
976
977
978

979

980
981
982
983
984

985
986

987
988

989
990

991
992
993

est store linregl ‘UCP’

}

foreach UCPl of global PLUsDP{

foreach UCP2 of global PLUsSDQ{

reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro ‘UCP1’ ‘UCP2
est store ‘UCP1’‘UCP2’

}
}

reg [xInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro PLUvDvarP ‘k’
resc PLUvDvarQ‘k’resc

est store dlshortl

xreg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro PLUvDvarP ‘k
‘resc  PLUvDvarQ‘k’resc , vce(bootstrap, rep(500))

*est store blshortl

rcg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro PLUvDvarPabs
‘k’resc PLUvDvarQabs ‘k’resc

est store dlshort2

reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro PLUvDrtP ‘k’
resc PLUvDrtQ ‘k’resc

est store dlshort3

* (generating) regression output

/% Shows: PLU_temperature never significant
windlda : pos + sig (more wind, more uncertainty)
— plu wind: sig + positive effect only for PLUs_on.P (longer autocorrelation wind—> more

uncertainty)
— plu wind squared : very neg + sig only for PLUs_on_.P (very short or long autocorrel low
uncertainty , errors cancel out)
—PLU-solar never sig
solarlda included in plusD

— HAVE EXCLUDED DAYTIME CONTROLS (but they are strongly included in PLUsD

all input prices has sig ellecl: coal positive and all other negative (intlerpretalion?)
— plu_D_on_P have negative, sigificant effects , plu_D_on_Q have positive effects , when very

significant
*/
btoutreg2 [onlyplus onlyplur2 onlyplurl]| using 7 ${LATEXPATH}onlypluRs.tex”,
replace tex(frag pretty ) stats(coef) label(proper) level (95) title(regression
for k=‘k’)

btoutreg2 [/+linreglPLUvDvarP linreglPLUvDvarPabs linreglPLUvDrtP «/
lintreglPLUvDvarPresc lintreglPLUvDvarPabsresc linreglPLUvDrtPresc ] using
U ${LATEXPATH} linregsummarylP_‘k’. tex” , replace tex(frag pretty ) stats(coef)

label (proper) level (95) title(regression for k=‘k’)

btoutreg2 [/xlinreglPLUvDvarQ linreglPLUvDvarQabs linreglPLUvDrtQ */
linreglPLUvDvarQresc linteglPLUvDvarQabsresc linreglPLUvDrtQresc | using ”${

LATEXPATH} linregsummaryl Q- k. tex”, replace tex(frag pretty ) stats(coef) label

(proper) level(95) title(regression for k=‘k’)

btoutreg2 [/+*PLUvDvarP‘k’PLUvDvarQ‘k’ PLUvDvarPabs‘k’PLUvDvarQabs‘k’ PLUvDrtP‘k’
PLUvDrtQ‘k’ #/ dlshortl dlshort2 dlshort3] using 7 ${LATEXPATH}doubleregl_ ‘k .

tex”, replace tex(frag pretty ) stats(coef) label(proper) level(95) title(

. 233

regression for k=‘k’)
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994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

1037
1038
1039
1040
1041

1042
1043

1044

1045
1046
1047
1048
1049

ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok
% some robustness regressions to plu_d specifications

ok ok ok ok Rk kR kR K ROk R

ks K ok
EEE T
/ *
sk sk sk ok sk ok sk sk Sk ok ok sk Ok ok ok skokok ok ok ok ok ko ok ook x KERNEL BASED PLU = v52
w/
/
use ”${CLOUDPATH}v38/Temp-data/Finalrundataset.dta”, clear

* Generate 1 dimensional proxies for kernel based PLUs

sk s sk sk sk sk ke sk sk ke

3k ok ok 3k ok ok kK k.
* COMBINE P and Q uncertainty into single value on kernel based proxies.
3fe ok ok ok Ok ok ok ok
capture drop PLU.COMB=*
% version a: Hypolhenuse approach

foreach versionD in 752a” "52b7{

foreach switch in /%77x%/ 7abs”{
forvalues k = 1(2)9{
capture noisily gen PLU_.COMBa.v‘versionD ’_‘switch’‘k’resc = sqrt( (PLUv‘versionD ’varP ‘switch’‘k’
resc) "2 + (PLUv‘versionD ’varQ ‘switch’‘k’resc) 2 )
}
}

i

* version b: translation approach — not correct conversion anymore after rescaling

reey

forvalues k = 1(2)9{

capture noisily gen PLU.COMBb.v52a‘k’ = ((PLUv52avarPabs ‘k’)/ (1 / fxscaled ) ) + (
PLUv52avarQabs ‘k’)

capture noisily gen PLU_.COMBb._v52b‘k’ = ((PLUv52bvarPabs‘k’)/ (1 / fxscaled ) ) + (
PLUv52bvarQabs ‘k )

}

/ %
forvalues k = 1(2)9{
capture moisily gen PLU.COMBb.v52a‘k’ = ((PLUvb2avarPabs‘k’)/ ( fxscaledQP ) ) + (

234




Code Annex

1050

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

1076

1077

1078

1079
1080

1081

1082

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

PLUv52avarQabs ‘k’)

capture

noisily gen PLU_.COMBb._v52b‘k’ ((PLUv52bvarPabs ‘k’) / ( fxscaledQP ) ) + (

PLUv52bvarQabs ‘k )

*/

ok ok kK KK
* FOCUS POINT

sk ok ok ok ok ok ok Kok

local k=8{focusk}

keep if

/% % gener

select==‘k’ & SalePurchase=="Purchase”

al placeholders

capture drop PLUvDvarQresc PLUvDvarQabsresc PLUvDvarPresc PLUvDvarPabsresc PLUvDrtPresc

PLUvDrtQresc

gen PLUvDvarQresc = PLUvDvarQ‘k’resc

gen PLUvDvarQabsresc = PLUvDvarQabs‘k’resc

gen PLUvDvarPresc = PLUvDvarP‘k’resc

gen PLUvDvarPabsresc = PLUvDvarPabs‘k’resc

gen PLUvDrtPresc = PLUvDrtP ‘k’resc

gen PLUvDrtQresc = PLUVDrtQ 'k’ rescx/

ok ok ok

* defining variables

EEEE

local versionS 761”7
global runversionS ‘versionS’

B

global demandestimationvariables ‘version’ "Tempeffl5 Roll_Temp24
Roll_-Temp240 suncycle morning deltasun EWH SolarRest RteBlackBox ”
global supplyestimationvariables ‘versionS’ " Coal Brent Gas IT2 EUA suncycle morning
deltasun EWH WindlDA SolarRest Hydro RteBlackBox”

*global uncertaintyproxies ‘versionS’ "PLUvDvarP PLUvDvarQ PLUvDvarPabs PLUvDvarQabs
PLUvDrtP PLUvDrtQ PLUvRvarT PLUvRvarW PLUvRvarS PLUvRvarTsq PLUvRvarWsq
PLUvRvarSsq PLUvDvarQresc PLUvDvarQabsresc PLUvDvarPresc PLUvDvarPabsresc

PLUvDrtPresc PLUvDrtQresc PLU_COMBa_Dresc PLU_.COMBa_Dabsresc PLU_COMBa_Drtresc
PLU_COMBb.D PLU_.COMBb_Dabs PLU_COMBb_Drt

*global PLUsD "PLUvDvarP PLUvDvarQ PLUvDvarPabs PLUvDvarQabs PLUvDrtP PLUvDrtQ
PLUvDvarPresc PLUvDvarQresc PLUvDvarPabsresc PLUvDvarQabsresc PLUvDrtPresc
PLUvDrtQresc PLU_.COMBa_Dresc PLU_.COMBa_Dabsresc PLU_COMBa_Drtresc PLU_.COMBb_D
PLU_COMBb_Dabs PLU_.COMBbL_Drt ”

global PLUsR "PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq”

global PLUsROB "PLUv52avarPabs ‘k’ PLUv52avarQabs‘k’ PLUv52bvarPabs ‘k’
PLUv52bvarQabs ‘k’ PLUvb2avarPabs ‘k’rcsc PLUvb2bvarPabs ‘k’recsc PLUv52avarQabs ‘k
resc PLUv52bvarQabs ‘k’resc PLU_.COMBa_v52a_abs ‘k’resc PLU_COMBa_v52b_abs ‘k’resc
PLU_COMBb_v52a‘k’ PLU_COMBb_v52b‘k’”

global PLUsROBa ”"PLUv52avarPabs ‘k’ PLUv52avarQabs ‘k’ PLUvb2avarPabs ‘k’resc
PLUv52avarQabs ‘k’' resc PLU_COMBa_.v52a_abs ‘k’resc PLU_COMBb.v52a‘k’ 7

global PLUSROBb ” PLUv52bvarPabs‘k’ PLUv532bvarQabs ‘k’ PLUv52bvarPabs ‘k’ resc
PLUv52bvarQabs ‘k’ ' resc PLU_COMBa_v52b_abs ‘k’resc PLU_COMBb_v52b‘k’”

global SEV ${supplyestimationvariables${runversionS}}

global UCP ${uncertaintyproxies${runversionS}}

di $SEV

di ${PLUsROB}

*+*% first regression

reg fxInvertQP

${PLUsR}, robust
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1093 | est store onlyplus
1094 | reg fxInvertQP Coal Brent Gas IT2 EUA WindlDA Hydro, robust
1095 | est store onlycontrols
1096 | * all plu_renouvelable are sigigifcant , only plu wind of correct sign
1097 | reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro, robust
1098 | * when adding supply controls, only wind stay significant with correct sign, others non—sig. thats
good. 1)
1099
1100 foreach UCP of global PLUSROB{
1101 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro /#S${SEV}*/ ¢
UucCp’
1102 est store rl ‘UCP’
1103 }
1104
1105 * including weighting using Pointsperbin
1106 foreach UCP of global PLUsROBa{
1107 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro /#${SEV}«*/ ¢
UCP’ [aweight=PointsInBinv52a]
1108 est store wl‘UCP’
1109 }
1110 forcach UCP of global PLUsROBb{
1111 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro /*«${SEV}x/ ¢
UCP’ [aweight=PointsInBinv52b]
1112 est store wl‘UCP’
1113 }
1114
1115
1116 | *simultaneous reg on PLu.P and PLU-Q
1117 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro
PLUv52avarPabs ‘k’resc PLUvb2avarQabs ‘k’resc [aweight=PointsInBinv52a]
1118 est store w2.52a
1119 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro
PLUv52bvarPabs ‘k’resc PLUv52bvarQabs ‘k’resc [aweight=PointsInBinv52b]
1120 est store w2.52b
1121
1122
1123 * (generating) regression output
1124 | /+ Shows:
1125 — plu_-r as before
1126 PLU_temperature never significant
1127 windlda pos + sig (more wind, more uncertainty)
1128 plu wind: sig positive effect only for PLUs_on_.P (longer autocorrelation wind—> more
uncertainty)
1129 — plu wind squarcd very ncg + sig only for PLUs_on_P (very short or long autocorrcl low
uncertainty , errors cancel out)
1130 —PLU-solar never sig
1131 solarlda included in plusD
1132 — HAVE EXCLUDED DAYTIME CONTROLS (but they are strongly included in PLUsSD
1133 all input prices has sig effec coal positive and all other negative (interpretation?)
1134 — plu_D_on_P have negative, sigificant effects , plu_D_on_Q have positive effects , when very
significant
1135 #x% PROMISING RESUTLS HERE ON ROBUSTNESS!
1136 — resc variables have mnonsignificnat effect when combined, significant and pos for
quantities plus when individual effect.
1137 */
1138 btoutreg2 [/#onlyplus=/ onlycontrols rl1PLUv52avarPabs ‘k’ r1PLUv52avarQabs ‘k’

