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plus de clarté dans mon travail, et ont été bien plus compréhensifs que je ne le méritais
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abandonnais pour conclure cette thèse.
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Summary

Chapter 1:

The first chapter focuses on what the introduction of ramping costs in a theoretical

framework brings to the table. Ramping costs represent the fact that electricity sup-

pliers incur costs when their production varies over time. Our main contribution is to

build and justify how these ramping costs can be tackled theoretically. First, we note

that going to a continuous time description of the problem allows us to bring to the

literature about supply function equilibria powerful mathematical tools mostly used in

option pricing, that is stochastic dynamics: we want to model ramping costs, i.e. costs

associated to the variation in production, while retaining the key ingredient brought by

[Klemperer and Meyer, 1989], i.e. the uncertainty, through the use of brownians, and

more precisely, Itō processes. In so doing we face the issue that one cannot derive a

brownian, and bring our second contribution, a physical argument about how power

plants function that effectively operates as a low pass filter on our stochastic processes,

and allow us to continue to build a tractable model of ramping costs under uncertainty.

Third, we find in the literature a specification of Itō processes that allows the model to

remain tractable.

From these technical contributions we obtain our economic contributions in having

a rich tractable model that yields results that contrast strongly with past results from

the literature. First, in the specific case of linear demand and linear costs we obtain

a unique Nash equilibria, which contrasts with the usual continuum of Nash equilibria
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in the supply function equilibria literature. Second, our solutions are not ex-post opti-

mal, meaning that gathering information about the expected future evolution of demand

yields different optimal strategies for suppliers, which in turn means that producers in

our framework have a motive for submitting different supply functions from one time

step to the next. Third, we have closed form solutions which yield specific predictions

about the evolution of bids under uncertainty, namely that when uncertainty increase,

suppliers submit steeper supply schedules in order to transmit more of these shocks to

changes in price and not quantities, which are costly due to the existence of ramping

costs. Finally, and less importantly, our framework justifies the existence of negative

prices 1 by producers being willing to pay consumers to consume more in order to avoid

facing large variations in production, in contrast to everywhere positive schedules in the

case of the supply function equilibria literature. These results open the door to models

being able to differentiate between day-ahead and intraday markets and therefore to offer

a framework in which their interactions might be possible.

Chapter 2:

In the second chapter our main focus is on analyzing our data, on building a way to

describe it, and on building proxies for the uncertainty that producers face about the

residual demand they have to anticipate when bidding on the day-ahead market.

First, we note that aggregate supply functions on the day ahead market cannot be

well captured by parametric functions. Therefore, we devise a way to describe them

non-parametrically: we note that although they cannot be captured parametrically, they

still have a rough S shape, and therefore four main parts, two extremal sections, and

two interior ones separated by the inflection point of the curve in its middle section. We

define the transition points between these sections as the points of maximal absolute

1Note that such negative prices happen, a few hours a year for example in France or Germany, for
example in 2017 there were 146 such hours, spread over 24 days in Germany [EPEX, 2018a]
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value for the derivative and second derivative of the supply schedules. This definition

relies on kernel density estimates and is therefore non-parametric. We observe that by

using 5 such points, we are able to capture about 98% of the intrinsic variability of the

supply schedules, and stop there although our method can be used to define more non-

parametric points. This method allows us to define points that we consider comparable

across auctions, that allow use to perform cross-sectional analysis of our data in the third

chapter.

Second, we build proxies for the amount of weather uncertainty that producers face

and variables that capture information that suppliers have before bidding and should

therefore be controlled for. For the information available to suppliers, we note that the

effect of weather on the demand, and more importantly temperature, is well understood

and that we need to control for it. To do so we build an effective temperature for France,

as an average of the localised temperature weighted by the population of the spatial region

considered, in order to capture the overall effect temperature has on heating.2 The rest of

our focus is on building a proxy for the uncertainty concerning renewable production. To

do so we analyze spatialized wind and sunlight data, and study it’s spatial structure. We

argue that spatial autocorrelation is a proxy for the uncertainty associated with weather

forecasts, noting that if this data displays more spatial gradients, it is likely to be of a

lesser quality due to the numerical nature of the weather simulations used to predict the

weather, and therefore more uncertain.

Our contribution in the second chapter is to provide a non parametric way to de-

fine comparable points across auctions, and a measure of the uncertainty associated with

weather forecasts.

2France has a high level of electric heating overall, which means that demand for electricity is quite
sensitive to temperature.
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Chapter 3:

In this empirical chapter, we study the impact that uncertainty about the demand plays

on the shape of the aggregate supply functions bidden by suppliers on the French electric-

ity market. We segment our analysis to different parts of the supply functions in order to

show how the overall shape changes with respect to our explanatory variables. We test

some of the predictions from our first chapter, mainly that the supply function should

see its slope increase when uncertainty increases.

We note that the main uncertainty is about the shape of the demand schedules itself.

Therefore, we consider data available to the producers and regress the demand schedules

on these variables. Next, we study the residuals of these regressions, and more specifi-

cally note that they are heteroskedastic. We leverage this, regressing the square of these

residuals on our variables, in order to predict the expected amplitude of the residuals,

that is the amplitude of the uncertainty of the demand schedule regression.

We then study the effect of our different proxies for uncertainty on the slope of the

supply schedules, and note that if our proxies about the weather uncertainty (through the

channel of renewable production) have the expected effect, the results are less clear cut

for our residuals on the demand schedules. As we are working with full-blown schedules

in the quantity-price plane, we perform our residual analysis both on the prices and the

quantities. We therefore obtain estimates for the uncertainty pertaining to the position

of a given point of our demand schedule either in price or in quantity. In our theoretical

framework, we make the strong assumptions that demand schedules are linear, and that

demand shocks are additive, i.e. they do not impact the slope of the demand schedules.

These assumptions yield that we cannot differentiate between shocks in price or quan-

tity, and that they should have effects in the same direction: more uncertainty implying

steeper supply curves to reduce the amount of fluctuation in production. However, we

observe that the effects of price and quantity uncertainty as estimated by our residuals’

method yield opposite effects. Both of these assumptions, although required to obtain
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closed form results, are clearly not satisfied by our data, and we think that this is a clear

path for improvement of the model.

The contribution of the third chapter is to provide a way to estimate the uncertainty

about the demand schedules faced by suppliers, and to estimate how this uncertainty

affects the shape of the supply schedules at different points along its overall length, i.e.

we provide a framework to describe how the functional form of schedules is affected by

estimates of the uncertainty faced by suppliers.
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Introduction

General Introduction

The electricity markets and their modelization over time

Public utility pricing

The interest for modelling the electricity markets can be traced back to the reference

work by Marcel Boiteux, vice president in charge of economic studies at Electricité de

France, at the outset of the second world war. The question at the time was mainly that

of public utility pricing: in the context of a public monopoly, which price should the

consumers face in order to allow the producers to recover their costs.

There are two main concerns that electricity producers have to face: the uncertainty of

demand and the cyclicity of demand, for a commodity that essentially cannot be stored.3

The first question is addressed in [Boiteux, 1951]. In this paper, Boiteux considers

a constant expected demand with fluctuations. The goal is to find the correct marginal

pricing so that consumers internalize the additional cost that an uncertain demand entails

for the producer. With a certain probability that demand is above its expected value by

a given amount, how much more reserve capacity has to be kept in order to insure an

accepted failure probability.4

The second question is addressed in [Boiteux, 1960]. Contrary to the previous sit-

uation, demand is now considered to change over time in a deterministic and cyclical

fashion. The question is to price electricity in order for consumers to be sensitive to the

additional investment cost implied by higher demand peaks.

3Electricity can be stored in hydroelectric dams, but the total energy stored is not enough to stabilize
completely the demand faced by the other generation units, and only a fraction of the hydroelectric
storage capacities can be actively replenished: the pumped storage facilities, which have two lakes and
can therefore pump from the lower lake to the upper one on demand to store more electricity that that
naturally stored in a lake that would be naturally replenished by a river.

4In the context of electricity, as production has to match demand at every point in time, every national
grid is built with the notion of an acceptable probability of mismatch which translates in curtailments
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Introduction

These contributions have sparked a larger literature on the question of the pric-

ing of economically non-storable commodities whose demand varies periodically, first in

[Brown and Johnson, 1969] which studies the impact of stochastic demand on expected

welfare. We refer the interested reader to the following review [Crew et al., 1995].

This literature has been mainly interested in questions of optimal pricing when the

agent choosing the pricing tries to maximize the consumer’s welfare, that is in the case

of public monopolies.

Regulatory evolution

The previous litterature took as an assumption the fact that these commodities were

produced by public monopolies. Network utilities, such as gas, telecoms and electricity

were thought to require to be organised as vertically integrated monopolies.

This view started to change in the 80s, with pressure to create competition. In 1984,

access to gas pipelines was opened to competition in the USA and in 1990 Britain priva-

tised electricity, separating generation and transmission. It was indeed thought that the

natural monopoly emerged from the network, and that by separating generation from the

network, generation could be opened to competition.

The overall argument for liberalization is that private competition is considered a

safer road towards efficiency than regulation of a monopoly. In a situation of perfect

competition, actors would be strongly incentivized for efficiency gains, and these gains

would be transferred to consumers [Schmidt, 1996]. As perfect competition is a very

rare situation, a new branch of the literature started to coalesce around the questions of

modeling competition in the case of electricity markets [Newbery, 1997].

Although this liberalization movement is empirically considered to bring at least mod-
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Introduction

est medium-term efficiency [Fabrizio et al., 2007], it has been somewhat slowed down after

the California crisis in the early 2000s [Jamasb and Pollitt, 2005], which mainly concen-

trated on wholesale electricity markets. Because of very little price responsiveness of

demand as well as interactions with forward contracts, there was very high fluctuations

in price as well as shortages [Borenstein, 2002]. In Europe, the European Commission has

pushed with success for the continuation of the program of liberalization and integration,

and wholesale markets for electricity are now ubiquitous, without further instances of

failure as in California.

The markets for electricity

The way the markets for electricity are organised stem from two main characteristics:

� The market has to reflect the changing demand for electricity.

� The form of the bids has to allow them to cope with the uncertain nature of demand

at the time of bidding.

These ingredients have pushed for the creation of hourly or half-hourly markets, where

suppliers are asked to submit supply schedules for a set number of bids (generally every

24 hours, that is 24 or 48 supply schedules once a day depending on whether the bids

are hourly or half-hourly). These supply schedules take the form of a set of monotonous

price quantity pairs, that can be considered as forming step functions5 or linear functions

by parts.6

In the 1980s, a theoretical push was made to model competition in supply functions.

The first occurrences of this approach can be found in [Grossman, 1981] and [Hart, 1982].

They consider situations where producers compete in supply curves when facing a given

demand curve. The main result is that such problems can be solved and one can obtain

specifications for optimal strategies in supply functions, but that there exists a very large

5as in the case of the England and Wales pool in the 1990s
6Where price-quantity pairs are considered to be joined by lines instead of steps, which is the case

for the French electricity day-ahead market, as well as the UK day-ahead market (half-hourly). Both of
these markets are exchanged through EPEX Spot as of 2017.
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Introduction

multiplicity of equilibria in this setting.

Around the same time, [Klemperer and Meyer, 1986] introduce a setting in which

firms choose endogenously to compete either in quantity or prices. This too yields a large

multiplicity of outcomes, but the key insight comes from the fact that this multiplicity is

drastically reduced when uncertainty is introduced.

This insight brings along the seminal paper [Klemperer and Meyer, 1989] which stud-

ies supply function competition under uncertainty. In this paper, it is shown that although

there is still a continuum of equilibria, this continuum has a structure that can be studied

when suppliers face an uncertain demand. In the rest of this thesis, we denote supply

function equilibria as SFE.

The setting introduced by Klemperer and Meyer is then rapidly put to use in the

context of electricity markets, where [Green and Newbery, 1992] studies the competition

in the British spot market through the SFE framework.

This use of SFE sparks some debate as to whether a smooth function approxima-

tion can or not capture the correct effects in markets which are largely at the time asking

bidders to submit step functions: [von der Fehr and Harbord, 1993] argue that step func-

tions of finite length are different to continuous functions.7 In addition, there is empirical

evidence that strategies predicted by SFE and actual observed strategies are significantly

different, see [Willems et al., 2009] and [Willems et al., 2009]. These results question

whether the SFE is the correct approach that only needs to be perfected, for example

by using functions that are affine by parts and not only affine [Baldick et al., 2004], or a

framework that is not adapted to describing these markets.

However, this approach is still considered relevant by a number of authors, although

7This debate is largely obsolete now that most of the market rules imply bids that are linear by parts
and not step functions anymore.
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Introduction

the multiplicity of equilibria makes it difficult to obtain clear results. In addition, the solu-

tions are not exactly easily usable, these functions being defined as solutions to a differen-

tial equation, therefore without an analytical formula. To overcome this issue, a number of

authors either consider competition in simpler settings, for example Cournot competition

settings applied to the electricity market in the case of [Borenstein and Bushnell, 1999],

or choose to restrict themselves to one special solution out of the continuum of possible

solutions that come out of the SFE framework: the supply function that is the unique

linear solution out of this continuum. In so doing these authors pick arbitrarily one solu-

tion with a functional form and then use it to further analyze some economic questions.

For example, [Green, 1996] focuses on the linear supply solution out of the SFE multiple

equilibria in order to have analytical tractable forms and study the effect of three dif-

ferent policies on competition, where [Hobbs et al., 2000] is able to model transmission

constraints with an affine supply function.

We also want to note that day-ahead markets do not exist in a vacuum, and in fact elec-

tricity can be traded through forward contracts, on the day-ahead market, as well as on

the intraday markets. Capacity markets on which guaranteed online capacity is traded for

also exist. All these markets interact with one another, and part of the literature focuses

on modelling these interactions. Generally the SFE considered are simplified to be able

to perform such analysis, for example to linear functions [Green, 1999] to study the inter-

action with forward markets, or to linear asymmetric function [Anderson and Hu, 2012]

for the same purpose. Generally speaking, these papers focus on the interaction between

day-ahead markets and forward contracts because the SFE framework does not allow

differentiating between day-ahead and intraday markets.

Overall, we refer the interested reader to the review by [Ventosa et al., 2005] for a

more detailed overview. In this thesis we rely heavily on the work by Klemperer and

Meyer, and comment and contrast their results to ours. In order to make this easier to

follow, we summarize in the following section the results of their paper that will be used
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Introduction

in this thesis.

Klemperer and Meyer 1989

Consider a setting in which firms bid supply functions while facing an uncertain demand.

Let D(p, θ) be the demand function as a function of demand shock θ. Consider that

for all (p, θ), −∞ < Dp < 0, Dpp ≤ 0 and Dθ > 0.

All firms are considered to be facing the same cost function C(·), with C ′(q) > 0 and

0 < C ′′(q) <∞ for all q > 0.

The timing is such that suppliers have to bid simultaneously a supply function prior

to the realization of demand shock θ being known. Consider for now two firms i and j

with Sk(p) the supply function of supplier k and that these supply functions are twice

differentiable. After this shock is known, every firm produces quantity Sk(p∗(θ)) at price

p∗(θ), such that D(p∗(θ)) = Si(p∗(θ)) + Sj(p∗(θ)).

Firm i’s residual demand is given by the total demand from which the supply of firm

j is subtracted, D(p, θ)− Sj(p). As θ is considered a scalar, the set of profit-maximizing

points for every possible shock θ define a curve. If there is a unique intersection between

i’s supply curve and every possible demand curve, then such a supply curve is ex-post

optimal, meaning that it is pointwise optimal for every realization of the shock θ.

Given the assumption that supply curves indeed behave in this way, then maximizing

the expected profit for the distribution of shocks can be abstracted away from the dis-

tribution of shocks, and i’s optimal supply curve solves for every shock θ the following

program:

max
p
p
(
D(p, θ)− Sj(p)

)
− C

(
D(p, θ)− Sj(p)

)
(1)

8



Introduction

which F.O.C writes:

D(p, θ)− Sj(p) +
(
p− C ′

(
D(p, θ)− Sj(p)

)) (
Dp(p, θ)− Sj′(p)

)
= 0 (2)

with eq 1 being strictly concave in p (we refer the reader to the original paper for

more justifications), then eq 2 defines the unique profit maximizing p∗(θ) for every θ,

which parametrizes the optimal supply function.

Consider that Dθp = 0, that is that θ is an additive shock, and that we focus on

symmetric equilibria, which allows us to drop the firms’ superscripts. In addition, consider

the fact that eq 2 has to hold for every shock, it can therefore be rewritten as:

S ′(p) =
S(p)

p− C ′(S(p))
+Dp(p) = f(p, S) (3)

This differential equation defines the supply function equilibria, the role of uncertainty

being to ensure that this equation has to hold for every shock, therefore for every possible

price. However, we can see that this differential equation is not accompanied by an initial

condition. Therefore, there exists many admissible solutions to this equation.

Supply functions are therefore bounded by possible values of their slope, namely

that the functions have slopes bounded between 0 and +∞. By solving the differential

equation, one can define the locus of points for which the solutions have slopes equal

to these bounds and thus obtain a region of admissible solutions, in the context of our

problem:

Therefore, the admissible set of solutions is defined by the upper bound of the demand

shocks θ, in that if the solutions cross the slope boundaries before reaching the maximal

shock, they cannot be accepted as solutions to the problem which constrains the solutions

more strictly than the differential equation alone. In figure 1 the demand associated with

the upper bound of the shocks D(p, θ) is represented in orange, and solutions A and B

to the differential equation are not solutions to the problem as they reach the boundaries
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Figure 1: This graph is adapted from the original paper by Klemperer and Meyer and illustrates
the admissible region of solutions to the differential equation so as to verify the constraints on
the slope of the supply function.

for smaller values of shocks.

The last result we will review here, is that in the case of an unbounded support of

shocks, the set of equilibria is at its smallest, as it means that solutions have to have a

positive finite slope for every value of the shocks, and not only for a segment of the real

line.

In some cases, for example for linear demand schedules, this set can collapse to a

unique solution.

The case for ramping costs

This framework models the costs as depending only on the quantity produced. In the

context of electricity generation, an important type of costs that cannot be captured in

such a specification of the cost function is that of ramping costs. These ramping costs

refer to the fact that making production change over time induces specific costs.

To explain how such costs can arise, consider a thermal power plant (fossil fuels, nu-

10
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clear, etc.), and more precisely its core. Physically, to produce a given level of electricity,

one has to maintain the core at a given temperature. To increase production, the tem-

perature of the core has to increase. This means that when production is increased some

fuel has to be lost to simply increase the temperature, this energy expenditure is not

attached to any additional production.

This issue of ramping costs is at the heart of the choice of ”quick” gas power plants

to match sudden peaks in demand, where nuclear plants are more generally used for low

frequency adjustments. Therefore these ramping costs are important technically on the

electricity market. They are important enough for the project of European Power Ex-

changes named “Price Coupling of Regions” (PCR), which aims to develop a single price

coupling solution to be used to calculate electricity prices across Europe, to consider the

possibility to use load gradient orders, that is orders that condition their availability on

the change in production from one hour to the next. However, at the moment of writing,

PCR is still very much a work in progress [EPEX, 2018c].

Some papers have tried to estimate their values empirically, [Wolak, 2007] and more

recently [Reguant, 2011]. There is also a strand of literature concerned with ramping

costs, looking at the optimal price that allows to maximize the overall social welfare

[Tanaka, 2006], that is, which price schedule allows to maximize the consumer welfare

from which the production costs are subtracted. This literature does not use game-

theoretical frameworks, but concerns itself with the best price signal to use in order to

limit the ramping costs incurred due to varying demand, while still considering that the

trajectory of demand is known. To our knowledge, there is no game-theoretical framework

that has been brought to take ramping costs into account, and describe their effects on

optimal strategies for the agents bidding on the market.
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Contribution

This thesis focuses on the question of these ramping costs. In the first chapter, I tackle

this question in a theoretical framework which yields predictions on the change of shape

in supply functions over time as a function of the underlying uncertainty about demand

shocks. The second chapter then introduces methods to study the shape of supply func-

tions as observed on the French electricity market for data from 2011 to 2013, as well

as methods to estimate the uncertainty contributed by the weather. The third chapter

applies these methods to test these theoretical predictions on actual market data. The

second and third chapters have been co-written with Henri de Belsunce, who finished his

PhD in 2015 at the Munich-based Max Planck Institute for Innovation and Competition,

under the supervision of Prof. Dr. Klaus M. Schmidt [Belsunce, 2015].

The first chapter focuses on what the introduction of ramping costs in a theoretical

framework brings to the table. Our main contribution is to build and justify how these

ramping costs can be tackled theoretically. First, we note that going to a continuous

time description of the problem allows us to bring to the literature about supply function

equilibria powerful mathematical tools mostly used in option pricing, that is stochastic

dynamics: we want to model ramping costs, i.e. costs associated to the variation in pro-

duction, while retaining the key ingredient brought by [Klemperer and Meyer, 1989], i.e.

the uncertainty, through the use of brownians, and more precisely, Itō processes. In so

doing we face the issue that one cannot derive a brownian, and bring our second contri-

bution, a physical argument about how power plants function that effectively operates as

a low pass filter on our stochastic processes, and allow us to continue to build a tractable

model of ramping costs under uncertainty. Third, we find in the literature a specification

of Itō processes that allows the model to remain tractable.

From these technical contributions we obtain our economic contributions in having

a rich tractable model that yields results that contrast strongly with past results from

the literature. First, our solutions are unique, which contrasts with the usual continuum

12
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of Nash equilibria in the supply function equilibria literature. Second, our solutions are

not ex-post optimal, meaning that gathering information about the expected future evo-

lution of demand yields different optimal strategies for suppliers, which in turn means

that producers in our framework have a motive for submitting different supply functions

from one time step to the next. Third, we have closed form solutions which yield specific

predictions about the evolution of bids under uncertainty, namely that when uncertainty

increase, suppliers submit steeper supply schedules in order to transmit more of these

shocks to changes in price and not quantities, which are costly due to the existence of

ramping costs. Finally, and less importantly, our framework justifies the existence of neg-

ative prices 8 by producers being willing to pay consumers to consume more in order to

avoid facing large variations in production, in contrast to everywhere positive schedules

in the case of the supply function equilibria litterature. These results open the door to

models being able to differentiate between day-ahead and intraday markets and therefore

to offer a framework in which their interactions might be possible.

At the bottom of all right pages, there is a small graph showcasing the optimal strat-

egy for a given set of parameters of the model, in the plane quantity-price, with an insert

illustrating the evolution of the support of demand shocks over time. The vertical line in

the insert represents the point in time for which the strategy is presented in the actual

graph. This forms a flipbook, which allows the reader to get a feeling for the evolution of

strategies with the evolution of the support of shocks by flipping rapidly the pages and

observing the graph becomes animated, just like a cartoon. This serves only an illustra-

tive purpose.

In the rest of the thesis, the goal is to test our predictions on data from the French

day-ahead market. In so doing, as our theoretical predictions are mainly about the ef-

fect that the amount of uncertainty has on the slope of the optimal supply schedule, we

separate the issue of building proxies for this uncertainty in our second chapter and the

8Note that such negative prices happen, a few hours a year for example in France or Germany, for
example in 2017 there were 146 such hours, spread over 24 days in Germany [EPEX, 2018a]
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actual analysis of the evolution of bids on these proxies in the third chapter.

In the second chapter our main focus is on analyzing our data, on building a way to

describe it, and on building proxies for the uncertainty that producers face about the

residual demand they have to anticipate when bidding on the day-ahead market.

First, we note that aggregate supply functions on the day ahead market cannot be

well captured by parametric functions. Therefore, we devise a way to describe them

non-parametrically: we note that although they cannot be captured parametrically, they

still have a rough S shape, and therefore four main parts, two extremal sections, and

two interior ones separated by the inflection point of the curve in its middle section. We

define the transition points between these sections as the points of maximal absolute

value for the derivative and second derivative of the supply schedules. This definition

relies on kernel density estimates and is therefore non-parametric. We observe that by

using 5 such points, we are able to capture about 98% of the intrinsic variability of the

supply schedules, and stop there although our method can be used to define more points.

This method allows us to define points that we consider comparable across auctions, that

allow use to perform cross-sectional analysis of our data in the third chapter.

Second, we build proxies for the amount of weather uncertainty that producers face

and variables that capture information that suppliers have before bidding and should

therefore be controlled for. For the information available to suppliers, we note that the

effect of weather on the demand, and more importantly temperature, is well understood

and that we need to control for it. To do so we build an effective temperature for France,

as an average of the localised temperature weighted by the population of the spatial region

considered, in order to capture the overall effect temperature has on heating.9 The rest of

our focus is on building a proxy for the uncertainty concerning renewable production. To

do so we analyze spatialized wind and sunlight data, and study it’s spatial structure. We

9France has a high level of electric heating overall, which means that demand for electricity is quite
sensitive to temperature.
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argue that spatial autocorrelation is a proxy for the uncertainty associated with weather

forecasts, noting that if this data displays more spatial gradients, it is likely to be of a

lesser quality due to the numerical nature of the weather simulations used to predict the

weather, and therefore more uncertain.

Our contribution in the second chapter is to provide a non-parametric way to define

comparable points across auctions, and a measure of the uncertainty associated with

weather forecasts.

In the third chapter, we focus on building the main proxy for the uncertainty faced

by producers, and then on analyzing how the bids evolve relative to these proxies.

We note that the main uncertainty is about the shape of the demand schedules itself.

Therefore, we consider data available to the producers and regress the demand schedules

on these variables. Next, we study the residuals of these regressions, and more specifi-

cally note that they are heteroskedastic. We leverage this, regressing the square of these

residuals on our variables, in order to predict the expected amplitude of the residuals,

that is the amplitude of the uncertainty of the demand schedule regression.

We then study the effect of our different proxies for uncertainty on the slope of the

supply schedules, and note that if our proxies about the weather uncertainty (through the

channel of renewable production) have the expected effect, the results are less clear cut

for our residuals on the demand schedules. As we are working with full-blown schedules

in the quantity-price plane, we perform our residual analysis both on the prices and the

quantities. We therefore obtain estimates for the uncertainty pertaining to the position

of a given point of our demand schedule either in price or in quantity. In our theoretical

framework, we make the strong assumptions that demand schedules are linear, and that

demand shocks are additive, i.e. they do not impact the slope of the demand schedules.

These assumptions yield that we cannot differentiate between shocks in price or quan-
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tity, and that they should have effects in the same direction: more uncertainty implying

steeper supply curves to reduce the amount of fluctuation in production. However, we

observe that the effects of price and quantity uncertainty as estimated by our residuals’

method yield opposite effects. Both of these assumptions, although required to obtain

closed form results, are clearly not satisfied by our data, and we think that this is a clear

path for improvement of the model.

The contribution of the third chapter is to provide a way to estimate the uncertainty

about the demand schedules faced by suppliers, and to estimate how this uncertainty

affects the shape of the supply schedules at different points along its overall length, i.e.

we provide a framework to describe how the functional form of schedules is affected by

estimates of the uncertainty faced by suppliers.
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Introduction Générale

Évolution de la modélisation des marchés de l’électricité

Tarification des services publics

L’intérêt pour la modélisation des marchés de l’électricité remonte aux travaux de référence

de Marcel Boiteux, vice-président en charge des études économiques d’EDF au sortir de

la Seconde Guerre Mondiale. La question principale à l’époque est celle de la tarification

d’un service public : dans le contexte d’un monopole d’état, à quel prix les consomma-

teurs devraient-ils faire face afin que les producteurs recouvrent leurs coûts.

Les producteurs d’électricité font face à deux contraintes particulières : le caractère

incertain de la demande ainsi que sa périodicité, le tout pour un bien qui ne peut essen-

tiellement pas être stocké.10

La première contrainte est traitée dans [Boiteux, 1951]. Dans cet article, Boiteux con-

sidère une demande constante en moyenne, mais sujette à des fluctuations. L’objectif est

de trouver la tarification marginale permettant au consommateur d’internaliser le coût

supplémentaire qu’une demande incertaine fait peser sur le producteur. Étant donné une

certaine probabilité que la demande soit au-dessus de sa valeur espérée d’une certaine

quantité, il s’agit de trouver quelle capacité de reserve doit être maintenue en ligne pour

garantir une probabilité cible de défaillance. 11

La seconde contrainte est traitée dans [Boiteux, 1960]. Contrairement à la situation

précédente, la demande est ici considérée comme périodique et déterministe. L’objectif

10Il est possible de stocker de l’électricité grâce à des barrages, mais l’énergie totale ainsi stockable n’est
pas suffisante pour complètement stabiliser la demande à laquelle les moyens de production font face.
Par ailleurs, seule une fraction de l’énergie ainsi stockée est renouvelable volontairement : les stations de
transfert d’énergie par pompage disposent de deux lacs ce qui permet de pomper de l’eau d’un lac situé
en aval vers un lac en amont et ainsi de reconstruire les réserves plus rapidement qu’en attendant que
les affluents naturels du lac amont ne le remplissent.

11Dans le contexte de l’électricité, comme la production doit être égale à la demande à chaque instant,
chaque réseau national est dimensionné avec un niveau de probabilité de défaillance acceptable.
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est de trouver la tarification permettant de transmettre aux consommateurs le coût

d’investissement supplémentaire associé à une demande présentant des pics plus élevés.

Ces contributions nourrissent une large littérature sur la question de la tarifica-

tion de biens non-stockables faisant face à une demande cyclique, tout d’abord par

[Brown and Johnson, 1969] qui étudie l’impact d’une demande stochastique sur le bien-

être social espéré. Nous renvoyons la lectrice intéressée à la revue de littérature suivante

: [Crew et al., 1995].

Cette branche de la littérature se concentre principalement sur la question de la tar-

ification optimale lorsque l’agent fixant le prix a pour objectif de maximiser le bien-être

des consommateurs, dans le cas de monopoles d’état.

Évolutions de la régulation

Cette branche de la littérature prend pour hypothèse que ces biens sont produits par des

monopoles d’état. Il est alors admis que les services de réseau, comme le gaz, l’électricité

ou les télécoms doivent être organisés sous la forme de monopoles verticalement intégrés.

Cette position évolue dans les années quatre-vingt, avec l’ouverture à la compétition

de ces monopoles d’état. En 1984, l’accès aux gazoducs est ouvert à la compétition

aux États-Unis et en 1990, la Grande-Bretagne privatise la fourniture d’électricité, en

séparant production et transmission. Il est alors considéré que la condition de monopole

naturel est liée au réseau, et qu’en séparant production et transmission, la production

peut s’ouvrir à la compétition.

L’argument général en faveur de la libéralisation est que la compétition privée est

considérée comme une voie plus sûre vers l’efficacité économique que la régulation d’un

monopole. Dans une situation de compétition parfaite, les agents seraient ainsi fortement
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incités à rechercher des gains d’efficacité, et ces gains seraient transmis aux consomma-

teurs [Schmidt, 1996]. La compétition parfaite étant une situation rare, une nouvelle

branche de la littérature émerge autour de la question de la modélisation de la compétition

dans le marché de l’électricité [Newbery, 1997].

Bien que ce mouvement de libéralisation soit considéré comme permettant à minima

des gains d’efficacité modestes à moyen terme [Fabrizio et al., 2007], il ralentit après la

crise californienne du début des années 2000 [Jamasb and Pollitt, 2005], qui se concentre

principalement sur les marchés de gros de l’électricité. De très grandes fluctuations de

prix ainsi que des pénuries ont lieu, principalement induites par une très faible elasticité-

prix de la demande, ainsi que l’interaction entre le marché de gros et les contrats à terme

[Borenstein, 2002]. En Europe, la Commission européenne pousse avec succès pour la

poursuite du programme de libéralisation et d’intégration européenne, et les marchés de

gros de l’électricité sont maintenant répandus sur le continent, sans que ne se produise

de défaillances semblables à celles observées en Californie.

Les marchés de l’électricité

L’organisation des marchés de l’électricité est très fortement induite par deux caractéristiques

importantes :

� Le marché se doit de refléter les changements rapides de demande.

� La forme des enchères doit leur permettre de se satisfaire de la nature incertaine de

la demande au moment de l’enchère.

Ces ingrédients sont à la source de la construction de marchés horaires voire même

demi-horaires, au sein desquels les producteurs doivent soumettre des courbes d’offre

pour un nombre déterminé d’enchères (en général une fois par jour, soit 24 ou 48 courbes

d’offre à la fois selon que l’enchère est horaire ou demi-horaire). Ces courbes d’offres

prennent la forme d’un ensemble de paires de prix et de quantités monotone, qui peuvent
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définir des fonctions constantes par morceaux 12 ou des fonctions linéaires par morceaux.

13

Dans les années quatre-vingt, une impulsion théorique cherche à modéliser ces marchés

sous forme d’équilibres en courbes d’offres. Cette approche est introduite en premier lieu

par [Grossman, 1981] and [Hart, 1982]. Ils considèrent une situation où des producteurs

rivalisent via des courbes d’offres en faisant face à une courbe de demande connue et

donnée. Le principal résultat de cette approche est que ces modèles peuvent être résolus,

que les stratégies optimales en courbe d’offre peuvent être spécifiées, mais qu’il existe une

forte multiplicité d’équilibre dans ce contexte.

Peu de temps après, [Klemperer and Meyer, 1986] introduisent un modèle dans lequel

les producteurs choisissent d’entrer en concurrence en prix ou en quantité de façon en-

dogène. Cette approche donne également lieu à une grande multiplicité d’équilibre, mais

le résultat clef est que cette multiplicité est drastiquement réduite lorsque de l’incertitude

est introduite dans le modèle.

Ce résultat inspire le papier fondateur [Klemperer and Meyer, 1989] qui étudie une

situation de compétition en courbes d’offres face à une demande incertaine. Dans cet

article, bien qu’il y ait toujours un continuum d’équilibres, ce continuum possède une

structure qui peut être étudiée lorsque la demande est incertaine. Dans le reste de cette

thèse, nous appelons les équilibres en courbes d’offre des SFE (supply function equilibria).

Le modèle général proposé par Klemperer et Meyer est rapidement mis à profit pour

décrire les marchés de l’électricité, la compétition sur le marché spot anglais est ainsi

étudiée avec des SFE par [Green and Newbery, 1992].

12Comme dans le cas du marché de gros d’Angleterre et du Pays de Galles dans les années quatre-
vingt-dix

13Les paires prix quantité sont considérées comme étant reliées par des linéaires, comme dans le cas du
marché day-ahead français, mais aussi le marché anglais actuel (demi-horaire). Ces deux marchés spot
sont gérés par la bourse EPEX Spot.
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Cet usage des SFE déclenche des débats sur la validité qu’il y a à décrire le marché de

l’électricité, à l’époque encore principalement caractérisé par des enchères constantes par

morceaux, avec des fonctions continues et dérivables : [von der Fehr and Harbord, 1993]

présente un argument montrant qu’une compétition via des constantes par morceaux de

tailles finies exhibe des comportements fondamentalement différents du cas de fonctions

continues. 14 Des résultats empiriques montrent également que les stratégies prédites

par cette classe de modèles diffèrent de façon significative des stratégies effectivement ob-

servées sur les marchés, voir [Willems et al., 2009] et [Willems et al., 2009]. Ces résultats

interrogent sur la validité de l’approche SFE pour décrire les marchés de l’électricité,

plus précisément la question est de savoir si les modèles de SFE sont valides, mais atten-

dent d’être perfectionnés, par exemple en les modélisant explicitement sous la forme de

fonctions affines par morceaux [Baldick et al., 2004], ou si cette approche est fondamen-

talement incapable de capturer les stratégies observées.

Cette approche est toutefois encore considérée comme pertinente par nombre d’auteurs,

bien que la multiplicité des équilibres complique l’analyse des résultats théoriques. Par

ailleurs, les solutions ne sont pas directement exploitables, étant définies implicitement

comme solution d’équations différentielles, et donc sans forme analytique dans la majorité

des cas. Pour dépasser ces limites, la littérature cherche à décrire la compétition dans des

cadres plus simples, par exemple dans des modèles de compétition de Cournot appliquée

au cas des marchés de l’électricité dans le cas de [Borenstein and Bushnell, 1999], ou

choisissent de se restreindre à une solution particulière parmi le continuum de solutions

obtenu dans un contexte de SFE: l’unique solution linéaire du lot. Ces auteurs choisissent

donc arbitrairement une solution tractable et s’en servent pour pousser le raisonnement

économique plus loin qu’habituellement possible en conservant le continuum de solutions.

À titre d’exemple, [Green, 1996] se focalise sur la courbe d’offre linéaire parmi le contin-

uum obtenu dans le cadre des SFE et se sert de son expression analytique pour étudier

14Ce débat est principalement obsolète maintenant que la plupart des marchés sont passés à des
linéaires par morceaux et plus des constantes par morceaux.
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les effets de trois politiques d’encadrement de la compétition, quand [Hobbs et al., 2000]

fait de même pour étudier les contraintes de transmission.

Par ailleurs, il est important de noter que les marchés day-ahead n’existent pas hors-

sol, et que l’électricité peut être échangée sur ces marchés, mais aussi par des contrats

à terme ou encore sur les marchés intraday. Il existe aussi des marchés de capacité ou

une garantie de capacité disponible à une certaine date s’échange. Tous ces marchés

interagissent les uns avec les autres, et une partie de la littérature s’attache à décrire

ces interactions. Les SFE utilisés à cette fin sont généralement simplifiés, par exem-

ple en ne considérant que les équilibres linéaires pour étudier l’interaction entre marché

day-ahead et contrats à terme [Green, 1999], ou encore en considérant des équilibres

asymétriques linéaires dans le même but [Anderson and Hu, 2012]. Ces articles se con-

centrent généralement sur les interactions entre contrats à terme et marché day-ahead,

car les SFE ne sont pas en mesure de distinguer le marché day-ahead du marché intraday.

Nous renvoyons la lectrice intéressée vers la revue de littérature [Ventosa et al., 2005]

pour une vue d’ensemble plus détaillés. Dans cette thèse, nous nous appuyons fortement

sur le travail de Klemperer et Meyer, et contrastons souvent nos résultats aux leurs. Pour

faciliter la lecture au lecteur qui ne serait pas familier avec leurs travaux, nous résumons

ci-après leurs résultats sur lesquels nous nous appuyons.

Klemperer et Meyer 1989

Soit un marché sur lequel des producteurs enchérissent des courbes d’offre tout en faisant

face à une demande incertaine.

Soit D(p, θ) la courbe de demande comme fonction du prix p et du choc θ. Con-

sidérons que pour tout (p, θ), −∞ < Dp < 0, Dpp ≤ 0 et Dθ > 0.

Les producteurs font face à la même fonction de coût C(·), avec C ′(q) > 0 et
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0 < C ′′(q) <∞ pour tout q > 0.

Les producteurs soumettent leurs offres en même temps avant la réalisation du choc

de demande θ. Considérons pour l’instant deux producteurs i et j avec Sk(p) la courbe

d’offre du producteur k différentiable deux fois. Une fois le choc connu, chaque produc-

teur produit la quantité Sk(p∗(θ)) au prix p∗(θ), tel que D(p∗(θ)) = Si(p∗(θ))+Sj(p∗(θ)).

La demande résiduelle du producteur i est donnée par la demande totale à laquelle

la production du producteur j est soustraite, D(p, θ)− Sj(p). Comme θ est un scalaire,

l’ensemble de points maximisant le profit pour chaque choc θ possible définit une courbe.

Si il existe une intersection unique entre la courbe d’offre de i et toute courbe de demande

possible, alors cette courbe d’offre est ex-post optimale, c’est à dire qu’elle est optimale

point à point pour chaque réalisation possible de θ.

Sous l’hypothèse que les courbes d’offres se comportent effectivement de cette manière,

la maximisation du profit espéré devient indépendante de la distribution des chocs de

demande, et la courbe d’offre optimale de i résout pour chaque choc θ le programme de

maximisation suivant :

max
p
p
(
D(p, θ)− Sj(p)

)
− C

(
D(p, θ)− Sj(p)

)
(4)

dont la condition du premier ordre s’écrit :

D(p, θ)− Sj(p) +
(
p− C ′

(
D(p, θ)− Sj(p)

)) (
Dp(p, θ)− Sj′(p)

)
= 0 (5)

Comme l’équation 4 est strictement concave en p (nous renvoyons le lecteur vers le

papier original pour plus de détails), l’équation 5 définit un unique prix p∗(θ) maximisant

le profit pour chaque choc θ, qui paramétrise la courbe d’offre optimale.

Considérons que Dθp = 0, c’est à dire que θ est un choc additif, et concentrons nous
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sur les équilibres symétriques, ce qui nous permet de ne plus faire attention aux exposants

i et j caractérisant la productrice. Sachant que l’eq. 5 doit être vérifiée pour tout choc,

elle peut se réécrire :

S ′(p) =
S(p)

p− C ′(S(p))
+Dp(p) = f(p, S) (6)

Cette équation différentielle définit l’équilibre en courbes d’offres, l’incertitude ayant pour

conséquence que cette équation doit être vérifiée pour tout choc, et donc pour tout prix

possible. Cette équation ne s’accompagne toutefois pas d’une condition initiale. Il existe

donc une multiplicité de solutions admissibles.

Les courbes d’offres sont bornées par les possibles valeurs de leur pente, qui doit être

comprise entre 0 et +∞. Il est possible de définir le lieu des points pour lesquels les

solutions de l’équation différentielle ont pour pente ces valeurs extrémales, qui définit

donc la région des solutions admissibles dans notre contexte :

Figure 2: Ce graphique est adapté du papier original de Klemperer et Meyer et illustre la région
de solutions de l’équation différentielle admissibles dans le cadre de notre problème, c’est-à-dire
vérifiant les contraintes sur leur pente.

L’ensemble des solutions admissibles est donc définit par la borne supérieure de nos

chocs de demande θ, en cela que si une solution de l’équation différentielle devait traverser

les frontières définies ci-dessus pour un choc inférieur au choc maximal, elle ne serait pas

pour autant solution de notre problème qui contraint plus fortement les solutions que
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l’équation différentielle seule. Dans la figure 2, la demande associée avec le choc maximal

D(p, θ) est représenté en orange et les solutions A et B de l’équation différentielle ne sont

pas solutions de notre problème, car elles franchissent nos frontières pour des valeurs de

chocs inférieures à ce maximum.

Le dernier résultat que nous évoquerons ici est que dans le cas d’un support de choc

infini, l’ensemble d’équilibres symétriques est le plus petit possible, car il faut dans ce cas

que toute solution ait une pente positive et finie pour tout choc positif et plus seulement

pour un segment de la droite des réels.

Dans certains cas, par exemple pour des courbes de demande linéaires, cet ensemble

peut converger vers une solution unique.

Les coûts de variation

Ce modèle choisit de considérer des coûts ne dépendant que de la quantité produite. Dans

le contexte de la production d’électricité, il existe un type de coûts qui ne peut pas se

modéliser ainsi, les coûts de variation. Ces coûts sont induits lorsque la production varie

dans le temps.

Afin d’expliquer ces coûts, considérons une centrale thermique (fossile, nucléaire, etc.)

et plus précisément son réacteur. Physiquement, pour produire une certaine puissance, il

faut maintenir le réacteur à une température donnée. Afin d’accrôıtre la production, la

température du réacteur doit augmenter. Cela implique que lorsque la production aug-

mente, du combustible doit être perdu afin de simplement réchauffer le réacteur, cette

dépense énergétique n’étant pas associée à une production d’énergie.

L’existence de ces coûts est au cœur du choix d’utiliser des centrales gaz ”rapides”

afin de suivre une hausse soudaine de la demande, là où les centrales nucléaires sont plus
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généralement utilisées afin de suivre les changements basse fréquence de la demande.

Ces coûts sont suffisamment importants pour que le projet des bourses européennes

d’électricité EPEX intitulé “Price Coupling of Regions” (PCR), qui cherche à développer

un unique mécanisme de couplage des prix européens de l’électricité, considère la possi-

bilité de soumettre des ordres conditionnés sur les gradients de charge, c’est-à-dire des

ordres dont la disponibilité serait conditionnée sur le respect de valeurs maximales de

variation de la production d’une enchère à l’autre. Le projet PCR n’est toutefois qu’à

l’était d’ébauche au moment de l’écriture de ces lignes [EPEX, 2018c].

Des articles se sont attachés à estimer la valeur de ces coûts de variation empirique-

ment, [Wolak, 2007] et plus récemment [Reguant, 2011]. Il existe également une branche

de la littérature s’intéressant à ces coûts à travers le prisme de leur impact sur le prix opti-

mal maximisant le bien-être social [Tanaka, 2006], c’est-à-dire s’intéressant à la chronique

temporelle de prix permettant de maximiser l’utilité des consommateurs à laquelle sont

soustraits les coûts de variation. Ces travaux ne s’inscrivent pas dans une approche de

théorie des jeux, mais cherchent à trouver le signal prix permettant de limiter les coûts de

variation induits par une demande variant de façon déterministe. À notre connaissance

il n’existe pas de modèle de ces coûts dans un contexte de théorie des jeux permettant

de décrire leur impact sur les stratégies optimales des producteurs jouant sur le marché

de l’électricité.

Contribution

Cette thèse se concentre sur la question des coûts de variation. Dans le premier chapitre,

cette question est abordée dans un modèle théorique produisant des prédictions sur

l’évolution de la forme des courbes d’offres optimales dans le temps en fonction de la

dynamique sous-jacente des chocs de demande. Le deuxième chapitre introduit ensuite

des techniques permettant d’étudier empiriquement la forme des courbes d’offre observées

sur le marché de l’électricité français entre 2011 et 2013, ainsi que des méthodes perme-

ttant d’estimer l’incertitude sur la demande associée à la météo. Le troisième chapitre
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applique ces méthodes afin de tester empiriquement les prédictions théoriques du premier

chapitre. Ces deux derniers chapitres sont issus d’une collaboration avec Henri de Bel-

sunce, qui a soutenu son doctorat en 2015 au Max Planck Institute for Innovation and

Competition de Munich, sous la supervision de Prof. Klaus M. Schmidt.

Le premier chapitre se concentre sur ce que la prise en compte des coûts de varia-

tion apporte dans un contexte théorique. La contribution principale est de construire

et de justifier comment tenir compte théoriquement de ces coûts. En premier lieu, nous

passons à une description du problème en temps continu afin d’apporter à la littérature

sur les SFE des outils mathématiques puissants surtout utilisés en finance, à savoir la

dynamique stochastique : nous cherchons en effet à modéliser les coûts de variation, en

conservant l’ingrédient clef introduit par [Klemperer and Meyer, 1989], i.e. l’incertitude,

grâce à l’utilisation de browniens, plus précisémment des processus d’Itō. Ce faisant, nous

faisons face au caractère non-dérivable des processus stochastiques, et apportons notre

deuxième contribution, un argument physique concernant la mode de fonctionnement

des centrales de production qui opèrent effectivement comme des filtres passe-bas sur nos

processus stochastiques et qui nous permet de continuer à construire un modèle tractable

de coûts de variation avec incertitude. Troisièmement, nous trouvons une spécification

d’un processus d’Itō nous permettant de conserver une forme analytique.

De ces contributions techniques, nous obtenons nos contributions économiques grâce

à un modèle riche et tractable qui propose des résultats contrastant fortement avec

les résultats passés de la littérature. Tout d’abord, nos solutions sont uniques, con-

trairement aux continuums d’équilibres de Nash habituels dans la littérature des SFE.

Deuxièmement, nos solutions ne sont pas ex-post optimales, c’est-à-dire qu’acquérir de

l’information sur l’évolution attendue de la demande induit des stratégies optimales

différentes pour les producteurs, ce qui a pour conséquence que les producteurs dans

notre modèle ont une justification pour soumettre des enchères variant dans le temps.

Troisièmement, nous obtenons des formes analytiques faisant des prédictions précises sur
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l’évolution des stratégies avec la dynamique des chocs de demande, à savoir que lorsque

l’incertitude sur la demande augmente, les producteurs soumettent des courbes d’offre

de plus en plus pentues afin de transmettre une plus grande part des chocs de demande

aux prix plutôt qu’aux quantités dont les variations sont coûteuses. Enfin, notre modèle

justifie l’existence de prix négatifs15 avec des producteurs étant prêts à subventionner la

demande pour ne pas avoir à faire face de forts coûts de variation, ce qui contraste avec

les courbes d’offre partout positives dans les modèles de SFE. Ces résultats ouvrent la

porte à des modèles capables de différencier entre marchés day-ahead et intraday et donc

potentiellement de modéliser leurs interactions.

Au bas des pages de droite de la thèse, il y a de petits graphiques présentant la

stratégie optimale pour un certain jeu de paramètres de notre modèle, dans le plan quan-

tité-prix, avec un insert illustrant l’évolution dans le temps du support des chocs de

demande, dans le plan temps-choc. La ligne verticale dans l’insert représente le point

dans le temps pour lequel la solution optimale est représentée dans le reste du graph.

Ceci forme un folioscope, ce qui permet au lecteur de se rendre compte de la dynamique

de l’évolution des stratégies optimales en fonction de l’évolution du support des chocs en

feuilletant rapidement la thèse et en animant ainsi ce graphique à la manière d’un dessin

animé. Ceci ne remplit qu’un rôle d’illustration.

Dans le reste de la thèse, l’objectif est de tester ces prédictions sur des données issues

du marché day-ahead français. Comme ces prédictions portent avant tout sur l’impact de

l’incertitude sur la forme des courbes d’offre, nous séparons en deux chapitres la contruc-

tion de proxies pour cette incertitude dans le deuxième chapitre et l’analyse de l’évolution

des enchères en fonction de cette incertitude dans le troisième chapitre.

Dans le second chapitre nous nous concentrons sur l’analyse de nos données, sur le

15De tels prix négatifs s’observent sur les marchés de l’électricité quelques heures par an en moyenne
pour l’Allemagne et la France, par exemple en 2017 il y a eu 146 heures en Allemagne pour lesquelles
les prix étaient négatifs, répartis sur 24 jours [EPEX, 2018a]
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développement d’une méthodologie permettant d’utiliser des données dont chaque ob-

servation est une fonction, et sur la construction de proxies pour l’incertitude à laquelle

les producteurs font face vis-à-vis de la demande résiduelle qu’ils se doivent d’anticiper

lorsqu’ils jouent leurs enchères sur le marché day-ahead.

Nous notons d’abord que les courbes d’offre agrégées sur le marché day-ahead ne sont

pas bien capturées par des fonctions paramétriques. Nous construisons une approche

non-paramétrique pour les décrire : nous notons que malgré leur mauvaise approxima-

tion par des fonctions paramétriques, elles sont néanmoins grossièrement en forme de S, et

donc constituées de quatre grandes parties, les deux sections extrémales, et deux sections

intérieures séparées par le point d’inflexion de la fonction. Nous définissons les points de

transition entre ces sections comme étant les points pour lesquels les valeurs absolues des

premières et secondes dérivées de nos courbes d’offres sont maximales. Cette définition

repose sur des estimations de densité de kernels, et est donc bien non paramétrique.

Nous remarquons qu’en utilisant 5 de ces points, nous sommes en mesure de capturer

environ 98% de la variabilité intrinsèque des courbes d’offre, et nous contentons donc de

ces 5 points bien que notre méthode peut servir à définir plus de points. Cette méthode

nous permet de caractériser des points que nous considérons comparables d’une enchère

à l’autre et nous permet de réaliser l’analyse de nos données dans le chapitre 3.

Nous construisons ensuite des proxies pour le degré d’incertitude associée à la météo à

laquelle les producteurs doivent faire face ainsi que des variables capturant l’information

disponible aux producteurs avant les enchères et que nous devons contrôler. La météo

étant connue au moment d’enchérir et ayant une influence sur la demande résiduelle,

il nous faut en tenir compte. Néanmoins la météo influence la demande par des effets

locaux là où le marché a lieu au niveau national, il nous faut donc construire des proxies

nationaux des variables météo localisées sur le territoire français dont nous disposons.

Nous construisons notamment un proxy national de température basé sur une moyenne

de la météo localisée pondérée par la population afin de capturer l’effet de la température
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sur la demande à travers le chauffage notamment. 16 Le reste de notre travail consiste à

construire des proxies pour l’incertitude concernant la production renouvelable qui vient

réduire la demande résiduelle. Pour ce faire, nous analysons la structure spatiale de nos

données de vent et de rayonnement. Nous défendons le fait que l’autocorrélation spatiale

de ces variables est un proxy de l’incertitude, en notant que plus les gradients spatiaux

sont élevés, moins la prédiction météo sur laquelle se basent les producteurs au moment

de jouer sur le marché sera de qualité.

Dans ce second chapitre nous développons une méthode non-paramétrique permettant

de comparer les observations fonctionnelles dont nous disposons les unes aux autres, ainsi

que des proxies pour l’incertitude associée à la météo.

Dans le troisième chapitre, nous nous concentrons sur la construction du proxy prin-

cipal pour l’incertitude à laquelle les producteurs font face, l’incertitude sur la courbe de

demande agrégée, et nous attachons ensuite à décrire comment les enchères évoluent avec

nos différentes sources d’incertitude.

Nous considérons les informations accessibles aux producteurs au moment d’enchérir

et régressons les courbes de demandes sur ces variables. Nous étudions ensuite les résidus

de cette régression et notons qu’ils sont hétéroskédastiques. Nous nous servons de cette

propriété en régressant le carré de ces résidus sur nos variables explicatives, afin de prédire

l’amplitude attendue de ces résidus, c’est-à-dire l’amplitude de l’incertitude sur la courbe

de demande au moment d’enchérir.

Nous étudions ensuite l’effet de nos différentes sources d’incertitude sur la pente de

nos courbes d’offre, et notons que nos proxies pour l’incertitude météo se comportent

comme attendus selon nos résultats théoriques obtenus dans le premier chapitre, alors

que les résultats sur l’incertitude associée aux courbes de demande sont moins tranchés.

16Une large proportion du chauffage en France est électrique, ce qui induit que la demande électrique
en France est assez météo-sensible.
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Comme nos courbes de demande sont des fonctions complètes dans le plan prix-quantité,

nous réalisons l’analyse de nos résidus tant en prix qu’en quantité. Nous obtenons donc

des estimations de l’incertitude associée à la position d’un point de nos courbes de de-

mande en prix et en quantité. Dans notre modèle théorique, nous faisons des hypothèses

fortes sur la forme de la demande, que nous supposons linéaire, et nous supposons que

les chocs de demande sont additifs, i.e., ils ne changent pas la pente de la demande.

Ces hypothèses ont pour conséquence qu’il est impossible de différencier l’impact d’une

incertitude en prix ou en quantité, et que ces deux incertitudes devraient avoir des effets

de même signe : plus d’incertitude induit une pente plus grande de la courbe d’offre pour

réduire la variation de la production. Nous observons néanmoins que les effets estimés

de l’incertitude sur la quantité et le prix sont de signe opposés. Ces deux hypothèses,

bien que nécessaires pour obtenir des solutions analytiques, sont évidemment violées par

nos données, et nous pensons qu’il s’agit d’une piste importante d’amélioration du modèle.

La contribution du dernier chapitre est de proposer une méthodologie estimant l’incertitude

directe sur la courbe de demande et d’estimer comment cette incertitude impacte la forme

des courbes d’offre en différents points de son graph, i.e. nous proposons une approche

permettant d’estimer comment les courbes d’offre se déforment sous l’effet de l’incertitude.
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Dynamics of the Electricity Day-Ahead Market : Supply Function Equilibria and
Ramping Costs

1.1 Introduction

In this chapter, we introduce ramping costs to the theoretical framework of supply func-

tion equilibria.

Supply function equilibria are used as a theoretical approach to describe the electric-

ity market on which suppliers bid actual functions contrary to most markets, where one’s

assumptions about demand and supply curves never translate to agents actually bidding

on these objects. The most striking results of this literature are that there exists many

(in fact a continuum) of Nash equilibria, that all of those equilibria are ex-post optimal,

and that they exhibit always positive prices.

The ex-post optimality implies that once an equilibrium is reached, this equilibrium

shouldn’t change from auction to auction, given that the cost structure remains constant,

even when new information is gathered. However, the observation of the hourly bids on

the day-ahead electricity market shows that bids indeed do change from hour to hour.

There are many reasons for which the bids might change from one another.

The first is that power plants are brought online or offline to face varying levels of

demand for electricity. In so doing, the cost structure of the suppliers changes, which can

justify changes in bids. The second is that changes in production are costly in and of

themselves, that is, there exists ramping costs associated to the production of electricity.

This effect, although technically well supported, also sees support from the existence of

negative prices from time to time on the electricity market, on days of high production

and low demand. These cases show that subsidizing consumption is less costly than not

producing for suppliers.

In this chapter, we propose a theoretical framework to account for these ramping costs.

We choose to model the discrete time bidding as a continuous time process. This

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0.0

0.5

1.0

1.5

2.0

2.5

30 40
0

10

35
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Ramping Costs

allows us to bring to the literature about supply function equilibria powerful mathemat-

ical tools mostly used in option pricing, that is stochastic dynamics: we want to model

ramping costs, i.e. costs associated to the variation in production, while retaining the

key ingredient brought by [Klemperer and Meyer, 1989], i.e. the uncertainty, through the

use of brownians, and more precisely, Itō processes. These tools are the same introduced

in the recent literature on dynamic games, see for example [Sannikov et al., 2016]. How-

ever, where the focus of this literature is to revisit classical results of repeated games in

the context of a time-continuous framework as well as to describe real-world cases more

appropriately captured by continuous time models (for example trading), our focus is to

be able to capture the effects of ramping costs on the electricity day-ahead market, a

market which is discrete in nature.

