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Abstract/Résumé

Abstract
The present report is submitted in partial fulfilment of the French habilitation degree (Habil-
itation à Diriger des Recherches). Covering the period 2011–2017, it gives an overview of a
selection of my research activities, conducted essentially at Laboratoire Navier1.

Most of my research has been devoted to understanding how the macroscopic properties of
random, heterogeneous materials relate to their microstructure. To investigate this question, I
used almost systematically a variational approach based on the Hashin–Shtrikman principle,
which results in a fairly consistent report. The reason for selecting such a tool lies in its high
versatility; indeed, any trial field is admissible. This is extremely valuable for highly hetero-
geneous materials, where it can be difficult to propose e.g. admissible stress or strain fields.

The Hashin–Shtrikman principle is applied here in two different situations: i. in a statisti-
cal (theoretical) setting, and ii. in a numerical setting relying on Galerkin discretizations. In
the former situation, the Hashin–Shtrikman principle leads to closed-form (or at least, semi-
analytical) bounds or estimates of the effective properties. In the latter situation, the Hashin–
Shtrikman principle allows to revisit a few existing full-field techniques. My contributions in
both areas are discussed in two separate chapters.

For the sake of consistency of the present document, some of my research activities (relating
to X-ray tomography and image analysis) have been purposely discarded. They are briefly
discussed in the last chapter as a part of my prospective research project.

Résumé
Le présentmémoire est soumis pour l’obtention du diplôme d’Habilitation àDiriger des Recherches.
Il couvre la période 2011–2017, et donne un aperçu de mes activités de recherches, conduites
pour l’essentiel au Laboratoire Navier1.

Mes recherches ont pour l’essentiel été consacrées à l’étude des relations entre microstruc-
ture et propriétés macroscopiques des matériaux hétérogènes aléatoires. Pour étudier ce prob-
lème, j’ai utilisé quasi-systématiquement une approche variationnelle basée sur le principe de
Hashin–Shtrikman. Cette méthodologie unifiée conduit à une certaine cohérence de ce mé-
moire. La raison pour laquelle j’ai très tôt choisi cet outil est son extrême souplesse. En effet,
tout champ test est admissible pour le principe de Hashin–Shtrikman. C’est un atout majeur
1Laboratoire Navier, UMR 8205, CNRS, ENPC, IFSTTAR, Université Paris-Est (Marne-la-Vallée, France)
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pour les matériaux fortement hétérogènes, pour lesquels il peut être difficile de construire des
champs statiquement ou cinématiquement admissibles.

Le principe de Hashin–Shtrikman est ici appliqué dans deux situations différentes : i. dans
un cadre statistique (théorique), et ii. dans un cadre numérique s’appuyant sur des discrétisa-
tions de type Galerkin. Dans la première situation, le principe de Hashin–Shtrikman conduit
à des bornes ou estimations analytiques ou au moins semi-analytiques des propriétés macro-
scopiques. Dans la deuxième situation, le principe de Hashin–Shtrikman permet de revisiter
un certain nombre de techniques dites en champ complet. Mes contributions dans ces deux
domaines sont discutées dans deux chapitres distincts.

Afin de garantir la cohérence du présent document, certains de mes travaux de recherche
ont volontairement été mis de côté. Il s’agit en particulier de mes travaux relatifs à l’imagerie
par tomographie aux rayons X et à l’analyse d’images. Ces thématiques de recherches sont
discutées brièvement dans le dernier chapitre de cette thèse, où elles sont réintégrées à mon
projet de recherche à venir.
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Vinh Phuc Tran Multiscale a priori probabilistic modelling of random heterogeneous mate-
rials3 (advisor: Prof. K. Sab; October 2013 – October 2016).

Yassine El Assami Modelling time-dependent behaviour of concrete with the equivalent in-
clusion method (advisor: Prof. L. Dormieux; February 2012 – May 2015)

Reviewing activities
I have been reviewing articles for the following journals: Applied Mathematics Research Ex-
press, Archive for Rational Mechanics and Analysis, Cement and Concrete Research, Com-
putational Materials Science, Géotechnique Letters, International Journal for Numerical and
3This work has benefited from a French government grant managed by ANR within the frame of the national

program Investments for the Future ANR-11-LABX-022-01.
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Analytical Methods in Geomechanics, International Journal for Numerical Methods in En-
gineering, International Journal of Solids and Structures, Journal of Computational Physics,
Journal of the Mechanics and Physics of Solids, Materials and Structures, Mechanics of Ma-
terials, Zeitschrift für Angewandte Mathematik und Mechanik.

I have also been reviewing project proposals for the following funding agencies: COFECUB
(French Comity for the Academic Cooperation with Brazil), NWO (Netherlands Organization
for Scientific Research).

Organization of seminars, conferences, and mini-symposia
Organizer of the monthly seminar of the Multiscale research team at Navier Laboratory:

http://navier.enpc.fr/Seminaire-d-equipe-Team-seminar

Co-organizer (with F. Willot) of the mini-symposium Stochastics and Material Mechanics
at the 14th European Mechanics of Materials Conference, Gothenburg, Sweden (August
27–29, 2014)

Co-organizer (with S. Meulenyzer) of the workshop on Imaging of Construction Materials
andGeomaterials at École des Ponts ParisTech,Marne la Vallée, France (July 7–8, 2016)

Co-organizer (with J. Yvonnet) of the mini-symposium Multiscale modeling of microstruc-
tures and their macroscopic properties at the 2016 EMI International conference, Metz,
France (October 25–27, 2016)

Member of the local organizing committee of the 6th Biot Conference on Poromechanics at
École des Ponts ParisTech, Marne la Vallée, France (July 9–13, 2017)

Member of the local organizing committee of the ECCOMAS thematic conference onCom-
putational Modeling of Complex Materials Across the Scales, Paris, France (November
7–9, 2017)

Participation to boards – Other services to the community
Elected member of Navier’s Laboratory Board

Elected member of the Teaching and Research Board at École des Ponts ParisTech

Strong involvement in a working group on pedagogy at École des Ponts

Maintainer of the doubs computing server:
http://navier.enpc.fr/Multi-scale-computing-resources
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Involvement in open or collaborative projects
I maintain a blog dealing with scientific computing, micromechanics and imaging:

http://sbrisard.github.io/.

I am the main developer of the Janus project (FFT-based numerical homogenization):
https://github.com/sbrisard/janus.

I have been involved (as committer) in the Apache Commons-Math open source project:
http://commons.apache.org/proper/commons-math/.
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Chapter 1
Introduction
The aim of this chapter is to give a brief overview of my professional and academic activities
since my graduation as a civil engineer in 2002. Although not academic per se, my first pro-
fessional experience as a bridge engineer had a decisive influence on my ensuing activities;
besides, it allowed me to acquire an extremely valuable practical experience which I still find
useful today. As such, it is presented in section 1.1. I then joined Laboratoire Navier, first
as a PhD student (see section 1.2), then as a research scientist (see section 1.3). I have been
fortunate enough to have the opportunity to teach at École des Ponts ParisTech immediatly
after my graduation. Teaching is truly a vocation for me, and my teaching activities are briefly
summarized in section 1.4. This chapter then closes with an outline of the remainder of this
document in section 1.5, as well as a review of my publications, and how they relate to the
different parts of the present report.

1.1 Bridge engineer at Sétra
I have been working at Sétra from 2003 to 2007. At that time, Sétra stood for “Service d’études
techniques des routes et autoroutes”1, and was providing technical support to the Ministry of
Transportation as well as local authorities in matters pertaining to the design, maintenance and
construction management of (large) bridges. I believe it was at that time somewhat comparable
in scope (although certainly not in size) to the US Federal Highway Administration (FHWA).
Sétra has since been merged into a larger entity, Cerema (“Centre d’études et d’expertise sur
les risques, l’environnement, la mobilité et l’aménagement”).

I acquired in this department a solid background in structural mechanics and bridge design.
In particular, I was in charge of the preliminary design as well as validation of the contractor’s
final design of a large two-girder composite bridge near Avignon (“viaduc de franchissement
aval de la Durance par la LEO” – Liaison Est-Ouest), see figure 1.1. This bridge had a wide,
curved deck. It was the first large bridge in France to be designed according to the then fairly
new “Eurocode 4” standard. This contributed a lot to strengthening my background in struc-
tural mechanics, in particular the post-critical behavior of steel plates.

I soon developed at Sétra a taste for methodological issues. For exemple, I developed an
automated procedure for the finite element calculation of the influence surface of a bridge
deck (see figure 1.2, left). Combining this calculation with a genetic algorithm to optimize
1Now: “Service d’études sur les transports, les routes et leurs aménagements”… how things change!
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Figure 1.1: The “viaduc de franchissement aval de la Durance par la LEO à Avignon” (credits N. Janberg and
Structurae).

the location of moving loads allowed me to produce charts for the design of standard two-
girder composite bridges (see figure 1.2, right). These charts were published in the Bulletin
Ouvrages d’Art (num. 54, march 2007)2. I have been recently informed by practising engineers
that these charts are still used today (which I find a bit distressing!). Having access to a larger
body of bibliographical resources, I later realized that the method I had proposed for computing
influence surfaces had already been published fifteen years earlier [MW91], thus learning at
my expense the importance of carrying out a thorough literature survey!

I also got involved in a research project on the fatigue of orthotropic bridges. Indeed, at
that time, two large lift bridges were being designed and constructed in France (in Rouen and
Bordeaux). In order to keep the overall weight of the deck to a minimum, the standard wearing
course was replaced with a thin wearing course. What was overlooked at that time was the fact
that a thick wearing course contributes significantly to the local bending stiffness of the bridge
deck. As a consequence of reducing the thickness of the wearing course, the deck became
extremely susceptible to fatigue.

I carried out a preliminary finite element study of this potential pathology. Then, I man-
aged in 2006 the proposal for an ANR research project (Génie Civil et Urbain (RGCU)) called
OrthoPlus, which was awarded a 576 k€ funding over 36 months. This project gathered both
academic (Céréma, ENTPE, Ifsttar, …) and industrial (Arcadis ESG, Eiffage, …) partners.
Unfortunately, I left Sétra before this project actually started.

1.2 PhD student at Laboratoire Navier
In 2006, my activities were increasingly theoretical, and I grew more and more isolated from
my other colleagues at Sétra. It was only too natural for me to try and go back to academia. I
should like to thank the late O. Coussy (then director of Institut Navier) and J.-C. Pauc (then
director of Sétra) for supporting this undertaking. Following O. Coussy’s advice, I registered
2http://www.setra.fr/html/boa/Data_Base_BOA/Collection_Numeros/boa_54.pdf, last retrieved

2017-06-07
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8

Figure 1.2: Finite element computation of the influence surface of the hogging moment of a two-girder composite
bridge (left). Chart of this bending moment, for a class I traffic, as defined by Eurocode 1 (right).

for the Master of Science Materials Science for Sustainable Construction at École des Ponts
ParisTech.

I conducted my research project under the supervision of Prof. P.J.M. Monteiro3. The aim
was to use X-ray laminography (a 3D imaging device meant to be portable) for the analysis of
the distribution of reinforcement in fiber reinforced concrete. This research project was for me
an excellent opportunity to develop my skills in image analysis and 3D image reconstruction
techniques. I later had the opportunity to again explore these topics(see section 1.3).

From 2007 to 2010, I prepared my PhD under the supervision of Prof. L. Dormieux4 and
P. Levitz5. The title of my dissertation is: Morphological Analysis and Numerical Homog-
enization: Application to Cement Paste [Bri11]. The original mix of micromechanical (L.
Dormieux) and physical (P. Levitz) approaches was for me a permanent, exciting challenge
that largely contributed to my work being awarded (together with N. Oppenchaim) the 2012
École des Ponts ParisTech Best Thesis Prize6.

The main goal of this work was the characterization of the microstructure of C–S–H and
the connections with its macroscopic properties. C–S–H (calcium silicate hydrate) is one the
products of the hydration of cement pastes. It is widely agreed that it is responsible for the
overall mechanical strength of hydrated cement pastes. Understanding the properties of C–S–
H is therefore key to optimizing cement pastes (in order to e.g. reduce their extremely high
CO2 footprint).
3Department of Civil & Environmental Engineering, University of California, Berkeley
4Laboratoire Navier, UMR 8205, CNRS, ENPC, IFSTTAR, Université Paris-Est (Marne-la-Vallée, France)
5Laboratoire PHENIX (UMR8234), Sorbonne Universités, UPMC University, CNRS, Paris, France
6http://en.enpc.fr/les-prix-de-these-de-lecole-des-ponts-paristech, last retrieved 2017-

06-13.
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Figure 1.3: In a compact assembly of flat objects, strong orientational correlations are likely to develop. In the
present case, 10 000 oblate spheroids were placed in a simulation box. The solid volume fraction is 60 %, and
the aspect ratio of the spheroids is 1/8. Particles are colored according to their orientation: large, quasi-uniform
color patches can be observed, which shows that particles tend to align themselves.

Back when I started my PhD, the microstructure of C–S–H remained widely mysterious.
Various authors had proposed various morphologies, all of them relying on the notion of a
basic building block: “globules” [All+87]; [Jen00]; [Jen08], “platelets” [GBN06], “needles”
[Ric04]… This diverse zoology is largely due to the near impossibility of unbiased, direct
observation of C–S–H at the relevant scale (a few tens of nanometers). Still, clarifying this
microstructure is a real issue. Indeed, the porosity of C–S–H is relatively small (about 30 %).
Anisotropic basic building blocks (such as platelets) must then induce strong local orientational
correlations (as illustrated on figure 1.3). In turn, these correlations might induce noticeable
effects on the macroscopic mechanical properties of C–S–H.

In this project, P. Levitz proposed a critical review of the above mentioned zoology relying
on small-angle X-ray scattering (SAXS). Indeed, this experimental technique has various valu-
able assets: appropriate resolution, large scale samples (typically, 10mm× 10mm× 0, 1mm),
no need to work under vacuum conditions, intrinsically three-dimensional information (no pro-
jection effects), … The major drawback being that SAXS is an indirect observation technique,
that only provides the spectral density of the local electron density [DAB57]; [Por82]. It is
therefore not possible to reconstruct the 3D local electron density, since only the modulus of
its Fourier transform is known (the phase is missing).

Nevertheless, this technique is very interesting for cementitious materials. Indeed, it is well-
known since the eighties [All+87] that cement pastes exhibit a characteristic SAXS pattern
which is difficult to explain (see figure 1.4). Some authors consider that this pattern is the sig-
nature of a fractal microstructure [All+87]. However, it is difficult to reconcile this assumption
with the relatively low porosity of C–S–H (fractals being generally open).

To tackle this issue, I adopted an inverse approach: is it possible to construct a (virtual) mi-
crostructure which reproduces the SAXS pattern of cement pastes? This led me to develop a
numerical method for the computation of the SAXS pattern. The proposed method minimizes
size-effects induced by truncation in the real space (the generated microstructures being rela-
tively small from the perspective of SAXS). A first version of the method was proposed in my
PhD thesis (see chapter 4 in reference [Bri11]). It was further improved in reference [BL13].

22



1.2 PhD student at Laboratoire Navier

10−2 10−1

q [Å−1]

10−2

10−1

100

101

102

103

104

105

I(
q)

[a
.u

.]

q−4

q−3

Figure 1.4: Small-angle X-ray scattering pattern of a CEM-I, 1.5 years old, hydrated cement paste (𝑤/𝑐 = 0.35).
The algebraic behavior as a fractional power of the scattering vector 𝑞 has been reported by many teams. Its origin
remains unclear.

Using this forward simulation tool, I was able to invalidate some microstructural hypotheses,
showing that neither “globules”, nor “platelets” could result in the typical SAXS pattern shown
in figure 1.4.

During the course of my PhD, I also had the opportunity to carry out soft X-ray microscopy
observations of C–S–H grains. This work was conducted in collaboration with Prof. P.J.M.
Monteiro at the Bessy-II synchrotron in Berlin, Germany (beamline U41). Since the sample
is mounted on a rotating stage in this microscope, it is in principle possible to carry out what
should effectively be called nanotomography, thus providing three-dimensional insight into the
microstructure of cement pastes at unprecedented scales (about 20 nm). However, reconstruct-
ing the 3D volume turned out to be a formidable task, that required to account for misalignment
of the projections and the so-called “missing wedge” (since the sample cannot be fully rotated
in this setup). Besides, the images produced by the soft X-ray microscope at Bessy-II/U41
are polluted by a number of artifacts, including: limited depth of field as well as non-uniform
and non-stationary source. Although I was in the end able to produce a 3D reconstruction of
the sample (see figure 1.5), the analysis of the microstructure that we were able to carry out
was rather limited, due to these artifacts [Bri+12]. Still, this part of my PhD was extremely
formative, as I had to implement state-of-the-art image analysis and reconstruction algorithms.

Meanwhile, I set out to investigate, under the supervision of Prof. L. Dormieux, the connec-
tions between microstructure and macroscopic properties. The –somewhat optimistic– goal
was to try and come up with a mechanical model of C–S–H that would account for the mi-
crostructural characterization carried out with P. Levitz.

Of course, this goal turned out to be far too ambitious, and I was hardly able to bridge these
two parts of my dissertation. However, the polarization techniques that I started to use then
are still at the heart of my current research. Discussion of this topic is therefore deferred to the
next section.
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Figure 1.5: Soft X-ray microscopy transmission image of a hydrated cement paste (CEM-I, 𝑤/𝑐 = 0.35) (left).
Three-dimensional reconstruction of the same grain (right). The lack of sharpness of the reconstructed volume
is caused by the various artifacts inherent to the setup at Bessy-II/U41.

Statistical Full field

Mean field
Effective field EIM FEM, FFT

Complexity

Figure 1.6: Homogenization methods can be laid out on a complexity scale: from the left-hand side to the right-
hand side, the complexity increases.

1.3 Research scientist at Laboratoire Navier
I joined Ifsttar (Institut français des sciences et technologies des transports, de l’aménagement
et des réseaux) immediately after the defense of my PhD. I worked for a year at the MACS
department (Mesures, Auscultation et Calcul Scientifique). In fall 2011, a position opened at
Laboratoire Navier and I had the good fortune to join the newly created Multiscale team.

Since then, my research has been focused on the homogenization of random, heterogeneous
materials. More precisely, I explore the connections between microstructure and macroscopic
properties. In theory, this problem can be considered as solved. Indeed, as will be discussed
in chapter 2, solving the so-called corrector problem “suffices” to determine the macroscopic
properties of a given microstructure. Unfortunately, solving this problem can be a formidable
task, for which various methods have been devised. These methods can be laid out on an
“complexity scale” (see figure 1.6). At the two ends of this complexity scale lie the two most
famous families of homogenization techniques.

On the low-complexity side lie mean field/effective field methods, which are based on the
solution to Eshelby’s inhomogeneity problem [Esh57]. In this problem, a unique (ellipsoidal)
inhomogeneity is embedded in an infinite matrix and subjected to a uniform strain at infinity.
The resulting estimates of the macroscopic properties cannot really account for correlations,
since the inhomogeneity is isolated in the underlying auxiliary problem. As a consequence, the
microstructural information that these methods can account for quantitatively is rather limited.
As an example, the total porosity of a porous medium is within the reach of these models,
while the pore-size distribution is not [CB09]. Still, these methods should not be dismissed.
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Indeed, they are extremely versatile, and can readily account for various kinds of material
nonlinearities. Also, these methods are usually successful in reproducing global trends with
respect to some material/microstructural properties.

At the other end of the complexity scale lie full field methods, where the corrector problem
is solved numerically, either by means of standard (finite elements, boundary elements) or de-
voted numerical techniques. Provided that the various sources of errors are kept under control
(these sources are briefly listed in section 4.3.3), full-field methods can be considered as “ex-
act”; they are however rather cumbersome. For example, classical finite elements require a
conforming mesh, which can be difficult to produce for highly heterogeneous microstructures.
Extended finite element techniques (X-FEM) devoted to heterogeneous materials have been
proposed in order to overcome this limitation [Tra+11]. Execution of the simulation is also
generally a challenge, since a large number of degrees of freedom is generally involved; this
usually calls for the implementation of high-performance computing (HPC) techniques. Rather
than resorting to general-purpose numerical tools, which are sometimes ill-suited to the task,
various authors have proposed devoted methods, specifically tailored to solving the corrector
problem. Owing to their flexibility, so-called “FFT-based techniques” ought to be singled out.
Initially proposed by Moulinec and Suquet [MS94] and Moulinec and Suquet [MS98], these
methods have gained in popularity from the early 2010s: nowadays, many research groups
accross the world are actively involved in the development and application of such techniques.

Quite surprisingly, the middle-range of the complexity scale is not well populated. Morpho-
logically representative patterns [BSZ96] aim at improving Eshelby-based estimates through a
finer description of the microstructure. However, it should be emphasized that the microstruc-
ture considered in these approaches is an idealization of the true microstructure. Again, the
correlations are not introduced explicitly.

For very specific microstructures, it is possible to devise extremely efficient full-field meth-
ods that take advantage of the specific geometry. Only two examples of such problem specific
methods will be cited here. As a first example, the equivalent inclusion method [MM75] really
ought to be considered as an “approximate” full-field method, as it would be highly imprac-
tical to let the discretization parameter (the order of the interpolating polynomials) grow to
large values (this will be discussed in chapter 4, section 4.3). As a second example, the recent
work of Cancés and collaborators [Can+18] stand out as a remarkable combination of various
efficient numerical techniques for assemblies of spherical inhomogeneities. A modified cor-
rector problem is reformulated as a boundary integral equation [Can+15], which is discretized
with spherical harmonics. Domain decomposition and multipole expansions then allow for an
efficient implementation of the solver.

Numerical homogenization techniques have so far been classified by degree of complexity.
Another interesting classification relies on the nature of the input of the method.

Full field methods (even approximate) require realizations of the microstructure as an in-
put. Within the framework of random homogenization, it is necessary to solve the corrector
problem for a large number of such realizations (statistical volume elements). Averaging the
apparent properties of these statistical volume elements then delivers an estimate of the effec-
tive properties of the random heterogeneous material under consideration.

Conversely, we will call statistical those methods that deliver estimates of the macroscopic
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properties from statistical descriptors of the microstructure. From this perspective, mean
field/effective fieldmethods, Hashin–Shtrikman bounds, higher order bounds [BM66]; [McC70];
[Mil81]; [Mil82]; [MP82] and exact series expansions[Tor97] can all be seen as statistical.

Even if they generally deliver estimates rather than approximations with controlled numer-
ical error, I personally tend to favor statistical approaches over full-field methods. I do think
that the former offer a deeper insight into the connections between microstructure and macro-
scopic properties. Indeed, it is fairly easy within this framework to vary some microstructural
parameters and observe the results on the macroscopic properties. Full-field methods, on the
other hand, result in an extremely rich output, but they also require a rich input, to the extent
that it is sometimes difficult to filter out this massive quantity of data. Identifying what details
of the microstructure had the most significant impact on the macroscopic properties is not a
trivial task within the framework of full-field methods. However, for many applications, full-
field simulations are in fact the only option, and both classes of methods should really be seen
as serving different purposes.

I think it is clear from the above discussion why the development of improved statistical
methods has always been the focus of my research. My goal is the derivation of statistical esti-
mates of the macroscopic properties that would account for a more detailed statistical descrip-
tion of the microstructure than standard, Eshelby-based methods, while remaining less costly
than full-field methods. I also do not want to introduce any idealization of the microstruc-
ture. To do so, I soon selected the Hashin–Shtrikman principle [HS62b] as the appropriate,
systematic framework, for two main reasons.

First, this variational principle is extremely flexible, since any trial stress-polarization is
admissible7. This is at odds with the more classical minimum potential and complementary
energy principles, for which admissibility conditions are sometimes difficult to fulfill with the
rather simple trial fields that are required by theoretical derivations.

Second, the estimates resulting from this principle can be worked out without any idealiza-
tion/simplification of the microstructure. The exact geometry is taken into account (see for
example reference [Wil77]), while the quality of the approximation is controlled by the rich-
ness of the trial stress-polarization. Under some mild additional assumptions, this allows the
derivation of rigorous bounds on the true effective properties.

The celebratedHashin–Shtrikman bounds [HS62a] on the effective elasticmoduli of isotropic
heterogeneousmaterials are a classical example of how the variational Hashin–Shtrikman prin-
ciple can be applied to derive bounds/estimates on the macroscopic properties. These bounds
result from selecting themost simple (phase-wise constant) trial stress-polarization. Somewhat
naively, I imagined that I only had to apply the same principle with more complex (enriched)
trial stress-polarizations to improve on these estimates/bounds. However, selecting a “good”
trial stress-polarization turned out to be rather difficult. In other words, the classical Hashin–
Shtrikman bounds are extremely robust (difficult to improve upon).

Fairly recently, I have devised a general framework to account for a local description of
the microstructure within the framework of the Hashin–Shtrikman principle (see chapter 3,
7The stress-polarization will be defined more precisely in chapter 2, section 2.3. Suffice it to say for the time

being that the trial field that is involved in the variational principle of Hashin and Shtrikman is a second-rank,
symmetric tensor field that is called “stress-polarization”.
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section 3.2), with fairly good prospects.
My quest for improved bounds on the macroscopic properties has been rather frustrating so

far. Meanwhile, I soon realized that the Hashin–Shtrikman principle could also be used in a
numerical setting, for the derivation of numerical methods. Quite surprisingly, this research
topic (although not the one I favored initially) turned out to be the area where I have been most
productive.

Although extremely simple, the idea was rather original, as I believe I was the first to ap-
ply Galerkin-like discretizations to the variational form of the Lippmann–Schwinger equation
(which is equivalent to the Hashin–Shtrikman principle, as will be discussed in chapter 2,
section 2.3). Using an appropriate discretization of the trial stress-polarization delivers an es-
timate of the true stress-polarization at equilibrium. I have explored two possible discretization
schemes: voxel-wise constant stress-polarizations, and stress-polarizations that are polynomial
over each inhomogeneity.

The former choice allowedme to revisit FFT-based techniques initially introduced byMoulinec
and Suquet [MS94] and Moulinec and Suquet [MS98], as discussed in chapter 4, section 4.2.
A significant part of my research has been devoted to this topic. I was able to propose a formu-
lation that results in rigorous bounds on the apparent properties. I also clarified the distinction
between discretization of the underlying continuous integral equation, and solution to the dis-
crete problem. Introducing this separation of concerns allowed me to prove that FFT-based
techniques actually converge to the desired solution upon refining the grid, and to replace the
fixed-point iterations initially proposed by Moulinec and Suquet with more efficient Krylov-
subspace iterative linear solvers. In order to reduce Gibbs-like spurious oscillations in the
numerical solution, I also introduced so-called filtered discrete Green operators. My recent
work in this area is devoted to the development of a posteriori error estimators for FFT-based
homogenization techniques.

The latter choice led to a variational form of the classical equivalent inclusion method, ini-
tially proposed by Moschovidis and Mura [MM75]. In that case, the variational setting is
clearly superior to the classical approach based on collocation, as will be discussed in chapter 4,
section 4.3. As a by-product of this work, I was also able to propose a rigorous mathematical
justification of the approximation of the Green operator for strains introduced heuristically by
Willis [Wil77] (see chapter 3, section 3.1).

***
To close this section on my research activities, I would like to mention topics related to

image analysis and 3D imaging techniques. As already mentioned in section 1.2, these topics
represented a significant part of my PhD work. Since the defense of my PhD however, I have
only marginally contributed to this field, which will therefore not be presented in detail in
this report. However, I do want to dedicate a more significant share of my (post-Habilitation)
research time to these topics (as will be discussed in chapter 5).

Regarding 3D imaging, first. I recently took an active part in the PhD work of M.H. Khalili,
who developed the so-called discrete digital projection correlation method (D-DPC). This
method allows the identification of the rigid body motion of each individual grain in a granular
material. The main asset of the proposed technique is the fact that a limited number of radio-
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graphs of the current configuration suffice to compute estimate these motions. This allows for
rapid acquisition (even in a laboratory setting). The price to pay is a relatively high compu-
tational cost, requiring the use of HPC techniques. M.H. Khalili was able to prove that the
method had the potential to deliver accurate results. I would like to pursue this work towards
more realistic experimental conditions (involving a large number of grains).

During the course of the PhD work of M.H. Khalili, we also questioned some of the funda-
mental asumptions that standard reconstruction techniques rely upon. We were able to show
that these simplifying asumptions could have a significant impact on the accuracy of the re-
construction. I would like to explore these issues more thoroughly.

Regarding image analysis, now. With P. Levitz, we proposed a technique allowing to esti-
mate the small-angle scattering spectrum of a material from a transmission image (radiograph).
This technique is very simple and requires minimal preparation of the image (thus inducing
only a limited loss of information). It allows to compare two seemingly very different imaging
techniques8 that operate at complementary resolutions. However, this technique is not devoid
of artefacts, that we would like to investigate theoretically. Meanwhile, I have recently been
involved in a joint work with C.A. Davy9, P. Levitz10 and L. Michot10 for the application of
this technique to cementitious materials.

To conclude this brief section on image analysis, I should like to mention that I was the main
organizer in july 2016 of a workshop on Imaging of Construction Materials and Geomaterials,
which gathered about 90 participants at École des Ponts ParisTech. Following this workshop, I
have been asked by the editor in chief of Cement and Concrete Research to coordinate a review
paper on X-ray tomography of cementitious materials, for which I will be more specifically in
charge of writing the theoretical sections.

1.4 Teacher at École des Ponts ParisTech
My teaching activities are extremely dear to me. I like preparing courses and classes, think-
ing of the “best” way to introduce complex notions, writing lecture notes, interacting with
students… and feeling that maybe they learned something from me!

I was fortunate enough to be in a position to teach immediatly after my graduation fromÉcole
des Ponts ParisTech in 2003. I should like to take the opportunity to thank Prof. P. Bisch11,
with whom I have been working for so many years, as well as Prof. A. Ehrlacher12. At that
time, both placed their trust in a young engineer with no teaching experience whatsoever!

Owing to my initial professional activities, most courses I took part to are related to struc-
tural mechanics: Structural Mechanics, Shells & Advanced Structures, Towards Structural
Mechanics, Introduction to the Dynamics and Stability of Mechanical Systems, …, all at the
8It should be recalled that transmission imaging operates in the real space, while small angle scattering operates

in the Fourier space.
9Laboratoire deMécanique de Lille (LML, FRE CNRS 3723), L2MGC EA 4114, Université de Cergy-Pontoise,

Centrale Lille, Villeneuve d’Ascq, France
10See footnote 5 in the present chapter.
11EGIS Industries
12Head of the Department of Mechanical Engineering and Materials Science at École des Ponts ParisTech
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MEng level. After I received my PhD degree, I also got involved in two courses on Imag-
ing of Random Heterogeneous Materials (at the MSc level). In these courses, I was in charge
of the following topics: statistical tools for the description of random heterogeneous media,
numerical scale bridging, image analysis, small-angle scattering of X-rays.

Of course, it is impossible to sum up in a few lines all the personal lessons I learned from
these multiple teaching experiences. I will therefore focus on my longest experience within
the course Shells & Advanced Structures, as it might have an influence on my future research
activities as well.

The course on Shells &Advanced Structuresmainly addresses the theory of plates and shells,
although some other advanced notions such as beams with high curvature or Vlasov’s theory
of torsion might also be touched upon. I have been involved in this course (which is taught
by Prof. P. Bisch) since 2003. I am in charge of half of the 12 sessions of 2.5 hours (both
lectures and tutorials). Owing to its reputation of being difficult, the students that enrol for this
optional course are usually highly motivated, which results in an extremely agreeable atmo-
sphere. However, I must own that some students are dispirited by the mathematical difficulties
induced by the use of curvilinear coordinates.

My long-term involvement in this course has naturally resulted in a very rich experience,
which allows me to better anticipate the questions of the students, and select the problem-
solving techniques that I find most accessible. To cite but one exemple, I never invoke during
tutorial sessions the general equilibrium equations of shells in curvilinear coordinates. Rather,
I derive these equations from the principle of virtual work for each new problem specifically.
Such approach indeed allows to account at a very early stage for the simplifications that might
be induced by the geometry of the shell under consideration (cylinder, sphere, …).

Meanwhile, it is only too natural that I developed my own vision of how a course on the the-
ory of plates and shells might be taught. For example, I would favor an intrinsic formulation.
Indeed, the students are usually still struggling with covariant and contravariant indices at the
end of the 12 sessions, while they are muchmore comfortable with intrinsic notations (to which
they were introduced during the course on Continuum Mechanics at École des Ponts Paris-
Tech). As another example, rather than the classical displacement-based approach, I would
introduce the various theories through a stress-based approach. Indeed, the former leads to
the concurrent invocation of plane stress and plane strain hypotheses (both being of course
mutually exclusive!), while the latter does not result in such contradictions.

Besides the pedagogical aspects, I have also benefited from this experience at the theoretical
level. Indeed, I have investigated for my own sake such difficult issues as boundary layers and
the boundary conditions for the Kirchhoff–Love model or the formulation of plate and shell
finite elements. I have a fairly up-to-date knowledge of the theoretical literature on (homoge-
neous) plates and shells, to the extent that I am now considering investigating these topics at
research level (see chapter 5) and get recognition from the academic world. I have recently
been asked by K. Sab13 to be the coauthor of three chapters on the classical theories of plates
in the Encyclopædia of Mechanics to be published by Springer; this certainly constitutes a first
step towards this goal.

13See footnote 4 in the present chapter.
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Chapter 1 Introduction

1.5 Outline of this report
For the sake of conciseness and coherence, this document is focused on the various applica-
tions I have proposed of the Lippmann–Schwinger equation and Hashin–Shtrikman principle
to capture the connection betweenmicrostructure and macroscopic properties. The structure of
this document is briefly overviewed below; for each section, my relevant publications are also
listed. Although the topics discussed in this document represent the major part of my post-PhD
research work, such selection means that some other works have also been purposefuly left out
(see references [BL13]; [Bri+12]; [Kha+17a]; [Kha+17b]; [Kha+17c]; [May+16]). Some of
these topics will however be briefly discussed in chapter 5.

Chapter 2 sets up the general framework for this report. It gives a brief overview of homog-
enization and classical polarization techniques (namely, the Lippmann–Schwinger equation
and the Hashin–Shtrikman principle). This chapter is not intended as a treatise on these topics.
It is rather used to define the essential tools and notations that are to be used throughout this
document. Being essentially reference material, this chapter is not directly connected to any
of my publications.

Chapter 3 then discusses applications of the Hashin–Shtrikman principle in a (semi-) an-
alytical setting. This chapter describes a few applications that fall into the category of sta-
tistical methods as defined in section 1.3 of the present chapter. It opens with the classical
Hashin–Shtrikman bounds (see section 3.1) the derivation of which is recalled so as to serve
as a basis for the derivation of improved bounds. More importantly, section 3.1 discusses
the approximation of the fourth-rank Green operator of a bounded domain, for which I pro-
posed a mathematical justification in reference [BSD13]. The (hopeless?) quest for improved
bounds is discussed in section 3.2, which presents a possible approach that was initiated in ref-
erence [Bri17b]. The chapter then closes with three applications for which I was indeed able
to propose Hashin–Shtrikman like bounds on the macroscopic properties, namely nanocom-
posites (see section 3.3 and references [BDK10a]; [BDK10b]), eigenstressed materials (see
section 3.4 and references [BG17]; [BG18]) and stress-gradient materials (see section 3.5 and
references [Tra+18a]; [Tra+18b]).

Chapter 4 is the numerical counterpart of the previous chapter. It discusses two strategies for
the Galerkin discretization of the Lippmann–Schwinger equation (see section 4.1). The first
strategy relies on a discretization of the trial stress-polarization over a uniform, cartesian grid
in a periodic setting (see section 4.2, references [BD10]; [BD12]; [Bri17a] and some use-cases
in references [BD14]; [Tra+16]). It results in a variational form of the celebrated FFT-based
methods introduced by Moulinec and Suquet. The second strategy uses (for simple matrix–
inclusions microstructures) trial stress-polarizations that are polynomial over each inclusion
(see section 4.3 and references [BDS13]; [BDS14]). This approach leads to a variational form
of the equivalent inclusion method of Moschovidis and Mura.

Finally, chapter 5 offers a general conclusion and some perspectives to the work presented
in this report. It also outlines the research topics I would like to investigate and that define my
vision of my research work for the next few years.
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Chapter 2
General framework
This chapter introduces the general framework that is to apply throughout this report. Rather
than a self-contained reference work on heterogeneous materials, it should be understood as
a brief list of known definitions and essential mathematical results that will be invoked in
chapters 3 and 4. Section 2.1 gives a short and practical overview of homogenization within the
framework of linear elasticity. Then, section 2.2 introduces the fourth-rank Green operator for
various types of boundary conditions. This operator is the essential tool underlying polarization
techniques, which are described in section 2.3 and will be extensively used in the subsequent
chapters.

2.1 A brief overview of homogenization
The present section defines some concepts that are essential to the homogenization of linearly
elastic, random heterogeneous materials. A mathematical description of the microstructure
of such materials is proposed in section 2.1.1. Sections 2.1.2 and 2.1.4 then address the de-
termination of the apparent and effective properties of statistical and representative volume
elements.

2.1.1 Mathematical description of the microstructure of heterogeneous
materials

We consider a heterogeneous material that occupies the geometrical domain Ω ⊂ ℝ𝑑 (𝑑 =
2, 3). For any local quantity 𝒬, ⟨𝒬⟩ denotes its volume average over Ω

⟨𝒬⟩ = 1
|Ω| ∫𝐱∈Ω

𝒬(𝐱) d𝑉𝐱. (2.1)

Most of this report is devoted to linear elasticity; 𝐂(𝐱) denotes the local stiffness tensor at
𝐱 ∈ Ω. The linear elastic stress-strain relationship then reads for 𝐱 ∈ Ω: 𝝈(𝐱) = 𝐂(𝐱) ∶ 𝜺(𝐱),
where 𝝈 (resp. 𝜺) denotes the stress (resp. strain) field.

So-called 𝑁-phase materials are a specific class of heterogeneous materials. They are de-
fined by the regions Ω1, … , Ω𝑁 ⊂ Ω occupied by phases 1, … , 𝑁 , or, equivalently, by the
indicator functions 𝜒1, … , 𝜒𝑁 of these phases.

Unless otherwise stated, Greek indices always refer to phases, and sums over Greek indices
always run over the whole range 1, … , 𝑁 . Obviously, the 𝜒1, … , 𝜒𝑁 satisfy the partition of
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unity property (∑𝛼 𝜒𝛼 = 1). For any local quantity 𝒬, ⟨𝒬⟩𝛼 denotes its volume average over
phase 𝛼 = 1, … , 𝑁

⟨𝒬⟩𝛼 = 1
|Ω𝛼| ∫𝐱∈Ω𝛼

𝒬(𝐱) d𝑉𝐱, (2.2)

and we obviously have ⟨𝒬⟩ = ∑𝛼 𝑓𝛼⟨𝒬⟩𝛼, where 𝑓𝛼 = |Ω𝛼|/|Ω| denotes the volume fraction
of phase 𝛼 = 1, … , 𝑁 .

Within the framework of linear elasticity, 𝐂𝛼 denotes the elastic stiffness of phase 𝛼 =
1, … , 𝑁 , so that for a 𝑁-phase material, 𝐂 = ∑𝛼 𝜒𝛼𝐂𝛼. The local stress-strain relationship
now reads, for 𝐱 ∈ Ω𝛼: 𝝈(𝐱) = 𝐂𝛼 ∶ 𝜺(𝐱).

