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Abstract

The aim of this work is to propose a framework for facade segmentation with user-
de�ned shape priors. In such a framework, the user speci�es a shape prior using
a rigorously de�ned shape prior formalism. The prior expresses a number of hard
constraints and a soft preference on spatial con�guration of segments, constitut-
ing the �nal segmentation. Existing approaches to the problem are a�ected by a
compromise between the type of constraints, the satisfaction of which can be guar-
anteed by the segmentation algorithm, and the capability to approximate optimal
segmentations consistent with a prior.

In this thesis we explore a number of approaches to facade parsing that com-
bine prior formalism featuring high expressive power, guarantees of conformance of
the resulting segmentations to the prior, and e�ective inference. We evaluate the
proposed algorithms on a number of datasets. Since one of our focus points is the
accuracy gain resulting from more e�ective inference algorithms, we perform a fair
comparison to existing methods, using the same data term.

Our contributions include a combination of graph grammars for expressing vari-
ation of facade structure with graphical models encoding the energy of models of
given structures for di�erent positions of facade elements. We also present the �rst
linear formulation of facade parsing with shape priors. Finally, we propose a shape
prior formalism that enables formulating the problem of optimal segmentation as
the inference in a Markov random �eld over the standard four-connected grid of pix-
els. The last method advances the state of the art by combining the �exibility of a
user-de�ned grammar with segmentation accuracy that was reserved for frameworks
with pre-de�ned priors before. It also enables handling occlusions by simultaneously
recovering the structure of the occluded facade and segmenting the occluding ob-
jects. We believe that it can be extended in many directions, including semantizing
three-dimensional point clouds and parsing images of general urban scenes.
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Resumé

L'objectif de cette thèse concerne l'analyse automatique d'images de façades de
bâtiments à partir de descriptions formelles a priori de formes géométriques. Ces in-
formations dé�nies par un utilisateur permettent de modéliser, de manière formelle,
des contraintes spatiales plus ou moins dures quant à la segmentation sémantique
produite par le système. Ceci permet de se défaire de deux principaux écueils in-
hérents aux méthodes d'analyse de façades existantes qui concernent d'une part la
garantie que l'algorithme de segmentation respecte bien les contraintes fortes, et
d'autre part la capacité à s'approcher d'une segmentation optimale par rapport aux
a priori.

Nous proposons d'explorer au travers de cette thèse di�érentes méthodes alterna-
tives à celles proposées dans la littérature en exploitant un formalisme de représen-
tation d'a priori de haut niveau d'abstraction, les propriétés engendrées par ces
nouvelles méthodes ainsi que les outils de résolution mis en ÷uvre par celles-ci.
Le système résultant est évalué tant quantitativement que qualitativement sur de
multiples bases de données standards et par le biais d'études comparatives à des
approches à l'état de l'art en la matière.

Parmi nos contributions, nous pouvons citer la combinaison du formalisme des
grammaires de graphes exprimant les variations architecturales de façades de bâti-
ments et les modèles graphiques probabilistes modélisant l'énergie attribuée à une
con�guration paramétrique donnée, dans un schéma d'optimisation par minimisa-
tion d'énergie, ainsi qu'une nouvelle approche par programmation linéaire d'analyse
avec à priori de formes.

En�n, nous proposons un formalisme �exible de ces a priori devançant de par
ses performances les méthodes à l'état de l'art tout en combinant les avantages de la
généricité de contraintes simples écrites par un utilisateur, à ceux de la précision de
la segmentation �nale qui se faisait jusqu'alors au prix d'un encodage préliminaire
restrictif de règles grammaticales complexes propres à une famille architecturale
donnée. Le système décrit permet également de traiter avec robustesse des scènes
comprenant des objets occultants et pourrait encore être étendu notamment a�n de
traiter l'extension tri-dimensionnelle de la sémantisation d'environnements urbains
sous forme de nuages de points 3D ou d'une analyse multi-image de bâtiments.
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Chapter 1

Introduction

1.1 Problem de�nition

The goal of facade parsing is to segment building images into regions corresponding
to architectural elements, like windows, balconies and doors. Unlike in the case
of general image segmentation, resulting segments have to satisfy structural con-
straints. Two types of constraints that we �nd most useful for facade modeling are
alignment of facade elements as well as vertical and horizontal order. For example,
we could require some windows to be aligned horizontally or vertically, and a bal-
cony, if any, to be below a window. Other types of handy constraints include relative
sizes of elements, and number of elements in a facade, like the possible number of
�oors. In this work we focus on parsing recti�ed facade images. An example input
image and a segmentation produced by a facade parsing algorithm are presented in
�gure 1.1.

Figure 1.1: Left: an image from the ECP dataset [59]. Right: result of parsing the image on the
left. Colors correspond to di�erent semantic classes.

In this thesis we address the problem of facade parsing with prior knowledge. In
general, a prior can be speci�ed by a user and/or learned automatically from train-
ing examples, and expresses hard constraints on facade structure and soft preference
for some patterns of facade elements over others. The resulting segmentation has
to conform to the prior, that is, satisfy the hard constraints speci�ed therein and
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minimize an objective function consisting of a data term and a term expressing the
soft preference. We assume arrangements of facade elements vary considerably, but
the patterns of variation are known, so that it is possible to produce a concise spec-
i�cation of valid facade structures for a given architectural style. Such speci�cation
can constitute a prior encoding possible patterns of facade elements. For example,
the facade in �gure 1.1 is an instance of the Haussmannian style. Buildings of this
style have �ve or six �oors, of which the top and the second �oor are very likely to
have balconies running through the whole facade, and balconies in the remaining
�oors can be misaligned vertically. Windows in a Haussmannian facade are arranged
in a grid pattern, with the exception of the top �oor, which can contain windows
misaligned with ones in the rest of the facade but aligned with attic windows. A
ground �oor usually contains retail and service facilities, while the upper �oors have
a residential character.

1.2 Application context

While this work is focused on parsing individual recti�ed images of building fa-
cades, it is in line with the long term goal of creating models of existing buildings
from images. Such models could serve the purpose of urban planning, be useful
for documenting existing old buildings and planning renovations. Realistic mod-
els of urban scenes also �nd applications in computer games. Additionally, there
are many applications within the civil engineering industry, including simulations
of shadow casting, thermal performance, noise and air pollution propagation in the
city, or prediction of electric energy yield from solar panels placed on building roofs.
Models required for many of these applications should contain semantic informa-
tion. For example, for architectural planning it is useful to have a wire frame model
resembling a drawing produced in a Computer Aided Design (CAD) program by an
architect, as opposed to a model consisting of large number of irregular polygons,
containing noise and missing information, typically resulting from 3D reconstruc-
tion from images. For thermal simulations it is crucial to know the openings in the
building structure, like doors and windows. Semantic information would also help
in realistic rendering of models created from images by providing information about
the material in di�erent parts of the model, for example brick (wall), glass (window)
and metal (roof). A low number of polygons is a desired feature of models used for
all the listed applications.

The problem of obtaining 3D scene models from multiple images is broadly stud-
ied in the computer vision community. However, a typical result of a 3D reconstruc-
tion pipeline is a mesh consisting of a large number of polygons, with noise, holes
resulting from missing information and without semantic information. Such `un-
structured' models can be used for creating visualizations of urban scenes, but are
of limited utility for planning renovations or conducting thermal simulations. The
di�erence is presented in �gure 1.2, which contains an output from a 3D reconstruc-
tion pipeline and a `structured' model of perfect geometry. It is evident that the
models are very di�erent, even though the semantic information contained in the
`structured' model is not visualized.

The current state of art in facade parsing does not allow to directly address the
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Figure 1.2: An output of a 3D reconstruction pipeline (left) and a geometric building model
(right). The model contains a low number of polygons and is free from noise. Additionally, it
features perfect alignment of architectural elements. We are interested in models that contain
semantic information (not presented in the image) in addition to geometry.

problem of reconstruction of 3D models from multiple images, or parsing general im-
ages of urban scenes. Existing facade parsing frameworks impose certain constraints
on input data. The algorithms are restricted to parsing single recti�ed images of
building facades. However, facade parsing could be useful in real life applications.
There has been research on creating 3D models of facades from single images [41, 39].
Other work [59, 34] demonstrated creating simple 3D building models based on fa-
cade segmentations, by assigning depth to segments based on their semantic labels.
There exist algorithms [33, 9] which, unlike the �rst attempts at facade parsing
[28, 60], can handle non-rectangular shapes of facade elements and occlusions. In
this work we advance the state of the art of facade parsing with user-de�ned shape
priors towards applicability by enabling explicit modeling of occlusions and irregu-
larly shaped facade elements.

A possible application scenario involves acquiring facade images by a side-looking
vehicle mounted cameras and rectifying them manually or automatically [3]. The
resulting recti�ed images of building facades can be parsed and 3D models can be
created from the segmentations by assigning class-dependent depth to each segment.
Some applications, involving collection of information about urban environment, can
utilize the segmentations directly. For example, estimating the area of glass in a
building facade is necessary to assess thermal performance of a building, and the
estimated number (and type) of shops and service facilities can be used to statis-
tically characterize urban scenes. In another application scenario a user manually
de�nes the rough shoe-box geometry of a building visible in an image, in such a way
that faces correspond to distinct building facades. These regions can then be parsed
resulting in a segmentation that can be used to increase the level of detail of the
model.

Finally, we think the algorithms presented in this thesis can be generalized to
more challenging tasks, like parsing images of urban scenes without the recti�ca-
tion constraints, or semantizing three-dimensional point clouds representing urban
scenes. The advantage of models resulting from parsing over the ones created by
traditional 3D reconstruction, would be the presence of the semantic information
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and satisfaction of structural constraints de�ned in the prior. Some attempts at
parsing unrecti�ed images and point clouds of urban scenes have already been made
[4, 52].

1.3 Challenges associated to the problem

Conceptually, the stated problem can be seen as consisting of three research ques-
tions: 1) how to specify shape priors, 2) how to parametrize a segmentation con-
sistent with a prior, 3) how to obtain an optimal segmentation consistent with the
speci�ed prior. Obviously, none of these questions can be answered independently
of the others, and this entanglement is one of the main di�culties of the problem.
For example, there exists a trade-o� between the expressive power of a prior for-
malism and the capability of approximating optimal segmentations consistent with
a prior. In section 2 we list a number of previous works in which the advantage of a
powerful and concise prior formalism is counterbalanced by the necessity of random
exploration of a large space of segmentations for inference. In other algorithms the
parametrization of the segmentation enables e�cient search for optimal segmenta-
tions, but limits the types of handled constraints, or fails to guarantee the global
satisfaction of the constraints.

Another challenge is the highly connected nature of facade models. Any attempt
to parametrize the facade presented in �gure 1.1, whether in terms of positions of
windows, or their corners, or snaplines, results in a highly connected model with a
loopy structure. That is, if we express the model in form of a graph, where nodes
correspond to variables and each (hyper-) edge connects variables involved in some
constraint, the graph is going to have loops. Such models make the search for
optimal segmentations di�cult. The simplest example of such loopy constraints is
the horizontal and vertical alignment of windows.

Finally, facades feature structural variation. In other words, we do not know
a priori how many elements are present in a facade, or how they are entangled by
the constraints. For example, we do not know how many �oors or window columns
there are in a given facade. In consequence, we cannot expect that a model with a
�xed number of variables encoding positions of architectural elements, like windows
and balconies, will be capable of representing facades of di�erent structures.

1.4 Contribution

In this work we address the problem of facade parsing in its three aspects. First, we
propose a shape prior speci�cation that enables encoding simultaneous alignment of
facade elements, their order and non-overlap. Second, we provide a parametrization
of facade segmentation that represents facades as points in a space where structural
constraints are satis�ed, or where it is easy to enforce their satisfaction, and which
facilitates evaluating the prior energy term encoding soft preference on facade layout.
Third, we present an e�cient optimization algorithm that can guarantee satisfaction
of the constraints constituting a prior. Our main goal is to guarantee `structural
correctness' of the resulting segmentations, that is, their conformance to prior, while
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proposing e�cient optimization scheme. We present three di�erent solutions, de-
veloped in pursuit of this goal, where each consecutive formulation is more easily
applicable, versatile and faster than the previous one.

The main technical contributions are:

• an image parsing framework combining graph grammars with MAP-MRF op-
timization, where the graph grammar models structural variation, and the
MAP-MRF optimization provides an e�cient way of inferring positions of ob-
jects for a given tentative structure of the scene;

• a binary linear formulation of the parsing problem, which is the �rst formu-
lation with user-de�ned grammar, where the optimal segmentation can be
inferred without resorting to sampling segmentations or subsampling the im-
age;

• an adjacency pattern-based approach to facade parsing, which is a state of the
art in facade parsing, and the �rst prior-based algorithm where occlusions and
irregular shapes of facade elements can be modeled.

The adjacency pattern-based framework is the �rst prior-driven algorithm that en-
ables modeling occlusions and can simultaneously recover both the structure of the
underlying facade and the boundary of the occluding object. This is an important
step towards real life applications of facade parsing, as occlusions are often encoun-
tered in practice. The framework was extensively tested on four di�erent datasets
and was shown to consistently yield better segmentations than competing methods
while using the same image cues.
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Chapter 2

Existing Work

2.1 Grammar-type shape priors for buildings

Shape grammars are particularly popular as shape priors for modeling buildings.
They can be used both to model geometry of structures in three dimensions and to
encode two-dimensional arrangements of facade elements. They are generative mod-
els resembling string grammars used in formal and natural language processing. A
grammar G = (S, T ,N ,P) consists of a set of terminal symbols T , a set of nontermi-
nal symbols N , a set of productions (also called production rules) P , and a starting
symbol, or axiom, S ∈ N . A production p ∈ P , denoted p : N −→ (n1, . . . , nk), is a
mapping of a nonterminal symbol N ∈ N , called the left-hand side of the produc-
tion, to a (possibly structured) collection of terminals and nonterminals (n1, . . . , nk),
where n1, . . . , nk ∈ N ∪ T . The collection of symbols (n1, . . . , nk) is referred to as
the right-hand side of the production. In shape grammars, a symbol corresponds to
a basic shape, and a collection of symbols represents a complex shape, which is a
spatially structured set of basic shapes. The generation of a collection of terminal
symbols from a grammar is called derivation. A basic step of the derivation process
consists in applying a production, which substitutes a nonterminal symbol in the
collection, that matches the left-hand side of the production, with the right-hand
side of the same production. In the case of shape grammars, each production appli-
cation substitutes one of the nonterminal basic shapes in the derived complex shape
by a spatially structured combination of terminal and nonterminal basic shapes, ac-
cording to the applied production. The derivation starts with a collection consisting
only of the starting symbol S and develops the collection by recursively applying
productions to nonterminal symbols that constitute it. The process continues until
the collection contains only terminal symbols. The choice of productions that can
be applied to each nonterminal can result in a very large, possibly in�nite, set of
collections that can be derived from the grammar. A derivation from a grammar
can be represented by a parse tree. The nodes of a parse tree represent grammar
symbols. The root represents the starting symbol and a link from parent to child
exists between a nonterminal and each of the symbols constituting the right-hand
side of the production applied to substitute the nonterminal.

Split grammars are a particular form of shape grammars, where the basic shapes
are rectangular image regions, and where a production splits a nonterminal rectan-

15



gular region along one of coordinate axes. We provide an example of a split grammar
and an illustration of the derivation process in section 2.1.2.

2.1.1 Grammars for generating models of urban scenes

The generative approach proved to be convenient for creating models of buildings
and urban scenes. In their work [38], Müller et al. use the concept of shape grammar
to represent a collection of building shapes. Each symbol is assigned a number of
attributes, including a three-dimensional cuboid containing the corresponding basic
shape, called a scope of the shape. A production can be conditional, that is, it can
contain conditions on the attributes of the substituted nonterminal, under which
the production is applicable. A constraint on the attributes of the substituted non-
terminal and the con�guration of basic shapes that is inserted in its place can also
be speci�ed in a production. This is used to avoid generating structurally invalid
buildings, for example, ones where elements generated from di�erent nonterminals
overlap. By randomly selecting the productions and attribute values during deriva-
tion, the grammar can be used to generate building models of various structural
con�gurations. The grammar contains operations on three-dimensional shapes, and
on their two-dimensional faces. Arguably the most important type of productions
is a split rule. It subdivides a scope of an atomic shape along one of its coordinate
axes, resulting in a number of new atomic shapes. This type of rule is of particular
interest for modeling buildings as it enables encoding crucial constraints: alignment,
non-overlap and order of elements.

2.1.2 Facade parsing with grammar-based shape priors

The modeling of buildings on the basis of images has been a popular �eld [4, 72,
41, 20] due to its numerous applications. Inspired by the work of Müller et al.,
some research was aimed at applying the grammar formalism to retrieving building
models from images [28, 60, 59, 36, 47]. The user speci�es a shape grammar and
proposed algorithms try to �nd a sequence of instantiated grammar rules yielding
an optimal segmentation.

The quality of the segmentation is measured by means of a merit function de�ned
for each pixel of the image. The function models the likelihood that a point belongs
to a region representing an architectural element of a given category. The merit
function is typically learned from training data. In their work, Teboul et al. [60, 59]
used a random forest [7] to estimate the class likelihoods. A more accurate merit has
been used by Martinovic et al. [33]. It combines an image segmentation obtained by
means of a Recursive Neural Network [53] with results of object detection. Cohen et
al. [9] propose yet another merit function: a multi-feature extension of TextonBoost
[29]. The used features include SIFT, ColorSIFT, Local Binary Patterns and location
features. Feature vectors are clustered to create dictionary entries and the �nal
feature vector is a concatenation of histograms of appearance of cluster members
in a neighborhood of 200 randomly sampled rectangles. The per-pixel energies are
output by a multi-class boosting classi�er [50]. An unstructured image segmentation
can be obtained by assigning the most likely class to each pixel independently. A
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shape prior can be seen as a regularizer. In this work we show that the constraints
encoded in the prior not only ensure the `semantic correctness' of the segmentation,
but also improve the classi�cation results. In addition to `hard' constraints, the
prior can also contain a `soft' component, that expresses the a priori likelihood
of segmentations. The goal of facade parsing is to �nd a parse (a derivation tree
and the resulting segmentation of the input image) that maximizes the a posteriori
likelihood of the data given the model.

Teboul et al. [60], propose an algorithm that segments recti�ed images of building
facades based on a binary split grammar speci�ed by the user. A split grammar is
a grammar where all the productions are splits, and the adjective `binary' indicates
that each production can yield at most two child symbols. The symbols represent
rectangular image regions and a production splits a region along one of the image
axes into two child rectangles. A split grammar is a concise manner of encoding the
order and alignment constraints in one direction. Split grammars can be seen as
attribute grammars, where each symbol is assigned a number of attributes, including
the dimensions of the corresponding rectangle, and where the productions de�ne
possible con�gurations of attributes of the child symbols given the attributes of
the parent. In particular, a production can encode the possible sizes of the child
regions. We present a simple two-dimensional split grammar in table 2.1 together
with an example derivation in �gure 2.1. For simplicity we neglect the attributes of
productions, including sizes of shapes, in the example.

Parsing, that is, segmenting an image according to a grammar, turns out to
be much more di�cult than generating a plausible arbitrary segmentation from a
grammar. There exist two approaches to parsing string grammars that could hypo-
thetically be adapted to parsing shape grammars. Unfortunately, both paradigms
have strong disadvantages when applied to image parsing. A top-down parsing al-
gorithm attempts to construct a parse tree by starting with the root, and applying
productions until �rst terminal symbols are generated, which are then matched to
the input. A bottom-up parsing algorithm tries to construct a parse tree by �rst
initiating the leaves based on the input and then grouping the leaves into collections
that correspond to right-hand sides of productions and assigning each of them a
parent. The process continues recursively until the tree is terminated with a start-
ing symbol and contains all the input symbols. On the abstract level, there are two
general problems with using such algorithms for parsing images. First, images are
not composed of unambiguously identi�ed symbols. There is an uncertainty associ-
ated to the class of each pixel. In computer vision this problem is typically handled
by combining a merit function with a regularization term expressing the prior like-
lihood of the result. Then a segmentation is sought which optimizes a combination
of both terms. Parsing algorithms work on unambiguously de�ned symbols and do
not handle su�cient level of uncertainty. Second, parsing algorithms do not handle
missing or false positive symbols to an extent su�cient for treating images. This
eliminates the possibility of running a traditional parsing algorithm on primitives
detected in an image. On the other hand, when pixels are treated as individual sym-
bols, the computational intensity of parsing becomes prohibitive. These problems
are well exempli�ed by existing facade parsing frameworks, presented below.

Teboul et al. [60, 59], tried to adapt the top-down parsing principle to search for
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Figure 2.1: A derivation from the grammar presented in table 2.1, overlaid on the corresponding
facade image. The black arrows between images denote applications of productions. Parse trees
corresponding to each step of the derivation are placed under the images.
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Table 2.1: A simple set of grammar rules, modeling a binary facade consisting of windows and wall
tiles. The adopted naming convention is that, if the name of a nonterminal symbol is complex,
the �rst part denotes the topmost, or leftmost symbol that can be derived from it. For example,
`�_facade' denotes a facade region that has a �oor at the top.

p0: axiom −→
wall

�_facade

p1: �_facade −→
wa_�oor

wa_facade

p2: �_facade −→
wa_�oor

wall

p3: wa_facade −→
wall

�_facade

p4: wa_�oor −→ wall wi_�oor

p5: wi_�oor −→ window wa_�oor

p6: wi_�oor −→ window wall

optimal segmentations. However, the cost of applying a production to a nonterminal
is not known until all the terminals descending from it have been derived. Moreover,
the search space consists of all the parse trees that can be generated from a given
grammar and is therefore very large. The authors resort to a random walk procedure
for exploring the space of shapes, represented as derivation trees. In another work
[59], the same authors present an improved optimization algorithm, based on the
Q-learning paradigm, that explores the space more e�ciently. However, the explo-
ration remains random in principle resulting in potentially large variations of the
�nal segmentation. Therefore it cannot be relied on to produce optimal, repeatable
results.

In appendix A we present an attempt to address the limitation of the top-down

19



parser [60, 59] by guiding the exploration of the space of parse trees with strong
bottom-up cues. We use window detections in addition to texture classi�cation and
design a prior on the split positions based on detected line segments, as opposed
to the gradients used in the original algorithm. Even though the resulting algo-
rithm outperforms the original parser, it su�ers from the same problems caused by
inference based on random exploration of the problem space.

Some research has been targeted at using the bottom-up algorithms, similar to
ones used in string grammar parsing, for facade parsing [47]. Unfortunately, they
feature a prohibitive computational complexity on images, partly due to the two
dimensional nature of images, and in some part because individual pixels or image
segments cannot be classi�ed unambiguously, unlike symbols in a string grammar.
Riemenschneider et al. [47] use a grammar de�ned on a two-dimensional grid and a
2D version of the Coke-Younger-Kasami (CYK) parser to �nd the optimal segmenta-
tion. However, its complexity is O(w2h2N), where w and h are the dimensions of the
image and N is the number of possible combinations of production rule attributes
(including splitting positions). This limits practical applications of the algorithm
to grids of about 60 by 60 cells. To circumvent this limitation the authors explore
di�erent methods of selecting the possible split positions.

Another issue with split grammars is the di�culty of encoding simultaneous
alignment in two dimensions. For example, two �oors in �gure 2.1 are derived
independently and the basic grammar formalism does not provide a mechanism for
enforcing the alignment. In their work [60, 59] Teboul et al. allow the user to specify,
when writing a grammar, which symbols should be split in exactly the same way.
This introduces hidden dependencies in the parse tree and the derivation process.

Summarizing, the split grammar-based methods provide a neat way of encoding
shape priors. The segmentation is parametrized as a parse tree, encoding the applied
productions and attributes of resulting shapes. However, the existing frameworks
fail to o�er a reliable and e�cient optimization scheme. Due to the very large search
space the algorithms su�er from the `curse of structural exploration'. They search
the space of parse trees more or less randomly [60, 59], which does not guarantee
optimality nor repeatability, sometimes severely subsampling the image [47].

2.1.3 Grammar learning

Learning shape grammars from labeled images is an interesting problem that we do
not handle in this work. However, we mention it here due to the connection between
parsing and grammar learning.

Martinovi¢ and Van Gool propose to learn 2D split grammars by Bayesian model
merging [34]. The algorithm starts with one grammar per each image in the training
set. These are then merged to form a single grammar, by giving them all the
same starting symbol, and aggregating the symbols and productions. Then, pairs
of nonterminals are merged in an iterative process, greedily optimizing an energy
containing a data term, preferring grammars with more precise segmentations, and a
regularization term, promoting more concise grammars. The authors also propose a
reversible jump Markov chain Monte Carlo algorithm for inference with the learned
grammar.
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Gadde, Marlet and Paragios [16] proposed another grammar learning algorithm.
Its aim is to learn a grammar speci�c to an architectural style, given a generic gram-
mar and a number of labeled images. First, the ground truth images are parsed using
the generic grammar, yielding ground truth parse trees. Then, recursive applications
of the same rule are compressed, to facilitate the following step, identifying common
subtrees. The next steps clusters large subtrees that are common to many parse
trees. Linear programming-based clustering is used. The clusters are represented as
individual rules. This means the new rules can be complex, consisting of combina-
tions of vertical and horizontal splits. This considerably speeds up convergence of
the parsing algorithm.

A co-segmentation algorithm proposed by Martinovi¢ and Van Gool [35] is an-
other attempt to eliminate the requirement of specifying a shape grammar. It op-
erates on labelings of facade images obtained by a general-purpose segmentation
algorithm. It processes all the test images at the same time. The algorithm is based
on recursive decomposition of rectangular image regions by splitting them along ver-
tical or horizontal direction. The decomposition step has a form of co-segmentation.
It processes a cluster of image regions (possibly originating from di�erent images)
at the same time, by maximizing a combination of the scores speci�c to individual
regions and the score expressing the consistency of resulting segments between the
regions. Then, the regions resulting from the decomposition are clustered and the
decomposition is applied to the new clusters. Although the framework produces
inferior results to ones obtained by parsing algorithms, it addresses the interesting
problem of inferring the semantically correct labelings and the underlying constraints
in the same time. The hierarchical facade representations created in the process have
been shown to aid facade retrieval and enable generation of facade models.

The problem of grammar inference has been addressed by Weissenberg et al.
[67] from the point of view of facade compression, comparison and synthesis. The
algorithm accepts annotations of recti�ed facade images on input, which are then
transformed into parse trees by repetitively applying splits that extremize a hand-
crafted energy. Grammar productions are formed by processing the parse trees
bottom-up and aggregating splits. In particular, each sequence of consecutive splits
in the same direction is aggregated to form a single production. Groups of splits in
di�erent tree branches, and di�erent trees, that are similar in terms of their direction
and classes of children also give rise to new production rules. The authors propose a
distance function de�ned on the parse trees, that can be used for facade comparison
and retrieval.

A related problem is inferring a minimal grammar that encodes a given facade
layout. Its applications include compression of building models and learning gram-
mars from examples. The algorithm byWu et al. [69] attempts to �nd a deterministic
split grammar that produces a given facade layout and that minimizes a prede�ned
cost function. The method combines greedy and random exploration of the space of
grammars that produce a given facade layout, generating a large number of gram-
mars. It keeps the grammar that scores the best with respect to a prede�ned cost
function, which evaluates the complexity of each used production. The resulting
grammar can be modi�ed by changing the number of repetitions of architectural
elements, and their sizes, or by combining a number of grammars obtained from
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Figure 2.2: Semantically incorrect facade segmentation that can result from applying locally opti-
mal corrections [33], for example, aligning pairs of lines that are su�ciently close. Note the balcony
ending in the middle of a window in the left image, and the excessively large balconies in the right
image. These artifacts result from not enforcing hard constraints on the resulting segmentations.

more than one facade. This way new facade layouts can be generated.

2.2 Other methods of facade parsing

Some facade segmentation methods do not use user-de�ned shape priors. One al-
ternative approach to the problem is to enforce the structural constraints on results
of a general-purpose segmentation algorithm. In [33], Martinovic et al. combine re-
sults of a Recursive Neural Network with object detections to form unary potentials
of a Markov Random Field encoding an initial image segmentation. Then `soft'
architectural principles are applied as a postprocessing step after image segmenta-
tion. The initial segmentation is modi�ed to satisfy a number of `weak architectural
principles': some elements are given rectangular shapes; rectangles, boundaries of
which are su�ciently close, are aligned; doors are inserted into the lower parts of
facades. The method cannot accommodate `hard' structural constraints. Besides,
the set of `architectural principles' is di�erent for each dataset and no formal way
of specifying them has been proposed. Moreover, applying local corrections to a
segmentation, for example, aligning lines that are close enough, does not necessarily
yield a semantically correct segmentation. The method can produce artifacts, like a
balcony ending in the middle of its corresponding window (see �gure 2.2).

A more recent work by Cohen et al. [9] uses a sequence of dynamic programs
(DPs) to recover a segmentation that respects a set of hard-coded constraints and
attains state-of-the-art performance on the standard datasets. Each DP makes the
current labeling more detailed. The �rst one operates along the vertical axis and
identi�es the �oors. The following ones identify windows in each of the �oors, the
boundary between the sky and roof, and the door and shop. This con�guration
of DPs encodes a particular structure of the facade, which should be horizontally
decomposable into �oors, which themselves can be decomposed into sequences of
windows and wall tiles. If the actual facade con�guration is di�erent, the algorithm
approximates it with a segmentation that conforms to the structure encoded by the
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DPs. Also in this case there is no systematic way for the user to encode di�erent
sequences of DPs that would correspond to di�erent architectural styles. As the
DPs operate independently over image regions, the approach does not enforce or
promote simultaneous alignment of shapes in two dimensions.

The work of Yang et al. [70] focuses on the application of rank-1 matrix approxi-
mation to facade parsing. A binary classi�er of window color is applied to the facade
image, and the resulting image is approximated as a rank-1 matrix. To handle facade
patterns more complex than a single grid, the algorithm randomly divides the image
into a number of rectangular regions and then operates on these regions separately,
representing them as rank-1 matrices. The procedure is repeated a number of times
and the segmentation that scores best against the per-pixel classi�cation is kept as
the �nal result. The main drawback of the algorithm is the limitation to a two-class
(window and wall) facades and the lack of a principled method for handling shapes
more complex than a grid.

Mathias et al. [36] propose to use the grammar of [38] and generate the building
while estimating the attributes of the applied grammar rules from the input images
and a 3D point cloud. While the general idea seems attractive, the algorithm has
not been shown to perform well with more than two classes of terminal symbols and
accommodates only a small subset of rules of the original grammar.