236

rlPLUv52bvarPabs ‘k’
r1PLUv52bvarPabs ‘k’resc
rIPLU_COMBa_v52a_abs ‘k 'resc
r1PLU_.COMBb_v52b ‘k 7]

using

r1PLUv52bvarQabs ‘k’
riPLUv52avarQabs ‘k’resc

rIPLU_COMBa_v52b_abs ‘k 'resc
" $ {LATEXPATH} r1_ k. tex” ,

/* rlPLUv52avarPabs ‘k’

resc

r1PLUv52bvarQabs ‘k’ x/

riIPLU_COMBb_v52a ‘k’

resc

replace tex(frag pretty )
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1139

1140
1141
1142
1143

1144
1145

*/

sk ok o

ok ok ok ok

stats (coef) label(proper) level(95) title(For k=‘k’)

btoutreg2 [/*onlyplus=/ onlycontrols wlPLUv52avarPabs ‘k’ wlPLUv52avarQabs ‘k’
wlPLUv52bvarPabs ‘k’> wlPLUvb52bvarQabs ‘k’ /+ wlPLUv52avarPabs ‘k’ resc
wlPLUv52bvarPabs ‘k’resc wlPLUv52avarQabs ‘k’'resc wlPLUv52bvarQabs‘k’'resc x/
wlPLU.COMBa_vb52a_abs ‘k'resc wlPLU_-COMBa_v52b_abs ‘k’resc wlPLU.-COMBb.v52a‘k’
wlPLU_.COMBb_v52b ‘k’] using "${LATEXPATH}wl_‘k’ . tex”, replace tex(frag pretty )
stats (coef) label(proper) level(95) title(For k=‘k’)

xseparate tables for individual P or Q

btoutreg2 [wlPLUv52avarPabs ‘k’ wlPLUv52avarQabs‘k’ wlPLUv52bvarPabs‘k’ wlPLUv52bvarQabs ‘k’]
using "S{LATEXPATH}wla_‘k’.tex”, replace tex(frag pretty ) stats(coef) label(proper)
level (95) title (For k=‘k’)

btoutreg2 [w2.52a w2.52b wIlPLU_COMBa_v52a_abs ‘k’resc wlPLU_COMBa_v52b_abs ‘k’resc /=
wlPLU_COMBb_v52a‘k’ wlPLU_.COMBb_v52b‘k’ #/] using ”${LATEXPATH}wlb_‘k’.tex”, replace

tex (frag pretty ) stats(coef) label(proper) level(95) title(For k=‘k’)

/% run individually if only running first part

drop _cst*

ook o ok K o ok K K oK K K oK K K
% some robustness regressions to plu_d specifications

sk 3k sk ok ok sk ok ok sk ok ok ok ok oK ok ok

/*

stk sk sk sk ok ok o ok ke sk ok ok ok sk R ok ok ok s ok kR kernel based plus. = v5l
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1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

1208
1209
1210
1211
1212

1213
1214

1215

1216
1217
1218
1219
1220

1221

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

1233
1234
1235
1236
1237
1238
1239
1240
1241

*/

use ”${CLOUDPATH}v38/Temp-data/FinalrundatasetK1.dta”, clear

use ”${CLOUDPATH}v38/Temp._data/Finalrundataset.dta”, clear

* Generate 1 dimensional proxies for kermnel based PLUs

sk ok sk ok 3k Sk ok ok Sk ok

capture noisily gen PLU.COMBa.v‘versionD ' _‘switch’‘k’'resc = sqrt( (PLUv‘versionD ’'varP ‘switch’‘k’

*/

ok ok ok ok ok ok K
% COMBINE P and Q uncertainty into single value on kernel based proxies.
s ok ok ok ok ok
capture drop PLU.COMBx
* version a: Hypothenuse approach
foreach versionD in 751la” "51b7{
foreach switch in /+"7%/ "sq”{

forvalues k = 1(2)9{

resc)”2 + (PLUv‘versionD ’varQ ‘switch’‘k’resc)’2 )

}
}
}
% version b: translation approach — not correct conversion anymore after rescaling
(RN
forvalues k = 1(2)9{
capture noisily gen PLU_.COMBb_v5la‘k’ = ((PLUv5lavarPsq‘k’)/ (1 / fxscaled ) ) + (
PLUv5lavarQsq ‘k ")
capture noisily gen PLU_.COMBb_v51b‘k’ = ((PLUv5lbvarPsq‘k’)/ (1 / fxscaled ) ) + (

PLUv51bvarQsq ‘k ")

forvalues k 1(2)94
capture noisily gen PLU.COMBb.vSla‘k’ = ((PLUv5lavarPsq‘k’)/ ( fxscaledQP ) ) + (
PLUv5lavarQsq ‘k’)
caplure noisily gen PLU.COMBb.v51b‘k’ = ((PLUv5lbvarPsq‘k’)/ ( [xscaledQP ) ) + (
PLUv51bvarQsq ‘k’)

sk sk sk ok sk sk ok ok

* FOCUS POINT

sk sk sk o s ok ok

sk ok ok

238

local k=${focusk}

keep if select==‘k’ & SalePurchase=="Turchase”

# general placeholders

capture drop PLUvDvarQresc PLUvDvarQsqresc PLUvDvarPresc PLUvDvarPsqresc PLUvDrtPresc
PLUvDrtQresc

gen PLUvDvarQresc = PLUvDvarQ‘k’resc

gen PLUvDvarQsqresc = PLUvDvarQsq‘k’resc

gen PLUvDvarPresc = PLUvDvarP ‘k’resc

gen PLUvDvarPsqresc = PLUvDvarPsq‘k’resc

gen PLUvDrtPresc = PLUvDrtP‘k’resc

gen PLUvDrtQresc = PLUvDrtQ‘k’rescx/
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1242
1243
1244
1245
1246

1247

1248

1249

1250
1251

1252

1253

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269

1270
1271
1272

1273
1274
1275
1276
1277
1278

1279
1280
1281
1282

1283

* defining variables

ok ok ok

reg
est
reg

est

local versionS 7617
global runversionS ‘versionS’

global demandestimationvariables ‘

version’ " Tempeffls Roll-Temp24
Roll_Temp240 suncycle morning deltasun EWH SolarRest RteBlackBox ”

global supplyestimationvariables ‘versionS’ ”Coal Brent Gas IT2 EUA suncycle morning

deltasun EWH WindlDA SolarRest Hydro RteBlackBox”

*global uncertaintyproxies ‘versionS’ "PLUvDvarP PLUvDvarQ PLUvDvarPsq PLUvDvarQsq
PLUvDrtP PLUvDrtQ PLUvRvarT PLUvRvarW PLUvRvarS PLUvRvarTsq PLUvRvarWsq
PLUvRvarSsq PLUvDvarQresc PLUvDvarQsqresc PLUvDvarPresc PLUvDvarPsqresc
PLUvDrtPresc PLUvDrtQresc PLU_.COMBa_Dresc PLU_.COMBa_Dsqresc PLU_COMBa_Drtresc
PLU_COMBb.D PLU_COMBb_Dsq PLU_COMBb_Drt

xglobal PLUsD ”PLUvDvarP PLUvDvarQ PLUvDvarPsq PLUvDvarQsq PLUvDrtP PLUvDrtQ
PLUvDvarPresc PLUvDvarQresc PLUvDvarPsqresc PLUvDvarQsqresc PLUvDrtPresc
PLUvDrtQresc PLU_COMBa_Dresc PLU_COMBa_Dsqresc PLU_COMBa_Drtresc PLU_.COMBb_D
PLU_COMBb_Dsq PLU_COMBbL_Drt

global PLUsR ”"PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq”

global PLUsROB ”"PLUvb5lavarPsq 'k’ PLUvb5lavarQsq‘k’ PLUv5lbvarPsq‘k’ PLUv5lbvarQsq ‘k’

PLUv5lavarPsq ‘k’ resc PLUvSlbvarPsq‘k’resc PLUv5lavarQsq‘k’resc PLUv51bvarQsq‘k
"resc PLU_COMBa_v5la_sq‘k’resc PLU_.COMBa_v5lb_sq‘k’rcsc PLU.COMBb_v5la‘k’
PLU_COMBbL_v51b ‘k "

global PLUsROBa ”PLUv5lavarPsq‘k’ PLUv5lavarQsq‘k’ PLUv5lavarPsq ‘k’resc
PLUv5lavarQsq‘k’ resc PLU_COMBa_v5la_sq‘k’ ' resc PLU_COMBb_v5la‘k’

global PLUSROBb ” PLUv5lbvarPsq‘k’ PLUv56lbvarQsq‘k’ PLUv5lbvarPsq‘k’ resc
PLUv51bvarQsq ‘k’resc PLU_.COMBa_v51b_sq‘k’ ' resc PLU_.COMBb_v51b‘k’”

global SEV ${supplyestimationvariables${runversionS}}

global UCP ${uncertaintyproxies${runversionS}}

di $SEV

di ${PLUsROB}

first regression

fxInvertQP ${PLUsR}, robust
store onlyplus
[xInvertQP Coal Brent Gas IT2 EUA WindlDA Hydro, robust

store onlycontrols

# all plu_-renouvelable are sigigifcant , only plu wind of correct sign

reg

fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro, robust

* when adding supply controls, only wind stay significant with correct sign, others non—sig. thats

good. :)

foreach UCP of global PLUSROB{

reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro /+${SEV}x*/ ¢
Uucp”’

est store rl ‘UCP’

i

% including weighting using Pointsperbin

foreach UCP of global PLUsROBa{

reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro /+«${SEV}x*/ ¢
UCP’ [aweight=PointsInBinvb5la]

est store wl‘UCP’

}

foreach UCP of global PLUsROBb{

reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro /+${SEV}x*/ ¢
UCP’ [aweight=PointsInBinv51b]

est store wl‘UCP’
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1284 }

1285

1286

1287 | *simultaneous reg on PLu.P and PLU-Q

1288 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro
PLUv5lavarPsq ‘k 'resc  PLUvbHlavarQsq ‘k’resc [aweight=PointsInBinv51la]

1289 est store w2.5la

1290 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA WindlDA Hydro
PLUv51bvarPsq ‘k’resc PLUv51lbvarQsq‘k’resc [aweight=PointsInBinv51b]

1291 est store w2.51b

1292

1293

1294 * (generating) regression output

1295 /% Shows:

1296 — plu_r as belore

1297 — PLU_temperature never significant

1298 — windlda : pos 4+ sig (more wind, more uncertainty)

1299 — plu wind: sig + positive effect only for PLUs_on_P (longer autocorrelation wind—> more

uncertainty )

1300 — plu wind squared : very neg + sig only for PLUs.on.P (very short or long autocorrel = low
uncertainty , crrors canccl out)

1301 —PLU-solar never sig

1302 — solarlda included in plusD

1303 — HAVE EXCLUDED DAYTIME CONTROLS (but they are strongly included in PLUsD

1304 — all input prices has sig effect: coal positive and all other negative (interpretation?)

1305 — plu-D_on_.P have negative, sigificant effec plu_D_on_Q have positive effects , when very
significant

1306 #x%  PROMISING RESUTLS HERE ON ROBUSTNESS!

1307 — resc variables have mnonsignificnat effect when combined, significant and pos for
quantities plus when individual effect .