2.1.2 Apparent and effective properties – Statistical and representative
volume elements

For statistically homogeneous and ergodic microstructures, it is well-known that the effective
properties are retrieved from the solution to a boundary value problem posed on a infinite
domain. This is of course highly impractical. Instead, we first compute the apparent stiffness
𝐂app(Ω) (to be defined below) of a finite volume element Ω, and estimate the effective stiffness
as the limit of the apparent stiffness for large volume elements Ω

𝐂eff = lim
|Ω|→+∞

𝐂app(Ω), (2.3)

provided that appropriate boundary conditions are applied to 𝜕Ω. In practice, due to the ran-
domness of the microstructure, 𝐂app(Ω) is a random variable that depends not only on the
geometry of the domain Ω ⊂ ℝ𝑑 , but also on the realization of the microstructure under con-
sideration. It is then customary to take the ensemble average in equation (2.3)

𝐂eff = lim
|Ω|→+∞

𝔼[𝐂app(Ω)]. (2.4)

In turn, this ensemble average is evaluated empirically in a standardMonte-Carlo setting. To
emphasize the random nature of the apparent stiffness, the domain Ω will be called, following
Ostoja-Starzewski [Ost06], a Statistical Volume Element (SVE). The SVE is considered as a
Representative Volume Element (RVE) when the fluctuations of its apparent stiffness are below
a user-defined threshold. In that case, the apparent stiffness of the RVE (only one realization)
delivers an accurate estimate of the effective stiffness.

We are now in a position to define the apparent stiffness of the SVE Ω as the linear operator
that maps the average strain ⟨𝜺⟩ to the average stress ⟨𝝈⟩

⟨𝝈⟩ = 𝐂app(Ω) ∶ ⟨𝜺⟩, (2.5)

where 𝜺 and 𝝈 are the local strains and stresses that solve the so-called corrector problem

div𝝈 = 𝟎, 𝝈 = 𝐂 ∶ 𝜺, 𝜺 = 𝝐[𝐮], (2.6)
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where 𝝐[𝐮] denotes the symmetric part of the gradient of the displacement 𝐮.
The above field equations (in Ω) are complemented with appropriate boundary conditions

(on 𝜕Ω), to be discussed below. It should first be observed that for homogenization purposes,
the exact displacement 𝐮 from which the strain 𝜺 derives does not matter (provided that it
exists!). This is emphasized by introducing the spaces of compatible (ℰ ) and divergence-free
(𝒮 ), second-rank, symmetric, tensor fields

𝜺 ∈ ℰ(Ω) ⟺ 𝜺 = 𝝐[𝐮] for some 𝐮 and 𝝈 ∈ 𝒮 (Ω) ⟺ div𝝈 = 𝟎, (2.7)

where the above differential operators should be understood in the sense of generalized func-
tions. Equations (2.6) may then be rewritten as follows

Find 𝜺 ∈ ℰ(Ω) and 𝝈 ∈ 𝒮 (Ω) such that 𝝈 = 𝐂 ∶ 𝜺, (2.8)

or, equivalently

Find 𝜺 ∈ ℰ(Ω) such that 𝐂 ∶ 𝜺 ∈ 𝒮 (Ω). (2.9)

For problem (2.9) to be well-posed, 𝜺 and/or 𝝈 should in fact be seeked in subspaces of ℰ(Ω)
and 𝒮 (Ω), respectively. This is discussed in section 2.1.3 below, where the classical Dirichlet,
Neumann and periodic boundary conditions are introduced.
Remark 2.1. Equation (2.5) should really be understood as a series of 𝑑(𝑑 + 1)/2 calculations
(with linearly independent prescribed macroscopic strains or stresses).

Remark 2.2. For the sake of clarity, functional spaces will not be specified in the remainder
of this work. It should however be understood that elements of ℰ(Ω) and 𝒮 (Ω) are at least
component-wise square integrable. In physical terms, this means that only finite energy strains
and stresses will be considered.

It will be useful to introduce the space 𝒯2(Ω) of symmetric, second-rank tensors with square
integrable components. Then, ℰ(Ω) ⊂ 𝒯2(Ω) and 𝒮 (Ω) ⊂ 𝒯2(Ω).

2.1.3 Computation of apparent properties: boundary conditions
In this section, various classical boundary conditions that must complement the field equa-
tions (2.6) are listed. For a finite-size SVE Ω, each of these boundary conditions defines a
different apparent stiffness 𝐂app(Ω). Consistency of these definitions (as |Ω| → +∞) is dis-
cussed in section 2.1.4.

Essential (Dirichlet) boundary conditions We introduce the subspace ℰ ess(Ω) ⊂ ℰ(Ω) of
compatible strain fields with essential (Dirichlet) boundary conditions

𝜺 ∈ ℰ ess(Ω) ⟺ 𝜺 = 𝝐[𝐮] for some 𝐮 such that 𝐮|𝜕Ω = 𝟎, (2.10)

and it is observed that ⟨𝜺⟩ = 𝟎 for all 𝜺 ∈ ℰ ess(Ω). The apparent stiffness 𝐂ess(Ω) is then
defined from the solution to the following problem

Find 𝜺 ∈ 𝜺 + ℰ ess(Ω) such that 𝐂 ∶ 𝜺 ∈ 𝒮 (Ω), (2.11)
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where 𝜺 is a constant (prescribed) strain, which coincides with the macroscopic strain: ⟨𝜺⟩ = 𝜺.
The macroscopic stress is then computed a posteriori as the volume average ⟨𝝈⟩, from which
the apparent stiffness is deduced: ⟨𝝈⟩ = 𝐂ess(Ω) ∶ 𝜺.

It should be noted that the Dirichlet boundary conditions thus defined are also known as
Kinematic Uniform Boundary Conditions (KUBC), see for example reference [Kan+03].

Natural (Neumann) boundary conditions Wenow introduce the following subspace𝒮 nat(Ω) ⊂
𝒮 (Ω) of divergence-free stress fields with natural (Neumann) boundary conditions

𝝈 ∈ 𝒮 nat(Ω) ⟺ 𝝈 ∈ 𝒮 (Ω) and 𝝈 ⋅ 𝐧 = 𝟎 on 𝜕Ω, (2.12)

where 𝐧 denotes the outer normal to 𝜕Ω. It should be noted that ⟨𝝈⟩ = 𝟎 for all 𝝈 ∈ 𝒮 nat(Ω).
The solution to the following problem defines the apparent compliance 𝐒nat(Ω)

Find 𝝈 ∈ 𝝈 + 𝒮 nat(Ω) such that 𝐂−1 ∶ 𝝈 ∈ ℰ(Ω), (2.13)

where 𝝈 is a prescribed stress, which coincides with the macroscopic stress: ⟨𝝈⟩ = 𝝈. The
apparent compliance 𝐒nat(Ω) maps the prescribed stress to the macroscopic strain ⟨𝜺⟩ (which
is computed a posteriori): ⟨𝜺⟩ = 𝐒nat(Ω) ∶ 𝝈. The apparent stiffness is then obtained through
inversion: 𝐂nat(Ω) = [𝐒nat(Ω)]−1.

It is again observed that the Neumann boundary conditions thus defined are also known as
Static Uniform Boundary Conditions (SUBC), see for example reference [Kan+03].

Periodic BoundaryConditions The SVE Ω is a rectangular prism Ω = (0, 𝐿1)×…×(0, 𝐿𝑑);
we define the subspaces ℰper(Ω) and 𝒮 per(Ω) of Ω-periodic, compatible and divergence-free
strain and stress fields

𝜺 ∈ ℰper(Ω) ⟺ 𝜺 = 𝝐[𝐮] for some Ω-periodic 𝐮, (2.14)
𝝈 ∈ 𝒮 per(Ω) ⟺ 𝝈 ∈ 𝒮 (Ω) and 𝝈 ⋅ 𝐞𝑖 is Ω-periodic for 𝑖 = 1, … , 𝑑. (2.15)

It should ne noted that the second condition in (2.15) is usually written “𝝈 ⋅ 𝐧 is skew-
periodic”. I find this terminology confusing, as the outer normal (thus the traction) is not
uniquely defined (its direction depends on whether the cell standing on the “left” or “right” of
the edge is considered). It is further observed that ⟨𝜺⟩ = 𝟎 for all 𝜺 ∈ ℰper(Ω). The corrector
problem with periodic boundary conditions reads

Find 𝜺 ∈ 𝜺 + ℰper(Ω) such that 𝐂 ∶ 𝜺 ∈ 𝒮 per(Ω), (2.16)

where 𝜺 is a prescribed strain, which coincides with the macroscopic strain: ⟨𝜺⟩ = 𝜺. Similarly
to the apparent stiffness for essential boundary conditions, the apparent stiffness 𝐂per(Ω) is then
found from the following identity: ⟨𝝈⟩ = 𝐂per(Ω) ∶ 𝜺.
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2.1.4 Discussion of the various boundary conditions
It can be shown that the boundary conditions stated in section 2.1.2 all comply with the Hill–
Mandel lemma. In other words, ⟨𝝈 ∶ 𝜺⟩ = ⟨𝝈⟩ ∶ ⟨𝜺⟩, provided that either of the following
conditions is fullfilled

1. 𝜺 ∈ 𝜺 + ℰ ess(Ω) and 𝝈 ∈ 𝒮 (Ω),

2. 𝜺 ∈ ℰ(Ω) and 𝝈 ∈ 𝝈 + 𝒮 nat(Ω),

3. 𝜺 ∈ 𝜺 + ℰper(Ω) and 𝝈 ∈ 𝒮 per(Ω),

where 𝜺 and 𝝈 are constant, second-rank, symmetric tensors. The Hill–Mandel lemma in turn
has two important consequences. First, it shows that all three apparent stiffnesses 𝐂ess(Ω),
𝐂nat(Ω) and 𝐂per(Ω) are symmetric, fourth-rank tensors. Second, it is an essential ingredient
to prove that 𝐂ess(Ω), 𝐂nat(Ω) and 𝐂per(Ω) converge to the effective stiffness 𝐂eff as the size of
the SVE Ω grows to infinity (under the assumption of ergodicity, see reference [Sab92]). To
close this section, it should be observed that

𝐂nat(Ω) ≤ 𝐂eff ≤ 𝐂ess(Ω), (2.17)

for all SVE Ω [Hue90], where the above inequalities should be understood in the sense of
quadratic forms. The apparent stiffness associated to periodic boundary conditions does not
provide a bound on the effective stiffness, although it has been observed that 𝐂per(Ω) converges
faster to 𝐂eff than 𝐂ess(Ω) and 𝐂nat(Ω) [Kan+03].

***
It will be shown in section 2.3 that the boundary-value problems that define the various

apparent stiffnesses can be reformulated as an integral equation (the Lippmann–Schwinger
equation). Its kernel is the fourth-rank Green operator, that we now proceed to define.

2.2 The fourth-rank Green operator
For reasons that will become clearer in section 2.3.1, it is convenient to consider the following
problem in Ω

div𝝈 = 𝟎, 𝝈 = 𝐂0 ∶ 𝜺 + 𝝕, 𝜺 = 𝝐[𝐮], (2.18)

where 𝐂0 denotes the elastic stiffness of a homogeneous material, and 𝝕 is a spatially vary-
ing eigenstress. The above problem is formulated on the same geometrical domain Ω as prob-
lem (2.6) that defines the apparent stiffness of the SVE. It is not well-posed, since the boundary
conditions have not yet been specified.

Although the microstructure is considerably simpler than for problem (2.6) (it is homoge-
neous!), problem (2.18) remains complex owing to the fact that the eigenstress is not uniform.
However, it should be observed that this problem is linear; as such, the output (in particular,
the strain 𝜺) depends linearly on the sole loading parameter 𝝕. Following Korringa [Kor73],
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Kröner [Krö74], and Zeller and Dederichs [ZD73], we therefore introduce the linear operator
𝚪0 that maps the eigenstress onto the opposite of the strain: 𝜺 = −𝚪0[𝝕], the sign being purely
conventional. 𝚪0 thus defined is the so-called fourth-rank Green operator for strains. Depend-
ing on the boundary conditions that complement problem (2.18), various such operators can
be defined.

2.2.1 The fourth-rank Green operator for essential boundary conditions
Complementing problem (2.18) with the boundary condition 𝐮|𝜕Ω = 𝟎 defines the Green op-
erator 𝚪ess

0 for essential (Dirichlet) boundary conditions. In other words, 𝜺 = −𝚪ess
0 [𝝕] is the

unique solution to the problem

Find 𝜺 ∈ ℰ ess(Ω) such that 𝐂0 ∶ 𝜺 + 𝝕 ∈ 𝒮 (Ω). (2.19)

2.2.2 The fourth-rank Green operator for periodic boundary conditions
It should be observed that the above definition of 𝚪ess

0 is purely formal, since a closed-form
expression of this operator is in general not known. However, if the Dirichlet boundary con-
ditions are replaced with periodic boundary conditions, then the resulting Green operator has
an explicit expansion in Fourier space. More precisely, assuming that the domain Ω is a rect-
angular prism Ω = (0, 𝐿1) × … × (0, 𝐿𝑑), 𝜺 = −𝚪per

0 [𝝕] is the unique solution to the problem

Find 𝜺 ∈ ℰper(Ω) such that 𝐂0 ∶ 𝜺 + 𝝕 ∈ 𝒮 per(Ω). (2.20)

In the above problem, all mechanical fields can be expanded as Fourier series [Suq90]. In
particular

𝜺(𝐱) = −𝚪per
0 [𝝕](𝐱) = − ∑

𝐤∈ℤ𝑑
exp[2iπ(

𝑘1𝑥1
𝐿1

+ ⋯ + 𝑘𝑑𝑥𝑑
𝐿𝑑 )]𝚪̃per

0 (𝐤) ∶ 𝝕̃𝐤, (2.21)

where 𝝕̃𝐤 is the 𝐤-th Fourier coefficient of the periodic eigenstress 𝝕

𝝕̃𝐤 = 1
𝐿1 … 𝐿𝑑 ∫𝐱∈Ω

exp[−2iπ(
𝑘1𝑥1
𝐿1

+ ⋯ + 𝑘𝑑𝑥𝑑
𝐿𝑑 )]𝝕(𝐱) d𝑉𝐱. (2.22)

For isotropic referencematerials, a closed-form expression of the Fourier coefficients 𝚪̃per
0 (𝐤)

of 𝚪per
0 is provided in appendix A, section A.1.

2.2.3 The fourth-rank Green operator of the whole space
The fourth-rank Green operator for strains 𝚪∞

0 of the whole space is generally introduced as
an approximation (for large domains Ω) of the Green operator 𝚪ess

0 of bounded domains with
essential boundary conditions [PW95]; [Wil77]. This approximation will be further discussed
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in chapter 3 (see in particular section 3.1). 𝚪∞
0 is defined as the linear operator that maps 𝝕 to

the unique solution 𝜺 = −𝚪∞
0 [𝝕] to the following problem

Find 𝜺 ∈ ℰ(ℝ𝑑) such that 𝐂0 ∶ 𝜺 + 𝝕 ∈ 𝒮 (ℝ𝑑), (2.23)

where it is observed that the finite-energy solution is indeed unique (see section 3.1.4). For
isotropic materials, the resulting Green operator is classically decomposed into a singular part
𝐏0 and a translation invariant regular part 𝚪∞

0 (𝐫) [Bur07]; [KL08]; [Tor02]

𝚪∞
0 [𝝕](𝐱) = 𝐏0 ∶ 𝝕(𝐱) + lim

𝛿→0 ∫𝐲∈ℝ𝑑

‖𝐲−𝐱‖≥𝛿

𝚪∞
0 (𝐱 − 𝐲) ∶ 𝝕(𝐲) d𝑉𝐲, (2.24)

where 𝐏0 denotes the Hill tensor of the 𝑑-dimensional sphere. Closed-form expressions of 𝐏0
and 𝚪∞

0 (𝐫) are provided in appendix A, section A.2.

2.2.4 Properties of the fourth-rank Green operators
Regardless of the geometry of Ω, the Green operator for strains 𝚪0 has a number of well-known
properties, that are briefly recalled below. First, it is a self-adjoint linear operator; in other
words

⟨𝝕1 ∶ 𝚪0[𝝕2]⟩ = ⟨𝚪0[𝝕1] ∶ 𝝕2⟩, (2.25)

for all eigenstresses 𝝕1 and 𝝕2 (as a result of Hill–Mandel’s lemma). Then, for all 𝝕
⟨𝚪0[𝝕]⟩ = 𝟎 and 𝚪0[𝐂0 ∶ 𝚪0[𝝕]] = 𝚪0[𝝕], (2.26)

the proof of equation (2.26)2 can be found in reference [Wil01] (see also reference [MMS01]
in the periodic case). Finally, for any uniform eigenstress 𝝕 = const.

𝚪0[𝝕] = 𝟎, (2.27)

since 𝐮 = 𝟎 is solution of problem (2.18) in that case.
***

We are now ready to introduce the Lippmann–Schwinger equation and its variational for-
mulation as the Hashin–Shtrikman principle. These two tools constitute the foundations of the
developments that will be presented in the subsequent chapters.

2.3 Polarization techniques for linear elasticity
2.3.1 The Lippmann–Schwinger equation
It is readily observed that the corrector problem with essential boundary conditions (2.11) is
equivalent to

Find 𝜺 ∈ 𝜺 + ℰ ess(Ω) and 𝝉 ∈ 𝒯2(Ω) such that
{

𝐂0 ∶ 𝜺 + 𝝉 ∈ 𝒮 (Ω),
𝝉 = (𝐂 − 𝐂0) ∶ 𝜺,

(2.28)
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Chapter 2 General framework

where a new unknown, the so-called stress-polarization 𝝉 (second-rank, symmetric tensor with
square-integrable components) has been introduced. Equation (2.28)1 shows that the stress-
polarization plays the role of an eigenstress. However, this eigenstress is not free, since it is
related to the actual strain 𝜺 through equation (2.29)2. We therefore will purposely use different
notations for eigenstresses (𝝕) and stress-polarizations (𝝉). The Green operator 𝚪ess

0 can be
used to express the solution to equation (2.28)1, leading to the equivalent formulation

Find 𝜺, 𝝉 ∈ 𝒯2(Ω) such that 𝜺 = 𝜺 − 𝚪ess
0 [𝝉] and 𝝉 = (𝐂 − 𝐂0) ∶ 𝜺. (2.29)

It should be observed that equation (2.29) automatically implies that 𝜺 ∈ 𝜺 + ℰ ess(Ω).
The unknown strain 𝜺 is therefore seeked in the most general space 𝒯2(Ω) in problem (2.29).
Eliminating the stress-polarization 𝝉 leads to

𝜺 + 𝚪ess
0 [(𝐂 − 𝐂0) ∶ 𝜺] = 𝜺, (2.30)

with unknown 𝜺. Equation (2.30) is known as the Lippmann–Schwinger equation [Kor73];
[Krö74]; [ZD73]. In the present work, the following version of the Lippmann–Schwinger
equation will be preferred

(𝐂 − 𝐂0)−1 ∶ 𝝉 + 𝚪ess
0 [𝝉] = 𝜺, (2.31)

where the strain 𝜺 has been eliminated in problem (2.29). It is again emphasized that in equa-
tion (2.31), no requirements apply to 𝝉 [contrary to 𝜺 in problem (2.11)]. Taking the volume
average of equation (2.29)2, it is found that the apparent stiffness 𝐂ess(Ω) is retrieved from the
solution to equation (2.31) as follows

[𝐂ess(Ω) − 𝐂0] ∶ 𝜺 = ⟨𝝉⟩. (2.32)

Turning now to periodic boundary conditions, it can be similarly shown that the correc-
tor problem with periodic boundary conditions (2.16) is equivalent to the following periodic
Lippmann–Schwinger equation

(𝐂 − 𝐂0)−1 ∶ 𝝉 + 𝚪per
0 [𝝉] = 𝜺, (2.33)

and we again have in that case

[𝐂per(Ω) − 𝐂0] ∶ 𝜺 = ⟨𝝉⟩. (2.34)

2.3.2 The Hashin–Shtrikman principle
The variational principle of Hashin and Shtrikman [HS62b] was initially introduced for kine-
matic uniform boundary conditions. However, its statement for periodic boundary conditions
is identical [MK88]. We therefore adopt generic notations in the present section whereby 𝚪0
stands for 𝚪ess

0 (resp. 𝚪per
0 ) and 𝐂app(Ω) stands for 𝐂ess(Ω) [resp. 𝐂per(Ω)] for kinematic uni-

form boundary conditions (resp. periodic boundary conditions). In both cases, the Lippmann–
Schwinger equation reads [see equations (2.31) and (2.33)]

(𝐂 − 𝐂0)−1 ∶ 𝝉 + 𝚪0[𝝉] = 𝜺, (2.35)
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the solution ofwhichwill be denoted 𝝉⋆ in the present section. The following functional (which
will be called the Hashin–Shtrikman functional in the remainder of this work) is defined for
any stress-polarization 𝝉 (viewed as a trial function)

HS(𝝉; 𝜺) = 1
2𝜺 ∶ 𝐂0 ∶ 𝜺 + 𝜺 ∶ ⟨𝝉⟩ − 1

2⟨𝝉 ∶ (𝐂 − 𝐂0)−1 ∶ 𝝉⟩ − 1
2⟨𝝉 ∶ 𝚪0[𝝉]⟩. (2.36)

For 𝚪0 = 𝚪ess
0 (resp. 𝚪0 = 𝚪per

0 ), the above equation defines HSess (resp. HSper). Regardless
of the reference medium 𝐂0 and the boundary conditions, the Hashin–Shtrikman functional
HS is stationary at the solution 𝝉⋆ of the Lippmann–Schwinger equation (2.35). Besides, its
value at 𝝉⋆ is known

HS(𝝉⋆; 𝜺) = 1
2𝜺 ∶ 𝐂app(Ω) ∶ 𝜺. (2.37)

When the stiffness 𝐂0 of the reference medium is arbitrary, the nature (minimum, maximum
or saddle point) of the critical point of HS cannot be stated. However, the above variational
principle turns into an extremum principle if the reference medium is stiffer (resp. softer) than
any phase of the composite. More precisely, if 𝐂(𝐱) ≥ 𝐂0 (resp. 𝐂(𝐱) ≤ 𝐂0) at any point
𝐱 ∈ Ω, then 𝝉⋆ is the unique maximizer (resp. minimizer) of HS

𝐂0
≥
≤ 𝐂 ⇒ HS(𝝉; 𝜺)

≥
≤ 1

2𝜺 ∶ 𝐂app(Ω) ∶ 𝜺 for all 𝝉 ∈ 𝒯2(Ω), (2.38)

where 𝐂 ≥ 𝐂0 (resp. 𝐂 ≤ 𝐂0) is a shorthand for “𝐂(𝐱) − 𝐂0 is positive (resp. negative)
indefinite at any point 𝐱 ∈ Ω”.

The above bounds on the macroscopic energy can readily be turned into bounds on the
apparent stiffness. To do so, we select trial stress-polarizations that depend linearly on the
macroscopic strain 𝜺 through some (fourth-rank) localization tensor 𝐓 [𝝉(𝐱) = 𝐓(𝐱) ∶ 𝜺 for all
𝐱 ∈ Ω]. The Hashin–Shtrikman functional then becomes a quadratic form of the macroscopic
strain 𝜺, which can be recast as

HS(𝐓 ∶ 𝜺; 𝜺) = 1
2𝜺 ∶ 𝐂HS ∶ 𝜺, (2.39)

and equation (2.38) translates into

𝐂0
≥
≤ 𝐂 ⇒ 𝐂HS ≥

≤ 𝐂app(Ω). (2.40)

The Hashin–Shtrikman principle is a powerful tool, which can provide bounds on the macro-
scopic elastic energy for any choice of the stress-polarization 𝝉 . Of course, tight bounds require
complex stress-polarization fields, but even very simple choices can result in bounds that im-
prove significantly upon the classical Voigt and Reuss bounds. For example, the celebrated
bounds of [HS62a] are obtained with phase-wise constant stress-polarization fields. These
bounds are universal: they apply to any statically isotropic composite (regardless of the de-
tails of its microstructure). This asset can also be seen as a weakness, as will be discussed in
section 3.2.
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Chapter 2 General framework

Remark 2.3. In the Lippmann–Schwinger equations (2.31) and (2.33) as well as in the defi-
nition (2.36) of the Hashin–Shtrikman functional, the term involving (𝐂 − 𝐂0) is singular in
these regions of the domain Ω where 𝐂 = 𝐂0. In these regions, the stress-polarization 𝝉 must
be set to 𝟎. More generally, the stress-polarization must be orthogonal to the null-space of the
linear operator 𝐂 − 𝐂0.

Accounting for this special case would unnecessarily complicate the discussions that follow
(see for example [BD12]). Therefore, from now on, it will be assumed that 𝐂 − 𝐂0 is invertible
at any point of the domain Ω.
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Chapter 3
Bounds on the effective properties
In section 1.3 of chapter 1, we introduced statistical homogenization methods, that strive to
relate the macroscopic properties of heterogeneous materials to some statistical descriptors of
their microstructure. The present chapter gathers a few applications of the Hashin–Shtrikman
principle that could accordingly be thought of as statistical.

It opens in section 3.1 with the classical bounds of Hashin–Shtrikman, which are revisited
in the light of our paper [BSD13]. A general methodology is proposed for the derivation of
bounds of the Hashin–Shtrikman type, that is then consistently applied throughout this chap-
ter. Observing that the trial stress-polarizations used to derive the classical Hashin–Shtrikman
bounds are quite poor, section 3.2 investigates possible enrichments, with the hope to produce
sharper bounds. It is shown that the Hashin–Shtrikman bounds are remarkably robust. How-
ever, it is also argued in this section that the new enrichment procedure recently proposed in
reference [Bri17b] offers exciting perspectives. The chapter closes with various, unrelated,
successful applications of the Hashin–Shtrikman principle within the framework of statistical
approaches: nanocomposites (see section 3.3 and references [BDK10a]; [BDK10b]), eigen-
stressed materials (see section 3.4 and references [BG17]; [BG18]) and stress-gradient mate-
rials (see section 3.5 and references [Tra+18a]; [Tra+18b]; [Tra16]).

In the present chapter, 𝜒 denotes the indicator function of the SVE Ω ⊂ ℝ𝑑 : 𝜒(𝐱) ∈ {0, 1},
𝜒(𝐱) = 1 ⟺ 𝐱 ∈ Ω. The bounded domain Ω will frequently be embedded in a homogeneous
reference material that occupies the whole space Ω ⊂ ℝ𝑑 . We will therefore often consider
local quantities 𝒬 that are defined over the whole space. Despite that, ⟨𝒬⟩ will always refer to
its volume average over the domain Ω [consistently with equation (2.1)].

3.1 Classical bounds – The “modified” Green operator
It has already beenmentioned in section 2.2 that the definition of the fourth-rankGreen operator
for essential boundary conditions 𝚪ess

0 is formal. Indeed, a closed-form expression of this
operator is in general not known. As such, the Hashin–Shtrikman principle is arguably useless.
However, it is customary, for “large” domains Ω to approximate 𝚪ess

0 with the Green operator
𝚪∞

0 of the whole space ℝ𝑑 as follows
𝚪ess

0 [𝝉] ≈ 𝚪∞
0 [𝝉 − 𝜒⟨𝝉⟩], (3.1)

where 𝝉 ∈ 𝒯2(Ω). It should be observed that 𝝉 is defined in Ω (since it is to be applied to
Γess

0 ); for equation (3.1) to be meaningful, 𝝉 is extended to the whole space ℝ𝑑 with 𝝉(𝐱) = 𝟎
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for 𝐱 ∉ Ω. Therefore, 𝝉 − 𝜒⟨𝝉⟩ is also defined over the whole space and supported in Ω. It
is also noted that applying in equation (3.1) 𝚪∞

0 to the fluctuations of the stress-polarization,
rather than the stress-polarization itself is necessary in order to preserve property (2.27) of the
exact Green operator Γess

0 .
Approximation (3.1) is usually attributed to Willis [Wil77], but can be traced back to Brown

[Bro55] who (within the framework of conductivity) introduced a similar correction in or-
der to analyze the thermodynamic limit of conditionally convergent integrals (see also refer-
ence [Tor97]). Although it has successfully been invoked on multiple occasions [PW95], the
meaning of this approximation is rather unclear, and it must be emphasized that it was justified
by Willis on the basis of heuristic arguments only. How should equation (3.1) be understood?
Surely not point-wise, as it must fail near the boundary of Ω (regardless of how large Ω is).
I have long been puzzled by this point, until I stumbled upon an indirect, rigorous justifica-
tion of the use of the right-hand side of equation (3.1) as a new, modified Green operator. In
this approach, which is briefly summarized in the present section, approximation (3.1) is no
longer invoked (and it indeed does not hold). More details, including proofs, can be found in
reference [BSD13].

3.1.1 The modified Lippmann–Schwinger equation
For the sake of clarity, the Lippmann–Schwinger equation (2.31) introduced in section 2.3.1 is
reproduced below

(𝐂 − 𝐂0)−1 ∶ 𝝉 + 𝚪ess
0 [𝝉] = 𝜺, (3.2)

where 𝜺 denotes the (prescribed) macroscopic strain. Following Willis [Wil77], this equation
is conveniently replaced with the following, more tractable integral equation

(𝐂 − 𝐂0)−1 ∶ 𝝉 + 𝚪∞
0 [𝝉 − 𝜒⟨𝝉⟩] = 𝜺, (3.3)

and the solution to equation (3.3) is deemed to provide a good approximation of the solution
to equation (3.2) for “large” domains Ω. Clearly, such a statement would be quite hard to
prove mathematically. I therefore took a different route in [BSD13]. In this work, rather than
considering equation (3.3) as an approximation to equation (3.2), I considered this equation in
its own right, with no reference to the initial problem with essential boundary conditions.

Equation (3.3) will henceforth be referred to as the modified Lippmann–Schwinger equa-
tion. For the time being, 𝜺 in this equation is considered as a mere loading parameter, with
no connection with the macroscopic strain. Let 𝝉 ∈ 𝒯2(Ω) denote the unique solution to
equation (3.3) (assessment of the existence and uniqueness of this solution is deferred to sec-
tion 3.1.4). It is first observed that 𝝉 defines a compatible strain field 𝜺 ∈ ℰ(Ω)

𝜺 = (𝐂 − 𝐂0)−1 ∶ 𝝉 = 𝜺 − 𝚪∞
0 [𝝉 − 𝜒⟨𝝉⟩]. (3.4)

That 𝜺 is geometrically compatible overℝ𝑑 (hence, overΩ) readily results from the definition
of the Green operator of the whole space (see section 2.2.3). Furthermore, 𝐂0 ∶ 𝜺 + 𝝉 − 𝜒⟨𝝉⟩

42



3.1 Classical bounds – The “modified” Green operator

is divergence-free over ℝ𝑑 . Therefore, 𝐂0 ∶ 𝜺 + 𝝉 is divergence-free over Ω, and we define the
following stress field

𝝈 = 𝐂0 ∶ 𝜺 + 𝝉. (3.5)

It should be emphasized that 𝝈 is not divergence-free over the whole space ℝ𝑑 , since the
traction 𝝈 ⋅ 𝐧 is discontinuous at the boundary 𝜕Ω. Combining equations (3.4) and (3.5), it is
readily found that 𝝈 = 𝐂 ∶ 𝜺 in Ω. To summarize, the solution 𝝉 to the modified Lippmann–
Schwinger equation (3.3) allowed us to construct, for a prescribed strain 𝜺, a geometrically
compatible strain 𝜺 ∈ ℰ(Ω) and a divergence-free stress 𝝈 ∈ 𝒮 (Ω) that are related through the
local constitutive equation of the heterogeneous material. This suggests that a new apparent
stiffness [which would differ from 𝐂ess(Ω), 𝐂nat(Ω) or 𝐂per(Ω) defined in section 2.1.2] may
be defined, based on 𝝈 and 𝜺 thus constructed. More precisely, observing that equations (3.3),
(3.4) and (3.5) are linear, it is possible to introduce the strain- and stress- localization tensors
𝐀mix and 𝐁mix and the apparent stiffness 𝐂mix(𝐂0, Ω) defined as

⟨𝜺⟩ = 𝐀mix ∶ 𝜺, ⟨𝝈⟩ = 𝐁mix ∶ 𝜺 and 𝐂mix(𝐂0, Ω) = 𝐁mix ∶ (𝐀mix)
−1, (3.6)

the above definitions ensuring that equation (2.5) holds for𝐂mix(𝐂0, Ω). Besides, equation (3.5)
trivially results in

[𝐂mix(𝐂0, Ω) − 𝐂0] ∶ ⟨𝜺⟩ = ⟨𝝉⟩. (3.7)

In equations (3.6) and (3.7), the subscript “mix” stands for mixed boundary conditions, be-
cause the modified Lippmann–Schwinger equation (3.3) is equivalent to a problem of elastic
equilibrium where both static (on the boundary 𝜕Ω of the SVE) and kinematic (at infinity)
boundary conditions (see section 3.1.2) are applied. However, such terminology is rather poor,
as many alternative mixed boundary conditions can be proposed. Being unambiguous in the
present work, this terminology will however be preserved.

It is observed that the newly introduced apparent stiffness depends not only on the shape
of the SVE Ω, but also on the stiffness 𝐂0 of the reference material. The above definition
immediatly raises an essential question: is the apparent stiffness 𝐂mix(𝐂0, Ω) consistent? By
consistency, we mean here that 𝐂mix(𝐂0, Ω) should converge to the effective stiffness 𝐂eff as
the size of the SVE Ω tends to infinity (see section 2.1.4). This question will be addressed in
section 3.1.2, the remainder of this section being devoted to understanding the meaning of the
loading parameter 𝜺.

To do so, a remarkable mathematical property of the Green operator 𝚪∞
0 will be used (see

theorem 2 in reference [BSD13]). Assuming that Ω is ellipsoidal, and that 𝝕 ∈ 𝒯2(ℝ𝑑) is
supported in Ω, then

⟨𝚪∞
0 [𝝕]⟩ = 𝐏0(Ω) ∶ ⟨𝝕⟩, (3.8)

where 𝐏0(Ω) denotes the Hill tensor of ellipsoid Ω with respect to the reference material 𝐂0.
Two comments should be made regarding equation (3.8). First, if 𝝕 is constant within Ω,
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then it coincides with the celebrated result of Eshelby [Esh57]. Second, an earlier proof of this
equation can be found in reference [RH91]1.

Combining equations (3.4) and (3.8), it is readily found that ⟨𝜺⟩ = 𝜺 for the strain de-
fined through equation (3.4) from the solution 𝝉 to the modified Lippmann–Schwinger equa-
tion (3.3). In other words, the loading parameter 𝜺 coincides with the macroscopic strain,
which is prescribed in this approach. In turn, this simplifies the computation of the apparent
stiffness 𝐂mix(𝐂0, Ω) [initially defined by equation (3.6)] as the linear operator that maps the
prescribed macroscopic strain onto the macroscopic stress

⟨𝝈⟩ = 𝐂mix(𝐂0, Ω) ∶ 𝜺 = 𝐂mix(𝐂0, Ω) ∶ ⟨𝜺⟩. (3.9)

Together with the symmetry of the Green operator 𝚪∞
0 (see lemma 1 in reference [BSD13]),

this further leads to the symmetry of the apparent stiffness 𝐂mix(𝐂0, Ω), which was not obvious
from equations (3.6). Also, equation (3.7) reads

[𝐂mix(𝐂0, Ω) − 𝐂0] ∶ 𝜺 = ⟨𝝉⟩. (3.10)

Unless otherwise stated, it will always be assumed in the remainder of section 3.1 that Ω is
ellipsoidal. Therefore, equations (3.8), (3.9) and (3.10) hold.

3.1.2 The underlying corrector problem
In the previous section 3.1.1, the new apparent stiffness 𝐂mix(𝐂0, Ω) was introduced by means
of the solution 𝝉 to the modified Lippmann–Schwinger equation (3.3), the local strain 𝜺 and
stress 𝝈 being reconstructed a posteriori from 𝝉 [see equations (3.4) and (3.5)].

While working on the paper [BSD13], it was observed by K. Sab that this new apparent
stiffness could be given a mechanical interpretation, provided that Ω is ellipsoidal. Indeed, the
local strain and stress fields solve the following problem

Find 𝐭 ∈ 𝒯2, 𝜺 ∈ 𝜺+ℰ(ℝ𝑑) and 𝝈 ∈ 𝜒𝐭+𝒮 (ℝ𝑑) such that
⎧⎪
⎨
⎪⎩

𝝈 = 𝐂 ∶ 𝜺 (Ω),
𝝈 = 𝐂0 ∶ 𝜺 (ℝ𝑑 ⧵ Ω),
⟨𝜺⟩ = 𝜺,

(3.11)

where 𝐭 is an unknown constant, symmetric, second-rank tensor that is selected in order to
further ensure that ⟨𝜺⟩ = 𝜺.

It should be observed that problem (3.11) is formulated over the whole space ℝ𝑑 ; its well-
posedness must therefore be assessed carefully, and the mathematical developments that were
required to this effect will be briefly exposed in section 3.1.4 (in particular, 𝜺 − 𝜺 and 𝝈 − 𝜒𝐭
are square integrable over the whole space). Also, although the strain and stress tensors 𝜺 and
𝝈 are defined over the full space ℝ𝑑 , only their values within the SVE Ω are really relevant.
In particular, it is recalled that quantities such as ⟨𝜺⟩ are to be understood as volume averages
over the SVE Ω.
1It should however be noted that the proof of these authors relies on Fubini’s theorem. Owing to the singularities

of the Green operator, the applicability of this theorem seems questionable.

44



3.1 Classical bounds – The “modified” Green operator

𝜺(𝐱) → 𝜺, ‖𝐱‖ → +∞
𝐂0

ℝ𝑑

𝐂(𝐱)

[[𝝈]] ⋅ 𝐧 = −𝐭 ⋅ 𝐧
Ω

𝐧(𝐱)
𝐱

Figure 3.1: Illustration of the mixed boundary conditions introduced in section 3.1.2. The SVE Ω is embedded
in the unbounded reference material 𝐂0. A uniform strain 𝜺 is imposed at infinity, and the uniform traction 𝐭 that
is applied at the boundary 𝜕Ω is selected so as to ensure that the prescribed strain at infinity coincides with the
average strain within the SVE, 𝜺 = ⟨𝜺⟩. (Reproduced from reference [BSD13])

Problem (3.11) should be understood as follows (see also figure 3.1): the heterogeneous,
ellipsoidal SVE Ω is embedded in the unbounded reference material, which is subjected to a
uniform strain 𝜺 at infinity. Surface loads are also applied to the boundary 𝜕Ω. Their density
is given by the expression [[𝝈]] ⋅ 𝐧 = −𝐭 ⋅ 𝐧, where 𝐭 is an unknown, constant tensor chosen a
posteriori in order to ensure that the macroscopic strain ⟨𝜺⟩ coincides with the strain at infinity
𝜺. It is emphasized that in problem (3.11), 𝜺 is the sole loading parameter, since 𝐭 is not a free
parameter. It is remarkable that this additional unknown does not appear in the formulation as
the integral equation (3.3) [it can readily be shown that in fact, 𝐭 = ⟨𝝉⟩].