Dai et al. [10] proposed an algorithm in which the input image is �rst seg-
mented into rectangular regions, then a random �eld is created over the resulting
segments and �nally the optimal labeling is obtained by sampling using Swendsen-
Wang cuts. The algorithm does not require any user-de�ned shape speci�cation.
Instead, the weights corresponding to potentials promoting alignment of shapes,
rectangular shape of some facade objects, similarity of objects of the same class and
frequency of occurrence of di�erent classes are learned. The presence of higher-order
potentials constrains the spectrum of applicable inference algorithms and the au-
thors resort to sampling. Moreover, learning parameters of the potentials does not
guarantee `semantic correctness' of the results.

Müller et al. [39] propose a method for obtaining semantic, three-dimensional
models of building facades from recti�ed facade images. First, a mutual information
criterion is used to subdivide the image into �oors and tiles. An `irreducible facade' is
created by grouping the �oors and columns that share similar appearance. Then, the
tiles are subdivided further. Finally, the semantic class of the rectangular subregions
is detected and a facade model is created by tiling three dimensional models of
elements of the corresponding classes, stored in a database built a priori. The
main limitation of the algorithm is that it requires a facade to follow the �xed
decomposition into rows and columns.

2.3 Other grammar-based image models

In this section we discuss grammar-based image models in applications di�erent
than facade parsing. Although they are known under the common name of image,
or shape grammars, the concepts often di�er signi�cantly from grammars used for
facade parsing.

Using the prior knowledge of likely compositions of objects present in the scenes
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is believed to be bene�cial not only for facade parsing, but also for many other vision
problems. Although the concept of shape grammars dates back to the 70's and the
work of Stiny et al. [55], the idea of representing the image contents in a hierarchical
and semantized manner can be traced back to the work of Kanade and Ohta [42,
43]. However, the practical applications of grammars to image interpretation or
segmentation are attributed to more recent works [18, 66, 21, 1].

A considerable research e�ort has been devoted to explore the hierarchical and
regular structure of man-made objects in order to improve segmentation or detection
results [66, 21, 1]. We focus on �exible grammars that allow the user to encode
speci�c knowledge of the domain in the form of production rules that constrain the
space of feasible solutions. The grammar-based image interpretation paradigm is
thoroughly reviewed in the work of Zhu and Mumford [73]. A good example of
this approach is the rectangle-based grammar of Han and Zhu [18], in which the
prior knowledge is represented by means of an and/or graph. The terminal symbols
are rectangles and the production rules combine them into rows, columns or grids,
and allow for rectangle nesting. This case illustrates one of the main di�culties
of the problem: the number of terminals in the solution is unknown. The greedy
algorithm presented in the paper copes well with this di�culty. However, since there
is no semantic interpretation associated with the rectangles, there is no sensible way
of deciding which of any two candidate parse trees is better.

Grammars and part-based models have been combined in application to object
detection in [17, 51]. The grammars are hierarchical. That is, the position of a part
is dependent on the position of its `parent' object and the applied production rule.
Unfortunately, the structure of certain objects cannot be organized in a hierarchical
manner. In the case of facades, windows are aligned horizontally within �oors and
vertically between di�erent �oors. A tree-shaped hierarchy would fail to preserve
either the vertical or the horizontal alignment.

2.4 Graphical models

A number of problems formulated in this thesis have the form of �nding the optimal
con�guration of a graphical model [65]. Although we do not address optimization in
the framework of graphical models, we use some well known optimization algorithms
from the �eld. In this section we want to highlight the existence of a wide range of
algorithms that can be used in this setting. The reader is referred to the survey [22]
by Kappes et al. for a detailed comparison.

Graphical models are a powerful tool for expressing probability distributions
de�ned on many variables. They are often represented in form of graphs, where
nodes v ∈ V represent variables xv, and (hyper-) edges e ∈ E represent potentials
de�ned in terms of the variables represented by nodes that they connect. An energy
function is de�ned over a graphical model, consisting of potentials de�ned in terms
of the variables assigned to nodes and vectors consisting of variables connected by
edges

EMRF =
∑
v∈V

φv(xv) +
∑
e∈E

φe(xe) , (2.1)

where xe denotes a vector of variables connected by edge e. The main idea is that the

24



structure of the graph encodes conditional independence of variables: any variable
is conditionally independent of all its non-neighbors, given the state of its neighbors.
In result, functions of many variables, that can be factorized into a sum of factors
with small support, can be concisely represented in terms of the factors of smaller
dimension. This is especially useful in modeling energy functions in the domain of
images, which can have millions of pixels. One common structure of a graphical
model is a 4-connected grid of variables corresponding to pixels, in which each pixel
is connected to the pixels immediately above, below, to the right and to the left by
pairwise potentials. Another model common in computer vision, the Deformable
Parts Model (DPM), is used for tracking or detecting objects of known structure
in images. In this model a node of the graph corresponds to a variable de�ning
position of a part of an object in the image. The pairwise potentials connecting the
parts express the likelihood of their relative position.

In computer vision we are usually looking for a con�guration of the variables
that minimizes EMRF. This task is called inference. In settings, where some of the
potentials correspond to prior likelihoods and others encode conditional likelihoods
of the observations given the state of the variables, the labeling that minimizes the
energy is called the maximum a posteriori con�guration (MAP) and the process is
often referred to as MAP-inference.

MAP inference in graphical models with structure that does not contain loops
(that is, in trees or chains) can be performed exactly by message passing [40]. Chains
can also be solved by dynamic programming using the Viterbi algorithm [63, 14].

However, the models handled in this thesis are highly connected (loopy) and
involve discrete variables that can take many labels. These can be addressed using
loopy belief propagation [40]. The algorithm is not guaranteed to converge. Prov-
ably better minima are attained using Sequential Tree-Reweighted message passing
(TRWS) [24]. The third alternative is the dual decomposition algorithm [26, 54].

There exists a class of problems that can be e�ciently solved using the so called
move-making methods [6, 56]. In particular, binary problems with submodular
pairwise potential can be solved exactly. However, our problems do not possess
these favorable properties.
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Chapter 3

Limiting Sampling to Inference of

Facade Structure by Combining

Graph Grammars and Graphical

Models

3.1 Introduction

As shown in chapter 2.1.2, in existing parsing frameworks, in which the shape prior
is encoded in a form of split grammar, a segmentation is represented as a parse tree.
Such a parse tree combines two types of parameters: the choice of rule applied to
each nonterminal and the split positions. Formulating the problem of �nding the
optimal parse tree is a�ected by the following di�culties: 1) for practical grammars,
the space of all possible parse trees has a very high dimensionality; 2) the number
of variables representing split positions and rule types can vary between di�erent
parse trees; 3) the problem requires a discrete formulation, where each variable
a�ects many terms of the objective function and many constraints. The last problem
stems from the fact that the energy is a sum of per-pixel potentials. A class for each
pixel is induced by the terminal symbol (rectangular region) that overlaps it. The
energy contributed by a single rectangular region depends on the position of its four
sides, created by splits encoded by four di�erent nodes in the parse tree. A single
split often encodes the edge of many rectangular regions, see for example the top,
or bottom �oor boundary in �gure 2.1. Such discrete functions with a large number
of highly entangled variables are di�cult to optimize. In consequence, all existing
grammar-based image parsing methods [28, 60, 59, 52, 47, 44, 18] described in section
2.1, su�er from the lack of a reliable optimization algorithm for yielding optimal
derivations from a grammar. For inference, the authors resort to random exploration
of the problem space [28, 60, 59, 52, 44], which gives suboptimal results and features
high variability of results when run several times. In appendix A we show that
improving the bottom-up cues used in the random exploration algorithm improves
parsing accuracy only slightly. Other algorithms severely subsample the image to
make it suitable for combinatorial processing [47], or apply greedy procedures for
building the parse tree [18].
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In spite of the lack of reliable optimization algorithms, the grammar-based meth-
ods have an advantage over the algorithms that do not use user-de�ned grammars
[33, 10, 9] in that they can guarantee conformance of the resulting segmentations
to the constraints speci�ed by the user. We therefore address the general drawback
of grammar-based methods in an e�ort to combine the guarantees of satisfaction
of constraints de�ned in a shape prior with the high performance of methods that
do not take user-speci�ed grammars on input. As opposed to split grammar pars-
ing algorithms, that simultaneously sample the type of applied productions and
the split positions, we propose to model and optimize the structure of the facade
and the position of its parts separately. We represent a structure of a particular
facade as a graph. We encode all possible facade structures, representing a single
architectural style, in a graph grammar. We sample structures from this grammar.
For each structure, the positions of the parts are inferred using standard techniques
for determining most likely con�gurations of graphical models. This way, we limit
the application of the less reliable randomized optimization algorithms to structure
inference only.

3.1.1 Related work

The problem related to the lack of reliable inference in facade parsing frameworks
with user-de�ned grammars has been exposed in sections 2.1.2 and above. We limit
this section to work that is related to the algorithm we propose, which combines
graph grammars and graphical models.

Our work is related to the part-based approach to object modeling, that has
proven e�ective in numerous applications including face detection and pose tracking
[13, 11]. In this framework, an object is represented as a collection of parts. Detect-
ing, or tracking the object consists in identifying the pose of all its parts in images.
The method is based on optimizing an energy function de�ned on the vector of part
poses. The energy consists of unary potentials evaluating the pose hypotheses for
each part of the model and pairwise potentials evaluating the likelihood of pairs of
poses of certain parts. Optimal part poses can be calculated e�ciently if the model
has a tree structure. Although in this work we represent the imaged objects as
factor graphs, the graphs are not �xed but generated from a graph grammar. They
also feature a highly connected and loopy structure.

Grammars and part-based models have been combined in applications to object
detection [17, 51]. Girshick, Felzenszwalb and McAllester [17] propose a part-based
model for pedestrian detector in which occlusions are handled by variations of the
model, encoded by a grammar. The models derived from the grammar are hier-
archical: the position of a part is dependent on the position of its `parent' object
and the applied production rule. Unfortunately, the structure of certain objects
cannot be organized in a purely hierarchical manner. In the case of facades, win-
dows are aligned horizontally within �oors and vertically between di�erent �oors.
Additionally, windows in the same �oor cannot overlap. A tree-shaped hierarchy,
where the position of each window depends only on the bounding box of the �oor,
without interactions between individual windows, would fail to model these spatial
interactions.
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We were also inspired by the context-sensitive graph grammar parser by Rek-
ers and Schurr [46]. Given a grammar de�ned on graphs, where production rules
substitute graph nodes with subgraphs, and given an input graph, the parser can
determine the sequence of graph grammar productions used to derive this input
graph, or decide that the graph has not been generated from the grammar. The
limitation of the parser is that it cannot handle faults in graph structure, like missing
or extra edges or nodes, and that it does not handle uncertainty, for example nodes
and edges hypothesized with some probability. In computer vision applications, we
expect graphs that would be constructed from primitives and objects detected in
an image to feature missing nodes and a lot of false positive nodes. Due to the
computational complexity, the practical applications of the parser have been shown
to be constrained to graphs of about 30 nodes [61, 15].

3.1.2 Our approach

We propose to represent a shape prior by means of a graph grammar and potentials
associated to arcs and nodes of graphs generated from a grammar. We propose to
represent a facade segmentation in terms of a graph of facade parts and their po-
sitions. Finally, we propose a method for �nding the optimal segmentations within
the framework, where the inference of the structure of the model is separated from
the inference of positions of parts for a given �xed structure. The bene�t of this
approach is that the less reliable randomized or greedy optimization algorithm is
limited to structure inference, while a more e�ective technique is applied for opti-
mizing positions of the parts. We also introduce a novel energy fusion scheme for
combining object detections with texture classi�cation. We evaluate experimentally
the in�uence of each of the contributions on parsing performance.

We assume a factor graph-based model of a structure of a single facade. Models
of this type have proven e�ective in applications like pedestrian detection and pose
tracking [13, 11, 30, 71]. A factor graph is a bipartite graph with two types of
nodes. The `variable nodes' correspond to geometric primitives. The `factor nodes'
can correspond to constraints on the composition of the primitives, or to parts
(basic objects) de�ned by a number of geometric primitives. An example factor
graph is presented in section 3.2. We create a model of a facade encoding both the
structure and positions of parts by transforming the factor graph into a graphical
model: variable nodes are assigned variables de�ning positions of the geometric
primitives in space. The factors are assigned potentials. Some of the potentials
penalize violation of the constraints. Others evaluate hypotheses of the positions of
parts against image cues. The potentials are de�ned in �gure 3.2. The minimum
energy labeling of the graphical model corresponds to positions of parts that best
agree with image cues. The minimum energy is a measure of �tness of the graph to
the image. We optimize over the positions of the parts with a state-of-the-art solver
for calculating most likely con�gurations of graphical models.

For modeling variation of model structure, we propose a particular type of a
Neighborhood Controlled Embedding (NCE) graph grammar. In other words, we
use a grammar to represent a set of graphs, each corresponding to a di�erent facade
structure. The graph grammar paradigm is presented in section 3.3. An overview of
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Figure 3.1: A diagram of our parsing algorithm (left). Results of facade parsing using our approach
(right). The green snaplines separate the sky, roof, wall and shop classes. The cyan lines mark
borders of running and single-window balconies.

the proposed inference algorithm is presented in �gure 3.1. A single graph derived
from the grammar can be encoded by its derivation tree. The exploration of the
`structural space' of derivation trees is performed by a sampling procedure. Given
a current graph, our algorithm generates a new candidate graph by perturbing the
sequence of grammar productions used to generate the former one. The perturbation
consists in randomly re-generating a subtree of the derivation tree. This way both
local and global structure changes are possible in a single step, depending on the
choice of the root of the regenerated subtree. A local move is obtained by selecting a
node close to the leaves of a parse tree, and a global move results from re-generating
a deep subtree rooted close to the root of a parse tree. The candidate structure is
accepted if the minimum energy of the corresponding graphical model is lower than
the one of the current graph. The optimization procedure is detailed in section 3.6.

3.1.3 Contribution

The main novelties of the proposed method include:
1. the modeling framework where inference over part positions and inference of

model structure are separated,
2. the application of a graph grammar to modeling variation of model structure

and a method of exploring the structure space,
3. a late fusion scheme for combining texture classi�cation and object detections.
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Table 3.1: The most frequently used symbols in this chapter

G a factor graph; de�ned on page 32
V the set of variable-type vertexes of a factor graph; p. 32
F the set of factors of a factor graph; p. 32
F o the set of factors F o ⊂ F representing objects; p. 32
F c the subset of factors F c ⊂ F , representing constraints (on relative

position and size of facade elements); p. 32
E the set of edges of a factor graph; p. 32
λv a function assigning a label to each variable-type vertex in a factor

graph; p. 32
λf a function assigning a label to each factor in a factor graph; p. 32
Lv the set of labels of variable-type vertexes of a factor graph; p. 32
Lf the set of labels of factor-type vertexes of a factor graph; p. 32
T the set of object classes; p. 32
G a graph grammar; p. 33
S a starting graph of a graph grammar, by convention it consists of a

single node; p. 33
LT a set of terminal variable node labels in a graph grammar; p. 33
LN a set of nonterminal variable node labels in a graph grammar; p. 33
Le a set of factor labels in a graph grammar; p. 33
P a set of graph grammar productions; p. 33
D a daughter graph in a graph grammar production; p. 33
C a set of connection instructions in a graph grammar production; p. 33
nt,ρ the number of times production ρ has been applied to graph node t in

the training data; p. 39
Nt,ρ the augmented count of times production ρ has been applied to graph

node t in the training data; this number is always nonzero; p. 39
x the vector of positions of all geometric primitives in the graph; p. 40
z the vector resulting from concatenation of discrete variables encod-

ing types of productions applied to generate a given graph; it is a
parametrization of the graph structure; p. 43

E(x, z) total energy of a segmentation; p. 43
Estruct(z) the energy corresponding to the structure of the graph; p. 37
Epos

z (x) the energy component corresponding to the positions of facade ele-
ments for a given structure; p. 40

φof (xf ) the potential assigned to factor f ∈ F o and evaluating the position xf
of the facade element corresponding to f ; p. 40

φcf (xf ) the potential assigned to factor f ∈ F c and evaluating satisfaction
of constraints by a relative position of a number of facade elements,
encoded by xf ; p. 40

Et(xf , lf ) the texture-related energy component; p. 40
Ed(xf , lf ) the detection-related energy component; p. 40
Epix(Ip, lf ) the energy corresponding to labeling pixel Ip with the label lf ; p. 40
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Figure 3.2: A simpli�ed facade model and its interpretation. The gray disks are variable nodes,
the rectangles represent factors: the black ones model constraints and the red ones represent
parts of the model (for readability, the labels for individual window factors have been substituted
with a single label `Windows'). The dashed lines in the image represent the splitlines (green) and
the snaplines (cyan) encoded by variable nodes.

3.2 Facade model with �xed structure

We model parts of a facade and their spatial relations as a factor graph. A labeled
factor graph G = (V, F, E , λv, λf ,Lv,Lf) consists of a set of variable nodes V , a set
of factor nodes F , a set of directed edges E ⊂ (V × F ) ∪ (F × V ) and functions
λv : V → Lv, and λf : F → Lf , assigning labels lv ∈ Lv, and lf ∈ Lf to the nodes
and factors.

Each variable node v ∈ V is a variable xv encoding the position of a geometric
primitive. The set of factors F = F o∪F c, where F c and F o are the sets of constraint-
and object-type factors, and F c ∩ F o = ∅. A constraint on a relative position of a
pair of primitives is expressed by a constraint factor f c ∈ F c, connected to the pair
of corresponding variable nodes. A part of the model, de�ned by several geometric
primitives, is represented by an object factor f o ∈ F o, connected to the variable
nodes encoding positions of the primitives. Labels assigned to object factors λf(f o)
correspond to classes of objects that can be represented by the factors. The set of
object classes T ⊂ Lf consists of the labels of object factors and can be de�ned as
T = {λf(f o)|f o ∈ F o}.

Our approach, applied to facade modeling, is illustrated in �gure 3.2. To easily
accommodate alignment, non-overlap and adjacency of facade elements, we assume
a line-based model. The variable nodes encode positions of splitlines and snaplines
(nodes �oor and column represent pairs of lines). The factor nodes correspond to
objects (the set of object classes T = {sky , roof ,wall ,window}) and constraints
(above and left). The sky and wall factors are attached to a single splitline each
because they extend from the splitline to image boundary.
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ρ : lv → (D, C)

C = {(le1, l′e1, n1),
(le2, l

′
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Figure 3.3: Application of a graph grammar production ρ : lv → (D, C) to a graph G results in
a graph G′, in which a node v, labeled lv, is substituted with a subgraph isomorphic to D. The
subgraph is connected to the graph G\{v}, resulting from removing the node v from G, according
to the connection instructions C.

3.3 Modeling structure variation with graph gram-

mars

Our algorithm generates models of the type presented in section 3.2 using a graph
grammar. We use the Neighborhood Controlled Embedding grammars of graphs
with edge labels (edNCE grammars). Below we review the mechanism brie�y. For
detailed explanation, the reader is referred to the handbook by Rozenberg et al. [49],
and to the work of Klempien-Hinrichs [23] for the hypergraph case. For consistency
with section 3.2, we present the paradigm for factor graphs, i.e., we treat factors the
way (hyper-) edges are treated in the literature.

A grammar G = (S,LT ,LN ,Le,P) consists of a starting factor graph S, sets of
terminal and nonterminal variable node labels LT and LN , a set of factor labels Le

and a set of productions P . The starting graph S consists of a single nonterminal
node. Productions are of the form ρ : lv → (D, C), where lv is a nonterminal node
label, called `mother node label', D is a labeled graph, called `daughter graph', and
C is a set of connection instructions. The production can be applied to a node v of a
graph G if λv(v) = lv, where λv(v) is the label of node v. The process is illustrated
conceptually in �gure 3.3 and presented more formally in algorithm 1. First, a new
graph D′, isomorphic to D, is created and inserted into G as a disjoint subgraph.
Then, the nodes of D′ are connected to neighbors of v in G through factors created
according to connection instructions C. We use connection instructions of the form
(le, l

′
e, n), where le and l′e are factor labels, and n identi�es a node in D. For each

(le, l
′
e, n) ∈ C, each factor connected to v and labeled le is copied into G. The copy is

disconnected from v, reconnected to the node in D′ identi�ed by n, and relabeled to
l′e. Finally, node v is removed from G together with all its factors. An example graph
grammar is presented in �gure 3.4, and examples of the application of a production
rule are shown in �gure 3.5.

3.3.1 Deriving graphs from a grammar

A derivation develops a graph G by repeatedly applying productions to nontermi-
nals in the graph. The process starts with the single node of the starting graph
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Algorithm 1 Given a host graph G = (V, F, E , λv, λf ,Lv,Lf), apply production ρ :
lv → (D, C) to node v ∈ V , where D = (VD, FD, ED, λvD, λfD,Lv,Lf). For notational
convenience we assume the sets V and VD, and F and FD, are pairwise disjoint.

Require: λv(v) = lv
procedure ApplyProduction(G,v,ρ)

. Insert D to G as a disjoint subgraph
V ← V ∪ VD
F ← F ∪ FD
E ← E ∪ ED
λv ← λv ∪ λvD
λf ← λf ∪ λfD

. Connect D to G \ v using connection instructions
for all f ∈ F s.t. ((f, v) ∈ E) ∨ ((v, f) ∈ E) do

for all (l, l′, n) ∈ C s.t. λf(f) = l do
. Copy factor f and relabel the copy to l′

F ← F ∪ {f ′} . create a new factor f ′

λf(f ′)← l′

E ← E ∪ {(f ′, v′)|((f, v′) ∈ E) ∧ (v′ 6= v)}
E ← E ∪ {(v′, f ′)|((v′, f) ∈ E) ∧ (v′ 6= v)}
if ((f, v) ∈ E) then
E ← E ∪ {(f ′, n)}

else
E ← E ∪ {(n, f ′)}

end if
end for

. Remove factor f from the graph
E ← E \ {(v′, f)|v′ ∈ V }
E ← E \ {(f, v′)|v′ ∈ V }
F ← F \ {f}

end for
. Remove node v from the graph

V ← V \ {v}
end procedure
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(window,2)
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Figure 3.4: A toy edNCE grammar. Each row represents a single production. The node labeled S
is a starting node of the grammar. The numbers assigned to nodes of the daughter graphs are used
by the connection instructions (le, n), which say that an edge labeled le should be reconnected to
a node n in the daughter graph of the production. In the presented grammar productions, we do
not relabel edges, thus the short notation for connection instructions: (le, n) instead of (le, l

′
e, n).

The outlined disks represent nonterminal nodes; the other disks correspond to terminals, i.e., they
cannot be rewritten. See caption of �gure 3.2 for the interpretation of remaining symbols.
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Figure 3.5: An application of the grammar presented in �gure 3.4 to derive a graph. Each row
presents the application of a single production. A dashed arrow connects a nonterminal node with
a subgraph that replaces it.

36



G = S. Then, productions are applied recursively to nonterminal nodes in G, until
it contains no more nodes with nonterminal labels. A sequence of production ap-
plications can be arranged into a derivation tree, in which each node corresponds
to an application of a grammar production to a particular nonterminal node of the
graph G. Therefore, each node of a derivation tree represents a pair of a node of
graph G, and a production applied to it. In particular, the root corresponds to the
nonterminal node constituting the starting graph S, and the production applied to
it. An edge from a parent to a child node in a derivation tree means that the child
represents a node of graph G inserted by the production encoded by the parent. An
example derivation from the graph grammar presented in �gure 3.4 is visualized in
�gure 3.5 and the corresponding derivation tree is shown in �gure 3.6.

3.3.2 Energy of a derivation

We denote the derivation tree by T and its nodes by t. The production associated to
node t is denoted ρt. To identify a graph derived from the grammar, we denote a vec-
tor resulting from concatenating discrete variables encoding all the productions ρt,
used to derive the graph, by z and de�ne the energy of the derivation tree Estruct(z)
as the sum of energies of individual production applications. We emphasize that in
assigning energies to individual production applications, we treat di�erently produc-
tions applied to di�erent nonterminal nodes with the same label. This matters, for
example, when the grammar contains a recursion that inserts a sequence of nodes.
Depending on the likely number of elements in the sequence, the penalty for termi-
nating the recursion will depend on the depth of the recursion, even though each
time the recursive production is applied to a node with the same label. In the facade
modeling example from �gure 3.4, we have a recursive production ρ3, which inserts
nodes of class column, and production ρ4, which terminates the recursion. Both of
these productions can be applied to a node of nonterminal class columns . However,
the preference for one of the productions over the other may depend on the number
of column nodes already inserted. For example, the two columns nodes in �gure 3.5
have di�erent interpretation: the �rst node corresponds to the �rst window column,
the second node to the second column. In an extreme case, if all the buildings in our
dataset had two window columns, we would almost always apply ρ3 to the �rst node
and almost always select ρ4 to develop the second node, even though they have the
same label. A node t of the derivation tree unambiguously identi�es the substituted
nonterminal node. We therefore de�ne the energy of a derivation in terms of the
derivation tree

Estruct(z) =
∑
t∈T

− log pt(ρt) , (3.1)

where pt(ρt) is the likelihood of choosing production ρt out of all alternatives ap-
plicable to the nonterminal node identi�ed by t. The likelihoods can be estimated
from ground truth parse trees associated to training data.

The data structure used for estimating and storing the likelihoods pt is called an
And-Or Tree (AOT). We brie�y describe the structure here. The reader is referred
to [73] for a more detailed explanation. The tree consists of two types of nodes, the
`or' nodes, which in our case correspond to nonterminal nodes of the derived graph,
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Figure 3.6: A derivation tree, re�ecting the interdependence of production applications presented
in �gure 3.5. Each node corresponds to application of a production, represented by a pair (ρ, n),
where ρ is the production name and n is the index of the substituted node, as de�ned in the parent
production (see �gure 3.4).
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Figure 3.7: An And-Or Tree corresponding to the grammar presented in �gure 3.4. The gray,
circumscribed circles correspond to `or' nodes, representing nonterminal nodes of the derived graph.
The name `or node' emphasizes the fact that each nonterminal can be substituted using one of
possibly many graph grammar productions. The numbers inside the `or' nodes are their indexes
de�ned in the productions that inserted them (see �gure 3.4). Each black circle corresponds to
an `and' node, representing a possible production application. The depicted tree represents all
possible derivation that represent facades with at most three �oors and two columns. However,
the grammar enables arbitrarily large numbers of �oors and columns. See the section 3.3.2 for
the details on how the energies associated to alternative productions are evaluated if some of the
alternatives are not represented in the AOT.
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and the `and' nodes, corresponding to production applications. Edges are enabled
only between nodes of di�erent types. A parent-child edge from an `or' node to an
`and' node means that the graph node represented by the `or' node of the AOT can
be substituted by a production represented by the `and' node. A link from an `and'
parent to a an `or' child means that the production corresponding to the `and' node
inserts into the graph a nonterminal node represented by the `or' node of the AOT.
An example AOT is presented in �gure �gure 3.7.

Note, that each of the `or' nodes represents a particular node that can appear
in some derivations and not in some others. Therefore, an `and' node represents an
application of a production to a particular node, and not the production itself. A
derivation tree can be obtained by selecting a single child of each `or' node of an
AOT and removing the subtrees rooted at the remaining children. In this sense, an
AOT is a shared representation of a number of derivation trees.

We attribute to each `and' node the number of the training examples that con-
tain the corresponding production application. We use the frequentist approach to
estimate the probabilities pt(ρt). We make the estimation more robust to cases not
seen in the training set by adding a small number ε to the observed numbers of
production applications. We denote the number of times a production ρt has been
applied to the node identi�ed by t in the training set by nt,ρt , we de�ne

Nt,ρt = nt,ρt + ε . (3.2)

By P(t) we denote the set of productions that can be applied to the node identi�ed
by t. The probability of applying a particular production ρt to a particular node t
becomes

pt(ρt) =
Nt,ρt∑

ρ∈P(t) Nt,ρ

. (3.3)

During training, the And-Or Tree is created progressively. First the root `or' node
is inserted corresponding to the single-node starting graph. Then, each ground
truth parse tree is used to update the tree. A parse tree is traversed from root
to leaves. Each node of the parse tree corresponds to a production application
and, equivalently, to an `and' node in the AOT. If the corresponding node in the
AOT exists, the corresponding count nt,ρt is incremented. If it does not exist, it
is created with a count equal to one. In consequence, the AOT that we construct
does not contain all the possible production applications. Otherwise, for grammars
with recursion, this would mean an in�nite tree depth. However, during inference,
the algorithm can create graphs that it has not seen during training, due to the
robust estimation of pt(ρt), assigning a small probability to unseen con�gurations.
If a branch of the derivation tree, that is not represented in the AOT, is constructed
during inference, all candidate productions ρ ∈ P(t) applicable to a given node t get
the count Nt,ρ = ε. Therefore, they are equally probable according to (3.3), which
re�ects the lack of prior knowledge on their likelihood.

3.4 Fitness energy

A factor graph derived from a grammar de�nes the number and type of objects
present in the scene and the relations between them. The precise positions of the
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objects and geometric primitives are de�ned by variables xv associated with the
nodes of the model. We denote a concatenation of all the parameters xv by x. In
order to evaluate how well the model explains the input image I, we de�ne an energy
function Epos(x), evaluating positions of the parts.