We obtain a rich and tractable model that yields results that contrast strongly with

past results from the literature. First, in the specific case of linear demand and linear

costs we obtain a unique Nash equilibria, which contrasts with the usual continuum of

Nash equilibria in the supply function equilibria literature. Second, our solutions are

not ex-post optimal, meaning that gathering information about the expected future evo-

lution of demand yields different optimal strategies for suppliers, which in turn means

that producers in our framework have a motive for submitting different supply functions

from one time step to the next. Third, we have closed form solutions which yield specific

predictions about the evolution of bids under uncertainty, namely that when uncertainty

increase, suppliers submit steeper supply schedules in order to transmit more of these

shocks to changes in price and not quantities, which are costly due to the existence of

ramping costs. Finally, and less importantly, our framework justifies the existence of neg-

ative prices 2 by producers being willing to pay consumers to consume more in order to

avoid facing large variations in production, in contrast to everywhere positive schedules

in the case of the supply function equilibria literature.

2Note that such negative prices happen, a few hours a year for example in France or Germany, for
example in 2017 there were 146 such hours, spread over 24 days in Germany [EPEX, 2018a]
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At the bottom of all right pages, there is a small graph showcasing the optimal strat-

egy for a given set of parameters of the model, in the plane quantity-price, with an insert

illustrating the evolution of the support of demand shocks over time. The vertical line in

the insert represents the point in time for which the strategy is presented in the actual

graph. This forms a flipbook, which allows the reader to get a feeling for the evolution of

strategies with the evolution of the support of shocks by flipping rapidly the pages and

observing the graph becomes animated, just like a cartoon. This serves only an illustra-

tive purpose.

1.1.1 Litterature review

The electricity markets flourished in Europe during the 1990s during the wave of priva-

tization. The argument for their creation was one of competition, that was supposed to

bring lower prices to the end consumer of electricity.

An important specificity to the economics of electricity is that electricity cannot be

stored in large amounts, which in turn implies that at every moment production and

consumption have to match. This means that in order to have a working electric grid,

that is one that can produce electricity at higher levels during the winter and lower levels

in summer, one has to have production units ready to be turned on if the demand is

high enough, but turned off otherwise. This, in turn, means that although their existence

is required, it is difficult to see how marginal cost pricing can cover their investment

costs, which has been a long running argument in the litterature [Boiteux, 1960]. For

this reason, from the very beginning, the issue of the market design was deemed to be

crucial to insure that the wished for outcome of the privatization wave came to fruition

[Green, 1991].

Most countries having opened the production of electricity to competition have im-

plemented day-ahead markets. As said above, the production and the consumption have
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to match constantly. The very short term matching is done by automating tiny adjust-

ments around what a producer is already producing in order to match the fluctuating

consumption. To plan which plant should be online at which hour of the day however, the

day-ahead markets come in. The idea is that producers and big consumers of electricity

(either for themselves, or as aggregators of the individual consumptions) are asked to

bid demand or supply functions respectively. The market operator then aggregates the

demand and supply curves, which yields an equilibrium giving the price and quantities

to be produced for each producer.

There has been an active literature trying to model and measure the market power of

oligopolists on these newly created markets [Green and Newbery, 1992, Newbery, 1998,

Green, 1999]. The models have mainly been based on Klemperer and Meyer 1989’s Econo-

metrica founding paper about supply function equilibria [Klemperer and Meyer, 1989]

(henceforth known as KM).

This paper builds upon previous results about competition in supply schedules with-

out uncertainty [Grossman, 1981], which yielded a very high multiplicity of equilibria.

KM add a key ingredient: uncertainty about the demand schedule facing the suppliers.

This addition greatly reduces the multiplicity, and adds more structure to it, although

in this framework there is still a continuum of Nash equilibria, which are always pinned

between Cournot and Bertrand outcomes.

Groundbreaking and fertile, the original model by KM studied how demand uncer-

tainty collapses dramatically the set of available supply function equilibria to a well-

defined continuum when contrasted to the case of competition in supply schedules with-

out uncertainty [Grossman, 1981]. These equilibria are always pinned between Cournot

and Bertrand outcomes. This continuum collapses further to a single Nash equilibria by

considering an infinite support of demand shocks, that is an unbounded distribution of

shocks. All of these equilibria are ex-post optimal, meaning that changes in anticipated
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demand shocks do not impact the actual solutions, but only the parts of the solutions

that are actually explored as shocks realize, a very strong result.

The electricity markets literature has embraced this framework because it is consid-

ered to capture some of the structure at play in the electricity markets: the producers do

not know what demand they are going to face when they choose their supply schedule,

the demand side is considered much less sophisticated than the supply side, and their

demand schedules can therefore be considered to some extent as being exogenous. Some

have argued that the schedules submitted in the real markets are discrete and that this

discrete nature makes their modelling as continuously differentiable schedules is both in-

correct and yields different results from discrete ones [von der Fehr and Harbord, 1993].

However, recent results suggest that with a sufficient number of steps both approaches

converge [Holmberg et al., 2008], and indeed we see that recent implementations of the

market rules increase the number of steps allowed for a single bid, and consider that these

points are linearly joined instead of stepwise.

One of the most striking aspects of the supply function equilibria approaches is, as

was alluded to above, the multiplicity of Nash equilibria. This result has been generally

viewed as the source of the danger of tacit collusion in electricity markets: if there is

a continuum of nash equilibria, repeated interactions are feared to be conducive to a

convergence of bidding strategies towards the most profitable equilibria [Bolle, 1992].

Furthermore, these models abstract away some of the details of the actual markets,

reason for which authors which try and evaluate the market power of producers on the

electricity markets view their endeavour as painting the situation with an optimistic brush

[Green and Newbery, 1992].

Here we will tackle the points raised in the last two paragraphs to some extent. We

propose to consider a technical reality of the operating of power plants: their cost struc-
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ture is history-dependant, more precisely, producing a quantity q1 does not entail the

same cost if the previous quantity produced was already q1 or if the previous quantity

was different from it. Raising or decreasing production in and of itself imply costs. By

introducing these costs we aim to produce a model capable of capturing more precisely

the competition that arises in the electricity markets, and in so doing we will show that

the continuum of equilibria characteristic of supply function equilibria under uncertainty

collapses to unique equilibria, which in turn allows us to comment on the question of

tacit collusion.

1.1.2 The day-ahead markets

On the electricity day-ahead markets, producers are generally required to submit sup-

ply schedules once a day for all the auctions taking place during the next day. The

APX (England) and the EPEX (Austria, France, Germany and Switzerland) markets al-

low hourly auctions [APX, 2017, EPEX, 2015], and EPEX allows for bids comprising up

to 256 price quantity combinations, effectively approximating smooth supply functions.

Producers can submit different supply schedules for each individual auction, but every

bid must be placed at the same time one day in advance for each block of 24 hours.

Customers go through the same process and submit their demand schedules, then the

market operator matches supply and demand for each auction. Producers thus have to

submit schedules facing uncertain demand, which is the reason for the popularity of sup-

ply function equilibria approaches to the electricity market.

However, on this market, bids change from auction to auction. From the point of

view of KM’s model, this should happen only through a coordination of agents agreeing

to collectively swap from one Nash equilibrium to another in the available continuum.

Describing these dynamics, however, is increasingly important as the energetic mix is

bound to include an increasing fraction of renewables. Power production can be sep-

arated in two classes: dispatchable and non-dispatchable technologies. Nuclear, coal,
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land-fill gas or hydroelectric power generation are mainly dispatchable as one can actu-

ally choose their level of production whereas the two rising stars of renewable energy,

namely wind and solar, are non-dispatchable: they react to weather conditions. Having

these technologies in the mix introduces uncertainty on the production side, which comes

down to dispatchable units facing a more uncertain residual demand [Boyle, 2007]. In

this paper we want to explore how to model these dynamics.

Electricity production faces very specific technological constraints. These constraints,

generally labelled as ramping costs, vary across production technologies and have yet to

be captured in a model. We propose to do so by introducing a multivariate cost function,

depending as always on the quantity produced, but also on the rate at which production

varies: C(S, dS
dt

). We call this class of cost functions dynamic cost functions. We detail

which form these costs take, and its shape in section 1.3.2.

All power plants face maintenance costs. However, part of these maintenance costs

is induced by the dynamics of production, and can be seen as ramping costs. More

precisely, whatever the production technology, fluctuations in production are costly. In-

deed, they imply fluctuations in the temperature of the core of the power plant, thus

dilation and contraction cycles of the different parts, which cause wear and tear. The

industry is aware of these effects [GE, 2015], as well as the literature, although it focuses

mainly on other types of effects, such as the impact on shutdowns due to maintenance

[Rothwell et al., 1995], some B2B companies even specialize in minimizing the related

long term costs. For example, Wartsila Power Plants, a supplier of power plants and

tools to forecast long term costs, explains in a white paper [Arima, 2012]:

Increased variability in net load demand means that dispatchable generating

units have to ramp considerably more steeply and deeper than traditionally,

thus increasing wear and tear to components.

We are going to model these ramping costs through a dynamic cost function, increasing

in the absolute value of its second argument: any change in production is costly. This
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paper will focus on the implications of considering this type of ramping costs. Other

types of ramping costs exist, for example startup costs, but they will not be studied in

this paper.

These effects cannot be captured by traditional cost functions depending on the level

of production alone. One needs to take into account the actual path leading to a given

quantity produced, and more precisely in the instantaneous variation, not the whole his-

tory. This implies that we need to impose structure on the dynamics of the system while

retaining uncertainty, the key ingredient of KM’s paper. To do so, we use stochastic

dynamics.

This seemingly small addition to KM’s framework has a lot of implications on the re-

sults obtained. The solutions are not ex-post optimal anymore, allowing to account more

satisfactorily for the dynamics of optimal supply schedules, and our solutions are unique,

even for bounded demand shocks. We also define a novel selection rule to choose from

KM’s continuum of equilibria. Finally these results open the possibility to distinguish

intraday and day-ahead markets.

In section 1.2 we will present a heuristic approach to get the intuition of the model.

Then, in section 1.3 we will introduce the mathematical tools needed to use stochastic

dynamics in this context, in section 1.4 and section 1.5 we will solve the monopoly and

the symmetric oligopoly cases while considering that producers have information about

the overall distribution of shocks during the day, but do not have information about

differences in the shocks at different dates. Finally in section 1.6 we will discuss the

dynamic variation of the optimal bids, while sections 1.7 and 1.8 will respectively cover

some limits of this approach and conclude the paper.
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1.2 Heuristic Description of the Model

In this section the essence of the model is presented before introducing the proper math-

ematical tools needed to treat this problem rigorously in the next section. It is thought

of as an overview of the mathematical methods that are going to be used, as a way to

give a sense of the intent of the modelling choices.

As in KM’s setup, the aim is to model an oligopoly facing uncertain demand, taken

as exogenous. Before the demand shocks are realized, each firm needs to commit on a

strategy. Firms also incur costs that not only depend on the level of production but also

on the evolution of the production given its anterior level produced.

More formally, the producer, as in KM, faces uncertain demand, D(θ, p), with θ a

stochastic shock to the demand and p the price. We add to that both ramping costs

and uncertain dynamics of demand. As we want to keep the key ingredient of KM, the

introduction of uncertainty, but take into account the dynamics of this uncertainty, of

these demand shocks, we need to add more structure.

Consider the following notation, where θ(t) denotes the value of the stochastic shock

at time t, whereas Θ denotes the family of all available time trajectories of our demand

shocks.

In the real market, bidders submit a finite number of bids once a day, and face the

ramping costs inter-period, that is, when production has to be adjusted to reach the sub-

sequent market outcome. The first bit of structure we introduce is that we are going to

assume that time is continuous. The second is that ramping costs are incurred continu-

ously and can be thought of as costs depending on the variation of production over time.

Finally, we consider that bidders are allowed to submit a different supply schedule for

every point in time between 0 and T . This amounts to being asked to submit a surface

of strategy in the price-quantity-time space for the next day.
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The producer maximises her expected profits, and we consider the simplest case here

in which the distribution of shocks is static, that is that the distribution of probability

of shocks does not depend on time, and the producer is asked by the market operator

to submit the same supply schedule for every point in time a day in advance. In an

oligopoly, the program maximised by producer i is, therefore:

max
Si(p)

EΘ

[∫ T

0

(
p(θ(t))Si(p(θ(t)))− C

(
Si(p(θ(t))),

dSi(p(θ(t)))

dt

))
dt

]
(1.1)

with p(θ(t)) the price given the demand shock θ(t) at date t, Si(·) the supply schedule of

producer i and C(·, ·) the dynamic cost function. Note that the price depends on t only

through θ(t), i.e. a given level of demand shock implies a given price.

The goal of this section is to provide a first run through of the model, therefore we

will not describe here the conditions that must be verified by the different terms of the

model. We will simply assume that the dynamic cost function is additively separable

between a static and a ramping term, C(Si,
dSi

dt
) = Cs(Si) + Cr(

dSi

dt
), and that the de-

mand shocks θ are bounded in [θ, θ]. Lastly we require the ramping term Cr(·) = γ
2
(·)k

for clarity, and k ≥ 2 an integer. We distribute the expectation operator and write that

dSi

dt
= dSi

dp
dp
dθ
dθ
dt

= S ′i · ṗ · dθdt , with X ′ the derivative of univariate function X with respect

to its argument, Ẋ = dX
dθ

.

With this setup, by distributing the expectation operator over all possible trajectories

of shocks, we are able to rewrite the problem without having time t appear explicitly.

This point is crucial, as it is what will let us use mathematical tools that will yield our

unicity results. The maximization program can indeed be written as follows:

max
Si(p)

T

∫ θ

θ

f(θ)

(
p(θ)Si(p(θ))− Cs(Si(p(θ)))−

γ

2
(S ′i · ṗ)

k EΘ

[(
dθ

dt

)k∣∣∣∣∣θ
])

dθ (1.2)
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with f(θ) the distribution of shocks, and γ the ramping cost parameter capturing the

magnitude of the ramping costs. The expected value on the trajectory of shocks of

any of the terms above that only depends on θ(t), that is the value of the shock at a

point in time, can be rewritten simply as an integral over the possible values of the shock.

We are left with EΘ

[(
dθ
dt

)k∣∣∣θ] as the only term that depends on the trajectory of

shocks. Take for granted that this term can only depend on θ for now, this result will be

justified properly in the next section.

Note now that producer i faces a residual demand so that Si(p(θ(t))) = D(θ, p(θ(t)))−

S−i(p(θ(t))) which depends only on θ and p, t does not intervene directly, with S−i the

aggregate supply schedule of all the other producers, taken as given by producer i. This

implies that the integrand in eq. 1.2 depends only on three variables: θ, p and ṗ. The

maximization program is therefore equivalent to an Euler-Lagrange problem, a very well

described mathematical object: maxp
∫
L(θ, p, ṗ)dθ.3 The information obtained from

taking the first-order condition of an Euler-Lagrange problem yields a second order dif-

3The Euler–Lagrange equation is an equation satisfied by a function p of a real argument θ, which is
a stationary point of the functional:

S(q) =

∫ b

a

L(θ, p(θ), ṗ(θ))dt

where:

1. p is the function to be found:

p : [a, b] ⊂ R→ X

θ 7→ x = p(θ)

s.t. p is differentiable

2. ṗ is the derivative of p w.r.t. θ:

ṗ : [a, b]→ Tp(θ)X

θ 7→ v = ṗ(θ)

Tp(θ)X denotes the tangent space to X at the point p(θ).

3. L is a real-valued function with continuous first derivatives:

L : [a, b]× TX → R
(θ, x, v) 7→ L(θ, x, v)

Tp(θ)X denotes the tangent space to X at the point p(θ).
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ferential equation as well as two boundary conditions: ∂L
∂p

= d
dθ
∂L
∂ṗ

and ∂L
∂ṗ

∣∣
θ

= ∂L
∂ṗ

∣∣
θ

= 0.

This is why we obtain unique solutions: if the boundary conditions are not verified, there

exists profitable deviations.

In less mathematical term, taking ramping costs into account as specified above means

that for a given level of shock, the producer not only cares about the optimal level of

production for this shock, but also about the optimal slope of the supply schedule at this

level of production. Effectively, this means that optimal levels of production cannot be

chosen independently for different level of shocks as is the case in KM, thus shrinking the

continuum of equilibria. The boundary conditions’ argument explains why the continuum

not only shrinks, but collapses to a unique equilibrium.

Note that if the ramping cost parameter γ is taken equal to 0 we are back to KM’s

model: one doesn’t care about the slope of the supply schedule anymore, and the problem

comes down to a pointwise maximization which therefore yields ex-post optimal equilib-

ria. We want to stress that this means that it is not sufficient to specify the dynamics

of the shocks to obtain a supply function model that would react to these dynamics, one

needs to take into account ramping costs.

The maximization program 1.2 is a heuristic description of the situation. We want to

model the stochastic nature of demand and of its dynamics. We do this by using Itō pro-

cesses, a class of stochastic processes built through brownians, to describe the stochastic

trajectory of the demand shocks with respect to time. The difficulty is that brownians

are everywhere continuous but nowhere differentiable, therefore the way program 1.2 is

written, with a term in dθ
dt

, is a shortcut.

In the next section we introduce the stochastic dynamics properly without using the

concept of a derivative.
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1.3 Stochastic Dynamics

As described in the previous section, we consider that bidders submit surfaces, that is

supply schedules for every point in time. The reason to describe a discrete dynamic

market as a continuous one is that although discrete time is conceptually more easily

understood, continuous time allows to use much more powerful mathematical tools and

to obtain closed form solutions, which we think are crucial in gaining intuitive insights

about these dynamics. Therefore, we consider that demand fluctuates continuously and

that ramping costs are incurred instantaneously. This approximation would need to be

tested, although it should be noted that day ahead markets operate with hourly or half-

hourly periods and producers are therefore facing a reasonable number of periods each

day.

We want our shock variable to evolve over time in a random fashion. The class of

mathematical objects used to describe this are stochastic processes. The simplest stochas-

tic process one can think of, and indeed the most important historically, is a Brownian

motion process.

Unfortunately, Brownian processes are unbounded and cannot therefore be used to

describing the dynamics of the electricity market in which demand shocks, denoted θ(t),

are bounded: there are no days for which demand is null nor are there days for which

demand tends towards infinity. The structure to be imposed on the dynamics of the

shocks has to imply bounded shocks.

1.3.1 The stochastic process

A regular candidate for richer stochastic dynamics than a simple brownian process is an

Ornstein–Uhlenbeck process. Unfortunately for us, such a process has unbounded sup-

port. We are going to use a richer set of stochastic processes: Itō processes.
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The simplest Itō process one can consider that leads to bounded shocks is defined by

the following stochastic differential equation (SDE) [Hertzler, 2003]:

dθ(t) = −2θ(t)dt+
√

1− θ(t)2dBt (1.3)

with Bt a brownian and dX an infinitesimal variation of quantity X. Its extended ver-

sion will happen to be very useful in the rest of this chapter, as it leads to a quadratic

distribution of shocks, a property that will allow us to obtain closed form solutions.

Observe that this SDE is formed by a deterministic mean-returning term −2θ(t)dt

and a bounded stochastic one
√

1− θ(t)2dBt. As θ(t) approaches −1 or 1 the stochastic

term goes to 0, thus θ(t) ∈ [−1, 1]. Without loss of generality we can restrain ourselves

to this special case. Other bounded supports, θ ∈ [θ, θ], can be captured through renor-

malizations of θ.

Such a stochastic process has a distribution of probability f(θ) given by Fokker-

Planck’s equation, easily solved here. In the general case of an Itō process given by

SDE 1.4, one obtains in 1.5 the generic Fokker-Planck equation for its distribution of

probability f(θ, t). This equation allows, given an initial condition on the distribution of

probability of the variable, to observe how this distribution evolves to reach the steady-

state distribution, that is the limit distribution that any initial condition yields. If one

knows the value of the stochastic variable at one point in time, one can use this equation

to obtain the spread in its distribution over time.

dθ = µ(θ, t)dt+ σ(θ, t)dBt (1.4)

∂

∂t
f(θ, t) =

∂

∂θ
(µ(θ, t)f(θ, t)) +

1

2

∂2

∂θ2
(σ(θ, t)2f(θ, t)) (1.5)

Here, for SDE 1.3, this yields that f(θ) = 3
4
(1− θ2) on [−1, 1] and 0 elsewhere.
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1.3.2 The ramping costs

In the rest of the chapter, we are going to consider quadratic ramping costs. More pre-

cisely we consider the costs induced by fluctuations in the production level. As described

in the introduction, fluctuations imply increased wear and tear, whether the production is

increasing or decreasing. In addition, these ramping costs are null in the absence of fluc-

tuations. This means that they can be captured by a function Cr(·) verifying Cr(0) = 0,

Cr(·) ≥ 0 and increasing in the absolute value of its argument. In the absence of more

detailed knowledge about the actual shape of these ramping costs, it seems reasonable

to consider a quadratic cost function, that is the first term in a Taylor expansion of the

actual real ramping cost function.

We cannot compute dθ
dt

as it appears in Eq. 1.2, as a stochastic process, although

everywhere continuous, is nowhere differentiable. The goal of this section is to express

properly the maximization program of the producer that we presented rapidly in Eq. 1.2,

and most importantly, to introduce properly how we can work in continuous time with

a cost function which depends on fluctuations, which, importantly, are nowhere differen-

tiable.

We are therefore going to first consider the discrete case of a random walk of timestep

∆t which converges towards the Itō process 1.4, using the Euler-Maruyama approxi-

mation [Kloeden and Platen, 2011]4, a generalization of the Euler method to stochastic

differential equations. We consider a Markov chain Y defined as follows:

∆Yn = Yn+1 − Yn = µ(Yn, n∆t)∆t+ σ(Yn, n∆t)∆Bn (1.6)

where ∆Bn = B(n+1)∆t − Bn∆t. These ∆Bn are i.i.d. normal random variables of mean

0 and variance ∆t. Note that as ∆t is taken towards 0, this Markov chain converges

4This formula can be found on page 305. This book focuses on numerical approximations of continuous
stochastic processes, which is the reverse of what we are doing here, but it is only in such numeric-centric
books that this scheme is introduced. For a more general approach to stochastic differential equations,
see [Øksendal, 2003]
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towards its underlying stochastic process defined by eq.(1.4).

The ramping costs are taken as quadratic in the variation of the production, and

also depend on a ramping cost parameter Γ(∆t), that is the cost per unit of quadratic

variation at horizon ∆t, so we compute the following quantity:

E

[
Γ(∆t)

2
·
(
Yn+1 − Yn

∆t

)2
∣∣∣∣∣Yn
]

=
Γ(∆t)

2
· σ(Yn, n∆t)2

∆t
(1.7)

For this quantity to converge to a finite value when the Markov chain is taken towards

its underlying stochastic process we have to consider that for small enough timescales,

the ramping cost parameter Γ(∆t) is linear in ∆t, i.e. Γ(∆t) = γ∆t + o(∆t). Mathe-

matically, if Γ(∆t) had a slower than linear relationship at small timescales, the ramping

costs would diverge, and if it was faster they would converge to 0. A physical constraint,

namely thermal inertia, ensures that the ramping cost parameter does actually behave

in this way.5

Consider for now that the mean function µ and the variance function σ from eq. 1.4

do not depend on time explicitly and are therefore written µ(θ) and σ(θ). Consider now

a transformation T (·) that we apply to the Markov chain Y . Then:

E

[
Γ(∆t)

2
·
(
T (Yn+1)− T (Yn)

∆t

)2
∣∣∣∣∣Yn
]

= E

[
Γ(∆t)

2
·
(
T (Yn+1)− T (Yn)

Yn+1 − Yn
· Yn+1 − Yn

∆t

)2
∣∣∣∣∣Yn
]

(1.8)

And in the limit where the markov process Y converges towards the Itō process θ of

equation 1.4:

lim
∆t→0

E

[
Γ(∆t)

2
·
(
T (Yn+1)− T (Yn)

∆t

)2
∣∣∣∣∣Yn
]

=
γ

2
· T ′(θ(t))2 · σ(θ)2 (1.9)

5Ramping costs come from thermal fluctuations in the core of the plant. Therefore, we have to
describe how temperature responds to fluctuations in production. Thermal inertia acts as a low pass
filter, meaning that it smoothes out fluctuations on short timescales. Think about heating a saucepan
full of water: although lighting the stove is almost instantaneous, the temperature of the water being
heated increases only progressively, in an exponential fashion that is therefore linear in time for short
timescales.
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We apply this result to the problem at hand, that is we evaluate the ramping costs in

the case where the demand shocks are given by eq. 1.3:

lim
∆t→0

E

[
Γ(∆t)

2
·
(

∆Si(p(θ(t)))

∆t

)2
∣∣∣∣∣θ(t)

]
=
γ

2
· S ′i(p(θ(t)))2ṗ(θ(t))2(1− θ2) (1.10)

with X ′ the derivative of quantity X with respect to its argument and Ẋ its derivative

with respect to θ. Note that we considered here that the variance term σ(θ) = 1 − θ2

depends only on θ and not explicitly on t, which in turn implies that the strategy Si does

not depend explicitly on t either.

Let us consider the case where the strategy and the variance depend explicitly on

time and are thus written Si(p(θ(t), t), t) and σ(θ, t) respectively. By using a first order

expansion as before, the ramping cost function can be approximated as follows:

lim
∆t→0

E

[
Γ(∆t)

2

(
∆Si(p(θ(t), t), t)

∆t

)2
∣∣∣∣∣θ(t)

]
= lim

∆t→0
E
[
γ

2
(∂1S(p(θ(t), t), t)∂1p(θ(t), t))

2 ∆θ2

∆t
+O(∆t)

]
=

γ

2
(∂1S(p(θ(t), t), t)∂1p(θ(t), t))

2σ(θ, t)2 (1.11)

with ∂iX the partial derivative of quantity X with respect to its ith argument. See

Annex. 1.A for more details on this derivation.

Now, we can write down the instantaneous expected value of the profit of producer i

if the demand shock is θ(t), πei (t, θ(t)), that is the profit that one expects to obtain when

demand is at θ(t) given the expected value of the ramping costs:

πei (t, θ(t)) = p(θ(t), t)Si(p(θ(t), t), t)−Cs(Si(p(θ(t), t), t))−
γ

2
∂1Si(p(θ(t), t), t)

2∂1p(θ(t), t)
2σ(θ, t)2

(1.12)

Lastly, we have to write down the expected profit for a day’s worth of submitted

strategies. Let us consider that the chosen unit of time is the day. Therefore, the total

expected profit Πe
i writes:
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Πe
i =

∫ 1

0

Eθ(t)[πei (t, θ(t))]dt

=

∫ 1

0

∫ θ

θ

f(θ, t)
[
p(θ, t)Si(p(θ, t), t)− Cs(Si(p(θ), t))

−γ
2
∂1Si(p(θ, t), t)

2∂1p(θ, t)
2σ(θ, t)2

]
dθdt (1.13)

We want to note that all the stochastic calculus presented here is very standard,

our contribution is in noting the low-pass filter effect of the physical power plant on

fluctuations which allow us to obtain convergent expressions.

1.3.3 Discussion of the approximations

We want a tractable mathematical formulation of the dynamic problem faced by pro-

ducers on the electricity market. To achieve this, we seek to describe the discrete real-

life problem by an approximated continuous one. We first use two technological facts:

fluctuations in production are costly and these costs decrease linearly in time for short

timescales. We then rely heavily on first order expansions of the different terms we have

to compute.

1.3.4 The maximization program

Here, we consider that the dynamics of demand shocks are given by eq.(1.3), and that

therefore σ(θ, t)2 = σ(θ)2 = (1− θ2).

We now introduce the different conditions that have to be satisfied by the various terms

in this problem. First, on most electricity markets, schedules must be increasing, therefore

here we take S ′i(·) ≥ 0. Second, the aggregate demand is non negative as consumers do

not have production facilities at their disposal: D(θ(t), p(θ(t))) =
∑

i Si(p(θ(t))) ≥ 0.

Last, we consider that the shocks θ are ordered so that the demand is increasing in θ,

i.e. ∂D
∂θ
≥ 0, and that the price has to weakly increase with the shocks, i.e. ṗ ≥ 0,
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which guaranties that the supply function increases with shocks. Our initial stochastic

maximization program can thus be rewritten as a regular optimal control problem:

max
Si(p)

∫ 1

−1

f(θ)
(
p(θ)Si(p(θ))− Cs(Si(p(θ)))−

γ

2
(1− θ2) (S ′i(p(θ))ṗ(θ))

2
)
dθ (1.14)

s.t. S ′i(·) ≥ 0

ṗ ≥ 0 (1.15)

D(·, ·) ≥ 0

(1.16)

The next section solves this problem for a monopoly.

1.4 The Monopoly

Let us consider that the aggregate demand is linear, that is:

D(θ(t), p(θ(t))) = aθ(t) + b− p(θ(t))

with a and b parameters taken to describe any bounded support of shocks given the

stochastic dynamics introduced in the previous section for which θ ∈ [−1, 1]. Here

(aθ + b) ∈ [b− a, b+ a].

In a monopoly situation we have S = D(θ(t), p(θ(t))), therefore the constraints reduce

to:

ṗ(θ) ∈ [0, a], and p(θ) ≤ aθ + b

where Ẋ corresponds to dX
dθ

.

Consider in addition that the static cost function is also quadratic: Cs(Si) = λ
2
S2
i .
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The maximization program is rewritten as:

max
p(·)

∫ 1

−1

f(θ)

(
p(θ)(aθ + b− p(θ))− λ

2
(aθ + b− p(θ))2 − γ

2
(1− θ2) (a− ṗ(θ))2

)
dθ

(1.17)

s.t. ṗ(θ) ∈ [0, a]

p(θ) ≤ aθ + b

1.4.1 Results

Proposition 1.4.1 The solution exists, is unique, and has the following form:

∀θ ∈ [−1, 1] p∗(θ) = a
4γ + 1 + λ

4γ + 2 + λ
θ + b

1 + λ

2 + λ
(1.18)

The optimal schedule is parametrised by θ so that S(p(θ)) is formed by the points of

coordinate (aθ + b− p(θ), p(θ)). Its equation is given by:

S∗(p) =
1

4γ + 1 + λ

(
p+

4γ

2 + λ
b

)
(1.19)

These expressions depend explicitly on our parametrization of the shocks by the parameters

a and b.

Proof See annex 1.B. �

Proposition 1.4.2 When taking γ → 0, the above solution converges towards the so-

lution obtained in the Klemperer and Meyer framework, which for a monopoly is also

unique.

Proof See annex 1.C. �

We present in Fig. 1.1(a) the results obtained for increasing values of the ramping

cost parameter γ, starting at γ = 0 in black and moving progressively from black to blue

to red to green.
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As the ramping costs increase, a given change in quantity is more costly. To mitigate

this effect out, the supplier bids a steeper supply curve, which in turn means that for a

given demand shock, more of this shock is transferred to a change in price, which is not

costly, than to a change in quantity, which is costly. Adding ramping costs narrows down

the domain of attainable quantities produced, as a larger quantity domain implies larger

incurred ramping costs.

Solutions are steeper than the traditional monopoly situation, bringing the schedules

ever closer to a Cournot-like situation (fixed quantity, i.e. a vertical bid). In addition,

the optimal supply schedules do not depend on a, the parameter determining the width

of the possible shocks, but only on b which defines the average value of the shocks. This

result is very strong, but is very much a consequence of our choice of specification: linear

demand with additive shocks. In this case the increase in costs due to larger shocks is

exactly counterbalanced by larger possible demand, so that the slope of the solution is

unaffected. It is very likely that this result is not robust to other specifications.

In Fig. 1.1(b), we illustrate the impact of the specification of shocks on the optimal

solution. First, if we consider an increase in a without changing b, that is a change in

the amplitude of the possible shocks, without changing their expected value, as explained

above the solution is essentially unaffected: a larger region of the solution is simply ex-

plored. This is illustrated by the red supply function changing to the rose one as a is

increased. On the other hand, if we consider a fixed a but an increasing b, that is a con-

stant amount of uncertainty, so to speak, but with larger expected values, the explored

length is kept constant, but the optimal schedule is translated towards the north-east

region of the plane. This is quite intuitive: more demand implies higher supplied quanti-

ties and higher prices. This is illustrated by the red supply function changing to the blue

one.

Note that all schedules cross at a single point. These quadratic ramping costs imply
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a symmetric deformation of the solution obtained in the case of an absence of ramping

costs. The limit of extremely high ramping costs is a Cournot-like schedule, i.e. a vertical

one, taken at this crossing point: any demand shock is too costly to be accommodated

by changes in quantities, and yields only changes in price.

Lastly, our solutions exhibit organically the possibility for negative prices.

Proposition 1.4.3 With γ > 0, their exists values of shocks for which the prices are

negative. More precisely, there exist negative prices if the following condition on the

parameters of the shocks holds:

4γ + 2 + λ

2 + λ

1 + λ

4γ + 1 + λ
b < a <

4γ + 2 + λ

2 + λ
b

Proof We want the condition under which our solutions exhibit negative prices. First,

our supply schedule needs to be positive. Second, for there to exist possible negative

prices, one needs the smaller possible price, the one obtained for θ = −1, to be negative.

This can be rewritten as conditions on the shocks, using the expressions from eq. 1.18

and eq. 1.19:

S ∗ (p(−1)) > 0

p(−1) +
4γ

2 + λ
b > 0

−a4γ + 1 + λ

4γ + 2 + λ
+ b

1 + λ

2 + λ
>

4γ

2 + λ
b

a <
4γ + 2 + λ

2 + λ
b

and:

p(−1) < 0

−a4γ + 1 + λ

4γ + 2 + λ
+ b

1 + λ

2 + λ
< 0

a >
4γ + 2 + λ

2 + λ

1 + λ

4γ + 1 + λ
b
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�

We will discuss the existence of negative prices more in detail in the following sections.

(a) S−1 ∗(p) (b) S−1 ∗(p)

Figure 1.1: (a) Four optimal supply schedules are plotted. In black (full line) γ = 0. As
γ increases we transition from the black curve to the blue curve (large dashes), then the red
curve (mixed dashes) and then finally for γ → ∞ to the green one (small dashes). The range
of production is highlighted for each curve through the thin vertical dotted lines.

(b) The thin black dotted lines represent the extremal demand functions given a and b, i.e.
D(θ, p) and D(θ, p). In red (dashed) the solution for a given value of b. As a increases, the
solution widens from the thick deep red region to the thick light red one. In the case for which
a is kept constant and b is increased the solution shifts from the dashed deep red region to the
full thick blue one.

1.5 The Symmetric Oligopoly

We keep the same linear demand specification as in the monopoly, therefore, with n

competitors one has to consider the residual demand faced by each producer:

S(p(θ)) = aθ + b− (n− 1)S(p(θ))− p (1.20)

S(p(θ)) =
aθ + b− p

n
(1.21)

S ′(p(θ)) =
a− ṗ
nṗ

(1.22)

S ′′(p(θ)) = − ap̈

nṗ3
(1.23)

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0.0

0.5

1.0

1.5

2.0

2.5

40 50 60
0

10

57



Dynamics of the Electricity Day-Ahead Market : Supply Function Equilibria and
Ramping Costs

For concision, we drop the explicit dependencies of the different functions on their ar-

guments in the following equations; f(θ), p(θ) and S(p(θ)) will be noted f , p and S

respectively. The maximization program now writes:

max
p(·)

∫ 1

−1

f

(
p(aθ+b−p−(n−1)S)−λ

2
(aθ+b−p−(n−1)S)2−γ

2
(1−θ2) (a− ṗ(1 + (n− 1)S ′))

2

)
dθ

(1.24)

s.t. ṗ ∈ [0, a]

p ≤ aθ + b

with, as before, Ẋ = dX
dθ

and X ′ is the derivative of function X with respect to its

argument.

Results

Proposition 1.5.1 The solution exists, is unique, and has the following form:

∀θ ∈ [−1, 1], p∗(θ) = aK1θ + bK2 (1.25)

with

K1 =
n
√

(4γ + λ+ n)2 − 4n+ 4− (4γ + λ+ n)(n− 2)

2(4γ + λ+ 2n)
(1.26)

K2 =
λ(n− 1) +K1(λ+ n)

(λ+ n)(n− 1) +K1(λ+ 2n)
(1.27)

and the supply schedule has the following expression:

S∗(p) =
1

n

(
p

(
1

K1

− 1

)
+ b

(
1− K2

K1

))
(1.28)

Proof See Annex 1.D. �

Proposition 1.5.2 The slope of the supply schedule is increasing with γ and the schedule

is shifted to the right of the plane (q, p) as γ increases. This is to say that the schedule
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rotates around a point in the positive quadrant of the plane.

Proof See Annex 1.E. �

We are now going to focus on the graphical representation of these solutions. As in

the monopoly case we obtain unique solutions of increasing steepness in the ramping cost

parameter γ. When the ramping costs increase, it becomes more and more costly to allow

for a large domain of potential quantities to be produced.

The black curve in Fig. 1.2 corresponds to the limit solution when γ → 0, for which

the problem gets closer to that of KM, i.e. no ramping costs. Note that as long as

γ 6= 0 the solutions are unique. This contrasts with the case of γ = 0 which is the

model presented in KM, for which there is a continuum of solutions. There is no smooth

transition between our sets of solution: when considering ramping costs, there is a single

Nash equilibria, even in the limit of small such costs.

Secondly, in their paper, Klemperer and Meyer show that in the limit of a diverging

upper bound for their shocks, their continuum of solutions converges towards a unique

solution. Our unique solution in the limit of small ramping costs is the same as that ok

KM in the limit of infinite support of demand shocks.

Proposition 1.5.3 When γ → 0, with γ > 0, the solution remains unique and converges

towards the linear schedule available in KM’s set of solutions, that is the same schedule

selected with KM’s selection rule obtained when considering an infinite support for the

shocks.

Proof It is straightforward to check that K1 and K2 have the same values as KM for

γ → 0.

More intuitively the argument is as follows. When γ → 0, with γ > 0, we retain a unique

solution although the problem itself converges towards that of KM. When γ = 0, we are

back to the KM situation with a continuum, however we can come as close to 0 as we want
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while maintaining a unique solution. We should therefore select an equilibrium present in

KM’s continuum. When KM take the limiting case of an infinite support of shocks, they

select a unique equilibrium. In our case we can do the same thing by taking a→∞. In

the limit, our solution being in their set which converges to a unique equilibrium, those

two selected equilibria should be equal. Now note that our solution does not depend

explicitly on a so that when the support is finite, we still select the same equilibria out

of what is now a continuum of equilibria in KM’s framework. �

Figure 1.2: This graph plots S∗(p) for different values of the ramping cost parameter, and
compares them to the set of equilibria obtained in KM’s framework. Four optimal supply
schedules are plotted. The black curve (full line) corresponds to the case where γ → 0. As
before, as γ increases the optimal schedules get steeper and steeper until in the limit of γ →∞,
the optimal schedule attains a vertical slope. In addition, we show the set of available equilibria
in KM’s model in light green, and the extremal demand schedules in dashed black.

Intuitively, as we take γ to 0 we come closer to the situation captured in KM, but

as long as γ > 0, the producer still faces ramping costs, and therefore converges towards

the only linear schedule available in KM’s set, as shown in Fig. 1.2, in which we plot our

solutions on top of KM’s solution set in order to clarify the comparison.

Note that it isn’t possible to transition smoothly from our model to that of KM,

although they are obviously closely related. Indeed, ∀γ > 0, our model yields unique

solutions, but for γ = 0 we return to KM’s model for which there is a continuum of
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equilibria. There is an intrinsic discontinuity between these two models, namely, the

correspondence Γ(γ) associating the set of equilibria to the symmetric oligopoly problem

obtained for a given value of the ramping cost parameter γ is not lower hemicontinuous

at γ = 0.

In addition to proposing a way to take into account dynamic technological constraints,

our model provides a selection rule to choose from the continuum of equilibria described

in KM’s seminal work, i.e. the solutions’ stability to ramping costs.

Proposition 1.5.4 With γ > 0, their exists values of shocks for which the prices are

negative. More precisely, there exist negative prices if the following condition on the

parameters of the shocks holds:

b
K2

K1

< a < b(1−K1)

Proof The method is exactly the same as that used in prooving proposition 1.4.3, noting

that (K1, K2) ∈ (0, 1)2. �

As in the monopoly case, we have the property that there exists situations in which

our model can exhibit negative prices. This is interesting because negative prices are

observed on the electricity market, and is often described as a way for non-flexible com-

mitted producers to subsidize consumption in order to avoid reducing production too

much.

To sum up, we have here a model whose solutions depend on the distribution of

shocks, therefore we are able to capture the interday variation of bids by assuming that

the distribution of shocks varies from day to day. In this case, there exists only one

symmetric equilibria each day, function of the distribution of shocks.
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1.5.1 Discussion

This result sheds some light on one of the questions that the electricity market literature

focuses on.

Accounting for ramping costs induces a collapse of the equilibria set from a continuum

to a unique element.

Most of the tacit collusion concern that is present in the literature is based on the

existence of a continuum of solutions [Bolle, 1992]. This continuum is thought as being

conducive of tacit collusion because the electricity market entails repeated interactions

between producers. In this case, producers can be feared to be able to learn to pick the

most profitable Nash equilibria. Although a Nash equilibrium is not usually considered

conducive to collusion, as each player’s strategy is the best response to the other’s and

there is no profitable deviation, a multiplicity of Nash equilibrium lets open the possibil-

ity to pick and choose the most profitable one out of the available options, as compared

to the one leading to the strongest competition.

Our result implies this pathway for tacit collusion is not available anymore. With only

one Nash equilibrium at any given time no learning can bring about tacit collusion. This

is a strong result about the structure of competition in our framework. The existence of

ramping costs leads to a model in which no tacit collusion can exist, suggesting that the

policy recommendations about such collusion stemming from the supply function equi-

libria literature might be strongly dependent on not taking into account ramping costs.

Our solutions are also not ex-post optimal contrary to the traditional results. As our

solutions depend explicitly on the structure of the uncertainty around demand shocks,

any additional information shifting the expected distribution of shocks would imply a

different bid. Ex-post optimality is a very strong result, and, one could argue, more of a

quirk from the usual models than its absence in ours.
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We are also able to account for negative prices which was impossible in the previous

framework. Such negative prices are actually observed, although rarely, on the market:

producers prefer to subsidize consumption instead of decreasing production by a lot. In

our framework, if the ramping costs are large enough, and the demand shocks can reach

a small enough value, our solutions can yield negative values: the equilibrium price might

even be below the marginal cost of production, understood here as ∂qC which by defini-

tion does not capture our ramping costs.

In the next section we are going to present how to capture richer dynamics, and

especially how the surface of bids should evolve with time when the producers have

information about the anticipated variation of shocks during the day.

1.6 Dynamic Behavior of the Bids

The classical supply function equilibria models, as described before, yield a continuum of

Nash equilibria, and each one of those equilibria is ex-post optimal. This a very strong

result that we are going to take some time to describe and comment.

Consider for a moment that firms competing in supply schedules reach one of the

many possible Nash equilibria under such a setup, and that they commit to their sched-

ules. Now consider that the firms face a succession of demand shocks, and that this yields

a succession of market outcomes. As the Nash equilibria are ex-post optimal, it means

that given the strategies played by the other firms, no firm has any regrets concerning

its strategy. Knowing about the realized demand shocks does not imply any willingness

to change strategy as long as other firms keep their strategies fixed, and as long as the

support of shocks is not reduced to a point (one could think of observed realizations

of shocks as helping to narrow down the expected range of shocks without implying a

pinpoint accuracy).
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A corollary to this observation is that the distribution of anticipated shocks does not

play any role in KM’s paper, apart from its bounds. Knowing that the demand shocks are

going to be drawn from distributions of high or low values does not affect the willingness

to play a given strategy, as long as the support does not evolve. The little role that is

played by information about shocks in KM’s paper is even more counter-intuitive: to

a certain extent, information about demand shocks gives rise to a larger continuum of

solutions. Indeed, if one compares the equilibria available to firms for a given support

{θ}1 = [θ1, θ1], noted S∗1, to those obtained for a support strictly included in the first one

{θ}2 = [θ2, θ2] ⊂ {θ}1, noted S∗2, then the set of equilibria will be larger in the second

case, in the sense that S∗1 �{θ}2⊂ S∗2 (where �{θ}2 denotes that the supply functions are

restricted to values over {θ}2).

However, actual firms bidding on the electricity markets are known to be actively en-

gaged in forecasting the future demand levels in order to build their strategies. Bids that

we can observe on the electricity markets change from hour to hour even when demand

does not vary enough to warrant a change of online plants, a consideration that could

explain some of the supply schedules variations.

The general interpretation of KM’s paper when applied to electricity markets is that

for some unknown underlying process, strategies converge towards different equilibria of

the set of available equilibria from hour to hour. One can note that the general intuition

for strategies converging towards Nash equilibria in the first place is through either a

high degree of sophistication on the part of firms, or through a more organic learning

process. Neither of these two explanations can account for frequent switching from one

Nash equilibrium to another, out of a myriad of available options, without considering

some communication among firms. Furthermore, if such communication existed, it should

be expected to yield the most profitable equilibria out of the available lot.
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We think that this strand of argument trying to explain bids’ dynamics in the light

of the supply function equilibria framework is unsatisfying and we argue that forecasting

demand becomes important for firms when one considers dynamic effects, that is effects

that are history dependent, of which ramping costs which we model in this paper are

an instance (one can think of start-up and shut-down costs as another instance of such

dynamic effects).

The model described in the previous section doesn’t account for these hourly dynam-

ics. Here we present a way to capture these intraday variations, by considering bids that

depend continuously on the time t. We will show that our results imply that firms are

not oblivious to information about the distribution of shocks anymore, and more than

that, that their strategies directly evolve with the evolution of their knowledge about

uncertain future shocks.

1.6.1 The setup

Previously, the SDE (stochastic differential equation) defining the dynamics of the prob-

lem was written as:

dθ(t) = −2θ(t)dt+
√

1− θ(t)2dBt

This specification implied a stochastic trajectory for the shocks, bounded by a constant

envelope. That is to mean that, lacking any knowledge of the value of the shock at a

point in time close to the period under consideration, the distribution of shocks does not

depend on time.

To account for these intraday variations, we are going to define a richer SDE, a non-

stationary one.

SDEs have been well studied and as a consequence there exists a number of families

of SDEs satisfying numerous characteristics [Hertzler, 2003]. The goal here is to find one
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SDE that will allow us to capture some of the dynamics of shocks and how this might

influence strategies, while keeping it as simple as possible. Just as in the previous section,

the first characteristic that we want is to consider SDEs that imply a bounded support

of shocks. This restricts our possible choice to four families out of the classical ones:

Generalised Beta I, Beta, Power, Uniform. We also consider that a desirable property is

that the distribution reaches 0 continuously at the bounds of its support, because there

is no boundary condition on the demand for electricity that would justify that one has

a positive probability of reaching a given bound, but a zero probability of reaching an

infinitesimally close value to this bound. This restricts us further to only two families:

Generalised Beta I and Beta. For tractability reasons we will focus here on the Beta

family of SDEs, and more precisely on one of the simplest Beta SDE. However, we want

to note that this choice stems from our focus towards solving analytically the problem at

hand and obtain closed form solutions. If one were to try and estimate the distribution

of shocks anticipated by firms from market data one might want to try and find which of

the Beta or Generalised Beta I SDEs might match the distribution of errors between the

published day -1 estimates for demand and the observed quantities.

Define the evolving envelope of shocks by two functions, (θ(t), θ(t)), respectively the

lower and upper bounds of the shocks. These two functions, although very easy to com-

prehend, are not the most useful way to define the boundary. Instead, we are going to

use the average value of the shocks, and the half width of the envelope, (θ̂(t), ω(t)). This

means that θ(t) = θ̂(t)− ω(t) and θ(t) = θ̂(t) + ω(t). The only restriction we impose on

the envelope is that we require it to be continuously differentiable, that is (θ̂, ω) ∈ C1(R).

Consider the following SDE which is the simplest Beta SDE that we can pick that still

allows us to have a free choice of the bounds of shocks. We want the simplest possible

form to make it possible to obtain closed form solutions, yet still account for free dynamics

of the bounds. For readability, we drop the explicit dependency of the different functions

66



Dynamics of the Electricity Day-Ahead Market : Supply Function Equilibria and
Ramping Costs

on time, that is θ(t), θ̂(t) and ω(t) will be noted θ, θ̂ and ω:

dθ =

[
(θ̂ − ω − θ) +

(
1 +

1

ω

dω

dt

)
(θ̂ + ω − θ) +

(
dθ̂

dt
− dω

dt

)]
· dt

+

√(
1 +

1

ω

dω

dt

)
(θ − θ̂ + ω)(θ̂ + ω − θ) · dBt

(1.29)

The distribution of the shocks can be obtained through Fokker-Planck’s equation 1.5

and we obtain:

f(θ, t) =
3

4ω(t)3
(θ(t)− θ̂(t) + ω(t))(θ̂(t) + ω(t)− θ(t)) (1.30)

In the following analysis, we are going to rely on the fact that the term
(
1 + 1

ω
dω
dt

)
> 0.

The justification for this inequality comes from the following remark: if one were to rescale

time in the above equations, there wouldn’t be any explicit change in the equilibrium dis-

tribution 1.30. The only effect that such a rescaling would play is in the variance of the

Brownian term. In order to insure that our inequality is correct, one has to make sure

that the variation of the envelope term occurs on longer timescales than the characteristic

timescale of fluctuations in our problem, that is the timescale that fixes the rate at which

information leaks out of the knowledge of the value of one shock at a given point in time.

We are trying to capture the hourly changes in firms strategies when demand fluctuates

at higher frequencies (think of the collection of individuals that choose to switch lights on

or off at any given point in time in an entire country for instance). We therefore consider

that this assumption is sound in this situation.

More formally, one can define τ a rescaling parameter allowing to change the rate

at which the brownian process blurs information pertaining to an initial condition. We

rescale time using this parameter, so that time t and the rescaled time tr verify tr = τt.
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We can rewrite the above equations as:

dθ =

[
(θ̂ − ω − θ) +

(
1 +

τ

ω

dω

dtr

)
(θ̂ + ω − θ) + τ

(
dθ̂

dtr
− dω

dtr

)]
· dtr

+

√(
1 +

τ

ω

dω

dtr

)
(θ − θ̂ + ω)(θ̂ + ω − θ) · dBtr

(1.31)

and

f(θ, tr) =
3

4ω(tr)3
(θ(tr)− θ̂(tr) + ω(tr))(θ̂(tr) + ω(tr)− θ(tr)) (1.32)

By assumption, τ is small enough for the loss of information due to the stochastic

nature of the process to be faster than the typical timescale of variation of strategies,

therefore by hypothesis
(

1 + τ
ω
dω
dtr

)
> 0 is valid. We will drop this rescaled time index

in the following sections as equations 1.30 and 1.32 are equal, it was just a temporary

definition to justify the sign of the term that depends on the time derivative of the

envelope. We will keep this τ parameter explicit however, in order to allow discussions

differentiating effects related to the speed of variation of the envelope or to the relative

timescales of this variation and the underlying stochastic process.

1.6.2 Results

Dynamics in the case of the Monopoly and of the oligopoly

We start by describing the dynamics of the monopoly case because the oligopoly case is

not richer dynamically, but it is more complex to describe.

Our stochastic maximization program can thus be rewritten as a regular optimal

control problem as in section 1.4, but taking into account the time dependency:

max
Si(p,t)

∫ T

0

∫ θ(t)

θ(t)

f(θ, t)
(
p(θ, t)Si(p(θ, t), t)− Cs(Si(p(θ, t), t))−

γ

2
σ(θ, t)2 (S ′i(p(θ, t), t)ṗ(θ, t))

2
)
dθdt

(1.33)
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s.t. S ′i(·) ≥ 0

ṗ ≥ 0 (1.34)

D(·, ·) ≥ 0

(1.35)

Proposition 1.6.1 In the case of an envelope evolving with time, that is shocks belonging

to the bounded support [θ̂(t)− ω(t), θ̂(t) + ω(t)], there exists a unique optimal solution to

the monopoly problem. It can be expressed as as surface in the price-quantity-time space:

p∗(θ(t), t) =
4γ
(
1 + τ

ω
dω
dt

(t)
)

+ 1 + λ

4γ
(
1 + τ

ω
dω
dt

(t)
)

+ 2 + λ
· θ(t)− 1 + λ

2 + λ
· θ̂(t) (1.36)

The corresponding optimal supply schedule writes as:

S∗(p, t) =
1

4γ
(
1 + τ

ω
dω
dt

(t)
)

+ 1 + λ

(
p(t) +

4γ
(
1 + τ

ω
dω
dt

(t)
)

2 + λ
· θ̂(t)

)
(1.37)

∀p(t) ∈ [p(θ̂(t)− ω(t), t), p(θ̂(t) + ω(t), t)]

Proof See Annex 1.G. �

Note that if dω
dt

= 0 equations 1.36 and 1.37 are equal to equations 1.18 and 1.19

respectively as expected. Note also that the solution is exactly the same as in the static

monopoly case in which one replaces the ramping cost parameter γ by γ
(
1 + τ

ω
dω
dt

(t)
)
.

This surprising fact, that our dynamic optimal strategy is simply a naive version of the

static one with a specified dynamic stochastic process, can be understood as a conse-

quence of the assumptions we have had to make in section 1.3.2.

That is because in section 1.3.2, in Annex. 1.A in which we develop the argument

in more detail, and in section 1.6.1 we end up in effect making a scale separation ar-

gument: the ramping costs are completely driven by the very short-term fluctuations,

whereas the evolution of these ramping costs is driven by the longer timescale at which

our information about the demand shocks evolves over time. This means that we make
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a version of what physicists call a quasi-static argument: because of this time-scale sep-

aration between what drives our ramping cost and our information about the shocks, we

can effectively reason in two steps, first solving for the static situation, and then injecting

naively the slow changes in the static results with confidence as to the validity of this

approximation as long as the assumption about this separation of scale is verified.

The consequence of this is that we have a dynamic version of our static oligopoly of

the same nature as for the monopoly above.

Proposition 1.6.2 The solution exists, is unique, and has the following form:

∀θ ∈ [−1, 1], p∗(θ) = aK1(t)θ + bK2(t) (1.38)

with

K1(t) =
n
√(

4γ
(
1 + τ

ω
dω
dt

)
+ λ+ n

)2 − 4n+ 4−
(
4γ
(
1 + τ

ω
dω
dt

)
+ λ+ n

)
(n− 2)

2
(
4γ
(
1 + τ

ω
dω
dt

)
+ λ+ 2n

)
(1.39)

K2(t) =
λ(n− 1) +K1(t)(λ+ n)

(λ+ n)(n− 1) +K1(t)(λ+ 2n)
(1.40)

and the supply schedule has the following expression:

S∗(p, t) =
1

n

(
p

(
1

K1(t)
− 1

)
+ θ̂

(
1− K2(t)

K1(t)

))
(1.41)

Proof See Annex 1.H.�

Proposition 1.6.3 The slope of the supply schedule is increasing with dω
dt

and the sched-

ule is shifted to the right of the plane (q, p) as dω
dt

increases. This is to say that the

schedule rotates around a point in the positive quadrant of the plane when the uncertainty

increases over time.

Proof See Annex 1.F. �
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We remind the reader that at the bottom of all right pages, there is a small graph

showcasing the optimal strategy for a given set of parameters of the model, in the plane

quantity-price, with an insert illustrating the evolution of the support of demand shocks

over time. The vertical line in the insert represents the point in time for which the strat-

egy is presented in the actual graph. This forms a flipbook, which allows the reader to

get a feeling for the evolution of strategies with the evolution of the support of shocks by

flipping rapidly the pages and observing the graph becomes animated, just like a cartoon.

This serves only an illustrative purpose.

1.6.3 Discussion

In both situations, the optimal supply schedule is shifted uniformly following the expected

shock θ̂(t), which is a rather intuitive result: if on average demand shifts upwards, the

producers want to extract more profit and shift their supply curve accordingly, but there

is no reason to change slope.

What is less trivial is the way the slope behaves. Let us focus on the monopoly result

for a start. The slope is affected as if the ramping cost parameter was fluctuating with

the relative change in the width of the bounds of the shocks (term in 1
ω
dω
dt

). The transition

between a low uncertainty region to a higher uncertainty one behaves as if during the

transient regime the ramping cost parameter had a higher value, implying a higher slope.

The optimal supply schedule depends on the relative rate of change of the width 1
ω
dω
dt

and on the average shock θ̂. More precisely, with a constant width, the optimal supply

schedule varies according to variations in the expected average value of the shocks. This

is quite standard, if demand is higher, the price and quantities both increase, and here

this increase occurs with a constant slope. The behavior of the supply schedule when the

width varies is less trivial.
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Remember that when describing the slope of the schedule, we are considering the

plane (quantity, price) while the schedule as defined by S∗(p) represents the same curve

but in the plane (price, quantity). An increase in width is equivalent to a higher ramping

cost parameter while a decrease in width is equivalent to a lower ramping cost parameter.

These results are illustrated in Fig. 1.3.

To understand the economic intuition behind this result, consider first an increase in

the width of the envelope on the graphic on the right, the uncertainty level given by the

orange line. At this point in time, the uncertainty is increasing, therefore the shocks are

going to be larger, the variations in demand too, and to face this increase, the slope is

larger so as to reduce this expected increase in ramping costs. In the case of the green

line, the uncertainty is decreasing, the ramping costs incurred are expected to decrease,

thus this constraint being relaxed the slope can reduce to extract more profit through

more variations in quantity than if the slope had remained high.