In practice, problem (3.11) can be solved through two sub-problems. In the first sub-problem,
only the uniform strain at infinity is applied

Find 𝜺 ∈ 𝜺 + ℰ(ℝ𝑑) and 𝝈 ∈ 𝒮 (ℝ𝑑) such that
{

𝝈 = 𝐂 ∶ 𝜺 (Ω),
𝝈 = 𝐂0 ∶ 𝜺 (ℝ𝑑 ⧵ Ω)

(3.12)

and its solution depends linearly on the loading parameter 𝜺: ⟨𝜺⟩ = 𝐀1 ∶ 𝜺 and ⟨𝝈⟩ = 𝐁1 ∶ 𝜺.
In the second sub-problem, only the (given) surface load is applied at the boundary of the SVE
Ω

Find 𝜺 ∈ ℰ(ℝ𝑑) and 𝝈 ∈ 𝜒𝐭 + 𝒮 (ℝ𝑑) such that
{

𝝈 = 𝐂 ∶ 𝜺 (Ω),
𝝈 = 𝐂0 ∶ 𝜺 (ℝ𝑑 ⧵ Ω),

(3.13)

and we now have for this sub-problem ⟨𝜺⟩ = 𝐀2 ∶ 𝐭 and ⟨𝝈⟩ = 𝐁2 ∶ 𝐭. When both 𝜺 and 𝐭 are
applied, we have ⟨𝜺⟩ = 𝐀1 ∶ 𝜺 + 𝐀2 ∶ 𝐭. Enforcing that ⟨𝜺⟩ = 𝜺 leads to

𝐭 = 𝐀−1
2 ∶ (𝐈 − 𝐀1) ∶ 𝜺 and ⟨𝝈⟩ = [𝐁1 + 𝐁2 ∶ 𝐀−1

2 ∶ (𝐈 − 𝐀1)] ∶ 𝜺, (3.14)

where the quantity within the square brackets is the seeked apparent stiffness 𝐂mix(𝐂0, Ω).
Reformulation of the modified Lippmann–Schwinger equation (3.3) as the mechanical prob-

lem (3.11) then allowed us to derive the associated principles of minimum potential and com-
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plementary energy (see theorems 8 and 9 in reference [BSD13]). In turn, the following impor-
tant property of the apparent stiffness resulted from these principles

𝐂nat(Ω) ≤ 𝐂mix(𝐂0, Ω) ≤ 𝐂ess(Ω), (3.15)

and in fact

• 𝐂mix(𝐂0, Ω) → 𝐂ess(Ω) for “rigid” reference materials (“𝐂0 → +∞”),
• 𝐂mix(𝐂0, Ω) → 𝐂nat(Ω) for “soft” reference materials (“𝐂0 → 0”),

both results being stated less loosely in reference [BSD13] (see theorems 10 and 11). Clearly,
𝐂mix(𝐂0, Ω) can therefore not be considered as an approximation of 𝐂ess(Ω). However, under
the assumption of statistical homogeneity and ergodicity, it is known that 𝐂nat(Ω), 𝐂ess(Ω) →
𝐂eff for large SVEs [Sab92]. Therefore, equation (3.15) proves that the newly defined apparent
stiffness is consistent, in the sense that 𝐂mix(𝐂0, Ω) → 𝐂eff for large SVEs.

3.1.3 The modified Hashin–Shtrikman principle
Probably themost important result related to themodified Lippmann–Schwinger equation (3.3)
and the related apparent stiffness 𝐂mix(𝐂0, Ω) is the fact that it is possible to state a variational
principle similar to that of Hashin and Shtrikman [HS62b]. More precisely, we introduce the
following functional (see reference [BSD13], theorem 12)

HSmix(𝝉; 𝜺) = 1
2𝜺 ∶ 𝐂0 ∶ 𝜺+𝜺 ∶ ⟨𝝉⟩− 1

2⟨𝝉 ∶ (𝐂−𝐂0)−1 ∶ 𝝉⟩− 1
2⟨𝝉 ∶ 𝚪∞

0 [𝝉 −𝜒⟨𝝉⟩]⟩, (3.16)

for any test function 𝝉 supported in Ω. It can then be shown that HSmix enjoys the same prop-
erties as the similar functionals defined for essential or periodic boundary conditions (see sec-
tion 2.3.2). More precisely, HSmix is stationary at the solution 𝝉⋆ to the modified Lippmann–
Schwinger equation (3.3). Besides, at this critical point

HSmix(𝝉⋆; 𝜺) = 1
2𝜺 ∶ 𝐂mix(𝐂0, Ω) ∶ 𝜺. (3.17)

For reference materials that are softer or stiffer than all phases in the composite, the above
stationarity condition turns into an extremum condition

𝐂0
≥
≤ 𝐂 ⇒ HSmix(𝝉; 𝜺)

≥
≤ 1

2𝜺 ∶ 𝐂mix(𝐂0, Ω) ∶ 𝜺
for all 𝝉 ∈ 𝒯2(ℝ𝑑) supported in Ω. (3.18)

For a finite-size SVE Ω, the above stated modified Hashin–Shtrikman principle allows to
produce bounds on the apparent stiffness 𝐂mix(𝐂0, Ω). Then, letting the size of Ω grow to
infinity will result in rigorous bounds on the effective properties of the heterogeneous material
(see section 3.1.5).

It should be observed that the functional HSmix defined by equation (3.16) is superior to
HSess defined by equation (2.36) in that it involves a unique Green operator (regardless of the
shape and size of the ellipsoidal SVE Ω), namely 𝚪∞

0 which is known in closed-form.

46



3.1 Classical bounds – The “modified” Green operator

3.1.4 On the solution to elasticity problems in the whole space
In the present section, we briefly sketch some of the results that were needed for the mathemat-
ical analysis of problem (2.23) that defines the Green operator 𝚪∞

0 , the modified Lippmann–
Schwinger equation (3.3) and the equivalent problem (3.11).

It is first emphasized that the analysis presented in [BSD13] was eased considerably by
the observation that local displacements are of little use in a homogenization perspective that
essentially requires local strains and stresses. For each elasticity problem that was formulated
on the whole space ℝ𝑑 , we therefore did not require the uniqueness of the displacement and
were not concerned by its regularity.

This observation led us to prefer the space of compatible strains over the space of kinemat-
ically admissible displacements. It is recalled that in section 2.1.2, we introduced the spaces
of second-rank, symmetric tensor fields 𝒯2(ℝ𝑑) with square-integrable components, the space
of compatible strain fields ℰ(ℝ𝑑) ⊂ 𝒯2(ℝ𝑑) and the space of divergence-free stress fields
𝒮 (ℝ𝑑) ⊂ 𝒯2(ℝ𝑑). In reference [BSD13] (see theorem 4), we first proved that these spaces are
in direct orthogonal sum

𝒯2(ℝ𝑑) = ℰ(ℝ𝑑)
⟂
⊕ 𝒮 (ℝ𝑑) for the scalar product ⟨𝝈, 𝜺⟩ = ∫𝐱∈ℝ𝑑

𝝈(𝐱) ∶ 𝜺(𝐱) d𝑉𝐱, (3.19)

see also reference [Mil02] for a similar result in a periodic setting. Introducing a variational
setting, we then went on to prove the well-posedness of problem (2.23), which resulted in a
rigorous definition of 𝚪∞

0 ∶ 𝒯2(ℝ𝑑) → ℰ(ℝ𝑑) (see theorems 6 and 7 in reference [BSD13]). A
similar analysis also allowed us to prove that the modified Lippmann–Schwinger equation (3.3)
is well-posed in 𝒯2(ℝ𝑑). All other results listed in sections 3.1.1, 3.1.2 and 3.1.3 were then
obtained.

To close this section, it should be observed that well-posedness of problem (2.23) is a some-
what classical result among mathematicians2 (to the point that we were not able to point at a
specific reference). The traditional route would be to consider the following regularized prob-
lem

Find 𝐮 ∈ [H1(ℝ𝑑)]𝑑 such that 𝜂𝐮 − div(𝐂0 ∶ 𝝐[𝐮] + 𝝕) = 𝟎, (3.20)

where 𝜂 ≥ 0. When 𝜂 = 0, the initial problem (2.23) is recovered. When 𝜂 > 0, coercivity
is readily proved for the above problem, which is therefore well-posed; 𝐮𝜂 denotes its unique
solution. It can be shown that, as 𝜂 → 0, 𝜂𝐮𝜂 converges strongly to 0 in [L2(ℝ𝑑)]𝑑 (up to a
sub-sequence), while 𝝐[𝐮𝜂] converges weakly (up to a sub-sequence) to 𝜺0 in 𝒯2(ℝ𝑑), such that
div(𝐂0 ∶ 𝜺0 + 𝝕) = 𝟎.

It is then shown that there exists 𝐮0 ∈ [L2
loc(ℝ

𝑑)]𝑑 such that 𝜺0 = 𝝐[𝐮0], which completes the
proof. It is observed that, besides the regularity of the strain field, this approach also provides
the regularity of the displacement field, which was not required (and indeed, overlooked) in
our approach.
2F. Legoll, private communication, oct. 3rd, 2016.
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3.1.5 The classical Hashin–Shtrikman bounds revisited
We are now in a position to revisit the classical Hashin–Shtrikman bounds [HS62a]; [Wil77],
the derivation of which is outlined below. Including this derivation in the present work serves
two purposes. First, it underlines the fact that using the modified Hashin–Shtrikman principle
introduced in section 3.1.3 avoids the need for ad-hoc approximations of the Green operator
for strains. Second, it introduces the more elaborate derivations that will be presented in the
remainder of this chapter.

We now assume that a reference material with elastic stiffness 𝐂0 has been chosen, such that
𝐂0 ≥ 𝐂 at any point of the heterogeneous material3. Then, from the principle (3.18),

1
2𝜺 ∶ 𝐂mix(𝐂0, Ω) ∶ 𝜺 ≤ HSmix(𝝉; 𝜺), (3.21)

for all 𝝉 ∈ 𝒯2(ℝ𝑑), supported in Ω. Following Hashin and Shtrikman, the above inequality is
tested with a phase-wise constant stress-polarization field.

At this point, it should be emphasized that the Hashin–Shtrikman bounds should be derived
within the probabilistic setting of random homogenization. This means that equation (3.21)
is really written for one SVE Ω, that is one realization of the random material, occupying the
ellipsoidal domain Ω. This realization is produced from an infinite realization, discarding all
materials that fall outside the domain Ω.

Assuming that the stress-polarization 𝝉 is properly defined as a weakly homogeneous, er-
godic random field (over the whole space ℝ𝑑), inequality (3.21) then holds realization-by-
realization for the truncated stress-polarization field 𝜒𝝉 (which is indeed supported in Ω).
Ensemble averaging both sides, we get for infinitely large domains Ω

1
2𝜺 ∶ 𝐂eff ∶ 𝜺 ≤ lim

|Ω|→+∞
𝔼[HS(𝜒𝝉; 𝜺)], (3.22)

where the “mix” superscript has been omitted, as mixed boudary conditions will be assumed
from now on unless otherwise stated. Under mild assumptions, it can be shown that

lim
|Ω|→+∞

𝔼[HS(𝜒𝝉; 𝜺)] = 1
2𝜺 ∶ 𝐂0 ∶ 𝜺 + 𝜺 ∶ 𝔼𝝉

− 1
2 ∑𝛼

(𝐂𝛼 − 𝐂0)−1 ∶∶ 𝔼[𝜒𝛼(𝟎) 𝝉(𝟎) ⊗ 𝝉(𝟎)]

− 1
2𝐏0 ∶∶ 𝐑𝜏𝜏(𝟎) − 1

2 lim
𝛿→0 ∫𝐫∈ℝ𝑑

‖𝐫‖≥𝛿

𝚪∞
0 (𝐫) ∶∶ 𝐑𝜏𝜏(𝐫) d𝑉𝐫 , (3.23)

see appendix B for a detailed proof. In the above equation, 𝐑𝜏𝜏 denotes the autocovariance of
the trial stress-polarization random field: 𝐑𝜏𝜏(𝐫) = 𝔼[𝝉(𝟎) ⊗ 𝝉(𝐫)] − 𝔼𝝉 ⊗ 𝔼𝝉 .

To sum up, in order to produce an upper-bound on the effective stiffness, we need to chose
the statistically homogeneous random field 𝝉 (trial stress-polarization) and evaluate the right-
hand side of inequality (3.22) using equation (3.23).
3Conversely, if 𝐂0 ≤ 𝐂 at any point of the heterogeneous material, inequality (3.21) should be reversed.
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To do so, it is recalled that 𝜒𝛼 denotes the indicator function of phase 𝛼 = 1, … , 𝑁 . We
observe that 𝜒, 𝜒1, … , 𝜒𝑁 are all defined over the whole space ℝ𝑑 and that 𝜒 is deterministic
while 𝜒1, … , 𝜒𝑁 are random fields. With these observations at hand, we select the following
phase-wise constant trial stress-polarization

𝝉(𝐱) = ∑𝛼
𝜒𝛼(𝐱) 𝝉𝛼, (3.24)

for all 𝐱 ∈ ℝ𝑑 , where 𝝉1, … , 𝝉𝑁 are deterministic, second-rank, symmetric tensors4. Their
actual values will be found later through optimization of the modified Hashin–Shtrikman func-
tional HS. It should be noted that the trial stress-polarization field thus constructed is obvi-
ously statistically homogeneous and ergodic, since it is a linear combination of the statistically
homogeneous and ergodic random fields 𝜒1, … , 𝜒𝑁 .Therefore, equation (3.23) holds and we
have

𝔼𝝉 = ∑𝛼
𝑓𝛼𝝉𝛼, 𝔼[𝜒𝛼(𝟎) 𝝉(𝟎) ⊗ 𝝉(𝟎)] = ∑𝛼

𝑓𝛼𝝉𝛼 ⊗ 𝝉𝛼

and 𝐑𝜏𝜏(𝐫) = ∑
𝛼,𝛽

[𝑆𝛼𝛽(𝐫) − 𝑓𝛼𝑓𝛽] 𝝉𝛼 ⊗ 𝝉𝛽 , (3.25)

where 𝑆𝛼𝛽(𝐫) = 𝔼[𝜒𝛼(𝟎)𝜒𝛽(𝐫)] denotes the two-point probability function of phases 𝛼 and 𝛽.
Gathering equations (3.23) and (3.25), we finally find that

1
2𝜺 ∶ 𝐂eff ∶ 𝜺 ≤ lim

|Ω|→+∞
𝔼[HS(𝜒𝝉; 𝜺)] = 1

2𝜺 ∶ 𝐂0 ∶ 𝜺 + ∑𝛼
𝑓𝛼𝝉𝛼 ∶ 𝜺

− 1
2 ∑𝛼

𝑓𝛼𝝉𝛼 ∶ (𝐂𝛼 − 𝐂0)−1 ∶ 𝝉𝛼 − 1
2 ∑

𝛼,𝛽
𝝉𝛼 ∶ 𝐏𝛼𝛽 ∶ 𝝉𝛽 , (3.26)

where

𝐏𝛼𝛽 = [𝑆𝛼𝛽(𝟎) − 𝑓𝛼𝑓𝛽] 𝐏0 + lim
𝛿→0 ∫𝐫∈ℝ𝑑

‖𝐫‖≥𝛿
[𝑆𝛼𝛽(𝐫) − 𝑓𝛼𝑓𝛽]𝚪∞

0 (𝐫) d𝑉𝐫 . (3.27)

The above bound on the macroscopic strain energy is then optimized with respect to the free
parameters 𝝉1, … , 𝝉𝑁 , leading to the stationarity conditions

𝑓𝛼(𝐂𝛼 − 𝐂0)−1 ∶ 𝝉𝛼 + ∑
𝛽

𝐏𝛼𝛽 ∶ 𝝉𝛽 = 𝑓𝛼𝜺, (3.28)

and finally to the optimal bound
1
2𝜺 ∶ 𝐂eff ∶ 𝜺 ≤ 1

2𝜺 ∶ 𝐂0 ∶ 𝜺 + 1
2 ∑𝛼

𝑓𝛼𝝉𝛼 ∶ 𝜺. (3.29)

4It is recalled that, unless otherwise stated, sums over Greek indices run from 1 to 𝑁 : ∑𝛼 ⋯ = ∑𝑁
𝛼=1 ⋯
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When all two-point probability functions 𝑆𝛼𝛽(𝐫) depend on the norm of the lag vector 𝐫 only
(the microstructure is then said to be statistically isotropic in the weak sense), a closed-form
expression of the above bound can be derived [Wil77]. Indeed, in that case

𝐏𝛼𝛽 = 𝑓𝛼(𝛿𝛼𝛽 − 𝑓𝛽) 𝐏0, (3.30)
where 𝐏0 denotes Hill’s tensor of a spherical inclusion embedded in the reference material 𝐂0.
Then

𝐂eff ≤ 𝐂HS = ∑𝛼
𝑓𝛼𝐂𝛼 ∶ 𝐀HS

𝛼 , (3.31)

with
𝐀HS

𝛼 = 𝐀∞
𝛼 ∶ (∑𝛽 𝑓𝛽𝐀∞

𝛽 )
−1 and 𝐀∞

𝛼 = [𝐈 + 𝐏0 ∶ (𝐂𝛼 − 𝐂0)]
−1, (3.32)

which denote the Hashin–Shtrikman and dilute estimates of the strain localization tensor of
phase 𝛼 = 1, … , 𝑁 , respectively. This completes the derivation of the classical bounds of
Hashin and Shtrikman [HS62a] for weakly isotropic heterogeneous materials. Keeping this
derivation in mind will help understand the developments presented in the remainder of this
chapter.

Before we proceed, it should be observed that the above developments have successfully
been extended to so-called ellipsoidal distributions in reference [Wil77] and more famously –
for particulate microstructures– in reference [PW95]. However, the physical meaning of these
distribution remains rather mysterious. In particular, it is not clear whether such microstruc-
tures are realizable, except in the trivial case where all two-point probability functions 𝑆𝛼𝛽
depend on the same quantity √𝐫 ⋅ 𝐐 ⋅ 𝐫 (𝐐: second-rank, symmetric, positive definite tensor).

***
In the previous section, we have introduced a new apparent stiffness 𝐂mix(𝐂0, Ω) that better

lends itself to estimation through an integral equation of the Lippmann–Schwinger type than
the usual apparent stiffness 𝐂ess(Ω) associated with essential boundary conditions. Contrary to
what was suggested in the literature, 𝐂mix(𝐂0, Ω) should not be considered as approximating
𝐂ess(Ω) – and in fact, there is no need to. This new apparent stiffness is consistent in the
sense of homogenization: for infinitely large SVEs, the effective stiffness is indeed recovered.
The modified Hashin–Shtrikman functional – already used in e.g. [PW95]; [Wil77] – delivers
rigorous bounds on 𝐂mix(𝐂0, Ω), hence on the effective stiffness 𝐂eff .

These results can of course be used for the determination of Hashin–Shtrikman like bounds
on the effective properties (as will be illustrated in the remainder of this chapter). In the next
chapter, it will further be shown that the modified Lippmann–Schwinger equation and Hashin–
Shtrikman principle are essential ingredients leading to a variational form of the equivalent
inclusion method (see section 4.3).

3.2 The (hopeless?) quest for improved bounds
The celebrated bounds of Hashin and Shtrikman [HS62a] are universal in the sense that they
hold for any (weakly isotropic) composite. Although this universality is usually seen as a
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Figure 3.2: Hashin–Shtrikman bounds cannot discriminate between the above two isotropic microstructures, al-
though they look different. The microstructure on the left-hand side represents a 2D assembly of monodisperse
hard disks, generated by a standard Monte–Carlo method [AT87]. The microstructure on the right-hand side
(courtesy O. Zerhouni) was generated through thresholding of a Gaussian random field [Lev98]; [RT95]. In both
cases, the volume fraction of the “white” phase is 𝑓white = 30 %.

strength, I tend to see it as a call for improved bounds. Indeed, the classical bounds incorporate
only a very limited set of statistical descriptors of the microstructure (namely, the volume
fractions of all phases5). As such, the Hashin–Shtrikman bounds cannot discriminate between
the two (isotropic, but very different) microstructures depicted in figure 3.2.

The Hashin–Shtrikman bounds are optimal second-order bounds in the sense that they are
exact up to second-order in the difference between the elastic properties of the various phases
of the composite. Based on different variational principles and/or trial fields, higher-order
bounds have been derived – see section 21.2 in reference [Tor02] for a thorough review. Beran
and Molyneux [BM66] and McCoy [McC70] derived third-order bounds that were further
simplified by Milton [Mil81]; [Mil82]. Fourth-order bounds were also derived by Milton and
Phan-Thien [MP82]. Evaluation of these bounds is of increasing complexity. Indeed, higher-
order microstructural information is included in these bounds through complex quantities that
are difficult to measure experimentally (or compute numerically on a virtual microstructure)
and have no intuitive physical meaning. For example, the third-order bounds of isotropic, two-
phase materials require the following microstructural parameters

𝜁1 = 9
2𝑓1𝑓2

𝐼2, 𝜂1 = 5𝜁1
21 + 150

7𝑓1𝑓2
𝐼4, (3.33)

with

𝐼𝑘 = lim
𝛿→0 ∫𝑟,𝑠≥𝛿

−1≤𝑢≤1

𝑃𝑘(𝑢)[𝑆111(𝑟, 𝑠, 𝑡) − 𝑆11(𝑟)𝑆11(𝑠)
𝑓1 ] d𝑢d𝑟

𝑟
d𝑠
𝑠 . (3.34)

In the above integral, 𝑃𝑘 denotes the 𝑘-th order Legendre polynomial, 𝑆11 (resp. 𝑆111) the
two-point (resp. three-point) probability function. It is observed that due to isotropy, the two-
point probability function depends on the norm of the lag vector only, while the three-point
5And possibly aspect ratios and distribution of orientations for ellipsoidal distributions, not discussed here.
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probability function depends on the sides 𝑟, 𝑠, 𝑡 of the triangle formed by the three points and 𝑢
denotes the cosine of the angle between the sides 𝑟 and 𝑠 of the triangle (𝑡 = √𝑟2 + 𝑠2 − 2𝑟𝑠𝑢).

It should be emphasized that none of the above higher-order bounds have been obtained
by means of the Hashin–Shtrikman principle, while fairly simple (simplistic) trial fields [see
equation (3.24)] are used in combination with this principle to derive the second-order bounds.
I therefore found it natural to seek improved bounds by means of the Hashin–Shtrikman prin-
ciple and enriched trial (stress-polarization) fields. This however proved to be a formidable
quest for which I have not yet succeeded.

In the remainder of this section, two attempts at producing “good” enriched trial fields for
statistically isotropic microstructures are discussed. Section 3.2.1 describes a naive attempt at
accounting for the particle-size distribution in a particulate composite. Then, sections 3.2.2
and 3.2.3 present a generic approach for the production of trial stress-polarization fields that
make use of enhanced descriptors of the microstructure. Both attempts failed in the sense that
the classical bounds of Hashin and Shtrikman [HS62a] were retrieved (enriching the trial fields
did not improve the bounds). I do believe however that these failed attempts show the route to
an approach that might not fail; as such, these negative results deserve to be presented in this
report.

Before we proceed, the terminology used in the present section will be clarified. It is recalled
that the classical, phase-wise constant stress-polarization trial field (3.24) considered in refer-
ence [HS62b] reads: 𝝉 = ∑𝛼 𝜒𝛼𝝉𝛼. In this expression, the microstructure is accounted for by
means of the indicator functions 𝜒1, … , 𝜒𝑁 . Any such function that returns a local information
on the geometry of the microstructure will be called a probe. A probe should be understood as
a random field defined over the microstructure. The bound on the effective elastic moduli that
results from the optimization of the Hashin–Shtrikman functional with respect to these trial
stress-polarizations depends on the volume fractions 𝑓1, … , 𝑓𝑁 , which are expectations of the
𝜒1, … , 𝜒𝑁 . In what follows, expectations that are built with probes of the microstructure will
be called statistical descriptors.

3.2.1 Failing to account for the particle-size distribution
In this section, we test a naive enrichment of the phase-wise constant trial field defined by
equation (3.24). As amotivating example, we consider a two-phase composite with a bidisperse
distribution of spherical inclusions. Of course, the equations of classical linear elasticity define
no internal length and the effective properties should only be affected by the ratio of the radii
of the inclusions. Our goal is to quantify this particle-size distribution effect.

The most natural enrichment of the trial stress-polarization (3.24) is probably the following
three-term expression

𝝉(𝐱) = 𝜒m(𝐱)𝝉m + 𝜒1(𝐱)𝝉1 + 𝜒2(𝐱)𝝉2, (3.35)
where three phases have been introduced to estimate the effective properties of the two-phase
composite i. the matrix: phase “m” (volume fraction 𝑓m, stiffness 𝐂m), ii. the large inclusions:
phase “1” (radius 𝑎1, volume fraction 𝑓1, stiffness 𝐂i) and iii. the small inclusions: phase “2”
(radius 𝑎2, volume fraction 𝑓2, stiffness 𝐂i). The total volume fraction of inclusions is of course
𝑓i = 𝑓1 + 𝑓2.
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𝐱1

𝐱2

Figure 3.3: Classical Hashin–Shtrikman trial stress-polarizations are blind to the surroundings of the observation
point. The value of the trial stress-polarization is the same for both points 𝐱1 and 𝐱2, despite the fact that 𝐱1 is
surrounded by phase 1 (light gray), while 𝐱2 lies near the boundary with phase 2 (dark gray).

Optimizing the Hashin–Shtrikman functional HSwith respect to these trial fields again leads
to the linear system (3.28). It can then readily be verified that 𝝉1 = 𝝉2, and the classical Hashin–
Shtrikman bounds are retrieved. In other words, this approach does not separate large and small
pores.

This negative result was not fully expected. Indeed, the two-point probability functions 𝑆𝛼𝛽
are affected by the particle-size distribution. However, despite what equation (3.27) defining
the P-tensors suggests, the full details of the two-point probability functions are not captured
by 𝐏𝛼𝛽 . Indeed, assuming weak isotropy, equation (3.30) applies and the reminiscence of the
particle-size distribution is lost at this point.

3.2.2 Considering alternative probes of the microstructure
The work described in this section has been published in reference [Bri17b]. It is motivated
by two observations.

First, the phase-wise constant trial stress-polarization defined by equation (3.24) is insensi-
tive to the neighborhood of the observation point, since 𝝉(𝐱) depends on the phase at 𝐱 only.
Therefore the trial stress-polarization at points 𝐱1 and 𝐱2 will be identical in figure 3.3 despite
the fact that 𝐱1 is surrounded by phase 1, while 𝐱2 lies near the boundary with phase 2.

Second, it is recalled that our initial goal was to produce bounds on the effective properties
that incorporate advanced statistical descriptors of the microstructure. What these statistical
descriptors should be is however an open question. Since the classical bounds of Hashin and
Shtrikman [HS62a] depend on the volume fractions only (one-point probability functions), it is
natural to try and incorporate the two-, three-, …𝑛-point probability functions. However, these
statistical descriptors are probably not the best suited to the task, as illustrated by the exact
series expansion of the effective moduli derived by Torquato [Tor97]. In this work, it is shown
that for isotropicmaterials, the two-point probability functions appear only in combinationwith
higher-order probability functions. Therefore, any attempt at improving the Hashin–Shtrikman
bounds with one- and two- point probability functions only will fail. Since higher-order prob-
ability functions are difficult to measure (even on virtual microstructures), another hierarchy
of statistical descriptors should be considered.

To sum up, the classical trial stress-polarization (3.24) is based on probes (the indicator
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functions 𝜒𝛼) that ignore the neighborhood of the observation point and lead to statistical de-
scriptors (the two-point probability functions 𝑆𝛼𝛽) that if considered alone are not relevant to
homogenization within the framework of linear elasticity.

These observations led us to replace the point-wise information delivered by the indicator
functions 𝜒𝛼 with probes of the microstructure that account (in an aggregated way) for the
geometry of a neighborhood surrounding the observation point. The local volume fractions
are simple probes that fall into this category and were shown through effective-field approaches
to influence significantly the effective elastic properties [WBH99].

The local volume fractions are defined with respect to a specified, sliding window 𝒲 ⊂ ℝ𝑑

centered at the origin (𝟎 ∈ 𝒲 ). For 𝛼 = 1, … , 𝑁 , the local volume fraction 𝑓 loc
𝛼 (𝐱; 𝒲 ) is then

defined as the volume fraction of phase 𝛼 in the window 𝒲 centered at 𝐱

𝑓 loc
𝛼 (𝐱; 𝒲 ) = 1

|𝒲 | ∫𝐲∈𝐱+𝒲
𝜒𝛼(𝐲) d𝑉𝐲. (3.36)

Contrary to the global volume fraction 𝑓𝛼, which is deterministic, the local volume fraction
𝑓 loc

𝛼 is a random variable that depends on the size (and shape) of the sliding window 𝒲 . For
infinitely small windows, 𝑓 loc

𝛼 can only take the values 0 or 1 (since 𝑓 loc
𝛼 ∼ 𝜒𝛼 in that case); for

infinitely large windows, it takes the constant value 𝑓𝛼 (global volume fraction). For finite-size
sliding windows, it is randomly distributed between 0 and 1. The ensemble average of 𝑓 loc

𝛼 is
obviously 𝑓𝛼; the asymptotic behavior of its variance is summarized below [Kan+03]

lim
|𝒲 |→0

var 𝑓 loc
𝛼 = 𝑓𝛼(1 − 𝑓𝛼) and lim

|𝒲 |→+∞
|𝒲 | var 𝑓 loc

𝛼 = ∫𝐫∈ℝ3
𝑆𝛼𝛼(𝐫) d𝑉𝐫 . (3.37)

It is observed that the 𝑓 loc
𝛼 are not independent, as 𝑓 loc

1 +⋯+𝑓 loc
𝑁 = 1. Therefore, all enriched

trial fields that will be proposed in the remainder of this section will depend on 𝑓 loc
1 , … , 𝑓 loc

𝑁−1
only. A possible form for 𝝉 would then be

𝝉(𝐱) = ̃𝝉[𝑓 loc
1 (𝐱; 𝒲 ), … , 𝑓 loc

𝑁−1(𝐱; 𝒲 )], (3.38)
where the deterministic mapping (𝜙1, … , 𝜙𝑁−1) ↦ ̃𝝉(𝜙1, … , 𝜙𝑁−1) is to be specified. The
above trial stress-polarization does account for the neighborhood of the observation point 𝐱.
However, it does not depend on the phase at 𝐱, which is an unrealistic assumption. Equa-
tion (3.38) is therefore altered as follows

𝝉(𝐱) = ∑𝛼
𝜒𝛼(𝐱) ̃𝝉𝛼[𝑓 loc

1 (𝐱; 𝒲 ), … , 𝑓 loc
𝑁−1(𝐱; 𝒲 )], (3.39)

that now require𝑁 deterministicmappings (𝜙1, … , 𝜙𝑁−1) ↦ ̃𝝉𝛼(𝜙1, … , 𝜙𝑁 ) for 𝛼 = 1, … , 𝑁 .
Plugging expression (3.39) into equation (3.23) and optimizing the resulting bound (3.22) with
respect to the unknown mappings ̃𝝉1, … , ̃𝝉𝑁 should in theory deliver: i. the optimal ̃𝝉𝛼 and ii. a
bound on the effective properties that account for the local volume fractions. This general ap-
proach is probably intractable, and I chose a priori in reference [Bri17b] mappings that are
polynomial in the local volume fractions

𝝉(𝐱) =
𝑁

∑
𝛼=1

𝑀

∑
𝑝=0

𝜒𝛼(𝐱)[𝑓 loc
1 (𝐱; 𝒲 )]

𝑝𝝉𝛼𝑝, (3.40)

54



3.2 The (hopeless?) quest for improved bounds

where 𝑀 denotes the order of the polynomials, and 𝝉𝛼𝑝 are deterministic, second-rank, sym-
metric tensors. It should be noted that the above expression is indeed an enrichment of the
initial expression (3.24) (which corresponds to the 𝑝 = 0 terms).

The resulting bounds are expected to depend on the size of the sliding window 𝒲 . For
infinitely small or infinitely large windows, the trial stress-polarization (3.40) is phase-wise
constant, and the classical Hashin–Shtrikman bounds are recovered. In all other cases, the
finite size of the sliding window 𝒲 introduces a length-scale to which the characteristic length-
scale(s) of the microstructure could be compared. Therefore, the resulting bounds might be
expected to be sensitive to (relative) sizes, thus to particle-size distributions.

Similarly to section 3.1.5, to estimate the bounds resulting from the particular choice (3.40)
of the trial stress-polarization field, wemust now evaluate the quantity lim|Ω|→+∞ 𝔼[HS(𝜒𝝉; 𝜺)].

3.2.3 Evaluation of the Hashin–Shtrikman functional
In the present section, we consider the following slight generalization of the enriched trial
stress-polarization (3.40)

𝝉(𝐱) =
𝑁

∑
𝛼=1

𝑀

∑
𝑝=0

𝜒𝛼(𝐱)𝜓𝑝(𝐱)𝝉𝛼𝑝, (3.41)

where 𝜓0, … , 𝜓𝑀 are 𝑀 general probes of the microstructure. Unless otherwise stated, sums
over Greek indices (𝛼, 𝛽, …) run from 1 to 𝑁 , while sums over Latin indices (𝑝, 𝑞, …) run from
0 to 𝑀 ; this convention applies to the present section 3.2.3 as well as the next section 3.2.4. We
assume that 𝜓0 = 1, in order to ensure that the above expression is indeed an enrichment of the
classical (phase-wise constant) trial stress-polarization field (3.24). Furthermore, the above
trial stress-polarization field must be weakly statistically homogeneous (see assumption B.1 in
appendix B). It is therefore required that𝔼[𝜒𝛼(𝐱)𝜓𝑝(𝐱)] and𝔼[𝜒𝛼(𝐱)𝜓𝑝(𝐱)𝜒𝛽(𝐱+𝐫)𝜓𝑞(𝐱+𝐫)] be
translation-invariant (with respect to 𝐱), and we introduce the following statistical descriptors
of the microstructure

Ψ𝛼𝑝 = 𝔼[𝜒𝛼(𝟎)𝜓𝑝(𝟎)] and Ψ𝛼𝑝𝛽𝑞(𝐫) = 𝔼[𝜒𝛼(𝟎)𝜒𝛽(𝐫)𝜓𝑝(𝟎)𝜓𝑞(𝐫)]. (3.42)

It is recalled that the quantity lim|Ω|→+∞ 𝔼[HS(𝜒𝝉; 𝜺)] is given by equation (3.23). Each
term of this expression was evaluated separately in reference [Bri17b]. Substituting

𝔼𝝉 = ∑𝛼,𝑝
Ψ𝛼𝑝𝝉𝛼𝑝 and 𝐑𝜏𝜏(𝐫) = ∑

𝛼,𝛽,𝑝,𝑞
Ψ𝛼𝑝𝛽𝑞(𝐫)𝝉𝛼𝑝 ⊗ 𝝉𝛽𝑞, (3.43)

into equation (3.23) leads to the following upper-bound on the effective elastic energy of the
heterogeneous material (assuming that the reference material is stiffer than all phases in the
composite, 𝐂0 ≥ 𝐂𝛼, 𝛼 = 1, … , 𝑁)

1
2𝜺 ∶ 𝐂eff ∶ 𝜺 ≤ 1

2𝜺 ∶ 𝐂0 ∶ 𝜺 + ∑𝛼,𝑝
Ψ𝛼𝑝𝝉𝛼𝑝 ∶ 𝜺 − 1

2 ∑𝛼,𝑝,𝑞
Ψ𝛼𝑝𝛼𝑞(𝟎) 𝝉𝛼𝑝 ∶ (𝐂𝛼 − 𝐂0)−1 ∶ 𝝉𝛼𝑞

− 1
2 ∑

𝛼,𝛽,𝑝,𝑞
𝝉𝛼𝑝 ∶ 𝐏𝛼𝑝𝛽𝑞 ∶ 𝝉𝛽𝑞, (3.44)
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where

𝐏𝛼𝑝𝛽𝑞 = [Ψ𝛼𝑝𝛽𝑞(𝟎) − Ψ𝛼𝑝Ψ𝛽𝑞] 𝐏0 + lim
𝛿→0 ∫𝐫∈ℝ𝑑

‖𝐫‖≥𝛿
[Ψ𝛼𝑝𝛽𝑞(𝐫) − Ψ𝛼𝑝Ψ𝛽𝑞] 𝚪∞

0 (𝐫) d𝑉𝐫 . (3.45)

The bound given by equation (3.44) is optimal if the 𝝉𝛼𝑝 solve the following linear system

∑𝑞
Ψ𝛼𝑝𝛼𝑞(𝟎) (𝐂𝛼 − 𝐂0)−1 ∶ 𝝉𝛼𝑞 + ∑

𝛽,𝑞
𝐏𝛼𝑝𝛽𝑞 ∶ 𝝉𝛽𝑞 = Ψ𝛼𝑝 ∶ 𝜺, (3.46)

and we have in this case
1
2𝜺 ∶ 𝐂eff ∶ 𝜺 ≤ 1

2𝜺 ∶ 𝐂0 ∶ 𝜺 + 1
2 ∑𝛼,𝑝

Ψ𝛼𝑝𝝉𝛼𝑝 ∶ 𝜺. (3.47)

In general, the system (3.46) must be solved numerically. Then, the bound (3.47) can be
evaluated. This bound is expected to improve on the classical Hashin–Shtrikman bound, as
discussed in section 3.2.4 below.

3.2.4 Towards improved bounds on the effective moduli?
It is natural, to assess the quality of the bound (3.47), to first assume that the descriptors
𝜓1, … , 𝜓𝑀 of the microstructure are weakly isotropic in the sense that the two-point corre-
lations Ψ𝛼𝑝𝛽𝑞(𝐫) defined by equation (3.42)2 depend solely on the norm 𝑟 of the lag vector 𝐫:
𝜓𝛼𝑝𝛽𝑞(𝐫) = 𝜓𝛼𝑝𝛽𝑞(𝑟).

The local volume fractions defined in section 3.2.2 can be cited as an example of isotropic
probing of the microstructure when the sliding window 𝒲 is spherical. In other words, the
following statistical descriptors of the microstructure

⟨𝜒𝛼(𝟎)[𝑓 loc
𝛽 (𝟎; 𝒲 )]

𝑝𝜒𝛾 (𝐫)[𝑓 loc
𝛿 (𝐫; 𝒲 )]

𝑞⟩ (3.48)

are isotropic, provided that 𝒲 is spherical.
For isotropic probes, expressions (3.46) and (3.47) simplify considerably, since the second

term in equation (3.45) vanishes

𝐏𝛼𝑝𝛽𝑞 = [Ψ𝛼𝑝𝛽𝑞(𝟎) − Ψ𝛼𝑝𝜓𝛽𝑞] 𝐏0. (3.49)

In the linear system (3.46), it is then convenient to isolate the 𝝉𝛽𝑞 with 𝑞 = 0. Observing
that Ψ𝛼0 = 𝑓𝛼 and Ψ𝛼𝑝𝛽0(𝟎) = 𝛿𝛼𝛽Ψ𝛼𝑝, and plugging equation (3.49) into equation (3.46) then
leads to the linear system

Ψ𝛼𝑝[(𝐂𝛼 − 𝐂0)−1 + 𝐏0] ∶ 𝝉𝛼0 − Ψ𝛼𝑝

𝑁

∑
𝛽=1

𝑓𝛽𝐏0 ∶ 𝝉𝛽0

+
𝑀

∑
𝑞=1

Ψ𝛼𝑝𝛼𝑞(𝟎) (𝐂𝛼 − 𝐂0)−1 ∶ 𝝉𝛼𝑞 +
𝑁

∑
𝛽=1

𝑀

∑
𝑞=1

𝐏𝛼𝑝𝛽𝑞 ∶ 𝝉𝛽𝑞 = Ψ𝛼𝑝𝜺. (3.50)
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Comparing the above equation with equation (3.28), it is found that the solution is such
that 𝝉1,0, … , 𝝉𝑁,0 coincides with the classical Hashin–Shtrikman polarizations, and that 𝝉𝛼𝑝 =
𝟎 for 𝛼 = 1, … , 𝑁 and 𝑝 = 1, … , 𝑀 . In other words, the optimal enriched trial stress-
polarization (3.41) coincides with the classical Hashin–Shtrikman trial stress-polarization and
does not result in an improved bound on the macroscopic elastic energy!

Isotropy is again the culprit. In the classical approach of Hashin and Shtrikman (see sec-
tion 3.1.5), the two-point probability function vanishes for isotropic microstructures. In the
present, extended approach, the enriched part of the trial stress-polarization vanishes for isotropic
probes 𝜓1, … , 𝜓𝑀 .

There is nothing to be done with the fact that the microstructure is isotropic. What can
be acted upon is the probes: we must make sure not to probe the microstructure isotropically.
Going back to the local volume fractions, isotropy of the probes is broken as soon as thewindow
𝒲 is no longer spherical.