The energy is de�ned as a sum of potentials assigned to the factors of the graph,
forming a graphical model. To each factor f we assign a potential φf (xf ) de�ned in
terms of a vector of variables xf = (xv)(v,f)∈E∨(f,v)∈E corresponding to neighboring
nodes. Di�erent types of factors are assigned di�erent potentials. Constraint-type
factors f ∈ F c receive potentials φcf that penalize violation of prede�ned constraints
on relative position of geometric primitives. Each object-type factor f ∈ F o receives
a potential φof evaluating an object hypothesis. The class of the hypothesized object
is encoded by the label of the factor λf(f) and its position is de�ned by a bounding
box, which consists of the geometric primitives represented by the nodes to which
the factor is connected. For example, in the model in �gure 3.2, a window factor
evaluates a hypothesis de�ned by a column and a �oor node, each of which encodes a
pair of snaplines. The position component of energy is the sum of all these potentials:

Epos(x) =
∑
f∈F o

φof (xf ) +
∑
f∈F c

φcf (xf ) . (3.4)

3.4.1 Object-type potentials

We use two kinds of bottom-up cues for measuring the �tness of the model to an
input image: texture classi�cation and object detections. Texture classi�cation is
given in the form of an energy value Epix (Ip, τ) for each point p belonging to image I
and a �xed-size image patch Ip, centered at p, and for each class of parts τ ∈ T . The
energy Epix (Ip, τ) measures the log-likelihood of observing a patch Ip if the pixel
represents an object of class τ . Texture classi�cation is available for each class of the
parts. However, detections might be available for a subset of the classes T det ⊂ T
only. They have the form of bounding boxes yi with weights wi, representing the
con�dence of the detections. Recall that a class of an object represented by a factor
f is encoded in its label lf . Object factors are expressed in terms of texture and
detection-based energies Et and Ed as:

φof (xf ) =

{
αtEt(xf , lf ) + αdEd(xf , lf ) if lf ∈ T det

Et(xf , lf ) otherwise,
(3.5)

where αt and αd are constant coe�cients. We call the above scheme `late fusion',
because it uses detections directly in the energy formulation, contrary to the `early
fusion' scheme [59, 44, 47, 33], where detections are projected down to pixel level
and energy is evaluated on individual pixels only (note that the scheme presented in
appendix A.1.1 is also an instance of early fusion). In the latter scheme, an energy
assigned to each pixel is a function of the sum of con�dence scores of all detec-
tions that overlap the pixel. Usually detectors return a large number of overlapping
candidate bounding boxes. In this case early fusion results in `blurring' object
boundaries in the optimal segmentations. The e�ect is presented in �gure 3.8. On
the other hand, if aggressive non-maximum suppression is used, useful information
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Figure 3.8: The advantage of late fusion against early fusion. Left : two detections, a true positive
and an inaccurate detection (red boxes), a common result of object detection. Middle: a con�dence
map produced by early fusion and possible optimal object hypotheses, depending on parameters
(green boxes). Note that none of the hypotheses corresponds to the ground truth bounding box,
even though one of the detections matched it perfectly. We call this e�ect `blurring' of object
hypotheses. Right : possible optimal object hypotheses for late fusion and our detection-based
potentials. One of the hypotheses corresponds to the ground truth bounding box.

may be lost. Non-maximum suppression retains a detection if there are no stronger
detections within a neighborhood of a given size, and discards it otherwise. Such
operation is local and does not take into account the long-distance alignments, im-
portant in man made objects. It can yield misaligned detections, even if aligned
candidate bounding boxes exist, if there are stronger noisy detections within their
neighborhoods. The proposed late fusion scheme, together with the detection-based
potential presented below, prevents blurring object boundaries and enables taking
advantage of the full set of detection candidates. An experimental comparison of
the late and the early fusion is presented in section 3.7.

Estimating the coe�cients αt and αd requires knowledge of the true model struc-
tures and part positions for images of the training set, and can be formulated as
max-margin Markov Random Field training (see, e.g., [25]).

Detection-based Potentials. We need the energy function to be robust to miss-
ing detections and false positives, and thus to rank object hypotheses based on
bounding boxes of individual detections to avoid the e�ects presented in �gure 3.8.
Given a function d(xf , yi), evaluating a distance between an object bounding box
de�ned by vector xf and a detection yi of weight wi, the detection-based po-
tential is expressed by the distance to the `best' detection in its neighborhood,
mini(d(xf , yi) − βwwi), for some constant βw, or by a constant penalty βd if there
are no nearby detections. A possible interpretation of βd is the distance after which
the detection does not in�uence the potential. The term βwwi increases the radius of
in�uence of detections depending on weights wi. More formally, the detection-based
potentials take the form:

Ed(xf , lf ) = min{ min
i∈Det(lf )

(d(xf , yi)− βwwi), βd} , (3.6)

where Det(lf ) is a set of indexes of detections of class lf . We let the potentials take
negative values for good object hypotheses, so that when comparing models with
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Figure 3.9: The interpretation of the detection-based potential. A detection is shown as a red
rectangle, the evaluated hypothesis is shown as green dashed rectangle. The detection energy
is shown below as a function of the position of one side of the hypothesis, with the other three
sides �xed and aligned with the detection. We abuse the notation by using d−1() to denote xv, the
coordinate of the misaligned side of the hypothesis bounding box with respect to the corresponding
side of the detection.

two di�erent structures the model with missing hypotheses gets a higher energy. The
interpretation of the distance function is illustrated in �gure 3.9. In our experiments
we use the squared Euclidean distance as distance function d. We currently adjust
the parameters βw and βd manually.

Texture-based Potentials. We de�ne the texture-based energies Et as in [60].
For a factor f the energy is evaluated over the corresponding rectangular region in
the image, denoted B(xf ):

Et(xf , lf ) =
∑

p∈B(xf )

Epix(Ip, lf ) . (3.7)

where lf is the factor label, encoding its class.
Objects positioned on the background of other objects, like windows on a wall

in �gure 3.2, are treated specially. We denote the set classes of such objects as
T fg ⊂ T . We denote the class of the background object associated with factor label
lf ∈ T fg as cbg(lf ). For each label lf ∈ T fg, cbg(lf ) is de�ned uniquely, for example,
the attic windows (placed over the background of the roof) are represented by a
di�erent class than the facade windows (on wall background). The potential of the
background object is evaluated over its whole bounding box (including the regions

42



of the foreground object) and the potential of the foreground object becomes:

Et(xf , lf ) =
∑

p∈B(xf )

Epix(Ip, lf )− Epix(Ip, c
bg(lf )) , (3.8)

so that the sums of background potentials over the foreground region cancel out
when the potentials are added together.

3.4.2 Composition potentials

In general, the potentials φc that express priors on composition of parts can take
arbitrary forms. We use the potentials to enforce a set of prede�ned constraints
gf (xf ), by penalizing values of vector xf that violate the constraints:

φcf (xf ) =

{
0 if gf (xf ) = true ,

∞ otherwise .
(3.9)

The particular types of constraints that we use in our experiments are presented in
section 3.7.

3.5 Total energy

The total energy of a model is a combination of the derivation energy, evaluating
the structure of the model, and the �tness energy, evaluating the positions of parts:

E(x, z) = αstructEstruct(z) + αposEpos
z (x) , (3.10)

where x denotes the vector of positions of all geometric primitives and z denotes
the vector resulting from concatenation of discrete variables encoding the types of
applied productions. We denote the position energy Epos

z with the subscript z to
emphasize that it is de�ned for a given structure.

Given a set of true and perturbed facade structures zi for ground truth images,
we can determine optimal positions x̂i for each of the structures and use the optimal
energy values Estruct(zi) and Epos

zi
(x̂i) for estimating the coe�cients αstruct and αpos

by max-margin training.

3.6 Optimization

The key to our approach is to employ di�erent methods for minimizing the energy
over the spaces of possible structures z and part positions x. Optimization over
the structure is inherently an ill-posed problem and requires a randomized [59, 52]
or greedy [18, 60] exploration strategy. On the other hand, although inferring the
optimal x for a given factor graph is known to be NP-hard, there exists a number
of approaches experimentally proven to perform well in this task (for example [24,
26, 57]). Therefore, we propose to limit the application of the algorithm proposed
by Teboul et al. [60] to structure exploration and use a state-of-the-art solver [24]
to optimize over x for a �xed z.
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Given a derivation tree zj, the algorithm of [60] generates a candidate tree zcand,
and sets

zj+1 ←

{
zcand if minxE(x, zcand) < minxE(x, zj) ,

zj otherwise.
(3.11)

This greedy technique di�ers from a Metropolis-Hastings random walk (see, e.g.,
[8]) in that it never accepts a candidate of lower energy. To generate zj+1 given zj,
we randomly select a production application in the derivation tree and resample the
subtree rooted at the selected production application. This enables both global and
local changes to the structure, e.g., altering the number of columns without changing
the number of �oors. With general edNCE graph grammars, the derived graph can
depend on the order in which disjoint subtrees of the derivation tree are developed.
A grammar for which the yielded graph does not depend on the order of applying
productions is called `con�uent'. We limit the scope of applications of the algorithm
to con�uent grammars, in order to avoid the dependence on the order of derivations
when resampling a graph from a grammar. We consider that the grammars that
are interesting from the point of view of facade modeling possess this property. In
particular, the grammars used in our experiments are con�uent.

Optimization over positions of the parts x is performed by means of the TRW-S
algorithm [24]. It solves the dual to a linear relaxation of the problem of �nding
the minimum energy con�guration of an undirected graphical model. We exploit the
fact that the dual objective is a lower bound on minimum primal energy by stopping
the optimization as soon as it exceeds the value of the best energy attained so far.

3.7 Experiments

We evaluate our algorithm in the task of parsing recti�ed photographs of building
facades. In a number of experiments, we prove the advantage of separating the
structure inference from the inference of positions of parts, compare the performance
of our algorithm to that of a state-of-the-art parser, and compare the performance of
late and early fusion. In the experiments, we use a Haussmannian facade grammar
described in the following subsection.

3.7.1 The grammar of Hausmannian facades

The grammar we use for encoding the structure of Haussmannian facades is pre-
sented in �gure 3.10. It encodes three di�erent variations of window layout: i) there
are no attic windows, ii) the attic windows are aligned with the windows on the
facade, iii) the attic windows are not aligned with the windows on the facade. It
models an unknown number of �oors and window columns in the facade and the
attic. The grammar is con�uent and enables `local' derivation of di�erent parts of
the graph. In particular, the number of �oors, the number of columns and the type
of attic are selected independently. This enables local changes to the structure of
the graph during optimization.

An example model of a Haussmannian facade, generated from our grammar, is
presented in �gure 3.11. Each model generated from the grammar contains a variable
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flfloors columns

column

Figure 3.10: The grammar of Haussmannian facades. S is the start symbol of the grammar.
Productions ρ1, ρ2 and ρ3 express di�erent patterns of attic window alignment. Productions ρ4,
ρ5, ρ6 and ρ7 recursively encode a variable number of �oors with two possible types of balconies: a
running balcony and a balcony limited to a single window. Productions ρ8 and ρ9 encode a variable
number of window columns. Factors labeled w can be interpreted as `general' windows � they are
specialized to window or wind_balc factors by productions ρ6 and ρ7. Connection instructions
that do not relabel edges are presented in the short form (le, n). See the captions of �gure 3.2 and
3.4 for an explanation of graphical symbols.

node encoding the position of each of the following geometric primitives: a sky-roof
line (xsr), a roof-wall line (xrw) and a wall-shop line (xws). Additionally, the models
contain a certain number of �oor nodes encoding the positions of the window top,
window bottom and balcony top snaplines (xt, xb, xtb), and column nodes encoding
the positions of the window left and window right snaplines (xl, xr). Parts of the
facade are encoded as object factors, de�ned in terms of the geometric primitives.
For example, a window factor encodes a window on a �oor with a running balcony
and a wind_balc factor encodes a window with a small balcony limited to the window
cavity.

The constraints for the relative positions of the geometric primitives are ex-
pressed by potentials of constraint-type factors (Equation 3.9). They are summa-
rized in table 3.2. The constants in these architectural constraints represent ranges
for relative sizes of basic parts. The potentials penalize segmentations which clearly
violate our model of a `valid' facade. For instance, the constraint on the maximum
gap between two consecutive �oors prevents having a �oor missing due to an unusual
appearance or occlusions. The method is insensitive to moderate changes of the val-
ues. We set them manually on the basis of relative sizes of ground truth objects in
the training images, although they could easily have been estimated automatically.
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Figure 3.11: A facade segmentation and a graph representing its structure. See the captions of
�gure 3.2 and 3.4 for an explanation of graphical symbols.

3.7.2 Experimental settings

We run a Matlab implementation of the algorithm, with an external implementa-
tion of TRW-S solver by Kolmogorov [24], written in C, on an o�ce computer (Intel
Core i7 processor, 2.66 GHz). To keep the running time reasonable, we only consider
a subset of the possible positions for splitlines and snaplines: we consider positions
distributed evenly every four pixels along both dimensions when the detections are
not used, and in experiments where detections are used we use the sides of their
bounding boxes as candidate window split- and snapline positions. In our experi-
ments, the average running time of the optimization algorithm was 3.5 minutes per
image.

In each experiment we apply the same train-test scheme as in [33], with 80
training images and 20 testing images, and repeat the validation 5 times. We use
the ECP dataset [59], containing 104 recti�ed images of Haussmannian facades. The
original annotations provided with the dataset tend to be inaccurate, as they were
generated from the grammar used in the paper (personal communication with the
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Table 3.2: Constraints assigned to the constraint factors. Factors are de�ned by the labels of nodes

to which they are connected and their own edge labels: node_label1
factor_label
−−−−−−−−→ node_label2 . See

the text in section 3.7.1 for an explanation of the variable names.

Factor type Constraints

sky-roof
above−−−→�oor xsr≤xt

�oor
above−−−→ roof-wall xt≤xrw

roof-wall above−−−→�oor
xt − xrw≤ 0.7 (xb − xt)
xt − xrw≥ 0

�oor above−−−→�oor '
(x′b − x′t)≤ 1.4 (xb − xt)
(xb − xt)≤ 1.4 (x′b − x′t)
(x′t − xb)≥ 0.1 (x′b − x′t)

�oor above−−−→wall-shop
(xws − xb)≤ 0.5 (xb − xt)

xws≥xb

column left−−→ column'

(x′r − x′l)≤ 1.4 (xr − xl)
(xr − xl)≤ 1.4 (x′r − x′l)
(x′l − xr)≤ 6.0 (xr − xl)
(x′l − xr)≥ 0.5 (xr − xl)

authors). For example, in the annotations, attic windows are always aligned with
the windows on the facade. But in fact the attic windows and facade windows in
the images can be misaligned, due to architectural variations, or because both kinds
of windows happen to be in di�erent planes and the images are recti�ed. Similarly,
in the annotations, the balconies either run along whole width of a �oor or they are
aligned with boundaries of a single window, whereas balconies visible in the images
can be wider than an individual window, but not necessarily run through the whole
width of a facade. Other annotations were prepared for the same images by the
authors of [33]. They are more accurate, but do not respect structural constraints.
For example, the windows in the same �oor are not necessarily aligned, balconies can
be misaligned with the corresponding windows, and pieces of doors can be �oating
above the ground. In the experiments presented in this section we use both ground
truths, and the choice of a ground truth for each comparison is determined by the
goal of the experiment.

3.7.3 Separate structure and position inference

To demonstrate the advantage of separating structure and position inference, we
compare our algorithm against the method proposed by Teboul et al. [59, 58]. The
comparison is made on the dataset presented with their paper and against their
ground truth. The grammar presented in the paper models only limited variations
of the facade structure: windows are arranged in a grid pattern, with roof and facade
windows necessarily aligned. The structural variation is limited to the number of
�oors and columns, and to the choice of one of two types of balconies in each �oor.
For a fair comparison with this work, we introduce the same constraints to our
grammar. The algorithm of [59] is based on texture classi�cation only, so in one
of the experiments we restrict our energy to texture-related terms. To de�ne the
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potentials, we use a random forest classi�er [7] for texture classi�cation, trained as
in [60]. We also perform an experiment with the detection term, where windows are
detected with the Viola-Jones classi�er [62]. We use squared Euclidean distance as
the distance function d(·) in the detection-based potentials de�ned in equation (3.6).
By experimenting with several values, we set βd = 16 and βw = 48. According to
(3.6), this means that poor detections with weights wi ≈ 0 would have a radius of
in�uence equal to 4 pixels in the four-dimensional space of bounding boxes and the
best detections with wi ≈ 1 in�uence the potential up to a distance of 8 pixels.

We run both methods using exactly the same per-pixel potentials. The algo-
rithms are run for 5 minutes per image. The algorithm of Teboul et al. is re-run 10
times (instead of 5 times as reported in [58]) for 30 seconds and the best result is
kept. The results are reported in table 3.3. As shown in the table, for 'easy' objects
like shop, sky and wall, the position of which is determined by just a pair of split-
lines, the performance is similar. The advantage of the more reliable optimization
algorithm shows for the classes with a higher number of interactions, like windows
and balconies. When using detections the accuracy increases even more, especially
for the roof and balcony classes. The increase for the roof is related to the fact
that the presence of roof windows enforces their background to be labeled as roof.
Without the detections roof is often mistaken for sky. The position of balconies is
tied to windows, and their detections improve accuracy for balconies as well.

Table 3.3: Comparison of results of the proposed parsing algorithm to the results of split grammar
parsing proposed by Teboul et al. [59]. Rows of the matrix contain class-speci�c accuracies, i.e., the
diagonal entries of confusion matrices. The �rst column presents results of split grammar parsing
[59] with per pixel potentials obtained using a random forest classi�er. The second column contains
results of our graph grammar parsing, with the same potentials, that is, without detections (GG*).
The third column contains results of the proposed algorithm, using the same per-pixel potentials
as well as window detections (GG). As we do not model doors in our grammar, the door class has
been merged with `shop', to form a single `shop/door' class.

[59] GG* GG
roof 64 60 69
shop/door 98 98 98
balcony 58 66 73
sky 87 91 91
window 65 75 74
wall 83 86 88
total accuracy 78.9 82.6 84.9

3.7.4 Late vs. early fusion

We also compare the performance of early and late fusion for combining window
detection and texture classi�cation. We assume a general early fusion scheme where
a new energy term is de�ned for each pixel. It is a convex combination of the
per-pixel texture and detection energies: E ′t = Epix(Ip|c) + Edet(wp|c). The per-
pixel detection-based energy Edet depends on wp, the cumulated weight of window
detections overlapping pixel p. We set Edet(wp|c) = − log p(wp|c) and estimate the
probabilities from the training data. We use the same detections and per-pixel
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potentials as in comparison with split grammars in section 3.7.3. We use the full
Haussmannian grammar, presented in section 3.7.1 and evaluate the result against
the ground truth of Martinovi¢ et al. [33]. As presented in the last segment of
table 3.4, parsing results for window and balcony are notably better with late fusion.

Table 3.4: Performance of our parsing algorithm with early fusion (left) and late fusion (right)
potentials. Random forest-based texture classi�cation was used to estimate the per-pixel potentials.
We run the experiment using the full Haussmannian grammar, and evaluate results with respect
to the ground truth produced by Martinovi¢ et al. [33]. The di�erent grammar and ground truth
result in di�erent accuracies when compared to table 3.3.

early fusion late fusion
roof 79 80
shop/door 85 85
balcony 47 67
sky 91 91
window 66 71
wall 87 87
total accur. 78.0 81.1

3.7.5 Performance in facade parsing

To estimate the performance in facade parsing we evaluate our algorithm on the
image dataset of Teboul et al. [59] against the ground truth proposed by Martinovi¢
et al. in [33] and compare our results to those of the three-layered parsing algorithm
proposed by Martinovi¢ et al. [33]. The competing algorithm combines the results
of a Recursive Neural Network (RNN), yielding classi�cation of each pixel of the
image, with window and door detections. We run our algorithm on the same RNN
results as the authors of the competing method [33], both without detections and
with window detections. Again, the detections are the same as the ones used to
evaluate the three-layered method [33], but our method uses them in a di�erent
manner. We use the Haussmannian facade grammar presented in section 3.7.1. The
grammar features more �exibility than the split grammar used in [59], but is less
�exible than the set of `weak architectural principles' used in [33]. For example,
our grammar only models balconies that are as wide as the corresponding windows
and ones that extend through the whole facade width. We also do not model doors.
On the other hand, our algorithm guarantees the `structural correctness' of the
resulting segmentations, whereas the three-layered method [33] only imposes the
`weak architectural principles' locally, for example, by aligning nearby objects.

Even when run without the detection term, our graph grammar-based algorithm
attains pixel-wise accuracy better than `raw' RNN and close to the accuracy attained
by the competing method. When detections are used, the performance grows and
exceeds that of the three-layered method by a small margin. The reason for the
superior performance of our algorithm is that it enforces a global alignment according
to prede�ned patterns, encoded in a grammar. For example, if the bottom-up cues
contain a single false positive balcony patch, that is not aligned with other balconies
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Table 3.5: Performance on the ECP dataset with unary potentials obtained using a Recursive
Neural Network (RNN). The rows corresponding to classes present class accuracy. The bottom
row contains total pixel accuracy. In columns, starting from left: performance of the RNN; results
of [33], based on these RNN results; results for our graph grammar-based algorithm with the RNN-
based unaries without detection (GG*); our results for RNN-based unaries and detections (GG).
We do not model doors.

RNN [33] GG* GG
roof 70 74 83 85
shop 79 93 92 92
balcony 74 70 72 72
sky 91 97 94 94
window 62 75 69 70
door 43 67 0 0
wall 92 88 90 91
pixel accur. 82.6 84.2 83.9 84.8

���

���

���

���

Figure 3.12: Comparison of parsing results obtained using our method and using the algorithm
proposed in [33]. Odd images: our results, overlaid on the input images. Splitlines are in green,
balconies are outlined in cyan and magenta. Even images: results reported in [33]. Note the
artifacts: some windows are wider than the corresponding balconies and unaligned balconies.

in the same �oor, we ignore the patch. The `weak architectural principles' used by
the three-layered method do not enforce the global satisfaction of such constraints.
Besides, the constraint factors in our models contain a lot of information about the
relative sizes of facade elements, that are well tuned to the data. This prevents huge
errors, like missing whole �oors and leaving large wall areas. Finally, even though
we do not model doors, nor balconies that extend outside of windows, but do not
extend through whole facade with, these elements actually happen to take a small
fraction of the facade area, and are di�cult to capture. That is, even when modeled,
they are often segmented erroneously, as shown in table 3.5.

The strong bene�t of our method is that it guarantees that the resulting segmen-
tations belong to the language generated by the grammar and thus satisfy strong
architectural constraints. Artifacts generated by the three-layered method, like the
ones shown in �gure 3.12, are thus avoided.

We also test the proposed method against another state-of-the-art facade seg-
mentation scheme, proposed by Cohen et al. [9]. We obtain the per-pixel potentials
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Table 3.6: Performance on the ECP dataset with unary potentials obtained using TextonBoost.
The rows corresponding to classes present class accuracy. The bottom row indicates the total
pixel accuracy. In columns, starting from left: performance of the `raw' classi�er, obtained by
assigning the most likely class independently for each pixel; results of Cohen et al. [9]; results
for our graph grammar-based algorithm with the texture classi�cation-based potentials without
detection (GG*); our results for potentials combining texture classi�cation and detections (GG).
We do not model doors.

raw [9] GG* GG
roof 89 90 80 85
shop 95 94 96 96
balcony 90 91 84 83
sky 94 97 96 96
window 86 85 80 77
door 77 79 0 0
wall 90 90 86 86
pixel accur. 90.1 90.8 85.3 85.5

using the method described in their paper. They apply a variant of TextonBoost,
implemented by the authors of [29]. They use SIFT and Color SIFT descriptors,
Local Binary Patterns and location features. The features of each type are clustered
using K-means into 512 clusters. They establish a neighborhood of 200 random
rectangles and the �nal feature vector is a concatenation of histograms of cluster
members' appearance in these rectangles. The per-pixel costs cijt result from multi-
class boosting [50]. Again we detect windows using the Viola-Jones detector, as in
section 3.7.3. The results are presented in table 3.6.

Our algorithm performs worse than the competing method and the `raw' segmen-
tation obtained by assigning the most probable class independently to each pixel.
One reason for that is that the texture classi�er already gives very good performance
and the constrained expressive power of our grammar, limiting the balcony types,
starts to in�uence the results. Another factor is that the randomized search for
optimal structure does not always explore and sample the exact optimal grammar
derivation, missing the optimal structure. The explanation of the negligible gain
from using detections is that they do not add much information to the excellent
results of texture classi�cation.

One advantage of our method over the algorithm of Cohen et al. though is that we
enforce simultaneous alignment in two dimensions, which the competing algorithm
does not handle.

3.8 Conclusion

We have presented a novel method for modeling complex objects, where model
structure and part positions are optimized separately. The validity of this approach
has been con�rmed experimentally. We have also compared the performance of
our method to that of two existing state-of-the-art algorithms, shown comparable
and slightly lower performance. Another experiment shows that the performance is
partly due to the proposed scheme of fusing texture classi�cation and object detec-
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Figure 3.13: Example results of the proposed algorithm. Green lines separate sky from roof, roof
from facade and facade from shop. Balconies are outlined in magenta or cyan. Note the variety
of alignment patterns supported by the algorithm (top right). Typical errors are presented in
the bottom row. In these images window columns can be missed due to the randomized, non-
exhaustive search of the structure space. In the second and third images, our grammar does not
model complex-enough patterns of the facade, like vertical misalignment of windows and middle-
size balconies.
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tions. An important advantage of our method over the grammar-free segmentation
methods is that it only produces results that belong to the speci�ed language, and
thus does not produce `structurally invalid' segmentations.

The proposed algorithm is a step towards more e�cient facade parsing algo-
rithms, that are not based on random exploration of the problem space. Even
though in this case the random exploration was limited to the search for a model
structure and not eliminated completely, this already leads to better segmentations
than with algorithms based only on random exploration.

This work raises a number of challenges, including �nding e�cient bottom-up
methods of building the initial structure graph, methods for warm-starting infer-
ence in a graphical model after perturbing its structure, modeling projections of 3D
objects by means of graph grammars and learning grammars from training data.

It must however be noted that this graph-grammar based approach has some
inherent limitations:

• it is di�cult to come up with a principled method of estimating the structure
of the facade, that is not based on sampling graphs from the grammar;

• speci�cation of graph-grammar priors is tedious and unintuitive for a human
user, and learning a graph grammar from image annotations represents a dif-
�cult problem in itself;

• approximating the optimal part positions for a given �xed structure is a time-
consuming operation that needs to be repeated for each sampled structure.

Moreover, both the complexity of the grammar and the computational cost of ap-
proximating optimal part positions for a �xed structure grow rapidly with the mod-
eled level of architectural details. For example, we do not model balconies that begin
and end at an arbitrary point along the �oor; we only model balconies constrained
to window cavities and balconies running through the whole width of the facade.
While modeling these medium size elements is technically possible, a graph gram-
mar that represents them would be complex and the number of alternatives would
be very large, drastically increasing the size of the combinatorial space of structures
and the time of optimization for a �xed structure.

In the following chapters we propose a di�erent approach that addresses some of
the mentioned limitations. In particular, we allow more structural variation (irreg-
ular balconies) and we formulate the whole problem of parsing, including structure
and positions of parts, as an optimization problem that does not require sampling.

Publications

The work presented in this chapter has been published in

Kozi«ski, M., Marlet, R. (2014). Image parsing with graph grammars and Markov
Random Fields applied to facade analysis. In 2014 IEEE Winter Conference on
Applications of Computer Vision (WACV).
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Chapter 4

Bidirectional Alignment by Labeling

Image Rows and Columns

4.1 Introduction

As stated in chapter 2.1.2, �nding the most likely facade segmentation, consistent
with a user-de�ned grammar-based shape prior, requires a random exploration of a
high dimensional space of grammar derivations. The random exploration-based al-
gorithms cannot be relied on to repeatedly produce optimal results. In consequence,
existing algorithms su�er from the `curse of structural exploration'. In chapter 3 we
presented a method to limit this random exploration to the space of facade struc-
tures, while formulating the problem of inferring positions of facade elements as
MAP-MRF inference and solving it using a state-of-the-art solver. Although the
proposed algorithm leads to better segmentations than the split grammar-based ap-
proach [60, 59, 47], it is still a�ected by the curse of structural exploration. The
need to randomly explore the space of facade structures prevents us from formulat-
ing complex grammars, expressing rich architectural variation with a large number
of alternatives.

In this chapter we propose a facade segmentation framework, in which the ran-
dom exploration is eliminated completely. This is done by modifying the split gram-
mar formalism in a way that lets us formulate parsing in terms of assigning classes to
image pixels, rows and columns. The formulation takes the form of a binary linear
program. Eliminating the random exploration lets us directly search for approxi-
mations of the globally optimal segmentations, both in terms of facade structure
and accurate layout of its elements. We approximate the optimal segmentations
using the dual decomposition (DD) algorithm frequently applied to optimization
problems arising in computer vision [26, 54]. Our algorithm attains state-of-the-art
performance on standard datasets.

4.1.1 Contributions

Our novel approach to image parsing lifts the curse of procedural exploration. It is
based on a new formulation of shape priors that allows expressing the problem of
optimal segmentation as a binary linear program.
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Instead of expressing priors using grammar rules (e.g., A0 → A1 . . . An), which
tightly merge immediate dominance (decomposition of object A0 into sub-objects
Ai's) and immediate precedence (spatial left-adjacency of Ai to object Ai+1), we
separate the two aspects: the user speci�es on one hand an unordered tree hierarchy
representing a structural decomposition of the scene (e.g., where A0 is decomposed
into a con�guration of Ai's), and on the other hand a set of forbidden or unlikely
spatial neighbor pairs (e.g., Ai+1 6<Ai, meaning Ai+1 cannot be left-adjacent to Ai).
We also relax object instantiation. Contrary to a right-hand side of a grammar
rule, our prior does not specify the number of instances of objects of a given type
(e.g., n symbols on the right hand side of the production presented in the beginning
of this paragraph). Speci�c instance con�gurations can be forbidden though, by
specifying the forbidden neighbor pairs. Last, we make the similarity of object
instances a part of the formal framework. For example, two �oors of the same class
are expected to have exactly the same structure, with vertically aligned windows.
This new formalism enables the speci�cation of complex architectural structures,
including interleaved grid alignments. For practical purposes, its expressive power
is similar to that of grammar-based formalisms.

The problem of parsing with a prior of the proposed form can be turned into
a linear binary program, which we solve e�ciently using dual decomposition, thus
eliminating the need for a procedural exploration of the solution space. As shown
in the experiment section, our algorithm yields repeatable, state-of-the-art perfor-
mance on standard datasets. Our model actually combines the accuracy of methods
using hard-coded structural constraints [33, 9] with the �exibility of grammar-based
methods [59, 47]. Abstract comparison to the state of the art is summarized in
table 4.1.

Table 4.1: Comparison of the proposed algorithm with state-of-the-art facade parsing methods.
The split grammar parsing framework by Teboul et al. [59] relies on an unreliable, sampling-
based optimization scheme. The three-layered method proposed by Martinovi¢ et al. [33] applies
only `local' corrections to segmentation results according to hard-coded principles. The dynamic
programming-based algorithm of Cohen et al. [9] is based on a prede�ned sequence of dynamic
programs, that restrict possible facade structures, but do not enforce grid alignment. The 2D
version of a CYK parsing algorithm proposed by Riemenschneider et al. [47] requires a severe
image subsampling. Our graph grammar-based algorithm (GG), presented in chapter 3, requires
ine�cient sampling of facade structures from a grammar. The proposed formulation based on row
and column labels (RCL) allows us to directly approximate optimal segmentations.

