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Highlights
A Data-Driven-based homogenization method to simulate the anisotropic damage of brittle
heterogeneous structures
Zakaria CHAFIA, Julien YVONNET, Jérémy BLEYER

• A numerical homogenization method for anisotropic damage is proposed using RVE crack simulations as data.
• Operators and internal variables for the macro damage model construction are uniquely defined using Harmonic

Analysis of Damage.
• Macro internal variables evolution laws are predicted by a surrogate model using interpolation in the macro

strain space.
• A modified strain regularization is proposed at the macro scale to avoid mesh-dependency.
• Anisotropic fracture can be efficiently captured for strongly oriented microstructures at low computational costs

in the off-line stage.
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A B S T R A C T
An efficient data-driven multiscale framework for modeling anisotropic damage (M-DDHAD)
in heterogeneous structures is proposed, where the anisotropic damage model at the macro
scale is constructed purely on the knowledge of Representative Volume Elements (RVE) of the
material microstructure. The technique involves three main steps: the construction of a database,
obtained by performing off-line calculations of crack propagation on Representative Volume
Elements (RVE); the construction of an anisotropic damage model constructed from the data-
base using Harmonic Analysis of Damage and off-line calculations, where damage is computed
using the constructed model in tandem with a strain-gradient regularization technique. Using
Harmonic Analysis of Damage, an anisotropic damage model defining the evolution of the
macroscopic elastic tensor as a function of macro internal variables is provided without specific
assumptions about the anisotropy related to the RVE geometry. A surrogate model is constructed
to define their evolution. The macroscopic problem uses the constructed anisotropic damage
model, and a modified strain-gradient regularization is applied to guarantee mesh-independence.
The technique accuracy and robustness has been assessed on several structural problems with
different microstructures, involving a strong initial and induced anisotropic fracture behavior,
and compared with direct crack numerical simulations (DNS) of heterogeneous structures. Very
good accuracy has been obtained both regarding the force-displacement curves as well as crack
paths, while keeping the efficiency of classical Finite Element simulations.

1. Introduction
Modelling fracture of heterogeneous materials based on knowledge of their microstructure is a difficult engineering

problem, but one that, if mastered, would enable the design of new, more resistant materials, or the optimization
of structures to improve their resistance to cracking. The stakes are high for the design of new composites such as
3D woven composites or lightweight materials such as 3D printed architectural materials, among others. Among the
difficulties associated with this problem, the strong anisotropy during fracture that can be induced in this type of
material makes the simple identification of empirical damage models particularly delicate. In addition, using knowledge
of the microstructure as information to build damage models on the scale of the structure involves a homogenization
step, which can only be carried out numerically, assuming available a methodology that allows this change of scale,
which is still a challenge today. Finally, direct finite element simulations of heterogeneous structures are still limited
to small volumes of structures, even using supercomputers, because of the very large scale disparities between the
dimensions of the structure and the size of the heterogeneities (fibers, pores, etc.).

Several multiscale methods have been developed in the literature to tackle such problem. In [69, 59, 60, 61, 50, 68],
Multiscale Finite Elements Method (MsFEM) [27, 26, 78] was proposed to simulate damage of heterogeneous
materials. Within these methods, the computational domain is divided into macroscopic and microscopic regions.
Traditional finite element methods are used to solve the equations governing the fracture behavior at the microscopic
level using a fine mesh. Then, solutions are mapped to a coarser mesh at the macroscopic level employing multiscale
basis functions. Other multiscale approaches are available for simulating heterogeneous structures by integrating
different models across various scales. These methods allow to describe the damage in localized regions where the
response of the subdomain is coupled with the homogeneous structural model away from the region of interest. For
example, the Arlequin method [9, 10] allows incorporating a detailed local model, which captures the fine scale
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Multiscale anisotropic damage modelling

phenomena, within a coarser model representing the overall structure. This approach uses weight functions to merge the
two scales, ensuring that the fine scale details efficiently influence the coarse scale model, and was applied to damage
simulations in [67, 66]. Mesh superposition techniques [58, 11, 48, 65, 19] enable simulating heterogeneous structures
by zooming into specific regions of interest. These methods involve conducting an initial coarse scale simulation to
obtain a global response of the structure behavior. Then a finer scale model is employed to zoom into these regions for
a detailed analysis. The LATIN method [32, 36] and the micro/macro strategy [33, 34, 35] offer an iterative framework
to handle nonlinear multiscale problems. This approach addresses interactions across different scales by separating
the problem into global and local problems (see [21, 4] for damage simulation applications). In [17], a non-intrusive
global/local approach [16] was proposed for simulating damage of heterogeneous structures using the phase field
method [6, 46, 53, 45, 44]. This method couples a global model, associated with the overall structure, with a refined
local model capturing localized damage phenomena (see also [23, 57, 28]).