This suggests to implement the method presented here with the local volume fractions as
probes, and a non-spherical window 𝒲 . However, with only one such window, the resulting
bound is expected to be anisotropic (even for isotropic microstructures). To restore the isotropy
of the bounds, the window 𝒲 should therefore be rotated in all directions. I intend to inves-
tigate this extension of the work presented here, with the hope that improved bounds on the
effective stiffness can be obtained.

***
In the previous section, we discussed some attempts at enriching the trial stress-polarizations

in order to produce bounds on the effective properties that are sharper than the classical Hashin–
Shtrikman bounds. While these attempts have not yet been successful, the remainder of this
chapter is devoted to various applications of the Hashin–Shtrikman principle (with simple trial
stress-polarizations) that do deliver useful bounds or estimates.

3.3 Nanocomposites
This section describes the derivation of Hashin–Shtrikman bounds on the effective moduli
of nanocomposites with spherical inclusions. This work was initially published in [BDK10a];
[BDK10b]. Quoting from theAims and scope section of theNanocomposite journal6, nanocom-
posites can be defined as follows

“Nanocomposites are multiphase or hybrid materials which when combined to-
gether, displaymarkedly different properties from the bulk components. Nanocom-
posites differ from conventional composite materials due to the nanoscale dimen-
sions of the filler phase and the exceptionally high surface to volume ratio of this
phase. As a result they often possess unique mechanical, thermal, electrical, opti-
cal or catalytic properties which are controlled by factors such as local chemistry,
mobility, morphology, or crystallinity.

6http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=
ynan20, last retrieved 2016-12-14

57

http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=ynan20
http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=ynan20


Chapter 3 Bounds on the effective properties

In addition, nanocomposites often offer a combination of several properties,
making them even more attractive as multifunctional materials for the future, with
potential applications in aerospace, healthcare, energymaterials, sensors and other
systems.”

Depending on thematerial forming thematrix, nanocomposites are often classified as polymer-
matrix composites [Arm15]; [ASI16] and ceramic-matrix composites [Pal15]. Nanofillers can
have various shapes, ranging from elongated (e.g. carbon nanotubes [Bha16]; [Mit+15]) to
plate-like (e.g. clay platelets [Aze+13]) and nearly equi-axed nanoparticles (e.g. nanospheres
[SDS09]).

From the mechanical standpoint, nanomaterials are known to exhibit size-effects: the vol-
ume fraction being fixed, the overall properties (stiffness, toughness) of the composite generally
improve when the size of the nanofillers is decreased [Chi+05]; [CJS06]; [FP03]; [Rey+01].
Surface stresses that develop at the matrix-inclusion interface [MA04] might explain this size
effect. Indeed, the generalized Young–Laplace [GM75]; [GM78] that governs the equilib-
rium of these solid-solid interfaces is size-dependent since it involves the local curvature of
the interface.

Predictive models of the effective elastic properties of nanocomposites therefore require
homogenization techniques that account for these size-effects. The general micromechani-
cal framework was set by Duan, Wang, Huang, and Karihaloo [Dua+05], who also derived
Mori–Tanaka and self-consistent estimates for nanocomposites with spherical inclusions. Le
Quang and He [LH07] then extended these results to transverse isotropic materials. In refer-
ence [LH08], the same authors also proposed extensions to nanocomposites of the Voigt and
Reuss bounds. In their concluding remarks, they noted that

“The next step toward developing a more involved variational approach will be
the extension of the well-known Hashin–Shtrikman variational principles to inho-
mogeneous materials with linear spring-layer and coherent imperfect interfaces.
This extension is certainly of great importance but seems to be very difficult for
the moment.”

In references [BDK10a]; [BDK10b], I found that this extension was in fact quite feasible.
For reasons that will be exposed in section 3.3.4, only lower bounds on the elastic moduli could
be derived. At that time, I found it quite remarkable that the new bounds should coincide with
the Mori–Tanaka estimates of Duan, Wang, Huang, and Karihaloo [Dua+05].

In the present section, the main steps of the derivation of these bounds are outlined (the
reader is referred to references [BDK10a]; [BDK10b] for more details). The model of elastic
interface of Gurtin and Murdoch [GM75] is first introduced in section 3.3.1. For this model to
fit in the Hashin–Shtrikman variational framework, this interface is then temporarily replaced
in section 3.3.2 with an interphase of small, but finite thickness. How to derive explicit lower-
bounds on the bulk and shear moduli of the effective material with interphases is then discussed
in sections 3.3.3, 3.3.4 and 3.3.5; letting the thickness of the interphase go to zero finally
provides the seeked bounds on the effective properties of the nanocomposite. Section 3.3.6
goes back to the remarkable coincidence of Mori–Tanaka estimates and Hashin–Shtrikman
bounds; it is shown a posteriori that this is a rather general result.
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3.3.1 The interface model of Gurtin and Murdoch
Near the interface between two phases, the environment of atoms is very different from that
of the bulk phases, which results in an excess of strain energy near the interface. In turn, sur-
face energy gives rise to surface stresses through the celebrated Shuttleworth [Shu50] equa-
tion. This is fairly well known for liquid-liquid interfaces (see for example chapter 6 in refer-
ence [Cou10]), where the so-called surface tension is constant.

Surface stresses also develop at any solid-solid interface [MA04]. However, their macro-
scopic effects are really noticeable for higly curved interfaces only (nanocomposites): surface
stresses can therefore safely be neglected in general.

It should be observed at this point that the connection between surface energy, surface ten-
sion and surface stress is still highly debated [HJ13]; [Mak14]. This debate, which relies on
subtle thermodynamical considerations, is outside the scope of the present work. Also, atten-
tion must be paid to the framework (Lagrangian vs. Eulerian) that is adopted for the description
of the deformation/creation of interfaces [Cou10]. This can however be overlooked within the
framework of small deformation and displacement.

The surface stress is a second-rank, symmetric tensor of the plane tangent to the interface
that will be denoted 𝝈s in what follows. When interface effects occur, the bulk equilibrium
equations are unchanged. However, the surface stress induces a jump of the traction vector
𝝈 ⋅ 𝐧 (𝝈: bulk stress; 𝐧: normal to the interface); both are related through the generalized
Young–Laplace equation [GM75]

𝜕𝛼𝝈s ⋅ 𝐚𝛼 + [[𝝈]] ⋅ 𝐧 = 𝟎, (3.51)
where (𝜉1, 𝜉2) denotes a parameterization of the interface, 𝜕𝛼 denotes the partial derivative with
respect to 𝜉𝛼 (𝛼 = 1, 2) and (𝐚1, 𝐚2) denotes the natural (contravariant) basis.

To complement the generalized Young–Laplace equation, a “constitutive equation” must
also be provided for the interface. Within the framework of linear elasticity, the following
simple surface stress-surface strain relationship is adopted [GM75]: 𝝈s = 𝐋s ∶ 𝜺s, where
𝜺s denotes the classical membrane strain of shell theory. When the two phases are perfectly
bound, the displacement is continuous accross the interface, and 𝜺s = 𝐚 ⋅ 𝜺 ⋅ 𝐚, where 𝐚 =
𝐈 − 𝐧 ⊗ 𝐧 denotes the metric tensor of the interface and 𝜺 denotes as usual the bulk strain.
The constitutive relation thus introduced is associated to the two adjacent phases. If both bulk
phases are isotropic, it is natural to assume the following isotropic representation of the surface
stiffness tensor 𝐋s

𝐋s = [𝜆s𝑎𝛼𝛽𝑎𝛾𝛿 + 𝜇s(𝑎𝛼𝛾𝑎𝛽𝛿 + 𝑎𝛼𝛿𝑎𝛽𝛾 )]𝐚𝛼 ⊗ 𝐚𝛽 ⊗ 𝐚𝛾 ⊗ 𝐚𝛿, (3.52)
where 𝜆s and 𝜇s are the Lamé constants of the interface. Since 𝐋s is a tensor of the tangent
plane, the constitutive relation can be written in terms of the bulk strain

𝝈s = 𝐋s ∶ 𝜺. (3.53)

3.3.2 The equivalent interphase
Following Hashin [Has02] the solid-solid interfaces were replaced in references [BDK10a];
[BDK10b] with interphases of small, but finite thickness. The Hashin–Shtrikman principle
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then applies verbatim,which led to a derivation of thickness-dependent bounds on the effective
elastic moduli of nanocomposites. Then, letting the thickness of the interphase go to zero,
bounds on the effective properties of the composite with interfaces were obtained.

In reference [BDK10a], it was shown that taking 𝑎
ℎ𝐂s (𝑎: radius of the spherical inhomo-

geneity; ℎ: thickness of the interphase) for the bulk elastic stiffness of the interphase ensures
the consistency of this approach, with

𝐂s = 4𝜇s
𝑎

𝜆s + 𝜇s
2𝜇s − 𝜆s

𝐉 + 2𝜇s
𝑎 𝐊. (3.54)

In other words, with this choice, the solution to the elastic equilibrium of a composite with
interphases tends to that of the same composite with interfaces as the thickness of the inter-
phases goes to 0.

3.3.3 Homogenization of nanocomposites
Determination of the effective properties of nanocomposites proceeds similarly to classical
composites [CD02]; [Dua+05]. The corrector problem (2.6) introduced in section 2.1 must
now be complemented with the generalized Young–Laplace equation (3.51) and the constitu-
tive equation (3.53). Owing to the continuity of the displacement, it is natural to adopt essential
boundary conditions. Indeed, how to define natural boundary conditions when the boundary
of the SVE includes solid-solid interfaces remains unclear. It should be observed that the
macroscopic stress ⟨𝝈⟩ now includes surface stresses

⟨𝝈⟩ = 1
|Ω| ∫Ω

𝝈 d𝑉 + 1
|Ω| ∫Σ

𝝈s d𝑆, (3.55)

where Σ denotes the union of all interfaces.
To close this section, it is observed that if equivalent interphases are used in place of inter-

faces, it is sufficient to solve the standard corrector problem (2.6).

3.3.4 Bounds on the effective properties of nanocomposites
The derivation presented in references [BDK10a]; [BDK10b] is restricted to simple compos-
ites with monodisperse, spherical inclusions (radius: 𝑎) embedded in a homogeneous matrix.
Assuming isotropic, linear elasticity, 𝐂m (resp. 𝐂i, 𝐋s) denotes the stiffness of the matrix (resp.
inclusions, interfaces). As argued in section 3.3.2, the interfaces are replaced with interphases
of finite thickness ℎ and stiffness 𝑎

ℎ𝐂s.
We are now left with the problem of bounding the effective properties of an assembly of

composite spheres (inclusion+interphase). In order to apply the Hashin–Shtrikman principle,
we must select a reference material and define a suitable trial stress-polarization.

Selection of the reference material is the result of two observations. First, the stiffness of
the interphase scales as ℎ−1: it becomes infinitely large as ℎ → 0 and it is not possible to find
a reference material that is stiffer than all phases. Second, it is generally true that 𝐂i ≥ 𝐂m
(inclusions act as reinforcement in nanocomposites). The stiffness of the matrix is therefore
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3.3 Nanocomposites

selected as reference material (𝐂0 = 𝐂m), which will result in a lower bound on the effective
properties of the nanocomposite.

Owing to our choice of the reference material, it is sufficient to define the trial stress-
polarization in the inclusions and interphases (it must be null in the matrix). It is natural to first
consider phase-wise constant trial stress-polarizations. Since the microstructure is isotropic,
equations (3.31) and (3.32) apply. It is then readily found that for vanishing thickness of the
interphase, the lower-bound on the effective stiffness that is obtained is the classical Hashin–
Shtrikman bound on two-phase composites with perfect interfaces. In other words, the in-
terface stiffness is not accounted for. In order to improve on these bounds, it is necessary to
consider more complex trial stress-polarizations.

3.3.5 Bounds based on morphologically representative patterns
The selected trial stress-polarizations selected in references [BDK10a]; [BDK10b] are not uni-
form, but are identical within each composite sphere (spherical inclusion + finite-thickness
interphase)

𝝉(𝐱) =
+∞

∑
𝑖=1

𝝉p(𝐱 − 𝐱𝑖), (3.56)

where 𝐱1, 𝐱2, … denote the centers of the spherical inclusions7 and 𝝉p(𝐫) is a deterministic field
(the randomness of 𝝉 comes from the location of the inclusions only). Since the matrix is not
polarized, 𝝉p(𝐫) must be null for ‖𝐫‖ ≥ 𝑎 + ℎ. Of course, the case of phase-wise constant
stress-polarizations explored in section 3.3.4 corresponds to

𝝉p(𝐫) = 𝝉i for ‖𝐫‖ ≤ 𝑎 and 𝝉p(𝐫) = 𝝉s for 𝑎 ≤ ‖𝐫‖ ≤ 𝑎 + ℎ, (3.57)

where 𝝉i and 𝝉s are constant, second-rank, symmetric tensors.
In order to derive bounds on the effective properties, we must again evaluate the quan-

tity lim|Ω|→+∞ 𝔼[HS(𝜒𝝉; 𝜺)]. Again, evaluation of the term involving the Green operator for
strains is problematic. Unfortunately, the results presented in appendix B are of no use in
the present case, since the trial stress-polarization (3.56) is defined by means of the inclusion
centers, rather than the indicator function of each phases. Therefore, the statistical descriptor
that is expected to arise is the radial distribution function, rather than the two-point probability
function.

The present case is best handled within the framework of morphologically representative
patterns introduced by Bornert, Stolz, and Zaoui [BSZ96]. Here, the pattern (p subscript) is
the association of one inclusion and its interphase; the volume fraction 𝑓p of the patterns is

𝑓p = (1 + ℎ
𝑎 )

3
𝑓, (3.58)

7It should be noted that, according to the framework presented in section 3.1.5, the trial stress-polarization is
defined over an unbounded realization of the composite. Therefore, the number of inclusions is indeed infinite.
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and their local stiffness 𝐂p(𝐫) is defined as follows

𝐂p(𝐫) = 𝐂i for ‖𝐫‖ ≤ 𝑎 and 𝐂p(𝐫) = 𝑎
ℎ𝐂s for 𝑎 ≤ ‖𝐫‖ ≤ 𝑎 + ℎ. (3.59)

Bornert and coauthors evaluated the thermodynamic limit of the Hashin–Shtrikman func-
tional for trial stress-polarizations based on morphologically representative, ellipsoidal pat-
terns that are distributed ellipsoidally. Assuming here that the spherical inclusions are dis-
tributed isotropically, the results presented in reference [BSZ96] apply. In particular,

lim
|Ω|→+∞

𝔼[HS(𝜒𝝉; 𝜺)] = 1
2𝜺 ∶ 𝐂m ∶ 𝜺 + 𝑓p⟨𝝉p⟩p ∶ 𝜺 − 1

2𝑓p⟨𝝉p ∶ (𝐂p − 𝐂m)−1 ∶ 𝝉p⟩p

− 1
2𝑓p⟨𝝉p ∶ 𝚪∞

m [𝝉p]⟩p + 1
2𝑓 2

p ⟨𝝉p⟩p ∶ 𝐏m ∶ ⟨𝝉p⟩p, (3.60)

where 𝚪∞
m and 𝐏m denote the fourth-rank Green operator of the matrix and Hill tensor of a

spherical inclusion embedded in the matrix. Furthermore, for any quantity 𝒬, ⟨𝒬⟩p denotes
the volume average over the pattern

⟨𝒬⟩p = [
4π
3 (𝑎 + ℎ)3

]
−1

∫‖𝐫‖≤𝑎+ℎ
𝒬(𝐫) d𝑉𝐫 . (3.61)

In references [BDK10a]; [BDK10b], I chose for 𝝉p the stress-polarization that arises from
the solution to a generalized form of Eshelby’s inhomogeneity problem, where one pattern is
embedded in an infinite matrix. At that time, I did not realize that this was in fact the optimal
choice, although this result was stated in reference [BSZ96].

Plugging this particular form of 𝝉p into equation (3.60), evaluating each term in turn, and
taking the limit as ℎ → 0, led in reference [BDK10a] to the following lower bound on the
effective bulk modulus 𝜅eff of the nanocomposite

𝜅eff ≥ 𝜅m +
𝑓(𝜅m + 4

3𝜇m)(𝜅p − 𝜅m)

𝑓𝜅m + 4
3𝜇m + (1 − 𝑓)𝜅p

, with 𝜅p = 𝜅i + 4
3𝑎(𝜆s + 𝜇s), (3.62)

where 𝜅m and 𝜇m (resp. 𝜅i and 𝜇i) denote the bulk and shear moduli of the matrix (resp. the
inclusions).

Similarly, a lower bound on the effective modulus of the nanocomposite was derived in
reference [BDK10b]; the reader is referred to this paper for its closed-form expression, which
is too long to be reported here.

An important finding of these two papers was the fact that the bounds derived from the
Hashin–Shtrikman principlewere identical to theMori–Tanaka estimates derived for nanocom-
posites by Duan, Wang, Huang, and Karihaloo [Dua+05]. At that time, I made this observa-
tion (which was not unexpected) at the end of a quite lengthy derivation, without realizing how
general it was. A more careful reading of paper by Bornert, Stolz, and Zaoui [BSZ96] would
actually have spared me most of the calculations presented in these papers! This is addressed
in the next section.
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3.3 Nanocomposites

3.3.6 Hashin–Shtrikman bounds and Mori–Tanaka estimates
In the previous section, it was shown that Mori–Tanaka estimates of the effective properties of
nanocomposites are in fact bounds in the Hashin–Shtrikman sense. This result was obtained
after lengthy calculations in references [BDK10a]; [BDK10b]. In the present section, it is
recalled that this result is in fact general. Most of the proof can be found in reference [BSZ96],
although the conclusion is not fully stated in terms of Mori–Tanaka estimates.

We again follow an approach based on morphologically representative patterns, allowing
now for multiple patterns: 𝑁 denotes the total number of patterns. Greek lower indices refer-
ring to patterns, Ω𝛼 ⊂ ℝ𝑑 is the domain occupied by the reference 𝛼-pattern (centered at the
origin) and 𝐂𝛼(𝐫) is the local stiffness of the 𝛼-pattern (𝐫 ∈ Ω𝛼). In the microstructure under
consideration, the 𝛼-patterns are centered at 𝐱1

𝛼, 𝐱2
𝛼, ….

In order to relate Hashin–Shtrikman bounds to Mori–Tanaka estimates, the matrix (index
“m”) must be selected as reference material. It is assumed here that the matrix is stiffer than all
other phases in the composite, so that an upper-bound on the effective stiffness will be derived.
The trial stress-polarization must then be null outside the patterns and, following Bornert,
Stolz, and Zaoui [BSZ96], we chose the trial stress-polarization

𝝉(𝐱) =
𝑁

∑
𝛼=1

+∞

∑
𝑖=1

𝝉𝛼(𝐱 − 𝐱𝑖
𝛼), (3.63)

where 𝝉1, … 𝝉𝑁 are unknown local stress-polarization fields that are supported in Ω1, … , Ω𝑁 ,
respectively. Under the assumption that all patterns have the same spherical shape, and that
their centers are distributed isotropically, Bornert, Stolz, and Zaoui [BSZ96] obtain the fol-
lowing expression

lim
|Ω|→+∞

𝔼[HS(𝜒𝝉; 𝜺)] = 1
2𝜺 ∶ 𝐂m ∶ 𝜺 + ∑𝛼

𝑓𝛼⟨𝝉𝛼⟩𝛼 ∶ 𝜺

− 1
2 ∑𝛼

𝑓𝛼⟨𝝉𝛼 ∶ (𝐂𝛼 − 𝐂m)−1 ∶ 𝝉𝛼⟩𝛼

− 1
2 ∑𝛼

𝑓𝛼⟨𝝉𝛼 ∶ 𝚪∞
m [𝝉𝛼]⟩𝛼

+ 1
2 ∑

𝛼,𝛽
𝑓𝛼𝑓𝛽⟨𝝉𝛼⟩𝛼 ∶ 𝐏m ∶ ⟨𝝉𝛽⟩𝛽 , (3.64)

where 𝑓𝛼 denotes the fraction of the volume occupied by all 𝛼-patterns. Similarly to the pre-
vious section, ⟨𝒬⟩𝛼 is the volume average of the quantity 𝒬 over the reference (spherical)
domain Ω𝛼. It should be noted that in reference [BSZ96], equation (3.64) is extended to ellip-
soidal patterns that are distributed ellipsoidally. For the sake of simplicity, only the isotropic
case is considered here. The local trial stress-polarizations 𝝉1, … 𝝉𝑁 are optimal if [BSZ96]

(𝐂𝛼 − 𝐂m)−1 ∶ 𝝉𝛼 + 𝚪∞
m [𝝉𝛼] = 𝜺 + 𝐏m ∶ ∑

𝛽
𝑓𝛽⟨𝝉𝛽⟩𝛽 = 𝜺m, (3.65)

and the optimal bound on the macroscopic strain energy reads
1
2𝜺 ∶ 𝐂eff ∶ 𝜺 ≤ 1

2𝜺 ∶ 𝐂m ∶ 𝜺 + ∑𝛼
𝑓𝛼⟨𝝉𝛼⟩𝛼 ∶ 𝜺. (3.66)
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The optimality condition (3.65) is an equation of Lippmann–Schwinger type: 𝝉𝛼 is therefore
the (inhomogeneous) stress-polarization induced in the reference 𝛼-pattern embedded in the
unbounded reference material, and subjected to the uniform strain 𝜺m at infinity. The corre-
sponding strain 𝜺𝛼 = (𝐂𝛼 − 𝐂m)−1 ∶ 𝝉𝛼 can be considered as an estimate of the local strain
within 𝛼-patterns. Similarly, 𝜺m defined by equation (3.65) can be considered as an estimate
of the strain within the matrix. At this point, this strain is unknown. Quoting Bornert, Stolz,
and Zaoui [BSZ96], 𝜺m ought to be chosen according to the condition: “[the strain at infin-
ity] is only determined by the condition that [the macroscopic strain] equals the average trial
strain field”, which is recognized as the closure condition for the derivation of Mori–Tanaka
estimates. We provide below a proof (that was missing in reference [BSZ96]) of this statement.

Observing that 𝝉𝛼 is supported in a spherical (thus, ellipsoidal) domain, the generalized
Eshelby theorem (3.8) applies to the average of equation (3.65) over the 𝛼-pattern

⟨𝜺𝛼⟩𝛼 = 𝜺m − ⟨𝚪∞
m [𝝉𝛼]⟩𝛼 = 𝜺m − 𝐏m ∶ ⟨𝝉𝛼⟩𝛼 = 𝜺 + 𝐏m ∶ ∑

𝛽
𝑓𝛽⟨𝝉𝛽⟩𝛽 − 𝐏m ∶ ⟨𝝉𝛼⟩𝛼, (3.67)

and

∑𝛼
𝑓𝛼⟨𝜺𝛼⟩𝛼 + (1 − ∑𝛼

𝑓𝛼)𝜺m = 𝜺, (3.68)

which completes the proof. We are now in a position to show that the resulting bound (3.66)
coincides with the Mori–Tanaka estimate. We first define the (inhomogeneous) dilute strain
localization tensor 𝐀∞

𝛼 , which maps the strain in the matrix 𝜺m to the local strain in the 𝛼-
pattern. Equation (3.68) then leads to 𝜺m = 𝐀HS

m ∶ 𝜺 and 𝜺𝛼 = 𝐀HS
𝛼 ∶ 𝜺, with

𝐀HS
m = (𝑓m𝐈 + ∑𝛼𝑓𝛼⟨𝐀∞

𝛼 ⟩𝛼)
−1 and 𝐀HS

𝛼 = 𝐀∞
𝛼 ∶ 𝐀HS

m (3.69)

and, upon substitution in equation (3.66),

𝐂eff ≤ 𝐂HS = 𝑓m𝐂m ∶ 𝐀HS
m + ∑𝛼

𝑓𝛼𝐂𝛼 ∶ 𝐀HS
𝛼 , (3.70)

which coincides with the Mori–Tanaka estimate of the effective stiffness.
To sum up, for isotropic microstructures which can be described by spherical morpholog-

ically representative patterns, Mori–Tanaka estimates of the effective stiffness are bounds in
the Hashin–Shtrikman sense, provided that the matrix is stiffer or softer than all other phases.

3.3.7 Closing remarks
To close this section on the effective properties of nanocomposites, it is observed that intro-
ducing an interface model of the Gurtin–Murdoch type indeed results in size-effects. More
precisely, decreasing the size of the inclusions while keeping their volume fraction constant
tends to stiffen the composite [see for example equation (3.62)]. This was to be expected, since
the radius of curvature of the interface defines a characteristic length scale (contrary to classical
elasticity that defines no such length scale).
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Simple substitution of the interface model with an equivalent (thin) interphase model al-
lowed us to derive rigorous bounds on the effective elastic properties. However, our analysis
also raised some questions regarding the Gurtin–Murdoch model itself. These questions all
pertain to the fact that the stiffness 𝐋s [defined by equation (3.52)] is not a material property,
since the interface is immaterial.

Of course, 𝐋s is expected to depend on the nature of the two materials it separates. However,
there is no reason to think that 𝐋s should not depend on other parameters, such as the geometry
of the interface itself. In other words, 𝜆s and 𝜇s in equation (3.52) might be functions of
the radius 𝑎 of the inclusions. Presently, this issue can probably be addressed by molecular
simulations only.

A second issue relates to the positivity of 𝐋s. Thermodynamic stability of conventional
elastic continua classically requires the (3D) elastic stiffness to be positive definite. Such line
of reasoning does not apply to elastic interfaces. Indeed, the interface being immaterial, it is
not possible to isolate a small interface element and state the stability of its equilibrium. It can
therefore not be excluded that 𝐋s be indefinite, and atomistic simulations indeed suggest that
this might be the case [She05].

From the perspective of the Hashin–Shtrikman approach presented here, the positivity of the
equivalent 3D stiffness 𝐂s defined in section 3.3.2 must be ensured, which induces restrictions
on the elastic constants 𝜆s and 𝜇s, namely: 𝜇s > 0 and 0 < 𝜆s + 𝜇s < 3𝜇s [see equation (3.54)].
If these inequalities are not satisfied by the nanocomposite at hand, then the bounds derived in
this section are not valid. These conditions are motivated by purely mathematical considera-
tions. Their physical implications (if any) ought to be explored.

3.4 The case of eigenstressed materials
The present section describes some recent work initiated in 2015 by discussions with S. Ghabe-
zloo8, who uncovered inconsistencies in the derivation of Mori–Tanaka estimates of the poroe-
lastic properties proposed by Ulm, Constantinides, and Heukamp [UCH04]. At that time, I was
well aware of the limitations of the Mori–Tanaka scheme (even in the classical, elastic case),
and set out to derive Hashin–Shtrikman estimates of these properties in order to overcome these
limitations. Considering the pore pressure as a special case of eigenstress [DKU06], I started
working on variational estimates of the macroscopic properties of eigenstressed materials.

Using the Hashin–Shtrikman principle to derive estimates of these properties was already
proposed by Bornert, Masson, Ponte Castañeda, and Zaoui [Bor+01]. I took the derivation
one step further, and was able to prove that the resulting variational estimates enjoyed the
same properties as their exact counterparts.

This work has been partly published in a conference paper [BG17], while the journal paper
corresponding to the whole study is currently in preparation [BG18]. The present section is
organized as follows. Section 3.4.1 defines the eigenstrain influence tensors that govern the
macroscopic behavior of eigenstressed materials; the properties of these effective coefficients
are listed; their Mori–Tanaka estimates are then discussed. Section 3.4.2 then extends the
8Laboratoire Navier, UMR 8205, CNRS, ENPC, IFSTTAR, Université Paris-Est (Marne-la-Vallée, France)
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Hashin–Shtrikman principle to eigenstressed materials. Then, it is shown in section 3.4.3 how
this principle can be used to derive variational estimates of the eigenstrain influence tensors;
properties of these estimates are analyzed. Possible extensions of the proposed method are
discussed in section 3.4.4.

3.4.1 Effective properties of eigenstressed materials
Section 3.4 is devoted to the homogenization of eigenstressed, 𝑁-phasematerials. We consider
a SVE Ω of such a material and adopt the notation defined in section 2.1.1. The local stress-
strain relationship now reads, for 𝐱 ∈ Ω𝛼: 𝝈(𝐱) = 𝐂𝛼 ∶ 𝜺(𝐱) + 𝝕𝛼, where 𝝕𝛼 denotes
the (constant) eigenstress in phase 𝛼 = 1, … , 𝑁 . The effective behavior of such materials is
governed by the following macroscopic equations [DB92]

⟨𝜺⟩𝛼 = 𝐀𝛼 ∶ 𝐄 − ∑
𝛽

𝐃𝛼𝛽 ∶ 𝐂−1
𝛽 ∶ 𝝕𝛽 and ⟨𝝈⟩ = 𝐂eff ∶ ⟨𝜺⟩ + 𝝕eff , (3.71)

where it is recalled that ⟨𝜺⟩𝛼 denotes the average strain over phase 𝛼 [see equation (2.2)].
𝐀1, … 𝐀𝑁 are the well-known strain-localization tensors, and

𝐂eff = ∑𝛼
𝑓𝛼𝐂𝛼 ∶ 𝐀𝛼 and 𝝕eff = ∑𝛼

𝑓𝛼𝐀T
𝛼 ∶ 𝝕𝛼, (3.72)

are the effective stiffness and eigenstress, respectively. The fourth-rank tensors 𝐃𝛼𝛽 are the
eigenstrain influence tensors introduced by Dvorak and Benveniste [DB92]. They enjoy the
following properties

∑
𝛽

𝐃𝛼𝛽 = 𝐈 − 𝐀𝛼, ∑
𝛽

𝐃𝛼𝛽 ∶ 𝐂−1
𝛽 = 𝟎, ∑𝛼

𝑓𝛼𝐃𝛼𝛽 = 𝟎, (3.73a)

𝑓𝛼𝐃𝛼𝛽 ∶ 𝐂−1
𝛽 = 𝑓𝛽(𝐃𝛽𝛼 ∶ 𝐂−1

𝛼 )
T. (3.73b)

The apparent properties of the eigenstressed, heterogeneous material are classically obtained
from the application of equations (3.71) and (3.72) to the solution of the following corrector
problem on the SVE Ω [which replaces problem (2.6)]

div𝝈 = 𝟎, 𝝈 = 𝐂 ∶ 𝜺 + 𝝕, 𝜺 = 𝝐[𝐮], (3.74)

together with appropriate boundary conditions. In equation (3.74)2, 𝝕 denotes the eigenstress
field [𝝕(𝐱) = 𝝕𝛼 for 𝐱 ∈ Ω𝛼]. Using again the spaces ℰ(Ω), ℰ ess(Ω), ℰper(Ω), 𝒮 (Ω), 𝒮 nat(Ω)
and 𝒮 per(Ω) introduced in section 2.1.2, the new corrector problem is stated below for all
classical boundary conditions.

Essential (Dirichlet) boundary conditions

Find 𝜺 ∈ 𝜺 + ℰ ess(Ω) such that 𝐂 ∶ 𝜺 + 𝝕 ∈ 𝒮 (Ω), (3.75)
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Natural (Neumann) boundary conditions

Find 𝝈 ∈ 𝝈 + 𝒮 nat(Ω) such that 𝐂−1 ∶ (𝝈 − 𝝕) ∈ ℰ(Ω), (3.76)

Periodic boundary conditions

Find 𝜺 ∈ 𝜺 + ℰper(Ω) such that 𝐂 ∶ 𝜺 + 𝝕 ∈ 𝒮 per(Ω) (3.77)

Mixed boundary conditions (extending to eigenstressed materials the boundary conditions
introduced in section 3.1.2 for eigenstress-free elasticity)

Find 𝐭 ∈ 𝒯2, 𝜺 ∈ 𝜺 + ℰ(ℝ𝑑) and 𝝈 ∈ 𝜒𝐭 + 𝒮 (ℝ𝑑) such that
⎧⎪
⎨
⎪⎩

𝝈 = 𝐂 ∶ 𝜺 + 𝝕 (Ω),
𝝈 = 𝐂0 ∶ 𝜺 (ℝ𝑑 ⧵ Ω),
⟨𝜺⟩ = 𝜺,

(3.78)

and the Lippmann–Schwinger equation associated with problem (3.78) reads

(𝐂 − 𝐂0)−1 ∶ 𝝉 + 𝚪∞
0 [𝝉 + 𝝕 − 𝜒⟨𝝉 + 𝝕⟩] = 𝜺. (3.79)

However, solving any of the above local problems is often quite difficult, and estimates of
the 𝐀𝛼 and 𝐃𝛼𝛽 are of great practical value.

Revisiting the work of Mori and Tanaka [MT73], Benveniste [Ben87] proposed estimates
of the strain localization tensors. His approach was then extended by Dvorak and Benveniste
[DB92] to the eigenstrain influence tensors. The estimates of Dvorak and Benveniste were
however restricted to materials with aligned inclusions of identical (ellipsoidal) shape. This
limitation was later overcome by Pichler and Hellmich [PH10], who derived closed-form ex-
pressions of the estimates of the eigenstrain influence tensors for any distribution of ellipsoidal
inclusions.

It is well-known that the Mori–Tanaka approach might deliver estimates of the effective
stiffness that are not symmetric. Such unphysical estimates might occur in the case of non-
aligned inclusions and/or inclusions of different shapes [BDC91]; [Fer91]; [SP01]. Pichler
and Hellmich [PH10] have shown that in those cases where the classical Mori–Tanaka estimate
of the effective stiffness is symmetric, their estimates of the eigenstrain influence tensors are
consistent with properties (3.73). Conversely, if the Mori–Tanaka estimate of the effective
stiffness is not symmetric, the Pichler–Hellmich estimates of the eigenstrain influence tensors
are not physically acceptable.

Our aim is to propose alternative estimates of these tensors, which are always acceptable.
Our estimates are derived from the variational framework introduced by Hashin and Shtrikman
[HS62b] and later extended to eigenstressed materials by Bornert, Masson, Ponte Castañeda,
and Zaoui [Bor+01]. Our main contribution is to show that these estimates always verify iden-
tities (3.73). Such robustness comes with a price, though. Indeed, it requires additional infor-
mation on how the phases are distributed [namely, the P-tensors defined by equation (3.27)].
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3.4.2 The Hashin–Shtrikman principle for eigenstressed materials
The variational Hashin–Shtrikman principle(s) stated in sections 2.3.2 and 3.1.3 can readily
be extended to eigenstressed materials (see in particular [Bor+01] for “classical” boundary
conditions). In the present section, only the so-called modified Hashin–Shtrikman principle of
section 3.1.3 is stated. Expression (3.16) of the Hashin–Shtrikman functional is modified as
follows

HSmix(𝝉; 𝜺, 𝝕1, … , 𝝕𝑁 ) = 1
2𝜺 ∶ 𝐂0 ∶ 𝜺 + 𝜺 ∶ ⟨𝝉 + 𝝕⟩ − 1

2⟨𝝉 ∶ (𝐂 − 𝐂0)−1 ∶ 𝝉⟩
− 1

2⟨(𝝉 + 𝝕) ∶ 𝚪∞
0 [𝝉 + 𝝕 − 𝜒⟨𝝉 + 𝝕⟩]⟩. (3.80)

Again, this functional is stationary at the solution 𝝉 to the modified Lippmann–Schwinger
equation (3.79). Furthermore, for reference materials that are softer (resp. stiffer) than all
phases in the composite, HS is minimal at this point and inequality (3.18) can be extended to
the present eigenstressed case. Then, using the same probabilistic setting as in section 3.1.5,
we find for all homogeneous and ergodic trial stress-polarization random field 𝝉 with square
integrable autocovariance

𝐂0
≥
≤ 𝐂 ⇒ lim

|Ω|→+∞
𝔼[HS(𝜒𝝉; 𝜺, 𝝕1, … , 𝝕𝑁 )]

≥
≤ 1

2𝜺 ∶ 𝐂eff ∶ 𝜺

+ ∑𝛼
𝑓𝛼𝝕𝛼 ∶ 𝐀𝛼 ∶ 𝜺 − 1

2 ∑
𝛼,𝛽

𝑓𝛼𝝕𝛼 ∶ 𝐃𝛼𝛽 ∶ 𝐂−1
𝛽 ∶ 𝝕𝛽 , (3.81)

where the right-hand side of the above inequality is the effective elastic energy of the eigen-
stressed composite.

3.4.3 Variational estimates of the eigenstrain influence tensors
It results from the previous section that finding the critical point of HS over the whole space of
stress-polarizations delivers the exact values of the effective stiffness 𝐂eff , strain localization
tensors 𝐀𝛼 and eigenstrain influence tensors 𝐃𝛼𝛽 . Likewise, finding the critical point of HS
over a subspace of stress-polarizations delivers estimates.

We again adopt the classical Hashin–Shtrikman phase-wise constant trial stress-polarization
defined by equation (3.24). Then, the arguments developed in section 3.1.5 and appendix B
carry over to the eigenstressed case, and it can readily be shown that

lim
|Ω|→+∞

𝔼[HS(𝝉; 𝜺, 𝝕1, … , 𝝕𝑁 )] = 1
2𝜺 ∶ 𝐂0 ∶ 𝜺 + ∑𝛼

𝑓𝛼𝜺 ∶ (𝝉𝛼 + 𝝕𝛼)

− 1
2 ∑𝛼

𝑓𝛼𝝉𝛼 ∶ (𝐂𝛼 − 𝐂0)−1 ∶ 𝝉𝛼 − 1
2 ∑

𝛼,𝛽
(𝝉𝛼 + 𝝕𝛼) ∶ 𝐏𝛼𝛽 ∶ (𝝉𝛽 + 𝝕𝛽). (3.82)

If the reference material is stiffer or softer than all phases of the composite, the above expres-
sion delivers a bound on the effective elastic energy of the eigenstressed material; this bound
can then be optimized with respect to the unknown stress-polarizations 𝝉1, … , 𝝉𝑁 .
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If the reference fails to satisfy these requirements, the critical value of expression (3.82)
delivers an estimate of the effective elastic energy. The stationarity conditions read

𝑓𝛼(𝐂𝛼 − 𝐂0)−1 ∶ 𝝉𝛼 + ∑
𝛽

𝐏𝛼𝛽 ∶ (𝝉𝛽 + 𝝕𝛽) = 𝑓𝛼𝜺, (3.83)

which degenerate as expected into the linear system (3.28) in the eigenstress-free case. The
linear system (3.83) can in general not be solved for the trial stress-polarizations 𝝉1, … , 𝝉𝑁
analytically. However, owing to linearity, it is formally possible to express the solution as
follows [BG18]

(𝐂𝛼 − 𝐂0)−1 ∶ 𝝉𝛼 = 𝐀HS
𝛼 ∶ 𝜺 − ∑

𝛽
𝐃HS

𝛼𝛽 ∶ 𝐂−1
𝛽 ∶ 𝝕𝛽 , (3.84)

where the tensors 𝐀HS
𝛼 and 𝐃HS

𝛼𝛽 are found (numerically) from the inversion of equation (3.83).
Plugging equation (3.84) into equation (3.82) and introducing

𝐂HS = ∑𝛼
𝑓𝛼𝐂𝛼 ∶ 𝐀HS

𝛼 , (3.85)

it is found that
lim

|Ω|→+∞
𝔼[HS(𝝉; 𝜺, 𝝕1, … , 𝝕𝑁 )] = 1

2𝜺 ∶ 𝐂HS ∶ 𝜺 + ∑𝛼
𝑓𝛼𝝕𝛼 ∶ 𝐀HS

𝛼 ∶ 𝜺

− 1
2 ∑

𝛼,𝛽
𝑓𝛼𝝕𝛼 ∶ 𝐃HS

𝛼𝛽 ∶ 𝐂−1
𝛽 ∶ 𝝕𝛽 . (3.86)

Gathering equations (3.81) and (3.86) finally shows that 𝐂HS, 𝐀HS
𝛼 and 𝐃HS

𝛼𝛽 ought to be
considered as variational estimates of the effective stiffness 𝐂eff , the strain localization tensors
𝐀𝛼 and the eigenstrain influence tensors 𝐃𝛼𝛽 , respectively. For ellipsoidal distributions, these
estimates coincide with the Pichler–Hellmich estimates [PH10] (aligned inclusions of identical
shape). Outside this particular case, they generally differ from these estimates, as the following
discussion will show.