1308 x/

1309 btoutreg2 [/+onlyplus=/ onlycontrols rlPLUv5lavarPsq‘k’ rlPLUv5lavarQsq ‘k’

r1PLUv51bvarPsq ‘k’ r1PLUv51bvarQsq ‘k’ /+ rlPLUv5lavarPsq k' resc r1PLUv51lbvarPsq
‘k’resc rlPLUv5lavarQsq‘k’resc rlPLUv51bvarQsq‘k’resc */ rlPLU_COMBa_v5la_sq‘k’
resc rlIPLU_.COMBa_v5lb_sq ‘k’resc rlPLU_.COMBb_v5la‘k’ r1PLU_.COMBb_v51b‘k’] using
VS{LATEXPATH}k1_ ‘k’ . tex”, replace tex(frag pretty ) stats(coef) label(proper)
level (95) title (For k=‘k’)

1310 btoutreg2 [/«onlyplusx=/ onlycontrols wlPLUvb5lavarPsq‘k’ wlPLUv5lavarQsq ‘k’
wlPLUv51bvarPsq ‘k’ wlPLUv5lbvarQsq‘k’ /#+ wlPLUvb5lavarPsq 'k’ resc wlPLUv5lbvarPsq
‘k’resc wlPLUv5lavarQsqg‘k’resc wlPLUv51lbvarQsq‘k’ resc */ wlPLU_.COMBa-v5la-sq‘k’
resc wlPLU_.COMBa_v5lb_sq ‘k’resc wlPLU_.COMBb._v5la‘k’ wlPLU_.COMBb_v51lb‘k’] using
P${LATEXPATH} k2. ‘k’.tex”, replace tex(frag pretty ) stats(coef) label(proper)
level (95) title (For k=‘k’)

1311

1312 #*separate tables for individual P or Q

1313

1314 btoutreg2 [wlPLUvblavarPsq‘k’ wlPLUv5lavarQsq‘k’ wlPLUv51lbvarPsq‘k’ wlPLUvb51bvarQsq ‘k "]
using " ${LATEXPATH}k2a_‘k’ . tex” , replace tex(frag pretty ) stats(coef) label(proper)
level (95) title (For k=‘k’)

1315

1316 btoutreg2 [w2.5la w2.51b wlPLU_COMBa.v5la_sq‘k’resc wlPLU_.COMBa.v51lb_sq‘k’resc /x
wl1PLU_COMBb_v5la‘k’ wlPLU.COMBb_v51b‘k’ x/] using ”${LATEXPATH}k2b_‘k’.tex” , replace
tex (frag pretty ) stats(coef) label(proper) level(95) title(For k=‘k’)

1317

1318 btoutreg2 [w2.5la w2.51b w2.52a w2.52b ] using "S${LATEXPATH}k5152_‘k’.tex”, replace tex(
frag pretty ) stats(coef) label(proper) level(95) title(For k=‘k’)

1319

1320

1321

1322 /% run individually if only running first part
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1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1315
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382

sk 3k ok ok ok ok ok

drop

alternative

—estx

pairing

not

relevant

for

k=${focusk}
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1383
1384
1385 | #** BASELINE RESULTS:
1386
1387 local k=${focusk}

1388 btoutreg2 [dlshortl bs_baseline ‘k’ w2_51la w2.51b] using 7 ${LATEXPATI}
comparableregs_ ‘k’. tex”, replace tex(frag pretty ) stats(coef) label(proper)
level (95) title(regression for k=‘k’)

1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1103
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423 | = OLD CODE (to delete)
1424
1425
1126
1427 | % test in single step: ———— NOT CORRECT CODE; SINCE INCLUDE ALL EXOGENOUS IN PLU PREDICTION.

1428 /*ivregress 2sls fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal
Brent Gas IT2 EUA WindlDA Hydro (sqresPrice sqresVolume = Tempeffl5 Roll-Temp24 Roll-Temp240

suncycle morning deltasun EWH SolarRest RteBlackBox) if select ==5 & SalePurchase=="Purchase”
robust first

1429
1430 |ivregress 2sls fxInvert QP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal
Brent Gas IT2 EUA WindlDA Hydro (sqresPrice sqresVolume = Tempeffl5 Roll.-Temp24 Roll_-Temp240

5

suncycle morning deltasun EWH SolarRest RteBlackBox) if select = & SalePurchase=="Purchase”
vce(bootstrap, rep(200))

1431
1432

1433 | x#%xx bootstrap example 1

1434 | /«capture drop yhat PLU_boot
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1435
1436
1437

1438
1439

1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453

1454
1455
1456

1457
1458

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1171
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488

capture program drop my2slsforboot

program my2slsforboot

reg sqresVolume Tempeffl5 Roll-Temp24 Roll-Temp240 suncycle morning deltasun EWH SolarRest

RteBlackBox if select ==5 & SalePurchase=="Purchase”, robust
predict PLU-boot, xb
reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal

g

Gas IT2 EUA WindlDA Hydro PLU_boot if select ==5 & SalePurchase=="Purchase”

robust
drop yhat PLU_boot
end
bootstrap _b[PLU_boot] _se[PLU_boot], reps(50) seed(10): my2slsforboot
bootstrap , bca reps(50) seed(10): my2slsforboot

di _se [PLU_boot]

*#*%* bootstrap example 2

capture drop PLU_boot

capture drop volhat

capture program drop my2slsforboot
program my2slsforboot

reg Volume Tempeffls Roll_Temp24 Roll_Temp240 suncycle morning deltasun EWH SolarRest

RteBlackBox if select = & SalePurchase=="Purchase”, robust
predict yhat, xb
gen PLU._boot — (Volume — yhat) 2

reg fxInvertQDP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal
Gas IT2 EUA WindlDA Hydro PLU_boot if select ==5 & SalePurchase=="Purchase”
robust
drop yhat PLU_boot
end
bootstrap _b[PLU_boot] _se[PLU_boot], reps(50) seed(10): my2slsforboot
bootstrap , bca reps(50) seed(10): my2slsforboot

di _se[PLU_boot]

*/
sk ok
* generate table of kernel variables
sk ok

/= capture mat drop M

mat M = J(9,6,.)

local wvariablces ${dcmandcstimationvariables ‘ version '} 7
local FUNC ” r(mean) r(p50) r(sd) r(min) r(max)”
local c=2

foreach FF of local FUNC{

local r=1

foreach VV of local variables{

su ‘VV’, detail

mat M[‘r’, ‘c’]= ‘FF’

local r=‘r +1

}

local c=‘c’'+1

}

mat rownames M = ‘variables ’
mat colnames M = NumberBin Mean Median StdDev Min Max
mat 1i M

forvalues mm = 1/9{

mat M[‘mm’, 1] = ‘mm’

Brent

Brent
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1489 }

1490 mat 1i M

1491 | «/

1492 | % Table for Variables used in the kernel based PLU$"D$ computation:

1493 | = btouttable using 7 ${LATEXPATH} multikernel”, replace mat(M) asis nobox format(%9.0fc

%9.1fc %9.0fc %9.0fc %9.0fc %9.0fc) longtable
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Next is the script named 107_Egn4demand.do and called in the general file.

1

2

3

4 |+ pull in do—file: needs to draw in following global macros:

5

6 global DEV ${demandestimationvariables${runversionD }}

7

8

9 | x open base file:

10 use 7 ${CLOUDPATH}v38/Temp_data/Predand5.dta”, clear

11

12

13 sk K ok K K oK ok KOk

14 |+ 1st step: demand estimation

15 K 3k K ok K ok ok ok Kk

16

17

18 | % initiate variables

19

20 capture drop absress

21 capture drop sqressx*

22 capture drop normalressx

23 capture drop stdresx

24 capture drop tmp

25

26 foreach m in Price Volume{

27 gen absres ‘m’=.

28 gen sqres ‘m’=.

29 gen normalres ‘m’=.

30 gen stdres ‘m’=.

31 }

32

33

34 st ks ok ko ok ok ok ok

35 * eqn 4 : DEMAND

36 sk ook o ok ok ok ok

37

38 | * open loop for measure of uncertainty

39 foreach m in Price Volume{

40

41 * open loop for points and marketside

42 forvalues i=9(—2)1{

43 foreach k in Purchase{

44 forvalues XXX=1/1{ /*Irrelevant in this setting ., left for copy
conveniencex/

45 di "Next: 7 7 k> 7 ¢ 77 XXX

46

47 * rcg la: rctricve absolutc prediction crrors

48

49 reg ‘m’ ${DEV} if select i’ & SalePurchase=="‘k’” | robust

50

51 est store DE_‘m’_‘k’_‘i’

52

53 * White test for heteroskedasticity

54

55 estat imtest , white
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56 capture mat drop whitestat

57 mat whitestat = r(chi2_h)

58 di whitestat [1,1]

59 global a‘m’a‘k’a‘i’ = whitestat[1,1]

60 di "next global”

61 di ${a‘m’a‘k’a‘i’}

62 if whitestat[1,1] == . {

63 global a‘m’a‘k’a‘i’ = 99999999

64 }

65 di "next global”

66 di ${a‘m’a‘k’a‘i’}

67

68 * predict errors

69 predict tmp if e(sample), residuals

70

71 * gen deviations of residuals

72 replace absres‘m’ = abs(tmp) if e¢(sample)

73 replace sqres ‘m’ = tmpstmp if e(sample) /xconsistent with whitex/

74 replace normalres ‘m’ = tmp if e(sample)

75

76 * gen Stdev of residuals /*over all residuals of that rcgression, thus
single value for all —> add only to =,

7 tabstat tmp if e(sample), stat(sd) save

78 mat tmpstdev = r(StatTotal)

79 di tmpstdev[1,1]

80 replace stdres‘m’ = tmpstdev[1,1] if e(sample)

81

82 drop tmp

83 }

84 1

85 }

86 }

87

88

89

90

91

92

93

94 e ok ok K ok ok ok ok K

95 * generate tables for demand estimation, incl white test

96 s ok ok ok ok ok ok ok ko

97

98 PR

99 * Tables for k=1...5

100 ok

101

102

103 foreach m in Price{

104 forvalues i=9/9{

105 foreach k in Purchase {

106 btoutreg2 [DE_‘m’_‘k’_‘i’] using " S{LATEXPATH}PriceDEPur${runversionD } tex”
, replace tex(frag pretty landscape) label(proper) addstat(White, ${a‘
m’a‘k’a‘i’} )

107 }

108 }

109 }

110 foreach m in Price{

111 forvalues i=7(—2)1{

112 foreach k in Purchase {

246
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113

114
115
116
117
118
119
120
121
122

123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

*

save

btoutreg2 [DE_-‘m’_‘k’_‘i’] using 7 S{LATEXPATH}PriceDEPur
append tex(frag pretty landscape) label(proper)
Catklati’} )

foreach m in Volume{
forvalues i=9/9{
foreach k in Purchase {
btoutreg2 [DE_‘m’_‘k’_‘i’] using ”${LATEXPATH}VolDEPurs{
replace tex(frag pretty landscape) label(proper) a
a‘k’a‘i’} )
}
}
}
foreach m in Volume{
forvalues i=7(—-2)1{

foreach k in Purchase {

‘${runversionD }.tex”

addstat (White, ${a‘m

runversionD }.tex” ,

ddstat (White, ${a‘m’

btoutrcg2 [DE_‘m’_‘k’_‘i’] using 7 S{LATEXPATH}VolDEPur${runversionD }.tex",

append tex (frag pretty landscape) label(proper) ad

‘kati’} )

K K K K KK KK
* generate tables for heteroskedasticity test
ok o o o ko

* can do later , already incl above

* if so, then create matrix with inputs. then export.

drop _est*

save ”${CLOUDPATH}v38/Temp_data/PreKernel_D_${runversionD }.dta” ,

dstat (White, ${a‘m’a

replace

247
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Next is the script named 107_kernelbucketreg.do and called in the general file.