Computational homogenization methods constitute an alternative to simulate damage at the structure scale taking
into account the microstructure and the evolution of micro cracks. In FE2 based methods [13, 14, 5, 52], predicting
the fracture behavior at the macroscopic scale involves performing simulations on the RVE at the microscopic
scale simultaneously. The main drawback of this approach is its computational cost, especially in the case of
incremental problems such as damage modelling. Several nonlinear computations are required at each Gauss point
of the macroscopic mesh and for all incremental steps, which restrict their use for large scale or industrial applications.
To overcome this limitation, various strategies have been developed to accelerate the FE2 method. In [75, 47, 20, 56],
reduced-order models like principal component analysis (PCA) or proper orthogonal decomposition (POD) were used
to reduce the RVE computations. More recently, macro clustering, initially [2] and [7] for inelastic problems and
extended to FE2 fracture problems in [8], has been introduced by restricting the number of RVE to be computed using
k-means clustering on the macro integration points. Another strategy, initiated in [74, 37], involves the use of Data-
Driven and machine learning methods for the computational homogenization of nonlinear heterogeneous materials.
The key idea of theses approaches is the use of surrogate models to substitute RVE computations. A set of offline
computations is initially performed at the microscopic scale in a first step. Then, the stored dataset is used to build a
surrogate model, which replaces RVE computations for predicting the macroscopic behavior of the structure. These
techniques have been applied in numerous studies in the literature. Neural Networks are used in [18, 38, 40, 41, 43].
In [42], a hybrid neural-network-interpolation was used for stochastic multiscale modelling framework. For damage
simulation of heterogeneous structure, Data-Driven approaches were used to predict fatigue and fracture in [49]. In
[22], a Data-Driven framework for the enhancement of fracture paths in random heterogeneous microstructures was
proposed. Predicting delamination of composites using machine learning was suggested in [39, 30]. A multiscale
surrogate modelling framework for composite materials considering progressive damage based on artificial neural
networks was proposed in [71], as well as damage prediction in fiber-reinforced composites using machine learning
in [79, 63]. In [64], machine learning was used to simulate compressive damage in composites laminates. Other
approaches have been developed to simulate damage at the structural scale while taking into account the fine scale
features, including fracture toughness and characteristic length scale calculations [3], inverse approaches [51] or
asymptotic homogenization [12, 72]. See also [54, 55], for homogenization-based multiscale damage modelling of
cohesive cracks. For an in-dept analysis of the behavior of the PC/ABS blends using the computational homogenisation,
see [1].

In this work, a Data-Driven multiscale anisotropic damage modelling method, called M-DDHAD is proposed,
to simulate crack nucleation and propagation of brittle, heterogeneous, anisotropic structures. The main idea of this
approach is to substitute RVE computations by a surrogate model, allowing damage prediction at the structure scale
accurately with high efficiency. The proposed M-DDHAD method is carried out in three steps. Initially, a set of offline
computations is performed on the RVE using the phase field method [46, 45, 44] to build the database. Next, a harmonic
analysis [76, 77] is carried out using the constructed database to compute internal variables and to build their evolution
laws and the anisotropic damage model to be used at the macroscopic scale. At the final stage, online computations are
performed using the surrogate model to predict the anisotropic damage of heterogeneous structures. Applications to
periodic brittle composite structures with strongly anisotropic microstructures are presented. The M-DDHAD method
is validated using reference computations from damage simulations of full-field periodic heterogeneous structures with
a fine description of the microstructure.
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2. A Multiscale Data-Driven modeling of anisotropic damage using Harmonic Analysis
(M-DDHAD): overview
A data-driven multiscale modelling framework of anisotropic damage (M-DDHAD) method is proposed, where a

homogenized anisotropic damage model is constructed purely on the knowledge of Representative Volume Elements
(RVE) of the material microstructure. The technique involves three main steps: (i) the construction of a database,
obtained by performing off-line calculations of crack propagation in Representative Volume Elements (RVE); (ii) the
construction of an anisotropic damage model constructed from the database using Harmonic Analysis of Damage;
(iii) On-line calculations, where damage is computed using the constructed model in tandem with a strain-gradient
regularization technique. The three main steps of the method are schematically described in Fig. 1 and detailed in the
next sections.