Careful analysis of the linear system (2.28) in fact shows that the variational estimates 𝐀HS
𝛼

and 𝐃HS
𝛼𝛽 enjoy the same properties (3.73) as their exact counterparts [BG18]. As a conse-

quence, the variational estimate of the effective stiffness is always symmetric, unlike the Mori–
Tanaka (or Pichler–Hellmich) estimate. This suffices to prove that the proposed variational
estimates of the eigenstrain influence tensors differ in general from their Pichler–Hellmich
estimates. While the latter might take unphysical values (when the Mori–Tanaka estimate of
the effective stiffness is not symmetric), the former are always consistent with identities (3.73).
The proposed variational estimates are therefore appealing alternatives to the Pichler–Hellmich
estimates in cases where the latter do not satisfy identities (3.73).

3.4.4 Closing remarks
In this section, we have proposed an alternative to the Pichler–Hellmich [PH10] estimates
of the eigenstrain influence tensors. Our variational estimates are derived from the Hashin–
Shtrikman principle, extended to eigenstressed materials. Unlike the Pichler–Hellmich esti-
mates, the variational estimates are in general not explicit; they can however be retrieved from
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the solution to a small linear system which is inverted numerically. It is proved that, unlike
Pichler–Hellmich estimates, the variational estimates of the strain concentration tensors and
eigenstrain influence tensors are always (regardless of the microstructure at hand) physically
acceptable [in the sense that they satisfy identities (3.73)].

This robustness comes with a price, though: compared with the Pichler–Hellmich method,
the present method requires additional microstructural parameters [the so-called P-tensors de-
fined by equation (3.27)] that are related to two-point probability functions of the underlying
random microstructure. Evaluation of these P-tensors therefore requires a fine statistical anal-
ysis of the microstructure, which can be costly.

There are numerous applications of the framework outlined above, ranging from thermoelas-
ticity (eigenstrains induced by temperature changes), poroelasticity (pore pressures are eigen-
stresses) to plasticity (plastic strains are eigenstrains [MVH17]).

The reader might question the originality of the work presented in the present section 3.4.
Indeed, the derivation of variational estimates of the effective properties of eigenstressed mate-
rials was already outlined by Bornert, Masson, Ponte Castañeda, and Zaoui [Bor+01], among
others. However, the resulting estimates were not confronted to properties (3.73): our main
(non-trivial) contribution was to show that the variational estimates are indeed consistent with
these properties.

It should be observed that, for suitable reference materials, the variational approach delivers
bounds on the effective elastic energy of the eigenstressed material. In turn, these bounds result
in inequalities that must be satisfied by the effective properties. For the effective moduli, these
inequalities are straightforward bounds. For the eigenstrain influence tensors, they are much
more intricate but still deliver valuable information that ought to be taken into account.

From this perspective, we analyzed the Biot coefficients of unsaturated, poroelastic materi-
als [BG17]. This preliminary investigation allowed us to give a variational interpretation of the
so-called pore isodeformation assumption [CB09]. I intend to carry out a deeper investigation
on these issues. In particular, I would like to understand under which conditions the Bishop
parameter 𝜒 introduced in [CB09] is lower than the saturation in liquid 𝑆L.

To close this section, it should be noted that the method outlined in section 3.2.4 for the
derivation of improved bounds on the effective moduli readily extends to eigenstressed materi-
als and we intend to combine both approaches to derive improved estimates of the eigenstrain
influence tensors.

3.5 Stress-gradient materials
This section is devoted to the doctoral work of Tran [Tra16] (advisor: K. Sab9; co-supervisor:
J. Guilleminot10). It builds on the recent development of the stress-gradient model by Forest
and Sab [FS12] (see also reference [SLF16] for a mathematical justification).

9See footnote 8 in the present chapter.
10Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle (MSME UMR 8208 CNRS),

Marne-la-Vallée, France
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3.5 Stress-gradient materials

This model can be seen as complementary to the celebrated strain-gradient model ofMindlin
[Min64]. Both belong to thewide class of generalized continua (see chapter 5 in reference [Tra16]
for a more thorough review). The goal of both models is to introduce one or more material
internal length(s), of which classical elasticity is devoid.

Prior references [FS12]; [SLF16] ensuring that the stress-gradient model rests on firm the-
oretical grounds, we applied in the work of Tran [Tra16] this theory to the homogenization
of stress-gradient composites as classical continua11. We first introduced a simplified elas-
tic, linear, isotropic, material model (involving only one material internal length, rather than
three in the general case). We then proposed a general framework for the homogenization of
stress-gradient materials (extended Hill–Mandel principle, boundary conditions for the correc-
tor problem, etc.). We then derived the solution to Eshelby’s spherical inhomogeneity problem,
which allowed us to deriveMori–Tanaka estimates of the effective properties of stress-gradient
materials. Finally, we extended the Hashin–Shtrikman principle to stress-gradient materials
and proposed rigorous bounds on the effective properties of stress-gradient materials. Unlike
classical continua, the resulting bounds depend explicitly on the correlation length even for
isotropic microstructures.

The present section is organized as follows. Section 3.5.1 gives a brief overview of the stress-
gradient model introduced in references [FS12]; [SLF16]. It also presents the simplified elas-
tic, linear, isotropic material model proposed by Tran [Tra16], to be used subsequently. Sec-
tion 3.5.2 introduces the theoretical framework for the homogenization of stress-gradient mate-
rials and presents Mori–Tanaka estimates of the effective stiffness. Finally, Hashin–Shtrikman
bounds are discussed in section 3.5.3.

Remark 3.1 (On higher-rank tensors). In the present section, we deal with tensors with rank
ranging from first to sixth. We will define minor symmetries for these tensors as follows

𝑇𝑖𝑗 = 𝑇𝑗𝑖, 𝑇𝑖𝑗𝑘 = 𝑇𝑗𝑖𝑘, 𝑇𝑖𝑗𝑘𝑙 = 𝑇𝑗𝑖𝑘𝑙 = 𝑇𝑖𝑗𝑙𝑘, 𝑇𝑖𝑗𝑘𝑙𝑚𝑛 = 𝑇𝑗𝑖𝑘𝑙𝑚𝑛 = 𝑇𝑖𝑗𝑘𝑚𝑙𝑛, (3.87)

all tensors considered having implicitly the minor symmetries12. In turn, major symmetry of
fourth- and sixth-rank tensors is defined with respect to the double- and triple-dot products,
respectively (𝐓 ∶ 𝐓′ = 𝑇𝑖𝑗𝑇 ′

𝑖𝑗 , 𝐓 ∴ 𝐓′ = 𝑇𝑖𝑗𝑘𝑇 ′
𝑖𝑗𝑘)

𝑇𝑖𝑗𝑘𝑙 = 𝑇𝑘𝑙𝑖𝑗 and 𝑇𝑖𝑗𝑘𝑙𝑚𝑛 = 𝑇𝑙𝑚𝑛𝑖𝑗𝑘. (3.88)

In most situations, the rank of the tensors can be inferred from the context: therefore, the
same typeface (namely, bold face) is used for all these entities. Where confusion might occur,
the rank of the tensor will be subscripted. Thus,

𝐈2 = 𝛿𝑖𝑗𝐞𝑖 ⊗ 𝐞𝑗 and 𝐈4 = 1
2 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) 𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 (3.89)

11In the present section, elastic materials for which the strain energy (resp. complementary strain energy) density
depends on the strain (resp. stress) only will be referred to as “classical”, as opposed to “generalized” continua.
In the strain-gradient literature classical continua are often referred to as “Cauchy” continua. This terminology
is improper for stress-gradient continua, since the internal state of stress is still defined by the Cauchy stress
tensor, which is itself governed by the classical equilibrium equation.

12Minor symmetries cannot be defined unambiguously for fifth-rank tensors (see section 3.5.3).
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denote the second- and fourth- rank identity tensors, respectively.
Finally, the trace of a second-rank tensor 𝐓 is usually defined as the scalar tr𝐓 = 𝑇𝑖𝑖 = 𝐓 ∶

𝐈2. Similarly, we will define the trace of a third-rank tensor 𝐓 as the vector 𝑇𝑖𝑗𝑗𝐞𝑖 = 𝐓 ∶ 𝐈2, so
that the divergence of the stress tensor 𝝈 is the trace of its gradient grad𝝈.

3.5.1 The stress-gradient model
In the celebrated strain-gradient model of Mindlin [Min64], the strain-energy density 𝑤 de-
pends on the strain 𝜺 and its first gradient grad 𝜺. Likewise, in the stress-gradient model of
Forest and Sab [FS12], the complementary strain energy density 𝑤∗ depends on the stress 𝝈
and its first gradient grad𝝈. More precisely, the complementary strain energy of the stress-
gradient body Ω is given by the following expression

𝑊 ∗(𝝈) = ∫𝐱∈Ω
𝑤∗(𝐱, 𝝈(𝐱), grad𝝈(𝐱)) d𝑉𝐱, (3.90)

where the complementary strain energy density 𝑤∗ depends explicitly on the observation point
𝐱 ∈ Ω to account for material heterogeneities.

The local equations that define the elastic equilibrium of a clamped13 stress-gradient body
are then found from the minimization of the complementary strain energy 𝑊 ∗ under the con-
straint that the local stress 𝝈 be in equilibrium with the body forces 𝐛 (div𝝈 + 𝐛 = 𝟎).

Before we proceed to this optimization, it should first be observed that div𝝈 is the trace of
grad𝝈; it is therefore natural to decompose the stress-gradient grad𝝈 as the orthogonal sum
of a trace-free part 𝐑 and its complement that is fully defined by the body forces 𝐛

grad𝝈 = 𝐑 − 2
𝑑 + 1𝐈4 · 𝐛, where 𝐑 ∶ 𝐈2 = 𝟎 and 𝐑 ∴ 𝐈4 · 𝐛 = 0. (3.91)

The trace-free part 𝐑 of the stress-gradient grad𝝈 is the orthogonal projection of grad𝝈
onto the space of third-rank, trace-free tensors, and we write 𝐑 = 𝐊6∴grad𝝈, where the sixth-
rank orthogonal projector 𝐊6 is defined in e.g. section 6.1.1 of reference [Tra16]. Following
Forest and Sab [FS12], we then assume that the complementary strain energy density depends
on the stress and the trace-free part of its gradient

𝑊 ∗(𝝈) = ∫Ω
𝑤∗(𝝈, 𝐑) d𝑉 , (3.92)

where the explicit dependency on the observation point has been omitted. Optimization of this
functional then leads to the following boundary value problem

div𝝈 + 𝐛 = 𝟎 𝐑 = 𝐊6 ∴ grad𝝈 (Ω) (3.93a)
𝐞 = 𝜕𝝈𝑤∗ 𝝓 = 𝜕𝐑𝑤∗ (Ω) (3.93b)
𝐞 = 𝝐[𝐮] + div𝝓 (Ω) (3.93c)
sym(𝐮 ⊗ 𝐧) + 𝝓 · 𝐧 = 𝟎 (𝜕Ω) (3.93d)

13At this stage, we are not really in a position to define a clamped stress-gradient body, since its generalized
degrees of freedom have not been defined yet. However, since no natural boundary conditions are prescribed,
we know that minimizing 𝑊 ∗ will indeed lead to a clamped body.
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which effectively defines the elastic equilibrium of a clamped stress-gradient body (𝐧: outer
normal to 𝜕Ω). Equations (3.93a) are the generalized equilibrium equations, equations (3.93b)
are the generalized constitutive laws and equation (3.93c) is the compatibility condition. It
should be observed that we are now in a position to define the meaning of clamping for stress-
gradient materials [through boundary condition (3.93d)].

The vector field 𝐮 and the third-rank tensor field 𝝓 are the generalized degrees of freedom of
stress-gradient materials. Since 𝝓 is energy-conjugate to the trace-free variable 𝐑, it is likewise
trace-free (𝝓 ∶ 𝐈2 = 𝟎). While 𝐮 can be interpreted as a displacement, the physical meaning
of 𝝓 remains unclear. It should be noted that the strain measure 𝐞 that is the energy-conjugate
variable to the stress 𝝈 is not the symmetric gradient of the displacement 𝐮. To emphasize this
unusual point, 𝐞 will be called in the remainder of this section the total strain.

One last striking (and somewhat disturbing) feature of the abovemodel is the fact that the full
stress tensor 𝝈 must be continuous anywhere in the stress-gradient body Ω. It is emphasized
that this is a constitutive law effect. Indeed, from the point of vie of equilibrium, stress-gradient
materials are Cauchy materials: their equilibrium only requires the classical continuity of the
traction vector. The higher-order constitutive law induced by the representation (3.92) of the
complementary energy requires the continuity of the other components of the stress tensor, as
was proved mathematically by Sab, Legoll, and Forest [SLF16].

For centrosymmetric, linearly elastic stress-gradient materials, the complementary strain
energy density reads

𝑤∗(𝝈, 𝐑) = 1
2𝝈 ∶ 𝐒 ∶ 𝝈 + 1

2𝐑 ∴ 𝐌 ∴ 𝐑, (3.94)

where 𝐒 and 𝐌 are the classical and generalized compliances. Both are tensors with minor
and major symmetries. Besides, owing to the fact that 𝐌 operates on the space of trace-free,
third-rank tensors, we must have: 𝐊6 ∴ 𝐌 ∴ 𝐊6 = 𝐌.

In reference [Tra16], we showed that for isotropic, linearly elastic stress-gradient materials,
the complementary strain energy is fully defined by two elastic coefficients and three material
internal lengths. Drawing inspiration from the simplified model of Altan and Aifantis [AA92]
andAltan andAifantis [AA97] for strain-gradientmaterials (see also references [FA10]; [GP07]),
we then introduced a simplified model for stress-gradient materials, with only one material in-
ternal length. In the simplified model of Altan and Aifantis [AA92] and Altan and Aifantis
[AA97], the strain energy density 𝑤 reads

𝑤(𝜺, grad 𝜺) = 𝜇[𝜺 ∶ 𝜺 + 𝜈
1 − 2𝜈 (𝐈2 ∶ 𝜺)2]

+ 𝜇ℓ2[grad 𝜺 ∴ grad 𝜺 + 𝜈
1 − 2𝜈 (𝐈2 ∶ grad 𝜺) · (𝐈2 ∶ grad 𝜺)], (3.95)

where ℓ denotes the material internal length. Likewise, in the proposed simplified model for
isotropic, linearly elastic stress-gradient materials, the complementary strain energy density
reads

𝑤∗(𝝈, 𝐑) = 1
4𝜇 [𝝈 ∶ 𝝈 − 𝜈

1 + 𝜈 (𝐈2 ∶ 𝝈)2] + ℓ2

4𝜇 [𝐑 ∴ 𝐑 − 𝜈
1 + 𝜈 (𝐈2 ∶ 𝐑) · (𝐈2 ∶ 𝐑)]. (3.96)

It should be observed that a similar model was also introduced by Polizzotto [Pol14]. For
ℓ → 0, the classical Hooke’s model is retrieved. Conversely, for ℓ → +∞, the trace-free
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part 𝐑 of grad𝝈 is penalized and must vanish. In the absence of body-forces (𝐛 = 𝟎), 𝝈 is
divergence-free, so that grad𝝈 − 𝐑 = 𝟎. In other words, the full stress-gradient vanishes: the
stress field is phase-wise constant for large values of the material internal length.

Remark 3.2. The boundary-value problem (3.93) can be extended to more general boundary
conditions. For example, for a stress-gradient body Ω, clamped on 𝜕Ω𝑢 ⊂ 𝜕Ω and subjected
to prescribed tractions 𝐓 on 𝜕Ω𝑇 ⊂ 𝜕Ω (𝜕Ω𝑢 ∩ 𝜕Ω𝑇 = ∅, 𝜕Ω𝑢 ∪ 𝜕Ω𝑇 = 𝜕Ω), the boundary
conditions read

sym(𝐮 ⊗ 𝐧) + 𝝓 · 𝐧 = 𝟎 (𝜕Ω𝑢) (3.97a)
(𝐈2 − 𝐧 ⊗ 𝐧) · 𝝓 · 𝐧 = 𝟎 (𝜕Ω𝑇 ) (3.97b)
𝝈 · 𝐧 = 𝐓 (𝜕Ω𝑇 ) (3.97c)

they replace (3.93d).
More strikingly, it is perfectly valid to prescribe stress-free (𝝈 = 𝟎) rather than traction-

free (𝝈 ⋅ 𝐧 = 𝟎) boundary conditions. More generally – provided that rigid body motions are
prevented – boundary condition (3.93d) can be replaced with: 𝝈|𝜕Ω = 𝝈, where the prescribed
stress 𝝈(𝐱) may depend on the observation point 𝐱 ∈ 𝜕Ω belonging to the boundary. It is
emphasized that in this case, the full stress tensor is prescribed at the boundary, which is at
odds with classical elasticity. Remembering that the higher-order constitutive law induces the
continuity of the full stress tensor (see remarks below equation (3.93)), the fact that this type of
boundary conditions leads to a well-posed boundary-value problem [SLF16] should however
not come as a surprise.

3.5.2 Homogenization of stress-gradient materials
In this section, we consider a heterogeneous (macroscopic) structure composed of stress-gradient
materials. We introduce three different length-scales: i. the typical size 𝑑 of the hetero-
geneities, ii. the size 𝐿meso of the RVE and iii. the typical size 𝐿macro of the structure and
the length scale of its loading.

We assume that the heterogeneous structure is homogenizable and seek its effective behavior.
This requires that separation of scales prevails, that is 𝑑 ≪ 𝐿meso ≪ 𝐿macro. Besides this
standard condition, it is further required that one of the following conditions is fullfilled: ℓ ∼ 𝑑
or ℓ ≪ 𝑑, where ℓ denotes the material internal length defined in section 3.5.1.

What is the expectedmacroscopic behavior of such heterogeneousmaterials? The very same
question was explored by Forest, Pradel, and Sab [FPS01] in the case of Cosserat media. By
means of asymptotic expansions, these authors proved that under the above assumptions, the
heterogeneous material behaves macroscopically as a classical, linearly elastic material. The
same argument would apply here, leading to the same conclusion. The macroscopic behavior
of the heterogeneous, stress-gradient material is then characterized by the effective compliance
𝐒eff , which relates the average (macroscopic) total strain ⟨𝐞⟩ to the average (macroscopic) stress
⟨𝝈⟩ through the standard constitutive equation ⟨𝐞⟩ = 𝐒eff ∶ ⟨𝝈⟩.

The effective compliance 𝐒eff is then computed as the limit for large SVEs Ω of the apparent
compliance 𝐒app(Ω): 𝐒eff = lim|Ω|→+∞ 𝐒app(Ω). In turn, similarly to classical materials (see
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3.5 Stress-gradient materials

section 2.1.2), the apparent compliance of the SVE Ω is defined as the linear operator that
maps the average stress ⟨𝝈⟩ to the average total strain ⟨𝐞⟩: ⟨𝝈⟩ = 𝐂app(Ω) ∶ ⟨𝐞⟩, where
𝐞 and 𝝈 are the local total strains and stresses that solve the corrector problem defined by
the field equations (3.93a) to (3.93c) (with vanishing body-forces, 𝐛 = 𝟎) and appropriate
boundary conditions, that ensure the following generalization of Hill–Mandel’s lemma to be
satisfied [Tra16]

⟨𝝈 ∶ 𝐞 + grad𝝈 ∴ 𝝓⟩ = ⟨𝝈⟩ ∶ ⟨𝐞⟩. (3.98)

In reference [Tra16], we extended the classical essential, natural and periodic boundary con-
ditions to stress-gradient materials. For example, the generalized natural boundary condition
reads 𝝈|𝜕Ω = 𝝈, where the constant, second-rank, symmetric tensor 𝝈 denotes the macro-
scopic (prescribed) stress. Note that the full stress tensor must be prescribed at the boundary
(see remark 3.2). For these boundary conditions, it can then be shown that

1
2𝝈 ∶ 𝐒app ∶ 𝝈 = inf

𝝈
𝑊 ∗(𝝈), (3.99)

where the infimum is taken over the space of divergence-free stress tensors 𝝈 that are such
that 𝝈|𝜕Ω = 𝝈. This in turn allowed us to prove that for a given microstructure with given
(local) elastic coefficients 𝜇 and 𝜈, increasing the material internal length tends to decrease the
effective stiffness. Conversely, decreasing the size of the heterogeneities (the material internal
length being unchanged) tends to decrease the effective stiffness.

Strain-gradient models are often invoked to account for size-effects in nanocomposites. This
is relevant for most nanocomposites, where so-called “positive” (or stiffening) size-effects are
usually observed. However, numerical evidence from atomistic simulations suggest that some
nanoparticles/polymer composites [Dav+14]; [OCG05] might exhibit “negative” (softening)
size-effects. For such materials, strain-gradient models are inadequate, while stress-gradient
have the required qualitative behavior. It should be noted that the softening size-effect exhibited
by stress-gradient materials has already been observed by Polizzotto [Pol14] and Challamel,
Wang, and Elishakoff [CWE16] (albeit with slightly different material models).

With the above homogenization framework at hand, we then went on to derive classical
Eshelby-based estimates of the effective compliance of composites with monosized spherical
inhomogeneities (𝑎: common radius of all inhomogeneities), both matrix and inhomogeneities
being stress-gradient materials.

This first required the solution to Eshelby’s problem of the spherical inhomogeneity, which
was derived analytically in reference [Tra16]. The closed-form expressions are too complex to
be reported here. As an illustration, we consider in figure 3.4 the case of a stiff inhomogeneity
(𝜇i = 10𝜇m and 𝜈i = 𝜈m = 0.25) subjected to a uniaxial stress at infinity (𝝈∞ = 𝜎∞𝐞𝑧 ⊗
𝐞𝑧) and we study the influence of the material internal lengths ℓi and ℓm on the solution.
Figure 3.4 (left) plots the axial stress 𝜎𝑧𝑧 along the polar axis of the inhomogeneity for various
combinations of the material internal lengths (ℓi of the inhomogeneities and ℓm) of the matrix.
The classical case (ℓi = ℓm = 0) is also represented. From these plots, it is readily deduced
that Eshelby’s theorem [Esh57] does not hold for stress-gradient elasticity. In other words, the
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Figure 3.4: Solution to Eshelby’s spherical inhomogeneity problem (uniaxial loading at infinity). Left: plot of the
axial stress 𝜎𝑧𝑧 along the polar axis (𝜃 = 0) as a function of the distance to the center of the inhomogeneity, 𝑟. Line
types (solid, dashed, dotted) correspond to various values of the material internal length ℓi of the inhomogeneity.
Right: plot of the axial stress 𝜎𝑧𝑧(𝑟 = 0) at the center of the inhomogeneity as a function of the inhomogeneity’s
material internal length ℓi. For both graphs, colors correspond to various values of the material internal length
ℓm of the matrix. The thick line corresponds to the classical solution (ℓi = ℓm = 0).

stress is not uniform within the inhomogeneity. Indeed, it is recalled that the elastic stress-
gradient model requires the continuity of the full stress tensor at the matrix–inhomogeneity
interface, which induces a boundary layer at the matrix–inhomogeneity interface. It can be
verified on the closed-form expressions that the thickness of this boundary layer is about a
few ℓi within the inhomogeneity. As a consequence, the stress field is nearly uniform at the
core of the inhomogeneity for small values of the material internal length ℓi. Similarly, for
small values of the material internal length ℓm of the matrix, the non-uniform stress within the
inhomogeneity is close to the classical value.

Closer inspection of figure 3.4 (left) shows that at a given point within the inhomogeneity, the
radial stress does not evolve monotonically with the inhomogeneity’s material internal length
ℓi. This is better illustrated on figure 3.4 (right), which shows the radial stress at the center of
the inhomogeneity as a function of ℓi, for various values of ℓm. It is observed that the radial
stress at the center reaches a maximum for a finite value of ℓi, which increases as ℓm increases.

From the solution to Eshelby’s spherical inhomogeneity, the stress-based approach proposed
by Benveniste [Ben87] can readily be extended to stress-gradient materials to derive Mori–
Tanaka [MT73] estimates of the effective compliance of composites with spherical inhomo-
geneities. Again, closed-form expressions are intractable, but numerical evaluation of these
estimates is straightforward.

As an illustration, the resulting effective bulk and shear moduli 𝜅eff and 𝜇eff are plotted in
figure 3.5 as a function of the volume fraction 𝑓 of inclusions. The classical moduli of both
phases are such that 𝜇i = 10𝜇m and 𝜈i = 𝜈m = 0.25. Parametric studies not reproduced here
show that the dilute stress concentration tensor is not very sensitive to ℓi: we therefore assumed
that ℓi = ℓm.

As expected, it is observed that for small values of the material internal length, the proposed
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Figure 3.5: Mori–Tanaka estimates of the effective bulk (left) and shear (right) moduli of the composite 𝜅eff and
𝜇eff , as a function of the volume fraction of inclusions, 𝑓 . The estimates are represented for both stress- and
strain-gradient materials.

estimates are close to the classical Mori–Tanaka estimates. Conversely, for larger values of the
material internal length, these estimates tend to the classical bound of Reuss. This was also
expected, since large material internal lengths tend to favor phase-wise constant stress fields
(as already argued above). It should however be noted that the limit as ℓi, ℓm → +∞ is purely
formal. Indeed, the above scale bridging is carried under the assumption that ℓ ≪ 𝑎 or ℓ ∼ 𝑎.
As a consequence, the largest material internal length considered in figure 3.5 is ℓi = ℓm = 𝑎.

Figure 3.5 also shows the recently published Mori–Tanaka estimates of the effective elastic
properties of strain-gradient materials [MG14]. These estimates are based on the so-called
simplified strain gradient elasticity [AA92]; [AA97]; [GP07]. It is recalled that our own sim-
plified material model (described in section 3.5.1) is very close in spirit to that of Gao and Park
[GP07], which makes the comparison in figure 3.5 relevant.

Figure 3.5 is a visual illustration of the essential differences between strain- and stress-
gradient materials that were already pointed out in section 3.5.1. Indeed, the region comprised
between the Reuss and Voigt bounds is clearly divided in two non-overlapping subregions.
Strain-gradient materials systematically fall in the region comprised between the classical ef-
fective properties and the corresponding upper-bounds of Voigt (stiffening size-effect), while
stress-gradient materials systematically fall in the region comprised between the classical ef-
fective properties and the corresponding lower-bounds of Reuss (softening size-effect). This
again shows that, although conceptually similar (one might be tempted to say that they are
“dual”), the strain- and stress-gradient models define widely different materials.

3.5.3 Hashin–Shtrikman bounds for composites with spherical inclusions
In reference [Tra16], we also extended the Hashin–Shtrikman principle to stress-gradient ma-
terials. Besides the classical stress-polarization 𝝉 , the Hashin–Shtrikman functional now also
depends on a stress-gradient polarization 𝜿 (third-rank tensor). Using phase-wise constant
polarizations then allowed us to derive bounds on the effective properties of composites with
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monosized, spherical inclusions. Quite remarkably, the resulting bounds depend explicitly
on the two-point probability function, even for isotropic microstructures; this is at odds with
classical elasticity. The derivation of these bounds is briefly outlined in the present section.

Following the exposition of chapter 2 (sections 2.2 and 2.3), we first define Green operators
for stress-gradient materials. We consider a homogeneous, elastic, stress-gradient body Ω,
with classical compliance 𝐒0 and generalized compliance 𝐌0. We introduce the classical and
generalized stiffnesses 𝐂0 = 𝐒−1

0 and 𝐋0 = 𝐌−1
0 . The body Ω is fully clamped at its boundary

𝜕Ω, and subjected to the eigenstress 𝝉 as well as the eigen-stress-gradient 𝜿. The corresponding
boundary value problem reads [compare with (3.93)]

div𝝈 = 𝟎 𝐑 = grad𝝈 (Ω), (3.100a)
𝐞 = 𝐒0 ∶ (𝝈 − 𝝉) 𝝓 = 𝐌0 ∴ (𝐑 − 𝜿) (Ω), (3.100b)
𝐞 = 𝝐[𝐮] + div𝝓 (Ω), (3.100c)
sym(𝐮 ⊗ 𝐧) + 𝝓 · 𝐧 = 𝟎 (𝜕Ω), (3.100d)

where equation (3.100a)2 accounts for the fact that grad𝝈 is trace-free, since 𝝈 is divergence-
free. The above problem (3.100) is linear, and we introduce the four Green operators 𝚪𝑒𝜏

0 , 𝚪𝑒𝜅
0 ,

𝚪𝜙𝜏
0 and 𝚪𝜙𝜅

0 (of order 4, 5, 5 and 6, respectively) such that the solution reads

𝐞 = −𝚪𝑒𝜏
0 [𝝉] − 𝚪𝑒𝜅

0 [𝜿] and 𝝓 = −𝚪𝜙𝜏
0 [𝝉] − 𝚪𝜙𝜅

0 [𝜿]. (3.101)

For vanishing generalized compliance 𝐌0, the operator 𝚪𝑒𝜏
0 coincides with the classical

fourth-rank Green operator for essental boundary conditions (see section 2.2.1). The operators
𝚪𝑒𝜅

0 and 𝚪𝜙𝜏
0 are adjoint in the sense: ⟨𝝉 ∶ 𝚪𝑒𝜅

0 [𝜿]⟩ = ⟨𝚪𝜙𝜏
0 [𝝉] ∴ 𝜿⟩. Closed-form expressions

are derived in Fourier space for periodic boundary conditions in reference [Tra16].
We then introduce the followingHashin–Shtrikman functional [comparewith equation (2.36)]

HS(𝝉, 𝜿; 𝜺) = 1
2𝜺 ∶ 𝐂0 ∶ 𝜺 + 𝜺 ∶ ⟨𝝉⟩ − 1

2⟨𝝉 ∶ (𝐂 − 𝐂0)−1 ∶ 𝝉⟩ − 1
2⟨𝜿 ∶ (𝐋 − 𝐋0)−1 ∶ 𝝉⟩

− 1
2⟨𝝉 ∶ 𝚪𝑒𝜏

0 [𝝉]⟩ − 1
2⟨𝝉 ∶ 𝚪𝑒𝜅

0 [𝜿]⟩ − 1
2⟨𝜿 ∶ 𝚪𝜙𝜏

0 [𝝉]⟩ − 1
2⟨𝜿 ∶ 𝚪𝜙𝜏

0 [𝝉]⟩,
(3.102)

where 𝜺 again denotes the macroscopic (prescribed) strain. The extremum Hashin–Shtrikman
principle then reads

𝐂0
≥
≤ 𝐂 and 𝐋0

≥
≤ 𝐋 ⇒ HS(𝝉; 𝜿; 𝜺)

≥
≤ 1

2𝜺 ∶ 𝐂app(Ω) ∶ 𝜺
for all𝝉 ∈ 𝒯2(Ω) and 𝜿 ∈ 𝒯3(Ω), (3.103)

where 𝒯3(Ω) denotes the space of third-rank tensor fields defined over Ω, symmetric with
respect to their first two indices, with square-integrables components.

In the above inequality, 𝐂app(Ω) denotes the apparent stiffness of the stress-gradient SVE
with generalized essential boundary conditions.

Following the classical approach of Hashin and Shtrikman [HS62a] (see also section 3.1.5),
we then used phase-wise constant trial stress- and stress-gradient-polarizations to derive bounds
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Figure 3.6: Hashin–Shtrikman bounds on, andMori–Tanaka estimates of the effective bulk (left) and shear (right)
moduli of the composite 𝜅eff and 𝜇eff , as a function of the volume fraction of inhomogeneities, 𝑓 . For volume
fractions above 40 %, the estimates violate the bounds.

on the effective stiffness of stress-gradient bodies. The derivation shows that the optimal trial
stress-gradient polarization 𝜿 vanishes, while the optimal trial stress-polarization solves the
linear system (3.28) obtained in the classical case, where the classical fourth-rank Green op-
erator 𝚪∞

0 should be replaced with its generalized counterpart 𝚪𝑒𝜏,∞
0 . It is quite remarkable

that –even in the isotropic case– the two-point probability functions do not vanish in the above
derivation. This means that these functions must be specified in order to evaluate Hashin–
Shtrikman bounds.

The model of Verlet and Weis [VW72] is known to give an excellent approximation of the
two-point probability functions of a random assembly of hard spheres in thermodynamical
equilibrium. Using this model, we were able to derive closed-form expressions of the bounds.

As expected, these bounds depend on the radius 𝑎 of the spherical inhomogeneities (through
the ratios ℓi/𝑎 and ℓm/𝑎). The results are too complex to be presented here, but were thoroughly
investigated numerically in reference [Tra16]. Figure 3.6 (which reproduces figure 8.4 in ref-
erence [Tra16]) presents the bounds on the effective elastic moduli for increasing volume frac-
tion of soft spherical inhomogeneities (𝜇i = 0.1𝜇m, 𝜈i = 𝜈m = 0.125, ℓi = ℓm = 0.2𝑎). This
case provides a striking example of Mori–Tanaka estimates that violate the Hashin–Shtrikman
bounds!

This is a quite unusual result, since Mori–Tanaka estimates are usually found to coincide
with one of the Hashin–Shtrikman bounds. However, it should be recalled here that Eshelby’s
theorem [Esh57] does not hold for stress-gradient materials. In other words, the equivalent
inclusion method of Eshelby is not exact for this class of materials. Therefore, it is in princi-
ple possible to derive two families of Mori–Tanaka estimates from the solutions to Eshelby’s
inhomogeneity and inclusion problems.

We realized a posteriori that Hashin–Shtrikman bounds ought to be compared to Mori–
Tanaka estimates that rely on the inclusion problem, rather than the inhomogeneity problem
as done in reference [Tra16]. However, whether based on the inhomogeneity or inclusion
problem, the estimates will not depend on the two-point probability functions. It is therefore
very likely that these estimates will differ from any of the Hashin–Shtrikman bounds.
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To close this section, we should again emphasize that for stress-gradient materials, the
Hashin–Shtrikman bounds depend on the two-point probability functions (even in the isotropic
case). This was expected, because of the existence of material internal lengths, which ought
to be compared to correlation lengths. Simple tests carried out in reference [Tra16] tend to
indicate that, at fixed correlation lengths [defined e.g. as the quantities ∫+∞

0 𝑆𝛼𝛽(𝑟) d𝑟] the
bounds are not very sensitive to the exact shape of the two-point probability functions 𝑆𝛼𝛽(𝑟).
Besides volume fractions, the correlation lengths are therefore the governing microstructural
parameters for stress-gradient materials.

3.5.4 Closing remarks
In the present section, we have discussed a new material model with internal material lengths.
This model was initially developed by Forest and Sab [FS12] and further analyzed mathemat-
ically by Sab, Legoll, and Forest [SLF16]. It relies on the assumption that the complementary
strain energy density depends on the stress tensor and its gradient; such materials were coined
stress-gradient materials.

While the stress-gradientmodel ismathematically sound, it raisesmany theoretical questions
regarding its physical meaning. How should we understand such boundary conditions where
the whole stress tensor (rather than the traction vector) is prescribed? What is the meaning of
the generalized displacement 𝝓 in terms of an underlying microstructure?

As far as I am concerned, the question that puzzles memost is the meaning of the vector field
𝐮. Indeed, dualization of the equilibrium equations shows that 𝐮 is work-conjugate to the body
forces 𝐛 (whichwould indicate that 𝐮 is indeed the local displacement), but not to the prescribed
boundary tractions 𝐓! Equally disturbing is the kinematic boundary condition (3.97a) that
allows the “displacement” 𝐮 not to vanish at the boundary of a clamped body!

To resolve this paradox, I think that the couple (𝐮, 𝝓) ought to be split (through a linear
transformation) in a different fashion (𝐮′, 𝝓′) so as to lead to a boundary value problem that
is strictly equivalent to (3.93), while leading to more familiar kinematic boundary conditions.
This is very similar in my mind to gage invariance in electromagnetism; I have so far had no
success in finding this transformation.

Regarding the homogenization of stress-gradient materials, the results presented here pave
the way to the modelling of materials exhibiting softening size-effects. Experimental feedback
pertaining to the very existence of such materials is now needed in order to assert the relevance
of the stress-gradient material.

Finally, it should be emphasized again that we focused here on heterogeneous, stress-gradient
materials that behave macroscopically as classical materials. Analysis of the reverse problem,
namely homogenization of classical heterogenous materials as stress-gradient materials, is an
exciting perspective. It should offer new insights into the meaning of the degrees of freedom
𝐮 and 𝝓.
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Chapter 4
Galerkin discretization of the
Lippmann–Schwinger equation
The present chapter is devoted to the numerical approximation of the Lippmann–Schwinger
equation. It gatherswork published in references [BD10]; [BD12]; [BD14]; [BDS13]; [BDS14];
[Bri17a]; [Tra+16]. Section 4.1 sets the general framework shared by both methods presented
subsequently. These methods differ only by the (finite dimensional) subspace of trial stress-
polarizations that is selected for the discretization of the initial problem.

In section 4.2, we consider trial stress-polarizations that are constant over the cells of a
uniform cartesian grid. This results in a variational form of the so-called FFT-based meth-
ods initially introduced by Moulinec and Suquet [MS94]; [MS98]. Our variational approach
sheds a new light on these legacy schemes, that ease their mathematical analysis while al-
lowing for some minor improvements (such as: faster convergence and filtering of the Gibbs-
like oscillations). It is observed that these methods are meant to be virtually exact (up to
vanishing discretization errors), and we were indeed able to prove that the solution to the
discretized Lippmann–Schwinger equation converges to that of the continuous Lippmann–
Schwinger equation.

Conversely, the method presented in section 4.3 is not meant to be exact. Our intention was
rather to derive “good enough” estimates of the macroscopic properties at a moderate cost. The
method is restricted to matrix–inhomogeneities microstructures, where the inhomogeneities
assume simple geometries (spherical, spheroidal). We consider trial stress-polarizations that
are polynomial over each inhomogeneity. The resulting method can be seen as a variational
form of the equivalent inclusion method (EIM) initiated by Moschovidis and Mura [MM75].
Unlike FFT-based methods, the variational form of the EIM is clearly superior to the legacy
method. It is shown to perform extremely well in two dimensions. To our disappointment, this
does not extend to the three dimensional case, where it turns out to be barely more accurate
than standard Hashin–Shtrikman bounds.

4.1 General setting
In the present section, we lay out the variational framework on which both numerical methods
that will be presented in this chapter rely. We first reformulate in section 4.1.1 the Lippmann–
Schwinger equation introduced in sections 2.3.1 and 3.1.1 as a standard variational problem.
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Then, we briefly discuss some general issues related to the Galerkin discretization of this vari-
ational problem.

4.1.1 The Lippmann–Schwinger equation as a variational problem
It is recalled that the Lippmann–Schwinger equations (2.30), (2.33) and (3.3) are equivalent to
the corrector problems (2.11), (2.16) and (3.11) with essential, periodic and mixed boundary
conditions, respectively. The strong form of the generic Lippmann–Schwinger reads

(𝐂 − 𝐂0)−1 ∶ 𝝉 + 𝚪0[𝝉] = 𝜺, (4.1)

where 𝝉 ∈ 𝒯2(Ω) is the unknown stress-polarization, 𝜺 is the macroscopic (prescribed) stress.
Depending on the boundary conditions, 𝚪0 denotes one of the following fourth-rank Green
operators

1. essential BCs, problem (2.11): 𝚪0 ≡ 𝚪ess
0 (see section 2.2.1),

2. periodic BCs, problem (2.16): 𝚪0 ≡ 𝚪per
0 (see section 2.2.2),

3. mixed BCs, problem (3.11): 𝚪0 ≡ (𝝉 ↦ 𝚪∞
0 [𝝉 − 𝜒⟨𝝉⟩]) (see section 3.1).