1 | «DO file for robustness — 23.02

2

3 | xusing bucket specific linear regression.

4

5 | * checking results with kernel based plus.

6 global dofiledirectoryorig= Path to directory containing do files

7 global LATEXPATH = Path to directory containing latex for article

8 global CLOUDPATH = Path to directory containing data

9

TO | skosk ok ok ok sk ok sk ok sk ok ok sk ok Sk ok ok 3k oK ok 3% ok ok Rk kR ROk Ok K R K K K K R

11 | * version

12 local binsetting "a”

13 global runversionD ‘binsetting’

14 global demandestimationvariables ‘binsetting’ " Tempeffl5 Roll-Temp24 Roll_-Temp240
suncycle morning deltasun EWH SolarRest RteBlackBox

15

16 | ook ok ok o ok ok ok ok ok o ok ook ok o ok oK oK Kk o oK oK oK K oK oK oK K K R KK KK K

17

18 | * Define macros

19 local sensitivity 0

20 local endofdata = _N

21 local REP1 SolarRest

22 local Numbin ‘REP1’ 6x(1— ‘sensitivity ')

23 local REP2 deltasun

24 local Numbin ‘REP2’ 6x%(1— ‘scnsitivity ")

25 local REP3 Tempeffl5

26 local Numbin ‘REP3’ 6x(1— ‘sensitivity ')

27 local REP4 Roll_-Temp24

28 local Numbin ‘REP4’ 6%(1— ‘sensitivity ")

29 local REP5 Roll-Temp240

30 local Numbin ‘REP5’ 1%(1— ‘sensitivity ')

31 local REP6 suncycle

32 local Numbin ‘REP6’ 6%(1— ‘sensitivity ')

33 local REP7 morning

34 local Numbin ‘REP7’ 6%(1— ‘sensitivity )

35 local REP8 EWH

36 local Numbin ‘REP8’ 6x(1— ‘sensitivity ')

37 local REP9 RteBlackBox

38 local Numbin ‘REP9’ 6%(1— ‘sensitivity ')

39 global variablesusedkernel 7"${demandestimationvariables ‘binsetting "}”

40

41 EEE T EE TS

42 * Execution PLU

43 EE R

44

45 * open saving loop for speeding up computation

46 forvalues k = 1(2)9{

47 forcach s in Purchasc{

48 use 7 ${CLOUDPATH}v38/Temp.data/Predand5.dta”, clear

49 keep if select==‘k’ & SalePurchase == 7 ‘s’”

50 local endofdata = _N

51

52 * run

53 quietly{

54 gsort SalePurchase select Datestata Hour

55
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88
89
90
91
92
93
94
95
96
97
98
99

101

102

104

* gen variables to fill

foreach m in Price Volume{
capture drop Kabsres ‘m’
capture drop Ksqres ‘m’
capture drop PLUvKDvarabsres ‘m’
capture drop PLUvKDvarsqgres ‘m’
capture drop Ksamplesizeabsres ‘m’
capture drop Ksamplesizesqres ‘m’
gen Kabsres ‘m’=0
gen Ksqres ‘m’=0
gen PLUvKDvarabsres ‘m’=0
gen PLUvKDvarsqres ‘m’=0
gen Ksamplesizeabsres ‘m’=0

gen Ksamplesizesqres ‘m’=0

forvalues obs= 1/‘endofdata’{

# su Tempeff if _n==‘obs’ /*crosscheckx/
* su select if _n==‘obs’ /*crosscheck*/
local CompPoint = sclcct [ ‘obs’]

local CompFunc = ”SalePurchase [ ‘obs ]7”

* di ‘CompFunc’ /*crosscheckx*/

foreach controlfactor in $variablesusedkernel {

# find bincentre per controlfactor for given observation

s

local Bincentre_‘controlfactor’ = ‘controlfactor [ ‘obs’]

* find binwidth per control factor

su ‘controlfactor’, meanonly

local topendrange ‘controlfactor’ = r(max)
local lowendrange ‘controlfactor’ = r(min)
local binwidth ‘controlfactor’ = (r(max) — r(min))/ ‘=‘Numbin*

controlfactor '’

di — ‘controlfactor

di ‘=‘Numbin‘controlfactor’’’

di "Max: 7 ‘topendrange ‘controlfactor’’
di "Min: 7 ‘lowendrange ‘controlfactor’’
di 7Binwidth: 7 ‘binwidth ‘controlfactor ’’
di "Bincentre from current obs: 7 ‘Bincentre-‘controlfactor’’
}
capture reg ‘m’ ${demandestimationvariables ‘version’} ///
if sclecct == ‘CompPoint’ & SalcPurchasc== ‘CompFunc’ ///
& ‘REP1’<= ‘=‘Bincentre_ ‘REP1’’4+ ‘binwidth ‘REP1’’’ & ‘REP1’>=‘=‘Bincentre._"*
REP1’’— ‘binwidth ‘REP1’’" ///
& ‘REP2’'<= ‘=‘Bincentre- ‘REP2’’+ ‘binwidth ‘REP2’’’ & ‘REP2’>=‘=‘Bincentre.‘
REP2’’— ‘binwidth ‘REP2’’" ///
& ‘REP3’<= ‘=‘Bincentre- ‘REP3’ '+ ‘binwidth ‘REP3’’’ & ‘REP3’>=‘=‘Bincentre.‘
REP3’’— ‘binwidth ‘REP3’’" ///
& ‘REP4'<= ‘=‘Bincentre- ‘REP4’’+ ‘binwidth ‘REP4’’’ & ‘Bincentre._*
REP4’’— ‘binwidth ‘REP4’’ " ///
& ‘REP5’<= ‘=‘Bincentre- ‘REP5’ '+ ‘binwidth ‘REP5’’’ & ‘Bincentre._*
REP5’'— ‘binwidth ‘REP5’ " ///
& ‘REP6’'<= ‘=‘Bincentre- ‘REP6’ '+ ‘binwidth ‘REP6’’’ & ‘REP6’>=‘=‘Bincentre_*
REP6’’— ‘binwidth ‘REP6’° " ///
& ‘REPT’'<= ‘=‘Bincentre_- ‘REPT’’+ ‘binwidth ‘REP7’’’ & =‘Bincentre.*
REP7’’— ‘binwidth ‘REP7’>’" ///
& ‘REP8'<= ‘=‘Bincentre_ ‘REP8 '+ ‘binwidth ‘REP8’’’ & ‘REP&8’>=‘=‘Bincentre_"*

REP8’’— ‘binwidth ‘REP8’’" ///
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107

108
109
110
111
112
113
114
115
116
117
118
119
120
121

122

123

124

126

127

128

129

130
131
132
133
134
135
136
137
138
139
140
141
112
143

& ‘REP9’<= ‘=‘Bincentre- ‘REP9’’+ ‘binwidth ‘REP9’
REP9’’— ‘binwidth ‘REP9’’" ///

, robust

*predict residuals locally

capture predict tmp‘m’ if e(sample), residuals

* gen deviations of residuals

capture replace Kabsres‘m’ = abs(tmp) if _n==‘obs

_

—=‘obs’

capture replace Ksqres ‘m’ = tmp*xtmp if _n
capture drop tmp‘m’
foreach g in 7absres” 7sqres”{

capture reg K‘g’ ‘m’ ${demandestimationvariables *

> & ‘REP9’>=‘=‘Bincentre.‘

B

/#consistent with whitex

version’} ///

il select == ‘CompPoint’ & SalePurchase== ‘CompFunc’ ///

& ‘REPl’<= ‘=‘Bincentre_ ‘REP1’’+ ‘binwidth ‘REP1’’’ & ‘REP1’>=‘=‘Bincentre_"*
REP1’’— ‘binwidth ‘REP1’"" ///

& ‘REP2’<= ‘=‘Bincentre_ ‘REP2’’+ ‘binwidth ‘REP2’’’ & ‘REP2’>=‘=‘Bincentre_"*
REP2’’'— ‘binwidth ‘REP2’’" ///

& ‘REP3’<= ‘=‘Bincentre_ ‘REP3’’+ ‘binwidth ‘REP3’’’ & ‘REP3’>=‘=‘Bincentre."*
REP3’’— ‘binwidth ‘REP3’’" ///

& ‘REP4°’<= ‘=‘Bincentre_ ‘REP4’’4+ ‘binwidth ‘REP4’’’ & ‘REP4’>=‘=‘Bincentre_"*
REP1’’— ‘binwidth ‘REP1’° " ///

& ‘REP5’'<= ‘=‘Bincentre_- ‘REP5’’4+ ‘binwidth ‘REP5’’’ & ‘REP5’>=‘=‘Bincentre. "’
REP5’ ’— ‘binwidth ‘REP5’ " ///

& ‘REP6’'<= ‘=‘Bincentre_. ‘REP6’ '+ ‘binwidth ‘REP6’’’ & ‘REP6’>=‘=‘Bincentre. "’
REP6°’— ‘binwidth ‘REP6’° " ///

& ‘REP7’<= ‘=‘Bincentre_. ‘REP7’’+ ‘binwidth ‘REP7’’’ & ‘REP7’>=‘=‘Bincentre._"’
REP7’’— ‘binwidth ‘REP7’>’" ///

& ‘REP8’'<= ‘=‘Bincentre_ ‘REP8’’+4+ ‘binwidth ‘REP8’’’ & ‘REP8’>=‘=‘Bincentre. "’
REP8’’— ‘binwidth ‘REP8’’" ///

& ‘REP9’'<= ‘=‘Bincentre_- ‘REP9’ '+ ‘binwidth ‘REP9’’’ & ‘REP9’>=‘=‘Bincentre. "’
REP9’’— ‘binwidth ‘REP9’ " ///

, robust

capture predict PLUVKDtmp‘g’‘m’ if _n==‘obs’, xb

capture scalar sizetmp = e(N)

capture replace Ksamplesize ‘g’ ‘m’ = sizetmp if _n=—=‘obs’

capture replace PLUvKDvar‘g’‘m’ = PLUVKDlmp ‘g’ ‘m’ il

capture drop PLUVKDtmp‘g’ ‘m’

i
di ‘obs’
} /+close observ
} /% closes quictlyx/
} Jxclose ‘m’x/

* gen variables to fill

capture drop PLUv51‘binsetting ’varl
capture drop PLUv51‘binsetting ’var2
capture drop PLUv52‘binsetting ’varl
capture drop PLUv52‘binsetting ’var2
capture drop PointsInBinv51 ‘binsetting’
capture drop PointsInBinv52 ‘binsetting’
gen PLUvV51‘binsetting 'varl =.

gen PLUv51‘binsetting ’var2 =.

gen PLUvV52‘binsetting ’varl =.

gen PLUvV52‘binsetting ’var2 =.

gen PointsInBinv51 ‘binsetting’ =.

gen PointsInBinv52 ‘binsetting’

* generate PLUs

ations loopx*/
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157 replace PLUv51 ‘binsetting’varl = PLUvKDvarsqresPrice