One can contrast this behaviour to the one described on the left hand side of the

figure, where the uncertainty is constant, but the average shock is not. This implies only

a vertical translation of the curve, without changes in the slope. Here the slope is fixed

by a given level of uncertainty, to exploit an increased demand, the supplier simply in-

creases its prices, but it doesn’t need to hedge against increased variation by encouraging

or discouraging variations in quantity by playing with the slope.

All of this reasoning applies to the dynamic oligopoly result as well as the effect can

be understood in the same way as for the monopoly: changes in the width of the shock’s

bounds behave as if there was an effective dynamic cost that was higher than the baseline

when information about the shocks is lost, and lower than the baseline when information

is gained.
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Figure 1.3: On the left, this graph plots an envelope of constant width ω(t) but varying average.
The insert represents this envelope, while the graph itself represents the supply curves associated
with the points in time represented by the green and orange dotted lines on the insert. On the
right, this graph plots an envelope of constant average but varying width ω(t).

1.7 Limits

This section aims at discussing whether or not one can consider that the mapping of

these results on the real world is a set of non-zero measure, to put it bluntly.

Further avenues of research would be to generalize our results to larger classes of

demand functions. One could also solve the static case for different SDE’s in order to

test the sensitivity of our results on the underlying ”mechanics” of the stochastic process.

This has also been pursued without conclusive results: solving the optimization problem

becomes quickly extremely difficult, as the second order differential equations exhibit

poles, and divergences are difficult to cope with in optimization problems.

The nature of these avenues of research is testament to the fact that our results are

obtained for a very narrow setting, one chosen to obtain closed form formulas. However,

although a healthy dose a skepticism as to the applicability of the closed form formulas

is therefore warranted, I would like to argue that the results hint towards at least one

more general takeaway message, namely the collapse of the set of equilibria.

This result stems from the nature of the mathematical problem and not from the way

we set up the problem in order to maximize our chances of closed-form success per se.
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Therefore, I think it hints towards possible more general results. The problem is the

complexity of the maths as soon as one deviates from the simplest version of the problem

presented here.

The question then becomes one of the method to employ to obtain those results.

There is one tool that might prove useful: numerical simulations. One can solve the

differential equations involved here numerically, check ex-post whether they satisfy the

other conditions, and in so doing provide boundaries around possible solutions. If the

unicity is a characteristic that is indeed more general than our model here, there is 0

probability of finding such a solution by the method proposed, quite literally. However

providing such bounds, although not demonstrating the existence of a solution, could

provide circumstantial evidence towards such a result.

More generally, I think numerical methods as a guide for theoretical results have not

been exploited to the fullest of their potential.

1.8 Concluding Remarks

In this chapter we have introduced a supply function equilibria model of ramping costs

under uncertainty.

By introducing technological constraints previously neglected we are able to take into

account the effects of the dynamics of demand shocks on the supply function frame-

work. We restrict ourselves to linear demand. The optimal supply schedules obtained are

unique. This is a striking result when compared to traditional multiplicity of equilibria.

Although we do not solve the model in the case of a general demand function, we think

that our results make a strong case for the reduction of the set of equilibria, in our case

to a unique equilibrium, when taking into account dynamic effects, that is strategies that

are history dependent.
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We introduce a mathematical toolbox that was absent from this literature in the past,

and notably classes of stochastic differential equations that can be used to pick and choose

processes yielding specific closed form distributions of probability of shocks at equilibrium.

Our methodology further introduces the notion of time-scale separation to our prob-

lem, which allows to transcribe quite simply static solutions to the case of dynamic

envelopes of shocks, as long as the static case is solved for the same functional form of

stochastic processes. In our case we focus our study to quadratic distributions, which we

then extend to cope with any functional form for the time dependency of the envelope of

shocks.

Our results are congruent with the economic intuition one can have about ramping

costs: when they increase, the slope of the supply schedule increases in order to reduce

the range of variation in production for a given range of variation of demand shocks.

Although mathematically more demanding than the traditional model by Klemperer

and Meyer, we consider that this new model, while conceptually sparing (we only add

ramping costs) allows for a richer, more realistic description of the electricity market, and

opens new research avenues. It yields precise and testable predictions on the dynamics of

the electricity market with tractable functional forms, at least in the linear demand case.

In addition, by explicitly modeling the dynamics, our work opens the possibility to

explore interactions between intraday and day-ahead markets, markets that were indistin-

guishable in the previous framework, which explains why the analysis of the interaction

between different ways to trade electricity focused on day-ahead markets and forward

contracts: if solutions are ex-post optimal, there is no need to create a second type of

spot market with a shorter time horizon, the bids of the previous day should suffice.
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Further avenues of research would be to generalize our results to larger classes of

demand functions. One could also solve the static case for different SDE’s in order to

test the sensitivity of our results on the underlying ”mechanics” of the stochastic process.

This has also been pursued without conclusive results: solving the optimization problem

becomes quickly extremely difficult, as the second order differential equations exhibit

poles, and divergences are difficult to cope with in optimization problems.

Finally, and more generally, we think that this concept of ramping costs, the fact that

change is costly, is ubiquitous and could fuel interesting research into the dynamics of a

large range of markets. Such avenues have been pursued in the case of stochastic optimal

control, that is, instantaneous reactions to stochastic shocks. Here we are describing a

market on which agents are forced to optimize in advance, so that they have to react to

continuous changes in the anticipated shocks, but not the shocks themselves, which can

be understood as stochastic optimization with periodic commitment.

The goal of the second and third chapter is to test these theoretical predictions on

French day-ahead data. The next chapter focuses on building methods to be able to

perform such tests in the third chapter. As the actual supply schedules are not linear,

we need to be able to define their local slopes and to define points that can be compared

to one another across schedules. We also describe how we build the different controls

that need to come into play to estimate properly the impact of uncertainty on the slope,

but more importantly we introduce one class of uncertainty estimates associated with

weather. With these elements in place, we have a way to compare schedules to one

another, and to estimate uncertainty for a given schedule, and therefore look into the

effect of uncertainty in the third chapter.

76



Dynamics of the Electricity Day-Ahead Market : Supply Function Equilibria and
Ramping Costs

Appendix

Appendix 1.A Proof of Equation 1.11

We are here going to detail how we obtain the result in equation 1.11 on which the proofs

of our dynamic results rely heavily. Recall that we are computing the continuous time

limit of our ramping cost term which can be quite simply defined in the case of discrete

dynamics but for which one has to work a bit more in order to cope with the non differ-

entiable nature of stochastic processes.

We are therefore going to first consider the discrete case of a random walk of timestep

∆t which converges towards the Itō process 1.4, using the Euler-Maruyama approxi-

mation, a generalization of the Euler method to stochastic differential equations. We

consider a Markov chain Y defined as follows:

∆Yn = Yn+1 − Yn = µ(Yn, n∆t)∆t+ σ(Yn, n∆t)∆Bn (1.A.1)

We want to derive the following:

lim
∆t→0

E

[
Γ(∆t)

2

(
∆Si(p(θ(t), t), t)

∆t

)2
∣∣∣∣∣θ(t)

]
=

γ

2
(∂1S(p(θ(t), t), t)∂1p(θ(t), t))

2σ(θ, t)2 (1.A.2)

Let us first compute the first order expansion of ∆Si(p(Yn, n∆t), n∆t), by assuming

that both Si and p are continuously differentiable with respect to their arguments:

∆Si(p(Yn, n∆t), n∆t) =
∆Si
∆p

(
∆p

∆Y

∆Y

∆t
∆t+

∆p

∆t
∆t

)
+

∆Si
∆t

∆t+O(∆t2) (1.A.3)

Using our differentiability assumption, note that the terms that do not depend on ∆Y

scale with ∆t, and that the term depending on ∆Y cannot be grouped in the same way,
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due to its stochastic nature, therefore:

∆Si(p(Yn, n∆t), n∆t)

∆t
=

∆Si
∆p

∆p

∆Y

∆Y

∆t
+O(1) (1.A.4)(

∆Si(p(Yn, n∆t), n∆t)

∆t

)2

=

(
∆Si
∆p

∆p

∆Y

∆Y

∆t

)2

+ C · ∆Si
∆p

∆p

∆Y

∆Y

∆t
+O(1) (1.A.5)

with C a term that does not depend on ∆Y or ∆t.

Now by considering the specification of our stochastic process we know that E
[

∆Y
∆t
|Yn
]

=

µ(Yn, n∆t) and that E
[

∆Y
∆t

2
∣∣∣Yn] = µ(Yn, n∆t)2 + σ(Yn,n∆t)2

∆t
. Using the fact that Γ(∆t) =

γ∆t+ o(∆t) we obtain the result of equation 1.11.

Appendix 1.B Proof of Proposition 1.4.1

Define the following Hamiltonian:

H(p(θ), ṗ(θ), µ(θ), θ) = f(θ)

(
p(θ)(aθ + b− p(θ))− λ

2
(aθ + b− p(θ))2

−γ
2

(1− θ2) (a− u(θ))2

)
+ µ(θ)u(θ)

(1.B.1)

where u(θ) is the control variable defined through the following equation of motion:

u(θ) = ṗ(θ), u(θ) ∈ [0, a]. We do not consider the non-negative demand constraint and

will check ex-post that our solution verifies this condition.

Now note that:

∀θ ∈ (−1, 1),
∂2H

∂p2
= −(2 + λ)f(θ) < 0 (1.B.2)

∂2H

∂u2
= −γ(1− θ2)f(θ) < 0 (1.B.3)

The Hamiltonian is therefore strictly concave in p(θ) and u(θ). Let (p∗(θ), u∗(θ)) be an

admissible pair to the problem, that is a pair such that u∗(θ) = ṗ∗(θ). If there exists a
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continuous and piecewise continuously differentiable function µ(θ) such that:

µ̇(θ) = −∂H
∂p

∗
(1.B.4)

µ(−1) = µ(1) = 0 in order for prices to be free at the boundaries (1.B.5)

∀(θ, u) ∈ [−1, 1]× [0, a],
∂H

∂u

∗
(u∗(θ)− u) ≥ 0 (1.B.6)

with ∂H
∂u

∗
= ∂H

∂u
(p∗(θ), u∗(θ), µ(θ), θ), then the Mangasarian sufficiency theorem ensures

that (p∗(θ), u∗(θ)) is the optimal solution [Seierstad and Sydsaeter, 1987, p.105]. Let us

check that eq. 1.18 defines the optimal solution.

Equation 1.B.4 defines µ(θ) up to a constant. Through direct integration we obtain:

µ(θ) = 3a

(
(2 + λ)

4γ + 1 + λ

4γ + 2 + λ
− 1− λ

)
(2θ2 − θ4) + const.

This expression is symmetric in θ therefore by choosing the adequate value for the con-

stant, we ensure that eq. 1.B.5 is satisfied. The slope of the proposed p∗ is in [0, a]

therefore eq. 1.B.6 requires ∂H
∂u

to be null.

∀θ ∈ [−1, 1],
∂H

∂u
= 0 =⇒ d

dθ

∂H

∂u
= 0

i.e. u̇(θ) = − 4θ

1− θ2
(a− u(θ))− (1 + λ)(aθ + b)

γ(1− θ2)
+

(2 + λ)p(θ)

γ(1− θ2)
(1.B.7)

It is straightforward to see that the proposed solution satisfies this differential equation,

thus we know that ∂H
∂u

is a constant and as µ(−1) = 0 it is in fact null. Lastly, we see

that p∗(θ) ≤ aθ + b.

The proposed p∗(θ) therefore defines the unique optimal supply function, i.e. the

parametrized curve (aθ + b− p∗(θ), p∗(θ)).
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Appendix 1.C Proof of Proposition 1.4.2

Consider the following profit:

p ·D(θ, p)− C(D(θ, p))

Now take a linear demand schedule D(θ, p) = a · θ + b− p and a quadratic cost function

C(D(θ, p)) = λ
2
D(θ, p)2 = λ

2
(a · θ + b− p)2. The F.O.C. with respect to p(θ) writes:

D(θ, p) + p · ∂pD(θ, p)− C ′(D(θ, p))∂pD(θ, p) = 0 (1.C.1)

C ′(D(θ, p))− D(θ, p)

∂pD(θ, p)
= p (1.C.2)

(1 + λ)(a · θ + b− p) = p (1.C.3)

p =
1 + λ

2 + λ
(a · θ + b) (1.C.4)

(1.C.5)

This result is the same as that of proposition 1.4.1 with γ → 0.

Appendix 1.D Proof of Proposition 1.5.1

As for eq. 1.24, for the sake of concision, we do not write the explicit depencies of the

different functions on θ, thus f(θ), p(θ), u(θ), µ(θ) and S(p(θ)) will be written as f , p,

u, µ and S respectively. Define the following Hamiltonian:

H(p, u, µ, θ) = f

(
p(aθ + b− p− (n− 1)S)− λ

2
(aθ + b− p− (n− 1)S)2

−γ
2

(1− θ2) (a− u(1 + (n− 1)S ′))
2

)
+ µu

(1.D.1)

where u is the control variable defined through the following equation of motion: u = ṗ,

u ∈ [0, a]. We do not consider the non-negative demand constraint and will check ex-post

that our solution verifies this condition.
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If a symmetric equilibria exists, eqs. 1.20 through 1.23 imply that the regular condi-

tions for an admissible pair to be optimal write:

u = ṗ ∈ [0, a] (1.D.2)

∂uH < 0 =⇒ u = 0 (1.D.3)

∂uH > 0 =⇒ u = a (1.D.4)

∂uH = 0 =⇒ u ∈ [0, a] and

p̈ = −4θ(a− ṗ)
1− θ2

− λ(aθ + b− p)
γ(1− θ2)

− nṗ(aθ + b− 2p)− a(n− 1)p

γ(1− θ2)(a(n− 1) + ṗ)

(1.D.5)

µ̇ = −∂pH (1.D.6)

µ(−1) = µ(1) = 0 (1.D.7)

It is easy to check that (K1, K2) ∈ (0, 1) and that the solution 1.25 solves eq. 1.D.5

subject to the boundary conditions 1.D.7. The supply schedule is therefore also linear,

with equation:

S(p) =
1

n

(
p

(
1

K1

− 1

)
+ b

(
1− K2

K1

))
(1.D.8)

We can now use the Mangasarian theorem to obtain that our admissible pair is indeed

solution, H(p, u, µ, θ) being concave in (p, u) for linear supply schedules. However the

Mangasarian cannot yield that this solution is unique because for a symmetric equilibria,

if supply schedules are modified, the hamiltonian changes alongside and we are faced with

a new maximization program.

To obtain that the solution is unique we are going to show explicitly that no other

candidate solution exists.
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First, note that:

µ̇ = −f
(
aθ + b− 2p

n
− a(n− 1)p

nṗ

+λ
aθ + b− p

n
· a(n− 1) + ṗ

nṗ
− γ(1− θ2)(n− 1)

a− ṗ
n
· ap̈
nṗ2

) (1.D.9)

If (p∗, u∗) maximises the program then the maximum principle implies that there exists a

continuous and piecewise continuously differentiable function µ, as shown in [Seierstad and Sydsaeter, 1987,

Theorem 2 p.85]. This combined with the above equation implies that ṗ 6= 0 a.e.

Assume now a solution of the form ∀θ ∈ [−1, 1], p = aθ+ β, by injecting this expres-

sion in eq. 1.D.9 there is no β such that the boundary conditions 1.D.7 are verified.

In addition:

∀θ ∈ (−1, 1),
∂2H

∂u2
= −fγ(1− θ2)(1 + (n− 1)S ′)2 < 0 (1.D.10)

The Hamiltonian is therefore strictly concave in u and [0, a] is convex. These two prop-

erties yield that u∗ is continuous, as shown in [Seierstad and Sydsaeter, 1987, Note 2.b.

p.86]. We have proved the following result:

Lemma 1.D.1 For any symmetric equilibrium ∃A ⊆ [−1, 1] s.t. A is the union of

segments of [−1, 1] and ∀θ ∈ A, ∂uH = 0

Assume the following hypothesis is true, H1 : ∃θc ∈ (−1, 1) s.t. [−1, θc] ⊆ A, then

knowing that ṗ ∈ C0([−1, 1], [0, a]) we can rewrite differential equation 1.D.5 around the

value θ = −1 by defining θ = −1 + ε with ε = o(1):

d2p

dε2
=
C

ε
+ o(1) with C 6= 0 if p(θ) 6= aK1θ + bK2 (1.D.11)

This means that locally around −1, any solution to eq. 1.D.5 but solution 1.25 di-

verges. Hypothesis H1 is therefore wrong and ∃θc ∈ (−1, 1) s.t. ∀θ ∈ [−1, θc], ∃β s.t.

p(θ) = aθ + β.
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At θc we have ∂uH = 0 and as ṗ is continuous, ṗ(θc) = a. For the solution to be

interior we need p̈(θc) ≤ 0.

∂ṗH(p, ṗ, µ, θc) = 0⇔ µ(θc) = 0 (1.D.12)

p̈(θc) ≤ 0⇔ b(1 + λ)− β(n+ 1 + λ) ≥ naθ (1.D.13)

Straightforward computations show that both conditions are mutually exclusive, there-

fore there doesn’t exist another candidate symmetric equilibria, and our solution is unique.

Lastly, to compute the optimal supply function, we inverse the optimal price in order

to get the shock as a function of the price at the equilibrium, and we inject this expression

in Eq. 1.21.

Appendix 1.E Proof of proposition 1.5.2

We want to prove that the slope of the supply schedules increases as the ramping cost

parameter increases. As a reminder:

K1 =
n
√

(4γ + λ+ n)2 − 4n+ 4− (4γ + λ+ n)(n− 2)

2(4γ + λ+ 2n)
(1.E.1)

K2 =
λ(n− 1) +K1(λ+ n)

(λ+ n)(n− 1) +K1(λ+ 2n)
(1.E.2)

and the supply schedule has the following expression:

S∗(p) =
1

n

(
p

(
1

K1

− 1

)
+ b

(
1− K2

K1

))
(1.E.3)

Let us study how K1 varies with γ. Note first that if one defines G = 4γ + λ + n, then

∂K1

∂γ
= ∂K1

∂G
∂G
∂γ

= 2∂K1

∂G
.
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therefore the sign of ∂K1

∂γ
is given by that of:

∂K1

∂G
=

∂

∂G

[
n
√
G2 − 4n+ 4−G(n− 2)

2(G+ n)

]
(1.E.4)

=
(
√
G2 − 4n+ 4)((G+ n)(nG− (n− 2)

√
G2 − 4n+ 4)− (n

√
G2 − 4n+ 4−G(n− 2)))

4(G+ n)2

(1.E.5)

=
(
√
G2 − 4n+ 4)(n2G+ 4n2 − 4n− n(n− 2)

√
G2 − 4n+ 4)

4(G+ n)2
(1.E.6)

=
(
√
G2 − 4n+ 4)(2G+ 4 + (n− 2)(G+ 4−

√
(G+ 4)2 − 8G− 4n− 12))

4(G+ n)2
> 0 (1.E.7)

Therefore ∂S∗(p)
∂γ

< 0 which implies that schedules see their slope increase with γ in

the plane (q, p).

We can perform the same type of computation for the ratio K2

K1
, using the fact that

∂γK1 > 0:

∂K2/K1

∂γ
= −∂γK1(K2

1 (λ+ 2n)(λ+ n) + 2K1(λ+ 2n)(n− 1)λ+ λ(λ+ n)(n− 1)2)

K2
1 ((λ+ n)(n− 1) +K1(λ+ 2n))2

< 0

(1.E.8)

This implies that the schedule is shifted to the right in the plane (q, p) when ramping

costs increase.

Appendix 1.F Proof of proposition 1.6.3

The proof is exactly the same as that detailed in annex 1.E, by replacing γ by γ(1+ τ
ω
dω
dt

)

and noting that under our assumptions, 1 + τ
ω
dω
dt
> 0.
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Appendix 1.G Proof of proposition 1.6.1

Define the following Hamiltonian:

H(p(θ, t), ṗ(θ, t), µ(θ, t), θ, t) = f(θ, t)

(
p(θ, t)(θ − p(θ, t))− λ

2
(θ − p(θ, t))2

−γ
2
σ(θ, t)2 (1− u(θ, t))2

)
+ µ(θ, t)u(θ, t)

(1.G.1)

where u(θ, t) is the control variables defined through the following equation of motion:

u(θ, t) = ṗ(θ, t), u(θ, t) ∈ [0, 1].

Note that the methods used previsouly generalize to multi-dimensional problems, and

that here, our problem depends on θ and t instead of only θ as in the case of the static

monopoly problem.

Further note that the problem does not depend on the time derivative of p(θ, t).

This means that what would be a general Euler-Lagrange formulation expressed as

∂L
∂p
− ∂

∂θ
∂L
∂ṗ
− ∂

∂t
∂L
∂∂tp

, which is the equation that has to be solved for interior solutions,

reduces to ∂L
∂p
− ∂

∂θ
∂L
∂ṗ

, where L(t, θ, p, ṗ) = H(p, ṗ, 0, θ, t). This is the exact same problem

as before, with the only addition that our parameters now vary with t, but the partial

differential equation is the same one as before.

Therefore the problem can be solved exactly as before by replacing the variance term

by its new dynamic version, that is that it is as if the ramping cost parameter γ was

replaced by γ ·
(
1 + τ

ω
dω
dt

)
in the static solution.

This can be seen by noting that σ(θ, t)2 =
(
1 + τ

ω
dω
dt

)
(θ − θ̂ + ω)(θ̂ + ω − θ) which

has to fall back to the static case in the limit, therefore we see that we simply get an

additional
(
1 + τ

ω
dω
dt

)
term that appears on the ramping cost term, that is that multiplies

γ.
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Appendix 1.H Proof of proposition 1.6.2

The exact same reasoning as the one in Annex 1.G applies here and we only have to take

our static oligopoly result and replace γ by γ ·
(
1 + τ

ω
dω
dt

)
to obtain the dynamic results.
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Chapter 2

Methodological Tools for

Non-Parametric Functional data

Evaluation and Weather Data Usage

1

1Joint work with Henri de Belsunce.
The weather data was obtained through a research convention with Météo-France - ref. DIRIC/13/024
JEL Classification Numbers: C10, C57, C81, L94, Q41
Keywords: Functional, Electricity, Auctions, Day-ahead, Weather, Uncertainty, Dynamics, Regression
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2.1 Introduction

In the previous chapter, we have introduced a model of supply function equilibria under

uncertainty that takes ramping costs into account, and we derived solutions that depend

on the information the firms have about the future demand at the time of bidding. Here,

we will focus on introducing tools that will allow us to perform an empirical analysis of

the French day ahead market and test these theoretical predictions, which will be the

focus of our third chapter.

In this short chapter we develop a methodology to analyze data of two specific for-

mats. The focus lies on the methodological details as well as evaluating the performance

of our technique. The aim is first to extract points of interests from functional data in

order to be able to compare functions to one another across bids, and second to describe a

methodology that will allow us take into account the uncertainty related to the weather.

The economic interpretation is secondary in this chapter. Chapter 3 will use the method-

ology developed here for a case study of the French electricity market.

2.2 Point Selection on Functional Data: a Non-Parametric

Approach

Reduced form models often rely on exploiting market outcomes for their analysis, i.e.

equilibrium prices and quantities, in order to identify the determinants of firm behaviour

and test predictions of the theory. On a few markets, sufficient information is available to

get around the problem of using endogenous equilibrium data. For example on the govern-

ment bond markets, both the full aggregate demand and supply functions are observed.

This market is of a specific type, it is a divisible goods auction (also called multi-unit or

share auctions). These are auctions where multiple units of a good are sold in a single

auction. The exact quantity is not predetermined but endogenous and depends on the
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price. Furthermore, the auction format is more complex than for indivisible, single unit

auctions and most notably requires that bidders simultaneously submit full bid functions

for the goods, i.e. multiple price-quantity combinations at which each bidder is willing to

buy or sell the goods. The market price and quantity are determined by the intersection

of the aggregate demand and supply functions.

The aggregate bid functions are very rich in information and the reduced form mod-

els can be adapted to use this data. However, the literature on exploiting functional

data is limited. This idea has been applied to investigate the determinants of de-

mand bid functions in French government bond auctions [Préget and Waelbroeck, 2005].

They rely on the propositions first put forward in [Boukai and Landsberger, 1998] and

[Berg et al., 1999], who identified that aggregate bid functions in divisible goods auctions

follow an S-shaped curve that can be estimated by a logistic function. The fluctuations

across auctions are claimed to be due to random shocks on the parameters of the es-

timated logistic function. The methodology is applied in [Özcan, 2004] to investigate

the revenue superiority of the discriminatory price auction format over the uniform price

auction format for the Turkish government bonds market.

More generally, their methodology consists of a two-stage regression. The first stage

summarises the (presumably parametric) functional data of the aggregated demand func-

tion as parameters of an estimated smooth logistic function. The second stage reuses the

information (concentrated in the estimated parameters) for cross-sectional analyses.

Although the auction mechanism is identical to that of the Treasury market and data

availability is comparable, the logistic function approach does not suit the context of the

electricity market due to the strong heterogeneity of the bid functions and their devia-

tions from such logistic shapes, as can be seen in the example of Figure 2.2.1.

The heterogeneity arises from the fact that the bid functions for the electricity auc-
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Figure 2.2.1: Example of an asymetric aggregate supply function. The x axis is the
quantity in MWh, the y axis if the price in e. In red is the actual aggregate function, in
green is an estimated logistic function showcasing the large discrepancies that can arise
with this parametric approach. The blue point is the market outcome.

tions are much richer since we have multiple, strategic players on both the demand and

the supply side of the market (unlike the market of government bonds, where the supply

is monopolistically determined by the Treasury itself). Furthermore, supplier bidding is

strongly influenced by the underlying cost of the production technologies. The observed

data is consequently less homogeneous and the fitting of the logistic model not convinc-

ing. Furthermore, the economic interpretation of the logistic function parameters is very

difficult and reducing the whole bid function to two parameters of interest discards a lot

of the original information of the bid functions. Finally, we are uncomfortable with the

strong assumption of smooth underlying functions and want to circumvent the problems

of fitting these.

Instead, we develop a non-parametric, functional data analysis approach to select

comparable data points from the original bid functions. In our case, this selection of

points will yield 4 regions for every curves. Each region can be thought of as linear.

These selected points are comparable across repetitions of the market (i.e. auctions for

different hourly contracts) and can then be used to run a cross-sectional reduced form
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model. The interest of this approach is threefold. First, it aims to use as much of the

original information as possible without distorting it into parameters of a logistic func-

tion. What we mean by distortion is the example displayed in Fig. 2.2.1, where one

can see that the fitted logistic function in green is very far from the data (in the sense

that the integral of the absolute value of the difference of the two curves is very large)

because the underlying data simply does not have the proper shape. Also, information

about different parts of the bid function does not influence one another, contrary to a

parametrized form in which one tries to fit a specified function to data. This implies

that the error between the functional form and the data at any point of the curve in-

fluences the fitted parameters, therefore “mixing” information from the whole curve into

the choice of a given value for the parameter. Second, our approach can be extended to

as many points as necessary. The cross-sectional analyses are then conditioned on the

type of comparable points selected. Third, while our analysis provides support for an

underlying tri-linear or S-shaped functional form, we do not need to assume a specific

functional form nor impose overly simplistic assumptions, such as symmetry of the func-

tional forms, to ensure convergence of the estimator.

Here we present the methodology of our point selection and apply it to data from

the French electricity market. For now, we ignore specificities of the market for the sake

of concentrating on the methodology. We briefly introduce the data and the market in

section 2.2.1. For a full explanation of the data and the market, we refer the reader to

chapter 3. In section 2.2.2, we explain the point selection algorithm. In section 2.2.3 we

discuss the results of the methodology. Section 2.2.5 concludes.

2.2.1 Information about our data

Our methodology is general and can be applied to any market where the structure of data

observations is similar. Here, we present and discuss the performance of the methodology

on data from the electricity market. For the purposes of this chapter, we will focus only

on the statistical properties of the data, not on the economic interpretation.
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We apply our methodology to data from a divisible goods auction. In this auction,

each buyer and seller submits a full individual bid function, i.e. a demand or a supply

function, which consists of 2 to 256 monotone price-quantity combinations. The final

bid function consists of these explicitly submitted bid points and all linearly interpolated

points between them.

The market is cleared by computing the intersection of the aggregate demand and

aggregate supply functions, which are each obtained by summing up all individual bid

functions for the demand and supply side of the market respectively. In a uniform pricing

format, the determined equilibrium price is applied to all units sold in that auction.

2.2.2 Point selection algorithm

To briefly fix ideas, let’s assume that we are interested in a regression à la:

S ′ = α + βX + ε

where S ′ is the steepness of the bid function, X the stacked vector of exogenous variables

(not specified further here), α the regression constant, β the stacked vector of regression

coefficients and ε the error term.

The information S ′ is drawn from the bid functions of the electricity market, and

varies along the different points of the bids.

For comparability, we require that a chosen point k from a supply function must be

comparable to the kth point from the supply functions of another auction. The same

goes for chosen points of the demand functions. The reason for this assumption is that

comparing those points across auction allows us to describe how the functions, that is

the aggregate strategies, change shape when our independent variables vary. Note that
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we do not impose comparability between a pair k of points from a supply and a demand

function of the same auction.

Non-parametric technique to compare bid functions

Consider two demand functions (as shown in figure 2.2.2). We have to identify ”features”
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Figure 2.2.2: Comparison of two aggregate demand functions for the same hour

of the different functions in order to determine which points can be compared to one

another. We aim to reproduce the type of analysis that the brain performs automatically

when faced with such curve: we clearly identify three regions of different slopes, where

the central region is less steep than the left and right regions.

To recognise these features, we perform two successive kernel density analyses.2 For

details on the bandwidth and kernel selection as well as algorithm specificities, see ap-

pendix 2.A.1. This allows us to access estimates of the absolute values of the first and

second derivatives of the demand functions as shown in graphs B and C of figure 2.2.3.

We are therefore able to identify the regions of very high curvature, which define the

transition between the three characteristic regions of these functions. We assume that

these maxima can be compared across different auctions. This hypothesis is commonly

made in functional data analysis and known under the method of landmark registration

2Bandwidth in the first estimation = 45, bandwidth in the second estimation = 2, kernels: epanech-
nikov.
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Figure 2.2.3: Steps of the point selection process

Top left (A): The full original aggregate demand bid function for hour 8 on 15.01.2011 in the

quantity - price dimension. Top right (B): Kernel density estimates of the first derivative,

zoomed on the relevant price range. Bottom left (C): Zoomed kernel density estimates of the

second derivative. Bottom right (D): The full original bid function with the K = 5 selected

points.

[Silverman and Ramsay, 2005]. This has been applied in [Wölfing, 2013], chapter 4, to

day-ahead electricity data, in order to identify the effect of fuel price shocks on supply

curves. However, this landmark registration was applied in a parametric form: the re-

gions of high steepness were identified as any part of the curve above 90e/MWh.

We can develop this method further and define intermediary points3 that can again

be compared to one another. This method allows to define as many points as needed, for

computational reasons we limit ourselves to K = 5 points.4

3As an example, we could extract those points corresponding to half the density value of the maximum
density of the second order derivative. The four points selected, one for each monotone portion of the
graph of second derivative estimates, would then correspond to those where the curvature of the function
is halved. Together with the maximum, the additional point would contain information on the speed
(radius of the curvature) at which the function changes.

4The point selection algorithm took 2 weeks runtime to complete its task of selecting 5 points per
function. Defining intermediary points would have taken disproportionately more time since many sorting
and interpolation steps are necessary for each intermediate point.
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Graph D of figure 2.2.3 visualises an original demand bid function and the selected

points that we retain as an informative summary of the original curve. Once this work is

done we are left with K = 5 points per observed aggregate function, those points being

defined in such a way that they can be compared from one auction to another.

In our setting, the selected points are the two end-points of the curves (where bidding

is imposed by the auction rules at the minimum (k = 1) and maximum (k = 5) Price),

the point corresponding to what can be thought of as the point of inflection (determined

by the maximum of the first derivative, (k = 3) in the plane (p, q)) and the points sepa-

rating the regions of high and low elasticity in price (determined by the maximum second

derivatives to the left (k = 2) and right (k = 4) of the POI).

We described the technique here for the case of a demand function. The information

measured at these points can thereby be compared across demand bid functions of dif-

ferent auctions. The method is used analogously for selecting comparable points on the

supply function. We are hence able to extract slopes at these selected supply bid points,

which are again comparable across auctions.

2.2.3 Results of the point selection methodology

Precision of point selection

We have selected K = 5 types of comparable points for each of the 37500 demand and

supply functions present in our dataset. This section details the results of the point selec-

tion methodology and presents evidence why the point selection algorithm has produced

comparable points reliably.

The graphs in figure 2.2.4 show the local density of selected points in the price - quan-

tity space for the demand (left) and supply (right) curves. The fact that the groups of
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data points are disjoint from one another indicates that the points selected are distinctly

different across groups.
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Figure 2.2.4: Heat map on selected, comparable demand and supply points

Note: Please note the discontinuity in the scale of the y-axis. The three seperate graphs are

arranged to be understood as a single one. The warmer the colours of the heat map, the higher

the frequency of selected price-quantity pairs. The colour legend is omitted for brevity. Density

changes between contours are of the order of 10−4.

In figure 2.2.4, selected points of type k = 1 manifest at the bottom of the graph with

prices fixed at −3000e/MWh. Similarly, k = 5 points appear at the top of the graph

with prices fixed at +3000e/MWh. The three distinct groups of data points refer to

points of type k = 4, k = 3 and k = 2, respectively, when reading the zoomed, center

part of the graph from top to bottom.

We note that the point selection for the demand curves has produced groups of points

that are more distinct (and thus more robustly attributed to a certain type k) then for

the supply function.
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Our methodology only relies on assuming that the first derivative is uni-modal and

that sufficient variation exists in the data to distinctly identify the regions of different

slope. Overall, this is strong evidence that the algorithm is able to distinctly differentiate

between points of different types.

2.2.4 Observations of bidding frictions

Distinct point selection is further supported by the evidence in figure 2.2.5. These graphs

show the distribution in the price-quantity space of the selected points separately for the

demand and supply function. Distinct clouds are an indication that selected points are

different across types k.

Figure 2.2.5: Distribution of selected demand (left) and supply (right) points

However, a feature of the graphs is striking: patterns (horizontal lines) seem to exist

for the selected points of type5 k = 2 and k = 4. Many selected points accumulate at

certain prices of regular intervals of 10e/MWh, i.e. there seem to be focal price points

for the bidders at the curvature points of the bid functions. The pattern is present for

selected points of both the supply and demand functions, although the selected points

from the supply function exhibit this pattern slightly less.

The points following the pattern (types k = 2, 4) represent the points of maximum

5Types k = 1 and k = 5 do not exhibit variation in price, because bidding at the extreme prices of
+-3000e/MWh is imposed by the auction rules. We thus neglect their analysis here.
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curvature of the aggregate bid functions, i.e. the region where the aggregate bid function

transitions from a price elastic center portion to the price inelastic extremities of the bid

function.

Without prioritizing any explanation6, we acknowledge the existence of bid point pat-

terns in the values (i.e. prices and quantities) of selected points.

We are, however, interested in S ′, the slope at each selected point - an information

measured at the selected point. We therefore investigate whether the values of the first

derivative at the selected points display a pattern. Figure 2.2.6 shows the histograms of

slopes of supply functions for the points k = 2, 3 and 4. No pattern in the values of the

derivatives is apparent.

Figure 2.2.6: Histogram of slopes per point type

Note: Histograms of extracted slopes at points of type k = 2 (left), k = 3 (middle) and k = 4

(right).

Although values of the selected points are possibly biased due to focal price points,

we do not observe patterns in the variable of interest (i.e. the first derivatives of the

selected points) and deem the methodology adequate for our purposes.

Finally, we emphasize that the observed patterns are not caused by the point selection

6We do not investigate the origins of bidding frictions in this section, we focus purely on the method-
ology. For the electricity market, a few possible explanations are that (1) bid functions are driven by
marginal costs consideration towards the extremes of the bid curve, (2) bidders bid coarsely since they
have used up much of their bid point allowance (256 points) on the center portion of the curve, (3)
bidders spend less effort on adequately bidding at extremes since the likelihood of the market outcome
occurring at the extremes is much lower.
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mechanism since the algorithm can only choose between explicitly bid points or linearly

interpolated points, that could be part of a market equilibrium under the reigning price

setting algorithm. The pattern arises from many horizontal steps occurring at the same

prices in different auctions.

Value of selected points (determining K)

We remind the reader that the aim is to recover points that summarize well the be-

haviour of the full aggregate bid functions in different auctions. Our technique allows

us to extract representative and comparable points across bid functions of different auc-

tions. Form the selected points, we can also go back to infer the original bid function

from which the points were selected. In order to evaluate the utility of our methodology,

we investigate the added benefit of an additional point in our point selection.

By selecting K = 5 points per curve, rather than fewer points per curve, we are able

to significantly reduce the degrees of freedom for inferring the original bid function. In

other words, our information (as captured by the selected points) about the original bid

function is more precise.

In order to investigate the marginal gain of information for additional points, we first

define the mean registered curve. Consider a set of curves that each has N registered

points. Take the average coordinates of every point across curves. Rescale linearly every

curve by parts so that the registered points fall on their average.7 Define the mean reg-

istered curve as the averaged rescaled curves. Now, separate the data into two groups:

curves that are above or below this average curve. Take the averages of these two groups:

this defines a measure of the variability of the curves around the total average which is

able to capture asymmetries between the two groups.

7We rescale all points between the reference points by a vector obtained as a linear combination of
the displacement vectors of the closest reference points, of which weights are obtained as the inverse of
the distance of the considered point to the enclosing reference points.
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Now that these quantities are defined, we can display how much information is cap-

tured by the successive addition of registration points for K = 0 to K = 5 points. We

look at the decrease in uncertainty achieved by including an additional point, obtained

using our technique. Figure 2.2.7 shows the mean registered curves (red lines) and the

mean inferior or superior curves (pink shaded interval above and below the mean regis-

tered curves) as a function of the number of reference points.

Figure 2.2.7: Error bars as a function of the number of extracted points

Note: The graphs represent the master curve with the error interval for inferring the original bid

function, conditional on the number of extracted reference points (RP). Top left (A): Computed

without any RP. Top right (B): Computed using 2 RP. Bottom left (C): Computed using 3 RP.

Bottom right (D): Computed using 5 RP.

We can see that as we include an increasing number of points the shaded areas shrink:

this is a measure of how much of the information contained in the raw curves is captured

by the registration points. We see that at 5 registration points, the shaded area is very

small, so much so that one can consider that by registering these 5 points, we capture a

so-called ”master curve”: most of the information about the curves is contained in those

5 points.
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More quantitatively: without any reference point, inferred bid functions would lie in

the interval shown in graph A of figure 2.2.7. With two reference points (namely the

minimum an the maximum quantity), the uncertainty is reduced as shown by the smaller

error interval in graph B. Graph C adds a third point (the inflection point) and Graph

D adds another two points (the two points of maximum curvatures). Figure 2.2.7 shows

clearly that with an increasing number of reference points, we obtain a more precise infor-

mation about the original bid function. We quantify the informational gain by measuring

the pink shaded area in each graph A to D. The result is shown in figure 2.2.8 and reveals

decreasing marginal information for each additional point. By selecting K = 5 points,

we are able to reduce the shaded area by a factor of about 50 when compared to figure

A (see figure 2.2.8). We see this insight as support for using K = 5 points for further work.

Figure 2.2.8: Proxy for degrees of freedom on master curve

Note: The graph plots a proxy for the number of degrees of freedom for the inference of the

original bid function on the number of reference points. Specifically, it plots the size of the pink

shaded area in figure 2.2.7 against the number of points.

While the graphs in figure 2.2.7 are displayed on inverted axes and rescaled units, we

show the final master curve and uncertainty interval on the original axes and units in

figure 2.2.9.

102



Methodological Tools for Non-Parametric Functional data Evaluation and Weather
Data Usage

Figure 2.2.9: Overall (left) and zoomed (right) Mastercurve with confidence interval

Note: Master curve in the quantity - price dimension.

2.2.5 Discussion

In this section, we have developed an alternative technique to run a cross-section reduced

form model on data generated by a market that keeps track of the full aggregate demand

and/or supply functions. While we apply it to aggregate demand functions, the method-

ology is fit for the analysis of aggregate supply functions and individual bid functions of

either market side.

The methodology is inspired by the techniques used in the literature on Treasury

auctions, but has been set up from scratch to allow treatment of more heterogenous data.

Furthermore, the hard assumption of an underlying logistic function is relaxed, and our

non-parametric point selection avoids the storing of bid function information in the form

of estimated function parameters, which are difficult to interpret.

Smoothing of the original bid functions is a component in both the traditional logis-

tic function approach and our comparable point selection methodology. The smoothing

enables the user to abstract of small bid function particularities and imprecision, e.g.

steps in the function. However, in the traditional approach, the reduction of plus 1000

bid points into very few parameters resulted in the blurring of “local” bid function in-

formation from all parts of the function at once. Our non-parametric approach allows

specifically to control the extent to which one smoothes the underlying data through the

amount of registration points considered.
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The results of the comparable point selection are encouraging. We show that each type

of point is distinctly chosen and that patterns of the original bid functions do not influence

the quality of derivative information extracted at the selected points. We acknowledge

the existence of bidding frictions in the original data and highlight this observation for

further work.

2.3 Methodology to Aggregate Geographically Dis-

persed Information on a National Level

The theoretical results of chapter 1 indicate that a key ingredient in explaining the dy-

namics of the bids submitted by suppliers on the electricity market is the uncertainty

about demand shocks.

Energy demand addressed to the electricity markets depends on temperature (through

the heating of buildings), on wind speed (through the production of wind turbines which

reduces the net demand) and on luminosity (through the production of solar panels which

reduces the net demand). However, these three weather variables vary in space, whereas

the market is at the national level. We introduce here the methodology with which we

estimate the associated uncertainty.

We have two types of meteorological data: observations and forecasts. We use both

types of data to estimate the underlying uncertainty. The methodologies for each differ

slightly.
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2.3.1 Dealing with meteorological data

Interpolation methodology on weather observations

Observations are obtained from MétéoFrance for three parameters of particular interest:

temperature, wind speed and light intensity. These observations take the form of tables

of hourly observations for a given set of weather stations. Each parameter is observed on

a different set of stations.

Due to their hourly nature, the analysis of the electricity market’s sensitivity to

weather requires a very high number of observations. Therefore, we select between one

and two stations per Département8, a French administrative unit of roughly 6000 km2,

i.e. of a typical lengthscale of about 75 km. We have 161 stations for temperature, 113

stations for wind speed and 106 for light intensity, as shown in Fig 2.3.1.

Figure 2.3.1: Stations for which we have hourly data. Left: temperature, center: wind
speed, right: light intensity.

For each hour, we select the corresponding observations and interpolate them in or-

der to reconstruct the weather on the entire French territory. An interpolation consists

on inferring the value of a variable at query points using a reference data set of known

values. One very important underlying assumption of interpolation methods is that of

the continuity of the process underlying the data generation. The easiest interpolation

method is the linear interpolation: think about a dataset of hourly observations with

8There are 95 Département in France
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one missing value; to reconstruct the missing value, take the average of the value of the

preceding and following hour. There are numerous methods of interpolation, even more

so when the data is spatial in nature, all revolving around two main steps. First, given

a query point at which one would like to infer the value of the variable, there needs to

be a selection rule to know which of the points from the reference data set should be

used (in our example the preceding and following values). Second, once these points are

selected, one needs a weighting function to know their relative importance in order to ob-

tain the interpolated value (in our example it is a simple averaging, that is weights of 0.5).

We use the natural neighbor interpolation method, well known for its good balance

between speed and accuracy. In short, in this case, the first step makes use of the Voronoi

tessellation algorithm9, one is able to define the natural neighbors of a point for which one

seeks an interpolated value. These natural neighbors are used in the second step, which

performs the actual interpolation as a weighted average of the values of these natural

neighbors using a ratio of surfaces as weights (see Fig 2.3.2 for more details).

Figure 2.3.2: Left: Voronoi’s algorithm is applied once on the reference points highlighted in
green to obtain the white surfaces, and a second time on the same points to which is added the
query point in the center to obtain the new blue cell. The green circles, which represent the
interpolating weights, are generated using the ratio of the shaded area to that of the cell area
of the surrounding points. Center left: example of a reference surface (color mapped) to be
reconstructed through a natural neighbor interpolation. Center right: interpolated surface with
a reference set of 16 evenly organized points, represented in black. Right: interpolated surface
with a reference set of 16 unevenly organized points, represented in black. From 16 points one
is able to reconstruct the color mapped surfaces which are approximations of the reference one,
represented in the center left image.

9The Voronoi tessellation algorithm takes a collection of points {pk} in the plane, and then partitions
the plane as regions ”belonging” to each point, called cells. A Voronoi cell associated with a given point
pk is defined as the collection of every point in the plane whose distance to pk is less than or equal to its
distance to any other p−k. Each such cell is a convex polygon.
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Image transformation to recover weather forecasts

Forecasts are obtained from the Global Forecast System (GFS), and come in the form

of colormaps, as shown in Fig 2.3.3. We are going to illustrate our methodology on

temperature data, but the same exact approach is performed on wind speed data. The

general idea is that the pointwise precision is low (2◦C per color) but that the overall

map contains quite a lot of information through the topology of the colored regions. We

describe below how to extract this information.

Figure 2.3.3: Temperature forecast from a simulation run by the GFS at 6 a.m. on the 3rd of
November 2011, for a forecast at 22 p.m.

First: image cleaning To extract the relevant data we first clean the color map

from its irrelevant information, namely the temperature in numbers and the administra-

tive borders. Note that this step introduces a small amount of high spatial frequency

noise, see Fig 2.3.4 left and center left.

Second: removal of redundant information A lot of information is lost from the

actual GFS simulations by using a color map representation, as temperature is described

as a discontinuous variable: each color has a precision of 2◦C. In order to correct for this,

we leverage the fact that all the information contained in this color map, that is the color

at each pixel, is actually contained in a smaller set of points. Consider the value at the

boundaries between different color regions: by knowing that the interior of a constant
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color region has a constant value, one is able to represent all the information contained

in the original image by keeping only track of the values at the boundaries. To recognise

those boundaries, we perform image analysis, more precisely we use edge recognition

methods based on finding high gradient regions, thus obtaining Fig 2.3.4 center right.

Third: surface fitting Once we represent the information in this denser form we

can perform the last step, which consists in fitting a surface to our newly defined dataset,

i.e. the temperature values at the boundaries, which take the form of (x, y, T ) triplets.

We could perform an interpolation, but these methods are not well suited to reference sets

having so much structure. Here, data points lie on curves representing iso-temperatures,

so that along such a curve there is a lot of data points, whereas the information is very

sparse along the direction of the gradient. In addition the first step introduced some

spatial noise which we want to correct to some extent: we allow our fitted surface to take

different values than our data points, so as to smoothen out this noise. We define the

rigidity of our fitted surface, i.e. a penalty associated to fast changes in the value of the

surface, and therefore reduce the importance of the high-frequency noise introduced in

the first step. The end result is presented in Fig 2.3.4 right.

It is key to understand that this image is displayed using a colormap close to the one

in the original picture to facilitate comparison but that its underlying data is continuous

whereas the original image describes temperature by bins of 2◦C. It can therefore be

used to query the value at any given point, and these values will change continuously in

space instead of discrete jumps in the raw format.

Autocorrelation lengthscale

We use this dataset to build measures of the weather uncertainty. To do so we measure

the auto-correlation lengthscale of our three weather variables of interest: temperature,

wind speed and light intensity. This lengthscale measures how much are the weather

variables correlated spatially. Our hypothesis is that the auto-correlation lengthscale is
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Figure 2.3.4: Left: reference image. Center left: borders and numbers are removed. Center
right: edge recognition. Right: final fitted surface.

inversely proportional to uncertainty about the variable we are interested in. When it is

small, the variable is less spatially correlated, which we interpret as being more difficult

to forecast. Conversely, when the auto-correlation lengthscale is large, the variable is

very correlated spatially, that is that the informational content of one datapoint is higher

for the prospect of using it for the evaluation of a national effect.

More precisely, the argument is as follows:

First, renewable production is built by aggregating the forecast of all individual re-

newable sources. This means knowing the position and capacity of every renewable source,

querying weather forecasts for all of these points, modeling the renewable’s response to

the forecasted weather and adding the forecasted productions.

Second, we note that weather is spatially correlated, which means that the closer two

points are, the closer the values for a given weather variable (the air temperature at your

left hand is very close to that at your left hand, but less so across the city, and even less so

across the country). This correlation roughly follows an exponential law: the difference

between the values of a weather variable between two points behaves in a linear fashion

for small distances and saturates at large distances.10 The transition between those two

10Intuitively, the characteristic lengthscale of autocorrelation represents the distance required between
two geographical points on a map of weather forecasts to observe a decorrelation of half of its maximum
value. For example on the wind speeds prediction, a characteristic length of 80 km means that if we
observe two very distant points (say 1000km) to have a difference in wind speeds of, on average, 50km/h
(this being the maximum difference, we are in the saturated regime), then we will observe, on average,
wind speed differences of 25km/h for points distant from each other by 80km.
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regimes is given by a characteristic lengthscale, a bit less than 200km on average.

Third, we observe that the average distance between production points is large

enough that the relevant regime of autocorrelation is the saturated part.11

Fourth, we note that there are two main channels through which the overall uncer-

tainty about renewable production is related to the weather. There is an issue of error

averaging, which means that if the weather becomes very spatially uncorrelated, one can

expect errors to cancel out relative to a given bias in the forecast. This channel would

tend to imply that more spatial variations imply a smaller uncertainty about production.

There is also the issue that weather forecasts are numerical simulations and that the mesh

size for such simulations, typically 5km for the high precision ARPEGE model of Météo

France, implies that the errors are higher as the simulated phenomenons have higher

gradients. This means in our case that the uncertainty about the forecast increases as

the weather becomes more spatially uncorrelated.

Fifth, these two effects are of opposite signs, but our third point is an argument for

considering that the averaging of errors is smaller than the simulation errors. Therefore,

we expect our uncertainty to increase as the spatial autocorrelation decreases (i.e. more

spatial variation).

This can be summed up with the following hand-waving argument: when there is

more spatial variations, the weather is more messy, therefore more difficult to predict.

To understand what the autocorrelation lengthscale captures, take two points on a

plane and a spatially correlated bounded variable. If those points are infinitely distant,

the value of the variable at these points should be uncorrelated. That is that the abso-

11For N production points, we compute the N(N-1)/2 pairs of points, consider their distances and
compute the average of these distances weighted by the production capacity at every point. In the case
of the wind, we have an average distance of 459 km, in the case of the photovoltaic production we have
an average distance of 499km.
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lute difference between the variable taken at those two points should have a given average

value. Conversely, two points infinitely close should have the same value, i.e. a zero ab-

solute difference between the variable taken at those two points. The question is how

fast is the transition between those two limit cases. First, we define the average absolute

difference between two points when distant of a given value. Second we extract a typical

lengthscale.

To define the average absolute difference between two points when distant of a given

value, we consider at a given point in time every possible pair of points in our dataset.

For a given pair we compute its distance and its absolute difference in value (in black in

Fig.2.3.5). For 100 datapoints we obtain 4950 pairs. We then use a kernel smoother in

order to obtain the average non-parametric autocorrelation function (in blue in Fig.2.3.5).

To recover a typical lengthscale, we make the parametric assumption that the auto-

correlation is exponential in nature. We fit an exponential function through our smoothed

data (in red in Fig.2.3.5), and recover the exponential decay parameter as our lengthscale

(in green in Fig.2.3.5). We perform this operation for every hour in our dataset and

every weather variable. The results are time series for the characteristic lengthscale of

the weather parameters.

2.3.2 Aggregation of local information

Wind1DA Wind speed (average speed in km/h): Wind speeds influence the pro-

ductivity of wind turbines, which are a source of unreliable electricity generation. In

general, renewable technologies benefit from a feed-in guarantee by the state. That is,

regardless of the trading outcome on all markets, renewable energies will be the first to

be fed into the power grid at a guaranteed price.

Consequently, the electricity production of renewable technologies represents a pro-

duction shock for all actors on the market. The production shock means that the demand
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Figure 2.3.5: Auto-correlation lengthscale computation. In black are the points obtained
from all the pairs from our original data, that is absolute wind speed differences as a
function of the distance between the two points. In blue is the kernel smoothed function
from those points. In red is the exponential fit. In black are the derivatives of the fit
at 0 and ∞. In green is the recovered auto-correlation lengthscale. The unit for the
lengthscale is in km.

to be served by traditional electricity producing firms is reduced by the amount that is

serviced by the electricity gained from renewable sources.

In the case of wind turbines, the average speed of the wind per hour allows to proxy

for the size of the production shock due to the electricity generation from wind energy.

We use hourly windspeed forecast in the form of color maps from the Global Forecast

System (GFS), giving the speed by bin of 5 km/h at 10m above ground, and the location

and production capacity of the wind turbines present on the French territory, given by

the SOeS (service d’observations et d’études statistiques - observations and study depart-

ment) a department of the French environment ministry.

We consider that all turbines in France are of the same type, that is that they have

the same response curve and height.
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A typical response curve is represented in Fig. 2.3.6. It has three main characteritics:

the wind speed at which the turbine starts to produce electricity, called the cut-in speed,

the speed at which the turbine reaches its rated output, called the rated output speed,

and the speed at which the turbine has to stop to avoid damage, called the cut-out speed.

We use data publicly available12 to obtain a rough estimate of the French average wind

turbine characteristics. We use a cut-in speed of 2.5 m/s, a rated output speed of 14

m/s, and reduce arbitrarily the cut-out speed from an estimate of 24 m/s to 20 m/s to

account for the fact that a turbine is shut down not when the average speed is too high

but when the maximal speed becomes dangerous for the turbine.

Wind speed also increases with height, and turbines are typically between 60 and 80m

high. We therefore apply a multiplier to the reconstructed wind speed at 10m.

We seek to reconstruct the French wind energy production from meteorological data.

The two adjusted values, the cut-out speed and the speed multiplier, are adjusted by

hand to obtain reasonable fits. The reason for this is that the reconstruction of wind

speed and aggregate production is computationally intensive, therefore we cannot per-

form a full-blown estimation. We choose these values with a precision of roughly 10%

with respect to their admissible range of values.

We obtain a reconstruction of wind production from day-ahead wind speed forecasts

that we compare to actual observed production and to day-ahead wind production fore-

cast computed by RTE, the French grid operator as shown in Fig.2.3.7. We stress here

that our aim is two-fold: to link wind turbines’ production to weather data and to use

forecast data as the market actors only possess this information when bidding. We do

not aim at producing better forecasts than the grid operator, the figure is only displayed

to show that our methodology produces reasonable estimates (we obtain a correlation co-

12http://www.thewindpower.net

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0.0

0.5

1.0

1.5

2.0

2.5

70 80
0

10

113



Methodological Tools for Non-Parametric Functional data Evaluation and Weather
Data Usage

Figure 2.3.6: Typical response curves of different wind turbines

efficient between our forecast and the observation of 0.85 where the grid operator obtains

0.97).

Figure 2.3.7: All curves are hourly production data. The origin of the hours is the first of
January 2011, and the production is in MWh. In blue: the observed wind production. In dark
red: the day-ahead predictions from the grid operator. In light red: the day-ahead predictions
from weather data.

Tempeff15 We focus on the effect of temperature on the demand of electricity first.

In France, a high percentage of the population heats their housing with electricity, there-

fore cold waves have a high impact on electricity consumption: 2300MW of additional

power consumption for every drop of 1oC below 15oC, as shown in Fig.2.3.8 sourced from

[RTE, 2014], the French grid operator.
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Figure 2.3.8: Daily electricity consumption in France as a function of the temperature,
[RTE, 2012]

We apply this information to our observed meteorological data in order to build an

effective temperature for France aimed at capturing its effect on consumption. To do so,

we reconstruct temperature data for every French commune, the smallest administrative

unit in France (there are around 36000 of those). We consider population as being a good

proxy for potential heat consumption, therefore we apply it as a weight to the commune

temperature. Lastly, we consider that temperatures saturate at 15oC. This allows us to

build an effective temperature taking into account where the population is located and

the nonlinearity of heat start up which in turn allows us to account at the country-level

for the local impact of temperature on the electricity consumption.

Solar Light intensity (in W.m−2) impacts the electricity market through multiple

channels. The most obvious one is the associated electric production from photovoltaic

panels. But there is another channel through which lighting can be seen as impacting

electricity consumption: more sunlight decreases artificial light usage. In France, annu-

ally, the electric consumption that can be attributed to lighting represents roughly 50

TWh where solar production is roughly 4 TWh.13

13These estimates are computed by the authors based on numbers coming from
[Bertoldi and Atanasiu, 2007], INSEE and EDF
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We have photovoltaic production data, which in itself is a blackbox. As we aim to link

meteorological data to consumption, we first want to validate the quality of our meteoro-

logical data. To do so we reconstruct the photovoltaic production from weather data. We

know what are the hourly luminosity conditions on the French territory but also where

is installed the photovoltaic production capacity. The SOeS (statistical observation and

study department), a branch of government, publishes each year a file containing the

installed capacity of renewable energy sources per communes, a French administrative

unit with a typical size of roughly 3 km.