Contracting with a test stress-polarization 𝝕 ∈ 𝒯2(Ω) and taking the volume average over
the whole domain Ω, the above equation is readily turned into the following variational problem

Find 𝝉 ∈ 𝒯2(Ω) such that 𝑎(𝝉, 𝝕) = 𝜺 ∶ ⟨𝝕⟩ for all 𝝕 ∈ 𝒯2(Ω), (4.2)

where

𝑎(𝝉, 𝝕) = ⟨𝝕 ∶ (𝐂 − 𝐂0)−1 ∶ 𝝉⟩ + ⟨𝝕 ∶ 𝚪0[𝝉]⟩. (4.3)

In the above problem, the bilinear form 𝑎 is symmetric owing to the symmetry of the fourth-
rank Green operator with respect to the scalar product ⟨𝝉, 𝜼⟩ = ⟨𝝉 ∶ 𝜼⟩ (see section 2.2.4).

4.1.2 Galerkin discretization of the Lippmann–Schwinger equation
Solving equation (4.2) exactly requires a full exploration of the infinite-dimensional space
𝒯2(Ω), which is in general not possible. Galerkin approximations of the solution to this equa-
tion are defined by restricting this exploration to a finite-dimensional subspace𝒯 ℎ

2 (Ω) ⊂ 𝒯2(Ω)
as follows

Find 𝝉ℎ ∈ 𝒯 ℎ
2 (Ω) such that 𝑎(𝝉ℎ, 𝝕ℎ) = 𝜺 ∶ ⟨𝝕ℎ⟩ for all 𝝕ℎ ∈ 𝒯 ℎ

2 (Ω), (4.4)

where the “ℎ” superscript refers to a discretization parameter (as yet unspecified). The solution
𝝉ℎ to the discrete problem (4.4) (assuming that it exists and is unique) is deemed to approximate
the solution to the continuous problem (4.1) or (4.2).
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At this point, several remarks ought to be made. First, the present discussion is restricted to
proper Galerkin discretizations, where trial and test functions belong to the same finite dimen-
sional subspace; we have not explored Petrov–Galerkin discretizations. Second, problem (4.4)
is a consistent discretization of problem (4.2): the bilinear form 𝑎 is evaluated exactly over
𝒯 ℎ

2 (Ω) × 𝒯 ℎ
2 (Ω); whether this is necessary will be further discussed in section 4.2.4. Finally,

the discrete problem (4.4) classically reduces to a symmetric linear system. Indeed, the solu-
tion 𝝉ℎ can be expanded in the basis 𝚽ℎ

1 , … , 𝚽ℎ
𝑁 of the finite dimensional discretization space

𝒯 ℎ
2 (Ω)

𝝉ℎ =
𝑁

∑
𝛼=1

𝑞𝛼𝚽ℎ
𝛼 , (4.5)

where the unknown scalars 𝑞1, … , 𝑞𝑁 solve the linear system 𝐴 ⋅ 𝑞 = 𝑏, with

𝐴𝛼𝛽 = 𝑎(𝚽ℎ
𝛼 , 𝚽ℎ

𝛽 ) and 𝑏𝛼 = 𝜺 ∶ ⟨𝚽ℎ
𝛼⟩. (4.6)

The above discretization raises a number of questions that are to be discussed in the remain-
der of this chapter.

Selection of the discretization space The actual definition of the finite dimensional subspace
𝒯 ℎ

2 (Ω) is of course a critical step. This space must fullfill the mathematical requirements that
ensure convergence to the exact solution ‖𝝉ℎ − 𝝉‖ → 0 when ℎ → 0 for a well chosen norm
[EG04]. We will discuss below two very different choices

1. the space of cell-wise constant trial and test stress-polarizations, for microstructures that
are discretized over a uniform grid (see section 4.2),

2. the space of trial and test stress-polarizations that are polynomial over each inclusion,
for matrix-inclusion microstructures with simple geometries (see section 4.3).

The first choice is akin to the ℎ-version of the finite element method, where accuracy im-
provements result from refinements of the mesh (here, the grid). The second choice might be
compared to the 𝑝-version of the finite element method [BSK81], where the polynomial degree
of the shape functions is increased in order to improve the quality of the approximation.

It should be noted at this point that the boundary conditions are not identical in both cases.
On the one hand, cell-wise constant stress-polarizations are best suited to periodic boundary
conditions, thus leading to a variational form of the so-called “FFT-based numerical homog-
enization method” of Moulinec and Suquet [MS94] and Moulinec and Suquet [MS98]. On
the other hand, inclusion-wise polynomial stress-polarizations combine well with the mixed
boundary conditions introduced in section 3.1.2, thus leading to a variational form of the so-
called “equivalent inclusion method” of Moschovidis and Mura [MM75].

Assembly of thematrix 𝐴 It is well-known that even in a standard, displacement based finite
element setting, this step is performance critical for large systems. This is all the more so in
the present case because: i. the matrix 𝐴 defined by equation (4.6)1 is generally full rather than
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sparse and ii. evaluation of the non-local term 𝚽𝛼 ∶ 𝚪0[𝚽𝛽], which is required to form 𝐴𝛼𝛽 , is
complex, if possible at all.

To address the first point, we will make use of the structure of the full matrix 𝐴: in a pe-
riodic setting, this matrix is block-circulant, and a matrix-free strategy [Bar+94] is adopted
to compute matrix-vector products 𝑥 ↦ 𝐴 ⋅ 𝑥. As for the second point, it is observed that a
consistent discretization of the Lippmann–Schwinger equation (4.1) is by no means required to
achieve good numerical performance. Wewill therefore introduce the following non-consistent
discretization

Find 𝝉ℎ ∈ 𝒯 ℎ
2 (Ω) such that 𝑎ℎ(𝝉ℎ, 𝝕ℎ) = 𝜺 ∶ ⟨𝝕ℎ⟩ for all 𝝕ℎ ∈ 𝒯 ℎ

2 (Ω), (4.7)

where 𝑎ℎ denotes a suitable approximation of the bilinear form 𝑎 over 𝒯 ℎ
2 (Ω) × 𝒯 ℎ

2 (Ω). This
approximation must be asymptotically consistent in the sense of Ern and Guermond [EG04]
(see section 4.2.4).

Selection of the linear solver – Preconditioning This point is closely related to the previous
one. Implementation of 𝐴 as a matrix-free operator has a number of consequences: it precludes
the use of direct linear solvers (Krylov-based iterative linear solvers will generally be used in
the present work) and requires appropriate preconditioners. The latter point has not yet been
fully investigated.

4.1.3 Galerkin approximation and the Hashin–Shtrikman principle
It is readily observed that problem (4.2) is equivalent to finding the critical point of the Hashin–
Shtrikman functional HS defined by equations (2.36) or (3.16) over the space 𝒯2(Ω). Indeed,

HS(𝝉; 𝜺) = 1
2𝜺 ∶ 𝐂0 ∶ 𝜺 + 𝜺 ∶ ⟨𝝉⟩ − 1

2𝑎(𝝉, 𝝉), (4.8)

so that the gradient of HS with respect to the stress-polarization 𝝉 reads

𝜕 HS
𝜕𝝉 (𝝉; 𝜺) ∶ 𝝕 = 𝜺 ∶ ⟨𝝕⟩ − 𝑎(𝝉, 𝝕), (4.9)

which indeed vanishes at the solution to the variational problem (4.2). Similarly, solving the
discrete problem (4.4) is equivalent to finding the critical point of the Hashin–Shtrikman func-
tional over the discretization space 𝒯 ℎ

2 (Ω).
Furthermore, from the Hashin–Shtrikman principle (see section 2.3.2), if the reference ma-

terial is stiffer (resp. softer) than all phases, solving the discrete problem (4.4) is equivalent to
minimizing (resp. maximizing) the Hashin–Shtrikman functional over the discretization space
𝒯 ℎ

2 (Ω). In that case, the resulting estimate 𝝉ℎ delivers a rigorous bound on the apparent elastic
energy. Indeed, substituting 𝝕ℎ with 𝝉ℎ in equation (4.4) leads to

HS(𝝉ℎ; 𝜺) = 1
2𝜺 ∶ 𝐂0 ∶ 𝜺 + 1

2𝜺 ∶ ⟨𝝉ℎ⟩, (4.10)
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and plugging in inequality (2.38) finally gives

𝐂0
≥
≤ 𝐂 ⇒ 1

2𝜺 ∶ 𝐂0 ∶ 𝜺 + 1
2𝜺 ∶ ⟨𝝉ℎ⟩

≥
≤ 1

2𝜺 ∶ 𝐂app(Ω) ∶ 𝜺. (4.11)

It should be noted however that for the above result to hold, a consistent discretization must
be adopted. In other words, the bilinear form 𝑎 must be evaluated exactly over 𝒯 ℎ

2 (Ω)×𝒯 ℎ
2 (Ω),

which might be too costly (if possible at all).
In any cases, the estimate 𝝉ℎ of the true stress-polarization 𝝉 delivers an estimate of the ap-

parent stiffness of the SVE Ω. Indeed, regardless of the (essential, periodic or mixed) boundary
conditions, we have for the true stress-polarization [see equations (2.32), (2.34) and (3.10)]

𝐂app(Ω) ∶ 𝜺 = 𝐂0 ∶ 𝜺 + ⟨𝝉⟩, (4.12)

and the estimate 𝐂app,ℎ(Ω) of the apparent stiffness can be defined similarly

𝐂app,ℎ(Ω) ∶ 𝜺 = 𝐂0 ∶ 𝜺 + ⟨𝝉ℎ⟩. (4.13)

It is observed that the evaluation of 𝐂app,ℎ(Ω) thus defined from the approximate solution
𝝉ℎ is fairly straightforward (provided that the basis functions 𝚽1, …, 𝚽𝑁 are simple enough).

***
In the previous section, it was shown that the Lippmann–Schwinger equation could be refor-

mulated as a variational problem that lends itself to standard Galerkin discretization. Various
choices of subspaces of trial and test functions can lead to widely different numerical schemes.
The remainder of this chapter is devoted to two such numerical schemes.

Uniform grid, periodic Lippmann–Schwinger solvers are first addressed in the following
section. In a periodic setting, these solvers result from the discretization over a cartesian grid
of the stress-polarization as a cell-wise constant field.

4.2 Uniform grid, periodic Lippmann–Schwinger solvers
UGPLS solvers are more widely known as “FFT-based methods” which is a very unfortunate
name. In reference [Bri17a], I therefore introduced the more accurate terminology “Uniform
grid, periodic Lippmann–Schwinger solver” to describe the various methods that will be dis-
cussed below. Although a bit verbose (and not widely adopted!), this terminology will be used
in the present chapter.

UGPLS solvers are designed for microstructures that are discretized over a cartesian grid.
Because periodic boundary conditions are assumed, the convolution product arising from the
𝚪0[𝝉] term in the Lippmann–Schwinger equation (4.1) can be computed efficiently in Fourier
space, by means of the fast Fourier transform (FFT). They belong to the family of full-field
homogenization techniques: refining the grid leads to a more accurate local description of the
mechanical fields that solve the corrector problem (2.16). However, it should be observed that,
contrary to alternative techniques such as the finite element method (FEM), this refinement
must be uniform (which comes with a cost).
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UGPLS solvers were introduced by Moulinec and Suquet in their seminal papers [MS94];
[MS98]. Their so-called “basic scheme” (see section 4.2.2 below) is both conceptually ele-
gant and simple to implement. Although UGPLS solvers have been around for about 25 years
now, it is fair to say that this topic remained confined to a handful of scientists until the early
2010s. At that time new developments were proposed by a larger number of groups around
the world, including Moulinec, Suquet and coworkers [Mon+]; [MS14]; [Vin+14], Willot and
coworkers [WAP14]; [Wil15]; [WP08], Zeman, Vondřejc and coworkers [Geu+17]; [MVZ16];
[VZM14]; [VZM15]; [Zem+10], Kabel, Schneider and coworkers [KBS14]; [KFS15]; [KMS15];
[Sch15]; [Sch17]; [SMK17]; [SOK15], Eisenlohr, Lebensohn and coworkers [ALR14]; [Che+15];
[Eis+13]; [LKE12], Gélébart and coworkers [GM13]; [GO15a], to cite but a few teams.

Regarding the development of the method itself, significant progress has now been made on
the selection of iterative linear solvers [BD10]; [EM99]; [MMS01]; [MS14]; [Zem+10], dis-
cretization of themechanical fields [BD10]; [BD12]; [Bri17a]; [SMK17]; [VZM14]; [VZM15];
[WAP14]; [Wil15]; [WP08]; [Yvo12], convergence with respect to the grid size [BD12];
[Sch15]. UGPLS solvers were designed to handle material non-linearities from the very begin-
ning [MMS01]; [MS94]; [MS98], although alternative approaches (akin to the standard nested
global–local loops used in FEM approaches) have also been proposed [GM13]. Geometric
non-linearities were discussed in references [Eis+13]; [KBS14]; [KFS15].

Regarding application to “real-life materials”, it is often advocated that UGPLS solvers can
easily be coupled with 3D imaging techniques. Indeed, the images of themicrostructure readily
provide the regular grid that is required by these full-field methods. While perfectly true,
this statement should be qualified by the fact that periodic boundary conditions are implicitly
assumed in the simulation. Depending on the application, this assumption may not be relevant.
Despite this minor shortcoming, a wide range of materials have been investigated by means of
UGPLS solvers: crystal plasticity of ice [Mon+], creep of cementitious materials [ŠB10] and
glass reinforced plastic composites [Lav+15], fiber reinforced plastics at large strains [KBS14],
etc. This diversity shows the versatility of these methods.

My contributions to this field were published in references [BD10]; [BD12]; [Bri17a]. They
are mostly methodological, and confined to linear elasticity. They cover the derivation of rig-
orous bounds on the effective properties, the use of Krylov-space iterative linear solvers, alter-
native discretizations, proof of convergence with respect to the grid-size, a posteriori errors.
These topics are covered in the remainder of section 4.2.

Section 4.2.1 introduces notations for the discrete and periodic Fourier transforms. Sec-
tion 4.2.2 introduces the “basic scheme” of Moulinec and Suquet, and serves as a motivation
for the subsequent developments. Sections 4.2.3 and 4.2.4 discuss the selection of the approxi-
mation subspace 𝒯 ℎ

2 (Ω) and convergence with respect to the grid-size. Section 4.2.5 discusses
both a priori and a posteriori error estimates. Finally, section 4.2.6 lists a few perspectives for
future work.

4.2.1 Fourier series and discrete Fourier transforms
One essential common feature of all UGPLS solvers is the fact that discretization is carried out
over a cartesian grid 𝒢 ℎ of size 𝑁1×⋯×𝑁𝑑 defined over the unit-cell Ω = (0, 𝐿1)×⋯×(0, 𝐿𝑑).
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Although it is by no means required, it will be assumed in the remainder of section 4.2, for the
sake of simplicity, that the cells are cubic; ℎ denotes the side of the cubic grid cells: ℎ =
𝐿1/𝑁1 = ⋯ = 𝐿𝑑 /𝑁𝑑 . Cells of the grid 𝒢 ℎ are indexed by 𝐧 ∈ {0, … , 𝑁1 − 1} × ⋯ ×
{0, … , 𝑁𝑑 − 1}.

In the periodic setting adopted here, most mechanical fields are periodic and can (will) there-
fore be expanded in Fourier series. As an example, we recall here the expression of the Fourier
coefficients ̃𝝉𝐤 (𝐤 ∈ ℤ𝑑) of the stress-polarization 𝝉(𝐱) (𝐱 ∈ Ω)

̃𝝉𝐤 = 1
𝐿1 … 𝐿𝑑 ∫𝐱∈Ω

𝝉(𝐱) exp[−2iπ(𝑘1𝑥1/𝐿1 + ⋯ + 𝑘𝑑𝑥𝑑 /𝐿𝑑)] d𝑉𝐱, (4.14)

as well as the resulting expansion of 𝝉 as a Fourier series

𝝉(𝐱) = ∑
𝐤∈ℤ𝑑

̂𝝉𝐤 exp[2iπ(𝑘1𝑥1/𝐿1 + ⋯ + 𝑘𝑑𝑥𝑑 /𝐿𝑑)]. (4.15)

The discrete trial stress-polarization 𝝉ℎ introduced in section 4.1.2 is also periodic. As such,
we will introduce its Fourier coefficients ̃𝝉ℎ

𝐤 . The discretization itself [as introduced in equa-
tion (4.5)] will of course be defined with respect to the cartesian grid 𝒢 ℎ

𝝉ℎ(𝐱) =
𝑁1−1

∑
𝑛1=0

⋯
𝑁𝑑−1

∑
𝑛𝑑=0

𝝉ℎ
𝐧 Φℎ

𝐧(𝐱), (4.16)

where the parameters 𝝉ℎ
𝐧 are attached to the cells of the grid 𝒢 ℎ. For suitable choices of the

(scalar) shape functions Φℎ
𝐧, the Fourier coefficients ̃𝝉ℎ

𝐤 can be related to the discrete Fourier
transform of the parameters 𝝉ℎ

𝐧 , defined as follows, for 𝐤 ∈ ℤ𝑑

̂𝝉ℎ
𝐤 =

𝑁1−1

∑
𝑛1=0

⋯
𝑁𝑑−1

∑
𝑛𝑑=0

𝝉ℎ
𝐧 exp[−2iπ(𝑘1𝑛1/𝑁1 + ⋯ + 𝑘𝑑𝑛𝑑 /𝑁𝑑)], (4.17)

which is readily inverted

𝝉ℎ
𝐧 = 1

𝑁1⋯𝑁𝑑

𝑁1−1

∑
𝑘1=0

⋯
𝑁𝑑−1

∑
𝑘𝑑=0

̂𝝉ℎ
𝐤 exp[2iπ(𝑘1𝑛1/𝑁1 + ⋯ + 𝑘𝑑𝑛𝑑 /𝑁𝑑)]. (4.18)

It is emphasized that ̃𝝉ℎ
𝐤 (Fourier coefficients of 𝝉ℎ) and ̂𝝉ℎ

𝐤 (discrete Fourier transform of
𝝉ℎ

𝐧 ) should not be confused. Although ̃𝝉ℎ
𝐤 can be related to ̂𝝉ℎ

𝐤 for appropriate choices of the
Φℎ

𝐧, these quantities are widely different. For one thing, the ̃𝝉ℎ
𝐤 generally define an infinite set

of discrete values, while the ̂𝝉ℎ
𝐤 define a (𝑁1, … , 𝑁𝑑)-periodic (therefore, finite) set of discrete

values.
To close this section, it is recalled that the fast Fourier transform (FFT) provides an efficient

algorithm for the numerical computation of discrete Fourier transforms [CT65].
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4.2.2 Overview of the “basic scheme”
It has already been mentioned that the first UGPLS solver was introduced byMoulinec and Su-
quet, who proposed in references [MS94]; [MS98] what is now known as the “basic scheme”.
The starting point is the strong form of the Lippmann–Schwinger equation (4.1), where the
stress-polarization 𝝉 is replaced with the strain 𝜺 = (𝐂 − 𝐂0)−1 ∶ 𝝉

𝜺 = 𝜺 − 𝚪0[(𝐂 − 𝐂0) ∶ 𝜺]. (4.19)

Moulinec and Suquet suggest to solve this equation iteratively, using simple fixed-point it-
erations

𝜺𝑡+1 = 𝜺 − 𝚪0[(𝐂 − 𝐂0) ∶ 𝜺𝑡] = 𝜺𝑡 − 𝚪0[𝐂 ∶ 𝜺𝑡], (4.20)

with 𝜺0 = 𝜺. In equation (4.20), the last equality results from property (2.26)2 of the fourth-
rank Green operator. Convergence of iterations (4.20) is addressed in reference [MMS01]. The
𝑡-th iterate of the basic scheme may be written

𝜺𝑡 = (𝐈 − 𝐇 + 𝐇2 + ⋯ + (−1)𝑡𝐇𝑡)[𝜺], (4.21)

where 𝐇 denotes the operator 𝜺 ↦ 𝚪0[(𝐂 − 𝐂0) ∶ 𝜺]. Convergence is therefore ensured if
the norm of 𝐇 is strictly lower than 1. For isotropic elasticity, Michel, Moulinec, and Suquet
[MMS01] derive the following sufficient convergence condition

2𝜅0 > 𝜅(𝐱) and 2𝜇0 > 𝜇(𝐱) (𝐱 ∈ Ω), (4.22)

where 𝜅0 and 𝜇0 (resp. 𝜅, 𝜇) denote the bulk and shear moduli of the reference material (resp.
local bulk and shear moduli of the composite). Furthermore, the optimum values of 𝜅0 and 𝜇0
are found to be

2𝜅0 = min
𝐱∈Ω

𝜅(𝐱) + max
𝐱∈Ω

𝜅(𝐱) and 2𝜇0 = min
𝐱∈Ω

𝜇(𝐱) + max
𝐱∈Ω

𝜇(𝐱). (4.23)

Implementation of iterations (4.20) requires the steps listed in algorithm 4.1 below.

Algorithm 4.1 (The basic scheme of Moulinec and Suquet [MS94]; [MS98]). The 𝑡-th iterate
𝜺𝑡 is given.

1. Compute the local stress 𝝈𝑡 = 𝐂 ∶ 𝜺𝑡

2. Compute the Fourier coefficients 𝝈̃𝑡
𝐤 for all 𝐤 ∈ ℤ𝑑 , using equation (4.14)

3. Sum the Fourier series (2.21) to compute 𝛿𝜺𝑡 = −𝚪0[𝝈𝑡]
4. Update the local strain 𝜺𝑡+1 = 𝜺𝑡 + 𝛿𝜺𝑡

It is clear that the above algorithm is conceptual, since it would require the computation of
an infinite set of Fourier coefficients, as well as the summation of an (infinite) Fourier series.
For practical implementation, some discretization is required. This is arguably the step that
is missing justification in the seminal papers [MS94]; [MS98] of Moulinec and Suquet. It is
outlined in the remainder of this section.
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Introducing the cartesian grid 𝒢 ℎ (see section 4.2.1), it will be assumed that the strain field
𝜺𝑡 can be approximated in some sense by the cell values 𝜺ℎ,𝑡

𝐧 , where the cell index 𝐧 belongs to
{0, … , 𝑁1 − 1} × ⋯{0, … , 𝑁𝑑 − 1}. Assuming that the local stiffness 𝐂 is also discretized as
𝐂ℎ

𝐧 over the grid 𝒢 ℎ, the cell values of the stress 𝝈𝑡 read 𝝈ℎ,𝑡
𝐧 = 𝐂ℎ

𝐧 ∶ 𝜺ℎ,𝑡
𝐧 .

It remains to explain how the strain increment 𝛿𝜺𝑡 = 𝜺𝑡+1 − 𝜺𝑡 = −𝚪0[𝝈𝑡] is to be approxi-
mated. Assuming that 𝑁1 = 2𝑀1 + 1, … , 𝑁𝑑 = 2𝑀𝑑 + 1 are all odd numbers, the cell-values
𝛿𝜺ℎ,𝑡

𝐧 of 𝛿𝜺ℎ,𝑡 are defined as the inverse discrete Fourier transform of the following quantity

𝛿 ̂𝜺ℎ,𝑡
𝐤 = −𝚪̃0(𝐤′) ∶ 𝝈̂ℎ,𝑡

𝐤 where 𝑘′
𝑖 =

{
𝑘𝑖 for 𝑘𝑖 = 0, … , 𝑀𝑖
𝑘𝑖 − 𝑁𝑖 for 𝑘𝑖 = 𝑀𝑖 + 1, … , 𝑁𝑖 − 1

(𝑖 = 1, … , 𝑑). (4.24)

It is recalled that in equation (4.24), 𝚪̃0 denotes the Fourier transform of the continuous
fourth-rank Green operator [see equation (A.1)]. Summing up the approximations introduced
above, the discrete version of the basic scheme is listed in algorithm 4.2 below.

Algorithm4.2 (Discrete version of the basic scheme ofMoulinec and Suquet [MS94]; [MS98]).
The 𝑡-th iterate 𝜺ℎ,𝑡

𝐧 is given.

1. Compute the cell-values of the stress 𝝈ℎ,𝑡
𝐧 = 𝐂ℎ

𝐧 ∶ 𝜺ℎ,𝑡
𝐧

2. Compute the discrete Fourier transform 𝝈̂ℎ,𝑡
𝐤 of the 𝝈ℎ,𝑡

𝐧

3. Compute 𝛿 ̂𝜺ℎ,𝑡
𝐤 from equation (4.24)

4. Compute the inverse discrete Fourier transform 𝛿𝜺ℎ,𝑡
𝐧 of the 𝛿 ̂𝜺ℎ,𝑡

𝐤

5. Compute 𝜺ℎ,𝑡+1
𝐧 = 𝜺ℎ,𝑡

𝐧 + 𝛿𝜺ℎ,𝑡
𝐧

Remark 4.1. It should be emphasized that equation (4.24) mixes discrete and continuous (pe-
riodic) Fourier transforms. Also, since 𝑁1, … , 𝑁𝑑 are all odd numbers, it is readily shown
that the inverse Fourier transform of 𝛿 ̂𝜺ℎ,𝑡

𝐤 defined by equation (4.24) is indeed real. The case
where one at least of the 𝑁𝑖 is even is more complex. It is addressed somewhat heuristically
in reference [MS98] (end of section 2.4). Recently, Vondřejc [Von16] proposed a rigorous
analysis of this case.

Implementation of the above algorithm is very simple and would only require a FFT library
as external dependency. This makes the basic scheme a very attractive (and indeed, success-
ful) scheme for the numerical homogenization of heterogeneous materials. It nevertheless has
two major shortcomings: i. convergence of the fixed-point iterations may be very slow for
high elastic contrasts and ii. the resulting approximate fields may exhibit strong Gibbs oscilla-
tions. Point i. was explored as early as 2001 by Michel, Moulinec, and Suquet [MMS01], who
proposed an alternative iterative based on augmented Lagrangians (see also the so-called “ac-
celerated scheme” of Eyre and Milton [EM99]). Point ii. was discussed much more recently,
first by Willot and Pellegrini [WP08], then Brisard and Dormieux [BD10] and Brisard and
Dormieux [BD12]. Other contributions to this point include references [Bri17a]; [SMK17];
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[WAP14]; [Wil15]; [Yvo12], among which the work by Willot [Wil15] is worth being singled
out.

To close this section, it should be observed that the derivation of the basic scheme is some-
what unusual. Indeed, Moulinec and Suquet first selected the iterative linear solver (namely,
fixed-point iterations), then discretized the resulting (linear) iterations. This approach is very
restrictive, as the linear solver that is selected must be able to handle both continuous and dis-
crete problems (which is extremely restrictive, and, in the end, not necessary). In the general
approach outlined in section 4.1.2, the reverse approach is adopted: the continuous problem
is first discretized. Only then is the most appropriate linear solver chosen. This is presented
in section 4.2.3 below, which gives an overview of the principles introduced by Brisard and
Dormieux in references [BD10] and [BD12].

4.2.3 Consistent discretization of the periodic Lippmann–Schwinger
equation

In this section, the general framework introduced in section 4.1.2 is applied to the periodic
Lippmann–Schwinger equation, discretized over a cartesian grid 𝒢 ℎ of size 𝑁1 × ⋯ × 𝑁𝑑 .
We first need to define the approximation space 𝒯 ℎ

2 (Ω), where Ω = (0, 𝐿1) × ⋯ × (0, 𝐿𝑑)
denotes the periodic unit-cell. Since the only requirement is for the trial stress-polarization
to be square-integrable, it is natural to consider cell-wise constant approximations. Then, 𝝉ℎ

𝐧
denotes the constant value of 𝜏ℎ ∈ 𝒯 ℎ

2 (Ω) over cell 𝐧 of the grid 𝒢 ℎ

𝝉ℎ(𝐱) =
𝑁1−1

∑
𝑛1=0

⋯
𝑁𝑑−1

∑
𝑛𝑑=0

𝜒ℎ(𝐱 − 𝐱ℎ
𝐧) 𝝉ℎ

𝐧 , (4.25)

where 𝜒ℎ denotes the indicator function of the cell centered at the origin [𝜒ℎ(𝐱) ∈ {0, 1},
𝜒ℎ(𝐱) = 1 ⟺ 2|𝑥𝑖| ≤ ℎ for all 𝑖 = 1, … , 𝑑], and 𝐱ℎ

𝐧 denotes the center of cell 𝐧

𝐱ℎ
𝐧 = ℎ[(𝑛1 + 1

2 ) 𝐞1 + ⋯ + (𝑛𝑑 + 1
2 ) 𝐞𝑑]. (4.26)

In reference [BD10], I introduced a consistent discretization of the periodic Lippmann–
Schwinger equation (4.1) over the discretization space 𝒯 ℎ

2 (Ω) thus defined. This requires exact
evaluation of the bilinear form 𝑎 defined by equation (4.3) over 𝒯 ℎ

2 (Ω) × 𝒯 ℎ
2 (Ω). It is readily

found that the first term of 𝑎, which is local in space, evaluates to

⟨𝝕ℎ ∶ (𝐂 − 𝐂0)−1 ∶ 𝝉ℎ⟩ = 1
𝑁1⋯𝑁𝑑

𝑁1−1

∑
𝑛1=0

⋯
𝑁𝑑−1

∑
𝑛𝑑=0

𝝕ℎ
𝐧 ∶ (𝐂ℎ

𝐧 − 𝐂0)−1 ∶ 𝝉ℎ
𝐧 , (4.27)

where the equivalent stiffness 𝐂ℎ
𝐧 of cell 𝐧 is defined so as to ensure that (𝐂ℎ

𝐧 − 𝐂0)−1 is the
volume average of (𝐂 − 𝐂0)−1 over cell 𝐧

(𝐂ℎ
𝐧 − 𝐂0)

−1 = 1
ℎ𝑑 ∫𝐱∈Ω

𝜒ℎ(𝐱 − 𝐱ℎ
𝐧)[𝐂(𝐱) − 𝐂0]

−1d𝑉𝐱. (4.28)
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Although simple, equation (4.28) is an important result, as it provides a consistent rule to
define the equivalent stiffness of heterogeneous grid cells. Alternatives to this strategy are: the
majority rule, Reuss/Voigt estimates or the laminate mixing rule recently introduced by Kabel,
Merkert, and Schneider [KMS15] where extensive comparisons between these strategies are
provided. It should be mentioned that these authors deliberately excluded equation (4.28) from
this comparison. The reason for this is the observation that

“the Brisard–Dormieux mixing rule is necessary to ensure that the computed ef-
fective properties constitute a bound on the effective stiffness, and thus tend to
increase the error.”

I believe this is a fair argument, the implications of which I would like to explore further.
Still, at the time of publication, equation (4.28) was an original take on the issue of heteroge-
neous cells within the framework of UGPLS solvers.

Evaluation of the non-local term of 𝑎(𝝉ℎ, 𝝕ℎ) in equation (4.3) is more complex. The fol-
lowing identity holds [BD10]

⟨𝝕ℎ ∶ 𝚪0[𝝉ℎ]⟩ = 1
𝑁2

1 ⋯𝑁2
𝑑

𝑁1−1

∑
𝑘1=0

⋯
𝑁𝑑−1

∑
𝑘𝑑=0

conj(𝝕̂ℎ
𝐤 ) ∶ 𝚪̂ℎ,c

0,𝐤 ∶ ̂𝝉ℎ
𝐤 , (4.29)

where conj denotes the complex conjugate, and the so-called consistent, discrete Green oper-
ator reads

𝚪̂ℎ,c
0,𝐤 = 1

π2𝑑 ∑
𝑝1∈ℤ

⋯ ∑
𝑝𝑑∈ℤ[

sin π𝑧1⋯ sin π𝑧𝑑
(𝑧1 + 𝑝1)⋯(𝑧𝑑 + 𝑝𝑑)]

2
𝚪̃0((𝑧1 +𝑝1) 𝐞1 +⋯+(𝑧𝑑 +𝑝𝑑) 𝐞𝑑), (4.30)

with 𝑧1 = 𝑘1/𝑁1, …, 𝑧𝑑 = 𝑘𝑑 /𝑁𝑑 . One should not be deterred by the seemingly complex
above expressions, as they have very profound implications.

First, equation (4.29) shows that the non-local term ⟨𝝕ℎ ∶ 𝚪0[𝝉ℎ]⟩ can be evaluated from the
discrete Fourier transform of the cell values of 𝝉ℎ and 𝝕ℎ. It is emphasized that this equality
is exact and the sum is finite, as opposed to the general expression (2.21) of the periodic Green
operator, where the sum is infinite.

Second, it is observed that equation (4.30) mixes periodic Fourier transforms (tilde notation,
•̃) and discrete Fourier transforms (hat notation, •̂). This is neither a mistake, nor an approx-
imation. It comes from the fact that the Fourier coefficients of a periodic, cell-wise function
can be related to the discrete Fourier transform of its cell values [BD12, equation (50)]. Now,
introducing ̂𝜼ℎ

𝐤 = 𝚪̂ℎ
0,𝐤 ∶ ̂𝝉ℎ

𝐤 and its inverse discrete Fourier transform 𝜼ℎ
𝐧

𝜼ℎ
𝐧 = 1

𝑁1⋯𝑁𝑑

𝑁1−1

∑
𝑘1=0

⋯
𝑁𝑑−1

∑
𝑘𝑑=0

exp[2iπ(𝑘1𝑛1/𝑁1 + ⋯ + 𝑘𝑑𝑛𝑑 /𝑁𝑑)]𝚪̂ℎ
0,𝐤 ∶ ̂𝝉ℎ

𝐤 , (4.31)

then applying Plancherel’s theorem to equation (4.29) leads to the alternative expression

⟨𝝕ℎ ∶ 𝚪0[𝝉ℎ]⟩ = 1
𝑁1⋯𝑁𝑑

𝑁1−1

∑
𝑛1=0

⋯
𝑁𝑑−1

∑
𝑛𝑑=0

𝝕ℎ
𝐧 ∶ 𝜼ℎ

𝐧. (4.32)
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Finally, gathering equations (4.27) and (4.32), the discrete variational problem (4.4) is re-
duced to the following linear system

(𝐂ℎ
𝐧 − 𝐂0)−1 ∶ 𝝉ℎ

𝐧 + 𝜼ℎ
𝐧 = 𝜺, (4.33)

where the unknowns are the cell values 𝝉ℎ
𝐧 . Owing to the symmetry of the bilinear form 𝑎, the

above linear system is symmetric. In reference [BD10], we further selected the stiffness 𝐂0
of the reference material so as to be strictly stiffer or softer than all phases in the composite.
As already argued in section 4.1.3, this ensures that the resulting numerical estimate of the
apparent stiffness is in fact a bound. More importantly, the linear operator of the system is then
positive (or negative) definite, which allows for the use of the conjugate gradient solver instead
of the fixed-point iterations initially proposed by Moulinec and Suquet [MS94]; [MS98].

This resulted in a dramatic performance improvement over the basic scheme in terms of
number of iterations, even for very high elastic contrasts (see figure 4.1). At this point, it is
worth recalling that (as already argued in section 4.1.2) implementation of the above scheme
follows a matrix-free pattern, where the conjugate gradient solver is provided with a function
(in the programming sense) that maps 𝝉ℎ

𝐧 to (𝐂ℎ
𝐧 − 𝐂0)−1 ∶ 𝝉ℎ

𝐧 + 𝜼ℎ
𝐧 according to the following

steps (see algorithm 4.3).

Algorithm 4.3 (Application of the discrete Green operator). The cell values 𝝉ℎ
𝐧 of the trial

stress-polarization are given.

1. Compute the discrete Fourier transform ̂𝝉ℎ
𝐤 of 𝝉ℎ

𝐧 .

2. Compute ̂𝜼ℎ
𝐤 = 𝚪̂ℎ

0,𝐤 ∶ ̂𝝉ℎ
𝐤 .

3. Compute the inverse discrete Fourier transform 𝜼ℎ
𝐧 of ̂𝜼ℎ

𝐤.

4. Return (𝐂ℎ
𝐧 − 𝐂0)−1 ∶ 𝝉ℎ

𝐧 + 𝜼ℎ
𝐧.

Comparing with the basic scheme (see algorithm 4.1), it is seen that the number of discrete
Fourier transforms required to compute one matrix-vector product is identical to that of one
iteration of the basic scheme. Therefore, it is fair to compare the performance of the basic
scheme and the present consistent scheme in terms of number of iterations, since one iteration
of the conjugate gradient method requires one matrix-vector product.

When reference [BD10] was published, I attributed the observed acceleration to the replace-
ment of the linear solver solely. I have now come to understand that the high-frequency content
of the consistent discrete Green operator also plays a significant role. This was discussed in
section 4.4 of reference [BD12]. However, evaluation of the consistent discrete Green oper-
ator is costly. Indeed, the series defined by equation (4.30) is only slowly converging. An
interesting summation strategy that further allows to bound the truncation error from above
was proposed in appendix C of reference [BD10]. Unfortunately, this acceleration technique
is not sufficient in 3D, where evaluation of equation (4.30) becomes unpractical. In such cases,
non-consistent discretizations are advisable.
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Figure 4.1: Comparison of the basic scheme of Moulinec and Suquet [MS94]; [MS98] and the consistent dis-
cretization of Brisard and Dormieux [BD10], combined with a conjugate gradient solver. Within a plane strain
elasticity setting, a square inclusion of side 𝐿/2 is embedded in a square unit-cell of side 𝐿/2. The elastic prop-
erties of the matrix are 𝜇m = 1 and 𝜈m = 0.3, while the Poisson ratio of the inhomogeneity is 𝜈i = 0.2 (the shear
modulus 𝜇i varies). All simulations were performed on a 128 × 128 grid. Similar stopping criteria were adopted
for both numerical schemes. The plot on the right shows that the combination of a CG solver with the consistent
discretization always converges in a bounded number of iterations, while the basic scheme requires an increasing
number of iterations when the elastic contrast increases. (Reproduced from reference [BD10])

4.2.4 Asymptotically consistent discretization of the periodic
Lippmann–Schwinger equation

Non-consistent discretizations of the periodic Lippmann–Schwinger equation in fact date back
to the very first paper by Moulinec and Suquet [MS94]. Indeed, in the basic scheme they
introduced, the bilinear form 𝑎(𝝉ℎ, 𝝕ℎ) is not computed exactly, as will be discussed below.
However, this numerical scheme was not recognized as asymptotically consistent (in the sense
of Ern and Guermond [EG04]) before our paper [BD12].

The initial motivation for reference [BD12] came from one question raised during my PhD
defense. Indeed, in reference [BD10], the reference material was required to be stiffer or softer
than all phases (in order to complywith theHashin–Shtrikman principle). One referee naturally
asked what would happen if the reference material did not comply with this requirement?

Of course, the numerical scheme then no longer delivers a rigorous bound on the apparent
stiffness. Is it legitimate to treat the result as an estimate? In other words, does refining the
grid spacing ℎ result in an improved estimate of the apparent stiffness?

When the Hashin–Shtrikman principle applies, the question is somewhat trivial. Indeed, the
Hashin–Shtrikman functional is then optimized over a subspace that gets larger1: the bound
must improve (note that this does not insure convergence to the exact value). For an arbitrary
reference material, the Hashin–Shtrikman functional exhibits a saddle-point, and the above no
longer applies. Indeed, even uniqueness of the saddle-point was not asserted. I therefore set
out to study the convergence of UGPLS schemes.

1Strictly speaking, this is true only for refinements (by subdivision) of the initial grid, since it must be ensured
that the various optimization subspaces form a hierarchy of subsets.
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At this point, it must be emphasized that prior to reference [BD12], “convergence” generally
referred to the iterative solver (at fixed grid-spacing ℎ), rather than the discretization: much
effort has thus been devoted to the derivation of efficient iterative solvers that reach convergence
in as few iterations as possible. In section 4.2.3, it was shown that discretizing the periodic
Lippmann–Schwinger equation and solving the resulting linear system are two problems that
can be largely addressed separately. In this section, we therefore disregard the iterative linear
solver and focus on the following question: “does ‖𝝉ℎ − 𝝉‖ → 0 as ℎ → 0?”, in which the
functional norm is as yet unspecified. This question had not been investigated at the time of
publication of reference [BD12]; it required a proper mathematical setting, and I soon found
out that the framework initially set up for the analysis of finite element schemes [EG04] was
perfectly suited to the task.