Property [59] [33] [9] [47] GG RCL

User-de�ned shape prior X � � X X X
Approximation of global optimum � � �∗ X � X
No need of image subsampling X X X � X X
Simultaneous alignment in two dimensions X X � X X X

*Cohen et al. [9] can issue a certi�cate of optimality if the found solution is optimal.
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Table 4.2: Symbols used in this chapter

h image height in pixels; de�ned on page 59
w width of an image in pixels; de�ned on page 59
I the set of image row indexes I = {1, . . . h}; p. 59
J the set of image column indexes J = {1, . . . w}; p. 59
I the set of indexes of image pixels, I = I × J ; p. 59
C the set of rectangle classes; p. 60
K the subset of rectangle classes K ⊂ C, called row-classes; p. 60
L the subset of rectangle classes L ⊂ C, called column-classes; p. 60
r the rectangle class corresponding to the root of the tree of classes; p. 60
Ch(n) the set of classes that are children of class n in the tree of classes; p. 60
Pa(n) the parent class of class n in the tree of classes; p. 60
Sib(n) the set of sibling of n in the tree of classes (the set of classes that have

the same parent as n in the tree); p. 60
Anc(n) the set of ancestors of class n in the tree of classes; p. 60
Desc(n) the set of descendants of class n in the tree of classes; p. 60
T the set of classes corresponding to leaves in the tree of classes; p. 60
xjl a variable encoding assignment of column class l ∈ L to image column

j ∈ J ; p. 60
xj a vector of (xjl)l∈L for a given column j; p. 60
x a vector resulting from stacking all xjl, x = (xjl)j∈J,l∈L; p. 66
yik a variable encoding assignment of row class k ∈ K to image row i ∈ I;

p. 60
yi a vector of (yik)k∈K for a given row i; p. 60
y a vector resulting from stacking all yik, y = (yik)i∈I,k∈K ; p. 66
Lk the subset of column classes Lk ⊂ L, containing all children of row class

k ∈ K in the tree, and all column class siblings of ancestors of k in
the tree; the characteristic feature of the set is that exactly one of its
components has to be assigned to each image column; p. 64

Kl the subset of row classes Kl ⊂ K, containing all children of column class
l ∈ L in the tree, and all row class siblings of ancestors of l in the tree;
the characteristic feature of the set is that exactly one of its components
has to be assigned to each image row; p. 64

ylikk′ a variable encoding assignment of class k to row i and class k′ to row
i+1; for technical reasons the variable is de�ned for l ∈ L\T, k, k′ ∈ Kl;
p. 65

xkjll′ a variable encoding assignment of class l to column j and class l′ to
column j + 1; for technical reasons the variable is de�ned for k ∈ K \
T, l, l′ ∈ Ll; p. 65

cll′ the cost of assigning classes l and l′ to neighboring image columns; p.
66

ckk′ the cost of assigning classes k and k′ to neighboring image rows; p. 66
zijt a variable encoding assignment of class t ∈ T to pixel (i, j) ∈ I; p. 65
z a vector created by stacking all variables zijt; p. 66
cijt the cost of assigning class t ∈ T to pixel (i, j) ∈ I; p. 66
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zkijt, z
l
ijt copies of variables zijt used in the slave problems, de�ned for k ∈ K \T

and l ∈ L \ T ; p. 121
xkjl a copy of variable xjl used in a slave indexed by k; the variable is de�ned

for k ∈ K \ T and l ∈ Lk; p. 121
ylik a copy of variable yik used in a slave indexed by l; the variable is de�ned

for l ∈ L \ T and k ∈ Kl; p. 121
zk, zl vectors of variables zkijt and z

l
ijt, respectively, for (i, j) ∈ I and t ∈ T ;

p. 121
xk a vector of variables xkjl for all j ∈ J and l ∈ Lk; p. 121
yl a vector of variables ylik for all i ∈ I and k ∈ Kl; p. 121
z̆ a vector of all zijt, zkijt and z

l
ijt; p. 123

x̆ a vector of all xjl, xkjl and x
k
jll′ ; p. 123

y̆ a vector of all yik, ylik and y
l
ikk′ ; p. 123

λlijt, λ
k
ijt dual variables corresponding to constraints coupling variables zkijt and

zlijt; p. 123
λl, λk the vectors resulting respectively from stacking all λlijt and λ

k
ijt; p. 123

λ the vectors resulting from stacking all λlijt and all λkijt
γkjl a dual variable coupling xkjl for di�erent k; it is only de�ned for l ∈ Lk;

p. 123
γk the vector resulting from stacking all γkjl for j ∈ J and l ∈ Lk; p. 123
γlik a dual variable coupling ylik for di�erent l; it is only de�ned for k ∈ Kl;

p. 123
γ l the vector resulting from stacking all γlik for i ∈ I and k ∈ Kl; p. 123
γ the vector resulting from stacking all γkjl and γ

l
ik

(ẑk, x̂k) the optimal argument of a slave indexed by k ∈ K \ T ; p. 123
(ẑl, ŷl) the optimal argument of a slave indexed by l ∈ L \ T ; p. 124
αn stepsize in the n-th iteration of the algorithm; p. 125
z̄nijt the mean value of optimal arguments ẑl,nijt and ẑ

k,n
ijt of the slaves in iter-

ation n; p. 125
ȳnik the mean value of optimal arguments ŷl,nik of the slaves indexed with

l ∈ L \ T ; p. 125
x̄njl the mean value of optimal arguments x̂k,njl of the slaves indexed with

k ∈ K \ T ; p. 125
T ∗l the set of terminal classes that do not descend from any class k ∈ Kl;

p. 127
δijk an auxiliary variable; p. 127
tkij the optimal class of pixel (i, j), given the class k of row i; p. 128
c̃ijk the optimal cost of assigning a class to pixel (i, j) by a slave, given the

class k of row i; p. 128
t∗ij the lowest-cost class from the set T ∗l of pixel (i, j); p. 128
c̃∗ij the lowest cost of assigning a class from the set T ∗l to pixel (i, j); p. 128
clik the cost of asigning class k to row i by slave l; p. 129
φ(i, k) the optimal cost of labeling i �rst rows by a slave, given that the i-th

row gets label k; p. 129
κ(i, k) the optimal class of row i given that row i+ 1 gets class k; p. 129
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Figure 4.1: The shape prior consists of a hierarchy of rectangle classes (image 1 on the left) and a
table of pairwise potentials for each nonterminal node (not shown here). Each image (2-4) shows
the substitution of all rectangles of a particular class with any number of rectangles of any child
classes. The class denoted by r, corresponding to the root of the hierarchy, represents the whole
image. The remaining classes are: a-attic, b-�oor, c-wall between �oors, d-roof, e-attic window,
f -wall between windows, g-window. The two-dimensional alignment of windows in the facade (but
not attic windows) is enforced by the requirement that all �oors are split in the same way.

4.2 Proposed model

Although it departs from grammar-based approaches, our structural segmentation
framework is inspired by split grammars.

The shape prior of our split-based segmentation is encoded as a tree with nodes
corresponding to classes of rectangular image regions, created by image splitting
and called rectangles further in the text. Child nodes represent classes of rectangles
resulting from splitting a rectangle of a parent class. We require that a rectangle of
a class resulting from a vertical split can only be split horizontally and vice versa.
Consequently, all non-leaf nodes at a given tree depth are split along the same di-
rection. This tree is complemented with a table of pairwise potentials associated to
each non-leaf node. The pairwise costs can be used to penalize invalid or unlikely
adjacency con�gurations of child rectangles. Our algorithm can handle in�nite val-
ues of the potentials and in our experiments we only use binary potentials that take
the value of zero or in�nity, fully preventing some con�gurations of neighbors and
allowing the others.

In contrast to classical split grammars, which are context-free and cannot be
used to express simultaneous alignment in two dimensions (other than with imple-
mentation tricks that introduce context dependency), we require that rectangles of
the same class are aligned both vertically and horizontally. This requirement can be
enforced by constraining all rectangles of the same class that are aligned along the
splitting direction to be split in the same positions into subrectangles of matching
classes. An example tree and corresponding segmentations are presented in �gure
4.1. Note the bidirectional alignment of windows (class g).

4.2.1 Optimal Segmentation as a Binary Linear Program

We denote the set of indexes of image pixels by I = {(i, j)|i ∈ I, j ∈ J}, I =
{1, . . . , h} and J = {1, . . . , w}, where h is image height and w is image width. That
is, the �rst pixel index identi�es the corresponding image row, and the second one
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speci�es the column 1. We denote the set of rectangle classes by C = K∪L, where K
denotes the set of classes that result from a horizontal split, also called row-classes,
and L is the set of classes that result from a vertical split, called column-classes, and
K∩L = ∅. The root r of the tree of classes is a `starting class', corresponding to the
whole image. Without loss of generality we assume that r is split horizontally and
by convention we consider r ∈ L. We recall that nodes in K can only have children
in L and vice versa. Consequently, all nodes at each level of the tree are either
column-classes or row-classes. We denote the set of children of class n ∈ C by Ch(n)
and the set of descendants of n, including n, by Desc(n). Similarly, we denote the
set of ancestors of n, including n, by Anc(n), and its parent by Pa(n). The set of
siblings of n is denoted Sib(n). We de�ne the set of classes t ∈ C corresponding to
the leaves of the tree by T and call its members terminal classes.

For all i ∈ I, j ∈ J , k ∈ K and l ∈ L, we de�ne variables yik, yil, xjk, xjl ∈ {0, 1}
such that yik = 1 if k may be present in row i and xjl = 1 if l can appear in column
j. We make a distinction between the variables encoding assignment of row-classes
k ∈ K and column-classes l ∈ L, because they behave di�erently for horizontal and
vertical splits. A sequence of vertical and horizontal splits assigns a sequence of
rectangle classes to every pixel of the image. The sequence of classes forms a path
from the root to a leaf in the tree of classes. For any image row i, it is then possible
to list all the classes that are assigned to at least one pixel on the row. Below we
show that a segmentation consistent with a prior of the proposed class tree form can
be represented in terms of the sets of classes assigned to each image row and column,
encoded by variables yik, yil, xjk and xjl. This row- and column-based formulation
enables global alignment of distant rectangles of the same class.

In table 4.3, we present how the sets of row- and column-classes that are present
in image rows and columns are manipulated in the process of shape derivation. We
also formulate constraints on yik, yil, xjk and xjl that re�ect this behavior. The
�rst row of the table illustrates the �rst split, horizontal by convention. After the
split, only the children of the root class r may appear in every column of the image.
Equation (4.1) encodes that in terms of variables xjl. Exactly one of the children
appears in each image row. This is encoded by equation (4.2). As shown in the
second row of the table, in case of a vertical split only one child rectangle is going
to appear in each image column previously occupied by the parent. We emphasize
that all rectangles of the same class are split simultaneously along the same lines,
so that the child rectangles are aligned and their classes are consistent along the
splitting axis. For example, in the table, the two rectangles of class A are split in
the same positions into vertically aligned rectangles of classes C and D. Therefore, a
vertical split introduces precisely one child class to each column in which the parent
class was present. Equation (4.3) in table 4.3 encodes this statements formally in
terms of variables xjl. However, all child classes are going to appear in each image
row where the parent was present. This is encoded by equation (4.4). Analogical
reasoning applies to horizontal splits. The corresponding constraints on child and
parent classes assigned to a row or column are encoded by equations (4.6) and (4.5).

From equation (4.4) in the fourth column of table 4.3 it follows that, for vertical

1In this chapter we use this row-column indexing, consistent with image indexing in Matlab.
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Table 4.3: Illustration of the splitting process and interpretation of the variables xjl and yik. The
splitting process is just a concept that helps us to introduce our formulation and not a mode of
operation of the proposed algorithm.

Example sequence
of splits

Speci�c constraints
for the example

General constraints
for any class tree

F
ir
st

sp
lit

r
→
{A
,B
} A

B

A

xjA = 1
xjB = 1

yiA + yiB = 1

∀k ∈ Ch(r), xjk = 1∑
k∈Ch(r) yik = 1 (4.1)

(4.2)

V
er
ti
ca
l
sp
lit
s

A
→
{C
,D
}

B
→
{E

,F
}

E F

C

C

D

D

xjC + xjD = xjA
xjE + xjF = xjB
yiA = yiC = yiD
yiB = yiE = yiF

∀k ∈ K,
∑

l∈Ch(k) xjl = xjk
∀k ∈ K, ∀l ∈ Ch(k), yil = yik

(4.3)

(4.4)

H
or
iz
.
sp
lit
s

C
→
{G
,H
}

D
→
{P
,Q
}

E F

H

H

G

G

P

P

Q

Q

xjC = xjG = xjH
xjD = xjP = xjQ
yiC = yiG + yiH
yiD = yiP + yiQ

∀l ∈ L,∀k ∈ Ch(l), xjk = xjl
∀l ∈ L,

∑
k∈Ch(l) yik = yil

(4.5)

(4.6)

splits, the state of each yil for l ∈ Ch(k) is determined by yik. According to equation
(4.5) the same holds for horizontal splits, xjk and xjl. We eliminate xjk and yil by
expanding equation (4.5) in (4.3) and equation (4.4) in (4.6). We get

∀i ∈ I,∀l ∈ L \ (T ∪ {r}),
∑

k′∈Ch(l)

yik′ = yiPa(l), (4.7a)

∀j ∈ J,∀k ∈ K \ T,
∑

l′∈Ch(k)

xjl′ = xjPa(k). (4.7b)

Each constraint of type 4.7a involves the parent of some class and the children of
this class in the class tree. To aid understanding the structure of the constraint, we
visualize its domain in �g. 4.2.

In the interest of maintaining the convention of assigning row-classes k ∈ K to
rows and column-classes l ∈ L to columns, we modify constraints (4.1) and (4.2),
from the �rst row of the table. We require that the root class is assigned to each
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Figure 4.2: Visualization of the state of variables yik and xjl for some pixel (i, j), and an example
class tree (di�erent from the ones in �gures 4.1 and 4.3) The white nodes correspond to row- and
column-classes k and l for which yik = 1 and xjl = 1. The gray nodes correspond to classes k and
l with yik = 0 or xjl = 0. The domains of constraints of type (4.7) on yik are circled in blue and
the domains of the constraints on xjl are circled in red. Left: the domains of (4.7c). Middle and
right: the domains of (4.7a). Note that only one leaf is connected to the root by a path of white
nodes. This illustrates the uniqueness of pixel class given the state of variables corresponding to
its row and column, stated in lemma 1.

column and that the �rst horizontal split assigns a unique class to each row:

∀j ∈ J, xjr = 1 , (4.7c)

∀i ∈ I,
∑

k∈Ch(r)

yik = 1 . (4.7d)

Finally, in �gure 4.3 we visualize the interpretation of vectors xj = (xj′l)j′=j for a
�xed column j and yi = (yi′k)i′=i for a �xed row i, that satisfy constraints (4.7).

A key, albeit nontrivial consequence of constraints (4.7), is that each pixel is
assigned exactly one class from each each level of the tree. The classes assigned to a
pixel are unambiguously identi�ed by the sets of classes present in the corresponding
row and column.

Lemma 1. Consider a hierarchy of classes given as a tree, as de�ned earlier. Denote
the depth of the tree by M , the set of column-classes at the m-th level of the tree by
Lm and the set of row-classes at the m-th level of the tree by Km. Note that Lm is
nonempty only for even m and Km for odd m. Denote the vectors of (yik)i∈I,k∈K
and (xjl)j∈J,l∈L by y and x. Denote the set of y and x satisfying constraint (4.7),
enforcing the hierarchical structure of row-class and column-class assignment, by
Ch. Then

(y,x) ∈ Ch =⇒ ∀(i, j) ∈ I ∀m ∈ {0, . . . ,M},
∃!lmij ∈ Lm : ∀n ∈ Anc(lmij ), (xjn = 1) ∨ (yin = 1) if m is even (4.8)

∃!kmij ∈ Km: ∀n ∈ Anc(kmij ), (xjn = 1) ∨ (yin = 1) if m is odd . (4.9)

In words, for any (i, j) ∈ I, for any values of yik and xjl, that satisfy constraints
(4.7), at any depth of the tree there exists exactly one row- or column-class such
that the variables xjl and yik corresponding to the class and all its ancestors are
equal to one.

Proof. We prove the lemma by induction on the depth of the tree.
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Figure 4.3: Interpretation of the vector yi encoding row-classes assigned to row i, and the vector
xj of classes assigned to column j, satisfying constraints (4.7). Splitlines are drawn in cyan.
The braces to the side of and above the image show the presence of particular classes (and their
descendants) in image rows and columns. The image presents a segmentation corresponding to the
full tree from �gure 4.1.

The root r is the only node at depth m = 0 of the tree and, by constraint (4.7c),
it holds that xjr = 1 for all j ∈ J . Therefore the lemma holds for m = 0.

For depth m = 1 the tree is formed of the root and its children. By constraints
(4.7d), we have that for each i there exists a single ki ∈ Ch(r) such that yiki = 1
and yik = 0 for k 6= ki. This proves the lemma for the case of a tree of depth 1.

Assume lemma 1 holds at depth m. If the level is of class l ∈ L, then by
assumption for each i, j we have a single lmij such that the variables associated to all
its ancestors are equal one. By constraint (4.7a), exactly one child of lmij will have
its associated variable yikmij equal to one. Similar reasoning applies if the level is of
row-class type.

The constraints (4.7) allow assigning a number of row- and column-labels to
each row and column. For a given column j, the number of possible con�gurations
of (xjl)l∈L is combinatorial and grows exponentially with the number of vertically
misaligned structures (rectangles independently split vertically, like attic a and �oor
b in �gure 4.1) de�ned by shape prior. The same holds for feasible con�gurations
of a set of row-classes assigned to image row. Below we show how the constraints
can be reformulated into a more intuitive form. We transform the constraints by
de�ning a number of non-disjoint subsets of L, such that exactly one class from
each subset has to be assigned to each column. We do the same for the set of row
classes K. First we present the de�nition of the subsets, and the new form of the
constraints, and then we show the equivalence of the two formulations.

For each k ∈ K \ T we de�ne the set Lk as containing all children of k and all
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Figure 4.4: The structure of set Kl, for l = j, visualized on a tree of classes. Members of the set
are outlined in red. The nodes on depths 0, 2 and 4 of the tree represent classes l ∈ L and nodes
in depths 1, 3 and 5 correspond to classes k ∈ K. The characteristics of this set Kl is that exactly
one of its members has to be assigned to each image row.

column-class siblings of ancestors of k. Formally,

Lk = Ch(k) ∪ [L ∩ (Ch(Anc(k)) \ Anc(k))] , (4.10a)

where by Ch(Anc(k)) we denote the set of all children of all elements of Anc(k).
Similarly, for each l ∈ L \ T we de�ne

Kl = Ch(l) ∪ [K ∩ (Ch(Anc(l)) \ Anc(l))] . (4.10b)

The structure of the sets is illustrated in �gure 4.4. Using the sets Kl and Lk,
constraints (4.7) can be represented as

∀i ∈ I, ∀l ∈ L \ T
∑
k∈Kl

yik = 1 , (4.11a)

∀j ∈ J, ∀k ∈ K \ T
∑
l∈Lk

xjl = 1 . (4.11b)

Below we show how to transform constraints (4.7) to the new form (4.11) and vice
versa.

The constraint (4.11a) indexed by l = r has exactly the same form as (4.7d),
since Kr = Ch(r). For any k ∈ Ch(r) the set Lk = Ch(k) and the corresponding
instance of constraint (4.11b) can be obtained by substituting (4.7c) into the in-
stance of (4.7b) for the selected k. For classes more deep in the hierarchy obtaining
a constraint of type (4.11) from constraints (4.7) requires a number of recursive sub-
stitutions. For a selected k ∈ K \T we substitute the left hand side of an instance of
constraint (4.7b), indexed by k, into the left hand side of another constraint of the
same form (4.7b), indexed by Pa(Pa(k)). We obtain an equation of the following
form ∑

l∈Ch(k)

xjl +
∑

l∈Ch(Pa2(k))\Pa(k)

xjl = xjPa3(k) , (4.12)

where Pa2(k) = Pa(Pa(k)), etc. We repeat this process recursively, by plugging the
left-hand side of (4.12) into the left-hand side of an instance of (4.7b), indexed by
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Pa4(k), obtaining∑
l∈Ch(k)

xjl +
∑

l∈Ch(Pa2(k))\Pa(k)

xjl +
∑

l∈Ch(Pa4(k))\Pa3(k)

xjl = xjPa5(k) . (4.13)

We can recursively repeat the substitution until we get an equation with xjr on
the right-hand side. It is easy to see that, at this point, the sum on the left-hand
side of the resulting equation contains all elements of the set Lk. Last, we plug
the sum from the left-hand side of the developed equation into the left-hand side
of constraint (4.7c), obtaining an equation of the form (4.11b). A similar series of
recursive substitutions, ascending the hierarchy of classes, can be devised to get each
of constraints (4.11a) from constraints (4.7).

To obtain from constraints (4.11) an equation of type (4.7b), indexed by k, we
subtract an instance of (4.11b), indexed by Pa2(k), from an instance of (4.11b),
indexed by k. Similar operation can be performed to obtain (4.7a) from (4.11a). As
indicated before, the constraint (4.7d) has exactly the same structure as (4.11a) for
l = r, since Kr = Ch(r). Constraint (4.7c) cannot be recovered from constraints
(4.11). However, the variables xjr are only de�ned to conveniently terminate the
hierarchy, and are of no practical importance. The feasible sets de�ned on variables
(xjl)l∈L\{r} and (yik)k∈K by constraints (4.7) and (4.11) are the same.

We model the assignment of terminal classes to pixels by variables zijt ∈ {0, 1},
where zijt = 1 if pixel (i, j) is of class t ∈ T and zijt = 0 otherwise. A single terminal
class has to be assigned to each pixel

∀(i, j) ∈ I,
∑
t∈T

zijt = 1 . (4.14)

By lemma 1, all ancestors of the class assigned to pixel (i, j) have the variables
yik and xjl equal to one, which leads to the following inequalities

∀(i, j) ∈ I,∀k ∈ K,
∑

t∈Desc(k)

zijt ≤ yik, (4.15a)

∀(i, j) ∈ I,∀l ∈ L,
∑

t∈Desc(l)

zijt ≤ xjl. (4.15b)

Each nonterminal class has a table of pairwise potentials de�ned on its children.
The potentials determine the likelihood of observing neighboring rectangles of the
child classes. We implement the potentials using variables encoding assignment of
pairs of labels to pairs of rows or columns, in the same way as in linear formulations
of Markov Random Fields [68]. Since that formulation can be used only when exactly
one class is assigned to each data point, we turn again to sets Kl and Lk. We de�ne
variables ylikk′ for each l ∈ L \ T and k, k′ ∈ Kl, and xkjll′ for each k ∈ K \ T and
l, l′ ∈ Lk. Precisely, ylikk′ = 1 if and only if row i is assigned row-class k and row i+1
is assigned class k′. The constraints imposing consistency of the pairwise variables
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with the per-column and per-row variables take the form

∀i ∈ I \ {h},∀l ∈ L \ T, ∀k ∈ Kl

∑
k′∈Kl

ylikk′ = yik , (4.16a)

∀i ∈ I \ {h},∀l ∈ L \ T, ∀k′ ∈ Kl

∑
k∈Kl

ylikk′ = yi+1 k′ , (4.16b)

∀j ∈ J \ {w},∀k ∈ K \ T, ∀l ∈ Lk
∑
l′∈Lk

xkjll′ = xjl , (4.16c)

∀j ∈ J \ {w},∀k ∈ K \ T, ∀l′ ∈ Lk
∑
l∈Lk

xkjll′ = xj+1 l′ . (4.16d)

We denote the cost of assigning class t to pixel (i, j) by cijt, and the pairwise
cost for column- and row-classes by ckk′ and cll′ . The pairwise costs are de�ned for
pairs of classes that are siblings in the class tree. Note that for a pair of sibling
classes k, k′ there could possibly be more than one l ∈ L \T such that k, k′ ∈ Kl. In
consequence, we can have more than one variable modeling the assignment of the
pair k, k′ to neighboring rows ylkk′ indexed by di�erent l. By convention, to penalize
the transition between each pair of classes exactly once, we apply the pairwise cost
ckk′ to ylkk′ such that k, k′ ∈ Ch(l). We denote the vector resulting from stacking all
zijt by z, the vector of all xjl by x and the vector of all yik by y. The segmentation
task can be formulated as minimizing the following objective

E(z,y,x) =
∑

(i,j)∈I

∑
t∈T

zijtcijt +
h−1∑
i=1

∑
l∈L\T

k,k′∈Ch(l)

ylikk′ckk′ +
w−1∑
j=1

∑
k∈K\T
l,l′∈Ch(k)

xkjll′cll′ (4.17)

subject to constraints (4.11) and (4.14) to (4.16). In the above formula we abuse the
notation by dropping the pairwise variables ylikk′ and x

k
jll′ from the list of arguments

of the energy. The values of these variables are unambiguously determined by x and
y through constraints (4.16).

4.3 Inference

The formulated problem is linear and has a large number of binary variables. The
scale of our problem, that has one variable per pixel per class (not counting the per-
row and per-column variables), and a similar number of constraints (4.15), makes
the use of a general mixed integer programming (MIP) solver impractical due to
excessively long running time. We therefore consider techniques that enable ap-
proximating the optimal solution in a reasonable time by exploiting the structure
of the problem. We turn our attention to two Lagrangian relaxation techniques,
dual decomposition (DD) [26, 54] and alternating direction of multipliers method
(ADMM) [5]. We brie�y characterize the methods and their main di�erences here
to motivate our choice of algorithm, and introduce the selected technique in more
details in appendix B. In both algorithms, we �rst relax the constraints on binary
domains of the variables and let them vary within the range of [0, 1]. Then we relax
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selected constraints, that is, we formulate a Lagrangian (DD), or augmented La-
grangian (ADMM), of the original problem with respect to the selected constraints.
This is equivalent to removing the constraint and introducing to the objective func-
tion a new component that penalizes violation of the constraint. We then solve the
dual problem induced by the (augmented) Lagrangian. The algorithm iteratively
updates the dual solution in the direction of a subgradient. The constraint to be
relaxed is selected in such a way, that the subgradient of the dual problem can be
found by iteratively optimizing `simpler' subproblems, that can be solved e�ciently.
We often say that the original problem `is decomposed' into the subproblems. It can
be shown that the optimum of the dual problem is a lower bound on the optimum
of the original problem. Finally, from the dual solution we extract a primal discrete
solution that approximates the optimum of the original problem.

The di�erence between DD and ADMM stems from the fact that the �rst for-
mulation is based on Lagrangian and the latter one on augmented Lagrangian, that
has an additional quadratic term. As a result ADMM can be shown to converge
faster [5]. However, the subproblems in ADMM are quadratic. When using DD, our
problem decomposes into linear subproblems that can be e�ciently solved by means
of dynamic programming. This motivates our choice of DD to solve the formulated
problem. The experiments con�rm that DD behaves well in our application.

We decompose the problem of optimizing (4.17), subject to (4.11) and (4.14�
4.16), into one subproblem for each l ∈ L \ T and one for each k ∈ K \ T , obtaining
the number of subproblems equal to the number of non-leaf nodes of the tree of
classes. Due to constraint (4.11), a solution to each subproblem assigns exactly
one row-class to each image row or exactly one column-class to each image column.
The structure of all the subproblems is the same. First, optimal terminal classes of
all pixels in all rows (columns) are determined, for all possible classes of each row
(column), according to constraint (4.15). Next, dynamic programming is used to
determine the optimal row (column) class assignments. In the interest of readability
we postpone the detailed presentation of the algorithm to appendix C.

4.4 Experiments

We tested the performance of our algorithm in facade parsing on two datasets. For
each of them, we have created a shape prior consisting of a hierarchy of classes and,
for each nonterminal node, a table of pairwise potentials encoding possible adjacency
patterns of its children. As an example, the class hierarchy used in experiments on
the Graz50 dataset (described below) is presented in �gure 4.5. We use very simple,
binary potentials, which penalize invalid ordering of rectangle classes, like sky under
wall, with in�nite cost. For each image, we run the DD algorithm for 100 iterations,
with a �xed step-size sequence αn = a/

√
n, where n is the number of iterations and

a is a constant. We implemented the algorithm in C++. The running time was
about 4 minutes per single image of the ECP dataset. We run the experiments on
a 6 core Core-i7 processor with 3GHz clock.
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Figure 4.5: A prior used in experiments on the Graz50 dataset. The hierarchy of classes is pre-
sented on the left. The images illustrate interpretation of the classes. They contain segmentations
corresponding to consecutive levels of the hierarchy. Class `l', not used in the presented image
segmentation, models a tile of wall above the door, and is used when windows in the ground �oor
are higher than top door boundary. We use pairwise potentials (not shown in the image) to forbid
con�gurations where there is anything above the sky (class `b') or below the door (class `k').

4.4.1 Performance evaluation on the ECP dataset

We compare the performance of our algorithm to the method of Martinovi¢ et al. [33]
on the ECP dataset [59], described in section 3.7. We use per-pixel costs generated
by a Recursive Neural Network, identical to the one used in this baseline. We also
compare the results against the outcome of graph grammar (GG) parsing on the
same data. For all the comparisons we use the groundruth produced by Martinovi¢
et al. [33]. We follow the protocol used by Martinovi¢ et al. [33], using the results
of RNN made available by the authors. The experiments were performed on �ve
data folds with 60 training, 20 validation and 20 testing images (precisely, since the
dataset contains 104 images, the �rst fold consists of 24 testing images, and the
remaining four of 20 testing images). The RNN was trained on the 60 (resp. 64)
training images of each fold and the validation set was not used in our experiment.
The results are presented in table 4.4. The proposed method achieves better overall
accuracy than the competing methods, even though both the baseline and our graph
grammar-based approach use window detections in addition to RNN output. This
lack of window detections results in the worse accuracy for that particular class.
However, on average the linear programming-based method outperforms the other
algorithms. We attribute the superior performance with respect to the method of
Martinovi¢ et al. [33] to the use of a prior modeling `global' alignment of distant
objects, together with the proposed optimization scheme. Better performance in
comparison to the graph grammar method follows from a richer prior, capable of
modeling doors and balconies that start and end in arbitrary positions along the
facade width (note the slightly better result for balconies in the table). Additionally,
GG su�ers from the necessity to sample facade structure, and if the correct structure
is never drawn, the result is suboptimal. For example, see the failure cases with the
incorrect number of window columns in �gure 3.13.

We also compare the performance of our method to the dynamic programming-
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Table 4.4: Performance on the ECP dataset [59] using RNN-based potentials as de�ned in [33]. The
rows corresponding to classes present class accuracy (the diagonal entries of confusion matrices,
or recall). The bottom row contains total pixel accuracies, that is, the percentage of correctly
classi�ed pixels. Starting from the left, we present the performance of Recursive Neural Network,
then results of the method by Martinovi¢ et al. [33] which combines both the output of RNN and
window, and door detections to obtain the per-pixel scores. In the third column, we present results
of our graph grammar (GG) parsing with use of RNN scores and window detections (see chapter
3), and the last column contains the results the row and column labeling method (RCL) proposed
in this chapter, using RNN-based per-pixel scores.