3. Off-line calculations
3.1. Micro scale crack modelling

At the microscopic scale, the phase field method is employed to model the damage in the RVE. This approach,
initiated in [6], has become a widespread tool to describe crack initiation and propagation in materials. The phase field
method, based on minimizing the total energy functional, is able to model arbitrary and complex crack geometries as
well as cracks nucleation, coalescence and branching. These advantages provide a highly robust framework to model
crack propagation in heterogeneous structures. Let us consider an open domain Ω ⊂ ℝ𝐷 representing a cracked RVE
of dimension 𝐷 and 𝜕Ω be the RVE boundary of dimension 𝐷 − 1. Let us consider an open domain Ω ⊂ ℝ𝐷 and its
boundary 𝜕Ω of dimension 𝐷 − 1. Let 𝜕Ω𝑢 and 𝜕Ω𝐹 be the parts of the boundary on which Dirichlet and Neumann
boundary conditions are prescribed, respectively, such that 𝜕Ω = 𝜕Ω𝑢 ∪ 𝜕Ω𝐹 and 𝜕Ω𝑢 ∩ 𝜕Ω𝐹 = ∅. The total energy
functional (𝒖, 𝑑), according to [6], is given by:

(𝒖, 𝑑) = ∫Ω
𝜓𝑒(𝜺(𝒖), 𝑑)𝑑Ω + ∫Ω

𝜓𝑓 (𝑑)𝑑Ω − ∫Ω
𝒇 ∗ ⋅ 𝒖𝑑Ω − ∫𝜕Ω𝐹

𝑭 ∗ ⋅ 𝒖𝑑𝑆, (1)

where 𝒖 is the displacement field, 𝜺(𝒖) = 1
2

(

∇(𝒖) + ∇(𝒖)𝑇
) is the infinitesimal strain tensor and 𝑑 is the damage

variable; 𝜓𝑒(𝒖, 𝑑) denotes the elastic energy density and 𝜓𝑓 (𝑑) refers to the fracture energy density. 𝒇 and 𝑭 ∗ are body
forces and prescribed forces on the boundary 𝜕Ω𝐹 , respectively.

The phase field framework developed in [46, 45, 44] is considered. The elastic energy density, in this model, is
split into positive and negative parts using the spectral decomposition of the strain tensor, which is given as:

𝜓𝑒(𝜺(𝒖), 𝑑) = (𝑔(𝑑))𝜓+
𝑒 (𝜺(𝒖)) + 𝜓

−
𝑒 (𝜺(𝒖)), (2)

in which 𝑔(𝑑) = (1 − 𝑑)2 is the degradation function applied only on the positive part of the elastic energy density,
𝜓+
𝑒 (𝜺(𝒖)) and 𝜓−

𝑒 (𝜺(𝒖)) refer to the positive and negative parts of the elastic energy density expressed as:

𝜓±
𝑒 (𝜺(𝒖)) =

𝜆
2
(

⟨Tr(𝜺)⟩±
)2 + 𝜇Tr ((𝜺±)2) , (3)

where 𝜆 and 𝜇 are the Lamé’s parameters, Tr(.) is the trace operator, 𝜺+ and 𝜺− denote the positive and the negative
parts of the strain tensors, respectively, which are expressed by:

𝜺± =
𝑘
∑

𝑖=1

⟨

𝜀𝑖
⟩

± 𝒏𝑖 ⊗ 𝒏𝑖, 𝑘 = 2, 3, (4)

where ⟨𝑥⟩± = 1
2 (𝑥 ± |𝑥|), 𝜀𝑖 and 𝒏𝑖 are the eigenvalues and eigenvectors of the strain tensor 𝜺.

In this work, the so-called AT2 model [46] is considered for the fracture energy density:
𝜓𝑓 (𝑑) = 𝜓𝑐

(

𝑑2 + 𝓁2
0∇𝑑 ⋅ ∇𝑑

)

, (5)
where ∇(⋅) is the gradient operator, 𝓁0 is the characteristic length that governs the width of the damage zone, 𝜓𝑐 is a
specific fracture energy density, considered here to be a material property and which can be related to the critical stress
Z.CHAFIA et al: Preprint submitted to Elsevier Page 3 of 32
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Figure 1: Overview of the M-DDHAD method

𝜎𝑐 and the fracture toughness 𝐺𝑐 by:

𝜓𝑐 =
𝜎2𝑐
2𝐸

=
𝐺𝑐
2𝓁0

, (6)
where 𝐸 is the Young’s modulus.