Selecting the appropriate functional space for the periodic Lippmann–Schwinger equation (4.1)
(which turned out to be the space 𝒯2(Ω) of second-rank, symmetric tensors with Ω-periodic,
square integrable components), I was first able to prove that (under minor restrictions), the so-
lution was indeed unique, regardless of the choice of the referencematerial. Furthermore, I was
able to prove the convergence of the numerical scheme introduced in reference [BD10]. I called
this scheme consistent, since within this framework, the bilinear form 𝑎(𝝉ℎ, 𝝕ℎ) was computed
exactly over the discretization space 𝒯 ℎ

2 (Ω) of cell-wise constant trial stress-polarizations.
It was then natural to consider the same convergence question for the basic scheme of

Moulinec and Suquet [MS94] and Moulinec and Suquet [MS98]. It should be recalled that this
scheme was initially obtained through collocation, rather than Galerkin discretization: how to
reconstruct a tensor field 𝜺ℎ(𝐱) from the cell estimates 𝜺ℎ

𝐧 was not really discussed.
I therefore chose2 a reconstruction as a cell-wise constant field. Referring to algorithm 4.1,

this meant that the first term of 𝑎(𝝉ℎ, 𝝕ℎ) [involving the local constitutive law, see equa-
tion (4.3)] was computed exactly, while the second term [involving the non-local Green op-
erator, see equation (4.3)] was approximated. This scheme could thus be regarded as a non-
consistent discretization of the periodic Lippmann–Schwinger equation of type (4.7). I was
again able to prove that the basic scheme was asymptotically consistent, which warranted a
positive answer to the convergence question for the basic scheme.

This analysis further allowed me to set up a unique framework into which most UGPLS
scheme could be cast. Indeed, I realized that most of these schemes can be seen as non-
consistent discretizations of the periodic Lippmann–Schwinger solver, where the bilinear form
𝑎(𝝉ℎ, 𝝕ℎ) is approximated as follows [compare with equations (4.27) and (4.29) in the consis-
tent case]

𝑎(𝝉ℎ, 𝝕ℎ) ≈ 𝑎ℎ(𝝉ℎ, 𝝕ℎ) = 1
𝑁1⋯𝑁𝑑

𝑁1−1

∑
𝑛1=0

⋯
𝑁𝑑−1

∑
𝑛𝑑=0

𝝕ℎ
𝐧 ∶ (𝐂ℎ

𝐧 − 𝐂0)−1 ∶ 𝝉ℎ
𝐧

+ 1
𝑁2

1 ⋯𝑁2
𝑑

𝑁1−1

∑
𝑘1=0

⋯
𝑁𝑑−1

∑
𝑘𝑑=0

conj(𝝕̂ℎ
𝐤 ) ∶ 𝚪̂ℎ

0,𝐤 ∶ ̂𝝉ℎ
𝐤 , (4.34)

2An alternative choice is considered in section 4.2.6.
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where 𝐂ℎ
𝐧 denotes an equivalent stiffness of cell 𝐧 [computed for example through the consis-

tency rule (4.28)], while 𝚪̂ℎ
0,𝐤 is a so-called discrete Green operator.

ManyUGPLS schemes can be cast in this form, aswas shown for example in reference [BD12]
for the basic scheme ofMoulinec and Suquet [MS94]; [MS98] (truncated discrete Green opera-
tor) and our variational scheme introduced in reference [BD10] (consistent discrete Green oper-
ator). I showed more recently [Bri17a] that the approach ofWillot and collaborators [WAP14];
[Wil15] was also amenable to the above abstraction (finite-difference discrete Green operator).

This unified presentation has two beneficial side effects. First, it means that the same math-
ematical framework can be employed to prove the convergence of this variety of numerical
schemes: it suffices to prove that the discrete Green operator under consideration is asymptot-
ically consistent (in the sense of Ern and Guermond [EG04]).

Second, it means that a unified numerical code can be designed, that offers a uniform in-
terface for all these variants. In this spirit, I wrote Janus3. Freely available under a BSD-3
license, this library offers a fairly general framework in which a UGPLS scheme is seen as the
combination of

1. a discretization of the continuous Green operator: through e.g truncation, filtering of
high-frequencies, finite differences, …

2. an iterative linear solver, which might be fixed-point iterations [MS94]; [MS98], itera-
tions based on an augmented Lagrangian approach [MMS01], conjugate gradient itera-
tions [BD10]; [Zem+10] or even more general Krylov-based iterative linear solvers such
as SYMMLQ [BD12].

The code is implemented in such a way that it is independent on the dimensionality as well as
the exact nature of the problem: thermal conduction and linear elasticity are of course readily
available, but extensions to permeability analysis [BD14] or heterogeneous plates [NSB09] are
even possible with very little effort. In all cases, the code only requires the implementation of
the continuous discrete Green operator, while taking care automatically of its discretization. It
is parallelized, thus allowing the analysis of fairly large microstructures. Figure 4.2 shows a
simple application of this code.

4.2.5 Asserting the quality of the solution
Asserting the quality of a numerical solution to a boundary value problem is almost as impor-
tant as, if not more important than, computing the numerical solution itself. This has become
common practice among the finite element community, which has developed a rather wide
range of general purpose tools to bound the error on the solution.

Within the framework of UGPLS methods, such matters have not yet drawn much attention,
although it is widely accepted that the quality of the numerical solution can be significantly
affected by the choice of the discrete Green operator (the grid-size ℎ being fixed) [BD12];
[SOK15]; [WAP14]; [Wil15]; [WP08]. In the case of the filtered, discrete Green operator, the
solution even depends on the stiffness 𝐂0 of the reference material, which can be selected so
as to minimize the discretization error. Clearly, there is a need to be able to quantify this error.
3https://github.com/sbrisard/janus, last retrieved 2017-03-08
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Figure 4.2: A simle application of the Janus library. The above figure shows a map of the stress-polarization
𝜏𝑥𝑦 for the microstructure displayed in figure 1.3, subjected to a unit macroscopic shear strain 𝐸𝑥𝑦 = 1. Three
simulations are presented, for increasing grid sizes: 2563, 5123 and 10243. For the latter, the total number of
unknowns is about 109.

My intent when I set out to produce error estimators for UGPLSmethods was to rely as much
as possible on tools already available for finite element analysis. In particular, the elegance and
versatility of estimators derived from the constitutive relation error [LL83]; [LP05] drew my
attention very early on. The work described in this section is still in progress; it is carried out
in collaboration with L. Chamoin4.

In its most basic form, the constitutive relation error relies on the Prager–Synge theorem,
which states that for any well-posed problem of linear, elastic equilibrium

𝑈 ∗(𝝈̂ − 𝝈) + 𝑈( ̌𝜺 − 𝜺) = 𝑈 ∗(𝝈̂ − 𝐂 ∶ ̌𝜺), (4.35)

where 𝝈 and 𝜺 denote the stress and strain at equilibrium (𝝈 = 𝐂 ∶ 𝜺), while 𝝈̂ and ̌𝜺 denote
an arbitrary statically admissible stress field and an arbitrary kinematically admissible strain
field (𝝈̂ ≠ 𝐂 ∶ ̌𝜺). Finally, 𝑈 is the strain energy and 𝑈 ∗ is the complementary stress energy.
Identity (4.35) is extremely useful to boundmodelling or discretization errors. Indeed, it results
from this identity that

𝑈 ∗(𝝈̂ − 𝝈) ≤ 𝑈 ∗(𝝈̂ − 𝐂 ∶ ̌𝜺) and 𝑈( ̌𝜺 − 𝜺) ≤ 𝑈 ∗(𝝈̂ − 𝐂 ∶ ̌𝜺). (4.36)

In the above inequalities, the left-hand side measures the distance (in energy norm) between
the exact (unknown) stress (𝝈) and strain (𝜺) fields and what can be regarded as approximate
stress (𝝈̂) and strain ( ̌𝜺) fields. The right-hand side provides a rigorous, computable bound on
this error. The only requirement for 𝝈̂ and ̌𝜺 is to be admissible (in the static and kinematic
sense, respectively). The right-hand side of both inequalities is called error in constitutive
relation, since it measures the degree of violation of the local constitutive law by the (non-
associated) stress and strain fields 𝝈̂ and ̌𝜺.

In a displacement-based finite element setting, application of the above results proceeds
as follows. A kinematically admissible strain field 𝜺ℎ = 𝝐[𝐮ℎ] is readily derived from the
4LMT Cachan (ENS Cachan/CNRS/Paris 6 University), Cachan Cedex, France
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finite element displacement field 𝐮ℎ. Reconstructing a statically admissible stress field 𝝈̂ℎ is
a more involved task, which can however be carried out in a fairly systematic way [LP05].
In particular, it should be noted that this reconstruction is rather inexpensive, as it involves a
series of local linear problems (formulated on patches of elements, rather than the whole finite
element model). Then, the constitutive relation error is computed, thus delivering a bound on
the discretization error.

Application of the above framework to UGPL solvers is more involved, since these solvers
generally do not produce kinematically admissible displacement fields (the principal unknown
being the stress-polarization, or equivalently the strain). Quoting from the introduction of
reference [Bri17a], we “first observe that many authors have already proposed strategies to re-
construct kinematically admissible displacement fields. To name but a few: Moulinec and Su-
quet [MS98] produce strain fields which are by construction compatible; Willot and Pellegrini
[WP08] and Monchiet and Bonnet [MB12] use projections onto the space of compatible strain
fields; Zeman, Vondřejc, Novák, and Marek [Zem+10] and Vondřejc et al. (see [VZM14];
[VZM15] and references therein) use the displacement as their primary unknown in a Galerkin
setting. Finally, within the framework of large strains, Kabel, Böhlke, and Schneider [KBS14]
produce compatible deformation gradients. In most cases, a statically admissible stress field
can be recovered with little effort. However, both displacement and stress fields are approxi-
mated with trigonometric polynomials; as such, they are susceptible to the Gibbs phenomenon
[BD12]; [VZM15]; [Wil15]; [WP08]. By contrast, approximations of the displacement field
that are local in space are less likely to result in spurious oscillations. This has recently been
confirmed by Willot [Wil15] and Schneider, Ospald, and Kabel [SOK15]. Relying on a finite
difference discretization of the corrector problem, both derive new UGPLS solvers which de-
liver a local approximation of the displacement field. Whether or not local approximations are
preferable to trigonometric polynomials is really application dependent.”

More importantly, the displacement field that we reconstruct lends itself to further recon-
struction of a statically admissible stress field based on the so-called strong extension condition
(see §8.3.1 in reference [LP05]). This means that from the displacement field that we recon-
struct, it is fairly straightforward to produce a statically admissible stress field, using the exact
same automated tools as for finite element models. None of the techniques quoted above would
allow for such a short-cut in the production of a-posteriori error bounds.

Partly quoting again the introduction of reference [Bri17a], we now present the principles of
the proposed reconstruction. Before we proceed, two observations should be made. Firstly, the
reconstruction applies to anyUGPLS solver, whether or not based on a Galerkin approach. For
solvers that deliver approximations of the strain 𝜺ℎ

𝐧, estimates of the stress-polarization 𝝉ℎ
𝐧 can

readily be retrieved by means of the identity 𝝉ℎ
𝐧 = (𝐂ℎ

𝐧 − 𝐂0) ∶ 𝜺ℎ
𝐧. These discrete values will

be regarded here as cell-values of a cell-wise constant stress-polarization field 𝝉ℎ. Secondly,
we focus here on approximating the periodic fluctuations 𝐮ℎ of the displacement field. In
other words, the approximation of the total displacement field that solves problem (2.16) reads:
𝜺 ⋅ 𝐱 + 𝐮ℎ(𝐱).

If the true solution 𝝉 to equation (4.1) were known exactly, then the (periodic fluctuation of
the) displacement 𝐮per would be the periodic solution to the following equation

div(𝐂0 ∶ 𝝐[𝐮] + 𝝉) = 𝟎, (4.37)
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with ⟨𝐮⟩ = 𝟎. We therefore seek the approximate displacement field 𝐮ℎ as the periodic solution
to equation (4.37), where the true stress-polarization 𝝉 is replaced with the approximate, cell-
wise constant, 𝝉ℎ

div(𝐂0 ∶ 𝝐[𝐮ℎ] + 𝝉ℎ) = 𝟎. (4.38)

The displacement is discretized over the same 𝑑-dimensional cartesian grid that was used
for the UGPLS solver; interpolation is achieved through Q1 shape functions. Periodicity of the
discretized displacement is enforced by construction (using periodic shape functions).

Due to the periodic boundary conditions and the homogeneity of the material, the finite
element approximation of equation (4.38) results in a block-circulant stiffness matrix. This
suggests to formulate this approximation in the Fourier space, where all frequencies are un-
coupled. More precisely, while the nodal displacements are the solution to a (𝑁𝑑) × (𝑁𝑑)
system (where 𝑁 = 𝑁1 × ⋯ × 𝑁𝑑 is the total number of nodes), themodal displacements (that
is, the discrete Fourier transform of the nodal displacements) are the solution to 𝑁 systems
of size 𝑑 × 𝑑, which can be solved at virtually no cost. Of course, this approach requires the
computation of direct and inverse discrete Fourier transforms: using the fast Fourier transform
guarantees the overall efficiency of the proposed method.

Skipping the lengthy technical details, the proposed method reduces to the following steps

Algorithm 4.4 (Reconstruction of the displacement field according to reference [Bri17a]). The
cell-values 𝝉ℎ

𝐧 of the stress-polarization are given.

1. Compute the discrete Fourier transform ̂𝝉ℎ
𝐤 of 𝝉ℎ

𝐧 .
2. For each of the 𝑁 = 𝑁1 × ⋯ × 𝑁𝑑 discrete frequency

a) Compute the modal strain-displacement vector 𝐁̂ℎ
𝐤 from equation (40) in refer-

ence [Bri17a].
b) Compute the modal stiffness matrix 𝐊̂ℎ

𝐤 from equations (46) and (47) in refer-
ence [Bri17a].

c) Solve the following 𝑑 × 𝑑 linear system to find the modal displacement 𝐮̂ℎ
𝐤

𝐊̂ℎ
𝐤 ⋅ 𝐮̂ℎ

𝐤 = − ̂𝝉ℎ
𝐤 ⋅ conj 𝐁̂ℎ

𝐤. (4.39)

3. Compute the inverse discrete Fourier transform of 𝐮̂ℎ
𝐤 to find the nodal values 𝐮ℎ

𝐧 of the
displacement.

4. If necessary, evaluate the reconstructed displacement field 𝐮ℎ at any point through stan-
dard (Q1) interpolation between the nodal values 𝐮ℎ

𝐧.

Algorithm 4.4 should be understood as a post-processing of the output produced by any
UGPLS solver. It is observed that the cost of this post-processing is less than one iteration of
the solver (compare with algorithm 4.3).

This procedure was successfully implemented in reference [Bri17a], where it was first used
to produce rigorous upper bounds on the effective elastic stiffness of a periodic microstructure.
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It was then compared to various alternative displacement reconstruction techniques (including
techniques based on trigonometric polynomials). To do so, the error in energy norm was mea-
sured against Hashin’s coated spheres reference solution [Has62] as first proposed by Schnei-
der, Ospald, and Kabel [SOK15]. It was observed that the performances of all procedures were
comparable5.

Our procedure offers the additional benefit that it conforms with the strong extension con-
dition of Ladevèze and Pelle [LP05], which means that reconstructing statically admissible
stress fields becomes a trivial task. In turn, this paves the way to using the whole constitutive
relation error machinery initially developed within the framework of displacement-based finite
elements. As mentioned earlier, this extension is currently under investigation with Ludovic
Chamoin.

To close this section, it should be noted that the work published in reference [Bri17a] and
presented here could be understood as the derivation of a new FE-based discrete Green opera-
tor. Indeed, algorithm 4.4maps a cell-wise constant prestress to a Q1 displacement, fromwhich
a cell-wise constant strain can readily be obtained. However, implementation of this discrete
Green operator within an iterative UGPLS solvers remains costly, because of the numerous
(small) linear systems that ought to be solved at each iterations. This cost can be reduced by
means of reduced integration, as recently proved by Schneider, Merkert, and Kabel [SMK17].

4.2.6 Closing remarks
This section closes the discussion of uniform grid, periodic Lippmann–Schwinger solvers with
a few conclusions and perspectives. First of all, I would like to recall that my two main contri-
butions to this field were

1. the introduction of the variational form of the Lippmann–Schwinger equation and its
Galerkin discretization.

2. the observation that any matrix-free iterative linear solver could be substituted to the
fixed-point iterations and augmented Lagrangian iterations initially proposed byMoulinec
et Suquet [MS94]; [MS98] and Michel, Moulinec and Suquet [MMS01].

Regarding the first item, the variational formulation offers a common setting for all variants
of UGPLS solvers. Indeed, most of these differ by the choice of (asymptotically consistent)
discrete Green operators for strains: truncated [MS94]; [MS98], consistent or filtered [BD12],
based on finite differences [WAP14]; [Wil15] or finite elements [SMK17]; [Yvo12]. As a
consequence, proof of convergence can in all instances be established by means of mathe-
matical tools that are standard within the finite element community [EG04], as illustrated in
reference [BD12] for the truncated and consistent discrete Green operators.

Galerkin discretizations rely heavily on the selection of the discretization space (see sec-
tion 4.1.2). In the present case, 𝒯 ℎ

2 (Ω) was defined as the space of cell-wise constant stress-
polarizations. Similarly to displacement-based finite elements, this raises the question of higher-
5Which probably indicates that the energy norm was not the best suited to compare the various displacement

fields
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order approximations of the trial stress-polarization by e.g. cell-wise linear or quadratic func-
tions. I decided very early on not to pursue this route, for both theoretical and technical reasons.
On the theoretical side of things, such higher-order approximations are not consistent with the
relatively low regularity of the true stress-polarization. At the present time, 𝝉 is indeed known
to be with square integrable components only6. On the technical side of things, the discrete
Fourier transform are at the heart of the techniques discussed here. This kind of transforms
treat all unknowns on an equal footing, since they are assigned the same (frequency-dependent)
weighting. This is at odds with higher-order approximations, where all unknowns do not play
equal roles. In a nodal approach (where unknowns are attached to vertices of the grid7), corner-
nodes and mid-side nodes are unknowns that play different roles. Similarly, in an elemental
approach (where unknowns are attached to cells of the grid), the coefficients of the polynomial
expansion of the trial-stress again play very different roles. This complicates significantly the
implementation, which was therefore not attempted.

Approximations that are local in space seem fairly natural. However, alternate discretiza-
tions bymeans of trigonometric polynomials can also shed a different light on existing schemes
(and help develop new ones). Although the discretization of the unknown fields was not fully
specified at this time, it is fair to assume that Moulinec and Suquet [MS94]; [MS98] had such
approximations in mind when they first proposed the basic scheme. More recently, discretiza-
tions based on trigonometric polynomials have been thoroughly explored in a variational set-
ting by Vondřejc and coauthors [Von16]; [VZM14]; [VZM15]. It is interesting to observe that
in this case, contrary to our spatial approach, evaluation of the second term of the bilinear form
𝑎 [see equation (4.3)] becomes trivial, while the first term requires more attention. This led the
authors to proposed two schemes: the Fourier-Galerkin method with exact (Ga) or numerical
(GaNi) integration [Von16]. Should spatial discretization be preferred over spectral discretiza-
tion? There is no definite answer to this question, which really depends on the use-case. Both
approaches are valuable and should be developed in parallel, even more so because they can
both be implemented seamlessly in the same numerical code.

Turning now to the second item (iterative linear solvers). It is true that the variational set-
ting adopted here led to a clear separation between discretization and solution of the resulting
linear system, while both steps were intertwined in the original papers of Moulinec and Su-
quet [MS94]; [MS98]. The natural consequence was that it allowed for the use of any matrix-
free iterative linear solver. Very early on, it was then observed that conjugate gradient solvers
could outperform fixed-point iterations [BD10]; [Zem+10], which do not even converge for
infinite contrasts [MMS01]. However, it must be admitted that even Krylov-based iterative
linear solvers sometimes perform very poorly. In particular, microstructures that embed very
stiff and very soft inclusions (pores) simultaneously lead to highly ill-conditioned linear sys-
tems. This obviously calls for the use of a preconditioner. My experience is that main-stream,
matrix-free preconditioners (this is a requirement!) do not help in these situations: a specific
preconditioner must therefore be designed. To the best of my knowledge, this issue has not yet
been addressed. I do believe that this constitutes the main challenge that needs to be overcome

6Although it is reasonable to expect 𝝉 to be more regular in homogeneous regions.
7This would probably not be the best approach, since the low regularity of 𝝉 –which might be discontinuous at

the interface between two cells– would then require to duplicate nodes.
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by UGPLS solvers. From this perspective, the recent work of Ying [Yin15] (although in a
widely different context) might offer a good starting point.

Finally, I should like to add that there are many discussions centered around the “best”
UGPLS scheme. This debate is somewhat endless (if not pointless). In practice, one needs a
robust scheme that is reasonably fast (if not the fastest). If I had to make a recommendation, I
would probably suggest to use the discrete Green operator based on finite differences, recently
proposed by Willot [Wil15], combined with conjugate gradient iterations (provided that the
matrix of the system is positive definite or negative definite). In my view, the operator of
Willot is superior to the filtered discrete Green operator that I proposed in reference [BD12].
Like the filtered operator, it is fairly insensitive to the Gibbs phenomenon. Unlike the filtered
operator, it produces a numerical solution that does not depend on the reference material 𝐂0
(which can then be optimized for the total number of iterations). Furthermore, its evaluation
is cheaper, which reduces the overall cost of one iteration of the UGPLS scheme.

***
The class of UGPLS solvers introduced in the previous section is virtually exact in the sense

that the discretization error vanishes as the grid-spacing tends to zero. We now turn to the
equivalent inclusion method (EIM), that is not intended to be exact. It is rather hoped to deliver
cheap but accurate estimates of the macroscopic properties.

4.3 A variational form of the equivalent inclusion method
In the present section, a Galerkin discretization of the modified Lippmann–Schwinger equa-
tion (3.3) introduced in section 3.1.1 of chapter 3 is proposed for “simple” microstructures
(assemblies of spherical or spheroidal inclusions). The resulting numerical homogenization
method can be seen as the variational form of the equivalent inclusion method of Moschovidis
and Mura [MM75] (EIM); our method will therefore be called the EIM-G (for Galerkin).

The EIM-G was first introduced in my PhD thesis [Bri11], where it was then called PIM
(polarized inclusion method); at that time, I failed to relate the PIM and the EIM. Besides, the
PIM was restricted to trial stress-polarizations that were constant over each inclusion.

I then strived to extend the method to higher-order, polynomial trial stress-polarizations.
This eventually led to two papers: in reference [BSD13], I introduced the modified Lippmann–
Schwinger equation, which clarified some boundary condition issues that I had encountered
during the course of my PhD work. Then, in reference [BDS14], I introduced the general
framework for the EIM-G.

While the principles underlying the EIM-G are fairly simple, its implementation can be
involved, because of the influence tensors that are required to assemble the matrix of the linear
system (see section 4.3.1 below). A significant amount of work was devoted to the analytical
evaluation of these tensors for disks (plane elasticity) and spheres (3D elasticity), involving
intensive use of a computer algebra system8. The results of these symbolic calculations should
be useful to anyone who attempts to implement the EIM-G. However, they amount to more than
8In the present case, I found maxima (http://maxima.sourceforge.net/, last retrieved 2017-03-29) ex-

tremely well-suited to the task. It is distributed under the GNU General Public License.
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50 pages of appendices, which was unacceptable for a publication in the International Journal
of Solids and Structures. They were therefore deposited on the HAL hosting platform [BDS13]
as a Technical Report.

The present section is organized as follows. Section 4.3.1 provides a general description of
the method, skipping most of the technical details, which can be found in references [BDS14]
and [BDS13]. Two applications are then discussed in section 4.3.2: it is observed that the
EIM-G performs extremely well in 2D, less so in 3D. Finally, rather than produce estimates of
the apparent stiffness of SVEs, this method is used in section 4.3.3 to capture its fluctuations ,
within the framework of variance reduction.

Before we proceed to introduce the EIM-G, it is noted that the present section conforms
with Eshelby’s terminology. According to Eshelby, who first introduced the equivalent inclu-
sion method in his seminal paper [Esh57], an inclusion denotes a bounded region with same
elastic properties as the surrounding matrix, subjected to an eigenstress (or eigenstrain). Con-
versely, an inhomogeneity denotes a bounded region with elastic properties that differ from
the surrounding matrix.

4.3.1 Overview of the method

The EIM-G is devoted to simple microstructures made of assemblies of inhomogeneities with
well-defined geometries. The SVE is again denoted Ω; it is populated with 𝑁 inhomogeneities
Ω1, … , Ω𝑁 centered at 𝐱1, … , 𝐱𝑁 . Furthermore, 𝜒𝛼 denotes the indicator function of inho-
mogeneity Ω𝛼, centered at the origin: 𝜒𝛼(𝐱) ∈ {0, 1}, 𝐱 ∈ Ω𝛼 ⟺ 𝜒𝛼(𝐱 − 𝐱𝛼) = 1
(𝜒𝛼 = 𝜒𝛽 if inhomogeneities Ω𝛼 and Ω𝛽 are identical up to a translation). The matrix is de-
noted Ω0 = Ω ∖ (Ω1 ∪ ⋯ ∪ Ω𝑁 ). All phases have a linear elastic behavior: 𝐂0 (resp. 𝐂𝛼)
denotes the stiffness of the matrix (resp. inhomogeneity 𝛼 = 1, … , 𝑁).

The EIM-G can be defined as a Galerkin discretization of the Lippmann–Schwinger equa-
tion with piece-wise polynomial trial stress-polarizations. Unlike the cell-based methods in-
troduced in section 4.2, all calculations are performed in the real space: periodic boundary
conditions are replaced with the mixed boundary conditions introduced in section 3.1 of chap-
ter 3 (which requires the SVE Ω to be ellipsoidal). In other words, we seek an approximate
solution to the Lippmann–Schwinger equation (4.1) where the modified Green operator 𝚪0 is
defined as follows 𝚪0[𝝉] = 𝚪∞

0 [𝝉 − 𝜒⟨𝝉⟩].
Taking advantage of the fact that inhomogeneities occupy a “small” bounded region of the

whole SVE Ω, it is hoped that the stress-polarization within each inhomogeneity can be rea-
sonably described by a low-order polynomial. This is certainly not true of the matrix, which
occupies a “larger” domain. This heuristics motivates the choice of the matrix as reference
material for the Lippmann–Schwinger equation. From equation (2.28), the stress-polarization
within the matrix is then rigorously null, and there is no need for higher-order polynomials to
describe this field.

Following the general approach described in section 4.1.2, we need to define the approxi-
mation space 𝒯 ℎ

2 (Ω). In the EIM-G, the trial stress-polarization is a polynomial of degree 𝑝
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in each inhomogeneity

𝝉𝑝(𝐱) =
𝑁

∑
𝛼=1

∑
(𝑘1,…,𝑘𝑑 )∈ℕ𝑑

𝑘1+⋯+𝑘𝑑≤𝑝

𝜒𝛼(𝐱 − 𝐱𝛼)[(𝐱 − 𝐱𝛼) ⋅ 𝐞1]
𝑘1⋯[(𝐱 − 𝐱𝛼) ⋅ 𝐞𝑑]

𝑘𝑑 𝝉𝑘1,…,𝑘𝑑
𝛼 . (4.40)

In the above definition, the superscript 𝑝 refers to the discretization parameter (it replaces
the superscript ℎ previously used in sections 4.1 and 4.2). The notation introduced above is
somewhat cumbersome, and it was abbreviated in reference [BDS14] as follows

𝝉𝑝(𝐱) =
𝑁

∑
𝛼=1

∑
𝑘•∈ℕ𝑑

𝑘1+⋯+𝑘𝑑≤𝑝

𝜒𝛼(𝐱 − 𝐱𝛼) (𝑥• − 𝐱𝛼,•)𝑘• 𝝉𝑘•
𝛼 . (4.41)

where the convenient tuple notation 𝑘• = (𝑘1, … , 𝑘𝑑), as well as some generalized product
and exponentiation rules, were introduced. Considering the fact that only a few, essential,
equations will be presented here, we will however stick for the sake of clarity with the explicit
notation (4.40).

It should be observed that expression (4.40) is not intrinsic, in the sense that the components
of the unknown coefficients 𝝉𝑘1,…,𝑘𝑑

𝛼 do not behave as true tensors in a change of basis. If only
one basis is considered (as will generally be the case), all other tensor operations (addition,
contraction, …) remain meaningful: the 𝝉𝑘1,…,𝑘𝑑

𝛼 will therefore be called pseudotensors, and
will essentially be considered as true tensors in the remainder of this section.

Adopting the same form (4.40) for the test stress-polarization 𝝕𝑝 as for the trial stress-
polarization 𝝉𝑝, and plugging these expressions into the variational problem (4.4), the follow-
ing linear system with 𝝉𝑘1,…,𝑘𝑑

𝛼 as unknowns was finally obtained in reference [BDS14]
𝑁

∑
𝛽=1

∑
(𝑙1,…,𝑙𝑑 )∈ℕ𝑑

𝑙1+⋯+𝑙𝑑≤𝑝

𝐀𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑
𝛼𝛽 ∶ 𝝉 𝑙1,…,𝑙𝑑

𝛽 = ℳ𝑘1,…,𝑘𝑑
𝛼 𝜺, (4.42)

where the blocks of the matrix 𝐀𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑
𝛼𝛽 are given by

𝐀𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑
𝛼𝛼 = ℳ𝑘1+𝑙1,…,𝑘𝑑+𝑙𝑑

𝛼 (𝐂𝛼 −𝐂0)−1+𝐒𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑
𝛼 − ℳ𝑘1,…,𝑘𝑑

𝛼 ℳ𝑙1,…,𝑙𝑑
𝛼

𝑉 𝐏Ω, (4.43)

for 𝛼 = 𝛽, and

𝐀𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑
𝛼𝛽 = 𝐓𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑

𝛼𝛽 (𝐫𝛼𝛽) −
ℳ𝑘1,…,𝑘𝑑

𝛼 ℳ𝑙1,…,𝑙𝑑
𝛽

𝑉 𝐏Ω, (4.44)

for 𝛼 ≠ 𝛽. In the above expressions, 𝐫𝛼𝛽 = 𝐱𝛽 − 𝐱𝛼, ℳ𝑘1,…,𝑘𝑑
𝛼 denotes the moment of order

(𝑘1, …, 𝑘𝑑) of inclusion α

ℳ𝑘1,…,𝑘𝑑
𝛼 = ∫𝐱∈ℝ𝑑

𝜒𝑘1,…,𝑘𝑑
𝛼 (𝐱) d𝑉𝐱, with 𝜒𝑘1,…,𝑘𝑑

𝛼 (𝐱) = 𝜒𝛼(𝐱)𝑥𝑘1
1 ⋯𝑥𝑘𝑑

𝑑 , (4.45)
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𝑑 = 2 𝑑 = 3
𝑝 = 0 3𝑁 6𝑁
𝑝 = 1 9𝑁 24𝑁
𝑝 = 2 18𝑁 60𝑁
𝑝 = 3 30𝑁 108𝑁

Table 4.1: Number of (scalar) unknowns of the EIM-G as a function of the degree 𝑝 of the polynomials, and the
dimension 𝑑 of the physical space; 𝑁 denotes the number of inhomogeneities.

while 𝐓𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑
𝛼𝛽 and 𝐒𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑

𝛼 are the so-called influence and self-influence pseu-
dotensors

𝐓𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑
𝛼𝛽 (𝐫) = ∫𝐱,𝐲∈ℝ𝑑

𝜒𝑘1,…,𝑘𝑑
𝛼 (𝐱)𝜒 𝑙1,…,𝑙𝑑

𝛽 (𝐲) 𝚪∞
0 (𝐫 + 𝐲 − 𝐱) d𝑉𝐱 d𝑉𝐲, (4.46)

𝐒𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑
𝛼 = 𝐓𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑

𝛼𝛽 (𝟎). (4.47)

Provided that ℳ𝑘1,…,𝑘𝑑
𝛼 , 𝐓𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑

𝛼𝛽 and 𝐒𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑
𝛼 can be computed, the matrix

𝐴𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑
𝛼𝛽 can be assembled, and the linear system (4.42) can be solved for the unknown

coefficients 𝝉𝑘1,…,𝑘𝑑
𝛼 . It should be observed that this matrix is dense, but relatively small (al-

though it grows exponentially with 𝑝, see table 4.1). It is symmetric (since the bilinear form 𝑎
is symmetric), and positive or negative if the matrix is softer or stiffer than all inhomogeneities.

Inversion of the linear system (4.42) is therefore fairly straightforward. The difficult part
is, of course, the computation of the influence and self-influence pseudotensors. In sections
4.1 and 4.2 of reference [BDS14], multipole expansions were used to compute closed-form
expressions of these pseudotensors for 𝑑-dimensional spheres. This was implemented in a
computer algebra system, the results being gathered in reference [BDS13]. To be fair, it should
be noted that the proposed method (relying on multipole expansions) is not fully justified.
Indeed, it relies on the observation that the multipole expansions seem to be finite (higher-
order terms being rigorously null). We were however not able to prove what must therefore be
considered as a conjecture.

During the course of the PhD of El Assami [El 15], we attempted to extend the EIM-G to
assemblies of ellipsoids. This required the evaluation of the corresponding influence pseu-
dotensors. In this case, multipole expansions delivered expressions that turned out to be un-
tractable9. We therefore had to resort to numerical integration.

Following Berveiller, Fassifehri, and Hihi [BFH87], we first expressed the convolution prod-
uct in expression (4.46) of the influence pseudotensors as a simple product in the Fourier space,
thus reducing the integral over ℝ𝑑 × ℝ𝑑 to an integral over ℝ𝑑 only. This integral is further
reduced to an integral over the unit sphere (see section 2.3 and appendix A in reference [El
15]).

9We were however able to produce a general expression of the influence pseudotensors 𝐓𝑘1,…,𝑘𝑑 ;𝑙1,…,𝑙𝑑
𝛼𝛽 (𝐫) up to

𝑟−2 terms. This expression is not restricted to ellipsoids: it applies to any inhomogeneities.
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Figure 4.3: Left: graphical representation of one out of the 1 000 SVEs considered in section “Monodisperse
assemblies of circular pores in plane strain elasticity”. Circular, monodisperse pores are embedded in a homoge-
neous matrix; the porosity is 𝜑 = 0.4. Right: graphical representation of one out of the 100 SVEs considered in
section “Polydisperse assembly of spherical pores in 3D elasticity”. Spherical, polydisperse pores are embedded
in a homogeneous matrix (only the pores are shown in this image); the porosity is 𝜑 = 0.45.

The computational gain is considerable; however, numerical evaluation of this integral re-
mains challenging, as the integrand is highly localized. Typical Gauss integration is therefore
ill-suited to the task, as most integration points do not contribute to the integral. For lack of
time, we were however not able to propose a more efficient integration strategy (which would
probably first require to localize the support of the integrand).

4.3.2 Application to assemblies of disks and spheres
The present section reproduces section 5 (“Applications”) in reference [BDS14]. It illustrates
the performances and limitations of the EIM-G.

In the present section, two applications of the variational form of the equivalent inclusion
method (EIM-G) derived above are proposed. The first application (see section “Monodisperse
assemblies of circular pores in plane strain elasticity”) is a plane strain elasticity application,
while the second application (see section “Polydisperse assembly of spherical pores in 3D
elasticity”) is a 3D elasticity application. It is recalled that the EIM-G requires the SVE to be
of ellipsoidal shape [BSD13]. Therefore, circular and spherical SVEs are considered here.

Monodisperse assemblies of circular pores in plane strain elasticity

The present example deals with porous media in plane strain elasticity. The circular SVE Ω
contains 𝑁 circular pores of radius 𝑎. The porosity is 𝜑 = 0.4; with 𝑁 = 160 pores, the radius
𝑅 of the SVE Ω is 𝑅 = 20𝑎 (see figure 4.3, left). The shear modulus and Poisson ratio of the
matrix are 𝜇0 (arbitrary value) and 𝜈0 = 0.3.

To account for statistical fluctuations of the apparent mechanical properties of each individ-
ual SVE, 1 000 configurations were considered. The (mean) apparent shear modulus of these
microstructures is then estimated through the EIM-G, and the results are reported in table 4.2
for various values of 𝑝 (it is recalled that 𝑝 is the maximum degree of the polynomial expan-
sions used to approximate the stress-polarization 𝝉). Due to the large number of independent
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Order 𝑝 Bound on 𝜇app DOFs
0 0.310 𝜇0 480
1 0.278 𝜇0 1 440
2 0.257 𝜇0 2 880
3 0.247 𝜇0 4 800

Table 4.2: Upper bounds on the apparent shear modulus of a monodisperse assembly of circular pores in plane
strain elasticity, for increasing orders 𝑝 of the EIM-G. For each value of 𝑝, the corresponding number of degrees
of freedom (DOFs) is also reported.

configurations considered here, the amplitude of the 99 % confidence interval is smaller than
one unit in the last place of each value reported in table 4.2.

Since the reference medium (the matrix) is stiffer than the inclusions, results presented in
section 4.1.3 apply, and the estimates of 𝜇app are in fact upper bounds on this quantity. This
is consistent with the fact that this bound decreases as 𝑝 increases, as expected (the functional
HS is minimized on sub-spaces of increasing dimension).

Observation of the results presented in table 4.2 shows that increasing 𝑝 significantly im-
proves the upper bound on 𝜇app. Indeed, from 𝑝 = 0 to 𝑝 = 3, the upper-bound is reduced by
approximately 20 %, while the total number of degrees of freedom is multiplied by a factor 10.

In order to quantify the error on the apparent shear modulus, the above results were com-
pared to finite element (FEM) estimates computed on the same 1 000 configurations. Strictly
speaking, EIM-G and FEM computations are not equivalent. Indeed, essential boundary con-
ditions were adopted for convenience for the FEMmodels, while EIM-Gmodels require mixed
boundary conditions. Since the SVEs under consideration are very large (𝑅/𝑎 = 20), finite-
size effects should be negligible, and the apparent shear moduli resulting from these two sets
of boundary conditions are expected to coincide [Hil63].

The FEM estimate of the apparent shear modulus was found to be 0.244 𝜇0; again, the 99 %
confidence interval is narrow enough to ensure that this value is correct up to one unit in the
last place. Using this value as a reference, figure 4.4 shows in semi-log scale the relative error
on 𝜇app as a function of the number of degrees of freedom. Observing figure 4.4, it seems
that the EIM-G converges exponentially with respect to the number of degrees of freedom.
This empirical result was expected, as similar asymptotic behaviors are also observed with the
𝑝-version of the FEM, which is very similar in spirit to EIM-G [SDR04].

Comparison of the respective sizes of the EIM-G and FEMmodels emphasizes the efficiency
of the EIM-G. Indeed, each of the 1 000 FEM models contained about 320 000 degrees of
freedom (this figure was variable from one configuration to another), while with only 4 800
degrees of freedom, the EIM-G achieves a relative error of approximately 1.2 %. In other
words, the EIM-G can provide at a relatively low cost estimates of some quantities of interest
with a small (but finite) error. Of course, if high accuracy is required, then the FEM should be
preferred to the EIM-G.

To close this section, it should also be noted that the Hashin–Shtrikman upper-bound on
𝜇app reads in this case [HS62a]: 𝜇HS+ = 0.349 𝜇0. Clearly, this bound is a poor estimate in
plane strain elasticity of the effective shear modulus of a composite with circular inclusions.
Even the 0-th order EIM-G bound leads to an improvement of 11 %.
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Figure 4.4: Relative error on 𝜇app as a function of the number of degrees of freedom of the EIM-G, in semi-log
scale. Convergence seems to be exponential.