158 replace PLUv51 ‘binsetting ’var2 = PLUvKDvarsqresVolume

159 replace PLUV52 ‘binsetting ’varl = PLUvKDvarabsresPrice

160 replace PLUvV52‘binsetting ’var2 = PLUvKDvarabsresVolume

161 replace PointsInBinv51 ‘binsetting’ = KsamplesizesqresVolume
162 replace PointsInBinv52 ‘binsetting’ = KsamplesizeabsresVolume
163 drop Ksamplesizesx

164

165

166

167 * close saving loop for speeding up computation

168 keep Date Hour SalePurchase select PLUvV51°¢

binsetting 'varl PLUv51‘binsetting ’var2 PLUv52°¢
binsetting varl PLUv52‘binsetting 'var2
PointsInBinv51 ‘binsettiing’ PointsInBinv52 ¢
binsetting’ KabsresPrice KsqresPrice
KabsresVolume KsqresVolume PLUvKDvarabsresPrice
PLUvKDvarsqresPrice PLUvKDvarabsresVolume
PLUvKDvarsqresVolume
169 save ”${CLOUDPATH}v38/Temp-data/KERNEL‘binsetting ’

buck ‘k and ‘s ’.dta”, rcplacc

170 }
171 }
172
173

174 Sk ok ok ok K ok ok ok ok ok K ok ok R oK o ok ok ok o ok o ok ok ok ok ok ok R ok R R ok ok R ok R R

175 | * version

176 local binsetting "b”
177 global runversionD ‘binsetting’
178 global demandestimationvariables ‘binsetting’ " Tempeffl5 Roll-Temp24 Roll Temp240

suncycle morning deltasun EWH SolarRest RteBlackBox
179
180 ok ok ok K ok ok ok ok ok K K ok R ok R o kO ok Kk ok ok ok ok ok R ok oK ok K Rk R
181

182 | * Define macros

183 local sensitivity 0

184 local endofdata = _N

185 local REP1 SolarRest

186 local Numbin ‘REP1’ 6%(1— ‘sensitivity ’)
187 local REP2 deltasun

188 local Numbin ‘REP2’ 6x(1— ‘sensitivity ')
189 local REP3 Tempeffl5

190 local Numbin ‘REP3’ 6x%(1— ‘sensitivity ’)
191 local REP4 Roll_.Tcmp24

192 local Numbin ‘REP4’ 6x(1— ‘sensitivity )
193 local REP5 Roll_.Temp2410

194 local Numbin ‘REP5’ 6x%(1— ‘sensitivity ')
195 local REP6 suncycle

196 local Numbin ‘REP6’ 6%(1— ‘sensitivity )
197 local REP7 morning

198 local Numbin ‘REP7’ 6x(1— ‘sensitivity )
199 local REP8 EWH

200 local Numbin ‘REP8’ 6x(1— ‘sensitivity )
201 local REP9 RteBlackBox

202 local Numbin ‘REP9’ 6%(1— ‘sensitivity ")
203 global variablesusedkernel ”"${demandestimationvariables ‘binsetting '}”
204

205 sk ok ok ok ok ok ok ok ok K

206 * Execution PLU

207 sk sk s sk ok sk sk ke ke sk
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208

209 * open saving loop for speeding up computation

210 forvalues k = 1(2)9{

211 foreach s in Purchase{

212 use ”${CLOUDPATH}v38/Temp-data/Predand5.dta”, clear

213 keep if select==‘k’ & SalePurchase == " ‘s'”

214 local endofdata = _N

215

216 * run

217 quietly {

218 gsort SalePurchase select Datestata Hour

219

220 * gen variables to fill

221 foreach m in Price Volume{

222 capture drop Kabsres ‘m’

223 capture drop Ksqres ‘m’

224 capture drop PLUvKDvarabsres ‘m’

225 capture drop PLUvKDvarsqres ‘m’

226 capture drop Ksamplesizeabsres ‘m’

227 capture drop Ksamplesizesqres ‘m’

228 gen Kabsres ‘m’=0

229 gen Ksqres ‘m’=0

230 gen PLUvKDvarabsres ‘m’=i

231 gen PLUvKDvarsqres ‘m’=0

232 gen Ksamplesizeabsres ‘m’=0

233 gen Ksamplesizesqres ‘m’=0

234

235

236

237 forvalues obs= 1/ ‘endofdata’{

238 * su Tempeff if _n=—=‘obs’ /*crosscheck*/

239 #* su select if _n==‘obs’ /*crosscheck*/

240 local CompPoint = select[‘obs’]

241 local CompFunc = "SalePurchase[‘obs |7

242 * di ‘CompFunc’ /#crosscheck */

243

244 foreach controlfactor in $variablesusedkernel {

245 #* [ind bincentre per controlfactor for given observation

246 local Bincentre_‘controlfactor’ = ‘controlfactor ’'[‘obs’]

247 #* find binwidth per control factor

248 su ‘controlfactor ’, meanonly

249 local topendrange ‘controlfactor’ = r(max)

250 local lowendrange ‘controlfactor’ = r(min)

251 local binwidth ‘controlfactor’ = (r(max) — r(min))/ ‘=‘Numbin*

controlfactor *’7

252

253 di ~ ‘controlfactor '~

254 di ‘Numbin ‘controlfactor ’’~’

255 di "Max: 7 ‘topendrange ‘controlfactor’’

256 di "Min: 7 ‘lowendrange ‘controlfactor’’

257 di "Binwidth: 7 ‘binwidth ‘controlfactor '’

258 di "Bincentre from current obs: 7 ¢‘Bincentre_‘controlfactor’’

259 }

260

261 capture reg ‘m’ ${demandestimationvariables ‘version’} ///

262 if select == ‘CompPoint’ & SalePurchase== ‘CompFunc’ ///

263 & ‘REPl1’<= ‘=‘Bincentre_- ‘REP1’’+ ‘binwidth ‘REP1’’’ & ‘REP1’>=‘=‘Bincentre."
REP1’’— ‘binwidth ‘REP1’>’" ///

264 & ‘REP2’'<= ‘=‘Bincentre_ ‘REP2’’+ ‘binwidth ‘REP2’’’ & ‘REP2’>=‘=‘Bincentre_*
REP2’’— ‘binwidth ‘REP2’7" ///

252
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265

266

267

268

269

270

271

287

288

289

290

291

292

293

& ‘REP3’<= ‘=‘Bincentre- ‘REP3’’+ ‘binwidth ‘REP3’’’ & ‘REP3’>=‘=‘Bincentre.*
REP3’’— ‘binwidth ‘REP3’’" ///

& ‘REP4’<= ‘=‘Bincentre- ‘REP4’’+ ‘binwidth ‘REP4’’’ & ‘REP4’>=‘=‘Bincentre.*
REP4’’— ‘binwidth ‘REP4’’ " ///

& ‘REP5’<= ‘=‘Bincentre- ‘REP5’’+ ‘binwidth ‘REP5’’’ & ‘REP5’>=‘=‘Bincentre_*
REP5’ ’— ‘binwidth ‘REP5’’" ///

& ‘REP6'<= ‘=‘Bincentre- ‘REP6’ '+ ‘binwidth ‘REP6’’’ & ‘REP6’>=‘=‘Bincentre.*
REP6’'— ‘binwidth ‘REP6’'" ///

& ‘REPT7T'<= ‘=‘Bincentre- ‘REP7’’+ ‘binwidth ‘REP7’’’ & ‘REP7’>=‘=‘Bincentre.*
REP7’’— ‘binwidth ‘REP7’>’" ///

& ‘REP8'<= ‘=‘Bincentre_ ‘REP8 '+ ‘binwidth ‘REP8’’’ & ‘REP&8’>=‘=‘Bincentre_*
REP8’’— ‘binwidth ‘REP8’’" ///

& ‘REP9'<= ‘=‘Bincentre_ ‘REP9’ '+ ‘binwidth ‘REP9’’’ & ‘REP9’>=‘=‘Bincentre_*
REP9’’— ‘binwidth ‘REP9’>’" ///

, robust

*predict residuals locally

capture predict tmp‘m’ if e(sample), residuals

* gen deviations of residuals

capturc rcplace Kabsrcs ‘m’ = abs(tmp) if _n==‘obs’

capture replace Ksqres am’ = tmpstmp if _n==‘obs’ /xconsistent with whitesx

capture

foreach

capture

drop tmp ‘m’

g in “absres” 7sqres”{

reg K‘g’‘m’ ${demandestimationvariables ‘version’} ///

if select == ‘CompPoint’ & SalePurchase== ‘CompFunc’ ///

& ‘REP1’<= ‘=‘Bincentre_- ‘REP1’’+ ‘binwidth ‘REP1’’’ & ‘REP1’>=‘=‘Bincentre._"’
REP1’’— ‘binwidth ‘REP1’>’’ ///

& ‘REP2’'<= ‘=‘Bincentre_- ‘REP2’’+4+ ‘binwidth ‘REP2’’’ & ‘REP2’>=‘=‘Bincentre."*
REP2’’— ‘binwidth ‘REP2’°" ///

& ‘REP3’<= ‘=‘Bincentre_ ‘REP3’’4+ ‘binwidth ‘REP3’’’ & ‘REP3’>=‘=‘Bincentre._"*
REP3’’— ‘binwidth ‘REP3>"" ///

& ‘REP4’<= ‘=‘Bincentre_ ‘REP4’ '+ ‘binwidth ‘REP4’’’> & ‘REP4’>=‘=‘Bincentre_"
REP4’’— ‘binwidth ‘REP4°’ "’ //

& ‘REP5'<= ‘=‘Bincentre_ ‘REP5’ '+ ‘binwidth ‘REP5’’’ & ‘REP5’>=‘=‘Bincentre_"
REP5’ ’— ‘binwidth ‘REP5’’ ///

& ‘REPG’'<= ‘=‘Bincentre- ‘REP6’ '+ ‘binwidth ‘REPG’’’ & ‘REP6’>=‘=‘Bincentre_"
REP6’ '— ‘binwidth ‘REP6’’° ///

& ‘REP7'<= ‘=‘Bincentre- ‘REP7’’+ ‘binwidth ‘REP7’’’ & ‘REP7’>=‘=‘Bincentre-*
REP7’’— ‘binwidth ‘REP7’’" ///

& ‘REP8'<= ‘=‘Bincentre_ ‘REP8’’+ ‘binwidth ‘REP8’’’ & ‘REP8’>=‘=‘Bincentre_"
REP8’’— ‘binwidth ‘REP8’’" ///

& ‘REP9’'<= ‘=‘Binccntrc_- ‘REP9’ '+ ‘binwidth ‘REP9’’’ & ‘REP9’>=‘=‘Binccntrec_*

REP9’’— ‘binwidth ‘REP9’>’ " ///

, robust
capture
capture
capture
capture

capture

} /xclos

predict PLUVKDtmp‘g’ ‘m’ if _n==‘obs’, xb

scalar sizetmp = e(N)

replace Ksamplesize ‘g’ ‘m’ = sizetmp if _n=—‘obs’
replace PLUvKDvar ‘g’ ‘m’ = PLUvVKDtmp ‘g’ ‘m’ if _n==‘obs’

drop PLUVKDtmp ‘g’ ‘m’

} /#close observations loopx/

} /* closes quietly

e ‘m’'x/

* gen variables to fill

capture drop PLUv51‘binsetting’varl
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309 capture drop PLUv51‘binsetting ’var2

310 capture drop PLUv52‘binsetting ’varl

311 capture drop PLUv52‘binsetting ’var2

312 capture drop PointsInBinv51 ‘binsetting’

313 capture drop PointsInBinv52 ‘binsetting’

314 gen PLUvV51‘binsetting ’varl =.

315 gen PLUvV51‘binsetting ’var2 =.