The functional in Eq. (1) is not convex with respect to both unknowns (𝒖, 𝑑), but is convex with respect to each
variable separately [70]. To address the minimization of the total energy in Eq. (1), a robust algorithm using a staggered
Z.CHAFIA et al: Preprint submitted to Elsevier Page 4 of 32
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scheme [46], is considered. Consequently, an incremental problem is obtained, where two coupled sets of equations
are solved sequentially. Minimizing (1) with respect to the damage field 𝑑(𝒙), the following Euler-Largange equations
are obtained:

⎧

⎪

⎨

⎪

⎩

(1 − 𝑑) − 𝜓𝑐
(

𝑑 − 𝓁0
2Δ𝑑

)

= 0 in Ω,
𝑑 = 1 on Γ,
∇𝑑 ⋅ 𝒏 = 0 on 𝜕Ω,

, (7)

which are solved by fixing the displacement field 𝒖, and where Δ(⋅) is the Laplacian operator, Γ represents the crack
surface, 𝒏 is the output normal vector on the boundary 𝜕Ω and  refers to the history functional, used to ensure the
irreversibility condition [46], defined by:

 = max
𝜏∈[0,𝑡]

[

⟨

𝜓+(𝜀; 𝜏) − 𝜓𝑐
⟩

+

]

. (8)

Minimizing (1) with respect to the displacement field 𝒖(𝒙), the following Euler-Lagrange equations are obtained:
⎧

⎪

⎨

⎪

⎩

∇ ⋅ (𝝈) + 𝒇 = 0 in Ω,
𝒖 = 𝒖∗ on 𝜕Ω𝑢,
𝝈𝒏 = 𝑭 ∗ on 𝜕Ω𝐹 .

(9)

which are solved by fixing the damage state 𝑑(𝒙). In (9), 𝝈 = 𝜕𝑊
𝜕𝜺 is the second-order Cauchy stress tensor, 𝒇 are

body forces and 𝒖∗ and 𝑭 ∗ are prescribed displacements and forces on the corresponding boundaries 𝜕Ω𝑢 and 𝜕Ω𝐹 ,
respectively. The symbols ∇(.) and ∇ ⋅ (.) denote gradient and divergence operators, respectively. For the strain-density
function (3), the constitutive law is expressed (see e.g. [46]) by:

𝝈 =
(

(1 − 𝑑)2 + 𝑘
) {

𝜆 ⟨𝑇 𝑟𝜺⟩+ 𝟏 + 2𝜇𝜺+
}

+ 𝜆 ⟨𝑇 𝑟𝜺⟩− 𝟏 + 2𝜇𝜺− (10)
where 𝑘 is a small positive numerical parameter serving to avoid loss of stability in case of fully damaged elements.

In this work, the resolution of Eqs. (7) and (9) is performed employing the classical finite-element method, in
quasi-static conditions, using a single iteration at each load increment as in [46]. For a detailed implementation of the
phase field method, see e.g. [53]. At each time step, the boundary conditions prescribed on the RVE are given in the
form:

𝒖(𝒙) = 𝜺(𝑡)𝒙 + 𝒖̃(𝒙), (11)
where 𝜺(𝑡) is defined below, and 𝒖̃(𝒙) is a periodic function used to ensure boundary conditions on the RVE, and which
is enforced through Lagrange multipliers.
3.2. Database construction

In the off-line stage, loading paths are defined, and the equations of the phase field model described in the previous
section are solved at each time step and for each loading path, which is proportional from a zero strain and undamaged
state until a maximum value of the macro strain tensor 𝜺(𝑡). In the present 2D context, the macro strain space is
composed of 3 components, 𝜀11, 𝜀22 and 𝜀12. An ellipsoid is constructed to define the set of macroscopic strains
forming the last increment of each proportional load according to:

𝑥2

𝜀𝑚𝑎𝑥11
+

𝑦2

𝜀𝑚𝑎𝑥22
+ 𝑧2

𝜀𝑚𝑎𝑥12
= 1 (12)

where 𝜀𝑚𝑎𝑥11 , 𝜀𝑚𝑎𝑥22 and 𝜀𝑚𝑎𝑥12 denote maximum absolute values of all macroscopic strains components, and:
⎧

⎪

⎨

⎪

⎩

𝑥 = 𝜀𝑚𝑎𝑥11 𝑐𝑜𝑠(𝜙)𝑠𝑖𝑛(𝜑)
𝑦 = 𝜀𝑚𝑎𝑥22 𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜑)
𝑧 = 𝜀𝑚𝑎𝑥12 𝑠𝑖𝑛(𝜑)

with 𝜙 ∈ [0, 2𝜋] and 𝜑 ∈ [−𝜋
2
, 𝜋
2
] (13)
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Figure 2: Left: loading paths used during the learning step; right: corresponding tetrahedral mesh for interpolating internal
variables.

The number of loading paths 𝑛 is determined by discretizing the parameter ranges 𝜙 ∈ [0, 2𝜋] and 𝜑 ∈ [−𝜋
2 ,

𝜋
2 ].

Each loading path initiates from the ellipsoid center which has the coordinates 𝜺𝑛 = (0, 0, 0) towards the final
macroscopic strain associated with 𝜺𝑚𝑎𝑥𝑛 (see Fig. 2): each blue point depicts the final macroscopic strain of each loading
path and the red points refer to intermediate strain states. Note that the above loading paths induce both traction and
compression states, to take into account both situations during the on-line simulations.