We use observed luminosity data from MétéoFrance, as there is no hourly forecast

of luminosity, and assume a sigmoid response from photovoltaic panels to light intensity

with a saturation towards high light intensity, that is approximately a linear response up

to a certain threshold. The results are shown in Fig.2.3.9.

Figure 2.3.9: Hourly solar production in MWh. The time origin is the first of January
2011. In blue: observed production by RTE. In dark red: reconstructed production from
observed weather data.

We observe that solar production is much more regular than wind production, there-

fore it is not possible to build a proxy for lighting consumption that would allow us to

decorrelate the effects from production and lighting. We therefore stick to this proxy to
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capture the net effect of both channels.

Other controls

Tempeff We also build an effective temperature that does not account for the non-

linearity at 15oC following the same methodolgy otherwise as a control.

Roll TempH Variable capturing seasonal trends by using the rolling average tem-

perature on effective temperature (Tempeff15) over the last H hours.

RollavgTH Variable capturing seasonal trends by using the rolling average tempera-

ture on temperature Tempeff (no kink) over the last H hours, i.e. the last H/24 days.

suncycle Variable capturing intraday seasonality by measuring the intensity of sun-

light as a percentage of the maximum daily observation. Midday is defined at the max-

imum sun intensity every day, i.e. Midday = max(Solar). Thus, suncycleH = SolarH /

Midday.

deltasun Variable computed to proxy for dusk and dawn. It is computed as the

absolute difference between suncycleH - suncycleH−1.

SolarRest Solar represents estimates of solar production. Therefore, it is highly

collinear to the daily suncycle variable since solar production is light dependent. SolarRest

is the residual from a regression of Solar on suncycle and captures the unexplained part of

solar production on top of pure light intensity considerations. Table 2.1 gives the results

of the regression.
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(1)

VARIABLES Solar SE

suncycle 1,500*** 3.903

Constant 0.876** 0.383

Observations 150,959

R2 0.702

*** p<0.01, ** p<0.05, * p<0.1

Table 2.1: Regression of Solar on suncycle

RteBlackBox RTE, the French grid operator gives day ahead predictions of the

total hourly consumption, which are available at the time of bidding. This variable is

called PrevConsoH.

We do not have access to the exact definition of the index and it is thus a black box.

However, it is available to the firms at the time of bidding and we want to include it in

the demand estimations.

At the same time, it is evident that this variable uses much of the information that

we explicitly control for in the regressions, the variables defined above, therefore in addi-

tion to the possibility that we might not have all the variables that go into building this

prediction for the hourly consumption, collinearity is an issue. In order to have correct

coefficient estimates, we adopt an instrumental variable approach by regressing the RTE

prediction on our exogenous factors, extracting the residuals and only including the un-

explainable component of the RTE prediction in the demand estimation in the form of a

separate variable called RteBlackBox.

Formally, RteBlackBox is equal to the predicted residuals (u) of the following regres-
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sion, where X stands for the vector of explanatory variables: Tempeff15, Roll Temp24 ,

Roll Temp240, suncycle, morning, deltasun and EWH.

PrevConsoH = a+ bX + u (2.3.1)

In table 2.2 we give the output of regression 2.3.1 in column 1, which is strong support

that our prepared data for exogenous variables is of very high quality. We highlight the

significance of all explanatory variables at the 1% level and the R2 statistic of 85.3%.

(1) (2)
VARIABLES PrevConsoH PrevConsoH

Tempeff15 -682.6***
Roll Temp24 -802.0***
Roll Temp240 -1,175***
SolarRest -0.860*** -0.345***
suncycle 7,849*** 7,418***
morning -4,759*** -4,398***
deltasun 10,108*** 9,010***
EWH -1,245*** -1,254***
Tempeff -301.4***
Roll avgT24 -687.3***
Roll avgT240 -918.2***
Constant 77,701*** 76,651***

Observations 146,909 146,909
R2 0.853 0.816

*** p<0.01, ** p<0.05, * p<0.1

Table 2.2: ”Black box” regression on RTE predicted consumption
Note: The dependent variable PrevConsoH is the day-ahead prediction by RTE of the
total consumption in France.

We highlight that the comparison of columns 1 and 2 gives very strong support to our

adjusted measure of effective temperature (Tempeff15 instead of Tempeff), which takes

into account the demand behaviour as a function of the temperature. Temperatures

above 15oC are considered not to impact demand behaviour [RTE, 2014].
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2.4 Conclusion

In this methodological chapter we present the different methods that we developed to

study in the next chapter the impact that uncertainty about demand shocks can have on

suppliers’ bids.

We want to be able to describe how bids change shape as a function of a number of

regressors. To do so we apply functional data analysis to the bids and argue that the

landmark registration technique allows us to compare important features across bids.

Finally, as we are interested in the impact of uncertainty about demand shocks, we

note that weather is an important source of uncertainty and introduce a number of met-

rics, based on the intrinsic structure of weather data or on its relationship to the processes

at play when considering consumption or production of electricity.

In the next chapter we will therefore be able to focus on the econometric analysis of

our data. More specifically, now that we have defined points that allow us to compare

schedules to one another, and that we have defined proxies for the weather uncertainty,

we can measure how the slope of the schedules is impacted by the level of uncertainty,

and if it follows the predictions of the theoretical model presented in the first chapter.
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Appendix

Appendix 2.A Technical Details

2.A.1 Using the kernel density estimation (KDE) in our setting

In order to estimate the first and second derivatives of the bid functions, we use a kernel

density estimation. The estimator is essentially a smooth version of a histogram and

counts the number of points in moving intervals (called a window) of predefined width

along a dimension of the data. In our case, it counts bid points per price interval. In

addition, the KDE assigns a weight to each observation based on the distance from the

observation to the center of the window. The weighing function is called the kernel.

The observed bid functions are each a multitude of price-quantity combinations. How-

ever, a naive kernel density estimation on the observed points of the bid function would

be useless since the number of points per price interval does not vary much with the slope

of the curve.

The supply and demand functions, although defined by discrete points, whose number

changes from bid to bid, are continuous functions. That is that between to successive

points, the function is considered to be linear. Strictly speaking, we can therefore define

a constant value of the first derivative, and we cannot define values for the second deriva-

tive. In order to circumvent this problem we want to smooth our data, which defines

functions that are not twice differentiable, by using a kernel density estimate. However,

this estimate needs to measure the “density of function”, so to speak, and not the density

of points: if the function has two successive but distant points, a naive kernel would count

no points in between them although our function is actually comprised of a segment of

a given length in this region. What such an estimate should instead measure is the arc

length of the function represented by the points we have, that is the summed length of
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all segments present in the window of the kernel.14

This quantity can be computed exactly, however it does not play well with the regular

tools for kernel density estimates in stata, so we resolve to approximate it by adding a

large number of linearly interpolated points at the unit cent level (corresponding to the

minimum bidding unit). The kernel density estimation is then able to estimate the

absolute value of the slope of the function by simply counting the points in an interval

since the number of points per price interval of constant width varies proportionally with

the slope of the function over that interval. This effectively returns the estimates for the

absolute values of the first and second derivatives of a smoothed version of our supply

and demand functions.

Hard choices in the code of the KDE

A few specific choices have been made in the code and are detailed here.

Kernel choice: First, we use the default Epanechnikov kernel for simplicity. It is

generally considered that the kernel choice has significantly less impact than the choice

of the bandwidth. The use of the kernel is to weigh more the observations close to

the centre of the moving window. The performance of a kernel is judged on the trade-off

between variance and bias. The used Epanechnikov kernel is optimally efficient. However,

14Consider a continuously differentiable function f :

f : [a, b] ⊂ R→ R
x 7→ y = f(x)

Then the following parametrization defines the points of the graph of this function:

g : [a, b] ⊂ R→ R
t 7→ (t, f(t))

The arc length of the graph of function f is then:

L(g) =

∫ b

a

‖g′(t)‖dt

=

∫ b

a

√
1 + (f ′(t))

2
dt
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even simplistic kernel functions, such as the rectangular, have a relative efficiency of 93%.

Thus, kernel choice is not important and other factors may influence the decision, such

as computational effort [Salgado-Ugarte et al., 1994, Silverman, 1986].

Bandwidth choice: Second, we hard code the bandwidth selection for computational

reasons. The bandwidth of the kernel (and thus the width of the price interval over

which points are counted) is determined on the basis of a trade-off between smoothing

the original bid function and mixing up information of different parts of the bid function.

By smoothing the original bid function, we obtain estimates of the information that our

KDE measures (i.e. points in the interval and thereby the slope) that are less sensitive to

local specificities of the bid functions. The larger the selected bandwidth, the larger the

interval over which points are counted and the stronger the smoothing of the estimates.

However, as the width of the interval increases, we mix up more information of a selected

point of interest with the information of its neighbouring points. Therefore, in setting the

bandwidth we aim to achieve smoothed estimates with a reasonable compromise between

respecting local curve information, while not being fragile to steps in the bid function.

For estimates of the first order derivative, these considerations are minor and we could

use the default bandwidth, optimal for a Gaussian distribution, to extract the point of

maximum slope from the distribution. However, one reason we slightly increase it is to

ensure that the distribution of the first derivatives is uni-modal.15 Furthermore, the se-

lection of the bandwidth in the first stage density estimation impacts both the precision

and speed of the second stage estimation. A better smoothing in the first stage gives

a large advantage in the second stage estimation16, thus we have a further incentive to

increase the bandwidth.

15Uni-modal at the point of inflection in the price-quantity dimension. The smoothing ensures that
the selected point is not mistaken due to steps in the bid function that have a very large slope locally,
but which is not representative of the neighbouring portion of the bid function.

16The gain in computation in the second stage arises from the fact that a stronger smoothing in the
first stage produces a more homogenous dataset for the second stage estimation. By more homogenous,
we mean that fewer monotone regions of the graph of first derivatives must be interpolated at the unit
cent level to ensure that our algorithm works correctly.
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For the second derivative the trade-off is more critical: We want to obtain a reason-

ably broad smoothing to obtain a meaningful selection of points that is not driven by

random noise. On the other hand, a large bandwidth reduces the importance of local

information of a part of the curve as a consequence of which, selected points (points

k = 2 and k = 4) are pushed towards the point of inflection (k = 3). This is due to

the maximum point of the first derivative gaining more weight in the second derivative’s

estimation. The fact that first derivative estimates are already smoothed rather strongly,

we can choose a narrow bandwidth in the second stage KDE.

In the end, we select a rather broad bandwidth of 45 units in the first estimation.

This gains robustness of the point selection mechanism against noise in the data and

estimation speed in the second stage. The bandwidth in the second stage is set more

narrowly at a level of 2 units to keep as much information as possible from the first stage

estimation and allow sufficient variation to select the k points.

To support our choice, we illustrate the impact of different bandwidths on the first and

second stage estimation in figures 2.A.1 and 2.A.2. Our choice is based on an adequate

point selection and the fastest runtime.

In these graphs, the top row shows the first stage KDE, over the whole function on

the left and zoomed on the right. The large bandwidth in figure 2.A.1 shows the impact

of smoothing on the estimates of the first derivative as compared to figure 2.A.2. The

second row in both graphs shows the second stage KDE in two versions: Using a wide

kernel bandwidth on the left and a tight bandwidth on the right. Again, we disclose the

result as seen over the whole function (left) and zoomed on the central price range (right).

The third row details the original demand function with the final point selection given

the bandwidth selection as given by the two rows above. Regardless of the first stage

bandwidth, we see that a large bandwidth in the second stage KDE easily distorts the

point selection. Selected points of type k = 2, 4 are either two centred or too wide as a

124



Methodological Tools for Non-Parametric Functional data Evaluation and Weather
Data Usage

0
.0

02
.0

04
.0

06
.0

08
D

en
si

ty

-4000 -2000 0 2000 4000
Price

kernel = epanechnikov, bandwidth = 40.0000

Kernel density estimate

0
.0

02
.0

04
.0

06
.0

08
de

ns
ity

: P
ric

e

-50 0 50 100 150
Price

0
.0

01
.0

02
.0

03
.0

04
D

en
si

ty

-4000 -2000 0 2000 4000
P_int

kernel = epanechnikov, bandwidth = 40.0000

Kernel density estimate

.0
02

5
.0

03
.0

03
5

.0
04

de
ns

ity
: P

_i
nt

-50 0 50 100 150
P_int

0
.0

02
.0

04
.0

06
.0

08
D

en
si

ty

-4000 -2000 0 2000 4000
P_int

kernel = epanechnikov, bandwidth = 0.4000

Kernel density estimate

0
.0

02
.0

04
.0

06
.0

08
de

ns
ity

: P
_i

nt

-50 0 50 100 150
P_int

-4
00

0
-2

00
0

0
20

00
40

00
Pr

ic
e

6000 8000 10000 12000 14000 16000
Volume

Price Price

-4
00

0
-2

00
0

0
20

00
40

00
Pr

ic
e

6000 8000 10000 12000 14000 16000
Volume

Price Price

Figure 2.A.1: Comparison of bandwidths: Large bandwidth in first stage

Note: Large bandwidth in first stage (top row), large bandwidth in second stage (second
row left), small bandwidth in second stage (second row right), Resulting selection of points
for large bandwidth in stage one and two (bottow row left, A) and selection of points for
large bandwidth in stage one and small bandwidth in stage two (bottom row right, B).

result of the second derivatives being smoothed excessively and not precisely representing

the local specificities of the curve.

The right hand side of both figures show that a tighter bandwidth on the KDE can

easily mistake large slope changes due to steps in the bid functions as the appropriate

points of maximum curvature of the full bid function and thereby make an error. There-

fore, we apply a sensitive second stage KDE on rather smooth estimates of the first

derivatives, which yields an adequate point selection in our setting (figure 2.A.1B).

The bandwidth selection received much attention in this work in order to obtain a

reasonable selection of points based on local information of the curves, while achieving a

satisfying robustness to noise in the bid function. We are aware that this subjective setting

of the bandwidth is not without consequence for our work. However for computational
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Figure 2.A.2: Comparison of bandwidths: Small bandwidth in first stage

Note: Small bandwidth in first stage (top row), large bandwidth in second stage (second
row left), small bandwidth in second stage (second row right), Resulting selection of points
for large bandwidth in stage one and small bandwidth in stage two (bottom row left, C)
and selection of points for small bandwidth in stage one and two (bottow row right, D).

reasons17, we do not run a full robustness test on this choice ex-post.

2.A.2 Outlier detection and removal

In some rare cases, our point selection mechanism does not work. This is the case when

curves have very small number of points at a kink and it is thus very difficult to detect

their curvature.

As a result, the selected points are then quasi in-differentiable from the next selected

point type, i.e. a point of type k = 2 is almost identical to the selected point k = 3. The

code is unable to select the right points due to a data lack on the original curve (second

derivative on a constant slope up to POI is zero).

We screen for adjacent points that display quasi no variation in volumes. Figure 2.A.3

17The point selection algorithm ran for more than two weeks in the current setting.
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shows a histogram of volumes differences over 2 selected points (from k = 2 to k = 4) and

reveals a positive mass point at zero, indicating outliers that do not display any volume

variation between points of the same bid function. We use the histogram to identify and

drop those outliers from our dataset.
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Figure 2.A.3: Histogram of volume variation between points

Note: The histogram shows the volume difference between points k = 2 and k = 4 of the
same bid functions.
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Chapter 3

Investigating the Impact of

Uncertainty on Firms with Dynamic

Costs: A Case Study of the French

Electricity Market 1

1Joint work with Henri de Belsunce.
The weather data was obtained through a research convention with Météo-France - ref. DIRIC/13/024
JEL Classification Numbers: C10, C57, L94, Q41
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3.1 Introduction

In the last chapter, we have given some attention to a methodology that allows us to

use functional data for reduced form analysis. In this chapter, we focus on the economic

questions that can be asked using such a methodology. Specifically, we focus on an inves-

tigation of the effect of uncertainty on the behavior of electricity producers, and testing

the predictions of our first chapter, by leveraging the results of our second chapter that

allow us to compare schedules to one another.

There exists a consensus that dynamic costs, also referred to as ramping or adjust-

ment costs, are important on the electricity market.2 These are the costs incurred by a

producer when production varies. The importance of uncertainty for the expectation of

dynamic costs is shown in chapter 1. Uncertainty itself on the electricity market as well as

estimates for the value of ramping costs have been studied empirically by [Wolak, 2007],

in the case of step functions. We focus on two sources of uncertainty for traditional

electricity suppliers, namely uncertainty about the realization of the market demand and

uncertainty from the inherently unpredictable meteorological situation (which affects re-

newables generation), mainly because those are the two main sources of uncertainty in

the span of time covered by our data (2011-2013). There is one blind spot in our analy-

sis: we do not have data about the interconnected countries, which themselves affect the

French market and therefore introduce another important of uncertainty. Not taking this

effect into account essentially introduces noise in our data and means that we need more

data to infer the significance of an effect compared to a case where we would be able to

control for it. We propose a methodology to measure this uncertainty and its impact on

firm strategies on the electricity market.

Electricity as a market is very important in and of itself ($2 trillion in worldwide sales

in 2010). It is also a crucial input for many industries; power outages induce very large

2 [Anderson and Xu, 2005], [Hobbs, 2001], [Hortacsu and Puller, 2008], [Reguant, 2011],
[Sewalt and De Jong, 2003].
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costs to society ([LaCommare and Eto, 2004], [Reichl et al., 2013]). The electricity mar-

ket is, however, quite different from the markets for other commodities in a few respects.

First, electricity cannot be efficiently stored. As a consequence, electricity markets are

high frequency (prices can update down to 15-min intervals) and firm strategies are purer

as they are free of stock management considerations.

Second and in addition to non-storability, a generation surplus cannot be disposed

of freely.3 Thus, generation of electricity must always be matched with consumption in

real time (modulo a small tolerance). This represents a hard constraint on the market4

and forces suppliers to be reactive. However, this reactivity is costly as plant operators

incur dynamic costs when adjusting production and the larger the adjustment made, the

larger the cost. Hence, suppliers face a trade-off between cheap generation of electricity

and costly reactivity to the demand realization. Indeed, no single generation technology

exists that satisfies both cheap generation and sufficient reactivity to allow production

fluctuations at a reasonable price. Existing generation techniques are either cheap and

unresponsive, e.g. nuclear plants, or expensive and flexible, e.g. gas turbines.

Interestingly, we also observe negative prices. In France for example, during the week-

end of the 15th June 2013, the price per MWh dropped to −200e. This contrasts to the

yearly average of approx. 45e/MWh and is generally understood as a sign that sub-

sidizing consumption temporarily is cheaper for a supplier than shutting down a plant

[EPEX, 2014].5 The increase of the share of renewable generation in the energy mix

contributes to the occurrence of negative prices on the market. The intermittency of

renewables causes large residual demand shocks [EPEX, 2014]. The unreliability of re-

newable generation also means that more flexible plants (i.e. plants with lower dynamic

costs) are required to provide rapid responses to fluctuations in production from renew-

3The common assumption of free disposal as made in standard microeconomics is violated.
4Mismatches between consumption and generation ultimately result in power outages.
5“Negative prices are a price signal on the power wholesale market that occurs when a high inflexible

power generation meets low demand. Inflexible power sources can’t be shut down and restarted in a
quick and cost-efficient manner. Renewables do count in, as they are dependent from external factors
(wind, sun).”
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ables [REN21, 2013].

Furthermore, uncertainty arises from the fact that renewable production is a lo-

cal and dispersed production, but feeds into a national market with a single price.

When meteorological conditions change, the geographic production profile also changes.

This further complicates the predictability of renewables generation and contributes to

the uncertainty that electricity producers face when playing on the electricity market

[Meibom et al., 2009].

This paper explores the effect that the absolute level of uncertainty about residual

demand has on players’ strategies on the electricity market. In the light of the existence

of dynamic costs, which are inherent to the production technologies, uncertainty is costly

to suppliers as shown in chapter 1. Thus when faced with uncertainty, we expect that

electricity producers smooth production volume over time in order to minimize dynamic

costs. In a single market interaction with a symmetric oligopoly and linear demand func-

tions, this translates to playing a steeper supply function when uncertainty is high. The

detailed intuition behind the predictions tested is given in section 3.1.2.

We show that uncertainty does impact supplier strategies. However, this prediction

and result only apply locally to the central, flat and linear part of the supply bid function.

Towards the high and low volume extremities of the bid functions when capacity con-

straints start to matter, bid functions are stepper and the effect of uncertainty vanishes.

Furthermore, we observe results that indicate that demand-side bidding is also impacted

by uncertainty.

We focus on the French one-day ahead market, EPEX Spot. This market is a divisi-

ble goods auction and particularly suited for our analysis as we observe data on the full

aggregate bid functions for both supply and demand. We introduce the market’s auction

format and rules in section 3.2.
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The dataset and its sources are presented in section 3.3. We develop our identification

methodology in section 3.4. Our empirical strategy relies on the non-parametric, com-

parable point selection technique presented in chapter 3.3. We reuse the selected points

of the previous chapter for our analysis here. We present and interpret the results in

section 3.5. Finally, we discuss some overarching points in section 3.6 and conclude in

section 3.7.

3.1.1 Literature review and contribution

There exists a literature on supply function equilibria initiated by [Klemperer and Meyer, 1989].

In traditional models, firms choose between quantities (Cournot) or prices (Bertrand) as

their strategic quantities. In the intermediate case, firms choose a relationship between

quantities and prices, namely a supply function. This is the focus of the supply function

equilibrium models. A key ingredient of these models is uncertainty.

Supply function equilibrium models are very relevant for the analysis of electricity

markets, since many electricity market designs allow firms to submit a price-volume func-

tion rather than a specific price or quantity. [Green and Newbery, 1992], [Newbery, 1998]

and [Bolle, 1992] have used these models to analyze competition on the electricity mar-

kets.

These papers have contributed to a broader investigation of the competition on the

electricity markets, which has also been looked at from empirical perspectives [Wolfram, 1998,

Borenstein et al., 2002]. While those initial papers have focused on the supply function

equilibria of the market, they have abstracted from some technological specificities for

the sake for simplification.

One such aspect that we are interested in and that has been the subject of research

in recent years is the importance of dynamic costs for electricity production.
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Our first chapter extends [Klemperer and Meyer, 1989] to derive predictions on firms

facing dynamic costs in a supply function oligopoly under uncertainty. When varying

production is costly, suppliers take these costs into consideration by submitting steeper

functions when facing more uncertainty, in order to limit the range of variation in produc-

tion. [Reguant, 2011] develops a model and an empirical strategy to measure dynamic

costs on the Spanish one-day-ahead electricity market. She finds that “complex bids”,

which allow firms to minimize dynamic costs by linking production in one time period to

production in a subsequent time period, reduce the volatility and the level of prices on

the market. Her work is also unique in terms of data availability. By using individual bid

functions she is able to produce estimates of start-up and ramping costs per production

technology.

In order to quantify dynamic costs on the Australian electricity market, [Wolak, 2007]

derives a methodology to recover estimates of the parameters of parametric cost functions

at the level of the production unit. His identification is based on the assumption that

each profit maximizing supplier knows the distribution of shocks on the demand function

when playing on the market. Uncertainty is thus an explicit ingredient of his paper and

he captures two sources of uncertainty in a single index: (i) the uncertainty from not

knowing the aggregate supply function served by all other suppliers and (ii) the uncer-

tainty about the realization of the market demand. The recovered cost functions quantify

the cost of varying output. Forward contracts are useful to avoid output variations. By

comparing the observed level of forward contracting (assumed to be the profit maximizing

choice for production variation) with the theoretical minimum cost production pattern,

he does not find support for ramping costs.

We contribute to this literature by providing an empirical analysis of the French elec-

tricity market. Specifically, we look at the impact of uncertainty on supplier strategies

and take this as evidence that dynamic costs matter. Our approach to separate out
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the uncertainty from market demand expectations and predictability of renewables gen-

eration is novel. Both proxies for uncertainty used are new, uncertainty from market

demand is inferred from the prediction errors that firms make in a demand estimation

and uncertainty from renewable production is computed in a bottom-up approach from

local weather forecasts. Instead of opting for a time series regression, we understand all

hourly auctions as a cross-sectional dataset and control for the time of the day by using

continuous transition variables for daytime periods. Similarly, we control for seasonality

using continuous variables rather than dummies. Thereby, we are able to leverage our

dataset and increase the sample size for each of our regressions and improve the precision

of our estimates.

Furthermore, our work contributes to the empirical literature testing strategic be-

haviour of market participants. Generally, these studies focus on point-wise analyses for

reasons of data availability. Not only does this cause endogeneity problems when the

data used is equilibrium data, but also the analysis is restricted to an understanding of

the usually observed outcomes of the market.

In our setting, we benefit from an interesting dataset in which we observe full ag-

gregate bid functions of players. The functions describe the players’ behaviour both in

the region where the equilibrium is likely to occur as well as in regions that rarely have

an impact on the equilibrium outcome. As such, they provide a much fuller description

of the firms’ strategies. The additional information contained in the full aggregate bid

functions has been used extensively in theoretical work (notably in the supply function

equilibria literature mentioned above). However, few papers exploit these full bid func-

tions empirically.

For the government bond market, [Préget and Waelbroeck, 2005] and [Özcan, 2004]

use a parametric approach to this functional data for a description of the variation of bid

functions with respect to exogenous factors and an investigation of the revenue superior-
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ity of the uniform or discriminatory multi-unit auction mechanism, respectively. On the

electricity market, [Wolfram, 1999] leaves the analysis of equilibrium data to investigate

duopoly power of firms on the UK day-ahead spot market. Instead, she uses informa-

tion from the whole aggregate supply function to investigate the impact of price caps

for electricity producers. Using an analysis conditioned on 25 different demand levels,

she shows that the introduction of price caps resulted in a counter-clockwise rotation of

the aggregate supply function. She relates these results to produce a lower bound on

the extent to which firms can increase their prices above marginal costs when regulatory

pressure makes it advantageous to do so. Thereby, she contributes empirical evidence for

the distorting effects of price caps.

Our work adds to this empirical literature using the information contained in the full

bid functions by developing a non-parametric approach which allows to condition our

analyses on multiple, representative points of the bid functions. The statistical ingredi-

ents rely on [Silverman and Ramsay, 2005] and are detailed in chapter 3.3. Thereby we

are able to leverage our dataset, increase the sample size in individual regressions as well

as obtain a fuller picture of the effects of exogenous variables on the behaviour of elec-

tricity producing firms. We emphasize that out approach allows to overcome structural

restrictions underlying previous parametric approaches, e.g. the symmetry of the logistic

function used in [Préget and Waelbroeck, 2005].

3.1.2 Theoretical prediction

We test the impact of uncertainty of supplier strategies by testing the prediction that

suppliers bid steeper supply bid functions when faced with a larger uncertainty concern-

ing the outcome of the (residual) demand realization, for which the traditional supply

function equilibria framework provides no prediction at all, which means that our null

hypothesis, that there is no effect of uncertainty of the slope, corresponds to the regular

SFE framework.
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In a discontinuous setting, where the supplier produces volume QH of electricity in

hour H, we assume that he faces a cost function Ci(.) for each production plant i. This

cost function depends on both marginal costs of production as well as the dynamic costs

for changing production rapidly: Ci
(
(QH), (QH − QH−1)2

)
. The larger the variation in

production between hours, the larger the dynamic costs. Even when the expected residual

demand is constant, there are still fluctuations in the production due to possible shocks

to the residual demand. The larger the shocks, the larger the change in production and

thus the larger the dynamic costs. Consequently, increased uncertainty (as represented

by shocks on the demand function) translates into increased expected dynamic costs.

We assume that the profit maximizing supplier knows the distribution of shocks on the

demand function when choosing his supply function. In order to minimize these costs,

the producer can choose a steeper supply function when uncertainty is high. We want to

test this prediction.

We illustrate the intuition behind this prediction using a stylised case in figure 3.1.1.

The graphs depict a situation in which a single, risk-neutral supplier bids a supply func-

tion to supply electricity in the hours 9 and 10 of the next day. For both hours, the

supplier faces a constant expected residual demand function represented by E(D). In a

static optimization problem, the supplier would bid a supply function S0 in both auctions.

Figure 3.1.1: Illustrating the effect of increased uncertainty.

The uncertainty in the market is represented by the width of the envelope of shocks
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that affect the residual demand function (represented by the arrows on E(D)). Thus,

in each hour, the residual demand fluctuates between Dmin and Dmax, where the range

between the extremal demands may vary from one hour to the next.

Before submitting a supply function to the market, the supplier estimates the distri-

bution of probabilities of demand shocks that he will face. In hour 9, the supplier is able

to rather precisely predict the realization of the demand function in the auction, i.e. it

realises within a tight confidence interval. In hour 10, however, uncertainty in predicting

the outcome of the demand realization has grown strongly as represented by the much

wider confidence interval on the demand realization.

Given a fixed supply bid function S0, the possible range of quantities to be produced

by the supplier when going from hour 9 to hour 10 has increased due to the increase in

the size of the uncertainty (interval on the Q-axis has grown from length A for hour 9 to

the dotted length B in hour 10).

Now, we assume that the supplier faces dynamic costs, i.e. it is costly for production

to vary on top of any traditional marginal cost consideration and the larger the variation,

the larger the cost. Then in the case of a fixed supply bid function (S0 in both auctions),

an increase in uncertainty implies an increase in expected dynamic costs.

The supplier’s reaction to increased uncertainty is therefore to bid a steeper supply

function S1 in order to trade-off static optimality and dynamic effects. As a consequence,

the range of volumes produced in equilibrium is reduced (the firm produces in the range C

instead of B). When seen over time, these considerations lead to a smoother production

as compared to a constant supply curve: demand shocks are absorbed through a higher

price volatility and a lower production volatility.

If cautious behavior under high uncertainty is true for all firms on the market and
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each firm has the same expectation of the probability distribution of the uncertainty, then

the reaction of bidding a more price inelastic supply function to increased uncertainty

should be observable on the aggregated supply function.

We emphasize that this prediction relies on linear demand and supply functions and

does not incorporate capacity constraint considerations (both upper and lower bounds on

the production volume of plants), which are also important on the market. Furthermore,

we have outlined our prediction using a discrete time-setting. The continuous version of

this analysis on dynamic costs is explored in detail in chapter 1.

The present paper tests this mechanism empirically and understands an increase in

the slope of aggregate supply bid functions due to an increased level of uncertainty as

evidence that firms minimize dynamic costs across auctions.

3.2 The EPEX Spot Market

3.2.1 General background

The EPEX Spot market is an auction market, which allows firms to trade electricity

12-36h ahead of delivery. It covers France, Germany with Austria and Switzerland. The

volume traded on EPEX Spot represents 12%, 40% and 30% of the total electricity con-

sumption in these countries respectively in 2013 [EPEX, 2014].

The EPEX Spot market has considerably gained in importance over time, and the

daily trading volume has almost quadrupled since 2005, whereas the total electricity

consumption has essentially remained constant. The graph in figure 3.2.1 shows these

trends very clearly. Furthermore, it shows the significant volatility of the market trading

volume (as indicated by the width of the grey-shaded confidence interval).

On the EPEX Spot market, the participants submit supply or demand bid functions
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Figure 3.2.1: Traded volume plotted against total annual consumption
Note: Total consumption is netted of the electricity withdrawal at the level of the production

unit. The 95% confidence interval is based on a 150-days moving window and assumes that

volumes are normally distributed in the time window. GWh and TWh stand for giga and

terawatt hours, respectively.

to be able to meet their next day’s supply commitment. This market is important, be-

cause it allows the firms to adjust their portfolio to the upcoming demand. The market

matches business to business trades, where producers (the suppliers and transmission

system operators) and industrial consumers may participate.

The EPEX Spot market settles in a three-headed market that firms use to achieve

their desired power position: The long-term bilateral contracting market, the day-ahead

market and the intra-day market. Energy cannot be stored, thus a precise power position

must be achieved at each point in time. Firms thus face a trade-off between cheap up-front

sourcing and costly uncertainty. The closer the market gets to the delivery of its power,

the less uncertainty does the firm face in determining its power requirements (pushing

firms to wait until the last minute to fill their energy position). However, the imperfect

flexibility of the electricity production landscape cannot satisfy the whole demand short-

term at a reasonable price, hence firms must anticipate their requirements in order to

obtain cheaper power. Consequently, these three markets complement each other to allow

firms to gather a power position at a reasonable price.
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3.2.2 Auction rules and mechanism

We present the rules here that applied during the period for which we have data.

The EPEX Spot auction occurs daily, all year-round, and proceeds as follows: the or-

der book closes every day at noon for contracts of the following day, results are published

two hours later. Bids may be submitted 24/7 from 45 days prior until the closing of the

books.

Tradable contracts exist for each hour of the day and firms submit an individual bid

function for each of these hours, i.e. a separate, simultaneous auction is run for all hours

of the following day and trading is specific for each of these hourly tranches.

The bid submission must be a supply function (or a demand function depending on

the position of the firm) with at least 2 and at most 256 price/quantity combinations for

single contract orders. The final bid function, thus, consists of the explicitly submitted

points and all linearly interpolated points between them. The bid curves must be mono-

tonically increasing for a supply function and vice versa for a demand function. Orders

are transmitted via an online IT-platform and a redundant confirmation process aims to

avoid erroneous bids. Bids are anonymous, and the final electricity distribution is done

via the French distribution network controlled by RTE EDF Transport SA.

Prices are specified ine/MWh with two decimal digits and must range from -3000e/MWh

to +3000e/MWh. Quantities are specified in whole MWh. In addition to single contract

orders for an individual hour, bidders may submit block orders.

These are combined single contract orders with a minimum of two consecutive hours.

The vital difference with multiple single contract orders is the ”All-or-None” condition,

namely that the executions of the individual contract orders forming the block are de-

pendent on one another. That is for a block order covering hours 17 to 20, the quantity
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demanded for the hour 17 is only awarded if the corresponding quantity is also awarded

for the hours 18, 19 and 20. Each registered bidder account is limited to a maximum of

40 block orders per delivery day, each of which is limited in volume to 400 MWh (approx.

equal to 0.25% of total daily volume traded on EPEX Spot).

The price-quantity determining mechanism is a uniform price, multi-unit auction

mechanism: the summed demand and supply curves are computed and the intersection

of these gives the equilibrium price and quantity pair.6 The market clearing mechanism

takes into account single and block orders simultaneously and hence solves the corre-

sponding programme by an algorithm of full enumeration of possible solutions, where

each partial solution is verified to provide real, compatible prices. The mechanism works

under a time limit. In the case of a curtailment, i.e. a disequilibrium with dispropor-

tionate prices due to unmatched supply and demand or an abnormal price for a specific

hourly contract, the system proceeds to a second price fixing.

Of particular interest is the clear distribution of information. Ex-ante bidding, firms

in the market know the identities of the rival bidders they face (but neither their individ-

ual bid functions nor their results in past auctions), the history of aggregated equilibrium

prices and quantities up to that day, their clients’ past demand realizations and their

individual long term contracting position. Upon the clearing of the market, the aggre-

gated supply and demand bid functions, equilibrium quantity and the equilibrium price

6

The Auction takes place daily, after the Order Book has closed. The price corresponds to
the Matching of Exchange Members’ aggregate supply and demand curves of both Single
Orders and Block Orders for each Contract. The price determined by the algorithm at the
time of Auction is the price at which all Trades will be executed. For price determination
purposes, the Exchange Member’s interest is assumed to be linear between two price/quan-
tity combinations. The price determination algorithm aims at optimising the total welfare,
i.e. the seller surplus, the buyer surplus and the congestion rent including tariff rates.
The algorithm determines the execution prices, the matched volumes and the net positions
of each coupled market if applicable. It also returns the selection of blocks that will be
executed and other complex Orders allowed in other Coupled Markets1 if applicable. The
presence of all-or-none Block Orders in the Order Book makes necessary the use of a specific
search algorithm, in order to determine a market clearing price.

[EPEX, 2018b]
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become common knowledge. Each bidding account is informed of the contracts it has

been awarded, i.e. the individual quantities to be sold and bought through the system.

3.3 Our Data Explained

Auction market data

We have data from the French EPEX Spot market for the period 01.01.2011 to 30.06.2013.

This is the latest period, where no significant changes in the auction rules have occurred

and where data for all variables can be observed.

We observe the full aggregate bid functions for the day-ahead auctions of each hourly

contract for both supply and demand. We understand the dataset as a cross-section

rather than a time-series7 and focus on weekday trading contracts only. This sums up to

about 31 500 observations.8 A single aggregate bid function is the sum of the individual

bid functions, which are not available. We also observe the equilibrium price and quantity

for each auction. Moreover, we observe the block bidding results at the equilibrium solu-

tion only. We ignore the blocked aspects and treat subsequent auctions as independent

from one another.

The two graphs in figure 3.3.1 show the aggregate supply and demand bid functions

for the same hour of the same day. For a glimpse at the variation of bid functions over

time, see figure 3.3.2. The table 3.1 sheds some light on the raw data. For further details

as well as the plotted distribution of realised market equilibria, refer to appendix 3.B.2.

Finally, we reuse the data output from chapter 2. Specifically, we reuse the specific

points extracted from the aggregate demand and supply bid functions, which are com-

parable across auctions. Why these points are useful for our analysis is explained in the

7This is supported by the graph in figure 3.2.1, which shows a flat total consumption and average
trading volume on EPEX Spot since 01.01.2011.

831 500 observations ≈ 2.5 years of hourly (∗365 ∗ 24) demand and supply (∗2) functions for weekday
trading (∗5/7).
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methodology section 3.4.
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Figure 3.3.1: Example aggregate demand and supply bid functions
Note: The right-hand-side graph is a zoom of the left graph on for the price range −50e/MWh

to +100e/MWh.

Figure 3.3.2: Aggregate bid functions for 20 consecutive days

Note: The graph shows 20 consecutive aggregate demand and supply functions for the contracts

on hour 1 (between 12 am and 1 am) for the time period 11/12/2011 to 31/12/2011. The graph

on the right is a zoom on the price elastic region of the curves on the left.
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Mean Median Std. Dev Min Max

Total daily volume 161,912 159,313 25,059 99,054 277,531

Average realised daily price9 46.6 48.3 17.2 -39.0 381.2

Minimum demanded agg. volume10 5,030 4,968 1,467 914 11301

Maximum demanded agg. volume 13,327 13,222 2,212 4,990 23,254

Minimum supplied agg. volume 3,721 3,526 1,344 618 10594

Maximum supplied agg. volume 14,390 14,142 3,051 6,580 35,356

Bid points per demand function 543 531 163 115 1,253

Bid points per supply function 640 632 143 184 1,283

Bidders per auction11 - - - 1 101

Table 3.1: Some descriptive statistics

Exogenous factors

Regarding weather statistics, we have hourly previsions for temperature, wind and cloudi-

ness from the GFS (Global Forecast System) as well as hourly observations for these

quantities and luminosity from MétéoFrance . The previsions from the GFS are in the

form of weather maps that are outputted from simulations that run one-day ahead at

6 am. This is the weather information that market participants have access to when

bidding on EPEX Spot.12 The weather observations are in the form of tables for specific

weather stations (between 100 and 200 depending on the specific parameter of interest).

Moreover, we have the location of the total installed capacity per generation type

9Average price is volume weighted over the 24 hourly contracts of the delivery day.
10Minimum and maximum volumes for both demand and supply refer to the aggregate volume bid on

the market for a single hour contract at the extremal prices of +3000e/MWh or −3000e/MWh.
11Due to the anonymity of the auction procedure, it is unknown which bidders submitted bids. Con-

sequently, it cannot be deduced how many bid steps a typical bidder submits. Number of registered
bidders for the French EPEX Spot market as of 01.10.2014.

12The next weather simulation run takes place at 12 noon and is therefore not being used by the
bidders on the EPEX day-ahead market, as the deadline for submitting bids is precisely 12 noon.
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(i.e. wind turbines, solar panels, etc.) at the level of the postcode, that is roughly a

3km precision. We obtain this data from the SOeS, a branch of the French government

producing data on environmental issues at large.

Population data and data on the level of the domestic production from the manu-

facturing industry is obtained in monthly steps from the French National Institute of

Statistics and Economic Studies (INSEE). From the same source, we obtain the spot

prices for petrol and natural gas as well as the import prices at the border for coal, which

we use as a proxy for the domestic prices. Prices for the European CO2 emission certifi-

cates are taken from the Portuguese secondary market (SENDECO2) for European Unit

Allowances (EUA).13

As a very coarse proxy for generation from hydro power plants, we have the total

weekly stock of water in domestic dams (in the form of the summed height of all dam

water levels in France) from RTE the grid operator.

3.4 Methodology

We want to identify the impact that the level of uncertainty has on the price elasticity

of the aggregate supply function. In data terms, this means that we aim to regress the

slope of (aggregate) supply bid functions on a proxy corresponding to the uncertainty

that existed at the time of bidding. The uncertainty may come from two different sources:

(i) uncertainty about the realization of market demand and (ii) uncertainty on the gener-

ation from renewables. Both types of uncertainty affect the residual demand curve faced

by each supplier.14

This regression is able to explain how supply firms adjust their bidding strategies to

the expectation of demand shocks that they face. Statistical significance of the level of

13Each unit EUA permit allows one tonne of CO2 emissions.
14Renewable generation benefits from a feed-in guarantee on the market and thus reduces the residual

demand for all traditional electricity producers.
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uncertainty on the slope of the supply function would be evidence that firms take the

strategic considerations of dynamic costs into account.

First, in section 3.4.1 we show the final regression of interest. Sections 3.4.1 and 3.4.1

then detail the theory and empirics underlying the variables that feed into the final re-

gression.

Some of the information used in our analysis is drawn from the bid functions of the

EPEX Spot market. As introduced in section 3.3, we observe the full aggregate bid func-

tions for both supply and demand, the shape of which (and thus the information that

we aim to extract from them, e.g. their slope) varies differently at different points (recall

the graphs in figure 3.3.2).

Generally speaking, a regression aims at quantifying the impact of some independent

variables on a dependent one. The dependent variable is most frequently numerical, and

the independent variables explain part of its value. Here the dependent variable is func-

tional in nature, that is that we aim to describe how the supply function changes shape

with respect to some independent variables. One observation is formed of one function

coupled to the value of some independent variables. We therefore adopt a functional data

analysis approach, which allows us to condition our analysis at specific points k = 1, .., K

of the functions. This approach allows us to define comparable points across auctions,

that is different functions, in order to derive insights.

More precisely we want to quantify how uncertainty affects the strategy of bidders

from one hour to the next. For this we cannot rely on a standard estimation of the overall

demand or supply functions from market outcomes, we want to actually measure how the

functions that we observe change shape.

The methodology to select comparable points across auctions is detailed in chapter 2.
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This appendix also evaluates the results when applying the technique to our data from

the EPEX Spot market. Figure 3.4.1 shows the selected points on an exemple of demand

and supply curve.

The different types of points selected capture different information of the aggregate

bid functions. The most important point is the one we label k = 3, which corresponds to

the central part of the bids. This point is most relevant for equilibrium determination.15

The points k = 2, 4 are the points of maximum curvature and represent the transition

points between the central (very price elastic) region and the outer (very price inelastic)

regions of the bid function. Last, we have the points k = 1, 5 which are imposed by the

auction rules and are the endpoints of the bid functions.

Figure 3.4.1: Selected points on original bid functions
Note: The demand function left, the supply function right, the graph superposes and
names the points selected according to the methodology of section 3.4.

In chapter 2, we also detail the choice of setting K = 5 and show that this choice

allows us to improve the precision of our analysis by a factor of 50 when it is conducted

on the 5 points simultaneously.16

15See figure 3.B.2 for a glimpse at the distribution of equilibrium outcomes.
16We briefly mention that the evaluation of the point selection has revealed focal price points for the

points k = 2, 4. These points are however rarely relevant for equilibrium determination.
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3.4.1 Regression methodology

Identification

At each of these comparable points, we want to identify the effect of uncertainty on the

slope of the supply function.

Defining S ′i,k the slope of the supply function of auction i at point k in the quantity

(X-axis) - price (Y-axis) dimension, XS being the vector of exogenous variables, PLUD
i,k

being the proxy for the level of demand uncertainty, PLUR
i being the proxy for the level

of uncertainty from renewables, what we called the width of our possible shocks in the

first chapter, α being the regression constant and ε being the error term, we estimate the

following:

S ′i,k = αSk + βSk PLUD
i,k + γSk PLUR

i + δSkX
S
i + εSi,k (3.4.1)

We are interested in the sign and magnitude of the coefficients βS and γS, which

identify the effects of the PLUs (PLUD and PLUR, respectively) on the shape of the

supply bid function. From the predictions outlined in section 3.1.2, we expect a positive

coefficient when uncertainty levels increase.17

Left-hand-side variables

We extract the slope of the aggregate supply function at any given point k from a kernel

density estimation with a bandwidth of 45 units.18

Effectively, this is a smoothed version of the slope. This makes our slope esti-

mates robust to steps in the bid function19, which in turn allows us to test the pre-

17Specifically, we want βS to be positive, γS1 positive and γS2 negative. For details on γS , see section
3.4.1.

18The slope is a by-product of the point selection mechanism, and the bandwidth selection for the
smoothing thus follows the same considerations as for the latter. The details of this choice are specified
in chapter 2.

19In our data, we observe that bid functions are effectively step functions. On EPEX spot 256 price-
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dictions from the theoretical paper. Steps in the bid functions mostly are much larger

towards the extremities of the bid functions and probably arise from capacity con-

straints considerations. Working with smoothed slopes is in line with previous work à la

[Préget and Waelbroeck, 2005] and [Özcan, 2004], who also apply reduced form models

to aggregate bid function data.

Right-hand-side variables

We are regressing an ex-post measure of the auction market (realised slope of the supply

bid function) on ex-ante information that bidders have at the time of bidding, i.e. which

is available at midday of the day ahead of delivery. We thus keep a strict separation of

the ex-post and ex-ante information to the left and right hand side of equation 3.4.1,

respectively. This separation allows us to circumvent endogeneity problems and validates

the use of simple OLS regressions.

For this reason, we construct our PLUs on the basis of predicted uncertainty. How-

ever, for data availability reasons we cannot exclude endogeneity problems completely.

For details, see the discussion in section 3.6.3.

In this subsection, we first outline how we generate the proxies for the level of market

demand uncertainty (PLUD) in section 3.4.1. Second, we construct the proxies for the

level of uncertainty from renewables energies (PLUR) in section 3.4.1. Third, we detail

how the vector of exogenous variables (X) is constructed in subsection 3.4.1.

Generating proxies for uncertainty from market demand (PLUD) We con-

struct a proxy for the level of the demand uncertainty (PLUD) by using the residuals

from a demand estimation on exogenous parameters as a measure of the uncertainty that

quantity combinations are allowed per bidder. When additional bid points are costly, then stepwise bid-
ding behaviour may be very different from a setting where continuous functions can be bid [Kastl, 2011].
Due to the fact that, on average, we do not observe that firms use up all available price-quantity com-
binations, the cost argument of an additional bid point seems weak. Hence, by smoothing the slope we
approximate the unconstrained, continuous bid function.
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bidders face in an auction. Specifically, our PLUD is the expected squared level of the

prediction errors that firms expect to make when anticipating the demand level of the

day ahead. We assume that the ex-post prediction errors give a reasonable estimate of

the uncertainty at the time of bidding.

The uncertainty proxy is obtained as detailed next in a three-step procedure. In the

first step, we explain what kind of uncertainty our PLUD refers to. The second step

details the conceptual details of constructing the PLUD. The third step computes the

PLUD.

In the first step, we focus the analysis to a fixed number K of comparable points

across auctions by using the non-parametric point selection technique outlined in section

3.4. Each kth point is defined by a price and a quantity, which we regress independently

on the exogenous variables.

Let us call PD
i,k and QD

i,k the price and quantity of point k of the realised demand

function in auction i, XD
i the vector of exogenous variables relevant for the demand

estimation.

PD
i,k = αD,Pk + βD,P

k XD
i + εD,Pi,k (3.4.2)

QD
i,k = αD,Qk + βD,Q

k XD
i + εD,Qi,k (3.4.3)

In regressions 3.4.2 and 3.4.3, firms try to anticipate the realization of the demand using

the exogenous information available. We consider that the producers are able to do such

an analysis at the time of bidding.

The prediction errors εD,Ji,k , J = {Q,P} are a consequence of the stochastic nature

of the demand and hence a manifestation of the uncertainty. We consider that more

uncertainty will lead to larger prediction errors being made in equilibrium and adopt the

square of the residuals
(
εD,Ji,k

)2
as our measure for the realised level of demand uncertainty.
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In the second step, we recover the residuals from the demand estimation in regres-

sions 3.4.2 and 3.4.3 and test for heteroskedasticity using [White, 1980], which is clearly

confirmed (see tables 3.3 and 3.4).

Heteroskedasticity means here that the variation of error terms varies conditional on

the levels of the exogenous factors: E(ε2i |Xi) = g(Xi). However, they are still orthogo-

nal: E(εi|Xi) = 0, thus ensuring that the prediction is unbiased, but not “best” in the

sense of the best linear unbiased estimator (BLUE). Thus, heteroskedasticity results in

inefficient regressions where the estimator is not minimum variance. Since we do not

interpret regressions 3.4.2 and 3.4.3 for causality, but only for predictive purposes, we

stick to the unbiased OLS.

The heteroskedasticity regression is given for J = {P,Q} by

(
εD,Ji,k

)2
= αU,Jk + βU,Jk XD

i + εU,Jk (3.4.4)

In the third step, we compute the predicted PLUD
i,k that firms use when bidding

in the auction as:

̂(
εD,Ji,k

)2︸ ︷︷ ︸
P̂LU

D

i,k

= αU,Jk + βU,Jk XD
i (3.4.5)

The idea is that by experience, firms in the market know that their predictions are more

or less accurate depending on the environmental conditions (in the sense of realizations of

exogenous factors). In other words, firms can use the realizations ofXD to infer the accu-

racy of their demand predictions. Technically speaking, they can use the heteroskedastic

nature of the residuals to forecast the level of uncertainty that they face.

The PLUD subs into regression 3.4.1. For simplicity, we do not include the uncertainty

proxies PLUD
i,k measured at all K = 5 points in regression 3.4.1 simultaneously, but only

a single PLUD
i,k at a time. Therefore in the final regression 3.4.1, we regress the slope

at a point of the supply function on the PLUD
.,. estimated at the corresponding point on
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the demand function. The pairing is done in the quantity dimension. This means that

the slope of the supply function at point k = 2 is regressed on the uncertainty measured

at point k = 4 of the demand function (recall the labelling of the points as given in

figure 3.4.1). We indicate this quantity paring in the index k−1 of the PLU:

PLUD
i,k = P̂LU

D

i,k−1 (3.4.6)

An increase in PLUD
i corresponds to an increase in the uncertainty about the market

demand realization. We thus expect βS to be positive in regression 3.4.1.

Generating proxy for uncertainty from renewable energies (PLUR) We

have already referred to the statement that the intermittency of renewables causes large

residual demand shocks [EPEX, 2014]. Suppliers are thus wary of the expected produc-

tion of renewables generation.

Given that renewable generation is an exogenous source of supply and is completely

injected on the network without being bidden for (fixed feed-in tariff), it affects the resid-

ual demand curve for each supplier, but does not enter the PLUD, which captures the

uncertainty on market demand only.

In predicting the generation from renewables, we assume that suppliers are able to

infer renewables generation from meteorological forecasts.20

When forecasting the residual demand shocks due to generation from renewables, we

consider that suppliers have an idea of the precision of their estimate based on the “look”

of the meteorological forecasts that they have. By look, we mean the geographical het-

erogeneity or homogeneity of the forecasts, i.e. if when looking at a weather map, one

sees a lot of spatial variations or not.

20We specify the technique in chapter 2 and use it to construct our controls in section 3.4.1.
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We consider that this notion of geographical heterogeneity of the forecasts correlates

to the uncertainty associated with the prediction of renewable production. The argument

is as follows:

First, renewable production is built by aggregating the forecast of all individual re-

newable sources. This means knowing the position and capacity of every renewable source,

querying weather forecasts for all of these points, modeling the renewable’s response to

the forecasted weather and adding the forecasted productions.

Second, we note that weather is spatially correlated, which means that the closer two

points are, the closer the values for a given weather variable (the air temperature at your

left hand is very close to that at your left hand, but less so across the city, and even less so

across the country). This correlation roughly follows an exponential law: the difference

between the values of a weather variable between two points behaves in a linear fashion

for small distances and saturates at large distances.21 The transition between those two

regimes is given by a characteristic lengthscale, a bit less than 200km on average.

Third, we observe that the average distance between production points is large

enough that the relevant regime of autocorrelation is the saturated part.22

Fourth, we note that there are two main channels through which the overall uncer-

tainty about renewable production is related to the weather. There is an issue of error

averaging, which means that if the weather becomes very spatially uncorrelated, one can

expect errors to cancel out relative to a given bias in the forecast. This channel would

21Intuitively, the characteristic lengthscale of autocorrelation represents the distance required between
two geographical points on a map of weather forecasts to observe a decorrelation of half of its maximum
value. For example on the wind speeds prediction, a characteristic length of 80 km means that if we
observe two very distant points (say 1000km) to have a difference in wind speeds of, on average, 50km/h
(this being the maximum difference, we are in the saturated regime), then we will observe, on average,
wind speed differences of 25km/h for points distant from each other by 80km.

22For N production points, we compute the N(N-1)/2 pairs of points, consider their distances and
compute the average of these distances weighted by the production capacity at every point. In the case
of the wind, we have an average distance of 459 km, in the case of the photovoltaic production we have
an average distance of 499km.
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tend to imply that more spatial variations imply a smaller uncertainty about production.

There is also the issue that weather forecasts are numerical simulations and that the mesh

size for such simulations, typically 5km for the high precision ARPEGE model of Météo

France, implies that the errors are higher as the simulated phenomenons have higher

gradients. This means in our case that the uncertainty about the forecast increases as

the weather becomes more spatially uncorrelated.

Fifth, these two effects are of opposite signs, but our third point is an argument for

considering that the averaging of errors is smaller than the simulation errors. Therefore,

we expect our uncertainty to increase as the spatial autocorrelation decreases (i.e. more

spatial variation).

This can be summed up with the following hand-waving argument: when there is

more spatial variations, the weather is more messy, therefore more difficult to predict.

We compute this characteristic lengthscale (L) as described in chapter 2. Our PLUR

is defined as the two proxies

PLUR
1,m =

1

Lm
, where m = {Wind, Solar, Temperature} (3.4.7)

and PLUR
2,m =

( 1

Lm

)2
(3.4.8)

As explained above, we expect firms to face less uncertainty in predicting weather

conditions when the lengthscale of autocorrelation L is longer since the overall weather

conditions will be more homogenous. A longer length L (less uncertainty), will yield a

smaller PLUR and we expect a flattening of the supply curve. I.e. we expect a positive

coefficient γS1 on the PLUR
1,m variables in the final slope regression.

However, we also expect the effect of L on the slope to be attenuated, if not coun-
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terbalanced, by the squared term.23 This means that for very small L, we expect an

additional effect, that of the summation of errors, to become significant and reduce the

uncertainty, or at least its rate of increase: we thus expect a negative coefficient γS2 on

the squared PLUR term in the final slope regression (equation 3.4.1).

Controls This section details the exogenous variables, which we use for our study.

The stacked vector of exogenous variables is not identical for the supply and demand

regressions of equations 3.4.1 and 3.4.2.

The vectorXD for the demand equation includes the variables: Tempeff15, Roll Temp24,

Roll Temp240, suncycle, morning, deltasun, EWH, SolarRest, RteBlackBox.

For the supply regression we include in XS the following variables24: Coal, Brent,

Gas, IT2, EUA, Wind1DA, Hydro.

Table 3.2 gives a brief overview of the controls used. Details on the computation of

some variables are given in the appendix (see links in table). The last column indicates

the frequency with which we observe the variable in question.

Name Explanation Unit Frequency

Wind1DA The day-ahead predicted electricity volume gen-

erated from wind turbines. Details on p. 111.

MWh Hourly

Solar The electricity volume generated from photo-

voltaic sources. Details p. 115

MWh Hourly

Continued on next page...

23We expect the effects of L on the slope to be of the shape of a Laffer curve.
24We do not include the variables used for the demand estimation as they indirectly feed into the final

regression via the PLUD.
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... table 3.2 continued

Name Explanation Unit Frequency

Tempeff15 Effective predicted temperature in France (with

a cutoff point at 15oC to reflect demand pat-

terns), aggregated on a national level. Details

on p. 114.

oC Hourly

Roll Temp24 Mean of Tempeff15 over the last 24 consecutive

hours.

oC Hourly

Roll Temp240Mean of Tempeff15 over the last 240 consecu-

tive hours.

oC Hourly

suncycle Luminosity as a percentage of maximum lumi-

nosity of the day. Midday defined as suncy-

cle=1. Details on p. 117.

% Hourly

morning Indicator variable for hours before Midday. {0, 1} Hourly

deltasun Absolute value of the change in suncycle. De-

tails on p. 117.

[0, 1] Hourly

EWH Indicator variable for hours between 10 pm and

4 am.

{0, 1} Hourly

SolarRest The unexplained component of photovoltaic

generation. Specifically, the residuals from a

regression of Solar on suncycle. Details on p.

117.

MWh Hourly

Continued on next page...
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... table 3.2 continued

Name Explanation Unit Frequency

RteBlackBox The unexplained component of the day ahead

prediction of total consumption in France is-

sued by the grid operator (RTE). Specifically,

the residuals from a consumption estimation.

Details on p. 118.

MWh Hourly

Coal Average coal import prices at the French bor-

der.

e/ton Monthly

Brent Average of spot prices for crude oil on the Lon-

don based stock exchange.