316 gen PLUvV52‘binsetting 'varl =.

317 gen PLUvV52‘binsetting ’var2 =.

318 gen PointsInBinvb1 ‘binsetting’ =.

319 gen PointsInBinv52 ‘binsetting’ =.

320 * generate PLUs

321 replace PLUv51 ‘binsetting ’varl = PLUvKDvarsqresPrice

322 replace PLUv51 ‘binsetting ’var2 = PLUvKDvarsqresVolume

323 replace PLUV52‘binsetting ’varl = PLUvKDvarabsresPrice

324 replace PLUv52‘binsetting’var2 = PLUvKDvarabsresVolume

325 replace PointsInBinv51 ‘binsetting’ = KsamplesizesqresVolume

326 replace PointsInBinv52 ‘binsetting’ = KsamplesizeabsresVolume

327 drop Ksamplesizex

328

329

330

331 * close saving loop for speeding up computation

332 keep Date Hour SalePurchase select PLUv51¢
binsetting varl PLUv51‘binsetting 'var2 PLUv52¢
binsetting varl PLUv52‘binsetting 'var2
PointsInBinv51 ‘binsetting ’ PointsInBinv52 ¢
binsetting’ KabsresPrice KsqresPrice
KabsresVolume KsqresVolume PLUvKDvarabsresPrice
PLUvKDvarsqresPrice PLUvKDvarabsresVolume
PLUvKDvarsqresVolume

333 save ”${CLOUDPATH}v38/Temp-data/KERNELbinsetting ’
buck ‘k and ‘s *.dta”, replace

334 }

335 }

254
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SR R

© ® N o w

10

12
13
14

16
17
18
19

Next is the script named 107_PrepkernelPLUdata.do and called in the general file.

*PrepkernelPLUdata

global dofiledirectoryorig= Path to directory containing do files
global LATEXPATH = Path to directory containing latex for article
global CLOUDPATH = Path to directory containing data

ok ok ok

* Append kernel PLUs

buck ‘ k

* %k 3k
* on sq residuals
foreach binsetting in 7a” "b”{
use ” ${CLOUDPATH}v38/Temp-data/KERNEL‘binsetting *bucklandPurchase.dta” ,
clear
sxappend
forvalues k = 3(2)9{
foreach s in Purchase{
append using ” ${CLOUDPATH}v38/Temp-data/Kernel ‘binsetting
andPurchase . dta”
}
}
duplicates list SalcPurchasc sclcct Datc Hour
duplicates drop SalePurchase select Date Hour, force
* — bla. = sqres + 8 bins.
* — 51lb. = sqres + 9 bins.
# — 52a. = absres 4+ 8 bins.
* — b52b. = absres + 9 bins.
capture rename PLUv5lavarl PLUv3lavarPsq
capture rename PLUvb5lavar2 PLUv5lavarQsq
capture rename PLUv52avarl PLUv52avarPabs
capture rename PLUv52avar2 PLUv52avarQabs
capture rename PLUvb5lbvarl PLUv51lbvarPsq
capture rename PLUv5lbvar2 PLUv51bvarQsq
capture rename PLUv52bvarl PLUv52bvarPabs
capture rename PLUv52bvar2 PLUv52bvarQabs
drop PLUVKD:
save 7 ${CLOUDPATH}v38/Temp-data/PLUKernel‘binsetting ’. dta”, replace
}
* ok Kk

* Mecrge PLUs with datasct

Kok Kk
use ”${CLOUDPATH}v38/Temp-data/Finaldataset.dta”, clear
duplicates list SalePurchase select Date Hour
duplicates drop SalePurchase select Date Hour, force

foreach binsetting in “a” "b”{

/% here add other versions x/

merge 1:1 SalePurchase select Date Hour using 7 3${CLOUDPATH}v38/Temp._data/PLUKernel*

[
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76
7
78

6

binsetting '.dta”, nogenerate

}

*save

save " ${CLOUDPATH}v38/Temp-data/Intl.dta”, replace

ook ok ok
* transpose uncertainty of k points.

PR

use ”${CLOUDPATH}v38/Temp._data/Intl.dta”, clear
keep Date SalePurchase select Hour Datestata PLUx
reshape wide PLUx , i(SalePurchase Datestata Hour) j(select)
order _all, sequential
gsort Datestata Hour SalePurchase
duplicates list Date Hour SalePurchase
duplicates drop Date Hour SalePurchase, force

save "${CLOUDPATH}v38/Temp_data/Int2.dta”, replace

usc 7 ${CLOUDPATH}v38/Temp_data/Intl.dta” , clear
merge m:1 Date Hour SalePurchase using 7${CLOUDPATH}v38/Temp_data/Int2 . dta”,

nogenerate

* drop constant plu_r

drop PLUvRvarS1 PLUvRvarS3 PLUvRvarS5 PLUvRvarS7 PLUvRvarS9 PLUvRvarSsql
PLUvRvarSsq3 PLUvRvarSsq5 PLUvRvarSsq7 PLUvRvarSsq9 PLUvRvarT1l PLUvRvarT3
PLUvRvarT5 PLUvRvarT7 PLUvRvarT9 PLUvRvarTsql PLUvRvarTsq3 PLUvRvarTsqb
PLUvRvarTsq7 PLUvRvarTsq9 PLUvRvarWl PLUvRvarW3 PLUvRvarW5 PLUvRvarW7
PLUvRvarW9 PLUvRvarWsql PLUvRvarWsq3 PLUvRvarWsqb PLUvRvarWsq7 PLUvRvarWsq9

gsort Datestata Hour SalePurchase select
order Date Datestata Hour SalePurchase select , first
order PLUx Poinx, last

save 7" ${CLOUDPATH}v38/Temp_data/Int3.dta”, replace

ok ok

* table of Points in bin and PLU and PDU

* %k
forvalues k = 5/5{
foreach versionD in ”51a” ”"51b”{
forcach vcrsionS in 77

foreach switch in /#"abs”/ "sq” {

capture mat drop M‘versionD’

local variables ”"PLUv‘versionD 'varl ‘switch ’‘k’ PLUv‘versionD ’varQ ¢
switch * ‘k’ PointsInBinv ‘ versionD ’

local FUNC "r(mean) r(p50) r(sd) r(min) r(max)”

local i=0

foreach var of local variables{

local i=‘i’+1

}

local j=0

foreach var of local FUNC{

local j=¢j’+1

}

di j LR
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108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134

136
137
138
139
140
141
142
143
144
145
146
147

mat M‘versionD’ =
local c=1

foreach FF of local
local r=1

foreach VV of local

su ‘VV’, detail

mat M‘versionD [ ‘r’, ‘c’]
local

}

local

}

mat rownames M‘versionD’

r=*‘r’+1

c=‘c’+1

mat colnames M‘versionD’

mat li M‘versionD’

I,

25,0

FUNC{

variables{

— ‘FF°’

= ‘variables’

= Mean Median StdDev Min Max

capture mat drop Mtogether

mat Mtogether = J(6,5,.)

mat Mtogcther =

mat 1i Mtogether

* Summary Statistics of PLUs and PDUs:

btouttable using 7 ${LATEXPATH}suPDUPLU” ,
format (%9.1fc %9.0fc %9.0fc %9.0fc

variate kernels)

for k=‘k’)
kKK KKK K K
* all variables of interest in purchase obs.

s ke ke ke sk ok ke kK ok

drop if SalePurchase=="Sell”

longtable caption (Summary statistics

Mb5la \ M51b

replace mat(Mtogether) label asis nobox

%9.0fc) based multi—

based PLUS$ DS

footnote (Proxies on

of kernel
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165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

221
222
223

2

* OLD CODE
/=

EEES

+ scalefactor to adjust fx to slope

kK
/* capture drop group
egen group= group (Datestatafrac)
gsort group Datestata Hour SalePurchase select

capture drop slopeDpost slopeDpre slopeDatk fxscalefactor
gen slopeDpost
gen slopeDpre =.
gen slopeDatk =.

gen fxscalefactor =.

forvalues k= 1(2)9{

*note in p—qg dimension!

by group: replace slopeDpost = (Volume[-n+1] — Volume[-n])/(Price[-n+1]

by group: replace slopeDpre = (Volume[_n] Volume|[-n —1]) /(Price [-n]
e

by group: replace slopeDatk = abs(slopeDpost[-n]+ slopeDpre[-n]) /2

capture drop tmpl tmp2

egen tmpl = mean(slopeDatk ) if select=='k’
cgen tmp2 mcan(fx) if sclecct k7
replace fxscalefactor = tmpl / tmp2 if select==k’

drop tmpl tmp2
}
capture drop fxscaled

gen fxscaled = fx % fxscalefactor

* scalefactor to adjust fx to slope
capture drop group

egen group= group (Datestatafrac)

gsort group Datestata Hour SalePurchase select

capture drop slopeDpostQP slopeDpreQP slopeDatkQP fxscalefactorQP

gen slopeDpostQP =.

gen slopeDpreQP =.

gen slopeDatkQP =.

gen fxscalefactorQP =.

8

Price[-n]) if

Price[-n—1]) il

if select==‘k’

select=="k’

select
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224
225
226
227
228

229

256
257

gen fxQP = (1/fx)
forvalues k= 1(2)9{
*note in g—p dimension!
by group: replace slopeDpostQP = (Price[-n+t1]— Price[-n])/(Volume[-n+1] — Volume[_-n]) if
by group: replace slopeDpreQP = (Price[-n]— Price[-n—1])/(Volume[-n] — Volume[.n—1]) if
select=="k’
by group: replace slopeDatkQP = abs(slopeDpostQP [_-n]+ slopeDpreQP[-n]) /2 if select=='k’
capture drop tmpl tmp2
egen tmpl = mean(slopeDatkQP ) if select==‘k’
egen tmp2 = mean(fxQP) if select==‘k’
replace fxscalefactorQP = tmpl / tmp2 if select=='k’
drop tmpl tmp2
}
capture drop fxscaledQP
gen fxscaledQP = [xQP x fxscalefactorQP
gen comparisonfx = 1/ fxscaled
# SCALING ONLY APPROPRIATE FOR K=5. otherwise too much mixing flat and vertical section.
*/
/*
3k KK K K
# rescale variables
3k KK K K
foreach versionD in ”D” 751la” 751b”{
foreach switch in ”abs” {
foreach switch2 in "var” 7rt”{
foreach dim in "P” {
forvalues k = 3(2)7{
capture noisily su PLUv‘versionD ’‘switch2’‘dim’ ‘switch’‘k’, detail
capture noisily scalar meanPLUv‘versionD ’ ‘switch2’ ‘dim’‘switch’‘k’ = r(mean
)
capture noisily di meanPLUv‘versionD ’ ‘switch2 ' ‘dim’ ‘switch’ ‘k’
capture noisily gen PLUv‘versionD’ ‘switch2’‘dim’ ‘switch’‘k’resc = PLUv"®

versionD " ‘switch2’ ‘dim’ ‘switch ’ ‘k’

switch ’” ‘k’

B s ST

/ meanPLUv‘versionD * ‘switch2’ ‘dim’ ¢

foreach versionD in ”D” 752a” 752b”{

foreach switch in ”abs” {

foreach switch2 in "var” "rt”{

foreach dim in D7 {

forvalues k = 1(8)9{

capture noisily su PLUv‘versionD ’‘switch2’ ‘dim’ ‘switch’‘k’, detail

capture noisily scalar meanPLUv‘versionD ’ ‘switch2’ ‘dim’ ‘switch’‘k’ = r(mean
)

capture noisily di meanPLUv‘versionD’ ‘switch2’'‘dim’ ‘switch’‘k’

capture noisily gen PLUv'versionD ’ ‘switch2’‘dim’‘switch’‘k’resc = PLUv"®

versionD ’ ‘switch2’ ‘dim’ ‘switch ’ ‘k’

[ T
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277 }

278

279 foreach versionD in 7D” 752a” 752b7{

280 foreach switch in 7”7 ”abs”{

281 foreach switch2 in “var” "rt”{

282 foreach dim in 7Q” {

283 forvalues k = 1(2)9{

284 capture noisily su PLUv‘versionD ’‘switch2’‘dim’ ‘switch’‘k’, detail

285 capture mnoisily scalar meanPLUv‘versionD ’‘switch2’ ‘dim’ ‘switch’‘k’ = r(mean
)

286 capture noisily di meanPLUv‘versionD "’ ‘switch2 ' ‘dim’‘switch’‘k

287 capture noisily gen PLUv‘versionD ’ ‘switch2’ ‘dim’ ‘switch’ ‘k’resc = PLUv*
versionD ' ‘switch2’ ‘dim’ ‘switch ’‘k’ / meanPLUv‘versionD ’‘switch2’ ‘dim’ ¢
switch ” “k”’

288 }

289 }

290 }

291 }

292 }

293

294 order Date Datcstata Hour SalcPurchasc sclecct , first

295 order PLU*x Poin*, last

296 | */
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SR R

© ® N o w

10

12
13
14

16
17
18
19
20
21
22
23

Next is the script named 107 _BootstrapKernel2702.do and called in the general file.