For each strain state, Eqs. (7)-(9) are solved. Then, given the damage state 𝑑(𝒙, 𝑡) in the RVE, the effective elastic
tensor is computed through elastic homogenization according to:

ℂ(𝑡) = 1
|Ω| ∫Ω

ℂ(𝒙, 𝑑(𝑡)) ∶ 𝔸(𝒙, 𝑡)𝑑Ω, (14)

where |Ω| is the volume of Ω, 𝔸(𝒙, 𝑡) is the localization tensor at time 𝑡 and for a "freezed" 𝑑(𝒙, 𝑡) distribution, defined
by:

𝐴𝑖𝑗𝑘𝑙(𝒙, 𝑡) = 𝜀(𝑘𝑙)𝑖𝑗 (𝒙, 𝑡), (15)

where 𝜀(𝑘𝑙)𝑖𝑗 (𝒙) is the strain solution of the problem (9) for 𝜺 = 1
2

(

𝒆𝑘 ⊗ 𝒆𝑙 + 𝒆𝑙 ⊗ 𝒆𝑘
) and for the fixed ℂ(𝒙, 𝑑(𝑡)).

Next, each elastic tensor ℂ(𝑡) is stored for each macro-strain state 𝜺(𝑡), forming the database. Note that each loading
path being independent, these off-line calculations can be efficiently performed in parallel.

4. Construction of the macro model
4.1. Damage model based on harmonic analysis of elasticity tensors

To construct the macroscopic anisotropic damage model, the Data-Driven Harmonic Analysis Damage framework
as proposed in [76, 77] is adopted here. In this context, the elastic tensor at time 𝑡 can be defined according to:

ℂ(𝑡) = ℂ0 −
𝐿
∑

𝑘=1
𝛼𝑘(𝑡)ℂ̃𝑘 (16)

where ℂ0 is the undamaged homogenized tensor of the RVE, and 𝐿 is the number of independent elastic constants
in ℂ(𝑡), i.e. 𝐿 = 6 in 2D and 𝐿 = 21 in 3D. Above, ℂ̃𝑘 are fourth-order elastic tensors (see [77]) and 𝛼𝑘 denote the
macro damage variables, which are defined as follows. An expression of the matrix form for ℂ̃𝑘 is provided in 2D in
Appendix B.
Z.CHAFIA et al: Preprint submitted to Elsevier Page 6 of 32
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It was shown in [31, 24, 25] that any elastic tensor can be characterized by two orientation distribution functions
(ODFs):

𝜂(𝒏, 𝑡) = 𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙𝐶 𝑖𝑗𝑘𝑙(𝑡), 𝜅(𝒏, 𝑡) = 𝛿𝑖𝑗𝑛𝑘𝑛𝑙𝐶 𝑖𝑗𝑘𝑙(𝑡), (17)
where 𝒏 is a unitary orientation vector normal to the unit sphere. In the case of isotropic materials, the functions 𝜂(𝒏)
and 𝜅(𝒏) are constant.

Anisotropic damage can then be defined in the same way using two ODFs [31, 24, 25] as:
𝑑(𝒏, 𝑡) = 1 −

𝜂(𝒏, 𝑡)
𝜂0(𝒏)

, ℎ(𝒏, 𝑡) = 1 −
𝜅(𝒏, 𝑡)
𝜅0(𝒏)

(18)
where 𝜂0(𝒏) and 𝜅0(𝒏) are given by:

𝜂0(𝒏) = 𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙𝑪0𝑖𝑗𝑘𝑙, 𝜅0(𝒏) = 𝛿𝑖𝑗𝑛𝑘𝑛𝑙𝑪0𝑖𝑗𝑘𝑙. (19)
In the context of harmonic analysis of damage, the ODFs are expanded into Fournier series as:
𝑑(𝒏, 𝑡) = 𝑑0(𝑡) +𝑫(𝑡) ∶ 𝑭 (𝒏) + 𝔻(𝑡) ∶∶ 𝔽 (𝒏), (20a)
ℎ(𝒏, 𝑡) = ℎ0(𝑡) +𝑫(𝑡) ∶ 𝑭 (𝒏), (20b)

where 𝑑0(𝑡) and ℎ0(𝑡) denote scalar coefficients, 𝑫(𝑡) and 𝔻(𝑡) denote second- and fourth-order coefficients, and
{1,𝑭 (𝒏), 𝔽 (𝒏)} are generalized spherical harmonics that form a complete orthonormal basis [29]. Above, 𝑨 ∶ 𝑩 =
𝐴𝑖𝑗𝐵𝑖𝑗 and 𝔻 ∶∶ 𝔽 = 𝐷𝑖𝑗𝑘𝑙𝐹𝑖𝑗𝑘𝑙. The expression of these operators can be found in Appendix A in 2D and in 3D in
[77]. In (20a)-(20b), there are only 𝐿 independent coefficients 𝛼𝑘 in 𝑑0(𝑡), ℎ0(𝑡), 𝑫 and 𝔻 [24], which are chosen here
as the macro internal variables. A more compact form for these spherical harmonic expansions can be written as [77]:

𝑑(𝒏, 𝑡) =
𝐿
∑

𝑘=1
𝑉 𝑑
𝑘 (𝒏)𝛼𝑘(𝑡), ℎ(𝒏, 𝑡) =

𝐿
∑

𝑘=1
𝑉 ℎ
𝑘 (𝒏)𝛼𝑘(𝑡), (21)

where the expressions of 𝑽 𝑑 and 𝑽 ℎ are provided in 2D in Appendix B and in 3D in [77].
In 2D, the set of macro internal variables is defined by:
𝜶(𝑡) = {𝛼1(𝑡), 𝛼2(𝑡), 𝛼3(𝑡), 𝛼4(𝑡), 𝛼5(𝑡), 𝛼6(𝑡)}, (22)

with [77]:
𝛼1 = 𝑑0, 𝛼2 = ℎ0, 𝛼3 = 𝐷11, 𝛼4 = 𝐷12, 𝛼5 = 𝐷1111, 𝛼6 = 𝐷1112. (23)

where the expressions of 𝑑(𝑡), ℎ(𝑡), 𝑫(𝑡) and 𝔻(𝑡) are provided in Appendix A.
4.2. Construction of macro internal variables evolution laws

In this work, a surrogate model is constructed to define the evolution of the macroscopic internal variables. For
each time step 𝑡, a set of macro internal variables 𝜶(𝑡) is computed from the corresponding homogenized elastic tensors
ℂ(𝑡) obtained from (14), associated with a macroscopic strain 𝜺(𝑡). Then, the surrogate model relates the macro strains
𝜺(𝑡) and the set of internal variables 𝜶(𝑡) during the proportional loads:

𝜶(𝑡) = 
(

𝜺(𝑡)
)

. (24)
For this purpose, the set of points constructed during the definition of loading paths (see Fig. 2) is used to construct

a tetrahedral mesh in the macro strain space {

𝜀11, 𝜀22, 𝜀12
} using a Delaunay tessellation. To evaluate the internal

variables for a given macro strain, the values of internal variables are interpolated from the data 𝜶𝑖 points which form
the nodes of the tetrahedral mesh according to:

𝜶(𝜀11, 𝜀22, 𝜀12) =
∑

𝑖
𝑁𝑖(𝜀11, 𝜀22, 𝜀12)𝜶𝑖, (25)

where 𝑁𝑖 are the finite element shape functions of the tetrahedral mesh. Note that for a 3D problem, the strain space
would be 6-dimensional, and would require another approximation construction, such as radial basis or neural networks.
As an important assumption, the above surrogate model only holds here for monotonous loadings. The treatment of
loading/unloading cases is out of the scope of the present work and will deserve further developments.
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5. On-line calculations
Given the macro anisotropic damage model and the internal variables evolution laws, a solving procedure for the

macro scale problem is proposed.
Let us consider an open domain Ω ⊂ ℝ𝐷 and its boundary 𝜕Ω of dimension 𝐷 − 1. Let 𝜕Ω𝑢 and 𝜕Ω𝐹 be the

parts of the boundary on which Dirichlet and Neumann boundary conditions are prescribed, respectively, such that
𝜕Ω = 𝜕Ω𝑢 ∪ 𝜕Ω𝐹 and 𝜕Ω𝑢 ∩ 𝜕Ω𝐹 = ∅. The macroscopic elastic energy is defined by:

(𝒖,𝜶) = ∫Ω
𝜓𝑒(𝜺(𝒖),𝜶)𝑑Ω − ∫Ω

𝒇 ⋅ 𝛿𝒖𝑑Ω − ∫𝜕Ω𝐹
𝑭

∗
⋅ 𝛿𝒖𝑑Ω (26)

where 𝒖 is the macroscopic displacement field, 𝜺(𝒖) = 1
2

(

∇(𝒖) + ∇(𝒖)𝑇
) is the macroscopic infinitesimal strain tensor,

𝒇 and 𝑭
∗ are body forces and prescribed surface forces on the boundary 𝜕Ω𝐹 , respectively. 𝜓𝑒(𝒖,𝜶) denotes the

macroscopic elastic energy density defined by:
𝜓𝑒(𝜺(𝒖),𝜶) =

1
2
𝜺(𝒖) ∶ ℂ(𝜶) ∶ 𝜺(𝒖) (27)

where ℂ(𝜶) is given by (16).
Minimizing (26) with respect to the macro displacements 𝒖 with evolution laws for the macro internal variables