$/bl Monthly

Gas Average of closing prices for natural gas at 1

month on the London market (NBP).

£/ThermMonthly

IT2 Interaction term between gas and demand: Gas

weighted by an hourly index for the demand

level 25

£/ThermHourly

EUA Price of CO2 emissions. e/ton Daily

Hydro Sum of dam level heights on a national level. % Weekly

Table 3.2: Overview of exogenous variables.

The rationale for the included variables is the following:

25Gas turbines generate electricity using natural gas as a fuel. We thus proxy for its input price using
a Gas variable for which we take the closing price for natural gas at 1 month on the London market
(NBP). Electricity generation from gas is expensive and flexible. In general gas plants are only called
upon to provide peak load electricity generation in moments of high demand. We, therefore, compute
an interaction term between Gas and an index for the hourly level of the demand. The index acts as
a weight on the gas price. The weight is computed as the percentage demand level as compared to the
maximum demand level observed in our dataset.
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First, Wind1DA and Solar control for the expected level of renewables generation26

on the day ahead market. These are computed using a novel bottom-up methodology

described in the appendix 2.3.1.

Second, Tempeff15 controls for the demand patterns as a function of the tempera-

ture.27 Tempeff15 includes a cut-off at 15oC in order to take into account the demand

pattern as a function of temperature according to [RTE, 2014]. Table 2.2 reveals the

improved fit over a simple temperature variable without respecting the demand cut-off

(Tempeff).

Third, Roll Temp24 and Roll Temp240 capture the demand seasonality via the tem-

perature. The former gives the daily average temperature, while the latter captures the

average temperature over the last 10 days. The demand cut-off at 15oC for Tempeff15

is respected for these means. Including these as seasonality controls allows to get away

from using dummy variables for the seasonality. In short, avoiding dummies yields more

transparency of the results as we do not have the problem of interpreting the dummies,

which are often black boxes.28

Fourth, we use the four variables suncycle, morning, deltasun and EWH collectively

to continuously control for the time of the day. The reasoning is again the ability to get

away from using dummies and being able to interpret the results. Figure 3.4.3 shows how

the controls describe the daily patterns continuously.

Fifth, SolarRest and RteBlackBox are the residual information gained from the vari-

ables Solar and the day ahead consumption prediction of RTE (PrevConsoH) over other

variables included in XD or XS, respectively.29

26For data availability reasons, Solar is computed on realised luminosity values rather than forecasts
of luminosity.

27Note that electric heating is widely spread in France. It is used in 32% of principal residences
(INSEE, RP2011 exploitation principale).

28See section 3.6.2 for a full discussion on the advantage of avoiding dummies.
29E.g. Solar is strongly correlated with suncycle, thus SolarRest is the residual from a regression of
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Figure 3.4.2: Temperature based seasonality controls

Note: The graph shows the evolution of the temperature based controls for seasonality
for the month of February 2012. The graph shows the lagged nature of the rolling average
temperature controls.

Figure 3.4.3: Continuous controls for daily patterns

Note: With the exception of EWH, all intraday seasonality controls (suncycle, morning,
deltasun) are determined endogenously by the prevalent luminosity as captured by Solar.

Sixth, Coal, Brent, Gas, IT2 and EUA are rough proxies for the input prices for electricity

suppliers. Hydro is used as a crude proxy for dam operator’s ability to generate short

term electricity using hydro reserves.

We briefly emphasize that novel methodologies have been used to compute all vari-

ables derived from weather forecasts or observations. When tracing back the shape of

aggregate bid functions on exogenous factors in the second stage estimation, we use ag-

gregated statistics (at the national level) for the exogenous variables. We thus use an

the former on the latter. RteBlackBox is computed as the residuals from regressing PrevConsoH on
Tempeff15, Roll Temp24, Roll Temp240, suncycle, morning, deltasun and EWH. See appendix 2.3.2 and
2.3.2 for details.
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aggregation methodology to summarize local information (collected at the level of the

individual postcodes) in order to generate an aggregate statistic at the national level.

The general methodology for the aggregation is explained using the example of Solar

and as follows: We observe the value of a weather parameter (e.g. luminosity) every

hour at known weather stations in France. We apply an interpolation technique in order

to obtain parameter values for all possible geographic locations in France. At any local

point, we can thus infer the electricity volume generated by using the information of the

locally installed capacity (of solar panels) and the renewable energy available (i.e. sun-

light inferred by the inverse of nebulosity). We then take the sum of all solar generated

electricity per hour in France and use this as our aggregate statistic at the national level in

our regression analyses. We used forecast data wherever possible in order to approximate

the level of information that bidders have at the time of bidding and circumvent endo-

geneity problems. For cases where forecast data was not available, e.g. Solar, realised

weather data was used.

Extensions and robustness checks

In order to test the robustness of our results and circumvent some drawbacks of the

baseline model, we use a few alternative specifications of our empirical model.

Bootstrapping standard errors

The set-up of our empirical analysis relies on stochastic variables, e.g. PLUD, which

are computed in the first stage of our identification. The assumption made for an OLS

regression of normally distributed residuals is a very strong one (particularly with the

forecast variable) and one which can flaw the precision of estimates in the second stage

regression. We therefore bootstrap the standard errors of the final regression by using

random sampling with replacement at each stage of the analysis, i.e. for both the PLU

computation and the final slope regression with 300 repetitions.
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Bootstrapping allows us to non-parametrically approximate the distribution of the

forecast PLUs and thus enables us to correct the standard errors of our coefficient esti-

mates.

Kernel based uncertainty forecasts (PLUD) The PLUD computed as described

in section 3.4.1 is noisy since we assume a linear forecast model to be valid for any com-

bination of realizations of exogenous paarameters, i.e. the same model applies winter

and summer, day and night. While the results are as desired for the baseline PLUD, a

bootstrapping of the standard errors indicates that the first stage forecast is too imprecise

for effects of a satisfactory significance level.

We therefore develop an extension of the uncertainty prediction model in which we

use the idea of demand forecasts (equation 3.4.5) only locally, i.e. for a limited range

of variation in the exogenous parameters. In other words, we estimate the PLUD corre-

sponding to an auction only in the neighbourhood of this auction, i.e. over all auctions

that occurred in similar conditions. By conditions, we mean realizations of exogenous

parameters, and the neighbourhood refers to the concept of measuring the similarity of

these realizations by means of a range. The next step explains how this is done formally.

We consider that firms predict the level of the uncertainty by comparing it with the

level of uncertainty in past30 auctions of similar exogenous conditions. The methodology

is analogous to the computation of the baseline PLUD. The suppliers forecast the preci-

sion (squared residuals) of their demand estimation as before, but only on a subsample of

the data. The subsample is defined as all observations which lie within a distance bXe of

the observation of interest with respect to each control variable Xe, ∀e = {1, .., E}. Effec-

tively, this is a multi-variate kernel regression and subsequent forecast with a rectangular

(also called “boxcar”) weighting function. Observations within the kernel window are

given equal weight, while observations outside the kernel window are given zero weight.

30For data availability reasons, we pool all (past and future) auctions for the computation of this PLU.
This introduces some endogeneity. For a discussion of this choice, please see section 3.6.3.
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We set the bandwidth bXe with respect to each variable equal to 1
3

of the range of that

variable.31

At any arbitrary observation (auction) with the realization X̃ for the stacked vector

of exogenous variables (Xe), the simple weight function is

W (X) =
∏
e

W (Xe) , where W (Xe) =


1, if |X̃e −Xe| ≤ bXe

0, otherwise.

(3.4.9)

and the subsample based regressions are then

PD
k (X) = αD,P

k,X̃
+ βD,P

k,X̃
W (X) + εD,P

k,X̃
(3.4.10)

QD
k (X) = αD,Q

k,X̃
+ βD,Q

k,X̃
W (X) + εD,Q

k,X̃
(3.4.11)

and the local uncertainty regressions and forecasts ∀J = {P,Q} are given by

(
εD,J
k,X̃

)2
= αU,J

k,X̃
+ βU,J

k,X̃
W (X) + εU,J

k,X̃
(3.4.12)(̂

εD,J
k,X̃

)2

︸ ︷︷ ︸
P̂LU

D

k,X̃

= αU,J
k,X̃

+ βU,J
k,X̃
X̃ (3.4.13)

When firms infer the upcoming uncertainty by looking at the uncertainty in past

auctions, the precision of their estimate depends on the number of comparable auctions

available, i.e. the sample size. Given that the sample size varies greatly across auctions,

we use a sample-size-weighted OLS regression in the final estimation of equation 3.4.1.

Finally, we bootstrap the standard errors on the kernel-based PLUs using 50 repetitions.32

31See appendix 3.B.1 for details. Column 2 of table 3.14 indicates the choice of bXe
for each exogenous

variable considered.
32For computational reasons, we only bootstrap the kernel based PLUs for the point of inflection

(k = 3). We choose only 50 repetitions for the same reason. Given the size of our dataset, we consider
it acceptable. The general criterion for convergence is that each observation is selected at least once in
the bootstrapping exercise.
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3.5 Results

We first present the results for the demand estimation in both the Price and Volume

dimension since this step is identical for all PLU specifications. We then present the

results of the final regression in the baseline and alternative specifications.

3.5.1 Demand estimation

Table 3.3 gives the results for the demand estimation on volumes (equation 3.4.3). Table

3.4 shows the results for the demand estimation on prices (equation 3.4.2).

These tables are interesting for two reasons. First, they provide the basis for our

computation of the PLUD. Second and the reason why we disclose them in such detail,

they are already a result in themselves.

It is comforting to see that all variables used are significant and, more importantly, of

the expected sign. This significance provides support for our specification of the demand

estimation. For the interpretation here, we focus on the effects at the point of inflection33

(k = 3).

First, looking at the volume effects of the exogenous variables: All variables included

in the regression are highly significant at the 1% level. All temperature statistics (Temp-

eff15, Roll temp24, Roll temp240) bear coefficients with a negative sign and confirm that

electricity demand falls with increasing ambient temperature. All daytime controls show

up the expected sign as well: suncycle and deltasun have positive coefficients. This is sen-

sible as electricity demand is higher during the day than at night (proxied for by suncycle)

and rush or activity hours (proxied for by deltasun) in the morning and evening are also

characterised by increased demand. The variables morning and EWH have coefficients

of a plausible negative sign. The morning as controlled for by our indicator variable34

33As mentioned, the point of inflection is the centre point of the bid curves and the most relevant for
equilibrium determination.

34The morning is defined as the hours before midday, which occurs when luminosity is at its daily
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is shorter than the afternoon and evening together, thus total electricity consumption is

lower as well. EWH stands for the deep night between 10 pm and 4 am and thus also

corresponds to low demand periods. SolarRest controls for selfgeneration to cover own

consumption and has a plausible negative coefficient. RteBlackBox, on the other hand,

has a very sensible positive coefficient and confirms that actual demand is higher when

the grid operator expects it to be the case.

The analysis of the price effects of these controls on demand functions is in line with

the analysis of volume effects. This is coherent since for a linear downwards sloping de-

mand curve, a left shift (volume decrease) is synonymous for a downwards shift (price

decrease) of the curve. We consider that at the point k = 3, the demand functions are

locally linear. We note the only exception for the coefficient of SolarRest which has a

positive price effect, while a negative volume effect.35

Second, these tables already give a descriptive analysis of the effects of exogenous

variables on the shape of the demand bid function: We now compare all coefficients for

a specific variable on the K = 5 different points on the demand function (we read the

table horizontally and compare sign changes across columns).

In table 3.3, we observe for each row at most a single sign change across the coeffi-

cients for the different points. Furthermore (and with few exceptions), the magnitudes

of the coefficients generally increase or decrease monotonically along a row. This is very

convincing as it suggests that exogenous variables have a monotone effect on the shape of

the bid function. We thus only observe one-directional shifts (e.g. a unilateral left shift)

or two-directional shifts (extension or contraction) in the volume dimension induced by

the variation in exogenous variables. While the unilateral effects are explained analo-

maximum.
35We emphasize in the construction of our variable (appendix 2.3.2) that it is not possible to build a

proxy for lighting consumption that would allow us to decorrelate the effects from photovoltaic production
and lighting consumption. We therefore stick to the SolarRest proxy, which aims to capture the effect
of Solar which is not captured by suncycle.

166



Investigating the Impact of Uncertainty on Firms with Dynamic Costs: A Case Study
of the French Electricity Market

gously to our point specific interpretation on the point k = 3 above, we do not have a

story to tell about two-directional effects.

Tempeff15 results in a contraction of the bid function in terms of volumes (right

shifts on low volume points, k = 5, 4 and left shifts on high volume points k = 3, 2, 1).

Roll Temp24 has the opposite effect and results in a volume extension of the curve.

Roll Temp240 induces a pure left shift of the whole function.36 For the intraday season-

ality controls, the results are very clear. While suncycle results in an extension of the

demand function37, all other intraday controls (morning, deltasun, EWH) have unilat-

eral effects. When the indicators morning and EWH are positive, we observe volume

decreases at all points and thus a left shift of the function. Higher values of deltasun

induces volume increases at all points of the bid function.

Finally, we have SolarRest which induces an expansion of the curve and RteBlackBox

which has a unilateral right shifting effect on the aggregate demand bid function.

The price variation of the demand bid function yields interesting results, too. Given

that the prices of points k = 1, 5 are fixed, we only observe effects for the interior points.

We thus focus on the effects on the points k = 4, 3, 2 only (called the “central demand

function” here). Again, we only observe at most a single sign change across columns for

any exogenous variable. Both Tempeff15 and Roll Temp240 lead to an extension of the

central demand function (we are now looking at vertical variation of the bid function as

shown in fig. 3.4.1), while Roll Temp24 causes a unilateral downwards shift. For intra-

day seasonality controls, we see that suncycle and deltasun have a contracting effect on

the central demand function and morning a unilaterally negative effect. EWH leads to

an expansion of the central demand function. SolarRest and RteBlackBox indicate an

36Excluding interaction effects, we note that the net effect of a simultaneous 1oC increase for all three
temperature variables results in a net left shift of the function. In the price dimension (table 3.4) we
observe a net downwards shift. Both effects suggest that electricity demand decreases with the prevailing
temperature.

37Combined with the observed price effects from table 3.4, this suggests that demand is more price
elastic during the day.
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extension of the central demand function in the price dimension.
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k = 5 k = 4 k = 3 k = 2 k = 1
VARIABLES Volume Volume Volume Volume Volume

Tempeff15 50.72*** 38.58*** -130.3*** -189.3*** -204.0***
(9.942) (10.13) (10.94) (13.32) (13.20)

Roll Temp24 -63.57*** -67.13*** -48.87*** 19.76 34.16**
(11.78) (12.06) (13.14) (15.83) (15.76)

Roll Temp240 -60.15*** -68.38*** -78.49*** -78.44*** -87.38***
(6.655) (6.867) (7.450) (10.05) (10.00)

suncycle -894.0*** -652.1*** 508.2*** 1,351*** 1,400***
(44.27) (45.50) (48.52) (56.36) (55.73)

morning -101.2*** -220.3*** -814.8*** -872.2*** -885.8***
(27.52) (28.33) (30.44) (37.71) (37.28)

deltasun 2,659*** 2,850*** 3,201*** 1,721*** 1,821***
(153.5) (158.5) (166.1) (197.8) (196.5)

EWH -803.1*** -833.1*** -782.7*** -354.7*** -322.8***
(30.74) (31.91) (33.15) (42.09) (41.78)

SolarRest -0.595*** -0.363*** -0.145*** -0.0137 0.246***
(0.0282) (0.0305) (0.0342) (0.0418) (0.0407)

RteBlackBox -0.00259 0.0127*** 0.105*** 0.107*** 0.0979***
(0.00235) (0.00243) (0.00255) (0.00316) (0.00317)

Constant 6,054*** 7,086*** 11,446*** 15,215*** 15,502***
(33.71) (35.04) (37.15) (48.68) (48.27)

Observations 14,691 14,691 14,691 14,690 14,691
R2 0.201 0.219 0.478 0.344 0.346
White 548.6 524.9 407.9 961.8 944.8

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3.3: Estimation results for demand volumes

Note: The estimated constants of this table or the left graph of fig. 3.4.1 indicate
to which portion of the demand function the types of points k = 1, .., 5 refer.
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k = 5 k = 4 k = 3 k = 2 k = 1
VARIABLES Price Price Price Price Price

Tempeff15 0 4.675*** -0.969*** -1.308*** 0
(0) (1.523) (0.0599) (0.0980) (0)

Roll Temp24 0 -10.07*** -0.124* -0.0470 0
(0) (2.233) (0.0713) (0.116) (0)

Roll Temp240 0 4.250*** -0.0901** -0.353*** 0
(0) (1.147) (0.0404) (0.0607) (0)

suncycle 0 -10.98** 6.870*** 11.60*** 0
(0) (5.020) (0.258) (0.445) (0)

morning 0 -0.226 -5.748*** -9.009*** 0
(0) (4.133) (0.173) (0.285) (0)

deltasun 0 -16.54 10.60*** 18.72*** 0
(0) (19.16) (0.881) (1.497) (0)

EWH 0 5.136 -1.756*** -3.014*** 0
(0) (4.448) (0.192) (0.302) (0)

SolarRest 0 0.000532 0.00192*** 0.00253*** 0
(0) (0.00307) (0.000193) (0.000326) (0)

RteBlackBox 0 9.91e-05 0.000906*** 0.00147*** 0
(0) (0.000301) (1.47e-05) (2.26e-05) (0)

Constant 3,000 131.3*** 39.45*** -39.43*** -3,000
(0) (4.210) (0.217) (0.319) (0)

Observations 14,691 14,691 14,691 14,690 14,691
R2 0.005 0.463 0.420
White 138.2 640.9 761.2

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3.4: Estimation results for demand prices

Note: The estimated constants of this table or the left graph of fig. 3.4.1 indicate
to which portion of the demand function the types of points k = 1, .., 5 refer.
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Overall, we take away a solid R2 with coefficients of the correct sign. We furthermore

have disclosed the White statistic which unanimously confirms heteroskedasticity in these

regressions. The significance levels have been measured using robust standard errors.

We point to the fact that the explanatory power of our demand estimations is highest

for the point of inflection, in line with our expectations. Points of maximum curvature

k = 2, 4 reveal lower R2 statistics. This is likely due to the underlying data patterns

that arise from bidding frictions, e.g. focal price points. For these points, it is thus not

surprising that we do not observe convincing demand estimates - we note in particular

the lack of explanatory power for the demand estimation in the price dimension for points

of type k = 4.

3.5.2 Final regression

For the final regression, we first lay the focus on the point of inflection (k = 3) for a

detailed interpretation of our results. We choose the point k = 3, because this type of

point is the most relevant for equilibrium determination. We then disclose the results

for all other points k 6= 3 to give an overview of the effects of uncertainty on the whole

aggregate supply bid function.

Each result table has four (three38) columns to show the results for different estima-

tors and two specifications of the PLUD. All other variables remain unchanged across

the columns. In the tables, column 1 refers to the baseline specification of the PLUD,J ,

where standard errors are calculated using the Huber-White sandwich estimator. Column

2 reports the results for the baseline model using bootstrapped standard errors with 300

repetitions. Column 3 reports the results for the regression on the kernel based PLUD,J

X̃
,

using the sample size of each kernel as weights in the regression. Column 4 reports the re-

38For computational reasons, we do not run the bootstrapping of the kernel based PLUD for the points
k 6= 3, thus we only have three columns for these tables.

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0.0

0.5

1.0

1.5

2.0

2.5

100 110
0

10

171



Investigating the Impact of Uncertainty on Firms with Dynamic Costs: A Case Study
of the French Electricity Market

sults of the kernel based model using bootstrapped standard errors using 50 repetitions.39

Regarding notation: In the results tables, PLUvRvar‘m’ stands for PLUR
1,m with ‘m’

being replaced by the initial of the variable in question (W, S and T, respectively). PLUR
2,m

is indicated by the extension “sq”. PLUvDvar‘J’ stands for PLUD,J with J = {P,Q}

representing the dimension in which the demand uncertainty is measured. The kernel

based PLUD
X̃

are given by PLUvDvarK‘J’ in the tables. To facilitate the reading of the

tables, we adopt this notation for the discussion of the results.

For the point of inflection (k = 3), the results are shown in table 3.5. Regarding

uncertainty from renewables production, only that of wind has a significant and robust

impact. PLUvRvarW has a positive effect (significant at the 1% level) on the slope in

all specifications. PLUvRvarWsq has a negative effect on the slope in all specifications,

however this second effect is not robust to bootstrapping the standard errors. The signs

of the estimated coefficients are in line with our expectations. To show this, we recall that

both versions of the PLUvRvarW are based on the inverse of the characteristic length-

scale LW of autocorrelation of the wind speed measurements. Thus, when LW increases

(it represents a decrease in the uncertainty since wind speeds are homogenous over longer

distances), the PLU decreases (corresponding to a decrease in uncertainty).

While an increase in the PLUvRvarW leads to an increase in the slope of the supply

function, the effect is attenuated by the squared term PLUvRvarWsq for very small and

large LW .40 The estimated coefficient for the latter is negative and suggests that for very

short LW (i.e. very heterogenous wind speeds over the country), prediction errors cancel

out. For very long LW (i.e. very homogenous wind speed profile), the marginal impact

39Coefficients vary slightly (< ±20%, no sign change), because the bootstrapping loop includes the
kernel-based prediction of the uncertainty and thus varies the kernel sample sizes, which are used as
weights in the final regression. Furthermore, the estimator has probably not yet fully converged with 50
repetitions, however for computational reasons we stick to this choice.

40By looking at the variation of our data, we see that the negative effect of the PLUvRvarWsq term
merely attenuates, rather than overrides, the positive effect of the PLUvRvarW term on the slope since
in our dataset we very rarely observe PLUvRvarW values sufficiently large to exceed the maximum of
the Laffer curve of the impact on the slope.
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of LW on the level of uncertainty decreases.

With respect to the uncertainty from temperature forecasts, the results are insignifi-

cant (although of the anticipated sign). We expect the impact of temperature uncertainty

goes via the demand response, which we account for in our proxy for the uncertainty from

demand realization (PLUvD). Similarly, uncertainty from Solar production is attributed

no effect. This is not surprising as generation from solar is only a fraction of that gener-

ated from wind power and thus negligible. Furthermore, we are unable to disentangle the

effect of solar generation from the reduced demand effect from high luminosity (which

result in low demand for lighting). We do not find evidence for a direct response from

suppliers to uncertainty in temperature or solar predictions.

Uncertainty from the realization of market demand has a negative and significant

effect when proxied for by price-based PLUvDvarP (see table 3.5) as opposed to a pos-

itive and significant effect when proxied for by a volume-based PLUvDvarQ (see table

3.5). The positive effect on PLUvDvarQ is in line with our prediction made in section

3.1.2. This result supports the theory that firms take uncertainty when bidding into ac-

count and consequently adjust their bidding strategy in order to minimize dynamic costs.

However, our theory produces a prediction for volume based uncertainty only. We in-

clude the uncertainty proxy for price PLUvDvarP as a control and its effect seems rather

robust. The effects of PLUvD in either the price or volume dimension are robust to the

exclusion of the other.41 We try to explain the opposing signs for the coefficients of the

two proxies in section 3.6.1.42

Furthermore, table 3.5 gives support to our extension using kernel based PLUvDs.

41Results available from the authors.
42The net effect cannot be precisely computed as the conversion of the PLUvD from the price dimension

to the quantity dimension is not possible. We approximate the comparison however, by including both
PLUD simultaneously in the regression. All PLUvD are rescaled by their respective means to allow some
degree of comparison.
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Column 2 shows that the effects of the baseline PLUvD are not significant when boot-

strapped. Our alternative is to use a more elaborate uncertainty prediction model. These

kernel based PLUvD are more sophisticated in two respects: (i) the forecasting model

is only applied locally, that is auctions are only compared to similar auctions and (ii)

the obtained forecast is weighted by the sample size used for its prediction. Thereby, we

control for the confidence of the firms in making those predictions. The results of the

weighted regression are given in column 3. The results using the more elaborate predic-

tion model are in line with those from the baseline regression, while being more accurate

as indicated by the improved explanatory power of our model (we see a 16.5% increase of

the R2 from columns 1-2 to columns 3-4). Finally, the results of our kernel based model

are more precise as indicated by the higher significance level for the PLUvDvarKP and

PLUvDvarKQ, which are now also robust to a bootstrap (column 4).

Finally, we explicitly include the controls for the levels of the input prices of elec-

tricity producers (XS). We do not interpret these coefficients since there are no ex-ante

expectations of their levels to affect the slope of the supply bid function. We briefly men-

tion that intraday seasonality controls as well as other demand related variables are not

included in this regression to avoid multicollinearity problems with the PLUvD, which

are themselves computed as a linear combination of the demand control variables (XD).

Overall, we take away a goodness of fit of ≥ 20% for our empirical model as well as the

robust positive coefficients for both the demand based uncertainty proxy (PLUvDvarQ)

and the weather based uncertainty proxies (PLUvRvarW and PLUvRvarWsq). We note

the puzzling result for the PLUvDvarP.

For the other points (k = 1, 2, 4, 5), the results are given in tables 3.6, 3.7, 3.8 and

3.9, respectively.43 We comment on the effects over all points collectively in order to give

43Variables marked “(omitted)” are drop due to perfect collinearity.



an overview of the full bid function behaviour.

The specification of the proxies for the uncertainty from renewables as well as of the

controls does not vary across columns, we thus focus on column 2 for these (in order to

take bootstrapped standard errors into account). While we observe in table 3.5 a convinc-

ing effect for the uncertainty from wind predictions on the slope of the point of inflection

(k = 3), we cannot observe this effects on the other points of the bid function.44 No other

proxy for the uncertainty from renewables has a significant effect on the slope at any point.

The proxies for uncertainty from market demand produce opposing effect depending

on the prediction model. PLUvDvarP has a negative and significant effect on all points

(with the exception of points k = 1 and k = 5 of course, which do not exhibit variation

in prices due to the auction rules). PLUvDvarQ has a positive effect, when significant45,

on all points (k = 2− 5), but not on k = 1.

On the remaining controls, we do not observe a clear pattern on the effects at the

different points. We run the analysis without these controls and note that the signs of

all significant variables remain unchanged.46

3.6 Discussion

In this section we reflect on the results and use the opportunity to address a few issues,

drawbacks as well as qualities of the research conducted. We first discuss the findings of

the paper and their internal and external validity. We briefly review the design of the

empirical strategy and lend particular focus to how we deal with the issue of endogeneity.

44We note the exception of a negative effect for PLUvRvarW on the slopes at points k = 2 and 5
(significant at the 5% level).

45For both the bootstrapped baseline results (col. 2) and the weighted kernel based specification (col.
3).

46Results available from the authors.
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3.6.1 Findings

In this paper, we investigate whether uncertainty affects supplier bidding as predicted by

the theory. We find that uncertainty from weather forecasts indeed affects the suppliers’

bid function as expected. The aggregate supply function steepens when the level of un-

certainty increases. We take this as evidence that firms take dynamic cost considerations

into account and adjust their behaviour when facing increased expected dynamic costs.

We also find significant results for the effect of the level of uncertainty about the

realization of market demand on the suppliers’ behaviour. However, we observe a strong

discrepancy between the effect for uncertainty as measured on price volatility and the

effect of uncertainty as measured on volume volatility. While the former sees itself at-

tributed with a negative effect, the latter sees itself attributed with a positive effect on

the slope of the aggregate supply function. These opposing signs are robust in all speci-

fications and seem to be of too much importance to be neglected.

The two proxies in question (PLUD,P and PLUD,Q) are two variables designed to

measure the same information, namely the prediction error of the demand function. As

such, they are identical with respect to the set-up, computation as well as point at which

they are extracted. They only differ with respect to the dimension in which the variation

of the demand function is measured, the former in the price dimension and the latter in

the volume dimension.

A theory using linear functions would predict that these measures of the shifts of

the demand line are identical and interchangeable (modulo a translation by the slope).

Also our data, i.e. the observed bid functions, suggests that, at least locally at the point

k = 3, the bid functions are linear.47 Furthermore, our demand estimation models for

both price and volume variation48 indicate that the prediction model used works well in

both dimension. In particular at k = 3, significance and equal signs on coefficients for

47Recall the graph in figure 3.3.2.
48Precisely look at columns 3 of tables 3.3 and 3.4.
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all terms included as well as similar explanatory power49 in both regressions confirms the

similar nature of the two proxies.

Our recovered PLUD,P and PLUD,Q are, as expected, collinear.50 While OLS remains

unbiased in the presence of collinearity between two regressors, its precision is reduced.

We correct for the collinearity by dropping one proxy or the other, but the individual

results remain unchanged - the coefficients of the two proxies keep opposite signs.

Assuming that our empirical strategy is valid to test the relationship of interest, a

possible reason for our intriguing observations could be that the slope of the demand

function, which relates PLUD,Q and PLUD,P , is endogenous on the uncertainty. Un-

certain demand does not only unilaterally shift the demand function in one dimension

(either P or Q), but also affects the shape and thus the slope of the curve. This effect

is not accounted for in our research design and could drive the opposing results for both

proxies. The endogeneity of the slope of the demand curve could be accounted for in

our model by extracting the residuals from a regression of PLUD,P on PLUD,Q in an

analysis to see if endogeneity exists and then reusing the residuals to control for slope ef-

fects of the demand curve in the final regression. We leave this avenue for further research.

Without having resolved the empirical discrepancy in the results, the stark contrast

between the two could also hint at the fact that we need new theories to explain both

demand and supplier bidding behaviour on the electricity market. This calls for new the-

oretical models to better explain the shape of aggregate bid functions, which are S-shaped

overall. Special attention in these models should be placed on the effect of uncertainty

and its importance for bidders via the link of dynamic costs.

Finally, our analysis relies strongly on the analysis of the point of inflection (k = 3),

but the functional analysis is important, too. While results on the whole bid function

49R2 of 0.463 for the price and 0.478 for the volume regression.
50Not perfectly, but with a correlation coefficient of 0,62
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are broadly speaking in line with the point-specific analysis on the point of inflection,

the significance of the results is weaker and the results less clear. Furthermore, we

often observe varying effects on low and high volume points.51 We conclude that the

impacts of variations in exogenous factors on the shape of the bid functions are not

uniform. Non-linear effects are neither predicted by our linear theory nor have been

shown in previous studies (with the exception of [Wolfram, 1999]). Our results hint at

more intricate mechanisms which drive the shape of these bid functions.

3.6.2 Internal and external validity

We believe that the work is credible due to many aspects of the research design.

First, our set-up is based on rather intuitive relations which we test exclusively using

simple OLS regressions. These regressions are econometrically unbiased given the data

impurities that we observe. To guarantee precision of our estimates, we use bootstrapping

techniques.

Second, considerable effort has gone into the treatment of the information that goes

into the right hand side of our regressions. We do not only refer to the final PLUs used,

but also point at the precise use of our controls. See, for example, the treatment of the

variable RteBlackBox (details see page 118), which proxies for the information contained

in the day ahead demand estimates (PrevConsoH) given out by the grid operator RTE.

In order to extract the marginal information of the PrevConsoH estimate, which is not

explained by other controls variables that we include in our analysis, we compute the

residuals from a regression of PrevConsoH on our other controls, e.g. daytime controls

such as suncycle. These residuals (called RteBlackBox) enable us to achieve a more so-

phisticated understanding of our regression output.52

51We refer specifically to the strengthening or weakening effects of exogenous variables on different
points a shown in demand level estimation tables 3.3 and 3.4 as well as in the slope regressions tables
3.6 - 3.9.

52See, for example, the regression output of the demand estimation in tables 3.3 and 3.4.
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We also emphasize the aspect that we understand our dataset as a cross-sectional

dataset rather than a time-series. While we do segment our dataset into weekday and

weekend days and only run our analysis on the former, there is not reason why demand

on a Tuesday afternoon should not be comparable to demand on a Thursday afternoon.

We therefore ignore weekday dummies to increase our sample size. Furthermore, we avoid

the use of dummy variables to control for the hour of the contracts in our regressions

in order to further increase the sample size. However, we cannot compare electricity

consumption between 4 am and 4 pm within a day. Neither can we compare two 4 pm

hours of a day in winter and another in the summer. Using dummies would first restrict

our sample size, plus make our interpretation more difficult since the dummy variable

aggregates the effect over all conditions that change between samples. We use a bottom

up approach that allows us to circumvent the sample size restriction and interpretation

difficulties from daytime or seasonality dummies. Instead, we use continuous variables

to control for the daytime and season by means of short and longer term temperature

averages or other weather characteristics such as luminosity, which generates controls like

deltasun.53

Finally, we point at the empirical framework that allows us to run reduced form re-

gressions on multiple regions of bid functions to better understand functional responses

of those bids to variation in exogenous factors. We use 5 points for our analysis and refer

to chapter 2 for the full details on this choice and the evaluation of the point selection.

With hindsight, we feel that an additional two points would have been useful to better

understand functional behaviour of the part of the bid functions, which is more relevant

in equilibrium, i.e. on the centre part.54 We note the computational demands of more

points.

The methodology developed for our exercise on data from the French electricity mar-

53See section 3.4.1 for full details on our set of control variables for both demand and supply.
54For that we would recommend the points representing half of the maximum curvature between the

current points k = 2, 4 and k = 3.
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ket has applications in other domains. This is valid for the non-parametric point selection

mechanism (section 3.4), the mechanism to aggregate local geographic data to a national

level (chapter 2) as well as the identification strategy based on purely ex-ante data.

In particular, we note that the possibility to run reduced form estimation strategies

for the analysis of markets which make access to functional data available. This includes

all markets which use a multi-unit, uniform (or discriminatory) auction mechanism.

3.6.3 Endogeneity

The set-up of this work is specifically aimed at circumventing problems of endogeneity.

For that sake, we keep a strict separation of ex-post and ex-ante information to the left

and right hand sides, respectively, of any regression.

To achieve this separation of ex-ante and ex-post information, both newly developed

methodologies are highly useful. The point selection methodology from section 3.4 al-

lows us to extract proxies for the level of uncertainty about the realization of market

demand, which are unaffected by the equilibrium interaction with the market supply.

The weather data treatment methodology from chapter 2 enables us to base our proxies

for the level of uncertainty from renewables on measures of the expected homogeneity

of weather forecasts. Both methodologies allow us to recover ex-ante information on the

prevailing uncertainty that firms have at their hands at the time of bidding. The infor-

mation contained in all other controls used is also available at the time of bidding.

However for data availability reasons, we are not able to keep this strict separation

at all times in practice and revert to using ex-post data to compute some variables that

should ideally be computed on ex-ante information only. This is the case twice in this

work: (i) we use observed weather data to compute the variable Solar55 and (ii) we use

55Contrary to Wind1DA and Tempeff15, which we are able to compute purely on forecast data.
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the pooled data over all auctions for the demand estimation and subsequent uncertainty

forecast of equations 3.4.2 - 3.4.5.

In both cases, we do not believe that this choice compromise our results. For the

case of Solar, we use realised luminosity instead of forecast data. This is as if weather

forecasts were perfectly accurate. Given that solar production only accounts for a small

fraction for of total electricity generation and that we extract the very informative com-

ponent of the Solar variable by using the variable suncycle (which is arguably very well

predictable), we do not see the use of ex-post data as problematic.

For the case of the PLUD computation, we run the demand estimation pooled over

all observed auctions (i.e. past and future) and say that firms have this level of infor-

mation when bidding in each auction of our sample. We do so because we do not have

the necessary data before 01.01.2011 and thus cannot calibrate our forecasting model

on a “learning” dataset. Instead, we assume that demand patterns conditional on the

explanatory variables has remained constant over our 2.5 years time period of analysis.

The estimation based on pooled data then yields, on average, the same insights as an

analysis conducted purely on past data.

We could test robustness of our pooled approach by investigating the effect of a re-

striction on using only past data in the demand estimation. A learning effect could arise

from more precise estimations of demand functions. However, due to the long experi-

ence of most firms on the market in reality, this learning effect would be artificial and

not represent a real insight. We therefore accept the possibility of a (small) endogeneity

concern in this paper and further work could fully circumvent this issue by extending the

database appropriately.
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3.7 Conclusion

This paper is a sophisticated proof of concept of our methodology applied to the electric-

ity market. We observe that bidders take uncertainty from renewables generation as well

as uncertainty from demand realization into account. The results indicate that electricity

suppliers react to an increased level of uncertainty by bidding more volume elastically

(steeper supply functions in the dimension Q (x-axis) - P (y-axis)) in order to minimize

expected dynamic costs, which increase with the uncertainty. The results also indicate

that not only supplier bidding is affected by uncertainty, but that the level of uncertainty

also impacts bidding from the demand side of the market.

Future empirical work should focus on investigating the endogeneity of the demand

function on uncertainty as well as better understand frictions in the bidding (e.g. focal

price points). Concurrently, the results also call for more advanced theoretical work on

the shape of bid functions of players, in particular to explain non-linear shapes. This

is also suggested by our bid functional analysis which hints at non-unilateral effects of

exogenous variables on the shape of the functions. The economic insight hidden in full

bid functions is vast and a better understanding of these could be applied to address

important welfare questions.56

56Such an application, which the authors currently focus on is the question of the optimal choice of the
geographic installation of renewable electricity generation units (solar panels and wind turbines) with
respect to minimizing the intermittency of renewables generation. A clear understanding of the effects of
uncertainty on the market is vital to close the analysis on organizational questions of the market. This
is outside of the focus of this paper
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Appendix

Appendix 3.A Summary Statistics of Selected Points

Mean Median StdDev Min Max

Prices for k = 1 -3,000.0 -3,000.0 0 -3,000 -3,000

Prices for k = 2 -56.7 -55.0 19 -97 70

Prices for k = 3 27.6 26.8 11 -27 93

Prices for k = 4 120.2 105.4 193 -11 2,999

Prices for k = 5 3,000.0 3,000.0 0 3,000 3,000

Table 3.10: Prices of selected demand points

Mean Median Std. Dev Min Max

Volumes for k = 1 13,328 13,222 2,213 4,990 23,254

Volumes for k = 2 12,919 12,824 2,238 3,321 23,001

Volumes for k = 3 8,779 8,664 2,028 1,958 18,335

Volumes for k = 4 5,777 5,730 1,558 987 12,773

Volumes for k = 5 5,031 4,968 1,467 914 11,301

Table 3.11: Volumes of selected demand points

Mean Median Std. Dev. Min Max

Prices for k = 1 -3,000.0 -3,000.0 0 -3,000 -3,000

Prices for k = 2 -30.3 -25.0 219 -2,999 439

Prices for k = 3 61.3 58.6 24 11 526

Prices for k = 4 133.9 136.3 32 36 626

Prices for k = 5 3,000.0 3,000.0 0 3,000 3,000

Table 3.12: Prices of selected supply points
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Mean Median Std. Dev. Min Max

Volumes for k = 1 3,721.7 3,526.0 1,344 618 10,594

Volumes for k = 2 4,432.8 4,226.0 1,602 844 11,765

Volumes for k = 3 8,467.2 8,365.5 1,814 3,431 20,932

Volumes for k = 4 11,849.5 11,717.7 2,411 3,641 27,810

Volumes for k = 5 14,390.6 14,142.0 3,052 6,580 35,356

Table 3.13: Volumes of selected supply points

Appendix 3.B Computational Details and Descrip-

tives

3.B.1 Hard choices in the PLU computation

In computing the multi-variate kernel based prediction of the uncertainty for a given

auction, we select auctions of a sufficient degree of similarity. We base the forecast equa-

tion 3.4.5 on this subsample dataset. We thereby consider that firms use the forecasting

equation only locally in the neighbourhood of the auction of interest.

In order to define the size of the neighbourhood of an auction, we have to explicitly

specify the width of the kernel window used in selecting the respective subsamples.

The trade-off involved is that we want to have small kernels for a precise computation

of the PLU, while we want large kernels to make sure that we have a sufficient sample

size in each kernel in order to derive meaningful statistics.

We choose to use a constant kernel window length with respect to each conditioning

variable. We set the length of the window for each variable equal to 1
3

of the variation

of that variable. E.g. for Tempeff15, we observe a range of values from −10oC to 14oC.

The subsample used to compute the PLUD corresponding to a specific observation will
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consist of all observations that are within a range of ±4oC of that observation for Temp-

eff15. The same logic is applied to selecting the neighbourhood with respect to all other

conditioning variables.

Table 3.14 gives descriptive statistics about the conditioning variables for the kernel

and the explicit choice m, which determines the length of the kernel window for a variable

Xe using the formula bXe = 2
mXe

.

3.B.2 Descriptive Statistics

On realised market equilibria
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Figure 3.B.1: Plotted average realised Volume (left) and Price (right) per Hour with 95%
confidence intervals.
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Figure 3.B.2: Distribution of observed market equilibria

Note: The warmer the colours of the heat map, the higher the frequency of realised price-

quantity schedules. The colour legend is omitted for brevity, density changes between contours

are of the order of 10−4.

On player bid functions

Figure 3.B.3: Distribution of minimum and maximum production volumes (and corre-
sponding range) bid in an hourly auction.
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Figure 3.B.4: Distribution of number of bid function steps
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On exogenous factors
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Figure 3.B.5: Histogram of predicted wind (left) and predicted solar (right) generation
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For k=3 (Point of inflection)

(1) (2) (3) (4)
VARIABLES fxInvertQP fxInvertQP fxInvertQP fxInvertQP

PLUvRvarT 0.000882 0.000882 0.00374** 0.00508
(0.00152) (0.00415) (0.00155) (0.00354)

PLUvRvarTsq -0.000529 -0.000529 -0.00161*** -0.00215
(0.000584) (0.168) (0.000603) (0.183)

PLUvRvarW 0.00790*** 0.00790*** 0.00647*** 0.00574***
(0.00123) (0.00257) (0.00121) (0.00207)

PLUvRvarWsq -0.00235*** -0.00235 -0.00192*** -0.00170
(0.000373) (0.0644) (0.000370) (0.0479)

PLUvRvarS -5.20e-10 -5.20e-10 -2.28e-09 -2.23e-09
(2.68e-09) (3.58e-08) (3.16e-09) (3.69e-08)

PLUvRvarSsq 0 0 0 0
(0) (0) (0) (0)

Coal 6.90e-06*** 6.90e-06*** 5.18e-06*** 6.29e-06***
(4.35e-07) (4.64e-07) (4.39e-07) (6.87e-07)

Brent -2.36e-05*** -2.36e-05*** -1.18e-05*** -1.40e-05***
(1.51e-06) (1.96e-06) (1.53e-06) (2.01e-06)

Gas -2.82e-07 -2.82e-07 1.37e-05*** 1.36e-05***
(1.89e-06) (9.41e-06) (1.67e-06) (2.46e-06)

IT2 -2.71e-05*** -2.71e-05 -1.73e-05*** -1.99e-05***
(2.17e-06) (1.80e-05) (1.34e-06) (1.69e-06)

EUA 7.20e-05*** 7.20e-05*** 2.62e-05*** 2.71e-05***
(2.31e-06) (4.49e-06) (3.34e-06) (6.84e-06)

Wind1DA 1.04e-07*** 1.04e-07*** 1.18e-07*** 1.25e-07***
(6.45e-09) (1.03e-08) (6.51e-09) (7.63e-09)

Hydro -7.55e-06*** -7.55e-06*** -4.08e-06*** -5.88e-06***
(8.33e-07) (2.24e-06) (8.61e-07) (1.11e-06)

PLUvDvarP -0.000219*** -0.000219
(4.57e-05) (0.000203)

PLUvDvarQ 0.000567*** 0.000567
(9.44e-05) (0.000585)

PLUvDvarKP -0.000600*** -0.000462***
(2.69e-05) (4.24e-05)

PLUvDvarKQ 0.000151*** 0.000170**
(3.39e-05) (6.80e-05)

Constant 0.00651*** 0.00651*** 0.00513*** 0.00538***
(0.000208) (0.000789) (0.000195) (0.000257)

Observations 11,702 11,702 11,702 11,702
R2 0.200 0.200 0.233 0.234

(Standard errors in parentheses)

*** p<0.01, ** p<0.05, * p<0.1

Table 3.5: Regressions of the slope on PLUR and PLUD and PLUD at k = 3
Note: Standard errors are reported in parenthesis. Column 1 refers to the baseline
specification. Column 2 reports bootstrapped results for the baseline model. Column 3
reports the results for the (weighted) regression on the kernel based PLUD

X̃
. Column 4

reports bootstrapped results of the model in column 3.
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For k=1 (Left extremal point)

(1) (2) (3)
VARIABLES fxInvertQP fxInvertQP fxInvertQP

PLUvRvarT -4.14e-05*** -4.14e-05 0.000277*
PLUvRvarTsq 1.56e-05*** 1.56e-05 -0.0122
PLUvRvarW -6.04e-06 -6.04e-06 -0.000138
PLUvRvarWsq 1.71e-06 1.71e-06 0.00738
PLUvRvarS 0 0 -5.70e-05
PLUvRvarSsq -0 -0 0.00172
Coal -8.54e-09*** -8.54e-09*** (omitted)
Brent 8.64e-08*** 8.64e-08*** (omitted)
Gas -6.20e-08*** -6.20e-08*** (omitted)
IT2 4.95e-08*** 4.95e-08*** 3.50e-08
EUA -3.14e-08*** -3.14e-08*** 4.43e-06***
Wind1DA -3.38e-10*** -3.38e-10*** 2.48e-10
Hydro 4.69e-08*** 4.69e-08*** (omitted)
PLUvDvarQ -3.87e-06*** -3.87e-06***
PLUvDvarKQ -7.21e-10***
Constant 2.11e-06*** 2.11e-06** -6.00e-05***

Observations 11,702 11,702 50
R2 0.152 0.152 0.681

Standard errors available from the authors

*** p<0.01, ** p<0.05, * p<0.1

Table 3.6: Regressions of slope on PLUR and PLUD and PLUD at k = 1

For k=2 (Left point of maximum curvature)

(1) (2) (3)
VARIABLES fxInvertQP fxInvertQP fxInvertQP

PLUvRvarT -0.00252 -0.00252 0.292
PLUvRvarTsq 0.00106 0.00106 -17.27
PLUvRvarW -0.00549*** -0.00549** 0.339
PLUvRvarWsq 0.00158*** 0.00158 -21.86
PLUvRvarS -6.82e-10 -6.82e-10 0.0669
PLUvRvarSsq 0 0 -1.968
Coal 2.36e-06*** 2.36e-06*** (omitted)
Brent -1.86e-05*** -1.86e-05*** (omitted)
Gas -8.94e-06*** -8.94e-06*** (omitted)
IT2 1.98e-05*** 1.98e-05*** 6.92e-05
EUA 8.69e-05*** 8.69e-05*** -0.000439
Wind1DA 6.13e-09 6.13e-09 6.70e-07
Hydro -5.82e-06*** -5.82e-06*** (omitted)
PLUvDvarP -4.81e-05*** -4.81e-05***
PLUvDvarQ 0.000442*** 0.000442***
PLUvDvarKP -9.62e-07*
PLUvDvarKQ -4.27e-07
Constant 0.00319*** 0.00319*** 0.00279

Observations 11,702 11,702 50
R2 0.158 0.158 0.414

Standard errors available from the authors

*** p<0.01, ** p<0.05, * p<0.1

Table 3.7: Regressions of slope on PLUR and PLUD and PLUD at k = 2

189



For k=4 (Right point of maximum curvature)

(1) (2) (3)
VARIABLES fxInvertQP fxInvertQP fxInvertQP

PLUvRvarT -0.00442*** -0.00442 0.000559
PLUvRvarTsq 0.00149** 0.00149 -0.000368
PLUvRvarW -0.000137 -0.000137 -0.00205
PLUvRvarWsq 0.000173 0.000173 0.000739*
PLUvRvarS 2.59e-09 2.59e-09 2.40e-09
PLUvRvarSsq -0 -0 -0
Coal 2.22e-07 2.22e-07 1.48e-06***
Brent -7.46e-06*** -7.46e-06*** -1.30e-05***
Gas 9.04e-06*** 9.04e-06*** 2.04e-05***
IT2 -1.96e-05*** -1.96e-05*** -2.61e-05***
EUA 4.71e-05*** 4.71e-05*** 3.19e-05***
Wind1DA 1.64e-08** 1.64e-08** 1.50e-08**
Hydro -8.73e-06*** -8.73e-06*** -1.33e-05***
PLUvDvarP -0.000212*** -0.000212***
PLUvDvarQ 0.000110 0.000110**
PLUvDvarKP -0.000163***
PLUvDvarKQ 4.08e-05
Constant 0.00370*** 0.00370*** 0.00406***

Observations 11,701 11,701 11,701
R2 0.086 0.086 0.117

Standard errors available from the authors

*** p<0.01, ** p<0.05, * p<0.1

Table 3.8: Regressions of slope on PLUR and PLUD and PLUD at k = 4

For k=5 (Right extremal point)

(1) (2) (3)
VARIABLES fxInvertQP fxInvertQP fxInvertQP

PLUvRvarT -0.000252 -0.000252 0.000734***
PLUvRvarTsq 9.10e-05 9.10e-05 -0.000280***
PLUvRvarW -0.000555*** -0.000555** -0.000545***
PLUvRvarWsq 0.000169*** 0.000169 0.000163***
PLUvRvarS -4.17e-10 -4.17e-10 -3.07e-10
PLUvRvarSsq 0 0 0
Coal -8.70e-07*** -8.70e-07*** -4.90e-07***
Brent 1.72e-06*** 1.72e-06*** 4.90e-07**
Gas 4.53e-06*** 4.53e-06*** 2.96e-06***
IT2 2.23e-06*** 2.23e-06*** 2.47e-06***
EUA 2.89e-06*** 2.89e-06*** 8.35e-06***
Wind1DA -5.41e-10 -5.41e-10 3.49e-09***
Hydro 1.78e-06*** 1.78e-06*** 1.19e-06***
PLUvDvarQ 4.29e-05*** 4.29e-05***
PLUvDvarKQ 5.56e-05***
Constant -0.000494*** -0.000494*** -0.000351***

Observations 11,702 11,702 11,702
R2 0.128 0.128 0.131

Standard errors available from the authors

*** p<0.01, ** p<0.05, * p<0.1

Table 3.9: Regressions of slope on PLUR and PLUD and PLUD at k = 5

190



Xe m Mean Median Std. dev. Min Max

Tempeff15 6 7.7 8 5 -10 14
Roll Temp24 6 7.7 9 4 -8 14
Roll Temp240 1 7.6 8 4 -7 13
suncycle 6 0.3 0 0 0 1
morning 6 0.5 1 0 0 1
deltasun 6 0.1 0.1 0 0 0.4
EWH 6 0.3 0 0 0 1
SolarRest 6 5.4 -1 364 -1,337 2,241
RteBlackBox 6 -0.0 37 4,755 -16,966 18,209

Table 3.14: Variables used in the kernel based PLUD computation
Note:For the PLUv51, we have excluded the variable Roll Temp240 from the conditioning
in order to increase the size of each subsample used for the calculation of the observation
specific PLUD. Version 52 also conditions on the variable Roll Temp240 using m = 6.
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General conclusion
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Conclusion

This thesis focused on the effect of ramping costs on the electricity market at a the-

oretical level, and then on the empirical analysis of market data to test the theoretical

predictions.

The first chapter focused on what the introduction of ramping costs in a theoretical

framework brings to the table. Ramping costs represent the fact that electricity suppliers

incur costs when their production varies over time. Our main contribution has been to

build and justify how these ramping costs can be tackled theoretically. First, we noted

that going to a continuous time description of the problem allowed us to bring to the

literature about supply function equilibria powerful mathematical tools mostly used in

option pricing, that is stochastic dynamics: we want to model ramping costs, i.e. costs

associated to the variation in production, while retaining the key ingredient brought by

[Klemperer and Meyer, 1989], i.e. the uncertainty, through the use of brownians, and

more precisely, Itō processes. In so doing we faced the issue that one cannot derive a

brownian, and brought our second contribution, a physical argument about how power

plants function that effectively operates as a low pass filter on our stochastic processes,

and allowed us to continue to build a tractable model of ramping costs under uncertainty.

Third, we found in the literature a specification of Itō processes that allowed the model

to remain tractable.

From these technical contributions we obtained our economic contributions in having

a rich tractable model that yields results that contrast strongly with past results from

the literature. First, in the specific case of linear demand and linear costs we obtained

a unique Nash equilibrium, which contrasts with the usual continuum of Nash equilibria

in the supply function equilibria literature. Second, our solutions were not ex-post opti-

mal, meaning that gathering information about the expected future evolution of demand

yielded different optimal strategies for suppliers, which in turn meant that producers in

our framework have a motive for submitting different supply functions from one time

step to the next. Third, we have closed form solutions which yield specific predictions
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Conclusion

about the evolution of bids under uncertainty, namely that when uncertainty increase,

suppliers submit steeper supply schedules in order to transmit more of these shocks to

changes in price and not quantities, which are costly due to the existence of ramping

costs. Finally, and less importantly, our framework justified the existence of negative

prices 57 by producers being willing to pay consumers to consume more in order to avoid

facing large variations in production, in contrast to everywhere positive schedules in the

case of the supply function equilibria literature. These results open the door to models

being able to differentiate between day-ahead and intraday markets and therefore to offer

a framework in which their interactions might be possible.

In the second chapter our main focus was on analyzing our data, on building a way

to describe it, and on building proxies for the uncertainty that producers face about the

residual demand they have to anticipate when bidding on the day-ahead market.

First, we noted that aggregate supply functions on the day ahead market cannot be

well captured by parametric functions. Therefore, we devised a way to describe them

non-parametrically: we noted that although they cannot be captured parametrically,

they still have a rough S shape, and therefore four main parts, two extremal sections,

and two interior ones separated by the inflection point of the curve in its middle section.

We defined the transition points between these sections as the points of maximal absolute

value for the derivative and second derivative of the supply schedules. This definition

relied on kernel density estimates, and was therefore non-parametric. We observed that

by using 5 such points, we were able to capture about 98% of the intrinsic variability

of the supply schedules, and stopped there although our method can be used to define

more non-parametric points. This method allowed us to define points that we considered

comparable across auctions, that allowed us to perform cross-sectional analysis of our

data in the third chapter.

57Note that such negative prices happen, a few hours a year for example in France or Germany, for
example in 2017 there were 146 such hours, spread over 24 days in Germany [EPEX, 2018a]
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Conclusion

Second, we built proxies for the amount of weather uncertainty that producers face

and variables that capture information that suppliers have before bidding and should

therefore be controlled for. For the information available to suppliers, we noted that the

effect of weather on the demand and more importantly temperature, was well understood

and that we needed to control for it. To do so we built an effective temperature for

France, as an average of the localised temperature weighted by the population of the spa-

tial region considered, in order to capture the overall effect temperature has on heating.58

The rest of our focus was on building a proxy for the uncertainty concerning renewable

production. To do so we analyzed spatialized wind and sunlight data and studied it’s

spatial structure. We argued that spatial autocorrelation is a proxy for the uncertainty

associated with weather forecasts, noting that if this data displays more spatial gradi-

ents, it was likely to be of a lesser quality due to the numerical nature of the weather

simulations used to predict the weather, and therefore more uncertain.

Our contribution in the second chapter was to provide a non-parametric way to de-

fine comparable points across auctions, and a measure of the uncertainty associated with

weather forecasts.

In the final chapter, we studied the impact that uncertainty about the demand plays

on the shape of the aggregate supply functions suppliers bid on the French electricity

market. We segmented our analysis to different parts of the supply functions in order to

show how the overall shape changed with respect to our explanatory variables. We tested

some of the predictions from our first chapter, mainly that the supply function should

see its slope increase when uncertainty increases.

We noted that the main uncertainty is about the shape of the demand schedules it-

self. Therefore, we considered data available to the producers and regress the demand

schedules on these variables. Next, we studied the residuals of these regressions, and

58France has a high level of electric heating overall, which means that demand for electricity is quite
sensitive to temperature.
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Conclusion

more specifically noted that they are heteroskedastic. We leveraged this, regressing the

square of these residuals on our variables, in order to predict the expected amplitude of

the residuals, that is the amplitude of the uncertainty of the demand schedule regression.

We then studied the effect of our different proxies for uncertainty on the slope of the

supply schedules and noted that if our proxies about the weather uncertainty (through the

channel of renewable production) have the expected effect, the results are less clear cut

for our residuals on the demand schedules. As we are working with full-blown schedules

in the quantity-price plane, we performed our residual analysis both on the prices and the

quantities. We therefore obtained estimates for the uncertainty pertaining to the position

of a given point of our demand schedule either in price or in quantity. In our theoretical

framework, we made the strong assumptions that demand schedules are linear, and that

demand shocks are additive, i.e. they do not impact the slope of the demand schedules.

These assumptions yielded that we cannot differentiate between shocks in price or quan-

tity, and that they should have effects in the same direction: more uncertainty implying

steeper supply curves to reduce the amount of fluctuation in production. However, we

observed that the effects of price and quantity uncertainty as estimated by our residuals’

method yield opposite effects. Both of these assumptions, although required to obtain

closed form results, are clearly not satisfied by our data, and we think that this is a clear

path for improvement of the model.

The contribution of the third chapter is to provide a way to estimate the uncertainty

about the demand schedules faced by suppliers, and to estimate how this uncertainty

affects the shape of the supply schedules at different points along its overall length, i.e.

we provide a framework to describe how the functional form of schedules is affected by

estimates of the uncertainty faced by suppliers.
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Avenues of research

The work presented in this thesis opens new possible avenues of research, that we will

outline here.