RNN [33] GG RCL
roof 70 74 85 83
shop 79 93 92 90
balcony 74 70 72 73
sky 91 97 94 92
window 62 75 70 57
door 43 67 0 40
wall 92 88 91 95
pixel accur. 82.6 84.2 84.8 85.5

based approach, proposed by Cohen et al. [9], which achieves state-of-the-art accu-
racy. We perform the comparison on the ECP dataset and against the ground truth
produced by Martinovi¢ et al. [33]. We divide the dataset into �ve folds, the �rst
of which consists of 24 test and 80 training images, and the remaining folds contain
20 test and 84 training images, respectively. The per-pixel energies are obtained
according to the description presented in this baseline paper. They are generated
by a multi-feature extension of TextonBoost, already described in section 3.7. The
results are presented in table 4.5. Our results are similar to the ones presented by
Cohen et al. [9]. This result is expected, as the shape priors used in the two cases
have very similar expressive power and the authors of the baseline algorithm report
that they obtained optimality certi�cates for 80% of the segmentations. Since our
results are also close to optimality, the pixel-wise performance should be in both
cases attributed to the performance of the texture classi�er. The main advantage
of our algorithm is that it can accept any user-de�ned shape prior on input, which
makes it more general with respect to the competing method [9], which hard-codes
the architectural constraints. Besides, our shape prior can express the alignment of
architectural elements in two dimensions, which is beyond the expressive power of
the dynamic programs [9].

4.4.2 Performance evaluation on the Graz50 dataset

The Graz50 dataset [47] is composed of 50 recti�ed images of building facades of
di�erent architectural styles. The facades feature more structural variation than
the ones of the ECP dataset. The set of labels includes four classes: sky, wall,
window and door. Performance on the Graz50 dataset has been tested using the
TextonBoost pixel costs, obtained in the same manner as for the ECP dataset. Five
folds were used and each time the dataset was split into 40 training images and 10
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Table 4.5: Performance on the ECP dataset [59] with per-pixel potentials generated by Texton-
Boost. The rows corresponding to classes present class accuracy (the diagonal entries of confu-
sion matrices, or recall). The bottom rows contain total pixel accuracy. Starting from the left,
we present the results of assigning to each pixel the most probable class according to Texton-
Boost output (TB), results of the dynamic programming-based approach by Cohen et al. [9] using
TextobBoost-based energies, then results of our graph grammar parsing (GG) ,and results of our
row and column labeling-based method (RCL) using the same per-pixel costs.

TB [9] GG RCL
roof 89 90 85 91
shop 95 94 96 95
balcony 90 91 83 90
sky 94 97 96 96
window 86 85 77 85
door 77 79 0 74
wall 90 90 86 91
pixel accur. 90.1 90.8 85.5 90.8

Table 4.6: Performance on the Graz50 dataset [47]. The second and third columns of the table
show class-wise accuracies resulting from the parsing algorithm proposed by Riemenschneider et
al. [47], and the results of our method assigning row and column labels (RCL).

[47] RCL
sky 91 93
window 60 82
door 41 50
wall 84 96
total pixel accur. 78.0 91.8

test images. The results are presented in table 5.4. One reason why our results are
superior to those in [47] is that their method requires a severe subsampling of the
image to be tractable. Our method is more computationally e�cient and can be
run on full-resolution images.

4.5 Conclusion

We have presented a novel approach to grammar-based facade analysis in which
the task of parsing is formulated as an integer program. Our formulation does not
su�er from the curse of procedural exploration, that is typical for existing split
grammar parsers. The proposed inference scheme enables practical application of
more complex priors than the ones used before in experiments with split grammar
parsing [60, 59] and in our graph grammar parsing method. For example, we were
able to get highly accurate segmentations with a grammar modeling balconies that
could be wider than a single window, but not run through the whole width of a
facade. Our method attains the state-of-the-art performance in parsing on the ECP

70



Figure 4.6: Example parsing results on the ECP dataset (top and middle) and on the Graz50
dataset (bottom). Green lines separate sky from roof and roof from facade. Balconies are outlined
in magenta, shops in yellow, and doors in cyan. Note the variety of alignment patterns supported
by the algorithm (top right). Typical errors are missed doors and missed roof windows.
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facade dataset and establishes a new state-of-the-art performance on the Graz50
dataset.

The complexity of the proposed formulation can be seen as a drawback. Learning
how to write prior speci�cations can require some time. This can be problematic
for a practical deployment of the method. The same can be said about studying the
details of the formulation, which is disadvantageous from the point of view of further
development of the proposed framework. Another disadvantage of the formulation
is that priors created according to the speci�ed format have low �exibility. This is
a consequence of the global alignment principle stating that all regions of the same
class should be aligned across the image. Modeling a facade element that is mis-
aligned with other elements of the same type requires introducing a new class. For
example, balconies on di�erent �oors of a Haussmannian building can be vertically
misaligned. This forces us to have �ve di�erent balcony classes, one for each �oor
of the facade. Finally, the running time of around 4 minutes per image also limits
practical applicability of the algorithm.

In the next chapter, we propose an alternative formulation that is free of the
above disadvantages, and keeps most of the advantages of the linear formulation.

Publications

The work presented in this chapter has been published in

Kozi«ski, M., Obozinski, G., Marlet, R. (2014). Beyond Procedural Facade Parsing:
Bidirectional Alignment via Linear Programing. In Proc. 2014 Asian Conference
on Computer Vision (ACCV).
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Chapter 5

A Markov Random Field formulation

of Facade Parsing with Occlusions

5.1 Introduction

In the previous chapter, we have proposed a framework that lifts the curse of struc-
tural exploration from facade parsing. However, the proposed framework su�ered
from a number of disadvantages resulting from a complex mathematical formula-
tion. First, speci�cation of priors required understanding the concept of the tree
of classes, re�ecting the splitting hierarchy, where vertical and horizontal splits al-
ternate. The requirement of global two-dimensional alignment made it di�cult to
specify priors encoding patterns consisting of an unknown number of misaligned
elements (for example, �oors). The complex formulation made the method di�cult
to implement and resulted in long running times during inference. Additionally,
existing frameworks that provide a systematic way for the user to de�ne a shape
prior, and yield segmentations consistent with the prior, are restricted to rectangu-
lar tilings. Furthermore, they are oblivious of occlusions. Even if they recover the
occluded structure correctly, thanks to the prior information encoded in a grammar,
they do not provide a way to segment the occluding object. The latter functional-
ity is helpful, for example, in producing texture for building models produced from
parsing results. For example, when the occluded regions are known, the texture in
these regions can be inpainted using patterns from the non-occluded regions.

In this chapter, we propose a formulation which addresses these limitations. The
key idea behind the new concept is encoding the shape prior in terms of pixel classes
and constraints on classes assigned to neighboring pixels. This encoding enables
formulating inference as �nding the most likely con�guration of a Markov Random
Field (MRF) de�ned over a grid of pixels. Our formulation guarantees conformance
of the resulting segmentations to the shape prior. The prior itself is expressed in a
conceptually simple format. Priors expressed in terms of this new formalism couple
elements of the same class less tightly than the ones presented in chapter 4, allowing
more �exibility. Still, they enable modeling simultaneous alignment in two dimen-
sions. Additionally, we propose a method of modeling elements of irregular shape
and a way of handling occlusions. We model both the boundaries of the occluding
object and the structure of the occluded facade. In a number of experiments, we
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Table 5.1: Comparison of key properties of state-of-the-art facade parsing algorithms. GG: graph
grammar algorithm presented in chapter 3, RCL: the algorithm for row and column labeling pre-
sented in chapter 4, AP: the adjacency pattern method presented in this chapter.

[59] [47] [33] [9] GG RCL AP

User-de�ned shape prior X X � � X X X
Simultaneous alignment in 2D X X X � X X X
No need of image subsampling X � X X X X X
No need of sampling from a grammar � X X X X X X
Occlusions and irregular shapes � � X X � � X

compare the performance of the proposed method to that of other algorithms on
the same per-pixel potentials, showing better segmentations. The method achieves
state-of-the-art results on several facade parsing datasets. The key features of the
proposed framework, compared to the existing ones are summarized in table 5.1.

5.2 Related work

In this section we brie�y review the literature related to the algorithm proposed in
this chapter. Chapter 2 contains a more comprehensive review of existing work on
facade parsing.

The shape prior proposed in this chapter is based on the concept of allowed and
forbidden pairs of vertically and horizontally adjacent pixel classes. Interestingly,
the same principle turned out to be useful for general image segmentation, as shown
by Roy and Todorovic [48]. The input image is �rst oversegmented into superpixels.
Then, a conditional random �eld is constructed over the superpixels. Additional
mutex constraints, de�ned by the user, can be used to prohibit cooccurrence of a
pair of labels in the same image, or occurrence of a certain pair of labels in any
spatial con�guration. The spatial con�gurations used in the experiments include
above-below and left-right. While in the existing algorithm the mutex constraints
can be formulated directly for classes of distant superpixels, in the method proposed
in this chapter long-distance constraints are propagated by means of an auxiliary set
of classes and constraints on classes of immediately adjacent pixels. In the existing
work, a beam search technique, based on random exploration of the space of possible
labelings, is used for inference. In the proposed framework, inference has the form
of the MAP-MRF problem with hard constraints on classes of neighboring pixels.
Finally, in our method the constraints are used to encode vertical and horizontal
alignment, as opposed to enforcing constraints on classes of a pair of superpixels one
of which is roughly to the right or left (above or below) from the other.

We propose to encode the irregular shape of segments, with monotonically in-
creasing or decreasing boundaries, in terms of classes of vertically and horizontally
adjacent pixels. This technique has been exploited by Felzenszwalb and Veksler [12]
for segmenting images that feature a tiered structure, that is, are composed of three
horizontal layers, with irregular boundaries. The middle layer can be subdivided
vertically into a number of object classes. The authors propose an e�cient dynamic
programming algorithm for inference. The demonstrated applications include re-
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covering layout of natural scenes and foreground-background segmentation. The
constraint of the tiered scene structure makes the algorithm unsuitable for facade
parsing.

Bai et al. [2] propose to use the constraints on classes assigned to vertically and
horizontally adjacent pixels to model layout of indoor scenes. The model of a scene
consists of �ve labels: corresponding to the �oor, the ceiling, left and right walls,
and the wall opposite to the camera. The model is based on the observation that,
for example, the left wall has to be above the �oor and below the ceiling. The
authors formulate an e�cient dynamic program for �tting the model to the image.
The �ve-parts model is too limited to be directly useful for facade parsing.

Te problem of �tting the �ve parts model to an image can also be solved using
the order-preserving moves [31]. The algorithm is a move-making method, based on
two di�erent moves, one shifting the labels vertically and the other, which shifts the
labels along the horizontal direction, preserving the prede�ned order constraints.
The authors show that the set of possible moves is larger than in the case of α-
expansion and α-β swap, and therefore the order-preserving moves avoid some local
optima of the latter methods. However, when the labels are supposed to form
a 2D grid, like in the shape prior proposed in this chapter, alternating between
optimization in the two directions is still prone to getting stuck in local optima.
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Table 5.2: Symbols used in this chapter

h image height in pixels; de�ned on page 87
w width of an image in pixels; p. 87
I the set of image row indexes I = {1, . . . h}; p. 85
J the set of image column indexes J = {1, . . . w}; p. 85
I the set of indexes of image pixels, I = I × J ; p. 85
Ih the set of indexes of all image pixels, except for the last column, Ih =

I × (J \ {w}); p. 88
Iv the set of indexes of all image pixels, except for the last row, Iv =

(I \ {h})× J ; p. 88
G a grid pattern; p. 78
C the set of column classes in a grid pattern speci�cation; p. 78
R the set of row classes in a grid pattern speci�cation; p. 78
H the set of pairs of column classes that can be neighbors in an image,

a part of a grid pattern speci�cation; p. 78
V the set of pairs of row classes that can be neighbors in an image, a

part of a grid pattern speci�cation; p. 78
A an adjacency pattern; p. 78
S the set of pixel classes in an adjacency pattern speci�cation; p. 78
V the set of ordered pairs of pixel classes that can be assigned to verti-

cally adjacent pixels; a part of an adjacency pattern speci�cation; p.
78

H the set of ordered pairs of pixel classes that can be assigned to hori-
zontally adjacent pixels; a part of an adjacency pattern speci�cation;
p. 78

Â a hierarchical adjacency pattern; p. 84
N a set of nonterminal pixel classes in a hierarchical adjacency pattern;

p. 84
T a set of terminal pixel classes in a hierarchical adjacency pattern; p.

84
N0 the starting nonterminal class in a hierarchical adjacency pattern; p.

84
P the set of productions in a hierarchical adjacency pattern; p. 84
Desc(s) the set of pixel classes descending from class s in a hierarchical adja-

cency pattern; p. 84
Desc(p) the set of pixel classes descending from production p in a hierarchical

adjacency pattern; p. 84
Ancp(s) the set single ancestor of class s in the hierarchy of adjacency patterns,

in the pattern belonging to production p; it is only de�ned for s ∈
Desc(p); p. 85

O the set of classes of objects that can occlude a facade; p. 86
K the set of semantic classes of facade elements (wall, window, etc.); p.

78
Ψ a mapping assigning each pre-semantic class s ∈ S a semantic class

k ∈ K; p. 78

76



S the set of pairs of pre-semantic and occluder classes, such that an
object of the occluder class can occlude a region of the facade assigned
the pre-semantic class; p. 86

φijκ a cost of assigning a class κ ∈ O ∪K to pixel (i, j); p. 88
θ(σ, σ′) the pairwise cost of assigning classes σ and σ′ to a pair of neighboring

pixels; p. 82
zijσ a variable encoding assignment of class σ to pixel (i, j); p. 88
uijσσ′ a variable encoding assignment of class σ to pixel (i, j) and class σ′ to

pixel (i, j + 1); p. 88
u the vector of all uijσσ′ ; p. 88
vijσσ′ a variable encoding assignment of class σ to pixel (i, j) and class σ′ to

pixel (i+ 1, j); p. 88
v the vector of all vijσσ′ ; p. 88
z′ijσ, z

′′
ijσ copies of the variable zijσ used by the slaves; p. 131

z′, z′′ the vectors of all z′ijσ and z′′ijσ, respectively; p. 131
ẑ′, ẑ′′ the optimal slave arguments
C ′, C ′′ the feasible sets of the slave problems; p. 132
λijσ a dual variable, corresponding to the constraint coupling z′ijσ and z

′′
ijσ;

p. 132
λ a vector of λijσ for all (i, j) ∈ I and all σ ∈ So; p. 132
z̊ijσ a variable encoding the frequency of assignment of class σ to pixel

(i, j); p. 133
z̊ the vector of all z̊ijσ; p. 133
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5.3 Adjacency patterns as shape priors

Simultaneous vertical and horizontal alignments are prevalent in facade layouts. To
encode shape priors expressing such alignments, as well as more complex shapes, we
introduce the notion of adjacency patterns.

5.3.1 From grid patterns to pixel adjacencies

Consider �rst the following simpler case of a shape prior encoding a grid pattern,
which can be speci�ed in terms of column and row classes. We denote the set of
column classes by C and the set of row classes by R. By assigning a column class
c ∈ C to each image column, and a row class r ∈ R to each image row, we implicitly
label each pixel with a pair (r, c) of a row class and a column class. We call such pairs
of row and column classes (r, c) ∈ R× C the `pre-semantic' classes. We de�ne a set
of `semantic' classes K encoding types of facade elements (like wall, window, etc.),
and a mapping Ψ that assigns to each pre-semantic class (r, c) ∈ R× C a semantic
class k ∈ K. For facade parsing it is reasonable to prohibit some combinations
of neighboring row or column classes. For example, segmentations where 'roof' is
above 'sky' can be viewed as invalid. To encode such preferences, we can specify
the set of ordered pairs of column classes that can be assigned to adjacent image
columns H ⊂ C × C, and similarly the set of ordered pairs of adjacent row classes,
V ⊂ R × R. We call a shape prior speci�cation of the form G = (C,R,H,V) a
grid pattern. A simple example of a grid pattern, and a conforming segmentation,
is presented in Figure 5.1.

We now introduce an alternative encoding of shape priors. We are going to show
later that it is capable of expressing grid patterns as well as many more general,
interesting priors. We de�ne an `adjacency pattern' as a triple A = (S, V,H) where
S is a �nite set of (pre-semantic) classes, and V ⊂ S × S and H ⊂ S × S are
sets of ordered pairs of classes that can be assigned to vertically and horizontally
adjacent pixels. The condition (s1, s2) ∈ V expresses that a pixel of class s1 can be
immediately below a pixel of class s2. Similarly, the condition (s1, s2) ∈ H allows a
pixel of class s1 to be immediately to the left from a pixel of class s2. An ordered
pair of labels (s1, s2) /∈ H cannot be assigned to a pair of horizontally adjacent pixels
in such a way that the left pixel is given class s1 and the right pixel receives class s2.
The same holds for any pair of vertically adjacent pixels and ordered pairs of classes
that do not belong to V . An adjacency pattern speci�cation and a corresponding
image segmentation is illustrated in Figure 5.2.

For any grid pattern shape prior, G = (C,R,H,V) there exists an adjacency
patternA = (S, V,H) encoding the same set of shapes. In the following, we construct
an adjacency pattern equivalent to a given grid pattern. We de�ne the set of pre-
semantic pixel classes as S = R × C. In consequence, the sets of classes assigned
to image pixels are the same for both types of priors. We de�ne the sets V and
H in such a way to enforce the same structure on the possible labelings as the one
resulting from the grid pattern formulation. We enforce that the rows of a labeling
conforming to the adjacency pattern are valid rows of the grid pattern by requiring
that each two horizontally adjacent pixels receive classes with the same row-class

78



R = {A,B},
C = {1, 2},

Ψ(A, 1) = window,

Ψ(A, 2) = wall,

Ψ(B, 1) = wall,

Ψ(B, 2) = wall,
V = {(A,A), (B,B), (A,B), (B,A)},
H = {(1, 1), (2, 2), (1, 2), (2, 1)}.

Figure 5.1: Left: grid-shaped segmentation, where row and column labels induce a pixel labeling.
Right: speci�cation of the corresponding grid pattern using row and column classes.

(A, 1) = a,

(A, 2) = b,

(B, 1) = c,

(B, 2) = d.

a b

c d

horiz. neighbors
h � a b c d
a + + � �
b + + � �
c � � + +
d � � + +

vert. neighbors
v � a b c d
a + � + �
b � + � +
c + � + �
d � + � +

Figure 5.2: Left: the mapping from pairs of row and column classes, de�ned in �gure 5.1, to pixel
classes. Middle-left: the segmentation from �gure 5.1 labeled in terms of pixel classes. Right:
Speci�cation of the grid pattern using pairs of classes that can be assigned to vertically and
horizontally adjacent pixels (`+' denotes an allowed adjacency, `�' a forbidden one).
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component. We do the same thing for vertically adjacent pixels and the column-class
component of pixel classes. We reformulate the constraints on the allowed classes
of adjacent rows in terms of the row-class components of classes assigned to each
two vertically adjacent pixels. We denote the row-class component of a pixel class
s = (r, c) by rs = r and its column-class component by cs = c. The sets of allowed
classes of adjacent pixels are de�ned as follows:

V =
{

(s1, s2)|cs1 = cs2∧
(
rs1 , rs2

)
∈ V

}
and (5.1a)

H =
{

(s1, s2)|rs1 = rs2∧
(
cs1 , cs2

)
∈ H

}
. (5.1b)

We state the equivalence of the two priors formally below.

Lemma 2. Consider a shape prior encoded as a grid pattern G = (C,R,H,V), as
de�ned in section 5.3.1. An adjacency pattern A = (S, V,H), where S = C ×R and
V and H are de�ned according to (5.1), encodes a prior that is equivalent to the
grid pattern. That is, the set of image labelings that conform to the grid pattern G
is the same as the set of labelings that conform to the adjacency pattern A.

Proof. First we prove that if a segmentation is consistent with the grid pattern it is
also consistent with the adjacency pattern. We need to show that, in a segmenta-
tion consistent with the grid pattern, classes of pairs of vertically and horizontally
adjacent pixels belong to V and H, respectively. This follows directly from (5.1).

Next, we show that if a segmentation is not consistent with the grid pattern, then
it is necessarily not consistent with the adjacency pattern. There are two possible
ways in which a segmentation can be inconsistent with a grid pattern: (1) a row of
the segmentation contains two pixels labeled (r, c) and (r′, c′) where r 6= r′, or (2)
row classes r and r′ are assigned to neighboring rows, while (r, r′) /∈ V . Analogical
conditions can be presented for columns. Condition (1) implies that there exists
a sequence of horizontally adjacent pixels, labeled s1, . . . sn, where s1 = (r, c) and
sn = (r′, c′). In consequence there is at least one pair of horizontally adjacent
pixels in the sequence that receive classes sa = (ra, ca) and sb = (rb, cb), such that
ra 6= rb and, according to (5.1), (sa, sb) /∈ H. Therefore the segmentation is not
consistent with the adjacency pattern. Condition (2) implies that there exists a
pair of vertically neighboring pixels, labeled s1 = (r1, c1) and s2 = (r2, c2) such that
(r1, r2) /∈ V , and therefore (s1, s2) /∈ V according to (5.1) and the segmentation is
inconsistent with the adjacency pattern.

In practice, the number of allowed adjacencies is small: |V |, |H| � |S|2. If
necessary, the tables V,H can thus be encoded as sparse matrices. Note that these
vertical and horizontal adjacencies actually correspond to the transitions of two non-
deterministic �nite automatons, de�ning languages of strings of pixel labels that can
occur on a column or row of pixels. However, the two automatons are coupled in
that all rows and columns must agree, i.e., neighboring pixel compatibility has to
be valid both vertically and horizontally.

Adjacency patterns happen to be more general than grid patterns in that they
can model more complex segmentations (see Section 5.3.2) as well as occlusions (see
Section 5.5).
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(d) Fixed pattern on grid with monotonous boundaries

Figure 5.3: Examples of shape patterns and corresponding horizontal and vertical compatibility
tables for neighboring pixel classes: `+' denotes a pair of allowed neighbors in this order, `�' denotes
forbidden pairs.

5.3.2 Handling complex patterns and boundaries

In real images, the boundaries between some semantic classes, like 'roof' and 'sky',
are often irregular and cannot be modeled by straight axis-aligned line segments.
A wide class of priors expressing patterns with such complex boundaries can be
encoded in terms of an adjacency pattern by properly designing the sets of allowed
neighbor classes, V and H. Several examples are given in Figure 5.3. They can be
thought of as an alphabet of basic adjacency patterns.

Figure 5.3a recalls the pattern already shown in Figure 5.1: it is a repetition
pattern on a grid with straight, axis-aligned boundaries. The height and width of
rows and columns can vary. It can be used to model, e.g., a grid of windows on a
background of wall.

Figure 5.3b represents a �xed pattern on a grid with straight axis-aligned bound-
aries. The di�erence with respect to the previous case is that here the prior does
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not allow for repetition of the alternation of classes. For example, looking at the
pattern from left to right, a transition of class `a' to `b' is possible, but a transition
from `b' to `a' is not.

As shown on Figure 5.3c, these straight borders can be turned into irregular
winding boundaries by allowing a controlled interpenetration of classes. For in-
stance, on a horizontal line, an `a' can now be followed by a `c' and then again by
an `a', but a `b' on this line still cannot be preceded by `c'.

Figure 5.3d displays another variant where monotonicity is imposed to a bound-
ary, to represent a rising and a descending border. Such a pattern can be used to
model a roof, which is expected to have an ascending slope in the beginning and a
descending slope at the end. It can also be used to model a chimney on a roof.

Note that, when used for encoding priors for patterns with non-linear, winding
boundaries, adjacency patterns are limited to patterns where symmetric pairs of
classes cannot be assigned to neighboring pixels. Allowing both (a, b) and (b, a) to
be classes of vertically, or horizontally neighboring cells, with a winding boundary
in between, would result in the sets V and H containing all possible con�gurations
of these two classes. Such an adjacency pattern would then merely express any
combination of a and b. However, this limitation does not substantially constrain
the scope of applications of the proposed model, as the irregular boundaries do not
form full grids in facade images (for example, the sky-roof boundary appears only
once in a facade).

5.3.3 General Remarks on Adjacency Patterns

Adjacency patterns can easily be extended to constrain classes that appear at the
boundary of the whole image, for example, to impose that a properly cropped fa-
cade can start with 'wall' or 'sky', but not 'window'. Priors modeling regions of
minimum height or width m can also be de�ned by introducing classes a1, . . . , am
and forbidding all adjacencies but from ai to ai+1. Similarly, a maximum height or
width can be imposed by also allowing adjacencies from any ai to any class that
can follow am. However, the number of required classes with this encoding increases
linearly with the minimum or maximum size.

Theoretically it is possible to construct adjacency patterns (and grid patterns
as well) expressing priors for which there is no conforming labeling of an image of
particular size. A trivial example is H = V = ∅, in which case only labelings of size
one by one pixel can be consistent with the adjacency pattern. However, this aspect
is of limited practical importance. It is enough that there exists a class s ∈ S such
that (s, s) ∈ V and (s, s) ∈ H to guarantee existence of a labeling consistent with
the adjacency pattern (where all pixels are labeled s), independently of image size.

5.3.4 Soft penalties on pairs of classes of adjacent pixels

It may also be bene�cial to consider a pairwise term penalizing frequent transitions
between classes, to limit noise in the resulting segmentations and to express soft
preference for some segmentations over the others. We denote this pairwise potential
by θ : S×S → R, where R is the set of real numbers. The potentials can be learned
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using the structured learning approach [25]. In our experiments we assume the Potts
form of the pairwise potentials and we set the penalty for assigning di�erent classes
to neighboring pixels using grid search.

5.4 Hierarchical adjacency patterns

A formalism of shape priors encoding a single grid pattern would not feature a
practical-enough expressive power for the task of facade parsing. The layout of fa-
cade elements is usually more complex than a grid. Encoding patterns containing
multiple misalignments by means of a single grid requires a number of pixel classes
that grows exponentially with the number of vertically and horizontally misaligned
objects. This is because each transition between semantic classes, that impacts the
semantic labeling only locally, has to extend through the whole image, `cutting' ob-
jects located in other parts of the image into subrectangles of di�erent pre-semantic
classes. This e�ect is illustrated in the left part of �gure 5.4.

I II

IVIII

C

D

E

F

III

B

C

D

E

A

IVIII

Figure 5.4: Left: modeling a pattern with vertical misalignment as a single grid requires each
column class to encode the type of both the element occupying the lower part of the column and
the element occupying its upper part: I≈(wall, roof), II≈(window, roof), III≈(wall, attic window),
IV≈(window, attic window). The number of resulting pixel classes (20 in the depicted case) is
exponential in the number of misalignments. Right: a hierarchical grid model, where cells of a
coarser grid (green) are further subdivided into �ner grids (red), results in a set of terminal pixel
classes of cardinality (10 in the example) linear in the number of misalignments.

To address this issue, one could de�ne a hierarchy of nested grids, where a cell
of a coarse grid can be further subdivided into a �ner grid. We propose to model
complex shapes using a hierarchy of adjacency patterns. Transition between levels
of the hierarchy is realized by mapping pre-semantic pixel classes of an adjacency
pattern on a coarser level of the hierarchy to other adjacency patterns on a �ner
level. The concept is that a connected region of pixels that received the same pixel
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Figure 5.5: A hierarchy of adjacency patterns and a segmentation conforming to the prior encoded
by the hierarchy. Large, circled nodes correspond to pixel classes. Small, �lled nodes correspond
to adjacency patterns. Productions are marked next to arrows that represent the mapping from
pixel classes to adjacency patterns. The initial nonterminal N0 is omitted in the illustration on
the right. Note that the hierarchy on the left encodes a structural alternative. The roof a can be
developed in two alternative ways, by production p2 or production p3. Only an application of p2
is pictured on the right. The grid pattern corresponding to p3, is not represented here.

class can be further segmented using a prior encoded by the adjacency pattern to
which the class is mapped. We discriminate between nonterminal and terminal pixel
classes, the �rst of which are mapped to adjacency patterns at a �ner scale, and the
second terminate the hierarchy. Only the terminal classes are present in the �nal
segmentation. A hierarchical adjacency pattern is a quadruple Â = (N , T , N0,P)
where N is a �nite set of nonterminal classes, T is a �nite set of terminal classes,
disjoint from N , N0 ∈ N is the start symbol and P is a set of production rules of
the form p = Np → Ap where Np ∈ N and Ap = (Sp, Vp, Hp) is an adjacency pattern
such that Sp ⊂ N ∪ T . Additionally, we impose that the productions contain no
cycle and that the sets of pixel classes in each adjacency pattern Ap are all disjoint.
More formally,

∀s ∈ T ∪ N \ {N0}, ∃!p ∈ P such that s ∈ Sp . (5.2)

The concept of the hierarchy is illustrated in the right part of �gure 5.5.
In order to formalize the notion of conformance of a labeling to a hierarchical

adjacency pattern Â, we �rst introduce the concept of ancestor-descendant relation
in the hierarchy. We say that a pixel class a descends, or is derived from a nonter-
minal pixel class b on a coarser level of the hierarchy, if a belongs to an adjacency
pattern which is used to subdivide a region of class b. The notion can be extended
to relations across many levels of the hierarchy. We de�ne the set of descendants of
a terminal class as a singleton set containing this class. The set of descendants of a
nonterminal class N contains terminal classes of the adjacency patterns to which the
nonterminal is mapped, and descendants of all the nonterminals of these adjacency
patterns. We recall that productions p ∈ P are of the form p = Np → (Sp, Vp, Hp).
Formally, the set of descendants of class s is de�ned as

Desc(s) =

{
{s} if s ∈ T⋃
p∈P s.t. Np=s

(
(Sp ∩ T ) ∪

⋃
s′∈Sp∩N Desc(s′)

)
if s ∈ N

. (5.3)
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The recursion in the above de�nition always terminates, because according to (5.2)
there are no cycles in the hierarchy of adjacency patterns. Similarly, we can de�ne
the descendants of a production p ∈ P as

Desc(p) =
⋃
s∈Sp

Desc(s) . (5.4)

A class s that descends from a production p necessarily has an ancestor class in the
adjacency pattern of that production, denoted Ancp(s)

Ancp(s) = s′ s.t. s′ ∈ Sp ∧ s ∈ Desc(s′) . (5.5)

We now formalize the notion of conformance of a segmentation to a hierarchical
adjacency pattern. We require that for each production p, each region of the labeling
that contains only classes descending from that production s ∈ Desc(p), conforms to
the adjacency pattern of that production Ap. We denote the set of pixels, represented
as pairs (i, j), where i indexes an image row and j indexes an image column, by I.
The set of pairs of pixel indexes excluding the last column is denoted by Ih, and
the set of pairs of row and column indexes without the last row by Iv. We denote
the class assigned to pixel (i, j) ∈ I as sij. The conformance conditions can be
formulated as

∀(i, j) ∈ Ih, ∀p ∈ P , sij, sij+1∈Desc(p) =⇒
(
Ancp(sij),Ancp(sij+1)

)
∈Hp , (5.6a)

∀(i, j) ∈ Iv, ∀p∈P , sij, si+1 j ∈ Desc(p) =⇒
(
Ancp(sij),Ancp(si+1 j)

)
∈Vp . (5.6b)

A hierarchical adjacency pattern can be represented as a simple adjacency pat-
tern over the terminal classes of the hierarchical adjacency pattern. The hierarchical
representation is more convenient when the pattern is speci�ed by a human user,
because it requires de�ning a lower number of constraints on the classes of adjacent
pixels. Two matrices of allowed neighboring classes need to be de�ned for each ad-
jacency pattern in the hierarchy, but the number of classes in each of the patterns
is normally low. To the contrary, a single adjacency pattern encoding the prior
requires specifying matrices of the size of number of terminal classes squared.