(25) results into a local damage model. To avoid well-known mesh dependency related to such models, a revisited strain
regularization with a damage-dependent transient length scale, adapted to the framework of this work, is introduced
and described in the following. At each macro time 𝑡 (quasi-static loading evolution), an alternate solving procecure
is developed, where the macro dispacement problem is first solved, given the macro internal damage variables 𝜶, and
then a regularization problem is solved, where given the macro displacements 𝒖, the internal variables 𝜶 are solved.
Each problem is described in the next sections.
5.1. Mechanical problem
5.1.1. Governing equations

Given the macro damage internal variables 𝜶, minimizing the energy functional (26) with respect to the
macroscopic displacement field gives: find 𝒖 ∈  =

{

𝒖 ∈ 𝐻1(Ω) | 𝒖 = 𝒖∗ on 𝜕Ω𝑢
}

such that

∀𝛿𝒖 ∈ 
0
=
{

𝛿𝒖 ∈ 𝐻1(Ω) | 𝛿𝒖 = 0 on 𝜕Ω𝑢
}

, 𝐷𝛿𝑢(𝑢, 𝛼) = 0, (28)
where

𝐷𝛿𝑢(𝒖,𝜶) = ∫Ω
𝝈
(

𝜺(𝒖),𝜶
)

∶ 𝜺(𝛿𝒖)𝑑Ω − ∫Ω
𝒇 ⋅ 𝛿𝒖𝑑Ω − ∫𝜕Ω𝐹

𝑭
∗
⋅ 𝛿𝒖𝑑𝑆, (29)

where 𝝈
(

𝜺(𝒖),𝜶
) denotes the macroscopic stress tensor, defined by:

𝝈
(

𝜺(𝒖),𝜶
)

=
𝜕𝜓𝑒
𝜕𝜺

(𝜺(𝒖),𝜶). (30)
The Euler-Lagrange equations associated with Eq. (28) are given by:
⎧

⎪

⎨

⎪

⎩

∇ ⋅
(

𝝈
)

+ 𝒇 = 0 in Ω,
𝒖 = 𝒖∗ on 𝜕Ω𝑢,
𝝈𝒏 = 𝑭

∗ on 𝜕Ω𝐹 ,
(31)

in which 𝒏 is the unitary normal vector to the boundary 𝜕Ω.
Using Eqs. (27) and (30), it yields:
𝝈
(

𝜺(𝒖),𝜶
)

= ℂ(𝜶) ∶ 𝜺(𝒖). (32)
The weak form of the displacement problem (31) can be thus expressed as:
∀𝛿𝒖 ∈ 

0
, ∫Ω

𝜺(𝒖) ∶ ℂ(𝜶) ∶ 𝜺(𝛿𝒖)𝑑Ω = ∫Ω
𝒇 ⋅ 𝛿𝒖𝑑Ω + ∫𝜕Ω𝐹

𝑭
∗
⋅ 𝛿𝒖𝑑𝑆. (33)
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5.1.2. Finite-element discretization
The macroscopic displacement field, the macroscopic strain tensor and their variations can be approximated in one

element by:
𝒖 = 𝑵𝑢𝒖𝑖 ; 𝛿𝒖 = 𝑵𝑢𝛿𝒖𝑖 ; 𝜺(𝒖) = 𝑩𝑢𝒖𝑖 ; 𝜺(𝛿𝒖) = 𝑩𝑢𝛿𝒖𝑖, (34)

where 𝒖𝑖 are the nodal values of the macroscopic displacement field 𝒖, 𝑵𝑢 and 𝑩𝑢 are matrices of displacement shape
functions and of displacement shape functions derivatives associated to the macro-mesh, respectively.

The discretization of the mechanical problem (33) leads to the following discrete system of equations:
𝑲𝑢𝒖 = 𝑭 𝑢, (35)

in which

𝑲𝑢 = ∫Ω
𝑩
𝑇
𝑢 𝑪(𝜶)𝑩𝑢𝑑Ω, (36)

and

𝑭 𝑢 = ∫Ω
𝑵
𝑇
𝑢 𝒇𝑑Ω + ∫𝜕Ω𝐹

𝑵
𝑇
𝑢 𝑭

∗
𝑑𝑆. (37)

5.2. Damage problem
5.2.1. Governing equations

Following [62, 15], a revisited strain regularization with a damage-dependent transient length scale, adapted to
the framework of this work, is introduced. The approach involves solving differential equations including higher-order
derivatives of the strain tensor, which are expressed as follow:

𝜺 = 𝜺̃ − 1
2
(

1 − 𝑑𝑚𝑎𝑥𝜃
)