Theoretical model

� Generalize the functional forms of the demand: we developed our model in the

context of linear demand functions, and finding either general results, for example

for positive and decreasing demand functions, would lend more support to our

results. It would already be interesting to find whether these results hold for other

specific functional forms for the demand functions. The issue is that the second

order differential equations do not belong to solved for classes of equations in the

cases that were tested in the course of this thesis (power demand functions for

example). It is therefore unlikely that analytical results can be obtained, however

numerical approaches could prove useful in this context.

� Study the impact of other stochastic processes: our results hold in the case of

stochastic shocks leading to an equilibrium distribution of a quadratic form. The

processes that we use to obtain our results are part of a larger class of processes,

which can exhibit richer caracteristics, for example assymetric distributions. As

previously, the analytical nature of our results relies partly on the specific choice of

stochastic process we made, therefore analytical results are unlikely, but numerical

approaches could shed light on the effect of skewed distributions.

� Study how a time discrete approach converges towards our continuous time one: the

derivation is doable in the case of discrete states for demand shock. A toy model not

presented in this thesis was derived in the case of a two period two valued shocks

model. Although the results are consistent with those of our continuous model, the

expressions derived analytically are already horribly tedious. It is therefore once

again a strand of analysis that could profit from a numerical approach.
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Conclusion

� The interaction between intraday and day-ahead markets: knowing that when one

bids on the day-ahead market, it will still be possible to adjust one’s position to-

morrow on the intraday market is bound to impact the strategies of the suppliers.

Trying to tackle this problem, if challenging, could prove very interesting. Here are

key ingredients that should be taken into account:

First, intraday bids can be submitted anytime during the day with an expiry date

attached. Therefore, there is tension between, on the one hand, the will to start

and correct the outcome of the day-ahead market as soon as new information enters

about the demand shocks, so as to increase the likelihood for another agent to buy

the intraday bid, and on the other hand, the will to wait and see as information

enters to be as precise as possible on the submitted bid to correct the outcome of

the day-ahead market, but therefore decreasing the likelihood to find a buyer.

Second, the ramping costs associated with changing production are incurred only

after the net of the day-ahead market and intraday market is fixed.

� Implement the actual market clearing algorithm and study it numerically.

Empirical analysis

� Take into account the block orders: these orders impact the bids and should be

accounted for.

� Study in more detail the overall function without restriction to only 5 points, which

should be doable with the increase in computational power

� Leverage the difference between weather prediction data and observations for more

accurate weather uncertainty.

� Take into account the uncertainty associated with international interconnexions.

200



Conclusion

� Analyze the individual submitted points on the aggregate supply schedules to find

whether it is possible to attach some of them to specific power plants with any

certainty.
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Autocorrelation lengthscale

Overall, the Matlab code was written by Alexis Bergès, whereas the Stata code was writ-

ten by Henri de Belsunce. All ideas, architecture choices, methods were co-developed

with equal contributions from both

This first bit of code builds the autocorrelation lengthscales introduced in chapter 2.

It takes data from Meteofrance, that comes as files containing a row per observation,

each row containing the timestamp of the observation, as well as the code of the station,

and the observation itself, to which was added the latitude and longitude of the current

station. For a given year, only data pertaining to this year is kept in memory, to avoid

running out of RAM.

Once this first step is done, and for every timestamp, all pairs of stations are taken,

and the difference of value in the observation is taken, as well as the distance between

the stations.

Once this treated data is generated, an exponential is fitted, and its coefficient is saved

as the autocorrelation lengthscale for this given variable, and this given timestamp. The

code to generate a graph of the cloud of points and the fitted function is also included.

1 c l e a r a l l

2

3 f i l enamemaster=’ ˜/Desktop/Google Drive /Encheres Elec /For Matlab/Exogenous treated 03 .2014/Vent/

ExoVent numeric . csv ’ ;

4 M = csvread ( f i l enamemaster ) ;

5

6 %%Keep only year o f i n t e r e s t

7 yyyy=2011;

8 f o r i =1: s i z e (M, 1 )

9 i f mod( i , 10000)==0

10 di sp ( ’ y o f i n t e r e s t ’ ) , d i sp ( i )

11 end

12 i f M( i , 5 )==yyyy&&(i ==1||M( i −1 ,5)<yyyy )

13 y i=i ;

14 end

15 i f M( i , 5 )==yyyy&&(i==s i z e (M, 1 ) | |M( i +1 ,5)>yyyy )
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16 yf=i ;

17 end

18 end

19 Myyyy=M( y i : yf , : ) ;

20 % c l e a r M

21

22

23 k i n i =1;

24 kend=0;

25 l au toco r = [ ] ;

26 f o r k=1:( s i z e (Myyyy , 1 )−1)

27 i f mod(k ,1000)==0

28 k

29 end

30 i f Myyyy(k , 8 )˜=Myyyy(k+1,8 )

31 kend=k ;

32 autocor = [ ] ;

33 f o r i=k i n i : ( kend−1)

34 f o r j=( i +1) : kend

35 ertemp=abs (Myyyy( i , 1 )−Myyyy( j , 1 ) ) ;

36 disttemp=sqr t ( (Myyyy( i , 9 )−Myyyy( j , 9 ) ) ˆ2+(Myyyy( i , 1 0 )−Myyyy( j , 1 0 ) ) ˆ2) ;

37 autocortemp=cat (2 , disttemp , ertemp ) ;

38 autocor=cat (1 , autocor , autocortemp ) ;

39 end

40 end

41 binranges =0 :0 .004 :max( autocor ( : , 1 ) ) ;

42 [ bincounts , ind ]= h i s t c ( autocor ( : , 1 ) , b inranges ) ;

43 autocor=cat (2 , autocor , ind ) ;

44 A=sort rows ( autocor , 3 ) ;

45 r i n i =1;

46 rend=0;

47 meanstd = [ ] ;

48 f o r i =1: s i z e ( bincounts , 1 )

49 i f b incounts ( i )>0

50 rend=rend+bincounts ( i ) ;

51 m1=mean(A( r i n i : rend , 2 ) ) ;

52 m2=mean(A( r i n i : rend , 1 ) ) ;

53 meantemp=cat (2 , b incounts ( i ) ,m1,m2) ;

54 meanstd=cat (1 , meanstd , meantemp) ;

55 r i n i=rend+1;

56 end

57 end

58

59 y=meanstd ( 1 : round (4/5∗ s i z e (meanstd , 1 ) ) ,2 ) ;

60 x=meanstd ( 1 : round (4/5∗ s i z e (meanstd , 1 ) ) ,3 ) ;

61 % y=meanstd ( : , 2 ) ;

62 % x=meanstd ( : , 3 ) ;

63 % f i gu r e , p l o t (meanstd ( 2 : s i z e (meanstd , 1 ) ,3 ) ,meanstd ( 2 : s i z e (meanstd , 1 ) ,2 ) )

64 g = f i t t y p e ( ’ a∗(1−exp(−x/b) ) ’ , ’ dependent ’ ,{ ’ y ’ } , ’ independent ’ ,{ ’ x ’ } , . . .

65 ’ c o e f f i c i e n t s ’ ,{ ’ a ’ , ’b ’ }) ;

66 myfit=f i t (x , y , g , ’ Lower ’ , [ 0 , 0 ] , ’ Upper ’ , [ 1 0 , 0 . 3 ] , ’ S ta r tpo in t ’ , [ 4 . 5 0 . 0 4 ] ) ;

67 c o e f f f i t=c o e f f v a l u e s ( myf it ) ;

68 % f i gu r e , p l o t ( myfit , meanstd ( 2 : s i z e (meanstd , 1 ) ,3 ) ,meanstd ( 2 : s i z e (meanstd , 1 ) ,2 ) )

69 k i n i=k+1;

70 lautocortemp=cat (2 , c o e f f f i t (2 ) ,Myyyy(k , 5 ) ,Myyyy(k , 6 ) ,Myyyy(k , 7 ) ,Myyyy(k , 8 ) ) ;

71 l au toco r=cat (1 , lautocor , lautocortemp ) ;

72 end

73 end

74

75 % %%Convert l au toco r to s t r i n g to be s ta ta f r i e n d l y
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76 d a t e s e f f = [ ] ;

77 f o r i =1: s i z e ( lautocor , 1 )

78 i f l au toco r ( i , 4 )<10

79 dd=[ ’ 0 ’ num2str ( l au toco r ( i , 4 ) ) ] ;

80 e l s e dd=num2str ( l au toco r ( i , 4 ) ) ;

81 end

82 i f l au toco r ( i , 3 )<10

83 mm=[ ’ 0 ’ num2str ( l au toco r ( i , 3 ) ) ] ;

84 e l s e mm=num2str ( l au toco r ( i , 3 ) ) ;

85 end

86 i f l au toco r ( i , 5 )<10

87 hh=[ ’ 0 ’ num2str ( l au toco r ( i , 5 ) ) ] ;

88 e l s e hh=num2str ( l au toco r ( i , 5 ) ) ;

89 end

90 dated=[dd ’ / ’ mm ’ / ’ num2str ( l au toco r ( i , 2 ) ) ] ;

91 datese f f t emp={dated , hh , num2str ( l au toco r ( i , 1 ) ) } ;

92 d a t e s e f f=cat (1 , da t e s e f f , datese f f t emp ) ;

93 end

94

95 %%Prepare the data to be wr i t t en to . txt f i l e

96 d a t e s e f f=d a t e s e f f ;

97 f i d = fopen ( [ ’ /Users / a l e x i s b e r g e s /Desktop/Google Drive /Encheres Elec /For Matlab/ l au t o c o r ’ num2str (

yyyy ) ’ . txt ’ ] , ’w ’ ) ;

98 f p r i n t f ( f id , ’%s , %s , %s\n ’ , d a t e s e f f { : , : } ) ;

99 f c l o s e ( f i d ) ;

100

101

102 %%%%%%%%%%%%%%% graph lau toco r we l l

103 houra =[0;M( : , 8 ) ] ;

104 hourb=[M( : , 8 ) ; 0 ] ;

105 idxchange=f ind ( houra−hourb ) ;

106

107 l au toco r = [ ] ;

108 hourlook=470;

109 k i n i=idxchange ( hourlook ) ;

110 kend=idxchange ( hourlook+1)−1;

111 autocor = [ ] ;

112 k=1;

113 f o r i=k i n i : ( kend−1)

114 f o r j=( i +1) : kend

115 ertemp=abs (M( i , 1 )−M( j , 1 ) ) ;

116 disttemp=sqr t ( (M( i , 9 )−M( j , 9 ) ) ˆ2+(M( i , 1 0 )−M( j , 1 0 ) ) ˆ2) ∗6371;

117 autocortemp=cat (2 , disttemp , ertemp ) ;

118 autocor=cat (1 , autocor , autocortemp ) ;

119 end

120 end

121 binranges =0:0 .004∗6371:max( autocor ( : , 1 ) ) ;

122 [ bincounts , ind ]= h i s t c ( autocor ( : , 1 ) , b inranges ) ;

123 autocor=cat (2 , autocor , ind ) ;

124 A=sortrows ( autocor , 3 ) ;

125 r i n i =1;

126 rend=0;

127 meanstd = [ ] ;

128 f o r i =1: s i z e ( bincounts , 1 )

129 i f b incounts ( i )>0

130 rend=rend+bincounts ( i ) ;

131 m1=mean(A( r i n i : rend , 2 ) ) ;

132 m2=mean(A( r i n i : rend , 1 ) ) ;

133 meantemp=cat (2 , b incounts ( i ) ,m1,m2) ;

134 meanstd=cat (1 , meanstd , meantemp) ;
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135 r i n i=rend+1;

136 end

137 end

138

139 y=meanstd ( 1 : round (4/5∗ s i z e (meanstd , 1 ) ) ,2 ) ;

140 x=meanstd ( 1 : round (4/5∗ s i z e (meanstd , 1 ) ) ,3 ) ;

141 % y=meanstd ( : , 2 ) ;

142 % x=meanstd ( : , 3 ) ;

143 % f i gu r e , p l o t (meanstd ( 2 : s i z e (meanstd , 1 ) ,3 ) ,meanstd ( 2 : s i z e (meanstd , 1 ) ,2 ) , ’− ’ , ’ LineWidth ’ , 2 )

144 g = f i t t y p e ( ’ a∗(1−exp(−x/b) ) ’ , ’ dependent ’ ,{ ’ y ’ } , ’ independent ’ ,{ ’ x ’ } , . . .

145 ’ c o e f f i c i e n t s ’ ,{ ’ a ’ , ’b ’ }) ;

146 myfit=f i t (x , y , g , ’ Lower ’ , [ 0 , 0 ] , ’ Upper ’ , [ 1 0 , 0 . 3∗6371 ] , ’ S ta r tpo in t ’ , [ 4 . 5 0 . 04∗6371 ] ) ;

147 c o e f f f i t=c o e f f v a l u e s ( myf it ) ;

148 f i g u r e

149 p lo t1=p lo t ( myfit , ’ r ’ ) ;

150 s e t ( plot1 , ’ LineWidth ’ ,4 )

151 hold on

152 p lo t2=p lo t (meanstd ( 2 : s i z e (meanstd , 1 ) ,3 ) ,meanstd ( 2 : s i z e (meanstd , 1 ) ,2 ) , ’b−+’ ) ;

153 s e t ( plot2 , ’ LineWidth ’ ,4 )

154 hold on

155 p lo t3=p lo t ( autocor ( : , 1 ) , autocor ( : , 2 ) , ’ ko ’ , ’ MarkerSize ’ ,2 , ’ MarkerFaceColor ’ , [ 0 , 0 , 0 ] ) ;

156 l i n e 1=l i n e ( [ 0 , 0 . 02∗6371 ] , [ 0 , c o e f f f i t (1 ) / c o e f f f i t (2 ) ∗0 .02∗6371 ] , ’ Color ’ , [ 0 0 0 ] , ’ L ineSty l e ’ , ’

−− ’ , ’ LineWidth ’ ,2 ) ;

157 l i n e 2=l i n e ( [ 0 , 0 . 2∗6371 ] , [ c o e f f f i t (1 ) , c o e f f f i t (1 ) ] , ’ Color ’ , [ 0 0 0 ] , ’ L ineSty l e ’ , ’−− ’ , ’

LineWidth ’ ,2 ) ;

158 l i n e 3=l i n e ( [ c o e f f f i t (2 ) , c o e f f f i t (2 ) ] , [ 0 , c o e f f f i t (1 ) ] , ’ Color ’ , [ 0 0 .5 0 ] , ’ L ineSty l e ’ , ’−− ’ , ’

LineWidth ’ ,2 ) ;

159 p l o t l e g=legend ( [ p lo t3 p lo t2 p lo t1 l i n e 1 l i n e 3 ] ,

160 { ’Data from the pa i r s ’ ’ Kernel smoothed data ’ ’ F i t t ed exponent ia l ’

161 ’ De r i va t i v e s o f the f i t t e d curve at 0 and \ i n f t y ’ ’ Autoco r r e l a t i on l e n g th s c a l e ’

} ,

162 ’ Locat ion ’ , ’ northwest ’ ) ;

163 s e t ( p l o t l e g , ’ FontSize ’ ,24) ;

164 k i n i=k+1;

165 lautocortemp=cat (2 , c o e f f f i t (2 ) ,M(k , 5 ) ,M(k , 6 ) ,M(k , 7 ) ,M(k , 8 ) ) ;

166 l au toco r=cat (1 , lautocor , lautocortemp ) ;
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Regressions

The next bit of code is the general do file for the regressions of chapter 3.

 ∗ COMPUTE COMPARABLE TABLES FOR SQ−RESIDUALS.



 ∗∗∗ VERSION FEBRUARY 2015



 ∗ Fina l Do− f i l e



 /∗ Notes :

 −−−−−−−−−−−−− MAKE SURE NORMAL VERSION RUNS LAST TO ENSURE CORRECT TABLES FOR DEMAND ESTIMATION

 ∗/



 macro drop a l l

 g l oba l YearINIT = 2011

 g l oba l YearFIN = 2013

 g l oba l HourINIT = 1

 g l oba l HourFIN = 24

 g l oba l vINPUT= ”v38”

 g l oba l vOUTPUT= ”v38”



 g l oba l d o f i l e d i r e c t o r y o r i g= Path to d i r e c t o r y conta in ing do f i l e s

 g l oba l LATEXPATH = Path to d i r e c t o r y conta in ing l a t ex f o r a r t i c l e

 g l oba l CLOUDPATH = Path to d i r e c t o r y conta in ing data



 g l oba l focusk = 5



 ∗∗∗∗∗∗∗∗∗∗

 ∗ Data Prep

 ∗∗∗∗∗∗∗∗∗∗



 use ”${CLOUDPATH}v38/Temp data/DataReady Y${YearINIT}−Y${YearFIN } . dta” , c l e a r

 ∗ manually merged Roll avgT24 to datase t .

 ∗ manually merged w indd i f f on ly to datase t



 de s t r i ng YYYY MM DD, r ep l a c e

 drop Year Month

 g so r t YYYY MM DD Hour SalePurchase s e l e c t

 order Date Hour Pr i ce Volume SalePurchase s e l e c t





 rename COAL IMPORTPRICE EURpTON Coal

 rename EST PRICE ELEC EXPORT EExportPrice /∗ in EUR∗/

 rename BRENT LDN AVG Brent

 rename GAS SPOT GBPpTHERM Gas

 rename LcWind2011 LcWind



 l a b e l var Roll Temp24 ”Rol l \ Temp24”

 l a b e l var Roll Temp240 ”Rol l \ Temp240”

 l a b e l var Roll Temp720 ”Rol l \ Temp720”

 l a b e l var Roll avgT24 ”Rol l \ avgT24”

 l a b e l var Roll avgT240 ”Rol l \ avgT240”



 ∗ dataprep :

 gen IT2 = (PrevConsoH / 99400) ∗ Gas /∗PrevConsoH not inc luded in supply , 99400 i s max o f

PrevConsoH ∗/
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 gen EWH = 0

 r ep l a c e EWH = 1 i f Hour<=4

 r ep l a c e EWH = 1 i f Hour>=22

 gen dfaT15 = Roll Temp24 −Roll Temp240





 ∗ generate s l ope o f oppos i t e func t i on ( on Demand , add fx o f supply func t i on )

 g so r t s e l e c t Datestata Hour SalePurchase

 capture drop e r r o r i n d i c

 gen e r r o r i n d i c = 1 i f SalePurchase [ n]==SalePurchase [ n+1]

 drop i f e r r o r i n d i c == 1 & SalePurchase==”Purchase ”

 drop e r r o r i n d i c

 capture drop fxInvertPQ viaP fxInvertQP viaP

 capture drop Pr i c e S v iaP Volume S viaP

 gen fxInvertPQ viaP = 1/( fx [ n +1]) i f SalePurchase==”Purchase ”

 gen fxInvertQP viaP = fx [ n+1] i f SalePurchase==”Purchase ”

 gen Pr i c e S v iaP = Pr ice [ n+1] i f SalePurchase==”Purchase ”

 gen Volume S viaP = Volume [ n+1] i f SalePurchase==”Purchase ”

 g so r t SalePurchase s e l e c t Datestata Hour

 gen fxInvertQP = fxInvertQP viaP

 gen fxInvertPQ = fxInvertPQ viaP



 ∗ make po int s comparable by volume ( not by p r i c e ! )

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ remove to do other dimension + must rename fxinvertQP

 gen se l ec tQ = s e l e c t

 capture drop lowpk

 capture drop s e l e c t v i aP

 gen lowpk = 1 i f s e l e c t <5 & SalePurchase==”Purchase”

 r ep l a c e se l ec tQ =9 i f s e l ec tQ ==1 & SalePurchase==”Purchase ” & lowpk == 1

 r ep l a c e se l ec tQ =7 i f s e l ec tQ ==3 & SalePurchase==”Purchase ” & lowpk == 1

 r ep l a c e se l ec tQ =3 i f s e l ec tQ ==7 & SalePurchase==”Purchase ” & lowpk == .

 r ep l a c e se l ec tQ =1 i f s e l ec tQ ==9 & SalePurchase==”Purchase ” & lowpk == .

 rename s e l e c t s e l e c t v i aP

 rename se l ec tQ s e l e c t

 ∗ generate s l ope o f oppos i t e func t i on ( on Demand , add fx o f supply func t i on )

 g so r t s e l e c t Datestata Hour SalePurchase

 capture drop e r r o r i n d i c

 gen e r r o r i n d i c = 1 i f SalePurchase [ n]==SalePurchase [ n+1]

 drop i f e r r o r i n d i c == 1 & SalePurchase==”Purchase ”

 drop e r r o r i n d i c

 capture drop fxInvertPQ viaQ fxInvertQP viaQ

 capture drop Pr ice S v iaQ Volume S viaQ

 gen fxInvertPQ viaQ = 1/( fx [ n +1]) i f SalePurchase==”Purchase ”

 gen fxInvertQP viaQ = fx [ n+1] i f SalePurchase==”Purchase ”

 gen Pr ice S v iaQ = Pr ice [ n+1] i f SalePurchase==”Purchase ”

 gen Volume S viaQ = Volume [ n+1] i f SalePurchase==”Purchase ”

 g so r t SalePurchase s e l e c t Datestata Hour

 capture drop fxInvertQP fxInvertPQ

 gen fxInvertQP = fxInvertQP viaQ

 gen fxInvertPQ = fxInvertPQ viaQ

 drop fxInvertPQ viaP fxInvertQP viaP

 order Date Hour Pr i ce Volume SalePurchase s e l e c t s e l e c t v i aP



 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗





 ∗∗∗∗∗∗∗∗∗∗

 ∗ Solar1DA pr ed i c t i on

 ∗∗∗∗∗∗∗∗∗∗

 capture drop IT1
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 capture drop SolarRest

 gen IT1 = suncyc l e ∗ Roll avgT240 /∗ I n t e r a c t i o n term 1 = suncyc l e ∗ average

temp no cu t o f f at 15 = proxy f o r sunangle − decided aga in s t as no

change in ry o f r t e black box and e a s i e r i n t e r p r e t a t i o n ∗/

 g l oba l s o l a r e s t ima t i o n v a r i a b l e s ” suncyc l e ”



 reg Solar1DA $ s o l a r e s t ima t i onva r i ab l e s , robust

 e s t s t o r e Black 3



 capture drop SolarBlackBox

 capture drop b l a ck ep s i l on

 capture mat drop blackalpha

 mat blackmat = e (b)

 mat l i blackmat

 s c a l a r b lackalpha = blackmat [ 1 , 3 ]

 di b lacka lpha



 p r ed i c t b l a ck ep s i l on i f e ( sample ) , r e s i d u a l s

 gen SolarRest = b l a ck ep s i l on /∗+ blackalpha ∗/

 drop b l a ck ep s i l on



 btoutreg2 [ Black 3 ] us ing ”${LATEXPATH}SolarBlack . tex ” , r ep l a c e tex ( f r ag pre t ty )

/∗ s t a t s ( co e f Var se ) ∗/ l a b e l ( proper ) l e v e l (95) sideway noparen





 ∗drop i r r e l e v a n t OBS and va r i a b l e s

 drop e s t ∗

 drop i f So larRest==.







 ∗∗∗∗∗∗∗∗∗∗

 ∗ Black box p r ed i c t i on RTE

 ∗∗∗∗∗∗∗∗∗∗

 g l oba l b l a ck e s t ima t i onva r i ab l e s 1 ” Tempeff15 Roll Temp24 Roll Temp240

SolarRest suncyc l e morning de l tasun EWH”

 g l oba l b l a ck e s t ima t i onva r i ab l e s 2 ”Tempeff Roll avgT24 Roll avgT240

SolarRest suncyc l e morning de l tasun EWH ”

 g l oba l b l a ck e s t ima t i onva r i ab l e s 3 ” Tempeff15 Roll Temp24 Roll Temp240

SolarRest suncyc l e morning de l tasun IT1 EWH CZlag EExportPlag”

 g l oba l b l a ck e s t ima t i onva r i ab l e s 4 ” Tempeff15 Roll Temp24 Roll Temp240

SolarRest suncyc l e morning de l tasun IT1 ”



 ∗∗∗ INTERPRETATION : c o e f f on tempef f15 much l a r g e r than tempef f −> po s i t i v e f o r us

.



 reg PrevConsoH $b lacke s t imat i onva r i ab l e s1 , robust

 e s t s t o r e Black 1



 capture drop RteBlackBox

 capture drop b l a ck ep s i l on

 capture mat drop blackalpha

 mat blackmat = e (b)

 mat l i blackmat

 s c a l a r b lackalpha = blackmat [ 1 , 9 ]

 di b lacka lpha



 p r ed i c t b l a ck ep s i l on i f e ( sample ) , r e s i d u a l s

 gen RteBlackBox = b l a ck ep s i l on /∗+ blackalpha ∗/

 drop b l a ck ep s i l on
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 reg PrevConsoH $b lacke s t imat i onva r i ab l e s2 , robust

 e s t s t o r e Black 2



 reg PrevConsoH $b lacke s t imat i onva r i ab l e s3 , robust

 e s t s t o r e Black 3



 reg PrevConsoH $b lacke s t imat i onva r i ab l e s4 , robust

 e s t s t o r e Black 4



 btoutreg2 [ Black 1 Black 2 ] us ing ”${LATEXPATH}Black1 . tex ” , r ep l a c e tex ( f r ag

pre t ty ) s t a t s ( co e f ) l a b e l ( proper ) l e v e l (95) sideway noparen

 btoutreg2 [ Black 1 Black 2 Black 3 Black 4 ] us ing ”${LATEXPATH}Black2 . tex ” , r ep l a c e

tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l ( proper ) l e v e l (95) sideway noparen



 ∗drop i r r e l e v a n t OBS and va r i a b l e s

 drop e s t ∗

 drop i f RteBlackBox==.



 ∗ save

 save ”${CLOUDPATH}v38/Temp data/Pre4and5 . dta” , r ep l a c e





 ∗∗∗∗∗∗∗∗∗∗

 ∗ Generate PLU using f o r e c a s t model

 ∗∗∗∗∗∗∗∗∗∗



 ∗∗∗∗∗∗

 ∗ DEMAND ESTIMATION + generate r e s i d u a l s f o r PLU D

 ∗∗∗∗∗∗



 ∗ DEMAND ESTIMATION (no CZlag )

 l o c a l v e r s i on ”52”

 g l oba l runversionD ‘ ve r s i on ’

 g l oba l demandest imat ionvar iab les ‘ v e r s i on ’ ”Tempeff15 Roll Temp24 Roll Temp240

suncyc l e morning de l tasun EWH SolarRest RteBlackBox ”



 ∗ run do f i l e f o r demand es t imat ion

 do ”${CLOUDPATH}v38/DoFi les /107 Eqn4demand . do”









 ∗∗∗∗∗∗

 ∗ PLUvD : pred i c t ed uncer ta in ty d i r e c t l y us ing r e g r e s s i o n

 ∗∗∗∗∗∗

 ∗ Only p r ed i c t unce r ta in ty f o r demand func t i on

 ∗ Cannot do so f o r supply func t i on s i n c e mixed with ex−post own bidding s t r a t egy .



 g l oba l DEV ${demandest imat ionvar iab les$ { runversionD}}



 capture drop PLUvDvarP

 capture drop PLUvDvarQ

 gen PLUvDvarP =.

 gen PLUvDvarQ =.



 f o r v a l u e s k = 1(2) 9{

 fo r each s in /∗ S e l l ∗/ Purchase{

 di ”Point ” ‘ k ’ ” Curve ” ” ‘ s ’ ”

 reg sqresVolume ${DEV} i f s e l e c t==‘k ’ & SalePurchase==” ‘ s ’ ”
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 p r ed i c t PLUvDvartmpQ ‘k ’ a ‘ s ’ i f e ( sample ) , xb

 e s t s t o r e predictuncQa ‘k ’ a ‘ s ’

 r ep l a c e PLUvDvarQ = PLUvDvartmpQ ‘k ’ a ‘ s ’ i f e ( sample )

 drop PLUvDvartmpQ ‘k ’ a ‘ s ’

 }

 }



 f o r v a l u e s k = 1(2) 9{

 fo r each s in /∗ S e l l ∗/ Purchase{

 di ”Point ” ‘ k ’ ” Curve ” ” ‘ s ’ ”

 reg sq r e sP r i c e ${DEV} i f s e l e c t==‘k ’ & SalePurchase==” ‘ s ’ ”

 p r ed i c t PLUvDvartmpP ‘k ’ a ‘ s ’ i f e ( sample ) , xb

 e s t s t o r e predictuncPa ‘k ’ a ‘ s ’

 r ep l a c e PLUvDvarP = PLUvDvartmpP ‘k ’ a ‘ s ’ i f e ( sample )

 drop PLUvDvartmpP ‘k ’ a ‘ s ’

 }

 }



 capture drop PLUvDvarPabs

 capture drop PLUvDvarQabs

 gen PLUvDvarPabs =.

 gen PLUvDvarQabs =.



 f o r v a l u e s k = 1(2) 9{

 fo r each s in /∗ S e l l ∗/ Purchase{

 di ”Point ” ‘ k ’ ” Curve ” ” ‘ s ’ ”

 reg absresVolume ${DEV} i f s e l e c t==‘k ’ & SalePurchase==” ‘ s ’ ”

 p r ed i c t PLUvDvartmpQ ‘k ’ a ‘ s ’ i f e ( sample ) , xb

 e s t s t o r e predictuncQa ‘k ’ a ‘ s ’ABS

 r ep l a c e PLUvDvarQabs = PLUvDvartmpQ ‘k ’ a ‘ s ’ i f e ( sample )

 drop PLUvDvartmpQ ‘k ’ a ‘ s ’

 }

 }



 f o r v a l u e s k = 1(2) 9{

 fo r each s in /∗ S e l l ∗/ Purchase{

 di ”Point ” ‘ k ’ ” Curve ” ” ‘ s ’ ”

 reg ab s r e sPr i c e ${DEV} i f s e l e c t==‘k ’ & SalePurchase==” ‘ s ’ ”

 p r ed i c t PLUvDvartmpP ‘k ’ a ‘ s ’ i f e ( sample ) , xb

 e s t s t o r e predictuncPa ‘k ’ a ‘ s ’ABS

 r ep l a c e PLUvDvarPabs = PLUvDvartmpP ‘k ’ a ‘ s ’ i f e ( sample )

 drop PLUvDvartmpP ‘k ’ a ‘ s ’

 }

 }





 ∗ ( genera t ing ) t ab l e s on PLUvD

 btoutreg2 [ predictuncPa5aPurchase predictuncPa5aPurchaseABS /∗ pred i c tuncPa5aSe l l ∗/ ]

us ing ”${LATEXPATH}pred ic tunc1 . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f )

l a b e l ( proper ) l e v e l (95)



 btoutreg2 [ predictuncQa5aPurchase predictuncQa5aPurchaseABS /∗ pred ic tuncQa5aSe l l ∗/ ]

us ing ”${LATEXPATH}pred ic tunc2 . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f )

l a b e l ( proper ) l e v e l (95)



 ∗ drop tab l e data

 drop e s t ∗
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 ∗ take sq r t o f squared PLUs to get other order o f magnitudes

 gen PLUvDrtP = sqr t (PLUvDvarP)

 gen PLUvDrtQ = sqr t (PLUvDvarQ)





 ∗∗∗∗∗∗

 ∗ PLUvR: LongueurCorrel Temp:

 ∗∗∗∗∗∗



 gen PLUvRvarT = 1 / LcTemp

 gen PLUvRvarW = 1 / LcWind

 gen PLUvRvarS = 1 / LcSolar



 ∗ add u−shaped term

 gen PLUvRvarTsq = 1/(LcTemp ∗ LcTemp)

 gen PLUvRvarWsq = 1/(LcWind ∗ LcWind)

 gen PLUvRvarSsq = 1/( LcSolar ∗ LcSolar )





 /∗ t ab l e o f ex t rac ted s l op e s

 capture mat drop M

 l o c a l v a r i a b l e s ”1 3 5 7 9”

 l o c a l FUNC ” r (mean) r ( p50 ) r ( sd ) r (min ) r (max) ”

 l o c a l i=0

 fo r each var o f l o c a l v a r i a b l e s {

 l o c a l i =‘ i ’+1

 }

 l o c a l j=0

 fo r each var o f l o c a l FUNC{

 l o c a l j =‘ j ’+1

 }

 di ‘ j ’ ” ” ‘ i ’

 mat M = J ( ‘ i ’ , 5 , . )



 l o c a l c=1

 fo r each FF of l o c a l FUNC{

 l o c a l r=1

 fo r each VV of l o c a l v a r i a b l e s {

 su /∗ fxInvertPQ ∗/ /∗ fxInvertQP i f s e l e c t==‘VV’ , d e t a i l

 mat M[ ‘ r ’ , ‘ c ’ ]= ‘FF’

 l o c a l r=‘r ’+1

 }

 l o c a l c=‘c ’+1

 }

 mat rownames M = ‘ va r i ab l e s ’

 mat colnames M = Mean Median StdDev Min Max

 mat l i M



 btout tab l e us ing ”${LATEXPATH} ex t r a c t ed s l op e s ” , r ep l a c e mat(M) a s i s nobox

capt ion (” Estimated s l op e s o f the supply func t i on per po int k”) format

(%9.4 f c %9.4 f c %9.4 f c %9.4 f c %9.4 f c %9.4 f c ) ∗/



 ∗ save

 save ”${CLOUDPATH}v38/Temp data/ F ina lda ta s e t . dta” , r ep l a c e







 ∗∗∗∗∗∗

 ∗ generate ke rne l based PLUs
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 ∗∗∗∗∗∗

 use ”${CLOUDPATH}v38/Temp data/ F ina lda ta s e t . dta” , c l e a r



 ∗∗∗∗∗∗∗∗∗∗∗∗∗ generate ke rne l PLUS

 ∗ do ”${CLOUDPATH}v38/DoFi les /107 ke rne lbucke t r eg . do”

 ∗∗∗∗∗∗∗∗∗∗∗∗∗



 ∗∗∗∗∗∗∗∗∗∗∗∗∗ datase t manipulat ions to obta in f i n a l datase t

 do ”${CLOUDPATH}v38/DoFi les /107 PrepkernelPLUdata . do”

 ∗∗∗∗∗∗∗∗∗∗∗∗∗



 ∗ save

 save ”${CLOUDPATH}v38/Temp data/ Fina l rundatase t . dta” , r ep l a c e























































 ∗∗∗∗∗

 ∗ Columns based on ke rne l PLUvD

 ∗∗∗∗∗

 ∗ do ”${CLOUDPATH}v38/DoFi les /107 BootstrapKerne l2702 . do”
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 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ START OF BASELINE RESULTS + BOOTSTRAP

ROBUSTNESS

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗





 ∗∗∗∗∗∗∗∗∗ BASELINE





 g l oba l focusk = 5





 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ Some r e g r e s s i o n s : −−−−−−−−−−−−− on point k only −−−−−−−−−−−

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗



 use ”${CLOUDPATH}v38/Temp data/ Fina l rundatase t . dta” , c l e a r



 ∗∗∗∗∗∗∗∗∗

 ∗ FOCUS POINT

 ∗∗∗∗∗∗∗∗∗

 l o c a l k=${ f ocusk }

 keep i f s e l e c t==‘k ’ & SalePurchase==”Purchase ”



 ∗ MACROS:

 g l oba l PLUsR ”PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq”

 g l oba l SupCo ”Coal Brent Gas IT2 EUA Wind1DA Hydro”



 ∗∗∗∗∗ Program bootst rap o f b a s e l i n e

 capture program drop my2s l s f o rba s e l i n eboo t s t r ap

 program my2s l s f o rba s e l i n eboo t s t r ap

 l o c a l k=${ f ocusk }

 capture drop PLU P boot PLU Q boot

 capture drop PLUvDvarP ‘k ’ r e s c PLUvDvarQ ‘k ’ r e s c

 capture n o i s i l y reg s q r e sP r i c e Tempeff15 Roll Temp24 Roll Temp240 suncyc l e morning

de l tasun EWH SolarRest RteBlackBox i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” ,

robust

 p r ed i c t PLU P boot , xb

 su PLU P boot , meanonly

 s c a l a r tmpP = r (mean)

 capture n o i s i l y gen PLUvDvarP ‘k ’ r e s c = PLU P boot / tmpP

 reg sqresVolume Tempeff15 Roll Temp24 Roll Temp240 suncyc l e morning de l tasun EWH

SolarRest RteBlackBox i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” , robust

 p r ed i c t PLU Q boot , xb

 su PLU Q boot , meanonly

 s c a l a r tmpQ = r (mean)

 gen PLUvDvarQ ‘k ’ r e s c = PLU Q boot / tmpQ

 i f ‘ k ’==1 | ‘ k ’==9 {

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq

Coal Brent Gas IT2 EUA Wind1DA Hydro /∗PLUvDvarP ‘ k ’ r e s c ∗/ PLUvDvarQ ‘k ’ r e s c

i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” , robust

 }

 e l s e {

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq

Coal Brent Gas IT2 EUA Wind1DA Hydro PLUvDvarP ‘k ’ r e s c PLUvDvarQ ‘k ’ r e s c i f
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s e l e c t ==‘k ’ & SalePurchase==”Purchase ” , robust

 }

 capture drop PLU P boot PLUvDvarP ‘k ’ r e s c PLU Q boot PLUvDvarQ ‘k ’ r e s c

 end





 ∗FIRST TABLE:



 ∗ co l 1

 l o c a l k=${ f ocusk }

 capture drop PLUvDvarP ‘k ’ r e s c

 capture drop PLUvDvarQ ‘k ’ r e s c

 su PLUvDvarP ‘k ’ , meanonly

 s c a l a r tmpresc = r (mean)

 capture n o i s i l y gen PLUvDvarP ‘k ’ r e s c = PLUvDvarP ‘k ’ / tmpresc

 su PLUvDvarQ ‘k ’ , meanonly

 s c a l a r tmpresc = r (mean)

 gen PLUvDvarQ ‘k ’ r e s c = PLUvDvarQ ‘k ’ / tmpresc

 i f ‘ k ’==1 | ‘ k ’==9 {

 reg fxInvertQP ${PLUsR} ${SupCo} /∗PLUvDvarP ‘ k ’ r e s c ∗/ PLUvDvarQ ‘k ’ r e s c

 e s t s t o r e d1short1 ‘ k ’

 }

 e l s e {

 reg fxInvertQP ${PLUsR} ${SupCo} PLUvDvarP ‘k ’ r e s c PLUvDvarQ ‘k ’ r e s c

 e s t s t o r e d1short1 ‘ k ’

 }

 ∗ co l 2

 l o c a l k=${ f ocusk }

 bootst rap b , reps (200) seed (12345) : my2 s l s f o rba s e l i n eboo t s t r ap

 e s t s t o r e b s b a s e l i n e ‘ k ’

 e s t save ”${CLOUDPATH}v38/Temp data/ b s ba s e l i n e ‘ k ’ . s t e r ” , r ep l a c e

 ∗ co l 3

 l o c a l k=${ f ocusk }

 e s t imate s use ”${CLOUDPATH}v38/Temp data/ kerne lwe igthed ‘ k ’ . s t e r ”

 r e g r e s s

 e s t imate s esample

 e s t imate s s t o r e k e rn e l 4 ‘ k ’

 ∗ co l 4

 l o c a l k=${ f ocusk }

 i f ‘ k ’==5{

 e s t imate s use ”${CLOUDPATH}v38/Temp data/ kerne lboot s t rap ‘ k ’ . s t e r ”

 r e g r e s s

 e s t imate s esample :

 e s t imate s s t o r e k e rn e l 5 ‘ k ’

 }



 ∗ t ab l e main

 l o c a l k=${ f ocusk }

 i f ‘ k ’==5{

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ k e rn e l 5 ‘ k ’ ] us ing ”${

LATEXPATH}main1 ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f se )

l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ k e rn e l 5 ‘ k ’ ] us ing ”${

LATEXPATH}mainNS1 ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l

( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ k e rn e l 5 ‘ k ’ ] us ing ”${

LATEXPATH}mainoS1 ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( se ) l a b e l (

proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 }

 e l s e {

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0.0

0.5

1.0

1.5

2.0

2.5

120 130 140
0

10

223



Code Annex

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}main1 ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f se )

l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}mainNS1 ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f )

l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}mainoS1 ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( se )

l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 }



 ∗ t ab l e compare

 f o r v a l u e s k=1(2)9{

 e s t imate s use ”${CLOUDPATH}v38/Temp data/ b s ba s e l i n e ‘ k ’ . s t e r ”

 r e g r e s s

 e s t imate s esample :

 e s t imate s s t o r e b s b a s e l i n e ‘ k ’

 }

 btoutreg2 [ b s b a s e l i n e 1 b s b a s e l i n e 3 b s b a s e l i n e 5 b s b a s e l i n e 7

b s b a s e l i n e 9 ] us ing ”${LATEXPATH} compare col2 . tex ” , r ep l a c e tex ( f r ag

pre t ty ) s t a t s ( co e f se ) l a b e l ( proper ) l e v e l (95) t i t l e ( Comparison o f

c o l . 2)

 btoutreg2 [ b s b a s e l i n e 1 b s b a s e l i n e 3 b s b a s e l i n e 5 b s b a s e l i n e 7

b s b a s e l i n e 9 ] us ing ”${LATEXPATH}compareNS col2 . tex ” , r ep l a c e tex ( f r ag

pre t ty ) s t a t s ( co e f ) l a b e l ( proper ) l e v e l (95) t i t l e ( Comparison o f c o l .

2)



 f o r v a l u e s k=1(2)9{

 e s t imate s use ”${CLOUDPATH}v38/Temp data/ kerne lwe igthed ‘ k ’ . s t e r ”

 r e g r e s s

 e s t imate s esample

 e s t imate s s t o r e k e rn e l 4 ‘ k ’

 }

 btoutreg2 [ k e rne l 4 1 ke rne l 4 3 ke rne l 4 5 ke rne l 4 7 ke rne l 4 9 ] us ing ”${

LATEXPATH} compare col3 . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f se )

l a b e l ( proper ) l e v e l (95) t i t l e ( Comparison o f c o l . 3)

 btoutreg2 [ k e rne l 4 1 ke rne l 4 3 ke rne l 4 5 ke rne l 4 7 ke rne l 4 9 ] us ing ”${

LATEXPATH}compareNS col3 . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f )

l a b e l ( proper ) l e v e l (95) t i t l e ( Comparison o f c o l . 3)















 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ END OF BASELINE RESULTS + BOOTSTRAP

ROBUSTNESS

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗





 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ START OF DROPPING 1 PLUvDvarP or Q

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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 g l oba l focusk = 5





 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ Some r e g r e s s i o n s : −−−−−−−−−−−−− on point k only −−−−−−−−−−−

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗



 use ”${CLOUDPATH}v38/Temp data/ Fina l rundatase t . dta” , c l e a r



 ∗∗∗∗∗∗∗∗∗

 ∗ FOCUS POINT

 ∗∗∗∗∗∗∗∗∗

 l o c a l k=${ f ocusk }

 keep i f s e l e c t==‘k ’ & SalePurchase==”Purchase ”



 ∗ MACROS:

 g l oba l PLUsR ”PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq”

 g l oba l SupCo ”Coal Brent Gas IT2 EUA Wind1DA Hydro”



 ∗∗∗∗∗ Program bootst rap o f b a s e l i n e

 capture program drop my2s l s f o rba s e l i n eboo t s t r ap

 program my2s l s f o rba s e l i n eboo t s t r ap

 l o c a l k=${ f ocusk }

 capture drop PLU P boot PLU Q boot

 capture drop PLUvDvarP ‘k ’ r e s c PLUvDvarQ ‘k ’ r e s c

 capture n o i s i l y reg s q r e sP r i c e Tempeff15 Roll Temp24 Roll Temp240 suncyc l e morning

de l tasun EWH SolarRest RteBlackBox i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” ,

robust

 p r ed i c t PLU P boot , xb

 su PLU P boot , meanonly

 s c a l a r tmpP = r (mean)

 capture n o i s i l y gen PLUvDvarP ‘k ’ r e s c = PLU P boot / tmpP

 reg sqresVolume Tempeff15 Roll Temp24 Roll Temp240 suncyc l e morning de l tasun EWH

SolarRest RteBlackBox i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” , robust

 p r ed i c t PLU Q boot , xb

 su PLU Q boot , meanonly

 s c a l a r tmpQ = r (mean)

 gen PLUvDvarQ ‘k ’ r e s c = PLU Q boot / tmpQ

 i f ‘ k ’==1 | ‘ k ’==9 {

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq

Coal Brent Gas IT2 EUA Wind1DA Hydro /∗PLUvDvarP ‘ k ’ r e s c ∗/ PLUvDvarQ ‘k ’ r e s c

i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” , robust

 }

 e l s e {

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq

Coal Brent Gas IT2 EUA Wind1DA Hydro /∗PLUvDvarP ‘ k ’ r e s c ∗/ PLUvDvarQ ‘k ’ r e s c

i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” , robust

 }

 capture drop PLU P boot PLUvDvarP ‘k ’ r e s c PLU Q boot PLUvDvarQ ‘k ’ r e s c

 end





 ∗ co l 1

 l o c a l k=${ f ocusk }

 capture drop PLUvDvarP ‘k ’ r e s c

 capture drop PLUvDvarQ ‘k ’ r e s c

 su PLUvDvarP ‘k ’ , meanonly

 s c a l a r tmpresc = r (mean)

 capture n o i s i l y gen PLUvDvarP ‘k ’ r e s c = PLUvDvarP ‘k ’ / tmpresc

 su PLUvDvarQ ‘k ’ , meanonly
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 s c a l a r tmpresc = r (mean)

 gen PLUvDvarQ ‘k ’ r e s c = PLUvDvarQ ‘k ’ / tmpresc

 i f ‘ k ’==1 | ‘ k ’==9 {

 reg fxInvertQP ${PLUsR} ${SupCo} /∗PLUvDvarP ‘ k ’ r e s c ∗/ PLUvDvarQ ‘k ’ r e s c

 e s t s t o r e d1short1 ‘ k ’

 }

 e l s e {

 reg fxInvertQP ${PLUsR} ${SupCo} /∗PLUvDvarP ‘ k ’ r e s c ∗/ PLUvDvarQ ‘k ’ r e s c

 e s t s t o r e d1short1 ‘ k ’

 }

 ∗ co l 2

 l o c a l k=${ f ocusk }

 bootst rap b , reps (200) seed (12345) : my2 s l s f o rba s e l i n eboo t s t r ap

 e s t s t o r e b s b a s e l i n e ‘ k ’

 e s t save ”${CLOUDPATH}v38/Temp data/bs baseDROP P ‘ k ’ . s t e r ” , r ep l a c e

 ∗ co l 3

 l o c a l k=${ f ocusk }

 e s t imate s use ”${CLOUDPATH}v38/Temp data/kernelweigDROP P ‘ k ’ . s t e r ”

 r e g r e s s

 e s t imate s esample

 e s t imate s s t o r e k e rn e l 4 ‘ k ’

 ∗ co l 4

 /∗ l o c a l k=${ f ocusk }

 i f ‘ k’==5{

 e s t imate s use ”${CLOUDPATH}v38/Temp data/kernelbootDROP P ‘ k ’ . s t e r ”

 r e g r e s s

 e s t imate s esample :

 e s t imate s s t o r e kerne l5 ‘ k ’

 }∗/



 ∗ t ab l e main

 l o c a l k=${ f ocusk }

 i f ‘ k ’==5{

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}main1DROP P ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f

se ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}mainNS1DROP P ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s (

co e f ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}mainoS1DROP P ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( se

) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 }

 e l s e {

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}main1DROP P ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f

se ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}mainNS1DROP P ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s (

co e f ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}mainoS1DROP P ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( se

) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 }





 use ”${CLOUDPATH}v38/Temp data/ Fina l rundatase t . dta” , c l e a r



 ∗∗∗∗∗∗∗∗∗

 ∗ FOCUS POINT
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 ∗∗∗∗∗∗∗∗∗

 l o c a l k=${ f ocusk }

 keep i f s e l e c t==‘k ’ & SalePurchase==”Purchase ”



 ∗ MACROS:

 g l oba l PLUsR ”PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq”

 g l oba l SupCo ”Coal Brent Gas IT2 EUA Wind1DA Hydro”



 ∗∗∗∗∗ Program bootst rap o f b a s e l i n e

 capture program drop my2s l s f o rba s e l i n eboo t s t r ap

 program my2s l s f o rba s e l i n eboo t s t r ap

 l o c a l k=${ f ocusk }

 capture drop PLU P boot PLU Q boot

 capture drop PLUvDvarP ‘k ’ r e s c PLUvDvarQ ‘k ’ r e s c

 capture n o i s i l y reg s q r e sP r i c e Tempeff15 Roll Temp24 Roll Temp240 suncyc l e morning

de l tasun EWH SolarRest RteBlackBox i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” ,

robust

 p r ed i c t PLU P boot , xb

 su PLU P boot , meanonly

 s c a l a r tmpP = r (mean)

 capture n o i s i l y gen PLUvDvarP ‘k ’ r e s c = PLU P boot / tmpP

 reg sqresVolume Tempeff15 Roll Temp24 Roll Temp240 suncyc l e morning de l tasun EWH

SolarRest RteBlackBox i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” , robust

 p r ed i c t PLU Q boot , xb

 su PLU Q boot , meanonly

 s c a l a r tmpQ = r (mean)

 gen PLUvDvarQ ‘k ’ r e s c = PLU Q boot / tmpQ

 i f ‘ k ’==1 | ‘ k ’==9 {

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq

Coal Brent Gas IT2 EUA Wind1DA Hydro PLUvDvarP ‘k ’ r e s c /∗PLUvDvarQ ‘ k ’ r e s c ∗/

i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” , robust

 }

 e l s e {

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq

Coal Brent Gas IT2 EUA Wind1DA Hydro PLUvDvarP ‘k ’ r e s c /∗PLUvDvarQ ‘ k ’ r e s c ∗/

i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” , robust

 }

 capture drop PLU P boot PLUvDvarP ‘k ’ r e s c PLU Q boot PLUvDvarQ ‘k ’ r e s c

 end





 ∗ co l 1

 l o c a l k=${ f ocusk }

 capture drop PLUvDvarP ‘k ’ r e s c

 capture drop PLUvDvarQ ‘k ’ r e s c

 su PLUvDvarP ‘k ’ , meanonly

 s c a l a r tmpresc = r (mean)

 capture n o i s i l y gen PLUvDvarP ‘k ’ r e s c = PLUvDvarP ‘k ’ / tmpresc

 su PLUvDvarQ ‘k ’ , meanonly

 s c a l a r tmpresc = r (mean)

 gen PLUvDvarQ ‘k ’ r e s c = PLUvDvarQ ‘k ’ / tmpresc

 i f ‘ k ’==1 | ‘ k ’==9 {

 reg fxInvertQP ${PLUsR} ${SupCo} PLUvDvarP ‘k ’ r e s c /∗PLUvDvarQ ‘ k ’ r e s c ∗/

 e s t s t o r e d1short1 ‘ k ’

 }

 e l s e {

 reg fxInvertQP ${PLUsR} ${SupCo} PLUvDvarP ‘k ’ r e s c /∗PLUvDvarQ ‘ k ’ r e s c ∗/

 e s t s t o r e d1short1 ‘ k ’

 }

 ∗ co l 2
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 l o c a l k=${ f ocusk }

 bootst rap b , reps (200) seed (12345) : my2 s l s f o rba s e l i n eboo t s t r ap

 e s t s t o r e b s b a s e l i n e ‘ k ’

 e s t save ”${CLOUDPATH}v38/Temp data/bs baseDROP Q ‘ k ’ . s t e r ” , r ep l a c e

 ∗ co l 3

 l o c a l k=${ f ocusk }

 e s t imate s use ”${CLOUDPATH}v38/Temp data/kernelweigDROP Q ‘ k ’ . s t e r ”

 r e g r e s s

 e s t imate s esample

 e s t imate s s t o r e k e rn e l 4 ‘ k ’

 ∗ co l 4

 /∗ l o c a l k=${ f ocusk }

 i f ‘ k’==5{

 e s t imate s use ”${CLOUDPATH}v38/Temp data/kernelbootDROP Q ‘ k ’ . s t e r ”

 r e g r e s s

 e s t imate s esample :

 e s t imate s s t o r e kerne l5 ‘ k ’

 }∗/



 ∗ t ab l e main

 l o c a l k=${ f ocusk }

 i f ‘ k ’==5{

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}main1DROP Q ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f

se ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}mainNS1DROP Q ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s (

co e f ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}mainoS1DROP Q ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( se

) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 }

 e l s e {

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}main1DROP Q ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f

se ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}mainNS1DROP Q ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s (

co e f ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ d1short1 ‘ k ’ b s b a s e l i n e ‘ k ’ k e rn e l 4 ‘ k ’ /∗ kerne l5 ‘ k ’ ∗/ ] us ing

”${LATEXPATH}mainoS1DROP Q ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( se

) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 }

















 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ END OF DROPPING 1 PLUvDvarP or Q

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗



 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ REST NOT RELEVANT
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 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗







 ∗∗∗∗∗∗∗∗∗ t e s t i n g on combined PLU using new ones .





 g l oba l focusk = 5





 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ Some r e g r e s s i o n s : −−−−−−−−−−−−− on point k only −−−−−−−−−−−

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗



 use ”${CLOUDPATH}v38/Temp data/ Fina l rundatase t . dta” , c l e a r







 ∗∗∗

 ∗ s c a l e f a c t o r to ad jus t fx to s l ope

 ∗∗∗

 capture drop group

 egen group= group ( Date s ta ta f rac )

 g so r t group Datestata Hour SalePurchase s e l e c t

 capture drop slopeDpost s lopeDpre slopeDatk f x s c a l e f a c t o r

 gen slopeDpost =.

 gen slopeDpre =.

 gen slopeDatk =.

 gen f x s c a l e f a c t o r =.



 f o r v a l u e s k= 1(2) 9{

 ∗note in p−q dimension !

 by group : r ep l a c e s lopeDpost = (Volume [ n+1] − Volume [ n ] ) /( Pr i ce [ n+1]− Pr ice [ n ] ) i f s e l e c t==‘k ’



 by group : r ep l a c e s lopeDpre = (Volume [ n ] − Volume [ n−1]) /( Pr i ce [ n ]− Pr ice [ n−1]) i f s e l e c t

==‘k ’

 by group : r ep l a c e slopeDatk = abs ( s lopeDpost [ n ]+ slopeDpre [ n ] ) /2 i f s e l e c t==‘k ’



 capture drop tmp1 tmp2

 egen tmp1 = mean( slopeDatk ) i f s e l e c t==‘k ’

 egen tmp2 = mean( fx ) i f s e l e c t==‘k ’

 r ep l a c e f x s c a l e f a c t o r = tmp1 / tmp2 i f s e l e c t==‘k ’

 drop tmp1 tmp2

 }

 capture drop f x s c a l e d

 gen f x s c a l e d = fx ∗ f x s c a l e f a c t o r





 ∗ s c a l e f a c t o r to ad jus t fx to s l ope

 capture drop group

 egen group= group ( Date s ta ta f rac )

 g so r t group Datestata Hour SalePurchase s e l e c t

 capture drop slopeDpostQP slopeDpreQP slopeDatkQP fxsca l e f ac to rQP

 gen slopeDpostQP =.

 gen slopeDpreQP =.

 gen slopeDatkQP =.

 gen fx sca l e f ac to rQP =.

 gen fxQP = (1/ fx )
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 f o r v a l u e s k= 1(2) 9{

 ∗note in q−p dimension !

 by group : r ep l a c e slopeDpostQP = ( Pr ice [ n+1]− Pr ice [ n ] ) /(Volume [ n+1] − Volume [ n ] ) i f

s e l e c t==‘k ’

 by group : r ep l a c e slopeDpreQP = ( Pr ice [ n ]− Pr ice [ n−1]) /(Volume [ n ] − Volume [ n−1]) i f

s e l e c t==‘k ’

 by group : r ep l a c e slopeDatkQP = abs ( slopeDpostQP [ n ]+ slopeDpreQP [ n ] ) /2 i f s e l e c t==‘k ’

 capture drop tmp1 tmp2

 egen tmp1 = mean( slopeDatkQP ) i f s e l e c t==‘k ’

 egen tmp2 = mean( fxQP) i f s e l e c t==‘k ’

 r ep l a c e fx sca l e f ac to rQP = tmp1 / tmp2 i f s e l e c t==‘k ’

 drop tmp1 tmp2

 }

 capture drop fxscaledQP

 gen fxscaledQP = fxQP ∗ f x s ca l e f ac to rQP

 gen comparisonfx = 1/ f x s c a l e d

 ∗ SCALING ONLY APPROPRIATE FOR K=5, otherwi se too much mixing f l a t and v e r t i c a l s e c t i on .













 l o c a l k=${ f ocusk }

 keep i f s e l e c t==‘k ’ & SalePurchase==”Purchase ”



 ∗gen check1 = sq r t (PLUvDvarP) / (1 / f x s c a l e d )

 ∗gen check2= sq r t (PLUvDvarQ)

 capture drop PLUvDcomb

 capture n o i s i l y gen PLUvDcomb = (( sq r t (PLUvDvarP) / (1 / f x s c a l e d ) ) + sq r t (PLUvDvarQ)

) ˆ2

 capture drop PLUvDcombK

 capture n o i s i l y gen PLUvDcombK = (( sq r t (PLUv51avarPsq ) / (1 / f x s c a l e d ) ) + sq r t (

PLUv51avarQsq ) ) ˆ2



 ∗ r e s c a l e combined

 capture drop PLUvDvarC

 su PLUvDcomb, meanonly

 s c a l a r tmpresc = r (mean)

 capture n o i s i l y gen PLUvDvarC = PLUvDcomb / tmpresc



 capture drop PLUvDvarCK

 su PLUvDcombK, meanonly

 s c a l a r tmpresc = r (mean)

 capture n o i s i l y gen PLUvDvarCK = PLUvDcomb / tmpresc





 ∗∗∗ REGS

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal Brent

Gas IT2 EUA Wind1DA Hydro PLUvDvarC i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” ,

robust

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal Brent

Gas IT2 EUA Wind1DA Hydro PLUvDvarC i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” ,

vce ( bootstrap , reps (300) seed (12345) )





 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal Brent

Gas IT2 EUA Wind1DA Hydro PLUvDvarCK i f s e l e c t ==‘k ’ & SalePurchase==”Purchase ” [

aweight = PointsInBinv51a ]
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 ∗∗∗∗∗∗∗

 ∗ generate 1−dim PLUs :

 ∗∗∗∗∗∗∗

 capture drop PLU COMB∗

 capture n o i s i l y gen PLU COMBa Dresc = sq r t ( (PLUvDvarPresc ) ˆ2 + (PLUvDvarQresc ) ˆ2 )

 capture n o i s i l y gen PLU COMBa Dabsresc = sq r t ( ( PLUvDvarPabsresc ) ˆ2 + (PLUvDvarQabsresc )

ˆ2 )

 capture n o i s i l y gen PLU COMBa Drtresc = sq r t ( ( PLUvDrtPresc ) ˆ2 + (PLUvDrtQresc ) ˆ2 )



 /∗ ve r s i on b : t r a n s l a t i o n approach − not al lowed f o r r e s c a l e d va r i a b l e s ! !

 capture n o i s i l y gen PLU COMBb D =((PLUvDvarP) / (1 / f x s c a l e d ) ) + (PLUvDvarQ)

 capture n o i s i l y gen PLU COMBb Dabs = ( (PLUvDvarPabs ) / (1 / f x s c a l e d ) ) + (PLUvDvarQabs)

 capture n o i s i l y gen PLU COMBb Drt = ( (PLUvDrtP) / (1 / f x s c a l e d ) ) + (PLUvDrtQ) ∗/



 /∗ capture n o i s i l y gen PLU COMBb D =((PLUvDvarP) / ( fxscaledQP ) ) + (PLUvDvarQ)
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 capture n o i s i l y gen PLU COMBb Dabs = ( (PLUvDvarPabs ) / ( fxscaledQP ) ) + (PLUvDvarQabs)

 capture n o i s i l y gen PLU COMBb Drt = ( (PLUvDrtP) / ( fxscaledQP ) ) + (PLUvDrtQ) ∗/





 ∗∗∗∗

 ∗ de f i n i n g v a r i a b l e s

 ∗∗∗∗

 l o c a l ve r s ionS ”61”

 g l oba l runvers ionS ‘ ver s ionS ’

 g l oba l demandest imat ionvar iab les ‘ v e r s i on ’ ”Tempeff15 Roll Temp24

Roll Temp240 suncyc l e morning de l tasun EWH SolarRest RteBlackBox ”

 g l oba l supp l y e s t ima t i onva r i ab l e s ‘ ve r s ionS ’ ”Coal Brent Gas IT2 EUA suncyc l e morning

de l tasun EWH Wind1DA SolarRest Hydro RteBlackBox”

 g l oba l unc e r t a i n typ rox i e s ‘ ve r s ionS ’ ”PLUvDvarP PLUvDvarQ PLUvDvarPabs PLUvDvarQabs

PLUvDrtP PLUvDrtQ PLUvRvarT PLUvRvarW PLUvRvarS PLUvRvarTsq PLUvRvarWsq

PLUvRvarSsq PLUvDvarQresc PLUvDvarQabsresc PLUvDvarPresc PLUvDvarPabsresc

PLUvDrtPresc PLUvDrtQresc PLU COMBa Dresc PLU COMBa Dabsresc PLU COMBa Drtresc

PLU COMBb D PLU COMBb Dabs PLU COMBb Drt ”

 g l oba l PLUsD ”PLUvDvarP PLUvDvarQ PLUvDvarPabs PLUvDvarQabs PLUvDrtP PLUvDrtQ

PLUvDvarPresc PLUvDvarQresc PLUvDvarPabsresc PLUvDvarQabsresc PLUvDrtPresc

PLUvDrtQresc PLU COMBa Dresc PLU COMBa Dabsresc PLU COMBa Drtresc PLU COMBb D

PLU COMBb Dabs PLU COMBb Drt ”

 g l oba l PLUsDP ”PLUvDvarP ‘ k ’ PLUvDvarPabs ‘ k ’ PLUvDrtP ‘ k ’ ”

 g l oba l PLUsDQ ” PLUvDvarQ ‘ k ’ PLUvDvarQabs ‘ k ’ PLUvDrtQ ‘ k ’ ”

 g l oba l PLUsR ”PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq”

 g l oba l SEV ${ supp ly e s t imat i onva r i ab l e s$ { runvers ionS }}

 g l oba l UCP ${ unce r t a in typ rox i e s$ { runvers ionS }}

 di $SEV

 di $UCP





 ∗∗∗ reg on demand s l ope as c r o s s check to i n t e r p r e t a t i o n from l e v e l f un c t i ona l r e g r e s s i o n s :

 capture drop negfx

 gen negfx = −fx

 reg negfx $demandest imat ionvar iab les ‘ v e r s i on ’ , robust

 reg fx $demandest imat ionvar iab les ‘ v e r s i on ’ , robust

 e s t s t o r e demandslopepred${ f ocusk }

 btoutreg2 [ demandslopepred${ f ocusk } ] us ing ”${LATEXPATH}demandslopepred${ f ocusk } .

tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l ( proper ) l e v e l (95) t i t l e (

Demand−s lope−r e g r e s s i o n at k=${ f ocusk })

 drop e s t ∗





 ∗∗∗∗∗∗

 ∗ REGRESSION 1 :



 reg fxInvertQP ${PLUsR} , robust

 e s t s t o r e on lyp lus

 ∗ a l l p l u r enouve l ab l e are s i g n i f i c a n t , only plu wind o f c o r r e c t s i gn

 reg fxInvertQP ${PLUsR} $SEV, robust

 e s t s t o r e on lyp lur1

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro , robust

 e s t s t o r e on lyp lur2

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro $SEV, robust

 e s t s t o r e on lyp lur3

 ∗ when adding supply cont ro l s , only wind stay s i g n i f i c a n t with c o r r e c t s ign , o the r s non−s i g . that s

good . : )



 fo r each UCP of g l oba l PLUsD{

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro ‘UCP’
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 e s t s t o r e l i n r e g 1 ‘UCP’

 }



 fo r each UCP1 o f g l oba l PLUsDP{

 fo r each UCP2 o f g l oba l PLUsDQ{

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro ‘UCP1 ’ ‘UCP2

’

 e s t s t o r e ‘UCP1 ’ ‘UCP2 ’

 }

 }









 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro PLUvDvarP ‘k ’

r e s c PLUvDvarQ ‘k ’ r e s c

 e s t s t o r e d1short1

 ∗ reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro PLUvDvarP ‘k

’ r e s c PLUvDvarQ ‘k ’ r e s c , vce ( bootstrap , rep (500) )

 ∗ e s t s t o r e b1short1

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro PLUvDvarPabs

‘ k ’ r e s c PLUvDvarQabs ‘ k ’ r e s c

 e s t s t o r e d1short2

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro PLUvDrtP ‘k ’

r e s c PLUvDrtQ ‘k ’ r e s c

 e s t s t o r e d1short3



 ∗ ( genera t ing ) r e g r e s s i o n output

 /∗ Shows : PLU temperature never s i g n i f i c a n t

 − wind1da : pos + s i g (more wind , more unce r ta in ty )

 − plu wind : s i g + po s i t i v e e f f e c t only f o r PLUs on P ( longe r au t o c o r r e l a t i o n wind−> more

uncer ta in ty )

 − plu wind squared : very neg + s i g only f o r PLUs on P ( very shor t or long au t o co r r e l = low

uncerta inty , e r r o r s cance l out )

 −PLU−s o l a r never s i g

 − so la r1da inc luded in plusD

 − HAVE EXCLUDED DAYTIME CONTROLS ( but they are s t r ong l y inc luded in PLUsD

 − a l l input p r i c e s has s i g e f f e c t : coa l p o s i t i v e and a l l other negat ive ( i n t e r p r e t a t i o n ?)