*% kernel based PLU

* Notes:

* — bla. = sqres + 8 bins.
# — 51b. = sqres + 9 bins.
* — b52a. = absres 4+ 8 bins.
* — 52b. = absres + 9 bins.

global dofiledirectoryorig= Path to directory containing do files
global LATEXPATH = Path to directory containing latex for article
global CLOUDPATH = Path to directory containing data
global focusk = 5
keep if select== ${focusk}
global VVV = 51
global APP = "sq”
*global VVV = 52
*global APP = "abs
# drop observations that will not be used for final reg anyway. (dropped 2989 obs) = last 6
months approx.
drop if PLUvRvarW==.
drop if WindlDA==.
sokkokokonkkkkkxxx (Col. 3)
* for comparison, without bootstrap but weighted:
ks ok ok ook ks ok ok ook ok o
use 7 ${CLOUDPATH}v38/Temp_data/Finalrundataset.dta”, clear
local binsetting 7a”
local k = ${focusk}

local VVV = ${VVV}
local APP = *§{APP}”
ko

keep if select==

*gen rescaled PLU

capture drop

gen PLU_P_boot = PLUvV‘VVV’ ‘binsetting ’varP ‘APP’
su PLU_P_boot, meanonly
scalar tmpP = r(mean)
gen PLU_P_resc = PLU_P_boot / tmpP
gen PLU_Q_boot = PLUV‘VVV’ ‘binsetting ’varQ ‘APP’
su PLU_Q_boot, meanonly
scalar tmpQ = r (mean)
gen PLU_Q_resc = PLU_Q_boot / tmpQ
if ‘l==1 | ‘k'==9 {
local k = ${focusk}

reg fxInvertQP

PLU_P_boot PLU_P_resc PLU_Q_boot PLU_Q-resc

PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq
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56

58

60
61
62
63

64

66
67

PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA WindlDA Hydro /=
PLU_P_rescx/ PLU_Q_resc if select ==‘k’ & SalePurchase=="
Purchase”, robust

est store kernel3_‘k’

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq
PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA WindlDA Hydro /=*
PLU_P_resc*/ PLU_Q-resc if select ==‘k’ & SalePurchase=="
Purchase” [aweight=PointsInBinv51 ‘binsetting’]

est store kermeld_‘k’

est save ”${CLOUDPATH}v38/Temp-data/kernelweigthed_ ‘k’.ster”,

replace

else {

local k = ${focusk}

reg [xInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq
PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA WindlDA Hydro
PLU_P_resc PLU_Q_resc if select ==‘k’ & SalePurchase=="

Purchase”, robust

est store kermel3_‘k’

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq
PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA WindlDA Hydro
PLU_P_resc PLU_Q_resc if select ==‘k’ & SalePurchase=="
Purchase” [aweight=PointsInBinv51 ‘binsetting ']

est store kermneld4_‘k’

est save ”${CLOUDPATH}v38/Temp.-data/kernelweigthed_ ‘k’.ster”,

replace

TL | ks ook o ok sk sk ok skok ok sk ok s ok sk ok ok ok ko s okokskok ok ok k. NOW SAME BUT DROPPING 1 PLUvD (COL. 3)

94
95

262

use 7 ${CLOUDPATH}v38/Temp_data/Finalrundataset.dta”, clear
local binsetting 7a”

local k = ${focusk}

local VVV = ${VVV}

local APP = "§{APP}”

keep if select== ‘k’

*gen rescaled PLU
capture drop PLU_P_boot PLU_P_resc PLU_Q-boot PLU_Q-resc

gen

gen

if

PLU_P_boot = PLUV‘VVV’ ‘binsetting ’varP ‘APP’
su PLU_P_boot, meanonly
scalar tmpP = r(mean)
gen PLU_P_resc = PLU_P_boot / tmpP
PLU_Q-boot = PLUv‘VVV’ ‘binsetting *varQ ‘APP’
su PLU_Q_boot, meanonly
scalar tmpQ = r (mean)
gen PLU_Q_resc = PLU_Q_boot / tmpQ
‘ko==1 | ‘k'==9 {

local k = ${focusk}

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq
PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA WindlDA Hydro /=*
PLU_P_rescx/ PLU_Q-_resc if select ==‘k’ & SalePurchase=="
Purchase”, robust

est store kermel3_‘k’

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq
PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA WindlDA Hydro /=*
PLU_P_rescx/ PLU_Q_resc if select ==‘k’ & SalePurchase=="

Purchase” [aweight=PointsInBinv51 ‘binsetting ']
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96
97

99
100
101

102
103

104
105

106

107
108

109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

140

est store kermel4_‘k’
est save 7S{CLOUDPATH}v38/Temp_data/kernelweigDROP_P_‘k’.ster”,

replace

else {

local k = ${focusk}

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq
PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA WindlDA Hydro /=*
PLU_P.resc+/ PLU-Q-resc if select ==‘k’ & SalePurchase=="
Purchase”, robust

est store kernel3_‘k’

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq
PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA WindlDA Hydro /=*

PLU_P_rescx/ PLU_Q_resc if select ==‘k’ & SalePurchase==
Purchase” [aweight=PointsInBinv51 ‘binsettling’]

est store kermel4_‘k’

est save ”${CLOUDPATH}v38/Temp-data/kernelweigDROP_P_‘k'.ster”,
replace

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq
PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA WindlDA Hydro
PLU_P_rcsc /*PLU_Q_rescx/ if sclecct ==‘k’ & SalcPurchasc=—=
"Purchase” | robust

est store kernel3_‘k’

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq
PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA WindlDA Hydro
PLU_P_resc /#*PLU_Q_rescx*/ if select ==‘k’ & SalePurchase=="
Purchase” [aweight=PointsInBinv51 ‘binsetting ']

est store kernel4_‘k’

est save ”${CLOUDPATH}v38/Temp_data/kernelweigDROP_Q_‘k . ster”,

replace

sk sk sk ok ok ok ok ok ok ok ok K

* for bootstrapping of kernel based PLUvVD

**%x* bootstrap of kernel based equation 4 forecasts

sk ok ok ok ok ok ok ok oK oK ok K

use 7 ${CLOUDPATH}v38 /Temp-data/Finalrundataset.dta”, clear

global focusk = 5

keep if select== ${focusk}

# drop observations with missing values (dropped 2989 obs) = last 6 months approx.
drop if PLUvVvRvarW==.

drop if WindlDA==.
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141
142 capture drop PLU_P_boot
143 capture drop PLU_P_resc
144 capture drop PLU_Q_boot
145 capture drop PLU_Q_resc
146
147
148

1A | sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk 3 ok ok 3 sk sk sk sk sk sk sk sk ok sk % % % o s ok sk ok sk ok sk ok ok k% ok kR k sk kkok sk xkkkx % START PROG

150 capture program drop my2slsforbootkernel
151 program my2slsforbootkernel
152

153 | * version

154 local binsetting 7a”

155 local k = ${focusk}

156 global runversionD ‘binsetting’

157 global demandestimationvariables ‘binsetting’ "Tempeffl5 Roll-Temp24 Roll_-Temp240

suncycle morning deltasun EWH SolarRest RteBlackBox

15O | skosk ok ko ko sk ok ok sk ok ok ok ok oK K K K K K K K K Kk ok oK oK oK Ok K K K K K K

161 | * Define macros

162 local sensitivity 0

163 local endofdata = _N

164 local REP1 SolarRest

165 local Numbin ‘REP1’ 6%(1— ‘sensitivity ')
166 local REP2 deltasun

167 local Numbin ‘REP2’ 6x(1— ‘sensitivity ')
168 local REP3 Tempeffl5

169 local Numbin ‘REP3’ 6x%(1— ‘sensitivity ")
170 local REP4 Roll_.Temp24

171 local Numbin ‘REP4’ 6x(1— ‘sensitivity ')
172 local REP5 Roll_Temp240

173 local Numbin ‘REP5’ 1x(1— ‘sensitivity ')
174 local REP6 suncycle

175 local Numbin ‘REP6’ 6x(1— ‘sensitivity ')
176 local REP7 morning

177 local Numbin ‘REP7’ 6x%(1— ‘sensitivity )
178 local REP8 EWH

179 local Numbin ‘REP8’ 6#(1— ‘sensitivity ')
180 local REP9 RteBlackBox

181 local Numbin ‘REP9’ 6#(1— ‘sensitivity ")
182 global variablesusedkernel 7"${demandestimationvariables ‘binsetting "}”
183

184

IBB | sk sk sk sk sk sk ok sk sk ok sk sk ok sk ok sk sk sk ok Rk kok sk ok Rk kok kR R kok sk Rk kk sk kR ok kkk k= kk stage 1 —> bucket specfic reg. 1

186 | local endofdata = _N

187 quietly{

188 gsort SalePurchase select Datestata Hour

189

190 * gen variables to fill

191 foreach m in Price Volume{

192 capture drop Kabsres ‘m’

193 capture drop Ksqres ‘m’

194 capture drop PLUvKDvarabsres ‘m’
195 capture drop PLUvKDvarsqgres ‘m’
196 capture drop Ksamplesizeabsres ‘m’
197 capture drop Ksamplesizesqres ‘m’
198 gen Kabsres ‘m’=0

199 gen Ksqres ‘m’=0
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200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

216
217
218

233

234

235

236

237

239

240

241
242
243
244
245
246
247
248
249

gen PLUvKDvarabsres ‘m’=0

gen PLUvKDvarsqres ‘m’=0

gen Ksamplesizeabsres

‘m’=0

gen Ksamplesizesqres ‘m’=0

forvalues obs= 1/‘endofdata’{

/*crosscheckx/

/+crosscheck s/

* su Tempeff if _n==‘obs’

* su select if _n==‘obs’

local CompPoint = select [ ‘obs’]

local CompFunc = " SalePurchase[‘obs |7

* di ‘CompFunc’

foreach controlfactor in $variablesusedkernel

/#crosscheckx/

{

* [ind bincentre per controlfactor [for given observation

s

local Bincentre_‘controlfactor’ = ‘controlfactor’'[‘obs’]