Given Â=(N , T , N0,P), a hierarchical adjacency pattern, we now explain how
to transform it into an equivalent, �attened adjacency pattern A = (S, V,H). The
set of classes of the �attened adjacency pattern is equal to the set of terminal classes
of the hierarchical pattern

S = T . (5.7)

The de�nition of the sets of pairs of classes that can be assigned to vertically and
horizontally adjacent pixels, V and H, follows directly from the conformance condi-
tions (5.6).

V =
{

(s1, s2) ∈ T 2 | ∀p ∈ P s.t. s1, s2 ∈ Desc(p)(
Ancp(s1),Ancp(s2)

)
∈ Vp

}
(5.8a)
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H =
{

(s1, s2) ∈ T 2 | ∀p ∈ P s.t. s1, s2 ∈ Desc(p)(
Ancp(s1),Ancp(s2)

)
∈ Hp

}
. (5.8b)

Representing the shape prior of all the presented types, including one encoded
by a hierarchical adjacency pattern, in the form of a �attened adjacency pattern
A = (S, V,H) enables formulating the inference in terms of the MAP-MRF problem,
as shown in section 5.7.

5.5 Handling occlusions

Occlusions are omnipresent in urban scenes. For facade parsing, the most common
occlusions are by trees and lamp posts. Lower parts of facades can also be occluded
by other types of vegetation, street signs, cars and pedestrians. Vegetation can be
found on balconies and window ledges too.

Given an adjacency pattern A = (S, V,H), we consider a set of semantic classes
of occluding objects O, disjoint from the set of pre-semantic classes S and from the
set of semantic classes of facade elements K. A pixel representing a non-occluded
part of the facade should be assigned the semantic class k ∈ K determined by the
mapping Ψ from its `pre-semantic' class s ∈ S. In case of occlusion, the pixel should
be assigned the class of the occluding object o ∈ O, which cannot be determined
from its `pre-semantic' class. However, we observe that only a small number of
combinations of occluder and pre-semantic classes is semantically meaningful. For
example, pedestrians and cars can only occlude the lower part of a facade, but
not the roof. We represent the semantically meaningful pairs of classes by a set
S ⊂ S ×O.

A prior of hierarchical grid patterns with occlusions can be formulated in terms of
allowed transitions between classes of vertically and horizontally neighboring pixels,
by means of an adjacency pattern Ao = (So, Vo, Ho) de�ned as follows. Each pixel
class σ ∈ So has a `pre-semantic' and a `semantic' component σ = (s, κ), where s ∈ S
and κ ∈ (O ∪ K). The set So ⊂ S × (O ∪ K) consists of semantically consistent
pairs, i.e., such that either the pixel is not occluded and then κ = Ψ(s), or the pixel
is occluded and then (s, κ) ∈ S. More formally,

So = {(s,Ψ(s))|s ∈ S} ∪S . (5.9)

This practically limits the number of classes. In our experiments, the number of
classes never increased by a factor of more than 2.5, compared to the model without
occlusions. The sets Vo and Ho of ordered pairs of classes that can be assigned
to vertically and horizontally adjacent pixels are determined by the pre-semantic
components of the classes. We de�ne the pre-semantic components of a class σ ∈ So,
σ = (sσ, κσ), as s(σ) = sσ. The sets of classes that can be de�ned to adjacent pixels
can be de�ned as

Vo =
{

(σ1, σ2)|σ1, σ2 ∈ So,
(
s(σ1), s(σ2)

)
∈ V

}
, (5.10a)

Ho =
{

(σ1, σ2)|σ1, σ2 ∈ So,
(
s(σ1), s(σ2)

)
∈ H

}
. (5.10b)
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The pairwise potential for an adjacency pattern with occlusions is denoted θo :
So × So → R, where R is the set of real numbers. The mapping of pixel classes to
semantic or occluder classes for the pattern with occlusion becomes Ψo(σ, κ) = κ.

5.6 Relation to Split Grammars

In this section, we discuss the expressive power of split grammars, as applied to
facade parsing by Teboul et al., [60, 59], and the expressive power of adjacency
patterns. Adjacency patterns can encode priors expressing hierarchical rectangu-
lar tilings. By a hierarchical rectangular tiling we understand a segmentation that
can be obtained by subdividing the initial image into a grid and then, recursively,
subdividing each of the grid cells in a similar fashion. Split grammars were intro-
duced in more detail in section 2.1.2. From a theoretical point of view, they can
be considered context-free grammars, and therefore their expressive power is larger
than that of adjacency patterns. For example, a context free grammar can encode
structural symmetries (for example a recursion A→ BAB produces patterns of type
BBABB, with equal number of Bs on both sides of A). Encoding such segmentations
in terms of adjacency patterns requires auxiliary pre-semantic classes for encoding
the depth of recursion, which makes it impractical for a large number of B's and
which is limited to the case where the number of B's is bounded. However, in
practice, the split grammars that were successfully used for image parsing actually
generate regular languages rather than context-free languages and thus, they can
be represented as adjacency patterns. As shown in the experiments section, our
priors actually encode much more complex patterns than the ones shown to work
with existing split grammar frameworks. This is due to the fact that our formula-
tion lends itself to an optimization scheme that is more e�ective than a randomized
exploration of the space of grammar alternatives, used with split grammars. The
proposed optimization algorithm is presented in section 5.8.

The split grammar parsing framework [60, 59] enables encoding the size of facade
elements. Encoding size constraints using adjacency patterns requires an impracti-
cally large number of pre-semantic classes, equal to the size of the object in pixels.

Although we do not encode absolute element sizes in the framework of adjacency
patterns, we can address the problem of frequent transitions between classes, result-
ing from noisy pixel classi�cation, by penalizing the transitions with a positive cost.
The mechanism can be used not only to prevent segments of small sizes, but also to
express preference on some facade patterns over the others.

We also demonstrated that, under mild assumptions, adjacency patterns can
model priors expressing segmentations where the boundaries between elements can
take irregular shapes (as opposed to axis aligned straight line segments). Such a
mechanism was never demonstrated to work with split grammars.

5.7 Optimal segmentation model

In this section we propose a formulation of the optimal image segmentation that
conforms to an adjacency pattern. We denote image height and width by h and
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w, the set of image row indexes I = {1, . . . h}, the set of image column indexes
J = {1, . . . w}, and the image by I = I × J . We encode the assignment of a class
σ ∈ So to each pixel (i, j) ∈ I by variables zijσ ∈ {0, 1}, where zijσ = 1 if σ is the
class assigned to pixel (i, j) and zijσ = 0 otherwise. To enforce the satisfaction of the
constraints on classes of neighboring cells, we also introduce variables vijσσ′ ∈ {0, 1}
and uijσσ′ ∈ {0, 1}, modeling assignment of pairs of classes to pairs of vertically and
horizontally neighboring pixels. More precisely, uijσσ′ = 1 if pixel (i, j) is assigned
class σ and pixel (i, j + 1) is assigned class σ′, and uijσσ′ = 0 otherwise. The
variables vijσσ′ have similar interpretation and encode assignment of pairs of classes
to vertically neighboring pixels. We denote the vectors of all zijσ, uijσσ′ , vijσσ′ as
z, u, v, respectively. The goal is to �nd an assignment that minimizes the sum of
costs φijκ of assigning a class κ ∈ O ∪ K to each pixel (i, j) ∈ I, and the costs
θo of assigning pairs of classes to pairs of adjacent pixels, and satis�es the hard
constraints on classes of adjacent pixels. We denote the set of all pixels except for
the last row by Iv = (I \ {h})× J , and the set of all pixels without the last column
by Ih = I × (J \ {w}). The energy minimization takes the form

min
z,v,u

∑
(i,j)∈I
σ∈So

φijΨo(σ)zijσ +
∑

(i,j)∈Iv
σ,σ′∈So

θo(σ, σ
′) vijσσ′ +

∑
(i,j)∈Ih
σ,σ′∈So

θo(σ, σ
′)uijσσ′ . (5.11)

We require that exactly one class is assigned to each pixel,

∀(i, j) ∈ I,
∑
σ∈So

zijσ = 1 . (5.12)

We impose consistency between variables encoding pixel labels and pairs of labels
of adjacent pixels

∀(i, j) ∈ Iv, ∀σ ∈ So,
∑
σ′∈So

vijσσ′ = zijσ,
∑
σ′∈So

vijσ′σ = zi+1 jσ′ , (5.13)

∀(i, j) ∈ Ih, ∀σ ∈ So,
∑
σ′∈So

uijσσ′ = zijσ,
∑
σ′∈So

uijσ′σ = zij+1σ′ . (5.14)

We constrain the pairs of neighboring classes according to:

∀(i, j) ∈ Iv,∀(σ, σ′) /∈ Vo, vijσσ′ = 0 , (5.15a)

∀(i, j) ∈ Ih,∀(σ, σ′) /∈ Ho, uijσσ′ = 0 . (5.15b)

The presented model resembles a linear formulation of the most probable con�g-
uration of a Markov Random Field [68]. Although the presence of hard constraints
on classes of neighboring pixels di�erentiates the problem from a standard MRF
over a pixel grid, frequently used in computer vision, a number of algorithms used
for solving the MAP-MRF problem could be applied to approximate the optimal
solution to our problem.

5.8 Inference

To solve problem (5.11-5.15) we adopt the dual decomposition approach [26, 54],
outlined in appendix B. We relax the constraints on binary domain of variables zijσ,
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uijσσ′ and vijσσ′ , obtaining a large linear program. To solve it e�ciently, we transform
the original objective to a sum of easy to optimize functions and formulate a dual
problem that can be solved by iteratively solving the simple objectives. We adopt the
most standard decomposition of a 4-connected grid into Markov chains over image
rows and columns. The resulting subproblems can be solved independently and
e�ciently using the Viterbi algorithm. Our implementation of the Viterbi algorithm
exploits the hard constraints on classes of adjacent pixels to obtain a signi�cant
speedup over the generic version of the algorithm. From the solution to the dual
problem, we extract a primal, binary solution that satis�es the hard constraints. We
present a detailed derivation of the complete inference algorithm in appendix D.

5.9 Experiments

We evaluated the accuracy of our algorithm in segmenting facade images on a wide
range of datasets and for unary terms of various quality. We emphasize that our
goal is not to establish a new state-of-the-art performance by using more accurate
classi�cation algorithms, better features, or better detections. Instead we demon-
strate that the proposed optimization scheme leads to better segmentations given
the same bottom-up cues. Moreover, we show that imposing the structural con-
straints improves parsing results, while previous work [33] suggested that structural
correctness comes at a cost of decreased accuracy.

Convergence and duality gap. The algorithm operates on the dual problem,
yielding a lower bound on the optimal energy. The gap between the dual energy and
the energy of the primal binary solution can be seen as a measure of suboptimality
of the obtained solution. We analyze the performance of the algorithm on the ECP
dataset [59] against the ground truth produced by Martinovi¢ et al. [33]. For each
image of the test set, we record the dual energy in each iteration of the algorithm. We
normalize the dual energies with respect to the energy of the �nal primal solution.
We present the statistics in �gure 5.6. For a vast majority of the images, the primal-
dual gap is not more than 0.2% of the �nal energy. To verify to what percentage of
mislabeled pixels the number corresponds, we performed an experiment in which we
randomly relabeled a fraction of pixels in the solution obtained by our algorithm and
observe the resulting change in the energy. The result of our experiment indicates
that an increase of the �nal energy by 0.2% roughly corresponds to randomly �ipping
the labels of 0.2% pixels.

Performance on the ECP dataset. We apply our method to the ECP dataset
[59], consisting of 104 images of Haussmannian building facades. We use the ground
truth annotations proposed by Martinovi¢ et al. [33]. To obtain the per-pixel energies
we apply the procedure described in Cohen et al. [9]: a multi-feature extension of
TextonBoost implemented by Ladický et al. [29]. We describe the procedure in
section 3.7. Due to smoothness of the texture classi�cation, in this experiment we
do not use the pairwise potentials. We use a highly �exible prior, where balconies
can begin and end in any position along the facade (but need to enclose at least
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Figure 5.6: Statistics of the ratio of dual energy to the �nal primal energy with respect to iteration
number. Experiment performed on the ECP dataset.

one window). The balconies can also have two di�erent heights, corresponding to
the small barriers usually limited to a single window and larger balconies. We use
irregular boundaries to model ascending and descending parts of the roof, at the ends
of the facade. The windows in the topmost �oor can be misaligned vertically with the
rest of the facade, in which case they are aligned with the attic windows. The used
adjacency pattern has about 80 pre-semantic classes. In �gure 5.7, we show an image
of the ECP dataset, its segmentation into pre-semantic classes and the segmentation
after mapping the pre-semantic classes to semantic classes. Qualitative results of
the experiment are illustrated in �gure 5.8.

As shown in table 5.3, we outperform by a small margin state-of-the-art methods
that use the same unaries. Additionally, our algorithm can accept user-de�ned
shape priors, while [9] has hard-coded constraints. An advantage over the row
and column label-based (RCL) formulation presented in chapter 4 comes from a
more precise prior, modeling for example the irregular roof boundaries and di�erent
balcony heights on the same �oor. We also outperform the RCL method in terms of
running time: 100 iterations of algorithm 5 takes less than 30 seconds (with a CPU
implementation running on a 3GHz Core-i7 processor), compared to 4 minutes in
the latter case.

For a fair comparison with the results of the work by Martinovi¢ et al. [33], we
perform another experiment on the ECP dataset using the same bottom-up cues as
in their paper (kindly made available by the authors): the output of a Recursive
Neural Network [53], which is less accurate than TextonBoost. The testing protocol
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Figure 5.7: An image of the ECP dataset [59] (left), its segmentation into pre-semantic (middle)
and semantic classes (right). The complex pattern of windows and balconies exempli�es the high
expressive power of the proposed prior formalism.

Table 5.3: Performance on the ECP dataset with two kinds of unary potentials: using a Recursive
Neural Network [53] and using a variant of TextonBoost [29]. The rows corresponding to classes
present class accuracy. The bottom rows contain average class accuracy and total pixel accuracy.
In columns, starting from left: performance of the raw RNN classi�er; result of [33]; result of
the graph grammar parsing algorithm (GG) presented in chapter 3, using the same unaries and
window detections; results of the row and column labeling (RCL) algorithm presented in chapter 4,
with the same unaries; our result for the same unaries with adjacency patterns (AP); performance
resulting from classifying each pixel independently using the TextonBoost scores; results of Cohen
et al. [9]; results of the graph grammar parsing algorithm (GG) of chapter 3 with the same unaries
and window detections, as described in chapter 3; results of algorithm for row and column labeling
(RCL) presented in chapter 4; results of the proposed adjacency pattern-based formulation (AP).

RNN unaries TextonBoost unaries
raw [33] GG RCL AP raw [9] GG RCL AP

roof 70 74 85 83 78 89 90 85 91 91
shop 79 93 92 90 90 95 94 96 95 97
balcony 74 70 72 73 76 90 91 83 90 91
sky 91 97 94 92 94 94 97 96 96 97
window 62 75 70 57 67 86 85 77 85 87
door 43 67 0 40 44 77 79 0 74 79
wall 92 88 91 95 93 90 90 86 91 90
pixel accur. 82.6 84.2 84.8 85.5 86.2 90.1 90.8 85.5 90.8 91.3

is the same as used by Martinovi¢ et al. [33] and consists in creating �ve folds of a
training, validation and test set. The �rst fold contains 60 training, 20 validation and
24 testing images. The remaining four folds contain 64 training, 20 validation and
20 testing images. For this experiment we use a simple pairwise Potts potential. We
set the o�-diagonal entries of pairwise cost tables to 0.5, a value determined by grid
search on the validation data set. Qualitative results are presented in �gure 5.8, and
the resulting accuracies can be found in table 5.3. We outperform the baseline [33],
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even though their segmentation is obtained using detections of windows, balconies
and doors in addition to RNN. The in�uence of the detections on the performance
of the baseline can be seen on results for the window and door class, for which the
baseline outperforms our algorithm. Besides, our algorithm guarantees the semantic
correctness of the segmentations, while the baseline aligns facade elements only
locally and can yield, for example, balconies ending in the middle of a window.

Performance on the Graz50 dataset. The Graz50 dataset [47] contains 50
images of various architectural styles labelled with 4 classes. We compare the per-
formance of our algorithm to the method of Riemenschneider et al. [47] and to the
method based on row and column labels (RCL) presented in chapter 4. As in the
case of the ECP dataset, we use the TextonBoost (TB) to get unaries. Again, we
do not use the pairwise potentials due to smooth output of the texture classi�er.
We note that Riemenschneider et al. use a di�erent kind of per-pixel energies, ob-
tained by means of a random forest classi�er. On the other hand the energies used
in the row and column labeling (RCL) approach of chapter 4 are the same as in
our algorithm. As shown in table 5.4, our algorithm outperforms the state of the
art and yields shorter running times: less than 30 seconds per image compared to
4 minutes for the row and column label-based method. As the dataset does not
contain irregular boundaries between facade elements, the increased accuracy can
be attributed to a di�erent formulation of the optimization problem, which is solved
more e�ciently.

Table 5.4: Results on the Graz50 dataset. The second column shows class-wise accuracy for results
reported by Riemenschneider et al. [47]. The third column contains results of the row and column
labeling approach (RCL) presented in chapter 4. The last column contains the results of the
adjacency pattern (AP) formalism, presented in this chapter.

Graz50
[47] RCL AP

sky 91 93 93
window 60 82 84
door 41 50 60
wall 84 96 96
average 69.0 80.3 83.5
pixel accur. 78.0 91.8 92.5

Performance on the ENPC dataset The ENPC dataset [16] consists of 80
images of facades of Art-Deco architectural style. We run the experiments on four
folds of 20 testing and 60 training images. Again, we use the TextonBoost-based
unary potentials. We use Potts form of pairwise potentials penalizing transitions
between di�erent classes with a �xed coe�cient, determined by grid search on a
subset of the training set. Many images of this dataset contain facades occluded by
trees. The facade themselves feature more structural complexity than the ECP or
Graz50 datasets. The results are presented in table 5.5 and �gure 5.10. We use two
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Figure 5.8: Example triplets of parsing results with adjacency patterns: original image (�rst of each
three images), result of per-pixel classi�cation (second image), parsing result (third image). The
�rst two rows present results obtained using the TextonBoost potentials, the third and fourth rows
contain results obtained using RNN. The last row contains examples of inaccurate segmentations
(note that in the last segmentation there is a very thin line of windows between the two topmost
balconies).
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Figure 5.9: Example triplets of parsing results on Graz50 dataset [47] with TextonBoost potentials,
using the adjacency pattern. The images in each triplet are arranged in the following order: original
image, result of per-pixel classi�cation, parsing result. The last row is an example of inaccurate
segmentation.
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Table 5.5: Results on the ENPC dataset. The �rst pair of columns contains accuracies resulting
from classifying the pixels independently, for only the semantic classes (raw-s) and for both semantic
and occluder classes (raw-o). The last two columns contain results of our parsing algorithm (both
using the classi�er with occlusions, `raw-o'): the extracted facade structure (AP-struct) and the
segmentation in terms of semantic and occluder classes (AP-occlud). The two results are evaluated
using di�erent, problem-speci�c variants of the ground truth.

Art-Deco
raw-s raw-o AP-struct AP-occlud

roof 82 82 81 82
shop 96 95 97 97
balcony 88 87 82 87
sky 97 97 98 97
window 87 85 82 82
door 64 63 57 57
wall 77 87 89 88
vegetation � 90 � 90
pixel accur. 83.5 88.4 88.8 88.8

ground truth annotations, one that is oblivious of occlusions and only represents
facade structure (even in image regions which represent the occluding tree), and
another one, where occluding objects are segmented as well. When not modeling
the appearance of occluding objects, the raw pixel classi�cation in the occluded
regions is poor, resulting in lower overall accuracy. This result is presented in the
second column (raw-s) in table 5.5. Explicitly modeling occlusions enable recovering
both the image segmentation, including the boundaries of the occluding object (the
fourth column of the table, marked `AP-occlud'), and the structure of the occluded
facade (the third column of the table, marked `AP-struct').

Performance on the eTrims dataset. We also tested our algorithm on the
challenging eTrims dataset [27], consisting of 60 images of facades of di�erent styles.
We perform a 5-fold cross validation as in the experiments of Martinovi¢ et al. [33]
and the experiments performed by Cohen et al. [9], and each time the dataset is
divided into 40 training and 20 testing images (the test sets for di�erent folds are
not disjoint). We use per-pixel energies generated by a Recursive Neural Network,
like in the work cited above. We assume the Potts model of pairwise potentials, with
the parameter determined by grid search on a subset of the training set. The results
are presented in table 5.6 and �gure 5.11. Our algorithm outperforms the result
of the three-layered method of Martinovi¢ et al. [33] and yields result only slightly
inferior to the dynamic programming-based method of Cohen et al. [9]. The possible
reason is the constraints assumed in the latter paper are less restrictive than our
priors. However, our method is still the �rst algorithm with a user-speci�ed shape
prior to be tested on the eTrims dataset and its performance is a close match to the
two baseline methods, which o�er no �exibility with respect to prior de�nition.

Typical failures. A typical failure, that can be observed in the �gures illustrating
qualitative results, involves facade elements that are too small or too large along one
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Figure 5.10: Results of parsing images with from the ENPC dataset. For each row, in the following
order: original image, unary classi�cation, segmentation with occluder classes, extracted facade
structure.
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Figure 5.11: Example parsing results on the eTrims dataset in the order: original image, result
of per-pixel classi�cation, parsing result. Parsing was performed on recti�ed images which are
presented here un-recti�ed.
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Table 5.6: Performance on the eTrims dataset with RNN-based unaries. Starting from left: score
using raw unaries, the three-layered method of Martinovi¢ et al. [33], the dynamic programming
method of Cohen et al. [9] and our adjacency patterns (AP).

eTrims
raw [33]-L3 [9] AP

building 88 87 91 92
car 69 69 70 70
door 25 19 18 20
pavement 34 34 33 33
road 56 56 57 56
sky 94 94 97 96
vegetation 89 88 90 91
window 71 79 71 70
pixel accur. 81.9 81.6 83.8 83.5

of the dimensions. One way to decrease the number of such errors is by means of
pairwise potentials penalizing transitions between some classes. In this context, it
would be useful to learn the optimal values of these penalties automatically, instead
of determining them using grid search. One could also consider imposing constraints,
or soft preference, on the size of elements. Doing that within the proposed framework
would require an impractically large number of classes, equal to the expected size
of the modeled object in pixels. Such approach would also impede generalization of
the algorithm to unrecti�ed images, where the size varies depending on the distance
from the camera. Imposing constraints on relative sizes of facade elements seems
more useful in that respect. However, this would require the use of higher order
potentials and remains an open problem.

5.10 Conclusion

We have shown how complex, grid-structured patterns, possibly with irregular bound-
aries between regions corresponding to di�erent semantic classes, can be encoded
by specifying which pairs of classes can be assigned to pairs of vertically- and
horizontally-adjacent pixels. We have argued that these patterns can be speci�ed
more conveniently in a hierarchical fashion and shown that the induced �attened
set of rules can automatically be translated into the structure of a Markov random
�eld.

Our method o�ers a unique combination of advantages that cannot be matched
by other existing algorithms. The framework can accept user-de�ned priors and
guarantee their satisfaction. The proposed prior formalism enables encoding winding
boundaries between facade elements. Our formulation makes it possible to easily
handle occlusions simultaneously segmenting the occluding objects and retrieving
the structure of the occluded facade. Finally, the formulation lends itself to an
e�cient optimization scheme, resulting in highly accurate segmentations.

By testing on datasets containing complex facade patterns and occlusions, we
demonstrated that our approach brings facade parsing with user-de�ned shape priors
closer to practical applications. One possibility to extend the presented framework
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is to learn the pairwise costs automatically. We also believe it is possible to learn
a complete prior in form of an adjacency pattern from training data. In our opin-
ion, the most exciting direction of research is extending the proposed framework to
parsing non recti�ed images of complete urban scenes.

Publications

The work presented in this chapter has been published in

Kozi«ski, M., Gadde, R., Zagoruyko, S., Obozinski, G., Marlet, R. (2015). A MRF
Shape Prior for Facade Parsing with Occlusions. In Proc. 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
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Chapter 6

Conclusion and Future Work

The focus of this work is on leveraging e�cient optimization algorithms to facade
parsing with user-de�ned shape priors. Existing approaches to this problem are
based on generative shape priors, called split grammars. They provide convenient
means of encoding alignment, order of facade elements and their absolute sizes.
While the framework of split grammars can be used to e�ciently generate shapes,
inverse modeling using such a prior is a di�cult problem. Existing approaches resort
to combinatorial algorithms, which require severe image subsampling, or randomly
explore the space of grammar derivations, by generating a large number of segmen-
tations and keeping the best one as the �nal solution. While the e�ciency of this
random exploration depends on the quality of bottom-up cues that drive the search
towards optimum (appendix A), the random nature of the algorithm in�uences ad-
versely the accuracy of resulting segmentations.

In this work, we formulate shape prior formalisms that have practical expressive
power similar to that of split grammars, but that lend themselves to more principled
optimization techniques, not requiring image subsampling or random exploration of
the problem space. Even though the resulting problem of facade parsing is formu-
lated as a binary linear program, or MAP-MRF inference, which are known to be
NP-hard in general, experiment results show that, given the same data terms, the
proposed algorithms attain better segmentations than competing methods.

One can think of the problem in terms of a tradeo� between the expressive power
of a shape prior formalism and its practical aspects: capability of approximating op-
timal segmentations consistent with the prior and ease of encoding di�erent priors.
The proposed formalism combining graph grammars for modeling facade structure
and MAP-MRF inference of optimal facade layout (chapter 3) enables encoding rel-
ative sizes of facade elements, but needs sampling facade structures from a graph
grammar. Even though the formulation based on row and column labeling (chapter
4) does not encode the prior on element sizes, it attains better segmentations given
the same data term, because it o�ers a more e�ective optimization scheme. Fi-
nally, the priors formulated using adjacency patterns (chapter 5) require the explicit
speci�cation of alignment of distant elements of the same class, but result in sim-
pler formulation for �nding the optimal segmentation. In consequence, this method
attains better segmentations that the row and column label-based algorithm and
enables formulating more �exible priors.
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A shape prior can be treated as a regularization term de�ned on image seg-
mentation. While some previous work [33] reported that imposing structure over
segmentations comes at a cost of a decreased accuracy, in our experiments we have
shown that applying parsing improves segmentation accuracies with respect to meth-
ods that are oblivious of the expected structure of the segmentation. We believe the
capability of e�ectively optimizing the regularization term together with the data
term is the key to fully bene�t from the advantage of a shape prior.

6.1 Contribution

Our �rst contribution is a graphical model for facade segmentation, where a graph
grammar formalism is used to represent the variation of model structure. We in-
troduce an inference algorithm for the proposed setting, which combines sampling
model structures from the grammar and a MAP-MRF inference for �xed structures.
We have shown that limiting sampling to model structure improves the resulting
segmentations when compared to split grammar parsing. However, due to the fact
that sampling has not been eliminated completely, the approach is limited in prac-
tice with respect to the complexity of the grammar, because of the ine�ciency of
the random exploration. This constrains the level of architectural detail that can be
modeled. That in turn adversely in�uences parsing accuracy and hinders application
of the framework to datasets with a high level of structural variation.

The second major contribution presented in this work is a formulation for facade
parsing with a shape prior format that enables representing a facade segmentation
in terms of sets of classes assigned to image rows and columns. The priors encode
simultaneous alignment of facade elements in two dimensions and the order of ele-
ments in a facade. The expressive power of the proposed prior formalism is di�erent
than that of split grammars, in that it does not o�er a practical method for encod-
ing constraints on sizes of facade elements, or patterns of facade elements expressed
by context-free languages. However, sampling has been completely eliminated from
inference, which has been formulated as a binary linear program. By solving the
linear program we directly approximate the optimal segmentation, both in terms of
the structure and the layout. This in turn results in an accuracy superior to that of
the graph grammar method and better than for other existing algorithms, including
ones with hard-coded priors. Unfortunately, the priors encoded using the proposed
formalism, that enforces global 2D alignment between all facade elements of the
same class, turn out to be highly restrictive in enforcing the global alignment of ele-
ments of the same class, which makes them impractical for modeling sets of shapes
with a high degree of variability, possibly containing a large number of misaligned
structures (like an unknown number of misaligned �oors).

Finally, we propose a parsing framework where complex shape priors are encoded
in terms of possible classes of adjacent pixels. Priors encoded using this approach
feature unprecedented expressive power as they allow the modeling of elements with
winding, non-linear boundaries. They also enable segmenting objects occluding
the facade and extracting the structure of the occluded facade in the same time.
This �exibility allowed us to use the framework on datasets featuring a level of
structural variation that was prohibitively high for previous frameworks based on
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user-de�ned priors. The task of determining the most likely segmentation within the
proposed framework takes the form of MAP-MRF inference over a four-connected
pixel grid. We propose to use the dual decomposition algorithm to approximate the
optimum of the problem. We developed an e�cient implementation of the algorithm,
drawing on the fact that the matrices encoding allowed pairs of adjacent pixels are
sparse, resulting in decreased running time with respect to the graph grammar and
linear programming approaches. In terms of accuracy of resulting segmentations, the
proposed algorithm outperforms our previous developments as well as other existing
methods on a number of standard datasets of facade images.

With this work, we advance the applicability of facade parsing. When Teboul
et al. presented the pioneering work on split grammar facade parsing [60, 59], their
grammar simply encoded a perfect grid of windows, overlaid on horizontal stripes
of sky, roof, wall and shop and included simple balconies (constrained to a single
window, or running through whole facade width) and doors. The structural vari-
ation was limited to an unknown number of columns and �oors, and an unknown
type of balconies for each �oor. The algorithms based on hard-coded shape pri-
ors, proposed later by Martinovi¢ et al. [33] and Cohen et al. [9] were more �exible
in that they could produce much more complex segmentations. When combined
with highly accurate data term they yielded considerably better segmentations than
split grammars. However, they did so at the price of not satisfying all architectural
constraints (such as the vertical alignment of windows). The proposed adjacency
pattern-based prior formalism features enough expressive power to outperform these
methods even when using the same data term. It combines the best of both words
by guaranteeing conformance of the resulting segmentations to a user-de�ned shape
prior and being almost as �exible as the algorithms by Cohen et al. and Martinovi¢ et
al. in terms of modeled structure. Moreover, it addresses the problems of occlusions
and complex-shaped facade elements, frequently appearing in realistic application
scenarios.