 − plu D on P have negat ive , s i g i f i c a n t e f f e c t s , plu D on Q have p o s i t i v e e f f e c t s , when very

s i g n i f i c a n t

 ∗/

 btoutreg2 [ on lyp lus on lyp lur2 on lyp lur1 ] us ing ”${LATEXPATH}onlypluRs . tex ” ,

r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l ( proper ) l e v e l (95) t i t l e ( r e g r e s s i o n

f o r k=‘k ’ )



 btoutreg2 [ /∗ linreg1PLUvDvarP linreg1PLUvDvarPabs linreg1PLUvDrtP∗/

linreg1PLUvDvarPresc linreg1PLUvDvarPabsresc l inreg1PLUvDrtPresc ] us ing

”${LATEXPATH} l inregsummary1P ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f )

l a b e l ( proper ) l e v e l (95) t i t l e ( r e g r e s s i o n f o r k=‘k ’ )



 btoutreg2 [ /∗ linreg1PLUvDvarQ linreg1PLUvDvarQabs linreg1PLUvDrtQ ∗/

linreg1PLUvDvarQresc linreg1PLUvDvarQabsresc linreg1PLUvDrtQresc ] us ing ”${

LATEXPATH} linregsummary1Q ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l

( proper ) l e v e l (95) t i t l e ( r e g r e s s i o n f o r k=‘k ’ )





 btoutreg2 [ /∗PLUvDvarP ‘ k ’PLUvDvarQ ‘ k ’ PLUvDvarPabs ‘ k ’ PLUvDvarQabs ‘ k ’ PLUvDrtP ‘ k ’

PLUvDrtQ ‘ k ’ ∗/ d1short1 d1short2 d1short3 ] us ing ”${LATEXPATH}doublereg1 ‘ k ’ .

tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l ( proper ) l e v e l (95) t i t l e (

r e g r e s s i o n f o r k=‘k ’ )
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 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ some robustnes s r e g r e s s i o n s to plu d s p e c i f i c a t i o n s

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗



 ∗∗∗∗∗

 ∗∗∗∗∗



 /∗

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗KERNEL BASED PLU = v52

 ∗/



 use ”${CLOUDPATH}v38/Temp data/ Fina l rundatase t . dta” , c l e a r





 ∗ Generate 1 dimens ional p rox i e s f o r ke rne l based PLUs

 ∗∗∗∗∗∗∗∗∗∗



 ∗∗∗∗∗∗∗∗

 ∗ COMBINE P and Q uncer ta in ty in to s i n g l e value on ke rne l based prox i e s .

 ∗∗∗∗∗∗∗∗

 capture drop PLU COMB∗

 ∗ ve r s i on a : Hypothenuse approach



 fo r each versionD in ”52a” ”52b”{

 fo r each switch in /∗””∗/ ”abs”{

 f o r v a l u e s k = 1(2) 9{

 capture n o i s i l y gen PLU COMBa v ‘ versionD ’ ‘ switch ’ ‘ k ’ r e s c = sq r t ( (PLUv ‘ versionD ’ varP ‘ switch ’ ‘ k ’

r e s c ) ˆ2 + (PLUv ‘ versionD ’varQ ‘ switch ’ ‘ k ’ r e s c ) ˆ2 )

 }

 }

 }



 ∗ ve r s i on b : t r a n s l a t i o n approach − not c o r r e c t conver s ion anymore a f t e r r e s c a l i n g

! ! ! !

 f o r v a l u e s k = 1(2) 9{

 capture n o i s i l y gen PLU COMBb v52a ‘ k ’ = ( ( PLUv52avarPabs ‘ k ’ ) / (1 / f x s c a l e d ) ) + (

PLUv52avarQabs ‘ k ’ )

 capture n o i s i l y gen PLU COMBb v52b ‘k ’ = ( ( PLUv52bvarPabs ‘ k ’ ) / (1 / f x s c a l e d ) ) + (

PLUv52bvarQabs ‘ k ’ )

 }



 /∗

 f o r v a l u e s k = 1(2) 9{

 capture n o i s i l y gen PLU COMBb v52a ‘ k ’ = ( ( PLUv52avarPabs ‘ k ’ ) / ( fxscaledQP ) ) + (
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PLUv52avarQabs ‘ k ’ )

 capture n o i s i l y gen PLU COMBb v52b ‘ k ’ = ( ( PLUv52bvarPabs ‘ k ’ ) / ( fxscaledQP ) ) + (

PLUv52bvarQabs ‘ k ’ )

 }

 ∗/



 ∗∗∗∗∗∗∗∗∗

 ∗ FOCUS POINT

 ∗∗∗∗∗∗∗∗∗

 l o c a l k=${ f ocusk }

 keep i f s e l e c t==‘k ’ & SalePurchase==”Purchase ”



 /∗ ∗ gene ra l p l a c eho ld e r s

 capture drop PLUvDvarQresc PLUvDvarQabsresc PLUvDvarPresc PLUvDvarPabsresc PLUvDrtPresc

PLUvDrtQresc

 gen PLUvDvarQresc = PLUvDvarQ ‘ k ’ r e s c

 gen PLUvDvarQabsresc = PLUvDvarQabs ‘ k ’ r e s c

 gen PLUvDvarPresc = PLUvDvarP ‘ k ’ r e s c

 gen PLUvDvarPabsresc = PLUvDvarPabs ‘ k ’ r e s c

 gen PLUvDrtPresc = PLUvDrtP ‘ k ’ r e s c

 gen PLUvDrtQresc = PLUvDrtQ ‘ k ’ r e s c ∗/





 ∗∗∗∗

 ∗ de f i n i n g v a r i a b l e s

 ∗∗∗∗

 l o c a l ve r s ionS ”61”

 g l oba l runvers ionS ‘ ver s ionS ’

 g l oba l demandest imat ionvar iab les ‘ v e r s i on ’ ”Tempeff15 Roll Temp24

Roll Temp240 suncyc l e morning de l tasun EWH SolarRest RteBlackBox ”

 g l oba l supp l y e s t ima t i onva r i ab l e s ‘ ve r s ionS ’ ”Coal Brent Gas IT2 EUA suncyc l e morning

de l tasun EWH Wind1DA SolarRest Hydro RteBlackBox”

 ∗ g l oba l unc e r t a i n typ rox i e s ‘ ve r s ionS ’ ”PLUvDvarP PLUvDvarQ PLUvDvarPabs PLUvDvarQabs

PLUvDrtP PLUvDrtQ PLUvRvarT PLUvRvarW PLUvRvarS PLUvRvarTsq PLUvRvarWsq

PLUvRvarSsq PLUvDvarQresc PLUvDvarQabsresc PLUvDvarPresc PLUvDvarPabsresc

PLUvDrtPresc PLUvDrtQresc PLU COMBa Dresc PLU COMBa Dabsresc PLU COMBa Drtresc

PLU COMBb D PLU COMBb Dabs PLU COMBb Drt ”

 ∗ g l oba l PLUsD ”PLUvDvarP PLUvDvarQ PLUvDvarPabs PLUvDvarQabs PLUvDrtP PLUvDrtQ

PLUvDvarPresc PLUvDvarQresc PLUvDvarPabsresc PLUvDvarQabsresc PLUvDrtPresc

PLUvDrtQresc PLU COMBa Dresc PLU COMBa Dabsresc PLU COMBa Drtresc PLU COMBb D

PLU COMBb Dabs PLU COMBb Drt ”

 g l oba l PLUsR ”PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq”

 g l oba l PLUsROB ”PLUv52avarPabs ‘ k ’ PLUv52avarQabs ‘ k ’ PLUv52bvarPabs ‘ k ’

PLUv52bvarQabs ‘ k ’ PLUv52avarPabs ‘ k ’ r e s c PLUv52bvarPabs ‘ k ’ r e s c PLUv52avarQabs ‘ k ’

r e s c PLUv52bvarQabs ‘ k ’ r e s c PLU COMBa v52a abs ‘ k ’ r e s c PLU COMBa v52b abs ‘ k ’ r e s c

PLU COMBb v52a ‘ k ’ PLU COMBb v52b ‘ k ’ ”

 g l oba l PLUsROBa ”PLUv52avarPabs ‘ k ’ PLUv52avarQabs ‘ k ’ PLUv52avarPabs ‘ k ’ r e s c

PLUv52avarQabs ‘ k ’ r e s c PLU COMBa v52a abs ‘ k ’ r e s c PLU COMBb v52a ‘ k ’ ”

 g l oba l PLUsROBb ” PLUv52bvarPabs ‘ k ’ PLUv52bvarQabs ‘ k ’ PLUv52bvarPabs ‘ k ’ r e s c

PLUv52bvarQabs ‘ k ’ r e s c PLU COMBa v52b abs ‘ k ’ r e s c PLU COMBb v52b ‘ k ’ ”

 g l oba l SEV ${ supp ly e s t imat i onva r i ab l e s$ { runvers ionS }}

 g l oba l UCP ${ unce r t a in typ rox i e s$ { runvers ionS }}

 di $SEV

 di ${PLUsROB}







 ∗∗∗ f i r s t r e g r e s s i o n



 reg fxInvertQP ${PLUsR} , robust
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 e s t s t o r e on lyp lus

 reg fxInvertQP Coal Brent Gas IT2 EUA Wind1DA Hydro , robust

 e s t s t o r e on l y con t r o l s

 ∗ a l l p l u r enouve l ab l e are s i g i g i f c a n t , only plu wind o f c o r r e c t s i gn

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro , robust

 ∗ when adding supply cont ro l s , only wind stay s i g n i f i c a n t with c o r r e c t s ign , o the r s non−s i g . that s

good . : )



 fo r each UCP of g l oba l PLUsROB{

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro /∗${SEV}∗/ ‘

UCP’

 e s t s t o r e r1 ‘UCP’

 }



 ∗ i n c l ud ing weight ing us ing Pointsperb in

 fo r each UCP of g l oba l PLUsROBa{

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro /∗${SEV}∗/ ‘

UCP’ [ aweight=PointsInBinv52a ]

 e s t s t o r e w1 ‘UCP’

 }

 fo r each UCP of g l oba l PLUsROBb{

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro /∗${SEV}∗/ ‘

UCP’ [ aweight=PointsInBinv52b ]

 e s t s t o r e w1 ‘UCP’

 }





 ∗ s imultaneous reg on PLu P and PLU−Q

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro

PLUv52avarPabs ‘ k ’ r e s c PLUv52avarQabs ‘ k ’ r e s c [ aweight=PointsInBinv52a ]

 e s t s t o r e w2 52a

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro

PLUv52bvarPabs ‘ k ’ r e s c PLUv52bvarQabs ‘ k ’ r e s c [ aweight=PointsInBinv52b ]

 e s t s t o r e w2 52b





 ∗ ( genera t ing ) r e g r e s s i o n output

 /∗ Shows :

 − p lu r as be f o r e

 − PLU temperature never s i g n i f i c a n t

 − wind1da : pos + s i g (more wind , more unce r ta in ty )

 − plu wind : s i g + po s i t i v e e f f e c t only f o r PLUs on P ( longe r au t o c o r r e l a t i o n wind−> more

uncer ta in ty )

 − plu wind squared : very neg + s i g only f o r PLUs on P ( very shor t or long au t o co r r e l = low

uncerta inty , e r r o r s cance l out )

 −PLU−s o l a r never s i g

 − so la r1da inc luded in plusD

 − HAVE EXCLUDED DAYTIME CONTROLS ( but they are s t r ong l y inc luded in PLUsD

 − a l l input p r i c e s has s i g e f f e c t : coa l p o s i t i v e and a l l other negat ive ( i n t e r p r e t a t i o n ?)

 − plu D on P have negat ive , s i g i f i c a n t e f f e c t s , plu D on Q have p o s i t i v e e f f e c t s , when very

s i g n i f i c a n t

 ∗∗∗ PROMISING RESUTLS HERE ON ROBUSTNESS!

 − r e s c v a r i a b l e s have non s i g n i f i c n a t e f f e c t when combined , s i g n i f i c a n t and pos f o r

quan t i t i e s p lus when i nd i v i dua l e f f e c t .

 ∗/

 btoutreg2 [ /∗ on lyp lus ∗/ on l y con t r o l s r1PLUv52avarPabs ‘ k ’ r1PLUv52avarQabs ‘ k ’

r1PLUv52bvarPabs ‘ k ’ r1PLUv52bvarQabs ‘ k ’ /∗ r1PLUv52avarPabs ‘ k ’ r e s c

r1PLUv52bvarPabs ‘ k ’ r e s c r1PLUv52avarQabs ‘ k ’ r e s c r1PLUv52bvarQabs ‘ k ’ r e s c ∗/

r1PLU COMBa v52a abs ‘ k ’ r e s c r1PLU COMBa v52b abs ‘ k ’ r e s c r1PLU COMBb v52a ‘ k ’

r1PLU COMBb v52b ‘ k ’ ] us ing ”${LATEXPATH} r1 ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty )
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s t a t s ( co e f ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ /∗ on lyp lus ∗/ on l y con t r o l s w1PLUv52avarPabs ‘ k ’ w1PLUv52avarQabs ‘ k ’

w1PLUv52bvarPabs ‘ k ’ w1PLUv52bvarQabs ‘ k ’ /∗ w1PLUv52avarPabs ‘ k ’ r e s c

w1PLUv52bvarPabs ‘ k ’ r e s c w1PLUv52avarQabs ‘ k ’ r e s c w1PLUv52bvarQabs ‘ k ’ r e s c ∗/

w1PLU COMBa v52a abs ‘ k ’ r e s c w1PLU COMBa v52b abs ‘ k ’ r e s c w1PLU COMBb v52a ‘ k ’

w1PLU COMBb v52b ‘k ’ ] us ing ”${LATEXPATH}w1 ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty )

s t a t s ( co e f ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )



 ∗ s eparate t ab l e s f o r i nd i v i dua l P or Q



 btoutreg2 [ w1PLUv52avarPabs ‘ k ’ w1PLUv52avarQabs ‘ k ’ w1PLUv52bvarPabs ‘ k ’ w1PLUv52bvarQabs ‘ k ’ ]

us ing ”${LATEXPATH}w1a ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l ( proper )

l e v e l (95) t i t l e ( For k=‘k ’ )



 btoutreg2 [ w2 52a w2 52b w1PLU COMBa v52a abs ‘ k ’ r e s c w1PLU COMBa v52b abs ‘ k ’ r e s c /∗

w1PLU COMBb v52a ‘ k ’ w1PLU COMBb v52b ‘ k ’ ∗/ ] us ing ”${LATEXPATH}w1b ‘ k ’ . tex ” , r ep l a c e

tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )





 /∗ run i nd i v i d u a l l y i f only running f i r s t part

 drop e s t ∗

 ∗/



























































 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ some robustnes s r e g r e s s i o n s to plu d s p e c i f i c a t i o n s

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗



 ∗∗∗∗∗

 ∗∗∗∗∗



 /∗

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ke rne l based plus . = v51
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 ∗/



 ∗ use ”${CLOUDPATH}v38/Temp data/FinalrundatasetK1 . dta” , c l e a r

 ∗ use ”${CLOUDPATH}v38/Temp data/ Fina l rundatase t . dta” , c l e a r





 ∗ Generate 1 dimens ional p rox i e s f o r ke rne l based PLUs

 ∗∗∗∗∗∗∗∗∗∗



 ∗∗∗∗∗∗∗∗

 ∗ COMBINE P and Q uncer ta in ty in to s i n g l e value on ke rne l based prox i e s .

 ∗∗∗∗∗∗∗∗

 capture drop PLU COMB∗

 ∗ ve r s i on a : Hypothenuse approach



 fo r each versionD in ”51a” ”51b”{

 fo r each switch in /∗””∗/ ” sq”{

 f o r v a l u e s k = 1(2) 9{

 capture n o i s i l y gen PLU COMBa v ‘ versionD ’ ‘ switch ’ ‘ k ’ r e s c = sq r t ( (PLUv ‘ versionD ’ varP ‘ switch ’ ‘ k ’

r e s c ) ˆ2 + (PLUv ‘ versionD ’varQ ‘ switch ’ ‘ k ’ r e s c ) ˆ2 )

 }

 }

 }



 ∗ ve r s i on b : t r a n s l a t i o n approach − not c o r r e c t conver s ion anymore a f t e r r e s c a l i n g

! ! ! !

 f o r v a l u e s k = 1(2) 9{

 capture n o i s i l y gen PLU COMBb v51a ‘ k ’ = ( ( PLUv51avarPsq ‘ k ’ ) / (1 / f x s c a l e d ) ) + (

PLUv51avarQsq ‘ k ’ )

 capture n o i s i l y gen PLU COMBb v51b ‘k ’ = ( ( PLUv51bvarPsq ‘ k ’ ) / (1 / f x s c a l e d ) ) + (

PLUv51bvarQsq ‘ k ’ )

 }



 /∗

 f o r v a l u e s k = 1(2) 9{

 capture n o i s i l y gen PLU COMBb v51a ‘ k ’ = ( ( PLUv51avarPsq ‘ k ’ ) / ( fxscaledQP ) ) + (

PLUv51avarQsq ‘ k ’ )

 capture n o i s i l y gen PLU COMBb v51b ‘ k ’ = ( ( PLUv51bvarPsq ‘ k ’ ) / ( fxscaledQP ) ) + (

PLUv51bvarQsq ‘ k ’ )

 }

 ∗/



 ∗∗∗∗∗∗∗∗∗

 ∗ FOCUS POINT

 ∗∗∗∗∗∗∗∗∗

 l o c a l k=${ f ocusk }

 keep i f s e l e c t==‘k ’ & SalePurchase==”Purchase ”



 /∗ ∗ gene ra l p l a c eho ld e r s

 capture drop PLUvDvarQresc PLUvDvarQsqresc PLUvDvarPresc PLUvDvarPsqresc PLUvDrtPresc

PLUvDrtQresc

 gen PLUvDvarQresc = PLUvDvarQ ‘ k ’ r e s c

 gen PLUvDvarQsqresc = PLUvDvarQsq ‘ k ’ r e s c

 gen PLUvDvarPresc = PLUvDvarP ‘ k ’ r e s c

 gen PLUvDvarPsqresc = PLUvDvarPsq ‘ k ’ r e s c

 gen PLUvDrtPresc = PLUvDrtP ‘ k ’ r e s c

 gen PLUvDrtQresc = PLUvDrtQ ‘ k ’ r e s c ∗/





 ∗∗∗∗
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 ∗ de f i n i n g v a r i a b l e s

 ∗∗∗∗

 l o c a l ve r s ionS ”61”

 g l oba l runvers ionS ‘ ver s ionS ’

 g l oba l demandest imat ionvar iab les ‘ v e r s i on ’ ”Tempeff15 Roll Temp24

Roll Temp240 suncyc l e morning de l tasun EWH SolarRest RteBlackBox ”

 g l oba l supp l y e s t ima t i onva r i ab l e s ‘ ve r s ionS ’ ”Coal Brent Gas IT2 EUA suncyc l e morning

de l tasun EWH Wind1DA SolarRest Hydro RteBlackBox”

 ∗ g l oba l unc e r t a i n typ rox i e s ‘ ve r s ionS ’ ”PLUvDvarP PLUvDvarQ PLUvDvarPsq PLUvDvarQsq

PLUvDrtP PLUvDrtQ PLUvRvarT PLUvRvarW PLUvRvarS PLUvRvarTsq PLUvRvarWsq

PLUvRvarSsq PLUvDvarQresc PLUvDvarQsqresc PLUvDvarPresc PLUvDvarPsqresc

PLUvDrtPresc PLUvDrtQresc PLU COMBa Dresc PLU COMBa Dsqresc PLU COMBa Drtresc

PLU COMBb D PLU COMBb Dsq PLU COMBb Drt ”

 ∗ g l oba l PLUsD ”PLUvDvarP PLUvDvarQ PLUvDvarPsq PLUvDvarQsq PLUvDrtP PLUvDrtQ

PLUvDvarPresc PLUvDvarQresc PLUvDvarPsqresc PLUvDvarQsqresc PLUvDrtPresc

PLUvDrtQresc PLU COMBa Dresc PLU COMBa Dsqresc PLU COMBa Drtresc PLU COMBb D

PLU COMBb Dsq PLU COMBb Drt ”

 g l oba l PLUsR ”PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq”

 g l oba l PLUsROB ”PLUv51avarPsq ‘ k ’ PLUv51avarQsq ‘ k ’ PLUv51bvarPsq ‘ k ’ PLUv51bvarQsq ‘ k ’

PLUv51avarPsq ‘ k ’ r e s c PLUv51bvarPsq ‘ k ’ r e s c PLUv51avarQsq ‘ k ’ r e s c PLUv51bvarQsq ‘ k

’ r e s c PLU COMBa v51a sq ‘ k ’ r e s c PLU COMBa v51b sq ‘ k ’ r e s c PLU COMBb v51a ‘ k ’

PLU COMBb v51b ‘ k ’ ”

 g l oba l PLUsROBa ”PLUv51avarPsq ‘ k ’ PLUv51avarQsq ‘ k ’ PLUv51avarPsq ‘ k ’ r e s c

PLUv51avarQsq ‘ k ’ r e s c PLU COMBa v51a sq ‘ k ’ r e s c PLU COMBb v51a ‘ k ’ ”

 g l oba l PLUsROBb ” PLUv51bvarPsq ‘ k ’ PLUv51bvarQsq ‘ k ’ PLUv51bvarPsq ‘ k ’ r e s c

PLUv51bvarQsq ‘ k ’ r e s c PLU COMBa v51b sq ‘ k ’ r e s c PLU COMBb v51b ‘ k ’ ”

 g l oba l SEV ${ supp ly e s t imat i onva r i ab l e s$ { runvers ionS }}

 g l oba l UCP ${ unce r t a in typ rox i e s$ { runvers ionS }}

 di $SEV

 di ${PLUsROB}







 ∗∗∗ f i r s t r e g r e s s i o n



 reg fxInvertQP ${PLUsR} , robust

 e s t s t o r e on lyp lus

 reg fxInvertQP Coal Brent Gas IT2 EUA Wind1DA Hydro , robust

 e s t s t o r e on l y con t r o l s

 ∗ a l l p l u r enouve l ab l e are s i g i g i f c a n t , only plu wind o f c o r r e c t s i gn

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro , robust

 ∗ when adding supply cont ro l s , only wind stay s i g n i f i c a n t with c o r r e c t s ign , o the r s non−s i g . that s

good . : )



 fo r each UCP of g l oba l PLUsROB{

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro /∗${SEV}∗/ ‘

UCP’

 e s t s t o r e r1 ‘UCP’

 }



 ∗ i n c l ud ing weight ing us ing Pointsperb in

 fo r each UCP of g l oba l PLUsROBa{

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro /∗${SEV}∗/ ‘

UCP’ [ aweight=PointsInBinv51a ]

 e s t s t o r e w1 ‘UCP’

 }

 fo r each UCP of g l oba l PLUsROBb{

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro /∗${SEV}∗/ ‘

UCP’ [ aweight=PointsInBinv51b ]

 e s t s t o r e w1 ‘UCP’
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 }





 ∗ s imultaneous reg on PLu P and PLU−Q

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro

PLUv51avarPsq ‘ k ’ r e s c PLUv51avarQsq ‘ k ’ r e s c [ aweight=PointsInBinv51a ]

 e s t s t o r e w2 51a

 reg fxInvertQP ${PLUsR} Coal Brent Gas IT2 EUA Wind1DA Hydro

PLUv51bvarPsq ‘ k ’ r e s c PLUv51bvarQsq ‘ k ’ r e s c [ aweight=PointsInBinv51b ]

 e s t s t o r e w2 51b





 ∗ ( genera t ing ) r e g r e s s i o n output

 /∗ Shows :

 − p lu r as be f o r e

 − PLU temperature never s i g n i f i c a n t

 − wind1da : pos + s i g (more wind , more unce r ta in ty )

 − plu wind : s i g + po s i t i v e e f f e c t only f o r PLUs on P ( longe r au t o c o r r e l a t i o n wind−> more

uncer ta in ty )

 − plu wind squared : very neg + s i g only f o r PLUs on P ( very shor t or long au t o co r r e l = low

uncerta inty , e r r o r s cance l out )

 −PLU−s o l a r never s i g

 − so la r1da inc luded in plusD

 − HAVE EXCLUDED DAYTIME CONTROLS ( but they are s t r ong l y inc luded in PLUsD

 − a l l input p r i c e s has s i g e f f e c t : coa l p o s i t i v e and a l l other negat ive ( i n t e r p r e t a t i o n ?)

 − plu D on P have negat ive , s i g i f i c a n t e f f e c t s , plu D on Q have p o s i t i v e e f f e c t s , when very

s i g n i f i c a n t

 ∗∗∗ PROMISING RESUTLS HERE ON ROBUSTNESS!

 − r e s c v a r i a b l e s have non s i g n i f i c n a t e f f e c t when combined , s i g n i f i c a n t and pos f o r

quan t i t i e s p lus when i nd i v i dua l e f f e c t .

 ∗/

 btoutreg2 [ /∗ on lyp lus ∗/ on l y con t r o l s r1PLUv51avarPsq ‘ k ’ r1PLUv51avarQsq ‘ k ’

r1PLUv51bvarPsq ‘ k ’ r1PLUv51bvarQsq ‘ k ’ /∗ r1PLUv51avarPsq ‘ k ’ r e s c r1PLUv51bvarPsq

‘ k ’ r e s c r1PLUv51avarQsq ‘ k ’ r e s c r1PLUv51bvarQsq ‘ k ’ r e s c ∗/ r1PLU COMBa v51a sq ‘ k ’

r e s c r1PLU COMBa v51b sq ‘ k ’ r e s c r1PLU COMBb v51a ‘ k ’ r1PLU COMBb v51b ‘ k ’ ] us ing

”${LATEXPATH}k1 ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l ( proper )

l e v e l (95) t i t l e ( For k=‘k ’ )

 btoutreg2 [ /∗ on lyp lus ∗/ on l y con t r o l s w1PLUv51avarPsq ‘ k ’ w1PLUv51avarQsq ‘ k ’

w1PLUv51bvarPsq ‘ k ’ w1PLUv51bvarQsq ‘ k ’ /∗ w1PLUv51avarPsq ‘ k ’ r e s c w1PLUv51bvarPsq

‘ k ’ r e s c w1PLUv51avarQsq ‘ k ’ r e s c w1PLUv51bvarQsq ‘ k ’ r e s c ∗/ w1PLU COMBa v51a sq ‘ k ’

r e s c w1PLU COMBa v51b sq ‘ k ’ r e s c w1PLU COMBb v51a ‘ k ’ w1PLU COMBb v51b ‘k ’ ] us ing

”${LATEXPATH}k2 ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l ( proper )

l e v e l (95) t i t l e ( For k=‘k ’ )



 ∗ s eparate t ab l e s f o r i nd i v i dua l P or Q



 btoutreg2 [ w1PLUv51avarPsq ‘ k ’ w1PLUv51avarQsq ‘ k ’ w1PLUv51bvarPsq ‘ k ’ w1PLUv51bvarQsq ‘ k ’ ]

us ing ”${LATEXPATH}k2a ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l ( proper )

l e v e l (95) t i t l e ( For k=‘k ’ )



 btoutreg2 [ w2 51a w2 51b w1PLU COMBa v51a sq ‘ k ’ r e s c w1PLU COMBa v51b sq ‘ k ’ r e s c /∗

w1PLU COMBb v51a ‘ k ’ w1PLU COMBb v51b ‘ k ’ ∗/ ] us ing ”${LATEXPATH}k2b ‘ k ’ . tex ” , r ep l a c e

tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )



 btoutreg2 [ w2 51a w2 51b w2 52a w2 52b ] us ing ”${LATEXPATH}k5152 ‘ k ’ . tex ” , r ep l a c e tex (

f r ag pre t ty ) s t a t s ( co e f ) l a b e l ( proper ) l e v e l (95) t i t l e ( For k=‘k ’ )







 /∗ run i nd i v i d u a l l y i f only running f i r s t part
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 drop e s t ∗

 ∗/















































































 ∗∗∗∗∗∗∗ a l t e r n a t i v e pa i r i ng − not r e l evan t f o r k=${ f ocusk }
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 ∗∗∗ BASELINE RESULTS:



 l o c a l k=${ f ocusk }

 btoutreg2 [ d1short1 b s b a s e l i n e ‘ k ’ w2 51a w2 51b ] us ing ”${LATEXPATH}

comparableregs ‘ k ’ . tex ” , r ep l a c e tex ( f r ag pre t ty ) s t a t s ( co e f ) l a b e l ( proper )

l e v e l (95) t i t l e ( r e g r e s s i o n f o r k=‘k ’ )





































































 ∗ OLD CODE ( to d e l e t e )







 ∗∗ t e s t in s i n g l e s tep : −−−−− NOT CORRECT CODE; SINCE INCLUDE ALL EXOGENOUS IN PLU PREDICTION.

 /∗ i v r e g r e s s 2 s l s fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal

Brent Gas IT2 EUA Wind1DA Hydro ( s q r e sP r i c e sqresVolume = Tempeff15 Roll Temp24 Roll Temp240

suncyc l e morning de l tasun EWH SolarRest RteBlackBox ) i f s e l e c t ==5 & SalePurchase==”Purchase ”

, robust f i r s t



 i v r e g r e s s 2 s l s fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal

Brent Gas IT2 EUA Wind1DA Hydro ( s q r e sP r i c e sqresVolume = Tempeff15 Roll Temp24 Roll Temp240

suncyc l e morning de l tasun EWH SolarRest RteBlackBox ) i f s e l e c t ==5 & SalePurchase==”Purchase ”

, vce ( bootstrap , rep (200) )





 ∗∗∗∗∗ bootst rap example 1

 /∗ capture drop yhat PLU boot
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 capture program drop my2s l s forboot

 program my2s l s forboot

 reg sqresVolume Tempeff15 Roll Temp24 Roll Temp240 suncyc l e morning de l tasun EWH SolarRest

RteBlackBox i f s e l e c t ==5 & SalePurchase==”Purchase ” , robust

 p r ed i c t PLU boot , xb

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal Brent

Gas IT2 EUA Wind1DA Hydro PLU boot i f s e l e c t ==5 & SalePurchase==”Purchase ” ,

robust

 drop yhat PLU boot

 end

 bootst rap b [ PLU boot ] s e [ PLU boot ] , reps (50) seed (10) : my2s l s forboot

 bootst rap , bca reps (50) seed (10) : my2s l s forboot

 di s e [ PLU boot ]







 ∗∗∗∗∗ bootst rap example 2

 capture drop PLU boot

 capture drop vo lhat

 capture program drop my2s l s forboot

 program my2s l s forboot

 reg Volume Tempeff15 Roll Temp24 Roll Temp240 suncyc l e morning de l tasun EWH SolarRest

RteBlackBox i f s e l e c t ==5 & SalePurchase==”Purchase ” , robust

 p r ed i c t yhat , xb

 gen PLU boot = (Volume − yhat ) ˆ2

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq Coal Brent

Gas IT2 EUA Wind1DA Hydro PLU boot i f s e l e c t ==5 & SalePurchase==”Purchase ” ,

robust

 drop yhat PLU boot

 end

 bootst rap b [ PLU boot ] s e [ PLU boot ] , reps (50) seed (10) : my2s l s forboot

 bootst rap , bca reps (50) seed (10) : my2s l s forboot

 di s e [ PLU boot ]



 ∗/







 ∗∗∗

 ∗ generate tab l e o f ke rne l v a r i a b l e s

 ∗∗∗

 /∗ capture mat drop M

 mat M = J ( 9 , 6 , . )

 l o c a l v a r i a b l e s ” ${demandest imat ionvar iables ‘ vers ion ’} ”

 l o c a l FUNC ” r (mean) r ( p50 ) r ( sd ) r (min ) r (max) ”

 l o c a l c=2

 fo r each FF of l o c a l FUNC{

 l o c a l r=1

 fo r each VV of l o c a l v a r i a b l e s {

 su ‘VV’ , d e t a i l

 mat M[ ‘ r ’ , ‘ c ’ ]= ‘FF’

 l o c a l r=‘r ’+1

 }

 l o c a l c=‘c ’+1

 }

 mat rownames M = ‘ va r i ab l e s ’

 mat colnames M = NumberBin Mean Median StdDev Min Max

 mat l i M

 f o r v a l u e s mm = 1/9{

 mat M[ ‘mm’ , 1 ] = ‘mm’
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 }

 mat l i M

 ∗/

 ∗ Table f o r Var iab l e s used in the ke rne l based PLU$ˆD$ computation :

 ∗ btout tab l e us ing ”${LATEXPATH}mul t i ke rne l ” , r ep l a c e mat(M) a s i s nobox format (%9.0 f c

%9.1 f c %9.0 f c %9.0 f c %9.0 f c %9.0 f c ) l ong tab l e
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Next is the script named 107_Eqn4demand.do and called in the general file.







 ∗ pu l l in do− f i l e : needs to draw in f o l l ow ing g l oba l macros :



 g l oba l DEV ${demandest imat ionvar iab les$ { runversionD}}





 ∗ open base f i l e :

 use ”${CLOUDPATH}v38/Temp data/Pre4and5 . dta” , c l e a r





 ∗∗∗∗∗∗∗∗∗∗

 ∗ 1 s t s tep : demand es t imat ion

 ∗∗∗∗∗∗∗∗∗∗





 ∗ i n i t i a t e v a r i a b l e s



 capture drop abs re s ∗

 capture drop sq r e s ∗

 capture drop normalres ∗

 capture drop s td r e s ∗

 capture drop tmp



 fo r each m in Pr ice Volume{

 gen abs re s ‘m’=.

 gen sq r e s ‘m’=.

 gen normalres ‘m’=.

 gen s td r e s ‘m’=.

 }





 ∗∗∗∗∗∗∗∗∗∗

 ∗ eqn 4 : DEMAND

 ∗∗∗∗∗∗∗∗∗∗



 ∗ open loop f o r measure o f unce r ta in ty

 fo r each m in Pr ice Volume{



 ∗ open loop f o r po in t s and markets ide

 f o r v a l u e s i =9(−2)1{

 fo r each k in Purchase{

 f o r v a l u e s XXX=1/1{ /∗ I r r e l e v an t in t h i s s e t t i ng , l e f t f o r copy

convenience ∗/

 di ”Next : ” ” ‘k ’ ” ‘ i ’ ” ” ‘XXX’



 ∗ reg 1a : r e t r i e v e abso lute p r ed i c t i on e r r o r s



 reg ‘m’ ${DEV} i f s e l e c t ==‘ i ’ & SalePurchase==” ‘k ’ ” , robust



 e s t s t o r e DE ‘m’ ‘ k ’ ‘ i ’



 ∗ White t e s t f o r h e t e r o s k e d a s t i c i t y



 e s t a t imtest , white
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 capture mat drop wh i t e s ta t

 mat wh i t e s ta t = r ( ch i2 h )

 di wh i t e s ta t [ 1 , 1 ]

 g l oba l a ‘m’ a ‘ k ’ a ‘ i ’ = wh i t e s ta t [ 1 , 1 ]

 di ”next g l oba l ”

 di ${a ‘m’ a ‘ k ’ a ‘ i ’}

 i f wh i t e s ta t [ 1 , 1 ] == . {

 g l oba l a ‘m’ a ‘ k ’ a ‘ i ’ = 99999999

 }

 di ”next g l oba l ”

 di ${a ‘m’ a ‘ k ’ a ‘ i ’}



 ∗ pr ed i c t e r r o r s

 p r ed i c t tmp i f e ( sample ) , r e s i d u a l s



 ∗ gen dev i a t i on s o f r e s i d u a l s

 r ep l a c e abs re s ‘m’ = abs (tmp) i f e ( sample )

 r ep l a c e sq r e s ‘m’ = tmp∗tmp i f e ( sample ) /∗ c on s i s t e n t with white ∗/

 r ep l a c e normalres ‘m’ = tmp i f e ( sample )



 ∗ gen Stdev o f r e s i d u a l s /∗ over a l l r e s i d u a l s o f that r e g r e s s i on , thus

s i n g l e value f o r a l l −> add only to ∗/

 tabs ta t tmp i f e ( sample ) , s t a t ( sd ) save

 mat tmpstdev = r ( StatTota l )

 di tmpstdev [ 1 , 1 ]

 r ep l a c e s t d r e s ‘m’ = tmpstdev [ 1 , 1 ] i f e ( sample )



 drop tmp

 }

 }

 }

 }















 ∗∗∗∗∗∗∗∗∗∗

 ∗ generate t ab l e s f o r demand est imat ion , i n c l white t e s t

 ∗∗∗∗∗∗∗∗∗∗



 ∗∗∗∗∗∗∗

 ∗ Tables f o r k=1 . . . 5

 ∗∗∗∗∗∗∗





 fo r each m in Pr ice {

 f o r v a l u e s i =9/9{

 fo r each k in Purchase {

 btoutreg2 [DE ‘m’ ‘ k ’ ‘ i ’ ] us ing ”${LATEXPATH}PriceDEPur${ runversionD } . tex ”

, r ep l a c e tex ( f r ag pre t ty landscape ) l a b e l ( proper ) addstat (White , ${a ‘

m’ a ‘ k ’ a ‘ i ’} )

 }

 }

 }

 fo r each m in Pr ice {

 f o r v a l u e s i =7(−2)1{

 fo r each k in Purchase {
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 btoutreg2 [DE ‘m’ ‘ k ’ ‘ i ’ ] us ing ”${LATEXPATH}PriceDEPur${ runversionD } . tex ”

, append tex ( f r ag pre t ty landscape ) l a b e l ( proper ) addstat (White , ${a ‘m

’ a ‘ k ’ a ‘ i ’} )

 }

 }

 }





 fo r each m in Volume{

 f o r v a l u e s i =9/9{

 fo r each k in Purchase {

 btoutreg2 [DE ‘m’ ‘ k ’ ‘ i ’ ] us ing ”${LATEXPATH}VolDEPur${ runversionD } . tex ” ,

r ep l a c e tex ( f r ag pre t ty landscape ) l a b e l ( proper ) addstat (White , ${a ‘m’

a ‘ k ’ a ‘ i ’} )

 }

 }

 }

 fo r each m in Volume{

 f o r v a l u e s i =7(−2)1{

 fo r each k in Purchase {

 btoutreg2 [DE ‘m’ ‘ k ’ ‘ i ’ ] us ing ”${LATEXPATH}VolDEPur${ runversionD } . tex ” ,

append tex ( f r ag pre t ty landscape ) l a b e l ( proper ) addstat (White , ${a ‘m’ a

‘ k ’ a ‘ i ’} )

 }

 }

 }









 ∗∗∗∗∗∗∗∗∗∗

 ∗ generate t ab l e s f o r h e t e r o s k e d a s t i c i t y t e s t

 ∗∗∗∗∗∗∗∗∗∗



 ∗ can do l a t e r , a l r eady i n c l above

 ∗ i f so , then c r ea t e matrix with inputs , then export .





 drop e s t ∗





 ∗ save

 save ”${CLOUDPATH}v38/Temp data/PreKernel D ${ runversionD } . dta” , r ep l a c e
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Next is the script named 107_kernelbucketreg.do and called in the general file.

 ∗DO f i l e f o r robustnes s − 23 .02



 ∗ us ing bucket s p e c i f i c l i n e a r r e g r e s s i o n .



 ∗ checking r e s u l t s with ke rne l based plus .

 g l oba l d o f i l e d i r e c t o r y o r i g= Path to d i r e c t o r y conta in ing do f i l e s

 g l oba l LATEXPATH = Path to d i r e c t o r y conta in ing l a t ex f o r a r t i c l e

 g l oba l CLOUDPATH = Path to d i r e c t o r y conta in ing data



 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ ve r s i on

 l o c a l b i n s e t t i n g ”a”

 g l oba l runversionD ‘ b i n s e t t i n g ’

 g l oba l demandest imat ionvar iab les ‘ b i n s e t t i n g ’ ”Tempeff15 Roll Temp24 Roll Temp240

suncyc l e morning de l tasun EWH SolarRest RteBlackBox ”



 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗



 ∗ Def ine macros

 l o c a l s e n s i t i v i t y 0

 l o c a l endofdata = N

 l o c a l REP1 SolarRest

 l o c a l Numbin ‘REP1 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP2 de l tasun

 l o c a l Numbin ‘REP2 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP3 Tempeff15

 l o c a l Numbin ‘REP3 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP4 Roll Temp24

 l o c a l Numbin ‘REP4 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP5 Roll Temp240

 l o c a l Numbin ‘REP5 ’ 1∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP6 suncyc l e

 l o c a l Numbin ‘REP6 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP7 morning

 l o c a l Numbin ‘REP7 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP8 EWH

 l o c a l Numbin ‘REP8 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP9 RteBlackBox

 l o c a l Numbin ‘REP9 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 g l oba l v a r i ab l e s u s edk e rn e l ”${demandest imat ionvar iables ‘ b in s e t t i ng ’} ”



 ∗∗∗∗∗∗∗∗∗∗

 ∗ Execution PLU

 ∗∗∗∗∗∗∗∗∗∗



 ∗ open sav ing loop f o r speeding up computation

 f o r v a l u e s k = 1(2) 9{

 fo r each s in Purchase{

 use ”${CLOUDPATH}v38/Temp data/Pre4and5 . dta” , c l e a r

 keep i f s e l e c t==‘k ’ & SalePurchase == ” ‘ s ’ ”

 l o c a l endofdata = N



 ∗ run

 qu i e t l y {

 g so r t SalePurchase s e l e c t Datestata Hour
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 ∗ gen va r i a b l e s to f i l l

 fo r each m in Pr ice Volume{

 capture drop Kabsres ‘m’

 capture drop Ksqres ‘m’

 capture drop PLUvKDvarabsres ‘m’

 capture drop PLUvKDvarsqres ‘m’

 capture drop Ksamples izeabsres ‘m’

 capture drop Ksamples i zesqres ‘m’

 gen Kabsres ‘m’=0

 gen Ksqres ‘m’=0

 gen PLUvKDvarabsres ‘m’=0

 gen PLUvKDvarsqres ‘m’=0

 gen Ksamples izeabsres ‘m’=0

 gen Ksamples i zesqres ‘m’=0







 f o r v a l u e s obs= 1/ ‘ endofdata ’{

 ∗ su Tempeff i f n==‘ obs ’ /∗ c ro s s check ∗/

 ∗ su s e l e c t i f n==‘ obs ’ /∗ c ro s s check ∗/

 l o c a l CompPoint = s e l e c t [ ‘ obs ’ ]

 l o c a l CompFunc = ”SalePurchase [ ‘ obs ’ ] ”

 ∗ di ‘CompFunc ’ /∗ c ro s s check ∗/



 fo r each c on t r o l f a c t o r in $va r i ab l e su s edke rn e l {

 ∗ f i nd b incent r e per c o n t r o l f a c t o r f o r g iven obse rvat ion

 l o c a l B incent re ‘ c o n t r o l f a c t o r ’ = ‘ c o n t r o l f a c t o r ’ [ ‘ obs ’ ]

 ∗ f i nd binwidth per con t r o l f a c t o r

 su ‘ c o n t r o l f a c t o r ’ , meanonly

 l o c a l topendrange ‘ c o n t r o l f a c t o r ’ = r (max)

 l o c a l lowendrange ‘ c o n t r o l f a c t o r ’ = r (min )

 l o c a l binwidth ‘ c o n t r o l f a c t o r ’ = ( r (max) − r (min ) ) / ‘=‘Numbin ‘

c o n t r o l f a c t o r ’ ’ ’



 di ”−−−−−−−−−−−−−−−− ‘ c on t r o l f a c t o r ’ ”

 di ‘=‘Numbin ‘ c o n t r o l f a c t o r ’ ’ ’

 d i ”Max : ” ‘ topendrange ‘ c o n t r o l f a c t o r ’ ’

 d i ”Min : ” ‘ lowendrange ‘ c o n t r o l f a c t o r ’ ’

 d i ”Binwidth : ” ‘ binwidth ‘ c o n t r o l f a c t o r ’ ’

 d i ”Bincentre from current obs : ” ‘ B incent re ‘ c o n t r o l f a c t o r ’ ’

 }



 capture reg ‘m’ ${demandest imat ionvar iab les ‘ v e r s i on ’} ///

 i f s e l e c t == ‘CompPoint ’ & SalePurchase== ‘CompFunc ’ ///

 & ‘REP1 ’<= ‘=‘ Bincent re ‘REP1 ’ ’+ ‘ binwidth ‘REP1 ’ ’ ’ & ‘REP1 ’>=‘=‘ Bincent re ‘

REP1 ’ ’− ‘ binwidth ‘REP1 ’ ’ ’ ///

 & ‘REP2 ’<= ‘=‘ Bincent re ‘REP2 ’ ’+ ‘ binwidth ‘REP2 ’ ’ ’ & ‘REP2 ’>=‘=‘ Bincent re ‘

REP2 ’ ’− ‘ binwidth ‘REP2 ’ ’ ’ ///

 & ‘REP3 ’<= ‘=‘ Bincent re ‘REP3 ’ ’+ ‘ binwidth ‘REP3 ’ ’ ’ & ‘REP3 ’>=‘=‘ Bincent re ‘

REP3 ’ ’− ‘ binwidth ‘REP3 ’ ’ ’ ///

 & ‘REP4 ’<= ‘=‘ Bincent re ‘REP4 ’ ’+ ‘ binwidth ‘REP4 ’ ’ ’ & ‘REP4 ’>=‘=‘ Bincent re ‘

REP4 ’ ’− ‘ binwidth ‘REP4 ’ ’ ’ ///

 & ‘REP5 ’<= ‘=‘ Bincent re ‘REP5 ’ ’+ ‘ binwidth ‘REP5 ’ ’ ’ & ‘REP5 ’>=‘=‘ Bincent re ‘

REP5 ’ ’− ‘ binwidth ‘REP5 ’ ’ ’ ///

 & ‘REP6 ’<= ‘=‘ Bincent re ‘REP6 ’ ’+ ‘ binwidth ‘REP6 ’ ’ ’ & ‘REP6 ’>=‘=‘ Bincent re ‘

REP6 ’ ’− ‘ binwidth ‘REP6 ’ ’ ’ ///

 & ‘REP7 ’<= ‘=‘ Bincent re ‘REP7 ’ ’+ ‘ binwidth ‘REP7 ’ ’ ’ & ‘REP7 ’>=‘=‘ Bincent re ‘

REP7 ’ ’− ‘ binwidth ‘REP7 ’ ’ ’ ///

 & ‘REP8 ’<= ‘=‘ Bincent re ‘REP8 ’ ’+ ‘ binwidth ‘REP8 ’ ’ ’ & ‘REP8 ’>=‘=‘ Bincent re ‘

REP8 ’ ’− ‘ binwidth ‘REP8 ’ ’ ’ ///
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 & ‘REP9 ’<= ‘=‘ Bincent re ‘REP9 ’ ’+ ‘ binwidth ‘REP9 ’ ’ ’ & ‘REP9 ’>=‘=‘ Bincent re ‘

REP9 ’ ’− ‘ binwidth ‘REP9 ’ ’ ’ ///

 , robust



 ∗ pr ed i c t r e s i d u a l s l o c a l l y

 capture p r ed i c t tmp ‘m’ i f e ( sample ) , r e s i d u a l s



 ∗ gen dev i a t i on s o f r e s i d u a l s

 capture r ep l a c e Kabsres ‘m’ = abs (tmp) i f n==‘ obs ’

 capture r ep l a c e Ksqres ‘m’ = tmp∗tmp i f n==‘ obs ’ /∗ c on s i s t e n t with white ∗/

 capture drop tmp ‘m’



 fo r each g in ” abs re s ” ” sq r e s ”{

 capture reg K‘ g ’ ‘m’ ${demandest imat ionvar iab les ‘ v e r s i on ’} ///

 i f s e l e c t == ‘CompPoint ’ & SalePurchase== ‘CompFunc ’ ///

 & ‘REP1 ’<= ‘=‘ Bincent re ‘REP1 ’ ’+ ‘ binwidth ‘REP1 ’ ’ ’ & ‘REP1 ’>=‘=‘ Bincent re ‘

REP1 ’ ’− ‘ binwidth ‘REP1 ’ ’ ’ ///

 & ‘REP2 ’<= ‘=‘ Bincent re ‘REP2 ’ ’+ ‘ binwidth ‘REP2 ’ ’ ’ & ‘REP2 ’>=‘=‘ Bincent re ‘

REP2 ’ ’− ‘ binwidth ‘REP2 ’ ’ ’ ///

 & ‘REP3 ’<= ‘=‘ Bincent re ‘REP3 ’ ’+ ‘ binwidth ‘REP3 ’ ’ ’ & ‘REP3 ’>=‘=‘ Bincent re ‘

REP3 ’ ’− ‘ binwidth ‘REP3 ’ ’ ’ ///

 & ‘REP4 ’<= ‘=‘ Bincent re ‘REP4 ’ ’+ ‘ binwidth ‘REP4 ’ ’ ’ & ‘REP4 ’>=‘=‘ Bincent re ‘

REP4 ’ ’− ‘ binwidth ‘REP4 ’ ’ ’ ///

 & ‘REP5 ’<= ‘=‘ Bincent re ‘REP5 ’ ’+ ‘ binwidth ‘REP5 ’ ’ ’ & ‘REP5 ’>=‘=‘ Bincent re ‘

REP5 ’ ’− ‘ binwidth ‘REP5 ’ ’ ’ ///

 & ‘REP6 ’<= ‘=‘ Bincent re ‘REP6 ’ ’+ ‘ binwidth ‘REP6 ’ ’ ’ & ‘REP6 ’>=‘=‘ Bincent re ‘

REP6 ’ ’− ‘ binwidth ‘REP6 ’ ’ ’ ///

 & ‘REP7 ’<= ‘=‘ Bincent re ‘REP7 ’ ’+ ‘ binwidth ‘REP7 ’ ’ ’ & ‘REP7 ’>=‘=‘ Bincent re ‘

REP7 ’ ’− ‘ binwidth ‘REP7 ’ ’ ’ ///

 & ‘REP8 ’<= ‘=‘ Bincent re ‘REP8 ’ ’+ ‘ binwidth ‘REP8 ’ ’ ’ & ‘REP8 ’>=‘=‘ Bincent re ‘

REP8 ’ ’− ‘ binwidth ‘REP8 ’ ’ ’ ///

 & ‘REP9 ’<= ‘=‘ Bincent re ‘REP9 ’ ’+ ‘ binwidth ‘REP9 ’ ’ ’ & ‘REP9 ’>=‘=‘ Bincent re ‘

REP9 ’ ’− ‘ binwidth ‘REP9 ’ ’ ’ ///

 , robust

 capture p r ed i c t PLUvKDtmp ‘ g ’ ‘m’ i f n==‘ obs ’ , xb

 capture s c a l a r s izetmp = e (N)

 capture r ep l a c e Ksamplesize ‘ g ’ ‘m’ = sizetmp i f n==‘ obs ’

 capture r ep l a c e PLUvKDvar ‘ g ’ ‘m’ = PLUvKDtmp ‘ g ’ ‘m’ i f n==‘ obs ’

 capture drop PLUvKDtmp ‘ g ’ ‘m’

 }



 di ‘ obs ’

 } /∗ c l o s e obse rva t i on s loop ∗/

 } /∗ c l o s e s qu i e t l y ∗/

 } /∗ c l o s e ‘m’ ∗/



 ∗ gen va r i a b l e s to f i l l

 capture drop PLUv51 ‘ b i n s e t t i n g ’ var1

 capture drop PLUv51 ‘ b i n s e t t i n g ’ var2

 capture drop PLUv52 ‘ b i n s e t t i n g ’ var1

 capture drop PLUv52 ‘ b i n s e t t i n g ’ var2

 capture drop PointsInBinv51 ‘ b i n s e t t i n g ’

 capture drop PointsInBinv52 ‘ b i n s e t t i n g ’

 gen PLUv51 ‘ b i n s e t t i n g ’ var1 =.

 gen PLUv51 ‘ b i n s e t t i n g ’ var2 =.

 gen PLUv52 ‘ b i n s e t t i n g ’ var1 =.

 gen PLUv52 ‘ b i n s e t t i n g ’ var2 =.

 gen PointsInBinv51 ‘ b i n s e t t i n g ’ =.

 gen PointsInBinv52 ‘ b i n s e t t i n g ’ =.