Order 𝑝 Bound on 𝜇app DOFs
0 0.381 1 200
1 0.371 4 800
2 0.363 12 200

Table 4.3: Upper bounds on the apparent shear modulus of a polydisperse assembly of spherical pores in 3D
elasticity, for increasing orders 𝑝 of the EIM-G. For each value of 𝑝, the corresponding number of degrees of
freedom (DOFs) is also reported.

Polydisperse assembly of spherical pores in 3D elasticity

The present example deals with porous media in 3D elasticity. The spherical SVE Ω contains
𝑁1 = 20 (resp. 𝑁2 = 40, 𝑁3 = 140) spherical pores of radius 𝑎1 (resp. 𝑎2 = 0.7 𝑎1,
𝑎3 = 0.4 𝑎1). The total porosity is 𝜑 = 0.45, so that the radius 𝑅 of the SVE Ω is 𝑅 = 4.56 𝑎1
(see figure 4.3, right). The shear modulus and Poisson ratio of the matrix are 𝜇0 (arbitrary
value) and 𝜈0 = 0.3.

To account for statistical fluctuations, 100 such SVEs were generated. It should be noted
that fluctuations were smaller in the present, 3D case than in the previous, plane strain one. In
both cases, the amplitude of the statistical error (99 % confidence interval) was identical, even
if the number of generated configurations was ten times smaller in the 3D application.

The (mean) apparent shear modulus 𝜇app of these microstructures is then estimated through
the EIM-G, and the results are reported in table 4.3 for various values of 𝑝. Again, the results
are accurate (with probability 99 %) within one unit in the last place. For the same reasons as
previously, they can be considered as upper bounds on 𝜇app (which is again consistent with the
fact that this bound decreases as 𝑝 increases).

However, observing table 4.3, it seems that the relative improvement of the bounds is much
lower in the present case than in the previous, plane strain case, for the same increase of the
number of degrees of freedom. It is necessary to thoroughly investigate this apparent loss of
efficiency; this investigation ought to be carried out in future work.
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4.3.3 Application to variance reduction
This section is devoted to the post-doctoral work of Michaël Bertin, whom I supervised in
collaboration with Dr. F. Legoll10,11. This work has benefited from a French government
grant managed by ANR within the frame of the national program Investments for the Future
ANR-11-LABX-022-01. The goal of this project was to use low order EIM-G estimates of the
apparent stiffness of a SVE as a surrogate model for variance reduction by means of a control
variate approach. After a brief overview of the problem and of control variate techniques, some
results of this study will be presented.

Numerical evaluation of the effective properties of random heterogeneous materials must
face three sources of errors: i. discretization errors, ii. statistical errors and iii. finite-size bias.
Item i. affects any numerical simulation. It is controlled by e.g. the size of the mesh and
will not be considered here. Items ii. and iii. are specific to random homogenization. This
is best understood by recalling equation (2.4) that defines the effective stiffness of a random
heterogeneous material

𝐂eff = lim
|Ω|→+∞

𝔼[𝐂app(Ω)], (4.48)

which shows that the effective stiffness is the limit for large SVEs of the apparent stiffness. In
practice, the largest affordable SVE Ω is selected and the limit is approximated as follows

𝐂eff ≈ 𝔼[𝐂app(Ω)], (4.49)

the truncation errors induced by the above approximation being referred to as finite-size bias
(item iii. ). Then, the ensemble average of equation (4.49) is estimated empirically from a large
number of independent realizations 𝜔1, 𝜔2, …, 𝜔𝑀 . For each realization 𝜔𝑖, the corrector prob-
lem is solved, which delivers (up to discretization errors) the apparent stiffness 𝐂app(Ω, 𝜔𝑖); the
ensemble average is estimated as follows

𝔼[𝐂app(Ω)] ≈ 1
𝑀

𝑀

∑
𝑖=1

𝐂app(Ω, 𝜔𝑖). (4.50)

Statistical errors (item ii. ) stem from the fact that 𝑀 is large, but finite. These errors are of
course governed by the central limit theorem. More precisely, the error on 𝐶app

𝑖𝑗𝑘𝑙 scales as

const. ×
√var[𝐶app

𝑖𝑗𝑘𝑙(Ω)]

√𝑀
, (4.51)

where the constant is related to the probability that the true error is effectively smaller than the
above value (const. = 2.6 for the 99 % confidence interval).

The asymptotic behavior (for large SVEs) of both statistical error and bias have recently
been studied mathematically for periodic boundary conditions [GNO15]; [GO15b]; [Nol14].
10Laboratoire Navier, UMR 8205, CNRS, ENPC, IFSTTAR, Université Paris-Est (Marne-la-Vallée, France)
11F. Legoll was PI for this project.
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To the best of our knowledge, essential and natural boundary conditions have only been studied
empirically [Kan+03].

The present section is devoted to the statistical error (item ii. ): discretization errors and
finite-size bias will not be considered. In other words, the size of the SVE Ω is fixed, we
assume that discretization errors are controlled and we focus on the approximation induced by
the finiteness of the sum in equation (4.50). The SVE Ω to which the apparent stiffness 𝐂app(Ω)
refers will therefore be omitted in what follows.

Equation (4.51) shows that controlling the statistical error by means of the number 𝑀 of
realizations (the denominator of this equation) is rather costly. It is however observed that
another way of reducing the statistical error is to control the numerator of this equation.

To do so, the random variable to be ensemble averaged [namely, 𝐂app(𝜔)] is replaced with
another random variable, the variance of which is hopefully smaller. This is the essence of the
control variate approach [BLL16]; [LM15], which is briefly described below.

Introducing the so-called surrogate model 𝐃(𝜔) (to be specified later), we have trivially

𝔼[𝐂app] = 𝔼[𝐂app − 𝐃] + 𝔼[𝐃]. (4.52)

If the ensemble average of the surrogate model 𝐃(𝜔) is known exactly, then the ensemble
average of 𝐂app can be estimated from the following empirical formula

𝔼[𝐂app] ≈ 𝔼[𝐃] + 1
𝑀

𝑀

∑
𝑖=1

[𝐂app(𝜔𝑖) − 𝐃(𝜔𝑖)], (4.53)

and the statistical error is effectively reduced (for a fixed number 𝑀 of realizations) if the vari-
ance of 𝐂app − 𝐃 is smaller than the variance of 𝐂app. A “good” surrogate model should there-
fore be i. simple enough for its ensemble average to be determined analytically and ii. highly
correlated to the initial random variable 𝐂app. It should be emphasized that the surrogate model
does not need to approximate the random variable, provided that both exhibit similar fluctua-
tions.

Remark 4.2. When a closed-form expression of the ensemble average 𝔼[𝐃] of the surrogate
model is not available, this quantity can be estimated empirically. Then, equation (4.53) is
replaced with

𝔼[𝐂app] ≈ 1
𝑀′

𝑀′

∑
𝑖=1

𝐃(𝜔𝑖) + 1
𝑀

𝑀

∑
𝑖=1

[𝐂app(𝜔𝑖) − 𝐃(𝜔𝑖)], (4.54)

where 𝑀′ is presumably much larger than 𝑀 . Provided that the surrogate model 𝐃 is simple
enough, evaluation of the first term in equation (4.54) is not too costly.
Error on 𝔼[𝐂app] is then the sum of two terms, each of which can be evaluated by means of

the central limit theorem as follows

const. ×
⎛
⎜
⎜
⎝

√var[𝐷𝑖𝑗𝑘𝑙]

√𝑀′
+

√var[𝐶app
𝑖𝑗𝑘𝑙 − 𝐷𝑖𝑗𝑘𝑙]

√𝑀

⎞
⎟
⎟
⎠

. (4.55)
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Figure 4.5: A realization of the microstructure considered in section 4.3.3, and the mesh used to estimate the
apparent conductivity by means of the finite element method.

Remark 4.3. In practical applications, the surrogate model 𝐃 is replaced with 𝜌 𝐃, where 𝜌
is a free, scalar parameter, which is selected a posteriori so as to minimize the variance of
the components of 𝐂app − 𝜌 𝐃. This optimization is carried out component-wise, so that 𝜌
effectively depends on the component 𝐶app

𝑖𝑗𝑘𝑙 under consideration.

In the work of M. Bertin, we developed a variance reduction strategy for the evaluation of
the apparent properties of matrix–inhomogeneities microstructures. This strategy was tested
extensively in 2D, for random, periodic assemblies of circular, monosized inhomogeneities
embedded in a homogeneous matrix. These tests were really performed within the framework
of scalar problems (thermal conduction). The tensors 𝐂app(𝜔) should therefore be understood
as second-rank, positive definite tensors (thermal conductivity). We assume that matrix and
inhomogeneities are both isotropic, with conductivities 𝐂m = 𝜅m 𝐈 and 𝐂i = 𝜅i 𝐈, respectively.
The material contrast 𝑐 is defined as the ratio 𝑐 = 𝜅i/𝜅m.

Although the ensemble average 𝔼[𝐂app] is not expected to be isotropic for SVEs of finite
size, we will concentrate in what follows on the trace of the apparent conductivity 𝜅app(𝜔) =
1
2 tr𝐂app(𝜔).

We used the 𝑝 = 0 EIM-G estimate of the apparent conductivity as a surrogate model. In
other words, we optimized the Hashin–Shtrikman functional with trial heat flux polarizations
that are constant in each circular inclusion for two independent macroscopic temperature gra-
dients. The resulting bound 𝐃(𝜔) on the conductivity tensor is used as a surrogate model.
It should be noted that, rather than controlling 𝜅app(𝜔) by one scalar random variable tr𝐃(𝜔)
only, we chose to consider the three components of 𝐃(𝜔) simultaneously. The surrogate model
therefore reads 𝜌11𝐷11(𝜔) + 𝜌22𝐷22(𝜔) + 𝜌12𝐷12(𝜔), where 𝜌11, 𝜌22 and 𝜌12 are optimized a
posteriori.

The apparent conductivity 𝐂app(𝜔) is estimated by means of the finite element method with
periodic boundary conditions. We used GMSH12 to generate the mesh and FreeFem++13 as a
solver. A preliminary study was devoted to the optimization of the mesh-size (see figure 4.5)
so as to control discretization errors, which will not be further discussed.
12http://gmsh.info/, last retrieved 2017-04-26
13http://www.freefem.org/, last retrieved 2017-04-26
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4.3 A variational form of the equivalent inclusion method

Likewise, finite-size errors are not considered in this work, the purpose of which is to show
that the cost of estimating the apparent stiffness of SVEs of a given size can be reduced, while
ensuring the same accuracy. We therefore picked SVEs which were deemed “large enough”,
and generated assemblies of 25 disks of radius 𝑎 = 0.3 in a periodic simulation box of size
𝐿×𝐿, with 𝐿 = 5.0; the volume fraction of inhomogeneities is 𝑓 ≈ 28 %. The microstructures
were generated by means of a standard Monte-Carlo simulation of hard disks, using a in-house
code, which allows for the specification of a minimum distance between inhomogeneities.

It should be emphasized that, in the present application, the volume fraction of inhomo-
geneities is fixed. This decision relies on the previous knowledge that, when allowed to fluc-
tuate, the volume fraction 𝑓 is an excellent surrogate model for the estimation of the apparent
conductivity 𝔼[𝐂app]. In other words, how to control the fluctuations induced on the apparent
conductivity 𝔼[𝐂app] by the fluctuations of the volume fraction 𝑓 is already fairly well-known.
Killing the fluctuations of the latter quantity effectively allowed us to explore other sources of
fluctuations.

Implementation of the EIM-G surrogate model required some minor adaptations with re-
spect to the general framework introduced in section 4.3.1. Indeed, it should be recalled that
the method was initially derived for the modified Green operator and the corresponding mixed
boundary conditions introduced in section 3.1. In the present study, periodic boundary con-
ditions were used. As a consequence, the closed-form expressions of the influence tensors14
presented in reference [BDS13] cannot be used. For periodic boundary conditions, these ten-
sors are expressed as Fourier series [Suq90] that unfortunately converge very slowly (this point
is further discussed in section 4.3.4).

We therefore chose to evaluate the influence tensors numerically bymeans of two-inhomogeneity
finite element models. The first inhomogeneity, at the center of the periodic cell, was subjected
to an “eigen- heat flux”. The location of the second (free of eigen- heat flux) inhomogeneity
was varied; its average temperature gradient was recorded for each location. A table of influ-
ence tensors was then precomputed and a suitable interpolation scheme further devised by M.
Bertin to estimate these tensors for any separation 𝐫𝛼𝛽 = 𝐱𝛽 − 𝐱𝛼 between inhomogeneities 𝛼
and 𝛽. The linear system defining the optimal trial heat flux polarization is then assembled in
the usual way.

Of course, the ensemble average of the proposed surrogate model is not known in closed-
form. Following remark 4.2, it was therefore estimated numerically. This was not too penal-
izing, as generating one microstructure and applying the EIM-G is extremely fast. Indeed,
it should be recalled that for thermal conduction problems, the size of the EIM-G matrix is
only 2𝑁 × 2𝑁 , and the corresponding linear system must be solved for only 2 independent
right-hand sides for each realization.

M. Bertin performed an exhaustive parametric study of the proposed strategy, where the
material contrast 𝑐, the size of the SVE 𝐿 and the minimal distance between inclusions were
varied. The full study will be published in an article currently in preparation. In the present
document, we concentrate on the effect of the material contrast. Figure 4.6 shows, as a function

14For the 0-th order EIM-G, it can readily be verified that all influence pseudotensors are indeed tensors.
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Figure 4.6: Efficiency of the variance reduction method as a function of the material contrast.

of the material contrast 𝑐, the effectivity index 𝑒 of the method, defined as follows

𝑒 = var[𝜅app]
var[𝜅app − 𝜌11𝐷11 + 𝜌22𝐷22 + 𝜌12𝐷12] . (4.56)

Large values of 𝑒 indicate a significant reduction of the statistical error, by a factor √𝑒 at equal
computational cost.

Observation of figure 4.6 shows that for moderate contrasts, the method is highly effective,
with 10 ≲ 𝑒 ≲ 100 (3 ≲ √𝑒 ≲ 10). For larger contrasts, the effectivity index decreases as
expected, and levels off. The asymptotic value is greater than 1, indicating that we still profit
from this approach.

The above result is quite remarkable. Indeed, table 4.2 and figure 4.4 show that the 0-th
order EIM-G generally delivers poor estimates of the apparent stiffness: in other words, the
proposed surrogate model 𝐃(𝜔) does not capture the values of 𝐂app(𝜔) accurately. However,
figure 4.6 shows that it does capture its fluctuations accurately.

These promising preliminary results open a number of exciting perspectives. We first intend
to extend this work to three dimensions and linear elasticity. Of particular interest would then
be the cases where neither 𝐂i ≤ 𝐂m, nor 𝐂i ≥ 𝐂m hold. In such cases, our surrogate model is
no longer a bound on the apparent stiffness. Whether this affects the efficiency of our method
ought to be asserted. Also, non-linear behaviors should be considered. To this end, a similar
reduced model, based on the Hashin–Shtrikman could in principle be used, using the tech-
niques introduced by Ponte Castañeda [Pon16] and Ponte Castañeda [Pon91], Willis [Wil91],
or Peigney and Peigney [PP17]. Finally, we would like to be able to handle more complex
microstructures. A possible approach would then be to adopt UGPLS solvers for both “true”
and surrogate models: for the surrogate model, the number of iterations would be set to a low
value. This is motivated by the observation that a few iterations of a UGPLS solver gener-
ally suffice to deliver a trial stress-polarization 𝝉 that reveals the microstructure (and should
therefore somehow capture the fluctuations of the apparent stiffness).
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4.3.4 Closing remarks
It has already beenmentioned that the numerical method proposed in the present section 4.3 can
be seen as the variational form of the classical equivalent inclusion method (EIM) previously
introduced by Eshelby [Esh57] and Moschovidis and Mura [MM75]. In the EIM-G, the stress-
polarization is polynomial over each inhomogeneity. A Galerkin-type approach is then used
to find the coefficients of the polynomials that define this stress-polarization. In the EIM-T
proposed by Moschovidis and Mura [MM75], the determination of these polynomials is based
on Taylor expansions within each inhomogeneity. Quoting liberally from [BDS14], this results
in a number of shortcomings.

1. There is no guarantee that the resulting discrete problem is well-posed. In other words,
the EIM-T might fail to deliver an estimate of the solution in some circumstances.

2. Increasing the degree 𝑝 of the polynomial expansions does not necessarily improve the
quality of the approximate solution. This has already been reported by many authors
[BLR06]; [Fon+01]; [RH91].

3. Since the EIM-T is based on the standard Lippmann–Schwinger equation in an un-
bounded domain (𝝉 + 𝚪∞

0 [𝝉] = 𝜺), there is no guarantee that the resulting estimate
of the apparent stiffness is symmetric, positive definite.

4. Computing this estimate requires the computation of the average stress ⟨𝝈⟩ and strain ⟨𝜺⟩
through complex surface integrals at the boundary 𝜕Ω of the SVE15 [FGS02]; [Fon+01].
Such operations are costly and potentially inaccurate.

Regarding items 1 and 2, the Hashin–Shtrikman principle guarantees well-posedness of the
EIM-G. Besides, when the matrix is stiffer or softer than the inhomogeneities, the estimates
of the apparent stiffness are ordered with respect to 𝑝: in other words, the quality of these
estimates is non-decreasing (it might not increase with 𝑝, though).

Regarding items 3 and 4, the EIM-G is based on the modified Lippmann–Schwinger equa-
tion (3.3). The corresponding estimate of the apparent stiffness is fully determined from
the volume average ⟨𝝉𝑝⟩ of the trial stress-polarization [see the comments surrounding equa-
tion (4.13)], which is trivially computed from its polynomial expansions.

Clearly, the proposed EIM-G is superior to its classical alternative EIM-T. However, it has
been shown in section 4.3.2 that it performs very satisfactorily in two dimensions, less so in
three dimensions. This is probably due to the fact that, in the latter case, the degree 𝑝 is not
large enough. Unfortunately, going beyond 𝑝 = 2 or 𝑝 = 3 is not an option (owing to the
exponential increase of the number of unknowns). Another option would be to change the rep-
resentation (4.41) of the trial stress-polarization. The natural alternative would be to consider
linear combinations of spherical harmonics (rather than polynomials). This however would
lead to highly technical developments, with the risk that no improvement of the method be ob-
served in the end. For this reason, I am reluctant to go down this route. Still, it is remarkable
that even low-order instances of the EIM-G seem to be able to capture the fluctuations of the
apparent stiffness (see section 4.3.3). Maybe the real value of this method lies in this niche.
15Incidentally, it is observed that the average strain ⟨𝜺⟩ over the SVE Ω does not coincide with the prescribed

strain at infinity 𝜺 and must therefore be computed in this approach.
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Finally, it should be observed that the present method was formulated within the framework
of the mixed boundary conditions introduced in section 3.1.2. In view of the known superiority
of periodic bounday conditions [Kan+03], such choice might seem questionable. It is indeed
possible to formulate the EIM-G within the framework of periodic boundary conditions (and
in fact, we did so in section 4.3.3). Practical implementation is however complex. Indeed, the
influence and self-influence pseudotensors are then expressed as 𝑑-dimensional Fourier series
(lattice sums) that are ill-suited to numerical evaluation, owing to their slow convergence. At
the time this work was performed, I therefore settled for the mixed boundary conditions, which
lead to explicit expressions of the influence and self-influence pseudotensors [BDS13]. To,
Bonnet, and Hoang [TBH16] have since proposed summation techniques that might probably
be ported to the present problem. Nevertheless, it is observed that, like the periodic boundary
conditions, the mixed boundary conditions are “intermediate”, in that they are more compli-
ant than essential boundary conditions and less compliant than natural boundary conditions.
Mixed boundary conditions might well turn out to be just as favorable as periodic boundary
conditions from the point of view of size effects. This point has not been investigated.
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Chapter 5
Perspectives

Intentionally left blank

***
In the present chapter, I have sketched out a few research topics that I intend to explore in the

coming years. These topics constitute both a continuation of and a departure from my earlier
work. Continuation, as most of these topics are closely related to the intricate relationships
between microstructure and macroscopic properties and require numerical (full-field) simula-
tions. Continuation, since the Hashin–Shtrikman principle will remain an essential tool. My
future work will also depart from my previous work, as I would like to put more emphasis on
the application of numerical methods to real (or realistic) situations, rather than their develop-
ment.

The work presented in this report opens a large number of exciting perspectives, which can-
not be explored simultaneously. It will therefore be necessary to prioritize these topics. Top
priority will of course be given to research projects that are nearly complete (in the sense that
I cannot – or do not want to – further contribute to these topics). This category includes: error
estimators for UGPLS solvers (see section ??), Ms-FEM techniques for plates (see section ??)
and improved Hashin–Shtrikman bounds (see section ??). As for new research topics, I will
first focus on: atomistic-to-continuum upscaling (see section ??) and unsaturated media (see
section ??). Having the opportunity to supervise PhD students will undoubtedly give a signif-
icant boost to these projects.

As a closure, I would like to add that teaching is deeply rooted in my research project. I
have already mentioned in section 1.4 how passionate I am about all aspects of teaching, from
preparing lessons and handouts to actually facing the students. Depending on opportunities, I
intend to further increase my involvement in teaching, as illustrated by my recent appointment
to the responsibility of the Plates and Shells course at École des Ponts ParisTech.
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Appendix A
On the fourth-rank Green operator
The case of isotropic reference materials
In the present appendix, closed-form expressions of the fourth-rank Green operator are gath-
ered for various types of boundary conditions. The referencematerial is supposed to be isotropic:
𝜇0 (resp. 𝜈0) denotes its shear modulus (resp. Poisson ratio).

A.1 Expression for periodic boundary conditions
The fourth-rank Green operator for periodic boundary conditions is defined in section 2.2.2
[see in particular equation (2.21)]. The Fourier coefficients of the Green operator read, for
𝐤 ≠ 𝟎 [Suq90]

Γ̃per
0,𝑖𝑗ℎ𝑙(𝐤) = 1

4𝜇0
(𝛿𝑖ℎ𝑛𝑗𝑛𝑙 + 𝛿𝑖𝑙𝑛𝑗𝑛ℎ + 𝛿𝑗ℎ𝑛𝑖𝑛𝑙 + 𝛿𝑗𝑙𝑛𝑖𝑛ℎ) −

𝑛𝑖𝑛𝑗𝑛ℎ𝑛𝑙
2𝜇0(1 − 𝜈0) , (A.1)

where 𝐧 = 𝐤/‖𝐤‖. For 𝐤 = 𝟎, 𝚪̃per
0 (𝟎) = 𝟎 since problem (2.20) defining the Green operator

implies ⟨𝜺⟩ = 𝟎.

A.2 Expression for boundary conditions at infinity
The fourth-rank Green operator of the whole space is defined in section 2.2.3 [see in particular
equation (2.24)]. In the equations below, 𝑟 = ‖𝐫‖ and 𝐧 = 𝐫/𝑟.

For 𝑑 = 2 (plane strain elasticity)

𝐏0 = 1 − 2𝜈0
4𝜇0(1 − 𝜈0)𝐉 + 3 − 4𝜈0

8𝜇0(1 − 𝜈0)𝐊, (A.2a)

Γ∞
0,𝑖𝑗𝑘𝑙(𝐫) = 1

8π𝜇0(1 − 𝜈0)𝑟2 [−𝛿𝑖𝑗𝛿𝑘𝑙 + (1 − 2𝜈0)(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 2(𝛿𝑖𝑗𝑛𝑘𝑛𝑙 + 𝛿𝑘𝑙𝑛𝑖𝑛𝑗)

+ 2𝜈0(𝛿𝑖𝑘𝑛𝑗𝑛𝑙 + 𝛿𝑖𝑙𝑛𝑗𝑛𝑘 + 𝛿𝑗𝑘𝑛𝑖𝑛𝑙 + 𝛿𝑗𝑙𝑛𝑖𝑛𝑘) − 8𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙]. (A.2b)
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For 𝑑 = 3 (3D elasticity)

𝐏0 = 1 − 2𝜈0
6𝜇0(1 − 𝜈0)𝐉 + 4 − 5𝜈0

15𝜇0(1 − 𝜈0)𝐊, (A.3a)

Γ∞
0,𝑖𝑗𝑘𝑙(𝐫) = 1

16π𝜇0(1 − 𝜈0)𝑟3 [−𝛿𝑖𝑗𝛿𝑘𝑙 + (1 − 2𝜈0)(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 3(𝛿𝑖𝑗𝑛𝑘𝑛𝑙 + 𝛿𝑘𝑙𝑛𝑖𝑛𝑗)

+ 3𝜈0(𝛿𝑖𝑘𝑛𝑗𝑛𝑙 + 𝛿𝑖𝑙𝑛𝑗𝑛𝑘 + 𝛿𝑗𝑘𝑛𝑖𝑛𝑙 + 𝛿𝑗𝑙𝑛𝑖𝑛𝑘) − 15𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙]. (A.3b)
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Appendix B
On the evaluation of the
Hashin–Shtrikman functional
In chapter 3, bounds on the effective stiffness are derived by means of the modified Hashin–
Shtrikman principle introduced in section 3.1.3. Provided that the reference material is stiffer
than all phases constituting the composite, these bounds read (see section 3.1.5)

lim
|Ω|→+∞

𝔼[HS(𝜒𝝉; 𝜺)] ≥ 1
2𝜺 ∶ 𝐂eff ∶ 𝜺, (B.1)

where themodifiedHashin–Shtrikman functional HS is defined as follows [see equation (3.16)]

HS(𝜒𝝉; 𝜺) = 1
2𝜺 ∶ 𝐂0 ∶ 𝜺+𝜺 ∶ ⟨𝝉⟩− 1

2⟨𝝉 ∶ (𝐂−𝐂0)−1 ∶ 𝝉⟩− 1
2⟨𝝉 ∶ 𝚪∞

0 [𝜒(𝝉 −⟨𝝉⟩)]⟩, (B.2)

The trial stress-polarization 𝝉 is a random field suitably defined over the whole space ℝ𝑑 ;
in equation (B.1), it is truncated to the RVE Ω by means of its indicator function 𝜒 . The
present appendix is devoted to the evaluation of the left-hand side of inequality (B.1), under
the following assumptions on the trial stress-polarization 𝝉 .

Assumption B.1 (Weak statistical homogeneity of 𝝉). The ensemble averages 𝔼[𝜒𝛼(𝐱) 𝝉(𝐱)]
and 𝔼[𝜒𝛼(𝐱)𝜒𝛽(𝐱 + 𝐫)𝝉(𝐱) ⊗ 𝝉(𝐱 + 𝐫)] are translation-invariant (with respect to 𝐱) for all
𝛼, 𝛽 = 1, … , 𝑁 .

Summing over 𝛼 and 𝛽, this means in particular that 𝔼[𝝉(𝐱)] and 𝔼[𝝉(𝐱) ⊗ 𝝉(𝐱 + 𝐫)] are
translation-invariant.

Assumption B.2 (Weak ergodicity of 𝝉). The volume and ensemble averages of 𝝉 coincide for
large RVEs Ω: lim|Ω|→+∞⟨𝝉⟩ → 𝔼𝝉 .

Assumption B.3. The autocovariance of 𝝉 , defined as

𝐑𝜏𝜏(𝐫) = 𝔼[𝝉(𝟎) ⊗ 𝝉(𝐫)] − 𝔼𝝉 ⊗ 𝔼𝝉, (B.3)

is square integrable and differentiable at the origin.
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In what follows, each term of 𝔼[HS(𝜒𝝉; 𝜺)] is evaluated in turn. From theweak homogeneity
of 𝝉 , it is readily found that 𝔼[𝜺 ∶ ⟨𝝉⟩] = 𝜺 ∶ 𝔼𝝉 . Then

𝔼[⟨𝝉 ∶ (𝐂 − 𝐂0)−1 ∶ 𝝉⟩] = 𝔼[⟨(𝐂 − 𝐂0)−1 ∶∶ (𝝉 ⊗ 𝝉)⟩]

=
𝑁

∑
𝛼=1

1
𝑉 ∫𝐱∈Ω

(𝐂𝛼 − 𝐂0)−1 ∶∶ 𝔼[𝜒𝛼(𝐱) 𝝉(𝐱) ⊗ 𝝉(𝐱)] d𝑉𝐱

=
𝑁

∑
𝛼=1

(𝐂𝛼 − 𝐂0)−1 ∶∶ 𝔼[𝜒𝛼(𝟎) 𝝉(𝟎) ⊗ 𝝉(𝟎)], (B.4)

where the weak homogeneity of 𝝉 has again been used. We now turn to the evaluation of the last
term in equation (B.2). More precisely, we seek the limit: lim|Ω|→+∞ 𝔼[𝝉 ∶ 𝚪∞

0 [𝜒(𝝉 − ⟨𝝉⟩)]].
We start with two preliminary results.
Theorem B.1. Let 𝝉1 and 𝝉2 be two random stress-polarization fields such that the ensem-
ble averages 𝔼[𝝉1(𝐱)] and 𝔼[𝝉2(𝐱)] are translation-invariant (with respect to 𝐱). It is further
assumed that lim|Ω|→+∞⟨𝝉2⟩ = 𝔼𝝉2. Then, for all 𝐱 ∈ ℝ𝑑

lim
|Ω|→+∞

𝔼[𝝉1(𝐱) ∶ 𝚪∞
0 [𝜒(𝝉2 − ⟨𝝉2⟩)](𝐱)] = lim

|Ω|→+∞
𝔼[𝝉1(𝐱) ∶ 𝚪∞

0 [𝜒(𝝉2 − 𝔼𝝉2)](𝐱)], (B.5)

provided that these limits exist.

Theorem B.2. Let 𝝉1 and 𝝉2 be two random stress-polarization fields such that the ensemble
averages 𝔼[𝝉1(𝐱)], 𝔼[𝝉2(𝐱)] and 𝔼[𝝉1(𝐱)⊗𝝉2(𝐱+𝐫)] are translation-invariant (with respect to
𝐱). The cross-correlation 𝐑12(𝐫) = 𝔼[𝝉1(𝟎) ⊗ 𝝉2(𝐫)] is assumed to be square integrable over
the whole space ℝ𝑑 and differentiable at the origin. Then,

lim
|Ω|→+∞

𝔼[𝝉1(𝐱) ∶ 𝚪∞
0 [𝜒𝝉2](𝐱)] = 𝐏0 ∶∶ 𝐑12(𝟎) + lim

𝛿→0 ∫𝐫∈ℝ𝑑

‖𝐫‖≥𝛿

𝚪∞
0 (𝐫) ∶∶ 𝐑12(𝐫) d𝑉𝐫 , (B.6)

for all 𝐱 ∈ ℝ𝑑 fixed. In the above, 𝜒 denotes the indicator function of Ω.

The proofs of these theorems can be found in sections B.1 and B.2. From theorem B.1, we
first find that

lim
|Ω|→+∞

𝔼[𝝉 ∶ 𝚪∞
0 [𝜒(𝝉 − ⟨𝝉⟩)]] = lim

|Ω|→+∞
𝔼[𝝉 ∶ 𝚪∞

0 [𝜒(𝝉 − 𝔼𝝉)]], (B.7)

then, from theorem B.2

lim
|Ω|→+∞

𝔼[𝝉(𝐱) ∶ 𝚪∞
0 [𝜒(𝝉(𝐱)−𝔼𝝉)]] = 𝐏0 ∶∶ 𝐑𝜏𝜏(𝟎)+lim

𝛿→0 ∫𝐫∈ℝ𝑑

‖𝐫‖≥𝛿

𝚪∞
0 (𝐫) ∶∶ 𝐑𝜏𝜏(𝐫) d𝑉𝐫 , (B.8)

for all 𝐱 ∈ ℝ𝑑 . The above point-wise equality also holds on (volume) average

lim
|Ω|→+∞

𝔼[⟨𝝉 ∶ 𝚪∞
0 [𝜒(𝝉 −𝔼𝝉)]⟩] = 𝐏0 ∶∶ 𝐑𝜏𝜏(𝟎)+ lim

𝛿→0 ∫𝐫∈ℝ𝑑

‖𝐫‖≥𝛿

𝚪∞
0 (𝐫) ∶∶ 𝐑𝜏𝜏(𝐫) d𝑉𝐫 . (B.9)

Gathering equations (B.4) and (B.9) finally delivers equation (3.23).
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B.1 Proof of Theorem B.1

B.1 Proof of Theorem B.1
For the sake of simplicity, the proof is restricted to ellipsoidal domains Ω. For 𝐱 ∈ ℝ𝑑 fixed

𝔼[𝝉1(𝐱) ∶ 𝚪∞
0 [𝜒(𝝉2−⟨𝝉2⟩)](𝐱)] = 𝔼[𝝉1(𝐱) ∶ 𝚪∞

0 [𝜒(𝝉2−𝔼𝝉2)](𝐱)]−𝔼[𝝉1(𝐱) ∶ 𝛿𝜺2(𝐱)], (B.10)

where 𝛿𝜺2 = −𝚪∞
0 [𝜒(𝔼𝝉2 − ⟨𝝉2⟩)]. Therefore, we must prove that the last term tends to 0.

Observing that 𝜒(𝔼𝝉2 − ⟨𝝉2⟩) is constant within the ellipsoidal domain Ω, and null outside Ω,
we find from Eshelby’s theorem [Esh57] that

𝔼[𝝉1(𝐱) ∶ 𝛿𝜺2(𝐱)] = 𝔼[𝝉1(𝐱) ∶ 𝐏Ω ∶ (𝔼𝝉2 − ⟨𝝉2⟩)] = 𝔼𝝉1 ∶ 𝐏Ω ∶ (𝔼𝝉2 − ⟨𝝉2⟩), (B.11)

which tends to zero.

B.2 Proof of theorem B.2
Before we proceed to prove this result, we first clarify how the limit “as |Ω| → +∞” must be
understood. We consider a sequence of domains (Ω)𝑛∈ℕ, such that Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ … and
⋃𝑛∈ℕ Ω𝑛 = ℝ𝑑 . We must then prove for 𝐱 ∈ ℝ𝑑 fixed

lim
𝑛→+∞

𝔼[𝝉1(𝐱) ∶ 𝚪∞
0 [𝜒𝑛𝝉2](𝐱)] = 𝐏0 ∶∶ 𝐑12(𝟎) + lim

𝛿→0 ∫𝐫∈ℝ𝑑

‖𝐫‖≥𝛿

𝚪∞
0 (𝐫) ∶∶ 𝐑12(𝐫) d𝑉𝐫 , (B.12)

where 𝜒𝑛 denotes the indicator function of Ω𝑛.
It can readily be verified that 𝜒𝑛(𝐱) → 1 as 𝑛 → +∞ for all 𝐱 ∈ ℝ𝑑 . Fixing 𝐱 ∈ ℝ𝑑 and

observing that the Ω𝑛 form a growing sequence, it is possible to find 𝑛0 ∈ ℕ and 𝑅1 > 0 such
that the ball centered at 𝐱, with radius 𝑅1 is fully included in Ω𝑛 for all 𝑛 ≥ 𝑛0. From the
general expression (2.24) of the Green operator

𝝉1(𝐱) ∶ 𝚪∞
0 [𝜒𝑛𝝉2](𝐱) = 𝝉1(𝐱) ∶ 𝐏0 ∶ 𝝉2(𝐱)

+ lim
𝛿→0[𝝉1(𝐱) ∶ ∫‖𝐲−𝐱‖≥𝛿

𝜒𝑛(𝐲) 𝚪∞
0 (𝐲 − 𝐱) ∶ 𝝉2(𝐲) d𝑉𝐲]

= 𝐏0 ∶∶ [𝝉1(𝐱) ⊗ 𝝉2(𝐱)]

+ lim
𝛿→0[∫‖𝐲−𝐱‖≥𝛿

𝜒𝑛(𝐲) 𝚪∞
0 (𝐲 − 𝐱) ∶∶ [𝝉1(𝐱) ⊗ 𝝉2(𝐲)] d𝑉𝐲],

(B.13)

for 𝑛 ≥ 𝑛0. Taking the ensemble average

𝔼[𝝉1(𝐱) ∶ 𝚪∞
0 [𝜒𝑛𝝉2](𝐱)] = 𝐏0 ∶∶ 𝐑12(𝟎)+ lim

𝛿→0[∫‖𝐲−𝐱‖≥𝛿
𝜒𝑛(𝐲) 𝚪∞

0 (𝐲−𝐱) ∶∶ 𝐑12(𝐲−𝐱) d𝑉𝐲],

(B.14)
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and, introducing the new variable 𝐫 = 𝐲 − 𝐱 = 𝑟𝐧 (‖𝐧‖ = 1)

𝔼[𝝉1(𝐱) ∶ 𝚪∞
0 [𝜒𝑛𝝉2](𝐱)] = 𝐏0 ∶∶ 𝐑12(𝟎) + lim

𝛿→0 ∫𝛿≤‖𝐫‖
𝜒𝑛(𝐱 + 𝐫) 𝚪∞

0 (𝐫) ∶∶ 𝐑12(𝐫) d𝑉𝐫

(B.15)

= 𝐏0 ∶∶ 𝐑12(𝟎) + lim
𝛿→0 ∫‖𝐧‖=1

𝛿≤𝑟≤𝑅1

𝚪∞
0 (𝐧) ∶∶ 𝐑12(𝟎) d𝑟

𝑟 d𝑆𝐧

+ lim
𝛿→0 ∫‖𝐧‖=1

𝛿≤𝑟≤𝑅1

𝚪∞
0 (𝐧) ∶∶ [𝐑12(𝑟𝐧) − 𝐑12(𝟎)]

d𝑟
𝑟 d𝑆𝐧

+ ∫‖𝐫‖≥𝑅1
𝜒𝑛(𝐱 + 𝐫) 𝚪∞

0 (𝐫) ∶∶ 𝐑12(𝐫) d𝑉𝐫 . (B.16)

where the fact that 𝚪∞
0 is homogeneous of degree −𝑑 has been used. The second term in the

above expression vanishes, since the isotropic average of the Green operator is null. In the
third term, the integrand is regular owing to the differentiability of 𝐑12 at the origin. Therefore

𝔼[𝝉1(𝐱) ∶ 𝚪∞
0 [𝜒𝑛𝝉2](𝐱)] = 𝐏0 ∶∶ 𝐑12(𝟎) + ∫‖𝐧‖=1

0≤𝑟≤𝑅1

𝚪∞
0 (𝐧) ∶∶ [𝐑12(𝑟𝐧) − 𝐑12(𝟎)]

d𝑟
𝑟 d𝑆𝐧

+ ∫‖𝐫‖≥𝑅1
𝜒𝑛(𝐱 + 𝐫) 𝚪∞

0 (𝐫) ∶∶ 𝐑12(𝐫) d𝑉𝐫 . (B.17)

From the dominated convergence theorem, observing that |𝜒𝑛(𝐱+𝐫)| ≤ 1 and 𝜒𝑛(𝐱+𝐫) → 1
as 𝑛 → +∞ for all 𝐫 ∈ ℝ𝑑 , the limit of the above expression as 𝑛 → +∞ is readily evaluated

lim
𝑛→+∞

𝔼[𝝉1(𝐱) ∶ 𝚪∞
0 [𝜒𝑛𝝉2](𝐱)] = 𝐏0 ∶∶ 𝐑12(𝟎) + ∫‖𝐧‖=1

0≤𝑟≤𝑅1

𝚪∞
0 (𝐧) ∶∶ [𝐑12(𝑟𝐧) − 𝐑12(𝟎)]

d𝑟
𝑟 d𝑆𝐧

+ ∫‖𝐫‖≥𝑅1
𝚪∞

0 (𝐫) ∶∶ 𝐑12(𝐫) d𝑉𝐫 , (B.18)

provided that the last integral exists. The above expression shows that the seeked limit does
not depend on the observation point 𝐱. We can now retrace our steps through equations (B.16)
and (B.15), successively, replacing 𝜒𝑛(𝐱 + 𝐫) with 1: equation (B.12) is then retrieved, and the
proof is complete.
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