6.2 Future work

Exploration of the space of possible facade structures in the graph grammar-based
approach could bene�t from bottom-up information driving the search for an opti-
mal structure, based on facade parts detected in the image. This could speed up
inference and enable using grammars with higher complexity. The existing bottom-
up graph grammar parsing algorithms, like the one proposed by Rekers and Schurr
[46], cannot handle missing or false positive nodes and edges, inevitable in computer
vision applications. Therefore, a bottom-up graph grammar parser for facades re-
mains an open problem.

In the proposed graph grammar parsing algorithm, a structure of a graphical
model is perturbed in every iteration by regenerating a subtree of the derivation tree.
Then MAP-MRF inference is performed for the new structure. A possible extension
of the presented work is to explore the idea of speeding up the MAP-MRF inference
by using information recorded during inference in previous iterations. This could be
done by warm-starting the algorithm with state variables (messages, dual variables,
depending on the inference algorithm used) corresponding to the �nal solution for
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Figure 6.1: A possible plan for future work: a sequence of generalizations of the presented frame-
work, leading from the task of parsing recti�ed images, to the task of reconstruction a semantized
building model.

the model of previous structure. Such an approach could lead to a faster convergence
in cases where the structure is modi�ed only locally.

Since graph grammars can be di�cult to specify, learning grammars from training
data would increase the potential for practical application of graph grammar parsing.
This task involves generating graphs from ground truth annotations and inferring
a grammar given a large number of graphs. Again, one of the challenges lies in
handling uncertainty in the graphs, as ground truth annotations can be imprecise.

For both the framework based on row and column labels, and the adjacency
pattern-based framework, the most straightforward extension would be to learn
the parameters of their energy functions from annotated examples. This can be
done using the dual decomposition algorithm for max-margin learning proposed by
Komodakis [25].

Another interesting direction of research would be to learn not only soft pairwise
costs for pairs of classes of adjacent pixels, but the whole adjacency patterns. This
approach requires extracting the pre-semantic classes and their possible adjacency
con�gurations from ground truth annotations in terms of semantic classes. The
task could be seen from the perspective of �nding minimal automatons for image
rows and columns, that would be capable of producing sequences of class labels that
occur in the ground truth annotations. Again, the algorithm should be capable of
handling imprecise annotations.

From the point of view of wide applicability, one of the most promising directions
of research is to extend the framework of adjacency patterns to handling images of
general urban scenes. One di�culty lies in modeling the projection on the image
plane of complex three-dimensional building geometry, including street corners and
multiple buildings. Encoding the three-dimensional alignment of scene elements as
depicted in an image remains an open research question.
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A step further would be to extend the framework to parsing multiple images
of the same scene, resulting in a semantic reconstruction of a structurally correct
3D model. One possible approach to obtaining semantized, `structured' models of
buildings is to semantize meshes resulting from 3D reconstruction resulting from
existing methods. Alternatively, one could try to create the models directly from
images, by inferring the geometry and semantic structure of the building jointly.
This approach could exploit the feedback between the semantic and geometric in-
formation. Reconstructing them jointly can increase the quality of the model in
both aspects.

While this thesis does not treat the problem of 3D reconstruction, it exploits a
number of approaches to obtaining semantized models from data, while imposing
user-de�ned constraints on their structure. We believe these approaches can be
extended to handle the more general problems of parsing general urban scenes and
semantic 3D reconstruction. A possible sequence of generalization is visualized in
�gure 6.1.

Finally, we believe the adjacency pattern framework is applicable to other tasks,
where models can be formulated in terms of constraints propagated along chains of
data elements, like propagating alignment along rows and columns of pixels in case
of facade parsing. One such task is segmenting point clouds of buildings, or whole
urban scenes, where alignment in three dimensions plays a signi�cant role.
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Appendix A

Improved bottom-up cues for facade

parsing

Here we present an attempt to address the limitations of the parser proposed by
Teboul et al. [59], resulting from random exploration of the space of parse trees.
Without altering the principle of operation of the parser itself, we propose bottom-
up cues that e�ectively drive the exploration and speed up convergence. Instead
of only using bottom-up cues in the form of local, per-pixel likelihoods, we propose
to also use an object detector and a robust pattern search method. Our algorithm
may thus exploit the repetition of speci�c instances of architectural elements within
the facade. Additionally, to better guide parsing, we design prior distributions of
possible split positions using the object detections and line segment cues. As a
result, the parser not only better locates elements but also prunes the solution space
much more selectively.

A.1 Enhanced per-pixel likelihoods

Instead of just using texture classi�cation we propose a new, more robust and more
accurate likelihood function, which combines the local, low-level (pixel- or patch-
based) information with the results of object detection. In subsection A.1.1 we
present the method we use for fusing detection results with texture classi�cation-
based potentials. In subsection A.1.2 we introduce an algorithm for discovering
repeated objects, used for window detection.

In the following subsections we denote the set of indexes of image rows by I and
the set of indexes of image columns by J . We de�ne the set of image pixels by
I = I × J .

A.1.1 Fusing detections and texture classi�cation

The detections we use have a form of bounding boxes. In this chapter, we fuse
the per-pixel potentials with detection results by projecting the detection bounding
boxes to per-pixel weights (we present an alternative fusion scheme in section 3.4.1).
Considering a class d, for each pixel (i, j) we get a weight wd(i, j), which we set to
1 if (i, j) belongs to the detected object, and to 0 otherwise.
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Table A.1: Symbols used in this chapter

I set of indexes of image rows; de�ned on page 107
J set of indexes of image columns; de�ned on page 107
I set if indexes of image pixels; de�ned on page 107
P a set if indexes of image pixels P ⊂ I, de�ning a con-

nected region in the image; de�ned on page 110
C set of classes assigned to pixels; de�ned on page 109
D set of classes of detected objects; de�ned on page 109
C(d) a set of pixel classes that can overlap a detection of class

d; de�ned on page 107
C(D) a set of pixel classes that can overlap detections of all

class in the set D ⊂ D; de�ned on page 109
wd(i, j) a binary variable indicating the presence of detection of

class d ∈ D whose bounding boxes overlap pixel (i, j);
de�ned on page 107

m(i, j, c) the merit function, expressing the likelihood of assigning
class c ∈ C to pixel (i, j), based on texture classi�cation;
de�ned on page 109

m+(i, j, c) the modi�ed merit function, expressing the likelihood of
assigning class c ∈ C to pixel (i, j), based on texture
classi�cation and detection results; de�ned on page 109

L the set of detected line segment indexes; de�ned on page
111

θl the angle between detected line segment l ∈ L and the
horizontal coordinate axis; de�ned on page 111

[al, bl] the vertical line segment (with endpoints al and bl) cre-
ated by projecting the detected line segment l ∈ L on
the vertical axis; de�ned on page 111

v(i) the distribution of horizontal split position at row i ∈ I;
de�ned on page 111
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In practice, the semantic classes assigned to pixels can be divided into two cat-
egories: `things' and `stu�' [19]. The �rst category represents objects that have a
compact spatial extent and can be detected. The classes of the second kind occupy
irregular image regions and are more naturally handled in terms of texture classi�ca-
tion. For instance, we can detect windows or doors, but it is much harder to reliably
detect walls or roofs. Moreover, although the segmentation algorithm assigns a
single class to each image pixel, actual detectors can locate di�erent objects that
overlap in an image. For example, a bounding box representing a detected window
can encompass both window-only areas and cast iron balconies in front of windows.
Therefore, we di�erentiate between the semantic classes C of the grammar and the
semantic classes D of the detectors, and de�ne C(d) ⊂ C as the subset of grammar
classes that can be overlapped by a detection of class d ∈ D. We extend this de�-
nition to a set of detectable classes D ⊂ D, de�ning the subset of grammar classes
that can be overlapped by a detection of any class d ∈ D by C(D) =

⋃
d∈D

C(d).

We recall that the original parser [59] uses a per-pixel classi�cation con�dence
function m(i, j, c), that de�nes the likelihood that a pixel (i, j) represents a facade
element of class c. In the remaining part of this section, we follow the naming
convention of Teboul et al. [59], who call m a merit function. The parser looks for
a derivation that minimizes the following total cost

E(c) =
∑

(i,j)∈I

− log
(
m(i, j, cij)

)
, (A.1)

where c is the vector of class labels for all image pixels, induced by the derivation.
We construct an improved merit function, denoted m+. It gives con�dence to

the high-level detectors over the low-level per-pixel classi�cation. If a bounding box
of detection of class d overlaps a given pixel, the merit for that pixel, for grammar
classes that cannot overlap detector class d, is set to zero, and the merit for remaining
classes is renormalized. More formally, let Di,j = {d ∈ D | wd(i, j) = 1} be the set of
classes detected at pixel (i, j). We de�ne m+(i, j, c) = m(i, j, c) if Di,j = ∅, i.e., the
merit is unchanged for pixels which are not overlapped by any detection. Otherwise,
if Di,j 6= ∅, then m+(i, j, c) is de�ned as

m+(i, j, c) =


m(i, j, c)∑

c′∈C(Di,j) m(i, j, c′)
if c ∈ C(Di,j)

0 otherwise.
(A.2)

In our experiments we trained a window detector that produces bounding boxes
overlapping the whole window frame, even when there is a cast iron balcony in the
foreground. We thus have D = {whole-window} and C(D) = {window, balcony}.
Figure A.1 illustrates the improved merit function. The most probable classes in
the window areas are much less noisy.

A.1.2 Detection of repeated objects

Unlike in the task of general object detection, when detecting elements of a facade
we can exploit the fact that in a given image we often expect a number of object
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⊕ =

m∗(x, y) wwhole-window(x, y) m∗+(x, y)
Figure A.1: Classi�cation based on the local merit function (left) vs the higher-level merit function
(right). We visualize the merit by color-coding the most probable class that can be assigned to
each pixel according to m∗(x, y, c) = argmaxc m(x, y, c) and m∗+ = argmaxc m+(x, y, c). The
result of window detection is presented in the middle.

instances that have similar appearance. This is true, for example, for windows in a
given facade. Existing object detection methods, such as the cascade classi�er [62],
do not exploit this property. A hypothesis of these methods is that all detected
objects are independent one from another.

We therefore propose to use a repeated pattern search scheme to extract a number
of detections of consistent appearance in each image. We use a generic detector only
to �nd few but very likely object occurrences, tuning the detector for precision more
than recall. We then apply a robust pattern search procedure to �nd similar objects
in the image. To improve recall though, this procedure is repeated recursively on
the new detections (resulting from the pattern search) until there are no more high-
precision detections.

Since we are working with recti�ed facade images, we assume that the detected
objects are planar and that their instances are related by translation and anisotropic
scaling. Indeed, windows on the same facade often have two or three di�erent widths,
depending on the size or use of the corresponding room. Although stretched hori-
zontally, all windows on the facade however share similar appearance. Also for older
structures, including Haussmannian buildings, bottom �oors have higher ceilings
and higher windows than top �oors, to compensate for the weaker illumination.
But here again the window appearance is only stretched, vertically. To make the
pattern search more robust to deformations resulting from the parallax e�ect and
imprecise detection of keypoints, we apply a pattern search procedure that looks for
a�ne transformations of the model patch, but constrain the amount of shear and
rotation present in the transformation. Speci�cally, we de�ne the score of an a�nity

matrix A =

[
a1 a2 tx
a3 a4 ty

]
as s(A) = exp(−(a2

2 +a2
3)) and only look for a�nities with

a score below a threshold smin.
The pattern search procedure is based on feature correspondences. Given the

extent P of the pattern in image I, correspondences to consider are only the pairs of
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features (f1, f2) such that f1 is in the model subimage P and f2 is located in the rest
of the image I\P . For robustness, we increase the area of the model P , by a constant
factor, to include some context information. After patterns are localized, they are
shrunk with the same factor to recover the estimated boundary of the actual model
instances. We use RANSAC [45] to identify the transformations from the model
patch to a new match. The sought transformation is characterized by a triplet of
matches and to reduce the search space we pick a �rst match (f1, f2) and draw the
two other matches (f ′1, f

′
2) and (f ′′1 , f

′′
2 ) in such a way that f ′2 and f ′′2 lie within a

neighborhood of f2 in the image. More precisely, the distance between f2 and f ′2,
and between f2 and f ′′2 , has to be lower than the size of P multiplied by a �xed
scale factor, constraining the scale variation of detected objects. The procedure is
repeated until none of the model patches can be matched in the remaining part of
the image with a prede�ned minimum number of inliers.

A.2 Enhanced distribution of split positions

We design a way to create more discriminative distributions for sampling horizontal
and vertical split positions. In [59], these distributions are obtained by accumulating
gradients in the image along the x and y axes. However, these marginal distributions
are noisy because of the harmful accumulation of gradients not corresponding to
objects of interest, but resulting from shadows, texture or small architectural details.
We propose another approach, based on line segments detected in the image. These
higher-level abstractions are better split indicators.

We �rst detect line segments L in the image. In our experiments we use the Line
Segment Detector (LSD) [64]. Let v(i) be the distribution of vertical split positions.
We denote by [al, bl] the projection of a segment l ∈ L on the vertical axis, and by θl
its angle with respect to the horizontal coordinate axis. The value of the distribution
at row i is computed as follows:

v(i) =
1

Z

∑
l∈L

1i∈[al,bl] exp(−tan2 θl
2σ2

) , (A.3)

where σ is a parameter of the distribution and Z is a normalization constant. The
de�nition is symmetrical for horizontal splits. For our experiments, we set σ = 0.06,
which roughly leads to a contribution of 1 for a perfectly axis-aligned segment,
whereas a segment with a 5◦ angle contributes for 1

3
. To reduce computation time,

line segments with an angle beyond a threshold (around 10◦ for the given σ value)
can be discarded right after detection.

In the same manner, we build a normalized histogram of the contours of the
detected objects. The two distributions are summed and the resulting histogram
is normalized, yielding the �nal distribution of applicable split positions (see �g-
ure A.2). The major bene�t of this approach is that the exploration of the solution
space is signi�cantly pruned and the splits are attracted to positions where detection
boundaries and lines are present. Also, the parser is less likely to get stuck in a local
minimum. In consequence, when the algorithm explores the procedural space, the
standard deviation of the energy of solutions obtained in a number of consecutive
iterations decreases over time faster than for the original algorithm (see �gure A.3).
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Gradient-based Detection-based

Figure A.2: The gradient-based vs the detection-based distribution of split positions.

A.3 Experimental validation

We perform the experimental validation on the ECP dataset [59], consisting of rec-
ti�ed images of Haussmannian facades, annotated with 7 semantic classes: sky, roof,
wall, window, balcony, shop and door. When testing the performance of the repet-
itive pattern search scheme, we additionally use the eTrims dataset [27] containing
images of buildings of many di�erent architectural styles, with annotations for win-
dows. We rectify the images manually. Before presenting parsing results, we �rst
assess the quality of the window detector.

A.3.1 Window detection

First we verify the hypothesis that combining the proposed pattern search scheme
with a precise detector yields better results than the detector alone. We obtain the
initial detections with a cascade classi�er (CC) [62]. We train the classi�er to detect
windows on 20 training images of the ECP CVPR 2010 dataset [60]. The classi�er
is parametrized by a threshold on the detection score τ , to balance precision and
recall. We note by CC(τ) a detector resulting from using the cascade classi�er with
a threshold τ . For feature detection and matching, we use Harris-A�ne [37], MSER
[37] and DoG [32] detectors, and the SIFT [32] descriptor.

In tables A.2 and A.3 we present a comparison of the results of the cascade
classi�er for various detection thresholds (CC(τ)) to the results of the cascade clas-
si�er combined with our pattern search procedure (CC(τ)+PS). The methods are
compared in terms of mean true positive rate (TPR) and mean true negative rate
(TNR), measured on a per-pixel basis. In all datasets, applying the pattern search
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Table A.2: Average performance of window detection on the ECP dataset. CC(τ) � the cascade
classi�er with threshold τ ; PS � pattern search scheme. The classi�er was trained on the 20 test
images distinguished in the �rst version of the ECP dataset [60] and tested on the remaining images
of the full ECP dataset [59].

Methods TPR (%) TNR (%)

CC (τ = 5) 77 85.5
CC (τ = 10) 70 81
CC (τ = 20) 64 94
CC (τ = 30) 56.5 95.5
CC (τ = 20) + PS 76 94
CC (τ = 30) + PS 71 95

Table A.3: Average performance of window detection on the recti�ed eTrims dataset. CC(τ) � the
cascade classi�er with threshold τ ; PS � the pattern search scheme.

Methods TPR (%) TNR (%)

CC (τ = 5) 46 96
CC (τ = 5) + PS 60 93

procedure improves the TPR of CC by 12�15 points while maintaining the same
TNR. A slight decrease of TNR with respect to CC is only observed on the recti�ed
eTRIMS dataset.

A.3.2 Facade parsing

To evaluate the impact of using the high-level cues on performance of facade parsing,
we run the modi�ed shape grammar parser on the test set of the ECP Benchmark
2011 dataset1 (104 images). The window detector we used is CC(τ = 20)+PS, that
experimentally performs best (see Table A.2). We compare this parser against the
original one, presented in [59]. In each case we run the parsers once. The results

1This dataset must not be confused with the ECP CVPR 2010 dataset which consists of 10 test
images only. Hence the numbers di�er from what is reported in [59].

Table A.4: Parsing accuracy of the original parser of Teboul et al. [59], and of the same parser when
using the proposed high-level cues (HLC). The rows of the table contain class-wise accuracies. The
bottom row contains the total percentage of correctly classi�ed pixels.

[59] [59]+HLC
roof 74 77
shop 82 82
balcony 50 60
sky 91 91
window 60 85
door 51 52
wall 81 76
pixel accur. 75.0 77.4
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Figure A.3: The convergence of our algorithm in comparison to [59]. The plot shows the evolution
of the reward, the current best reward and the standard deviation of the reward over time for a
single run of the parser. The 'mean reward' is the plot of the reward function smoothed over time,
to eliminate the high-frequency variation.

are evaluated with use of the ground truth annotations accompanying the dataset.
We present the results in table A.4. We observe an improvement of two percent

in the total per-pixel accuracy, and an increase of the class-wise accuracies for most
classes. In particular, the window detection improves from 60% to 85%. Our algo-
rithm also shows better convergence properties than the original one. In �gure A.3
we show that the proposed algorithm converges faster, attains better values of the
reward function and is less prone to deviating from the optimal solution. A few
actual results are illustrated in �gure A.4.

A.4 Conclusion

We have presented a method to enhance the top-down facade parser of Teboul et
al. [59]. We propose two modi�cations with respect to the original version. First,
we propose to fuse results of an adaptive object detector with texture classi�cation-
based likelihoods to obtain an improved merit function, as opposed to relying on
texture classi�cation alone. Second, we use the boundaries of detection bounding
boxes as well as line segments to better determine likely split positions. We have
shown that these high-level cues improve parsing accuracy and speed up convergence
of the parsing algorithm.

However, the observed improvement is marginal. Although the proposed cues
guide the parser to better solutions, they do not address the inherent drawback of
randomized exploration of the space of parse trees, consisting in yielding suboptimal,
non-repeatable results. The susceptibility of the original parser to get stuck in local
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optima is illustrated by the fact that when running experiments the authors re-run
the algorithm �ve times and keep the best of the �ve results as the �nal segmentation
[58]. The problem persists and is illustrated in �gure A.3. The variance of energy
yielded by the random exploration algorithm is comparable for the original method
and for the proposed high-level bottom-up cues.

Contribution of the author

The presented work has been performed jointly with David Ok. The author of this
manuscript contributed to the formulation of the detection-texture classi�cation
fusion scheme and the formulation of the enhanced distribution of split positions.
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The work has been published in

Ok, D., Kozi«ski, M., Marlet, R., Paragios, N. (2012). High-Level Bottom-Up Cues
for Top-Down Parsing of Facade Images. In Proc. 2nd Joint Conference on 3D
Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT).
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Figure A.4: Examples of images for which our parser outperforms the original algorithm. Odd
rows: results of original parser [59]. Even rows: our modi�ed algorithm, relying on high-level cues
(HLC).
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Appendix B

The Dual Decomposition algorithm

We brie�y introduce the principle of the Dual Decomposition algorithm, that we use
to solve problems posed in chapters 4 and 5. For a more formal, in depth treatment,
we refer the reader to a comprehensive article by Komodakis, Paragios and Tziritas
[26] and a tutorial by Sontag, Globerson and Jaakkola [54].

The dual decomposition algorithm is based on the idea of decomposing a di�cult
problem into a number of `slave' subproblems that are easy to solve. We are given
a problem of the form

x̂ = arg min
∑
m∈M

Em(x), s.t. x ∈ C, (B.1)

where x is a vector, C denotes the feasible set and M is a set of indeces m of
components of the objective. We assume the objective is not easily optimized,
but each of the component functions Em(x) can be e�ciently minimized subject
to x ∈ C. In Dual Decomposition, (B.1) is solved by iteratively minimizing Em
separately for each m. We construct a number of copies of the vector x, denoted
xm, and couple the variables by means of a new constraint xm = x:

(x̂m)m∈M = arg min
∑
m∈M

Em(xm) , (B.2)

subject to
∀m, xm ∈ C , (B.3)

∀m, xm = x . (B.4)

Due to constraint (B.4) in the optimum of (B.2) we have x̂m = x̂ for each m.
Therefore, solving the modi�ed problem can be seen as equivalent to solving the
original one. To completely decouple objective components, we introduce vectors of
Lagrangian multipliers λm and denote the vector created by concatenating λm for
all m ∈M by λ. We formulate a Lagrangian with respect to constraint (B.4)

L(λ) = min
(xm)m∈M ,x

∑
m∈M

Em(xm) +
∑
m∈M

λᵀm(xm − x) , s.t. ∀m ∈M, xm ∈ C .

(B.5)
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For readability we rewrite (B.5) as

L(λ) = min
(xm)m∈M ,x

∑
m∈M

(
Em(xm)+λᵀmxm

)
−
( ∑
m∈M

λm

)ᵀ
x , s.t. ∀m ∈M, xm ∈ C .

(B.6)
We note that the problem is unbounded in x unless it holds∑

m∈M

λm = 0 , (B.7)

for which case the variable x is eliminated from the objective. We introduce a new
notation for the modi�ed Lagrangian:

L̃(λ) = min
(xm)m∈M

∑
m∈M

(
Em(xm) + λᵀmxm

)
, s.t. ∀m ∈M, xm ∈ C . (B.8)

We emphasise L̃(λ) = L(λ) when (B.7) is satis�ed. Therefore the following problem
is dual to (B.1)

max
λ
L̃(λ) , (B.9)

subject to ∑
m∈M

λm = 0 . (B.10)

The above dual objective is concave and a projected subgradient ascent algorithm
can be used to solve it. In each iteration n of the algorithm, the dual variables
λm are updated along the gradient direction ∇λmL̃(λ) with a stepsize of prede�ned
length αn and reprojected to the set where (B.10) is satis�ed, according to

λnm ←
[
λn−1
m + αn∇λmL̃(λn−1)

]
∑

m∈M λm=0
, (B.11)

where the superscript n denotes the iteration index and [·]C denotes a projection
onto set C. The main advantage of this dual formulation, and the key to the Dual
Decomposition algorithm, is that calculating the subgradient of L̃(λ) decomposes
into independent minimizations for each m, called slave problems. In fact we can
rewrite (B.8) as:

L̃(λ) =
∑
m∈M

L̃m(λm) , (B.12)

where
L̃m(λm) = min

xm

Em(xm) + λᵀmxm , s.t. xm ∈ C . (B.13)

Each of the subgradients ∇λmL̃(λ) for di�erent m depends only on a single compo-
nent of the objective, L̃m(λm), and can be calculated independently from the other
ones:

∇λmL̃(λ) = ∇λmL̃m(λm) = x̂m, (B.14)

where
x̂m=arg min

xm

Em(xm) + λᵀmxm, s.t. xm ∈ C. (B.15)
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Algorithm 2 Dual Decomposition

∀m ∈M λ0
m ← 0

n← 1
while no convergence do
∀m ∈M x̂nm ← arg minxm Em(xm) + λn−1

m

ᵀ
xm . Calc. subgr. (solve slaves)

∀m ∈M λnm ← λn−1
m +αn(x̂nm− 1

|M |
∑

m∈M x̂nm) . Step in subgr. dir. & repr.
n← n+ 1

end while
x̂← GetFinalX((x̂n

′
m)m∈M,0<n′<n, (λ

n
m)m∈M)

The proof that x̂m is a subgradient of L̃m(λm) can be found in [26]. Summarizing,
to calculate the subgradient, we need to solve problems of the form (B.14) indepen-
dently for each m.

We detail the Dual Decomposition algorithm for solving (B.9) in algorithm 2. In
each iteration the dual variables λm are updated along the direction of the subgradi-
ent. Reprojection of the dual variables into the feasible set, where constraint (B.10)
is satis�ed, is performed by subtracting their mean. In algorithm 2, the subgradient
step and reprojection are combined into a single operation.

The algorithm is run for a number of iterations with decaying step size. Typically,
a �xed sequence of step sizes is de�ned, which asymptotically goes to zero as n goes
to in�nity and with in�nite sum at the limit, for example αn = a√

n
[26]. Convergence

of the algorithm can be monitored by observing the changes of the dual energy. The
values of most components of x̂m for di�erent m eventually converge. Finally, a
heuristic procedure, denoted in algorithm 2 as GetFinalX, can be used to decide
on the components of x on which the vectors xm for di�erent m ∈M disagree [26].
Example heuristics include counting the number of times each variable was assigned
each of the labels over a number of the last iterations and assigning the most frequent
value to each of the variables, and �xing some of the variables while optimizing over
the remaining ones in an iterative manner. The choice of a particular procedure is
task-dependent.

The main design decision to be made when applying dual decomposition to an
optimization problem is how to decompose the original objective function into slave
objectives, i.e., how to transform it into the form (B.2) with a constraint of type
(B.4). The main criterion is the ability to e�ciently solve the resulting slave prob-
lems. Below we present a decomposition of the objective (4.17) into subproblems
that can be solved by means of dynamic programming in time linear in the number
of pixels.
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Appendix C

Inference in the row- and

column-labeling problem

In this appendix we derive the Dual-Decomposition-based algorithm used to solve
the inference problem posed in chapter 4. The general Dual Decomposition approach
has been introduced in appendix B.

C.1 Decomposition of the objective

In this section we present a decomposition of the objective (4.17) into the form (B.2).
In order to represent minimization of the objective (4.17) subject to constraints
(4.11) and (4.14�4.16) as a sum of tractable slaves, we need to decouple the variables
yik corresponding to image rows from the variables xjl corresponding to columns.
One possible decomposition is into two problems, one assigning sets of classes to each
image column, and other assigning classes to each image row. However, for a given
column j, the number of possible con�gurations of vector (xjl)l∈L is combinatorial
and grows exponentially with the number of vertically misaligned structures de�ned
by shape prior. The same holds for feasible con�gurations of a set of row-classes
assigned to image row. To avoid this exponential explosion of row and column labels,
we propose to decompose the problem into a larger number of subproblems, one for
each l ∈ L\T and one for each k ∈ K\T . A subproblem indexed by l ∈ L\T assigns
exactly one class from the set Kl to each image row and a subproblem indexed by
k ∈ K \ T assigns one class from the set Lk to each image column.

We introduce a separate set of variables for each of the subproblems, and we
denote the variables with superscripts l and k, respectively. For each slave index
l ∈ L \ T , for each k ∈ Kl and i ∈ I, we introduce variables ylik. Similarly, for each
k ∈ K \ T , we introduce variables xkjl de�ned for l ∈ Lk and j ∈ J . We denote
by y the vector created by stacking yik, by yl the vector of ylik, and by x and xk

the vectors obtained by stacking xjl and xkjl, respectively. We denote the vectors
of zijt, zlijt and z

k
ijt by z, zl and zk, respectively. Since the costs cijt appear in all

the slaves, they need to be distributed over the components of the objective in such
a way that their sum is equal to the original cost. We distribute the costs evenly
among |K \ T | + |L \ T | slaves, resulting in cost coe�cients of cijt

|K\T |+|L\T | for each
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slave. We introduce the components of the new objective

El(zl,yl) =
∑

(i,j)∈I
t∈T

cijt
|K \ T |+ |L \ T |

zlijt +
h−1∑
i=1

∑
k,k′∈Ch(l)

ylikk′ckk′ , (C.1a)

Ek(zk,xk) =
∑

(i,j)∈I
t∈T

cijt
|K \ T |+ |L \ T |

zkijt +
w−1∑
j=1

∑
l,l′∈Ch(k)

xkjll′cll′ . (C.1b)

We abuse the notation by omitting the vectors of pairwise variables ylikk′ and x
k
jll′ in

the list of arguments of El and Ek, because in our setting they will be completely
determined by yl and xk. We denote by xK the concatenation of vectors xk for
k ∈ K, by yL the concatenation of yl for l ∈ L and by zL, and zK the concatenation
of zk and zl, respectively. The new objective becomes

E
(
zK ,xK , zL,yL

)
=
∑
k∈K\T

Ek(zk,xk) +
∑
l∈L\T

El(zl,yl) . (C.2)

Our optimization problem now consists in minimizing the objective

min
zK ,xK ,zL,yL

E
(
zK ,xK , zL,yL

)
(C.3)

subject to the non-negativity constraints on the relaxed variables:

∀l ∈ L \ T zl ≥ 0, yl ≥ 0 , (C.4a)

∀k ∈ K \ T zk ≥ 0, xk ≥ 0 , (C.4b)

the coupling constraints:

∀k ∈ K \ T zk = z , (C.5a)

∀l ∈ L \ T zl = z , (C.5b)

∀l ∈ L \ T yl = y , (C.5c)

∀k ∈ K \ T xk = x , (C.5d)

the constraints (4.11), enforcing the structure of the class hierarchy, on the new
variables:

∀i ∈ I, ∀l ∈ L \ T
∑
k∈Kl

ylik = 1 , (C.6a)

∀j ∈ J, ∀k ∈ K \ T
∑
l∈Lk

xkjl = 1 , (C.6b)

the constraints (4.14) and (4.15) on the newly introduced variables:

∀(i, j) ∈ I, ∀l ∈ L \ T
∑
t∈T

zlijt = 1 , (C.7a)
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∀(i, j) ∈ I, ∀k ∈ K \ T
∑
t∈T

zkijt = 1 , (C.7b)

∀(i, j) ∈ I, ∀l ∈ L \ T , ∀k ∈ Kl

∑
t∈Desc(k)

zlijt ≤ ylik , (C.8a)

∀(i, j) ∈ I, ∀k ∈ K \ T , ∀l ∈ Lk
∑

t∈Desc(l)

zkijt ≤ xkjl . (C.8b)

and the constraints on the pairwise variables:

∀i ∈ I \ {h},∀l ∈ L \ T, ∀k ∈ Kl

∑
k′∈Kl

ylikk′ = ylik , (C.9a)

∀i ∈ I \ {h},∀l ∈ L \ T, ∀k′ ∈ Kl

∑
k∈Kl

ylikk′ = yli+1 k′ , (C.9b)

∀j ∈ J \ {w},∀k ∈ K \ T, ∀l ∈ Lk
∑
l′∈Lk

xkjll′ = xkjl , (C.9c)

∀j ∈ J \ {w},∀k ∈ K \ T, ∀l′ ∈ Lk
∑
l∈Lk

xkjll′ = xkj+1 l′ . (C.9d)

We note that the domains of objective components El(zl,yl) and Ek(zk,xk) are
coupled only by constraints (C.5).