* find binwidth per control factor

su ‘controlfactor’, meanonly

local topendrange ‘controlfactor’ = r(max)

local lowendrange ‘controlfactor’ = r(min)

local binwidth ‘controlfactor’ = (r(max) — r(min))/ ‘=‘Numbin®
controlfactor "’

di - ‘controlfactor ™"

di ‘=‘Numbin‘controlfactor’’’

di "Max: 7 ‘topendrange ‘controlfactor’’

di "NMin: ” ‘lowendrange ‘controlfactor’’

di "Binwidth: 7 ‘binwidth ‘controlfactor ’’

di "Bincentre from current obs: 7 ¢‘Bincentre_‘controlfactor’’

}

capture reg ‘m’ ${demandestimationvariables *

version’} ///

if select == ‘CompPoint’ & SalePurchase== ‘CompFunc’ ///

& ‘REP1’'<=
REP1’’— ‘binwidth ‘REP1’’’ //

& ‘REP2’'<= ‘=‘Bincentre_ ‘REP2’ '+ ‘binwidth ‘REP2’’

REP2’’— ‘binwidth ‘REP2’’" ///

& ‘REP3’<= ‘=‘Bincentre_- ‘REP3’ '+ ‘binwidth ‘REP3’’

REP3’ ’— ‘binwidth ‘REP3’’° ///

& ‘REP4’<= ‘=‘Bincentre- ‘REP4’ '+ ‘binwidth ‘REP4’’

REP4’’— ‘binwidth ‘REP4’° " ///

& ‘REP5’'<= ‘=‘Bincentre_ ‘REP5’ '+ ‘binwidth ‘REP5’’

REP5’’— ‘binwidth ‘REP5’° " ///

& ‘REP6’<= ‘=‘Binccntrc_ ‘REP6’ '+ ‘binwidth ‘REP6’’

REP6’’— ‘binwidth ‘REP6’° " ///

& ‘REP7’<= ‘=‘Bincentre_ ‘REP7’’+ ‘binwidth ‘REP7’’

REP7’’— ‘binwidth ‘REP7’>"" ///

& ‘REP8’<= ‘=‘Bincentre_ ‘REP8’’'+ ‘binwidth ‘REP8’’

REP8’’— ‘binwidth ‘REP8’’ " ///

& ‘REP9’<= ‘=‘Bincentre_ ‘REP9’’'+ ‘binwidth ‘REP9’’

REP9’’~ ‘binwidth ‘REP9’’" ///

, robust

*predict residuals locally

predict tmp‘m’ if e(sample), residuals

* gen deviations of residuals
replace Kabsres ‘m’ = abs(tmp) if _n==‘obs’
s

replace Ksqres‘m’ = tmpxtmp if _n==‘obs

capture drop tmp ‘m’

=‘Bincentre- ‘REP1’ '+ ‘binwidth ‘REP1’’’ & ‘REP1’>=‘=‘Bincentre_"

’ & ‘REP2’>=‘=‘Bincentre._"*
> & ‘REP3’>=‘=‘Bincentre-*
> & ‘REP4’>=‘=‘Bincentre-*
’ & ‘REP5’>=‘=‘Bincentre_*
’ & ‘REP6’>=‘=‘Binccntre. *
> & ‘REP7’>=‘=‘Bincentre_*
'’ & ‘REP8’>=‘=‘Bincentre._ "
’ & ‘REP9’>=‘=‘Bincentre_ "’

/*consistent with whitex/
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250

252 | sk ok sk ok ok ok ok ok ok ok ok ok o ok ok K ok Rk Rk kR ok Rk kR kR kkk kR k kR kR xkkkk kxk k% stage 2 —> bucket specfic reg. 2 (

261

262

263

264

291

266

* gen

heteroskedasticity )

variables

foreach g in /%7 absres”x/ 7sqres”{

capture reg Kfg’ ‘m’

${demandestimationvariables ‘version’} ///

if select == ‘CompPoint’ & SalePurchase== ‘CompFunc’ ///

& ‘REP1’<= ‘=‘Bincentre_ ‘REP1’’'+ ‘binwidth ‘REP1’’’ & ‘REP1’>=‘=‘Bincentre.
REP1’’— ‘binwidth ‘REP1’’" ///

& ‘REP2'<= ‘=‘Bincentre_ ‘REP2’’+ ‘binwidth ‘REP2’’’ & ‘REP2’>=‘=‘Bincentre.
REP2’’— ‘binwidth ‘REP2’’" ///

& ‘REP3’<= ‘=‘Bincentre_ ‘REP3’’+ ‘binwidth ‘REP3’’’ & ‘REP3’>=‘=‘Bincentre.
REP3’’— ‘binwidth ‘REP3’>’" ///

& ‘REP4’<= ‘=‘Bincentre_ ‘REP4’’+ ‘binwidth ‘REP4’’’ & ‘REP4’>=‘=‘Bincentre._
REP4’’— ‘binwidth ‘REP4°’" ///

& ‘REP5’<= ‘=‘Bincentre_ ‘REP5’’+ ‘binwidth ‘REP5’’’ & ‘REP5’>=‘=‘Bincentre._
REP5’ '— ‘binwidth ‘REP5’"" ///

& ‘REP6’'<= ‘=‘Bincentre_ ‘REP6’’+ ‘binwidth ‘REP6’’’ & ‘REP6’>=‘=‘Bincentre._
REP6’ '— ‘binwidth ‘REP6’’ " ///

& ‘REP7’<= ‘=‘Bincentre_ ‘REP7’’+ ‘binwidth ‘REP7’’’ & ‘REP7’>=‘=‘Bincentre.
REP7’’— ‘binwidth ‘REP7T’’" ///

& ‘REP8’<= ‘=‘Bincentre_ ‘REP8’’+ ‘binwidth ‘REP8’’’ & ‘REP8’>=‘=‘Bincentre.
REP8’’— ‘binwidth ‘REP8’’ " ///

& ‘REP9’'<= ‘=‘Bincentre_ ‘REP9’’+ ‘binwidth ‘REP9’’’ & ‘REP9’>=‘=‘Bincentre.
REP9’’— ‘binwidth ‘REP9’’ " ///

, robust

predict PLUVKDtmp‘g’ ' ‘m’ if _n==‘obs’, xb

scalar sizetmp = e(N)

replace Ksamplesize ‘g’ ‘m’ = sizetmp if _n==‘obs’

replace PLUvKDvar‘g’ ‘m’ = PLUVKDtmp ‘g’ ‘m’ if _n==‘obs’

capture drop PLUVKDtmp‘g’' ‘m’

}

di ‘obs’

} /#close observations loop */
} /% closes quietlyx/
} /#close ‘m’x*/
to fill

capture drop PLUv51‘binsetting 'varl
capture drop PLUv51‘binsetting ’var2
capture drop PLUv52‘binsetting ’varl
capture drop PLUvV52‘binsetting ’var2
capturc drop PointsInBinv51 ‘binsctting’
capture drop PointsInBinv52 ‘binsetting’
gen PLUvV51‘binsetting ’varl =.

gen PLUv51‘binsetting 'var2 =.

gen PLUV52‘binsetting ’varl =.

gen PLUvV52‘binsetting 'var2 =.

gen PointsInBinv51 ‘binsetting’ =.

gen PointsInBinv52 ‘binsetting’ =.

* generate PLUs

replace PLUv51‘binsetting ’varl

PLUvKDvarsqresPrice

replace PLUvV51 ‘binsetting ’var2 = PLUvKDvarsqresVolume

#*replace PLUv52‘binsetting ’varl

PLUvKDvarabsresPrice

*replace PLUvV52‘binsetting 'var2 = PLUvKDvarabsresVolume
replace PointsInBinv51 ‘binsetting’ = KsamplesizesqresVolume
*replace PointsInBinv52 ‘binsetting’ = KsamplesizeabsresVolume

drop Ksamplesizex

¢

¢

i

f
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300
301
302
303
304
305
306
307
308
309
310
311
312
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
313
344
345
346
347
348
349

gen PLU_P_boot = PLUv51‘binsetting 'varl
su PLU_P_boot, meanonly
scalar tmpP = r(mean)
gen PLU_P_resc = PLU_P_boot / tmpP
gen PLU_Q-boot = PLUv51‘binsetting 'var2

su PLU_Q_boot, meanonly

scalar tmpQ = r(mean)

gen PLU_Q_resc = PLU_Q_boot / tmpQ

sk ok sk sk ok sk ok sk ok ok ok K sk kK ok o Sk ok sk ok skl ok Sk Rk kKO R ROk ok Rk ok ok ok sk k ok k ok kkok k- stage 3 —> final reg

reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq

Coal Brent Gas IT2 EUA WindlDA Hydro PLU_P_resc PLU_Q_resc il select ==‘k’

& SalePurchase=="Purchase” [aweight=PointsInBinv51 ‘binsetting’]

drop PLU_P_boot PLU_P_resc PLU._Q_boot PLU_Q.resc

drop PointsInBinv51 ‘binsetting’

ke e ke ok e sk ok ok ok ok ok sk ke ok sk ko sk ke ok ke sk o ok ke ok ke ok ok ok sk ok K ok ok ok ok ok K sk ok ok ok ok ok sk ok ok ok ok ok kol ok kokok ok ok ok ok KIND PROG

end

s ok sk sk ok Sk ok ok ok ok ok K ok o ok Sk K Rk Sk R kR Kk Rk Rk ok k ok Rk kR ok kkkkk k kkk k% k%% Run once and save dataset (not inside program)

*run prog

my2slsforbootkernel

local k= ${focusk}
save 7 ${CLOUDPATH}v38/Temp_data/Finaldataset_withKERNELpluDa ‘k’.dta”, replace
sk s sk ok sk sk ok sk ok o sk ok sk sk ok ok Kk sk Kk ok K ok ok kK koK Kok R KOk Rk kK ok ok Rk kokx ok ok Bootstrap (approx. 15h for 50reps)
bootstrap _b, reps(50) seed(12345): my2slsforbootkernel
est save 7 ${CLOUDPATH}v38/Temp-data/kernelbootstrap ‘k’.ster”, replace
/

I/ 267
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358
359
360
361 | *OLD CODE:
362 | /=

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

# gen variables to fill
capture drop PLUv51‘binsetting ’varl
capture drop PLUv51‘binsetting ’var2
capture drop PLUvV52‘binsetting ’varl
capture drop PLUv52‘binsetting ’var2
capture drop PointsInBinv51 ‘binsetting ’
capture drop PointsInBinv52 ‘binsetting ’
gen PLUv51‘binsetting >varl =.
gen PLUv51‘binsetting ’var2 =.
gen PLUvV52‘binsetting ’varl =.
gen PLUvV52‘binsetting ’var2 =.
gen PointsInBinv51 ‘binsetting > =.
gen PointsInBinv52 ‘binsetting > =.

% generate PLUs

capture {

replace PLUv51‘binsetting ’varl =
replace PLUv51‘binsctting ’var2 =
replace PLUVS2‘binsetting > varl

replace PLUv52‘binsetting ’var2 =

replace
replace

drop

}

PointsInBinv51 ‘ binsetting ’
PointsInBinv52 ‘binsetting ’

Ksamplesize*

PLUvKDvarsqresPrice
PLUvKDvarsqresVolume
PLUvKDvarabsresPrice
PLUvKDvarabsresVolume

= KsamplesizesqresVolume

KsamplesizeabsresVolume

2068
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