 ∗ generate PLUs
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 r ep l a c e PLUv51 ‘ b i n s e t t i n g ’ var1 = PLUvKDvarsqresPrice

 r ep l a c e PLUv51 ‘ b i n s e t t i n g ’ var2 = PLUvKDvarsqresVolume

 r ep l a c e PLUv52 ‘ b i n s e t t i n g ’ var1 = PLUvKDvarabsresPrice

 r ep l a c e PLUv52 ‘ b i n s e t t i n g ’ var2 = PLUvKDvarabsresVolume

 r ep l a c e PointsInBinv51 ‘ b i n s e t t i n g ’ = KsamplesizesqresVolume

 r ep l a c e PointsInBinv52 ‘ b i n s e t t i n g ’ = KsamplesizeabsresVolume

 drop Ksamplesize ∗







 ∗ c l o s e sav ing loop f o r speeding up computation

 keep Date Hour SalePurchase s e l e c t PLUv51 ‘

b i n s e t t i n g ’ var1 PLUv51 ‘ b i n s e t t i n g ’ var2 PLUv52 ‘

b i n s e t t i n g ’ var1 PLUv52 ‘ b i n s e t t i n g ’ var2

PointsInBinv51 ‘ b i n s e t t i n g ’ PointsInBinv52 ‘

b i n s e t t i n g ’ KabsresPr ice KsqresPr ice

KabsresVolume KsqresVolume PLUvKDvarabsresPrice

PLUvKDvarsqresPrice PLUvKDvarabsresVolume

PLUvKDvarsqresVolume

 save ”${CLOUDPATH}v38/Temp data/KERNEL‘ b in s e t t i ng ’

buck ‘ k ’ and ‘ s ’ . dta” , r ep l a c e

 }

 }





 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ ve r s i on

 l o c a l b i n s e t t i n g ”b”

 g l oba l runversionD ‘ b i n s e t t i n g ’

 g l oba l demandest imat ionvar iab les ‘ b i n s e t t i n g ’ ”Tempeff15 Roll Temp24 Roll Temp240

suncyc l e morning de l tasun EWH SolarRest RteBlackBox ”



 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗



 ∗ Def ine macros

 l o c a l s e n s i t i v i t y 0

 l o c a l endofdata = N

 l o c a l REP1 SolarRest

 l o c a l Numbin ‘REP1 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP2 de l tasun

 l o c a l Numbin ‘REP2 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP3 Tempeff15

 l o c a l Numbin ‘REP3 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP4 Roll Temp24

 l o c a l Numbin ‘REP4 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP5 Roll Temp240

 l o c a l Numbin ‘REP5 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP6 suncyc l e

 l o c a l Numbin ‘REP6 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP7 morning

 l o c a l Numbin ‘REP7 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP8 EWH

 l o c a l Numbin ‘REP8 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP9 RteBlackBox

 l o c a l Numbin ‘REP9 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 g l oba l v a r i ab l e s u s edk e rn e l ”${demandest imat ionvar iables ‘ b in s e t t i ng ’} ”



 ∗∗∗∗∗∗∗∗∗∗

 ∗ Execution PLU

 ∗∗∗∗∗∗∗∗∗∗
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 ∗ open sav ing loop f o r speeding up computation

 f o r v a l u e s k = 1(2) 9{

 fo r each s in Purchase{

 use ”${CLOUDPATH}v38/Temp data/Pre4and5 . dta” , c l e a r

 keep i f s e l e c t==‘k ’ & SalePurchase == ” ‘ s ’ ”

 l o c a l endofdata = N



 ∗ run

 qu i e t l y {

 g so r t SalePurchase s e l e c t Datestata Hour



 ∗ gen va r i a b l e s to f i l l

 fo r each m in Pr ice Volume{

 capture drop Kabsres ‘m’

 capture drop Ksqres ‘m’

 capture drop PLUvKDvarabsres ‘m’

 capture drop PLUvKDvarsqres ‘m’

 capture drop Ksamples izeabsres ‘m’

 capture drop Ksamples i zesqres ‘m’

 gen Kabsres ‘m’=0

 gen Ksqres ‘m’=0

 gen PLUvKDvarabsres ‘m’=0

 gen PLUvKDvarsqres ‘m’=0

 gen Ksamples izeabsres ‘m’=0

 gen Ksamples i zesqres ‘m’=0







 f o r v a l u e s obs= 1/ ‘ endofdata ’{

 ∗ su Tempeff i f n==‘ obs ’ /∗ c ro s s check ∗/

 ∗ su s e l e c t i f n==‘ obs ’ /∗ c ro s s check ∗/

 l o c a l CompPoint = s e l e c t [ ‘ obs ’ ]

 l o c a l CompFunc = ”SalePurchase [ ‘ obs ’ ] ”

 ∗ di ‘CompFunc ’ /∗ c ro s s check ∗/



 fo r each c on t r o l f a c t o r in $va r i ab l e su s edke rn e l {

 ∗ f i nd b incent r e per c o n t r o l f a c t o r f o r g iven obse rvat ion

 l o c a l B incent re ‘ c o n t r o l f a c t o r ’ = ‘ c o n t r o l f a c t o r ’ [ ‘ obs ’ ]

 ∗ f i nd binwidth per con t r o l f a c t o r

 su ‘ c o n t r o l f a c t o r ’ , meanonly

 l o c a l topendrange ‘ c o n t r o l f a c t o r ’ = r (max)

 l o c a l lowendrange ‘ c o n t r o l f a c t o r ’ = r (min )

 l o c a l binwidth ‘ c o n t r o l f a c t o r ’ = ( r (max) − r (min ) ) / ‘=‘Numbin ‘

c o n t r o l f a c t o r ’ ’ ’



 di ”−−−−−−−−−−−−−−−− ‘ c on t r o l f a c t o r ’ ”

 di ‘=‘Numbin ‘ c o n t r o l f a c t o r ’ ’ ’

 di ”Max : ” ‘ topendrange ‘ c o n t r o l f a c t o r ’ ’

 di ”Min : ” ‘ lowendrange ‘ c o n t r o l f a c t o r ’ ’

 di ”Binwidth : ” ‘ binwidth ‘ c o n t r o l f a c t o r ’ ’

 di ”Bincentre from current obs : ” ‘ B incent re ‘ c o n t r o l f a c t o r ’ ’

 }



 capture reg ‘m’ ${demandest imat ionvar iab les ‘ v e r s i on ’} ///

 i f s e l e c t == ‘CompPoint ’ & SalePurchase== ‘CompFunc ’ ///

 & ‘REP1 ’<= ‘=‘ Bincent re ‘REP1 ’ ’+ ‘ binwidth ‘REP1 ’ ’ ’ & ‘REP1 ’>=‘=‘ Bincent re ‘

REP1 ’ ’− ‘ binwidth ‘REP1 ’ ’ ’ ///

 & ‘REP2 ’<= ‘=‘ Bincent re ‘REP2 ’ ’+ ‘ binwidth ‘REP2 ’ ’ ’ & ‘REP2 ’>=‘=‘ Bincent re ‘

REP2 ’ ’− ‘ binwidth ‘REP2 ’ ’ ’ ///
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 & ‘REP3 ’<= ‘=‘ Bincent re ‘REP3 ’ ’+ ‘ binwidth ‘REP3 ’ ’ ’ & ‘REP3 ’>=‘=‘ Bincent re ‘

REP3 ’ ’− ‘ binwidth ‘REP3 ’ ’ ’ ///

 & ‘REP4 ’<= ‘=‘ Bincent re ‘REP4 ’ ’+ ‘ binwidth ‘REP4 ’ ’ ’ & ‘REP4 ’>=‘=‘ Bincent re ‘

REP4 ’ ’− ‘ binwidth ‘REP4 ’ ’ ’ ///

 & ‘REP5 ’<= ‘=‘ Bincent re ‘REP5 ’ ’+ ‘ binwidth ‘REP5 ’ ’ ’ & ‘REP5 ’>=‘=‘ Bincent re ‘

REP5 ’ ’− ‘ binwidth ‘REP5 ’ ’ ’ ///

 & ‘REP6 ’<= ‘=‘ Bincent re ‘REP6 ’ ’+ ‘ binwidth ‘REP6 ’ ’ ’ & ‘REP6 ’>=‘=‘ Bincent re ‘

REP6 ’ ’− ‘ binwidth ‘REP6 ’ ’ ’ ///

 & ‘REP7 ’<= ‘=‘ Bincent re ‘REP7 ’ ’+ ‘ binwidth ‘REP7 ’ ’ ’ & ‘REP7 ’>=‘=‘ Bincent re ‘

REP7 ’ ’− ‘ binwidth ‘REP7 ’ ’ ’ ///

 & ‘REP8 ’<= ‘=‘ Bincent re ‘REP8 ’ ’+ ‘ binwidth ‘REP8 ’ ’ ’ & ‘REP8 ’>=‘=‘ Bincent re ‘

REP8 ’ ’− ‘ binwidth ‘REP8 ’ ’ ’ ///

 & ‘REP9 ’<= ‘=‘ Bincent re ‘REP9 ’ ’+ ‘ binwidth ‘REP9 ’ ’ ’ & ‘REP9 ’>=‘=‘ Bincent re ‘

REP9 ’ ’− ‘ binwidth ‘REP9 ’ ’ ’ ///

 , robust



 ∗ pr ed i c t r e s i d u a l s l o c a l l y

 capture p r ed i c t tmp ‘m’ i f e ( sample ) , r e s i d u a l s



 ∗ gen dev i a t i on s o f r e s i d u a l s

 capture r ep l a c e Kabsres ‘m’ = abs (tmp) i f n==‘ obs ’

 capture r ep l a c e Ksqres ‘m’ = tmp∗tmp i f n==‘ obs ’ /∗ c on s i s t e n t with white ∗/

 capture drop tmp ‘m’



 fo r each g in ” abs re s ” ” sq r e s ”{

 capture reg K‘ g ’ ‘m’ ${demandest imat ionvar iab les ‘ v e r s i on ’} ///

 i f s e l e c t == ‘CompPoint ’ & SalePurchase== ‘CompFunc ’ ///

 & ‘REP1 ’<= ‘=‘ Bincent re ‘REP1 ’ ’+ ‘ binwidth ‘REP1 ’ ’ ’ & ‘REP1 ’>=‘=‘ Bincent re ‘

REP1 ’ ’− ‘ binwidth ‘REP1 ’ ’ ’ ///

 & ‘REP2 ’<= ‘=‘ Bincent re ‘REP2 ’ ’+ ‘ binwidth ‘REP2 ’ ’ ’ & ‘REP2 ’>=‘=‘ Bincent re ‘

REP2 ’ ’− ‘ binwidth ‘REP2 ’ ’ ’ ///

 & ‘REP3 ’<= ‘=‘ Bincent re ‘REP3 ’ ’+ ‘ binwidth ‘REP3 ’ ’ ’ & ‘REP3 ’>=‘=‘ Bincent re ‘

REP3 ’ ’− ‘ binwidth ‘REP3 ’ ’ ’ ///

 & ‘REP4 ’<= ‘=‘ Bincent re ‘REP4 ’ ’+ ‘ binwidth ‘REP4 ’ ’ ’ & ‘REP4 ’>=‘=‘ Bincent re ‘

REP4 ’ ’− ‘ binwidth ‘REP4 ’ ’ ’ ///

 & ‘REP5 ’<= ‘=‘ Bincent re ‘REP5 ’ ’+ ‘ binwidth ‘REP5 ’ ’ ’ & ‘REP5 ’>=‘=‘ Bincent re ‘

REP5 ’ ’− ‘ binwidth ‘REP5 ’ ’ ’ ///

 & ‘REP6 ’<= ‘=‘ Bincent re ‘REP6 ’ ’+ ‘ binwidth ‘REP6 ’ ’ ’ & ‘REP6 ’>=‘=‘ Bincent re ‘

REP6 ’ ’− ‘ binwidth ‘REP6 ’ ’ ’ ///

 & ‘REP7 ’<= ‘=‘ Bincent re ‘REP7 ’ ’+ ‘ binwidth ‘REP7 ’ ’ ’ & ‘REP7 ’>=‘=‘ Bincent re ‘

REP7 ’ ’− ‘ binwidth ‘REP7 ’ ’ ’ ///

 & ‘REP8 ’<= ‘=‘ Bincent re ‘REP8 ’ ’+ ‘ binwidth ‘REP8 ’ ’ ’ & ‘REP8 ’>=‘=‘ Bincent re ‘

REP8 ’ ’− ‘ binwidth ‘REP8 ’ ’ ’ ///

 & ‘REP9 ’<= ‘=‘ Bincent re ‘REP9 ’ ’+ ‘ binwidth ‘REP9 ’ ’ ’ & ‘REP9 ’>=‘=‘ Bincent re ‘

REP9 ’ ’− ‘ binwidth ‘REP9 ’ ’ ’ ///

 , robust

 capture p r ed i c t PLUvKDtmp ‘ g ’ ‘m’ i f n==‘ obs ’ , xb

 capture s c a l a r s izetmp = e (N)

 capture r ep l a c e Ksamplesize ‘ g ’ ‘m’ = sizetmp i f n==‘ obs ’

 capture r ep l a c e PLUvKDvar ‘ g ’ ‘m’ = PLUvKDtmp ‘ g ’ ‘m’ i f n==‘ obs ’

 capture drop PLUvKDtmp ‘ g ’ ‘m’

 }



 di ‘ obs ’

 } /∗ c l o s e obse rva t i on s loop ∗/

 } /∗ c l o s e s qu i e t l y ∗/

 } /∗ c l o s e ‘m’ ∗/



 ∗ gen va r i a b l e s to f i l l

 capture drop PLUv51 ‘ b i n s e t t i n g ’ var1
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 capture drop PLUv51 ‘ b i n s e t t i n g ’ var2

 capture drop PLUv52 ‘ b i n s e t t i n g ’ var1

 capture drop PLUv52 ‘ b i n s e t t i n g ’ var2

 capture drop PointsInBinv51 ‘ b i n s e t t i n g ’

 capture drop PointsInBinv52 ‘ b i n s e t t i n g ’

 gen PLUv51 ‘ b i n s e t t i n g ’ var1 =.

 gen PLUv51 ‘ b i n s e t t i n g ’ var2 =.

 gen PLUv52 ‘ b i n s e t t i n g ’ var1 =.

 gen PLUv52 ‘ b i n s e t t i n g ’ var2 =.

 gen PointsInBinv51 ‘ b i n s e t t i n g ’ =.

 gen PointsInBinv52 ‘ b i n s e t t i n g ’ =.

 ∗ generate PLUs

 r ep l a c e PLUv51 ‘ b i n s e t t i n g ’ var1 = PLUvKDvarsqresPrice

 r ep l a c e PLUv51 ‘ b i n s e t t i n g ’ var2 = PLUvKDvarsqresVolume

 r ep l a c e PLUv52 ‘ b i n s e t t i n g ’ var1 = PLUvKDvarabsresPrice

 r ep l a c e PLUv52 ‘ b i n s e t t i n g ’ var2 = PLUvKDvarabsresVolume

 r ep l a c e PointsInBinv51 ‘ b i n s e t t i n g ’ = KsamplesizesqresVolume

 r ep l a c e PointsInBinv52 ‘ b i n s e t t i n g ’ = KsamplesizeabsresVolume

 drop Ksamplesize ∗







 ∗ c l o s e sav ing loop f o r speeding up computation

 keep Date Hour SalePurchase s e l e c t PLUv51 ‘

b i n s e t t i n g ’ var1 PLUv51 ‘ b i n s e t t i n g ’ var2 PLUv52 ‘

b i n s e t t i n g ’ var1 PLUv52 ‘ b i n s e t t i n g ’ var2

PointsInBinv51 ‘ b i n s e t t i n g ’ PointsInBinv52 ‘

b i n s e t t i n g ’ KabsresPr ice KsqresPr ice

KabsresVolume KsqresVolume PLUvKDvarabsresPrice

PLUvKDvarsqresPrice PLUvKDvarabsresVolume

PLUvKDvarsqresVolume

 save ”${CLOUDPATH}v38/Temp data/KERNEL‘ b in s e t t i ng ’

buck ‘ k ’ and ‘ s ’ . dta” , r ep l a c e

 }

 }
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Next is the script named 107_PrepkernelPLUdata.do and called in the general file.

 ∗PrepkernelPLUdata





 g l oba l d o f i l e d i r e c t o r y o r i g= Path to d i r e c t o r y conta in ing do f i l e s

 g l oba l LATEXPATH = Path to d i r e c t o r y conta in ing l a t ex f o r a r t i c l e

 g l oba l CLOUDPATH = Path to d i r e c t o r y conta in ing data





 ∗∗∗∗

 ∗ Append ke rne l PLUs

 ∗∗∗∗



 ∗ on sq r e s i d u a l s

 fo r each b i n s e t t i n g in ”a” ”b”{

 use ”${CLOUDPATH}v38/Temp data/KERNEL‘ b in s e t t i ng ’ buck1andPurchase . dta” ,

c l e a r

 ∗append

 f o r v a l u e s k = 3(2) 9{

 fo r each s in Purchase{

 append us ing ”${CLOUDPATH}v38/Temp data/Kernel ‘ b in s e t t i ng ’ buck ‘ k ’

andPurchase . dta”

 }

 }



 dup l i c a t e s l i s t SalePurchase s e l e c t Date Hour

 dup l i c a t e s drop SalePurchase s e l e c t Date Hour , f o r c e



 ∗ − 51a . = sq r e s + 8 bins .

 ∗ − 51b . = sq r e s + 9 bins .

 ∗ − 52a . = absre s + 8 bins .

 ∗ − 52b . = absre s + 9 bins .



 capture rename PLUv51avar1 PLUv51avarPsq

 capture rename PLUv51avar2 PLUv51avarQsq

 capture rename PLUv52avar1 PLUv52avarPabs

 capture rename PLUv52avar2 PLUv52avarQabs



 capture rename PLUv51bvar1 PLUv51bvarPsq

 capture rename PLUv51bvar2 PLUv51bvarQsq

 capture rename PLUv52bvar1 PLUv52bvarPabs

 capture rename PLUv52bvar2 PLUv52bvarQabs



 drop PLUvKD∗

 save ”${CLOUDPATH}v38/Temp data/PLUKernel ‘ b in s e t t i ng ’ . dta” , r ep l a c e

 }



 ∗∗∗∗

 ∗ Merge PLUs with datase t

 ∗∗∗∗



 use ”${CLOUDPATH}v38/Temp data/ F ina lda ta s e t . dta” , c l e a r

 dup l i c a t e s l i s t SalePurchase s e l e c t Date Hour

 dup l i c a t e s drop SalePurchase s e l e c t Date Hour , f o r c e

 fo r each b i n s e t t i n g in ”a” ”b”{

 /∗ here add other v e r s i on s ∗/

 merge 1 :1 SalePurchase s e l e c t Date Hour us ing ”${CLOUDPATH}v38/Temp data/PLUKernel ‘
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b in s e t t i ng ’ . dta” , nogenerate

 }



 ∗ save

 save ”${CLOUDPATH}v38/Temp data/ Int1 . dta” , r ep l a c e





 ∗∗∗∗

 ∗ t ranspose unce r ta in ty o f k po in t s .

 ∗∗∗∗



 use ”${CLOUDPATH}v38/Temp data/ Int1 . dta” , c l e a r

 keep Date SalePurchase s e l e c t Hour Datestata PLU∗

 reshape wide PLU∗ , i ( SalePurchase Datestata Hour ) j ( s e l e c t )

 order a l l , s e qu en t i a l

 g so r t Datestata Hour SalePurchase

 dup l i c a t e s l i s t Date Hour SalePurchase

 dup l i c a t e s drop Date Hour SalePurchase , f o r c e

 save ”${CLOUDPATH}v38/Temp data/ Int2 . dta” , r ep l a c e



 use ”${CLOUDPATH}v38/Temp data/ Int1 . dta” , c l e a r

 merge m:1 Date Hour SalePurchase us ing ”${CLOUDPATH}v38/Temp data/ Int2 . dta” ,

nogenerate



 ∗ drop constant p l u r

 drop PLUvRvarS1 PLUvRvarS3 PLUvRvarS5 PLUvRvarS7 PLUvRvarS9 PLUvRvarSsq1

PLUvRvarSsq3 PLUvRvarSsq5 PLUvRvarSsq7 PLUvRvarSsq9 PLUvRvarT1 PLUvRvarT3

PLUvRvarT5 PLUvRvarT7 PLUvRvarT9 PLUvRvarTsq1 PLUvRvarTsq3 PLUvRvarTsq5

PLUvRvarTsq7 PLUvRvarTsq9 PLUvRvarW1 PLUvRvarW3 PLUvRvarW5 PLUvRvarW7

PLUvRvarW9 PLUvRvarWsq1 PLUvRvarWsq3 PLUvRvarWsq5 PLUvRvarWsq7 PLUvRvarWsq9



 g so r t Datestata Hour SalePurchase s e l e c t

 order Date Datestata Hour SalePurchase s e l e c t , f i r s t

 order PLU∗ Poin ∗ , l a s t

 save ”${CLOUDPATH}v38/Temp data/ Int3 . dta” , r ep l a c e







 ∗∗∗

 ∗ t ab l e o f Points in bin and PLU and PDU

 ∗∗∗

 f o r v a l u e s k = 5/5{

 fo r each versionD in ”51a” ”51b”{

 fo r each ver s ionS in ””{

 fo r each switch in /∗”abs”∗/ ” sq”{





 capture mat drop M‘ versionD ’

 l o c a l v a r i a b l e s ”PLUv‘ versionD ’ varP ‘ switch ’ ‘ k ’ PLUv‘ versionD ’ varQ ‘

switch ’ ‘ k ’ PointsInBinv ‘ versionD ’ ”

 l o c a l FUNC ” r (mean) r ( p50 ) r ( sd ) r (min ) r (max) ”

 l o c a l i=0

 fo r each var o f l o c a l v a r i a b l e s {

 l o c a l i= ‘ i ’+1

 }

 l o c a l j=0

 fo r each var o f l o c a l FUNC{

 l o c a l j=‘ j ’+1

 }

 di ‘ j ’ ” ” ‘ i ’
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 mat M‘ versionD ’ = J ( ‘ i ’ , 5 , . )



 l o c a l c=1

 fo r each FF of l o c a l FUNC{

 l o c a l r=1

 fo r each VV of l o c a l v a r i a b l e s {

 su ‘VV’ , d e t a i l

 mat M‘ versionD ’ [ ‘ r ’ , ‘ c ’ ]= ‘FF ’

 l o c a l r=‘ r ’+1

 }

 l o c a l c=‘ c ’+1

 }

 mat rownames M‘ versionD ’ = ‘ v a r i a b l e s ’

 mat colnames M‘ versionD ’ = Mean Median StdDev Min Max

 mat l i M‘ versionD ’

 }

 }

 }

 capture mat drop Mtogether

 mat Mtogether = J ( 6 , 5 , . )

 mat Mtogether = M51a \ M51b

 mat l i Mtogether



 ∗ Summary S t a t i s t i c s o f PLUs and PDUs:

 btout tab l e us ing ”${LATEXPATH}suPDUPLU” , r ep l a c e mat(Mtogether ) l a b e l a s i s nobox

format (%9.1 f c %9.0 f c %9.0 f c %9.0 f c %9.0 f c ) f oo tnote ( Prox ies based on multi−

va r i a t e k e rn e l s ) l ong tab l e capt ion (Summary s t a t i s t i c s o f ke rne l based PLU$ˆD$

f o r k=‘k ’ )

 }





 ∗∗∗∗∗∗∗∗∗∗

 ∗ a l l v a r i a b l e s o f i n t e r e s t in purchase obs .

 ∗∗∗∗∗∗∗∗∗∗



 drop i f SalePurchase==” S e l l ”
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 ∗ OLD CODE

 /∗



 ∗∗∗

 ∗ s c a l e f a c t o r to ad jus t fx to s l ope

 ∗∗∗

 /∗ capture drop group

 egen group= group ( Date s ta ta f rac )

 g so r t group Datestata Hour SalePurchase s e l e c t

 capture drop slopeDpost s lopeDpre slopeDatk f x s c a l e f a c t o r

 gen slopeDpost =.

 gen slopeDpre =.

 gen slopeDatk =.

 gen f x s c a l e f a c t o r =.



 f o r v a l u e s k= 1(2) 9{

 ∗note in p−q dimension !

 by group : r ep l a c e s lopeDpost = (Volume [ n+1] − Volume [ n ] ) /( Pr i ce [ n+1]− Pr ice [ n ] ) i f s e l e c t==‘k ’



 by group : r ep l a c e s lopeDpre = (Volume [ n ] − Volume [ n−1]) /( Pr i ce [ n ]− Pr ice [ n−1]) i f s e l e c t

==‘k ’

 by group : r ep l a c e slopeDatk = abs ( s lopeDpost [ n ]+ slopeDpre [ n ] ) /2 i f s e l e c t==‘k ’



 capture drop tmp1 tmp2

 egen tmp1 = mean( slopeDatk ) i f s e l e c t==‘k ’

 egen tmp2 = mean( fx ) i f s e l e c t==‘k ’

 r ep l a c e f x s c a l e f a c t o r = tmp1 / tmp2 i f s e l e c t==‘k ’

 drop tmp1 tmp2

 }

 capture drop f x s c a l e d

 gen f x s c a l e d = fx ∗ f x s c a l e f a c t o r





 ∗ s c a l e f a c t o r to ad jus t fx to s l ope

 capture drop group

 egen group= group ( Date s ta ta f rac )

 g so r t group Datestata Hour SalePurchase s e l e c t

 capture drop slopeDpostQP slopeDpreQP slopeDatkQP fxsca l e f ac to rQP

 gen slopeDpostQP =.

 gen slopeDpreQP =.

 gen slopeDatkQP =.

 gen fx sca l e f ac to rQP =.
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 gen fxQP = (1/ fx )



 f o r v a l u e s k= 1(2) 9{

 ∗note in q−p dimension !

 by group : r ep l a c e slopeDpostQP = ( Pr ice [ n+1]− Pr ice [ n ] ) /(Volume [ n+1] − Volume [ n ] ) i f

s e l e c t==‘k ’

 by group : r ep l a c e slopeDpreQP = ( Pr ice [ n ]− Pr ice [ n−1]) /(Volume [ n ] − Volume [ n−1]) i f

s e l e c t==‘k ’

 by group : r ep l a c e slopeDatkQP = abs ( slopeDpostQP [ n ]+ slopeDpreQP [ n ] ) /2 i f s e l e c t==‘k ’

 capture drop tmp1 tmp2

 egen tmp1 = mean( slopeDatkQP ) i f s e l e c t==‘k ’

 egen tmp2 = mean( fxQP) i f s e l e c t==‘k ’

 r ep l a c e fx sca l e f ac to rQP = tmp1 / tmp2 i f s e l e c t==‘k ’

 drop tmp1 tmp2

 }

 capture drop fxscaledQP

 gen fxscaledQP = fxQP ∗ f x s ca l e f ac to rQP

 gen comparisonfx = 1/ f x s c a l e d

 ∗ SCALING ONLY APPROPRIATE FOR K=5, otherwi se too much mixing f l a t and v e r t i c a l s e c t i on .

 ∗/







 /∗

 ∗∗∗∗∗∗∗

 ∗ r e s c a l e v a r i a b l e s

 ∗∗∗∗∗∗∗

 fo r each versionD in ”D” ”51a” ”51b”{

 fo r each switch in ”” ”abs ”{

 fo r each switch2 in ”var ” ” r t ”{

 fo r each dim in ”P” {

 f o r v a l u e s k = 3(2) 7{

 capture n o i s i l y su PLUv‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’ , d e t a i l

 capture n o i s i l y s c a l a r meanPLUv ‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’ = r (mean

)

 capture n o i s i l y d i meanPLUv ‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’

 capture n o i s i l y gen PLUv‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’ r e s c = PLUv‘

versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’ / meanPLUv ‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘

switch ’ ‘ k ’

 }

 }

 }

 }

 }



 fo r each versionD in ”D” ”52a” ”52b”{

 fo r each switch in ”” ”abs ”{

 fo r each switch2 in ”var ” ” r t ”{

 fo r each dim in ”P” {

 f o r v a l u e s k = 1(8) 9{

 capture n o i s i l y su PLUv‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’ , d e t a i l

 capture n o i s i l y s c a l a r meanPLUv ‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’ = r (mean

)

 capture n o i s i l y d i meanPLUv ‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’

 capture n o i s i l y gen PLUv‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’ r e s c = PLUv‘

versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’

 }

 }

 }

 }
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 }



 fo r each versionD in ”D” ”52a” ”52b”{

 fo r each switch in ”” ”abs ”{

 fo r each switch2 in ”var ” ” r t ”{

 fo r each dim in ”Q” {

 f o r v a l u e s k = 1(2) 9{

 capture n o i s i l y su PLUv‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’ , d e t a i l

 capture n o i s i l y s c a l a r meanPLUv ‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’ = r (mean

)

 capture n o i s i l y d i meanPLUv ‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’

 capture n o i s i l y gen PLUv‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’ r e s c = PLUv‘

versionD ’ ‘ switch2 ’ ‘ dim ’ ‘ switch ’ ‘ k ’ / meanPLUv ‘ versionD ’ ‘ switch2 ’ ‘ dim ’ ‘

switch ’ ‘ k ’

 }

 }

 }

 }

 }



 order Date Datestata Hour SalePurchase s e l e c t , f i r s t

 order PLU∗ Poin ∗ , l a s t

 ∗/
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Next is the script named 107_BootstrapKernel2702.do and called in the general file.

 ∗∗ ke rne l based PLU







 ∗ Notes :

 ∗ − 51a . = sq r e s + 8 bins .

 ∗ − 51b . = sq r e s + 9 bins .

 ∗ − 52a . = absre s + 8 bins .

 ∗ − 52b . = absre s + 9 bins .





 g l oba l d o f i l e d i r e c t o r y o r i g= Path to d i r e c t o r y conta in ing do f i l e s

 g l oba l LATEXPATH = Path to d i r e c t o r y conta in ing l a t ex f o r a r t i c l e

 g l oba l CLOUDPATH = Path to d i r e c t o r y conta in ing data



 g l oba l focusk = 5

 keep i f s e l e c t== ${ f ocusk }

 g l oba l VVV = 51

 g l oba l APP = ”sq”

 ∗ g l oba l VVV = 52

 ∗ g l oba l APP = ”abs”



 ∗ drop obse rva t i on s that w i l l not be used f o r f i n a l reg anyway . ( dropped 2989 obs ) = l a s t 6

months approx .

 drop i f PLUvRvarW==.

 drop i f Wind1DA==.











 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ( Col . 3)

 ∗ f o r comparison , without bootst rap but weighted :

 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗



 use ”${CLOUDPATH}v38/Temp data/ Fina l rundatase t . dta” , c l e a r

 l o c a l b i n s e t t i n g ”a”

 l o c a l k = ${ f ocusk }

 l o c a l VVV = ${VVV}

 l o c a l APP = ”${APP}”

 keep i f s e l e c t== ‘k ’



 ∗gen r e s c a l e d PLU

 capture drop PLU P boot PLU P resc PLU Q boot PLU Q resc

 gen PLU P boot = PLUv ‘VVV’ ‘ b i n s e t t i n g ’ varP ‘APP’

 su PLU P boot , meanonly

 s c a l a r tmpP = r (mean)

 gen PLU P resc = PLU P boot / tmpP

 gen PLU Q boot = PLUv ‘VVV’ ‘ b i n s e t t i n g ’ varQ ‘APP’

 su PLU Q boot , meanonly

 s c a l a r tmpQ = r (mean)

 gen PLU Q resc = PLU Q boot / tmpQ



 i f ‘ k ’==1 | ‘ k ’==9 {

 l o c a l k = ${ f ocusk }

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq
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PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA Wind1DA Hydro /∗

PLU P resc∗/ PLU Q resc i f s e l e c t ==‘k ’ & SalePurchase==”

Purchase ” , robust

 e s t s t o r e k e rn e l 3 ‘ k ’

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq

PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA Wind1DA Hydro /∗

PLU P resc∗/ PLU Q resc i f s e l e c t ==‘k ’ & SalePurchase==”

Purchase ” [ aweight=PointsInBinv51 ‘ b i n s e t t i n g ’ ]

 e s t s t o r e k e rn e l 4 ‘ k ’

 e s t save ”${CLOUDPATH}v38/Temp data/ kerne lwe igthed ‘ k ’ . s t e r ” ,

r ep l a c e

 }

 e l s e {

 l o c a l k = ${ f ocusk }

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq

PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA Wind1DA Hydro

PLU P resc PLU Q resc i f s e l e c t ==‘k ’ & SalePurchase==”

Purchase ” , robust

 e s t s t o r e k e rn e l 3 ‘ k ’

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq

PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA Wind1DA Hydro

PLU P resc PLU Q resc i f s e l e c t ==‘k ’ & SalePurchase==”

Purchase ” [ aweight=PointsInBinv51 ‘ b i n s e t t i n g ’ ]

 e s t s t o r e k e rn e l 4 ‘ k ’

 e s t save ”${CLOUDPATH}v38/Temp data/ kerne lwe igthed ‘ k ’ . s t e r ” ,

r ep l a c e

 }





 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ NOW SAME BUT DROPPING 1 PLUvD (COL. 3 )



 use ”${CLOUDPATH}v38/Temp data/ Fina l rundatase t . dta” , c l e a r

 l o c a l b i n s e t t i n g ”a”

 l o c a l k = ${ f ocusk }

 l o c a l VVV = ${VVV}

 l o c a l APP = ”${APP}”

 keep i f s e l e c t== ‘k ’



 ∗gen r e s c a l e d PLU

 capture drop PLU P boot PLU P resc PLU Q boot PLU Q resc

 gen PLU P boot = PLUv ‘VVV’ ‘ b i n s e t t i n g ’ varP ‘APP’

 su PLU P boot , meanonly

 s c a l a r tmpP = r (mean)

 gen PLU P resc = PLU P boot / tmpP

 gen PLU Q boot = PLUv ‘VVV’ ‘ b i n s e t t i n g ’ varQ ‘APP’

 su PLU Q boot , meanonly

 s c a l a r tmpQ = r (mean)

 gen PLU Q resc = PLU Q boot / tmpQ



 i f ‘ k ’==1 | ‘ k ’==9 {

 l o c a l k = ${ f ocusk }

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq

PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA Wind1DA Hydro /∗

PLU P resc∗/ PLU Q resc i f s e l e c t ==‘k ’ & SalePurchase==”

Purchase ” , robust

 e s t s t o r e k e rn e l 3 ‘ k ’

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq

PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA Wind1DA Hydro /∗

PLU P resc∗/ PLU Q resc i f s e l e c t ==‘k ’ & SalePurchase==”

Purchase ” [ aweight=PointsInBinv51 ‘ b i n s e t t i n g ’ ]
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 e s t s t o r e k e rn e l 4 ‘ k ’

 e s t save ”${CLOUDPATH}v38/Temp data/kernelweigDROP P ‘ k ’ . s t e r ” ,

r ep l a c e

 }

 e l s e {

 l o c a l k = ${ f ocusk }

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq

PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA Wind1DA Hydro /∗

PLU P resc∗/ PLU Q resc i f s e l e c t ==‘k ’ & SalePurchase==”

Purchase ” , robust

 e s t s t o r e k e rn e l 3 ‘ k ’

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq

PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA Wind1DA Hydro /∗

PLU P resc∗/ PLU Q resc i f s e l e c t ==‘k ’ & SalePurchase==”

Purchase ” [ aweight=PointsInBinv51 ‘ b i n s e t t i n g ’ ]

 e s t s t o r e k e rn e l 4 ‘ k ’

 e s t save ”${CLOUDPATH}v38/Temp data/kernelweigDROP P ‘ k ’ . s t e r ” ,

r ep l a c e

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq

PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA Wind1DA Hydro

PLU P resc /∗PLU Q resc∗/ i f s e l e c t ==‘k ’ & SalePurchase==

”Purchase” , robust

 e s t s t o r e k e rn e l 3 ‘ k ’

 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq

PLUvRvarS PLUvRvarSsq Coal Brent Gas IT2 EUA Wind1DA Hydro

PLU P resc /∗PLU Q resc∗/ i f s e l e c t ==‘k ’ & SalePurchase==”

Purchase ” [ aweight=PointsInBinv51 ‘ b i n s e t t i n g ’ ]

 e s t s t o r e k e rn e l 4 ‘ k ’

 e s t save ”${CLOUDPATH}v38/Temp data/kernelweigDROP Q ‘ k ’ . s t e r ” ,

r ep l a c e

 }



































 ∗∗∗∗∗∗∗∗∗∗∗∗

 ∗ f o r boots t rapp ing o f ke rne l based PLUvD



 ∗∗∗∗∗ bootst rap o f ke rne l based equat ion 4 f o r e c a s t s

 ∗∗∗∗∗∗∗∗∗∗∗∗



 use ”${CLOUDPATH}v38/Temp data/ Fina l rundatase t . dta” , c l e a r

 g l oba l focusk = 5

 keep i f s e l e c t== ${ f ocusk }

 ∗ drop obse rva t i on s with miss ing va lues ( dropped 2989 obs ) = l a s t 6 months approx .

 drop i f PLUvRvarW==.

 drop i f Wind1DA==.
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 capture drop PLU P boot

 capture drop PLU P resc

 capture drop PLU Q boot

 capture drop PLU Q resc







 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ START PROG

 capture program drop my2s l s f o rbootke rne l

 program my2s l s f o rbootke rne l



 ∗ ve r s i on

 l o c a l b i n s e t t i n g ”a”

 l o c a l k = ${ f ocusk }

 g l oba l runversionD ‘ b i n s e t t i n g ’

 g l oba l demandest imat ionvar iab les ‘ b i n s e t t i n g ’ ”Tempeff15 Roll Temp24 Roll Temp240

suncyc l e morning de l tasun EWH SolarRest RteBlackBox ”



 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗



 ∗ Def ine macros

 l o c a l s e n s i t i v i t y 0

 l o c a l endofdata = N

 l o c a l REP1 SolarRest

 l o c a l Numbin ‘REP1 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP2 de l tasun

 l o c a l Numbin ‘REP2 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP3 Tempeff15

 l o c a l Numbin ‘REP3 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP4 Roll Temp24

 l o c a l Numbin ‘REP4 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP5 Roll Temp240

 l o c a l Numbin ‘REP5 ’ 1∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP6 suncyc l e

 l o c a l Numbin ‘REP6 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP7 morning

 l o c a l Numbin ‘REP7 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP8 EWH

 l o c a l Numbin ‘REP8 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 l o c a l REP9 RteBlackBox

 l o c a l Numbin ‘REP9 ’ 6∗(1− ‘ s e n s i t i v i t y ’ )

 g l oba l v a r i ab l e s u s edk e rn e l ”${demandest imat ionvar iables ‘ b in s e t t i ng ’} ”





 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ s tage 1 −> bucket s p e c f i c reg . 1

 l o c a l endofdata = N

 qu i e t l y {

 g so r t SalePurchase s e l e c t Datestata Hour



 ∗ gen va r i a b l e s to f i l l

 fo r each m in Pr ice Volume{

 capture drop Kabsres ‘m’

 capture drop Ksqres ‘m’

 capture drop PLUvKDvarabsres ‘m’

 capture drop PLUvKDvarsqres ‘m’

 capture drop Ksamples izeabsres ‘m’

 capture drop Ksamples i zesqres ‘m’

 gen Kabsres ‘m’=0

 gen Ksqres ‘m’=0
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 gen PLUvKDvarabsres ‘m’=0

 gen PLUvKDvarsqres ‘m’=0

 gen Ksamples izeabsres ‘m’=0

 gen Ksamples i zesqres ‘m’=0





 f o r v a l u e s obs= 1/ ‘ endofdata ’{

 ∗ su Tempeff i f n==‘ obs ’ /∗ c ro s s check ∗/

 ∗ su s e l e c t i f n==‘ obs ’ /∗ c ro s s check ∗/

 l o c a l CompPoint = s e l e c t [ ‘ obs ’ ]

 l o c a l CompFunc = ”SalePurchase [ ‘ obs ’ ] ”

 ∗ di ‘CompFunc ’ /∗ c ro s s check ∗/



 fo r each c on t r o l f a c t o r in $va r i ab l e su s edke rn e l {

 ∗ f i nd b incent r e per c o n t r o l f a c t o r f o r g iven obse rvat ion

 l o c a l B incent re ‘ c o n t r o l f a c t o r ’ = ‘ c o n t r o l f a c t o r ’ [ ‘ obs ’ ]

 ∗ f i nd binwidth per con t r o l f a c t o r

 su ‘ c o n t r o l f a c t o r ’ , meanonly

 l o c a l topendrange ‘ c o n t r o l f a c t o r ’ = r (max)

 l o c a l lowendrange ‘ c o n t r o l f a c t o r ’ = r (min )

 l o c a l binwidth ‘ c o n t r o l f a c t o r ’ = ( r (max) − r (min ) ) / ‘=‘Numbin ‘

c o n t r o l f a c t o r ’ ’ ’



 di ”−−−−−−−−−−−−−−−− ‘ c on t r o l f a c t o r ’ ”

 di ‘=‘Numbin ‘ c o n t r o l f a c t o r ’ ’ ’

 di ”Max : ” ‘ topendrange ‘ c o n t r o l f a c t o r ’ ’

 di ”Min : ” ‘ lowendrange ‘ c o n t r o l f a c t o r ’ ’

 di ”Binwidth : ” ‘ binwidth ‘ c o n t r o l f a c t o r ’ ’

 di ”Bincentre from current obs : ” ‘ B incent re ‘ c o n t r o l f a c t o r ’ ’

 }



 capture reg ‘m’ ${demandest imat ionvar iab les ‘ v e r s i on ’} ///

 i f s e l e c t == ‘CompPoint ’ & SalePurchase== ‘CompFunc ’ ///

 & ‘REP1 ’<= ‘=‘ Bincent re ‘REP1 ’ ’+ ‘ binwidth ‘REP1 ’ ’ ’ & ‘REP1 ’>=‘=‘ Bincent re ‘

REP1 ’ ’− ‘ binwidth ‘REP1 ’ ’ ’ ///

 & ‘REP2 ’<= ‘=‘ Bincent re ‘REP2 ’ ’+ ‘ binwidth ‘REP2 ’ ’ ’ & ‘REP2 ’>=‘=‘ Bincent re ‘

REP2 ’ ’− ‘ binwidth ‘REP2 ’ ’ ’ ///

 & ‘REP3 ’<= ‘=‘ Bincent re ‘REP3 ’ ’+ ‘ binwidth ‘REP3 ’ ’ ’ & ‘REP3 ’>=‘=‘ Bincent re ‘

REP3 ’ ’− ‘ binwidth ‘REP3 ’ ’ ’ ///

 & ‘REP4 ’<= ‘=‘ Bincent re ‘REP4 ’ ’+ ‘ binwidth ‘REP4 ’ ’ ’ & ‘REP4 ’>=‘=‘ Bincent re ‘

REP4 ’ ’− ‘ binwidth ‘REP4 ’ ’ ’ ///

 & ‘REP5 ’<= ‘=‘ Bincent re ‘REP5 ’ ’+ ‘ binwidth ‘REP5 ’ ’ ’ & ‘REP5 ’>=‘=‘ Bincent re ‘

REP5 ’ ’− ‘ binwidth ‘REP5 ’ ’ ’ ///

 & ‘REP6 ’<= ‘=‘ Bincent re ‘REP6 ’ ’+ ‘ binwidth ‘REP6 ’ ’ ’ & ‘REP6 ’>=‘=‘ Bincent re ‘

REP6 ’ ’− ‘ binwidth ‘REP6 ’ ’ ’ ///

 & ‘REP7 ’<= ‘=‘ Bincent re ‘REP7 ’ ’+ ‘ binwidth ‘REP7 ’ ’ ’ & ‘REP7 ’>=‘=‘ Bincent re ‘

REP7 ’ ’− ‘ binwidth ‘REP7 ’ ’ ’ ///

 & ‘REP8 ’<= ‘=‘ Bincent re ‘REP8 ’ ’+ ‘ binwidth ‘REP8 ’ ’ ’ & ‘REP8 ’>=‘=‘ Bincent re ‘

REP8 ’ ’− ‘ binwidth ‘REP8 ’ ’ ’ ///

 & ‘REP9 ’<= ‘=‘ Bincent re ‘REP9 ’ ’+ ‘ binwidth ‘REP9 ’ ’ ’ & ‘REP9 ’>=‘=‘ Bincent re ‘

REP9 ’ ’− ‘ binwidth ‘REP9 ’ ’ ’ ///

 , robust



 ∗ pr ed i c t r e s i d u a l s l o c a l l y

 p r ed i c t tmp ‘m’ i f e ( sample ) , r e s i d u a l s



 ∗ gen dev i a t i on s o f r e s i d u a l s

 r ep l a c e Kabsres ‘m’ = abs (tmp) i f n==‘ obs ’

 r ep l a c e Ksqres ‘m’ = tmp∗tmp i f n==‘ obs ’ /∗ c on s i s t e n t with white ∗/

 capture drop tmp ‘m’

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0.0

0.5

1.0

1.5

2.0

2.5

140 150 160
0

10

265



Code Annex





 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ s tage 2 −> bucket s p e c f i c reg . 2 (

h e t e r o s k e d a s t i c i t y )

 fo r each g in /∗” abs re s ”∗/ ” sq r e s ”{

 capture reg K‘ g ’ ‘m’ ${demandest imat ionvar iab les ‘ v e r s i on ’} ///

 i f s e l e c t == ‘CompPoint ’ & SalePurchase== ‘CompFunc ’ ///

 & ‘REP1 ’<= ‘=‘ Bincent re ‘REP1 ’ ’+ ‘ binwidth ‘REP1 ’ ’ ’ & ‘REP1 ’>=‘=‘ Bincent re ‘

REP1 ’ ’− ‘ binwidth ‘REP1 ’ ’ ’ ///

 & ‘REP2 ’<= ‘=‘ Bincent re ‘REP2 ’ ’+ ‘ binwidth ‘REP2 ’ ’ ’ & ‘REP2 ’>=‘=‘ Bincent re ‘

REP2 ’ ’− ‘ binwidth ‘REP2 ’ ’ ’ ///

 & ‘REP3 ’<= ‘=‘ Bincent re ‘REP3 ’ ’+ ‘ binwidth ‘REP3 ’ ’ ’ & ‘REP3 ’>=‘=‘ Bincent re ‘

REP3 ’ ’− ‘ binwidth ‘REP3 ’ ’ ’ ///

 & ‘REP4 ’<= ‘=‘ Bincent re ‘REP4 ’ ’+ ‘ binwidth ‘REP4 ’ ’ ’ & ‘REP4 ’>=‘=‘ Bincent re ‘

REP4 ’ ’− ‘ binwidth ‘REP4 ’ ’ ’ ///

 & ‘REP5 ’<= ‘=‘ Bincent re ‘REP5 ’ ’+ ‘ binwidth ‘REP5 ’ ’ ’ & ‘REP5 ’>=‘=‘ Bincent re ‘

REP5 ’ ’− ‘ binwidth ‘REP5 ’ ’ ’ ///

 & ‘REP6 ’<= ‘=‘ Bincent re ‘REP6 ’ ’+ ‘ binwidth ‘REP6 ’ ’ ’ & ‘REP6 ’>=‘=‘ Bincent re ‘

REP6 ’ ’− ‘ binwidth ‘REP6 ’ ’ ’ ///

 & ‘REP7 ’<= ‘=‘ Bincent re ‘REP7 ’ ’+ ‘ binwidth ‘REP7 ’ ’ ’ & ‘REP7 ’>=‘=‘ Bincent re ‘

REP7 ’ ’− ‘ binwidth ‘REP7 ’ ’ ’ ///

 & ‘REP8 ’<= ‘=‘ Bincent re ‘REP8 ’ ’+ ‘ binwidth ‘REP8 ’ ’ ’ & ‘REP8 ’>=‘=‘ Bincent re ‘

REP8 ’ ’− ‘ binwidth ‘REP8 ’ ’ ’ ///

 & ‘REP9 ’<= ‘=‘ Bincent re ‘REP9 ’ ’+ ‘ binwidth ‘REP9 ’ ’ ’ & ‘REP9 ’>=‘=‘ Bincent re ‘

REP9 ’ ’− ‘ binwidth ‘REP9 ’ ’ ’ ///

 , robust

 p r ed i c t PLUvKDtmp ‘ g ’ ‘m’ i f n==‘ obs ’ , xb

 s c a l a r s izetmp = e (N)

 r ep l a c e Ksamplesize ‘ g ’ ‘m’ = sizetmp i f n==‘ obs ’

 r ep l a c e PLUvKDvar ‘ g ’ ‘m’ = PLUvKDtmp ‘ g ’ ‘m’ i f n==‘ obs ’

 capture drop PLUvKDtmp ‘ g ’ ‘m’

 }



 di ‘ obs ’

 } /∗ c l o s e obse rva t i on s loop ∗/

 } /∗ c l o s e s qu i e t l y ∗/

 } /∗ c l o s e ‘m’ ∗/



 ∗ gen va r i a b l e s to f i l l

 capture drop PLUv51 ‘ b i n s e t t i n g ’ var1

 capture drop PLUv51 ‘ b i n s e t t i n g ’ var2

 capture drop PLUv52 ‘ b i n s e t t i n g ’ var1

 capture drop PLUv52 ‘ b i n s e t t i n g ’ var2

 capture drop PointsInBinv51 ‘ b i n s e t t i n g ’

 capture drop PointsInBinv52 ‘ b i n s e t t i n g ’

 gen PLUv51 ‘ b i n s e t t i n g ’ var1 =.

 gen PLUv51 ‘ b i n s e t t i n g ’ var2 =.

 gen PLUv52 ‘ b i n s e t t i n g ’ var1 =.

 gen PLUv52 ‘ b i n s e t t i n g ’ var2 =.

 gen PointsInBinv51 ‘ b i n s e t t i n g ’ =.

 gen PointsInBinv52 ‘ b i n s e t t i n g ’ =.

 ∗ generate PLUs

 r ep l a c e PLUv51 ‘ b i n s e t t i n g ’ var1 = PLUvKDvarsqresPrice

 r ep l a c e PLUv51 ‘ b i n s e t t i n g ’ var2 = PLUvKDvarsqresVolume

 ∗ r ep l a c e PLUv52 ‘ b i n s e t t i n g ’ var1 = PLUvKDvarabsresPrice

 ∗ r ep l a c e PLUv52 ‘ b i n s e t t i n g ’ var2 = PLUvKDvarabsresVolume

 r ep l a c e PointsInBinv51 ‘ b i n s e t t i n g ’ = KsamplesizesqresVolume

 ∗ r ep l a c e PointsInBinv52 ‘ b i n s e t t i n g ’ = KsamplesizeabsresVolume

 drop Ksamplesize ∗
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 gen PLU P boot = PLUv51 ‘ b i n s e t t i n g ’ var1

 su PLU P boot , meanonly

 s c a l a r tmpP = r (mean)

 gen PLU P resc = PLU P boot / tmpP

 gen PLU Q boot = PLUv51 ‘ b i n s e t t i n g ’ var2

 su PLU Q boot , meanonly

 s c a l a r tmpQ = r (mean)

 gen PLU Q resc = PLU Q boot / tmpQ





 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ s tage 3 −> f i n a l reg





 reg fxInvertQP PLUvRvarT PLUvRvarTsq PLUvRvarW PLUvRvarWsq PLUvRvarS PLUvRvarSsq

Coal Brent Gas IT2 EUA Wind1DA Hydro PLU P resc PLU Q resc i f s e l e c t ==‘k ’

& SalePurchase==”Purchase ” [ aweight=PointsInBinv51 ‘ b i n s e t t i n g ’ ]



 drop PLU P boot PLU P resc PLU Q boot PLU Q resc

 drop PointsInBinv51 ‘ b i n s e t t i n g ’



 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ END PROG

 end





 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Run once and save datase t ( not i n s i d e program )

 ∗ run prog

 my2s l s f o rbootke rne l



 l o c a l k= ${ f ocusk }

 save ”${CLOUDPATH}v38/Temp data/Finaldataset withKERNELpluDa ‘ k ’ . dta” , r ep l a c e



 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Bootstrap ( approx . 15h f o r 50 reps )



 bootst rap b , reps (50) seed (12345) : my2s l s f o rbootke rne l



 e s t save ”${CLOUDPATH}v38/Temp data/ kerne lboot s t rap ‘ k ’ . s t e r ” , r ep l a c e
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 ∗OLD CODE:

 /∗ ∗ gen va r i a b l e s to f i l l

 capture drop PLUv51 ‘ b in s e t t i ng ’ var1

 capture drop PLUv51 ‘ b in s e t t i ng ’ var2

 capture drop PLUv52 ‘ b in s e t t i ng ’ var1

 capture drop PLUv52 ‘ b in s e t t i ng ’ var2

 capture drop PointsInBinv51 ‘ b in s e t t i ng ’

 capture drop PointsInBinv52 ‘ b in s e t t i ng ’

 gen PLUv51 ‘ b in s e t t i ng ’ var1 =.

 gen PLUv51 ‘ b in s e t t i ng ’ var2 =.

 gen PLUv52 ‘ b in s e t t i ng ’ var1 =.

 gen PLUv52 ‘ b in s e t t i ng ’ var2 =.

 gen PointsInBinv51 ‘ b in s e t t i ng ’ =.

 gen PointsInBinv52 ‘ b in s e t t i ng ’ =.

 ∗ generate PLUs

 capture {

 r ep l a c e PLUv51 ‘ b in s e t t i ng ’ var1 = PLUvKDvarsqresPrice

 r ep l a c e PLUv51 ‘ b in s e t t i ng ’ var2 = PLUvKDvarsqresVolume

 r ep l a c e PLUv52 ‘ b in s e t t i ng ’ var1 = PLUvKDvarabsresPrice

 r ep l a c e PLUv52 ‘ b in s e t t i ng ’ var2 = PLUvKDvarabsresVolume

 r ep l a c e PointsInBinv51 ‘ b in s e t t i ng ’ = KsamplesizesqresVolume

 r ep l a c e PointsInBinv52 ‘ b in s e t t i ng ’ = KsamplesizeabsresVolume

 drop Ksamplesize ∗

 }
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