C.2 Formulation of the dual problem

In this section, we present a dual formulation of the problem de�ned by equations
(C.3�C.9). The transformations presented here are a straightforward application of
the Dual Decomposition framework presented in appendix B.

We denote the vector created by stacking all (zl, zk, z) by z̆. Similarly by y̆ we
denote all ylik, y

l
ikk′ , yik and the vector of all x

k
jl, x

k
jll′ , xjl is denoted by x̆. We introduce

the dual variables λlijt and λkijt, corresponding to constraints (C.5a) and (C.5b),
and denote the vector resulting from stacking them together by λ, and the vectors
obtained by stacking variables with the same superscripts by λl and λk. We also
introduce dual variables γlik for l ∈ L \ T and k ∈ Kl, and γkjl, de�ned for k ∈ K \ T
and l ∈ Ll. The variables are Lagrange multipliers corresponding to constraints
(C.5c) and (C.5d). We denote the vector obtained by stacking them together by γ,
and the vectors resulting from stacking variables with the same superscripts by γ l

and γk.
The application of the dual decomposition method to objective (C.3) consists in

formulating its Lagrangian with respect to the coupling constraints (C.5):

LD(λ,γ) = min
z̆,y̆,x̆

∑
k∈K\T

Ek(zk,xk) +
∑
l∈L\T

El(zl,yl)

+
∑
l∈L\T

〈λl, (zl − z)〉+
∑
k∈K\T

〈λk, (zk − z)〉

+
∑
l∈L\T

∑
i∈I
k∈Kl

γlik(y
l
ik − yik) +

∑
k∈K\T

∑
j∈J
l∈Lk

γkjl(x
k
jl − xjl) , (C.10)
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subject to constraints (C.4) and (C.6�C.9), where by 〈·, ·〉 we denote the inner
product. As in the general case presented in appendix B, the variable vector z can
be eliminated by ensuring that∑

l∈L\T

λl +
∑
k∈K\T

λk = 0 , (C.11a)

and the variables yik and xjl are eliminated by setting

∀i ∈ I, ∀k ∈ K,
∑

l∈L\T s.t. k∈Kl

γlik = 0 and ∀j ∈ J, ∀l ∈ L,
∑

k∈K\T s.t. l∈Lk

γkjl = 0 ,

(C.11b)
since if (C.11) does not hold, the minimum in z, y and x is in�nite. By eliminating
z, y and x from (C.10) we can create the modi�ed Lagrangian which decomposes
into independent minimizations for each k ∈ K \ T and l ∈ L \ T :

L̃D(λ,γ) =
∑
k∈K\T

L̃kD(λk,γk) +
∑
l∈L\T

L̃lD(λl,γ l) , (C.12)

where

L̃kD(λk,γk) = min
zk,xk,x̃k

Ek(zk,xk) + 〈λk, zk〉+ 〈γk,xk〉 , (C.13)

L̃lD(λl,γ l) = min
zl,yl,ỹl

El(zl,yl) + 〈λl, zl〉+ 〈γ l,yl〉 , (C.14)

and both minimizations are subject to constraints (C.4) and (C.6�C.9).
The �nal form of the dual problem is

max
λ

L̃D(λ) , (C.15)

subject to constraint (C.11). We solve the problem by means of a projected subgradient-
ascent procedure presented in algorithm 2. In each iteration, we update the dual
variables λl, λk, γ l and γk by making a step in the direction of the subgradient and
reprojecting them into the feasible set, where the constraint (C.11) is satis�ed. In
the next section, we derive the update equations.

C.3 The optimization algorithm

We solve (C.15) by a projected subgradient method. By an argument identical to
the one presented in appendix B, it can be shown that a subdi�erential of (C.15)
with respect to the dual variables contains the following vectors:

∇λkL̃D(λ,γ) = ẑk, ∇λlL̃D(λ,γ) = ẑl, (C.16a)

∇γkL̃D(λ,γ) = x̂k, ∇γlL̃D(λ,γ) = ŷl, (C.16b)

where

(ẑk, x̂k)= arg min
zk,xk

Ek(zk,xk)+〈λk, zk〉+〈γk,xk〉 , (C.17)
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subject to (C.4) and (C.6�C.9), and

(ẑl, ŷl)= arg min
zl,yl

El(zl,yl)+〈λl, zl〉+〈γ l,yl〉 , (C.18)

subject to subject to (C.4) and (C.6�C.9).
The algorithm 2 adapted to the dual problem (C.15) takes the form presented in

algorithm 3. We denote the values of variables at iteration n with a superscript. We
denote the vectors obtained by stacking ẑk and ẑl for all k ∈ K \T and all l ∈ L \T
by ẑ. We denote the vector created by stacking x̂k for all k ∈ K \ T by x̂ and the
vector created by stacking ŷl for all l ∈ K \T by ŷ. The dual variables are updated
by a step along the subgradient direction and reprojected to the feasible set, where
constraints (C.11) are satis�ed. The reprojection consists in subtracting the average
from the corresponding variables. We denote the average of all slave solutions at
iteration n by

z̄nijt =
1

|L \ T |+ |K \ T |

∑
l∈L\T

ẑl,nijt +
∑
k∈K\T

ẑk,nijt

 , (C.19)

ȳnik =
1

|L(k)|
∑
l′∈L(k)

ŷl
′,n
ik , (C.20)

x̄njl =
1

|K(l)|
∑

k′∈K(l)

x̂k
′,n
jl , (C.21)

where L(k) = {l ∈ L \ T |k ∈ Kl} and K(l) = {k ∈ K \ T |l ∈ Lk}.

Algorithm 3 Dual Decomposition applied to the problem

∀l ∈ L \ T , λ0
l ← 0, γ0

l ← 0
∀k ∈ K \ T , λ0

k ← 0, γ0
k ← 0

n← 1
while no convergence do
∀k ∈ K \ T (ẑk,n, x̂k,n)← arg minzk,xk Ek(zk,xk) + 〈λk,n−1, zk〉+ 〈γk,n−1,xk〉
∀l ∈ L \ T (ẑl,n, ŷl,n) ← arg minzl,yl El(zl,yl) + 〈λl,n−1, zl〉+ 〈γ l,n−1,yl〉
∀k ∈ K \ T, ∀t ∈ T,∀(i, j) ∈ I λk,nijt ← λk,n−1

ijt + αn
(
ẑk,nijt − z̄nijt

)
∀l ∈ L \ T, ∀t ∈ T,∀(i, j) ∈ I λl,nijt ← λl,n−1

ijt + αn
(
ẑl,nijt − z̄nijt

)
∀k ∈ K \ T, ∀l ∈ Lk,∀j ∈ J γk,njl ← γk,n−1

jl + αn
(
x̂k,njl − x̄njl

)
∀l ∈ L \ T, ∀k ∈ Kl, ∀i ∈ I γl,nik ← γl,n−1

ik + αn
(
ŷl,nik − ȳnik

)
n← n+ 1

end while
ẑ, ŷ, x̂← GetPrimSol((ẑn

′
)1≤n′≤n, (ŷ

n′)1≤n′≤n, (x̂
n′)1≤n′≤n, (λ

n′)1≤n′≤n)

We run the algorithm with a prede�ned sequence of decaying step size. In al-
gorithm 3, the step size in iteration n is denoted αn. At the end, copies of most
variables take the same value across di�erent slaves, and there is a small number of
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variables, on which the slaves disagree. As explained before, the algorithm works on
the dual problem. To extract the solution to the primal problem, we use a heuristic
based on selecting for each variable the value most frequently assigned by the slaves
[26]. However, when applied directly, this method does not guarantee satisfaction of
constraint (4.15) of the original problem. We therefore apply a greedy optimization
procedure, denoted GetPrimSol in algorithm 3, which produces two candidate
labelings and selects the better of the two as the �nal solution. The �rst labeling
is obtained by �rst setting the row labels according to the heuristics, and then, for
�xed row labels, greedily setting the column labels to minimize the energy of the
segmentation. The second one is generated by assigning the column labels �rst, and
then selecting the row labels.

C.4 Structure of a slave subproblem

Below we present the structure of a slave subproblem (C.18) for some l. The slaves
for k are created symmetrically. The copies of the variables are denoted with super-
scripts l. For notational convenience we introduce a new symbol for the per-pixel
costs for the slaves clijt =

cijt
(|L\T |+|K\T |) . Their sum over all the slaves is equal to the

original cost coe�cients cijt. The resulting objective is

min
zl,yl

El(zl,yl) =
∑

(i,j)∈I
t∈T

(clijt + λlijt)z
l
ijt +

∑
i∈I
k∈Kl

γliky
l
ik +

∑
i∈I\{h}
k,k′∈Ch(l)

ckk′y
l
ikk′ , (C.22)

subject to

∀(i, j) ∈ I, ∀t ∈ T , zlijt ≥ 0 , ∀(i, j) ∈ I,
∑
t∈T

zlijt = 1 , (C.23a)

∀i ∈ I, ∀k ∈ Kl, y
l
ik ≥ 0 , ∀i ∈ I,

∑
k∈Kl

ylik = 1 , (C.23b)

∀(i, j) ∈ I, ∀k ∈ Kl,
∑

t∈Desc(k)

zlijt ≤ ylik , (C.23c)

∀i ∈ I \ {h}, ∀k ∈ Kl,
∑
k′∈Kl

ylikk′ = ylik , (C.23d)

∀i ∈ I \ {h}, ∀k′ ∈ Kl,
∑
k∈Kl

ylikk′ = yli+1 k′ . (C.23e)

The feasible set of the slave problem, de�ned above in (C.23), is just a reformulation
of constraints (C.4) and (C.6�C.9) which have variables with superscript l in their
domain. We rewrote the constraints here for future reference.

C.5 Integrality of the Slave Subproblem

In this section, we show that all vertices of the feasible set de�ned by constraints
(C.23) are integral. We notice that constraints (C.23b), (C.23d) and (C.23e) form
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a feasible set of relaxation of a binary linear program for �nding the most probable
con�guration of a Markov Chain. See, for example, the article by Werner [68] for
a detailed treatment of this topic. Since relaxations of tree-structured graphical
models are tight, it is enough to show that the objective remains linear in ylik after
optimizing over zlijt.

To eliminate zlijt from the slave objective (C.22), we rewrite it as

min
ylik,y

l
ikk′

∑
(i,j)∈I

gij(y
l
i) +

∑
i∈I
k∈Kl

λliky
l
ik +

∑
i∈I\{h}
k,k′∈Ch(l)

ckk′y
l
ikk′ , (C.24)

subject to constraints (C.23b), (C.23d) and (C.23e). We recall that by yli we denote
a vector (ylik)k∈Kl

for a given i and for all k ∈ Kl. We argue that gij(·) is a linear
function.

The function gij(·) can be formulated as

gij(y
l
i) = min

(zlijt)t∈T

∑
t∈T

(clijt + λlijt)z
l
ijt (C.25)

subject to
∀t ∈ T , zlijt ≥ 0 , (C.26)∑

t∈T

zlijt = 1 , (C.27)

∀k ∈ Kl,
∑

t∈Desc(k)

zlijt ≤ ylik , (C.28)

where the constraints (C.26�C.28) are rewritten from the original problem (C.23a)
and (C.23c). To demonstrate certain properties of the feasible set, we reformulate
the constraints. We rewrite (C.28) as an equality constraint, introducing auxiliary
variables δijk:

∀k ∈ Kl, δijk ≥ 0 , (C.29)

∀k ∈ Kl,
∑

t∈Desc(k)

zlijt + δijk = ylik . (C.30)

We sum both sides of (C.30) for all k ∈ Kl and use the fact that, according to
(C.23b), ylik sum to one, to get∑

k∈Kl

∑
t∈Desc(k)

zlijt +
∑
k∈Kl

δijk = 1 (C.31)

We note that Desc(k) for k ∈ Kl are disjoint sets (see equation (4.10) for the
de�nition of Kl). We denote the complement in T of their union as T ∗l = T \⋃
k∈Kl

Desc(k). By moving the �rst component of (C.31) to the right-hand side,
and applying (C.27) we get ∑

k∈Kl

δijk =
∑
t∈T ∗l

zlijt . (C.32)
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ylik1 ylik2 ylik3

δk1 δk2 δk3

∑
t∈Desc(k1)

zlijt
∑

t∈Desc(k2)

zlijt
∑

t∈Desc(k3)

zlijt

∑
t∈T ∗l

zlijt

constraint (C.30)

constraint (C.32)

Figure C.1: Visualization of a possible interpretation of the feasible set (C.26), (C.29), (C.30)
and (C.32). Given `portions of mass' ylik for all k ∈ Kl are distributed between δk and∑

t∈Desc(k2)
zlijt, according to constraint (C.30), visualized by the upper half of the graph. The

lower part of the graph presents the �ow of mass from δk to
∑

t∈T∗
l
zlijt, according to constraint

(C.32). Since the problem minimizes a linear combination of zlijt, in the optimal solution, all the

mass of each ylik goes to a single zl
ijtkij

, where tkij corresponds the lowest cost coe�cient ĉlijt among

t ∈ Desc(k) ∪ T ∗l . See lemma 3 for a more formal treatment.

The feasible set de�ned by constraints (C.26) to (C.28) can be equivalently expressed
by constraints (C.26), (C.29), (C.30) and (C.32). The latter formulation makes it
evident that the optimization problem can be viewed as distributing portions of
mass ylik among zlijt for t ∈ Desc(k) and t ∈ T ∗l . This concept is visualized in �gure
C.1. In the optimal solution all the mass of ylik will go the variable zlijt indexed
by t ∈ Desc(k) ∪ T ∗l that corresponds to the lowest cost. We de�ne the costs
ĉlijt = clijt + λlijt, and denote the optimal costs and indexes for each k as

∀k ∈ Kl, c̃ijk = min
t∈Desc(k)∪T ∗l

ĉlijt, tkij = arg min
t∈Desc(k)∪T ∗l

ĉlijt. (C.33)

Since the whole `mass' of ylik goes to the z
l
ijt with smallest cost, we claim that g(·) is

indeed a linear function, and the coe�cient corresponding to ylik is c̃ijk, the optimal
cost de�ned above. We note that the for all k ∈ Kl such that tkij /∈ Desc(k), the
mass from all ylik is allocated to a single variable z

l
ijt∗ij

that has the lowest cost among
t ∈ T ∗l . We de�ne

c̃∗ij = min
t∈T ∗l

ĉlijt, t∗ij = arg min
t∈T ∗l

ĉlijt, (C.34)

and state our �ndings formally as lemma 3.
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Lemma 3. The optimal argument (zlijt)t∈T of the problem (C.25) to (C.28) is

∀k ∈ Kl, ∀t ∈ Desc(k)

{
zlijt = 0 if t 6= tkij
zlijt = ylik if t = tkij

(C.35)

∀t ∈ T ∗l


zlijt = 0 if t 6= t∗ij
zlijt =

∑
k∈Kl
s.t.

tkij=t∗ij

ylik if t = t∗ij (C.36)

Proof. We sketch a proof of the lemma by contradiction.
To prove the �rst part of (C.35) it is enough to show that any solution where

zlijt = ε for some t 6= tkij and ε > 0 is suboptimal, because according to (C.33) the
cost ĉlijt > c̃ijk. Therefore, we can construct a lower energy solution by increasing
the value of zl

ijtkij
by ε and setting zlijt = 0. The same argument can be used to show

that a vector where any of the three remaining statements does not hold is not an
optimal solution.

We can substitute the zlijt in objective (C.25) with optimal values de�ned in
lemma 3 to get

gij(y
l
i) =

∑
k∈Kl

c̃ijky
l
ik . (C.37)

This function is linear in ylik, which concludes the proof that the slave problem has
integral vertices.

C.6 Solving the Slave Subproblem

It has been proven that the linear problem of each slave has integral vertices. In
consequence, each slave can be seen as a labeling problem where we assign a label
k ∈ Kl to each row i and a label t to each pixel (i, j) ∈ I. We �nd the optimal
labeling by means of a dynamic program.

Given row class k assigned to row i, it is easy to determine the optimal classes
tkij for all pixels in the row. Constraint (C.23c) restricts the set of pixel classes that
can be used in the row to classes that are descendants of k or to ones that are not
descendants of any k ∈ Kl, which we denote T ∗l . The optimal index is

tkij = arg min
t∈Desc(k)∪T ∗l

(clijt + λlijt) . (C.38)

From objective (C.22) we derive the optimal cost of assigning row class k to image
row i as the sum of costs for each pixel and the per-row cost

clik =
∑
j

(clijtkij
+ λlijtkij

) + γlik . (C.39)
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Algorithm 4 Dynamic program solving the slave subproblem.

for all k ∈ K l, i ∈ I do . dyn. prog. on tij
for all j ∈ J do

tkij ← arg mint∈Desc(k)∪T ∗l
(clijt + λlijt)

end for
clik ←

∑
j(c

l
ijtkij

+ λl
ijtkij

) + λlik
end for
for all k ∈ K do . dyn. prog. on ki

φ(1, k)← cl1k
end for
for i = 2, . . . h do

for k ∈ Kl do
φ(i, k)← mink′∈Kl

φ(i− 1, k′) + clik + clk′k
κ(i− 1, k)← arg mink′∈Kl

φ(i− 1, k′) + clik + clk′k
end for

end for
ki, tij ← Backtrack(φ, κ)

The optimal cost of assigning classes for the i �rst rows, denoted φ(i, k), where k is
the row class assigned to row i, can be recursively de�ned as

φ(i, k) =

{
cl1k if i = 1

mink′ φ(i− 1, k′) + clik + clk′k otherwise.
(C.40)

We use this recursive structure of the subproblem to formulate the Viterbi algo-
rithm 4 for �nding its optimal solution. In the �rst step, the optimal pixel indices tkij
are determined for each pixel and each k ∈ Kl, according to (C.38). They are then
used for determining row class costs clik according to (C.39). Finally the Viterbi
recursion of equation (C.40) is used, where κ(i, k) stores the optimal class of row i,
given that row i+ 1 is given class k. The optimal row and pixel classes are retrieved
by backtracking.
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Appendix D

Inference in the framework of

adjacency patterns

In this appendix we present an algorithm for solving the inference problem posed
in chapter 5 in form of equations (5.11-5.15). The following section contains a
mathematical derivation, while the next one presents the resulting algorithm.

D.1 Derivation of the inference algorithm

In this section we show how we construct the problem dual to (5.11-5.15).
We introduce two copies of variable zijσ, denoted z′ijσ and z′′ijσ. We denote the

vector of z′ijσ for all (i, j) ∈ I, σ ∈ So by z′ and the vector of all z′′ijσ by z′′. We let
the new variables, as well as uijσσ′ and vijσσ′ , vary continuously in the interval [0, 1].
The objective (5.11) can be rewritten as

min
z′,z′′,u,v

∑
(i,j)∈I

∑
σ∈So

1

2
φijΨo(σ)(z

′
ijσ + z′′ijσ)+

∑
(i,j)∈Iv

∑
σ,σ′∈So

θo(σ, σ
′)vijσσ′ +

∑
(i,j)∈Ih

∑
σ,σ′∈So

θo(σ, σ
′)uijσσ′ , (D.1)

subject to constraints on positivity of the continuous variables

∀(i, j) ∈ I, σ ∈ So, z′ijσ ≥ 0, (D.2a)

∀(i, j) ∈ I, σ ∈ So, z′′ijσ ≥ 0, (D.2b)

∀(i, j) ∈ Iv,σ, σ′ ∈ So, vijσσ′ ≥ 0, (D.2c)

∀(i, j) ∈ Ih,σ, σ′ ∈ So, uijσσ′ ≥ 0, (D.2d)

the simplex constraints (5.12) reformulated on the new variables

∀(i, j) ∈ I,
∑
σ∈So

z′ijσ = 1 , (D.3a)

∀(i, j) ∈ I,
∑
σ∈So

z′′ijσ = 1 , (D.3b)
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coupling constraints for z′ijσ and z′′ijσ,

∀(i, j) ∈ I, σ ∈ So, z′ijσ = z′′ijσ , (D.4)

and a reformulation of constraints (5.13), (5.14), (5.15a) and (5.15b) on z′ijσ and
z′′ijσ that we present below. Given equation (D.4), each of constraints (5.13), (5.14),
(5.15a) and (5.15b) can be de�ned on just one of the new variables, that is, either on
z′ijσ, or on z

′′
ijσ. To obtain a formulation which decomposes into horizontal and ver-

tical chains, we require z′ijσ to satisfy the constraints on classes of vertical neighbors,
and require z′′ijσ to satisfy the horizontal constraints

∀(i, j) ∈ Iv, ∀σ ∈ So,
∑
σ′∈So

vijσσ′ = z′ijσ,
∑
σ′∈So

vijσ′σ = z′i+1 jσ′ , (D.5a)

∀(i, j) ∈ Ih, ∀σ ∈ So,
∑
σ′∈So

uijσσ′ = z′′ijσ,
∑
σ′∈So

uijσ′σ = z′′ij+1σ′ , (D.5b)

∀(i, j) ∈ Iv, ∀(σ, σ′) /∈ Vo, vijσσ′ = 0 , (D.6a)

∀(i, j) ∈ Ih,∀(σ, σ′) /∈ Ho, uijσσ′ = 0 . (D.6b)

It is obvious that, when constraint (D.4) is satis�ed, objective (D.1) is equivalent to
the original objective (5.11).

We de�ne the feasible set C ′ as the set of vectors (z,v) that satisfy the vertical
constraints (D.2a), (D.2c), (D.3a), (D.5a), (D.6a) and the set C ′′ as the set of vectors
(z,u) satisfying the horizontal constraints (D.2b), (D.2d), (D.3b), (D.5b), (D.6b).
We construct a Lagrangian for problem (D.1) with respect to constraint (D.4)

LD(λ) = min
(z′,v)∈C′
(z′′,u)∈C′′

∑
(i,j)∈I

∑
σ∈So

1

2
φijΨo(σ)(z

′
ijσ + z′′ijσ)+

∑
(i,j)∈Iv

∑
σ,σ′∈So

θo(σ, σ
′)vijσσ′ +

∑
(i,j)∈Ih

∑
σ,σ′∈So

θo(σ, σ
′)uijσσ′+∑

(i,j)∈I

∑
σ∈So

λijσ(z′ijσ − z′′ijσ) . (D.7)

where λ is a vector of Lagrange multipliers λijσ for all (i, j) ∈ I and all σ ∈ So.
We formulate a dual problem

max
λ

LD(λ) . (D.8)

We solve the dual using a subgradient ascent scheme. In each iteration, we calculate
the subgradient of the objective and update λ by making a step in the direction of
the subgradient. We use a �xed sequence of decaying step sizes. It can be shown
(see [26] for details) that the subdi�erential of the objective contains the vector
z̃ = ẑ′ − ẑ′′, where the pair (ẑ′, ẑ′′) minimizes (D.7). However, the variables are not
coupled by any constraints and so we have

ẑ′ = arg min
(z′,v)∈C′

∑
(i,j)∈I

∑
σ∈So

(
1

2
φijΨo(σ) + λijσ)z′ijσ +

∑
(i,j)∈Iv

∑
σ,σ′∈So

θo(σ, σ
′)vijσσ′ (D.9a)
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and

ẑ′′ = arg min
(z′′,u)∈C′′

∑
(i,j)∈I

∑
σ∈So

(
1

2
φijΨo(σ) − λijσ)z′′ijσ +

∑
(i,j)∈Ih

∑
σ,σ′∈So

θo(σ, σ
′)uijσσ′ . (D.9b)

The minimizations (D.9) are equivalent to �nding the most likely con�gurations of
independent Markov chains over image rows and columns, with hard constraints on
neighboring labels, and can be solved by running the Viterbi algorithm indepen-
dently on each row and column.

D.2 The inference algorithm

The resulting algorithm is presented in algorithm (5), where superscript n denotes
the iteration number, αn is the step size in n-th iteration, z·j, φ·j and λ·j are vectors
of variables and costs corresponding to image column j and zi·, φi· and λi· are the
vectors corresponding to row i. By z̊ijσ we denote the number of times class σ has
been assigned to pixel (i, j) during the operation of the algorithm. We denote the
vector of all z̊ijσ by z̊.

Algorithm 5 Dual Decomposition on a 4-connected grid with slaves solving Markov
Chains

λ0 ← 0
n← 1
z̊← 0
while not converged do
∀j ∈ J ẑ′n·j ← Viterbi(1

2
φ·j + λn−1

·j , V )

∀i ∈ I ẑ′′ni· ← Viterbi(1
2
φi· − λn−1

i· , H)
λn ← λn−1 + αn

2
(ẑ′n − ẑ′′n)

z̊← z̊ + ẑ′n + ẑ′′n

n← n+ 1
end while
ẑ← GetFinalZ(̊z, V,H)

After a number of iterations, the variables z′ and z′′ agree on the labels for most
pixels. Heuristics can then be used to extract labels for the pixels for which z′ and
z′′ disagree [26]. In algorithm 5, we denote this procedure by GetFinalZ. One
possible method is to count how many times a pixel has been assigned each of the
possible labels, by accumulating the label frequency z̊ over a number of iterations,
and selecting for each pixel the most frequent label

∀(i, j) ∈ I, ẑijσ =

{
1 if σ = arg maxσ′ z̊ijσ′

0 otherwise.
(D.10)

However, a solution obtained in this manner would not necessarily be consistent
with the constraints on classes of adjacent pixels. To extract a solution consistent
with the constraints, we modify this heuristic. We present the concept in algorithm
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6. For a randomly drawn row (or column) index î, we extract its labeling using
the Viterbi algorithm with costs corresponding to label frequencies. In algorithm 6,
this subprocedure is represented as ViterbiMax. It �nds the labeling of the row
that maximizes the total frequency of the labels assigned to pixels in the row, but
only assigns to pairs of horizontally neighboring pixels pairs of labels that belong
to H. Then we repeat the procedure for the neighboring row. In algorithm 6, this
is represented as ViterbiMaxWithConstraints, which uses the sets of allowed
pairs of vertically adjacent classes V and the labels of the previous row to constrain
the sets of labels that can be assigned to each pixel in the next row. The process
is repeated for consecutive rows until a complete labeling is extracted. We sample
a number of labelings initializing the procedure on randomly selected rows and
columns, and keep the one with the lowest energy as the �nal solution.

Algorithm 6 Heuristics used to extract a labeling that satis�es hard constraints on
classes of adjacent pixels. The solution is initialized with row î of the image. (The
same operation can be performed for image columns, given an initial column index
ĵ.)

ẑî· ← ViterbiMax(̊zî·, H)
for i = î+ 1 to h do

ẑi· ← ViterbiMaxWithConstraints(̊zi·, H, ẑi−1·, V )
end for
for i = î− 1 to 1 do

ẑi· ← ViterbiMaxWithConstraints(̊zi·, H, ẑi+1·, V )
end for

We remark on the theoretical possibility of designing a prior for which algorithm 6
could fail to �nd a labeling consistent with the constraints on classes of adjacent
pixels. Such a situation could emerge if there exists a row (or column) labeling for
which the neighboring row (resp. column) can not be labeled in such a way that
the pairs of vertically and horizontally neighboring labels belong to V and H. Since
row and column labelings consistent with a prior are de�ned in terms of constraints
on classes of pairs of adjacent pixels, the formal condition for a prior for which
algorithm 6 is guaranteed to �nd a labeling consistent with the constraints can be
formulated in terms of pairs of allowed classes of adjacent pixels

∀(σ1, σ2) ∈ Vo, ∃(σ′1, σ′2) ∈ Vo, s.t. (σ1, σ
′
1) ∈ Ho, (σ2, σ

′
2) ∈ Ho , (D.11a)

∀(σ1, σ2) ∈ Ho,∃(σ′1, σ′2) ∈ Ho, s.t. (σ1, σ
′
1) ∈ Vo, (σ2, σ

′
2) ∈ Vo . (D.11b)

The adjacency patterns for which algorithm 6 can fail to �nd a labeling satisfying
the constraints, in practice do not encode more useful priors than ones that satisfy
conditions (D.11). In particular, for any prior for which ∀s ∈ S, (s, s) ∈ V and
(s, s) ∈ H, which corresponds o the most practical case, when a facade element can
have an arbitrary size, algorithm 6 always �nds a valid labeling. The same holds
for adjacency patterns obtained by transforming grid patterns according to (5.1),
and the alphabet of irregular shapes presented in section 5.3.2. Finally, algorithm 6
can easily be modi�ed to detect a situation when it fails to generate a labeling that
respects all the constraints.
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Figure D.1: The running time with respect to number of (pre-semantic) classes for the imple-
mentation based on sparse and dense representation of a table of allowed neighbor classes. The
displayed time contains 100 iterations of the dual decomposition algorithm and extraction of the
primal solution. The experiment has been performed on a single image of the ECP dataset. We
used a 6-core Core-i7 processor with 3GHz clock.

The complexity of the Viterbi algorithm used to solve the subproblems can be
decreased by exploiting the fact that only some pairs of neighboring classes are
allowed. In each step, the algorithm determines the optimal class of the previously
processed pixel, given the class of the current one. We can speed up the process
by only checking the previous classes that constitute valid pairs with the current
class. This is achieved by storing the matrices of allowed classes of neighboring
pixels in sparse form. We compare the dependence of the running time on the
number of classes for the sparse and dense representations and present the results
in �gure D.1. We vary the number of classes by starting with a complex prior with
many classes and then randomly removing classes. The number of classes is a good
measure of complexity of shapes represented by a prior. Exploiting the sparsity in
the implementation of the Viterbi algorithm results in a speedup of roughly 5 times
in this particular example.
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