𝓁
2
0Δ𝜺̃ (38)

where , 𝜺 is the macroscopic strain computed using the displacement field 𝒖, 𝜺̃ is the macroscopic regularized strain
and 𝓁0 denotes the characteristic length at the macroscopic scale. In Eq. (38), 𝑑𝑚𝑎𝑥𝜃 is the maximum of the damage
orientation function 𝑑(𝜃) given by (21)-(66) with respect to the orientation 𝜃, given as:

𝑑𝑚𝑎𝑥𝜃 = max
𝜃∈[−𝜋,𝜋]

𝑑(𝜃). (39)

Multiplying (38) by an arbitrary function 𝛿𝜀𝑖𝑗 for each component 𝜀𝑖𝑗 and integrating over Ω we obtain:

∫Ω
𝜺𝑖𝑗𝛿𝜺̃𝑖𝑗𝑑Ω = ∫Ω

𝜺̃𝑖𝑗𝛿𝜺̃𝑖𝑗𝑑Ω − ∫Ω
1
2
(

1 − 𝑑𝑚𝑎𝑥𝜃
)

𝓁
2
0Δ𝜺̃𝑖𝑗𝛿𝜺̃𝑖𝑗𝑑Ω. (40)

Using the property:
Δ𝜺̃𝑖𝑗𝛿𝜺̃𝑖𝑗 = ∇ ⋅

(

∇𝜺̃𝑖𝑗𝛿𝜺̃𝑖𝑗
)

− ∇𝜺̃𝑖𝑗 ⋅ ∇𝛿𝜺̃𝑖𝑗 , (41)

and the divergence theorem, as well as assuming the natural boundary condition ∇𝜀̃𝑖𝑗 ⋅ 𝒏 = 0 on 𝛿Ω. the weak form
corresponding to Eq. (38) can be rewritten as:

∀𝛿𝜺̃𝑖𝑗 ∈ 𝐻1(Ω), ∫Ω
𝜺𝑖𝑗𝛿𝜺̃𝑖𝑗𝑑Ω = ∫Ω

𝜺̃𝑖𝑗𝛿𝜺̃𝑖𝑗𝑑Ω + ∫Ω
1
2
(

1 − 𝑑𝑚𝑎𝑥𝜃
)

𝓁
2
0∇𝜺̃𝑖𝑗 ⋅ ∇

(

𝛿𝜺̃𝑖𝑗
)

𝑑Ω. (42)

The internal variables 𝛼𝑖 are then computed from Eq. (25) taking as input the regularized macroscopic strain 𝜺̃.
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5.2.2. Finite-element discretization
The macroscopic strain tensor components, the macroscopic strain tensor gradient components and their variations

can be approximated in one element by:
𝜺̃𝑖𝑗 = 𝑵 𝜀̃𝜺̃

𝑘
𝑖𝑗 ; 𝛿𝜺̃𝑖𝑗 = 𝑵 𝜀̃𝛿𝜺̃

𝑘
𝑖𝑗 ; ∇𝜺̃𝑖𝑗 = 𝑩𝜀̃𝜺̃

𝑘
𝑖𝑗 ; ∇

(

𝛿𝜺̃𝑖𝑗
)

= 𝑩𝜀̃𝛿𝜺̃
𝑘
𝑖𝑗 , (43)

where 𝜺̃𝑘𝑖𝑗 are the nodal values of the macroscopic strain tensor components 𝜺̃𝑖𝑗 , 𝑵 𝜀̃ and 𝑩𝜀̃ are vectors and matrices
of shape functions and of shape functions derivatives for scalar fields, associated to the macro-mesh, respectively.

The discretization of the regularization problem (42) leads to the following discrete systems of equations:

𝑲 𝜀̃𝜺̃𝑖𝑗 = 𝑭
𝑖𝑗
𝜀̃ , 𝑖𝑗 = 11, 22, 12, (44)

in which

𝑲 𝜀̃ = ∫Ω
𝑵
𝑇
𝜀̃𝑵 𝜀̃ +

1
2
(

1 − 𝑑𝑚𝑎𝑥𝜃
)

𝓁
2
0𝑩

𝑇
𝜀̃ 𝑩𝜀̃𝑑Ω, (45)

and

𝑭
𝑖𝑗
𝜀̃ = ∫Ω

𝑵
𝑇
𝜀̃ 𝜺𝑖𝑗𝑑Ω (46)

5.3. M-DDHAD algorithm: summary
The M-DDHAD method algorithm is summarized in Algorithm 1.

6. Numerical applications and method validation
In this section, numerical applications of crack nucleation and propagation, using the proposed M-DDHAD method,

are presented. First, two applications of the stiffness tensor reconstruction of a damaged RVE are provided. Then,
examples of damage modeling of heterogeneous structures with periodic microstructure are presented. Homogenized
model results are validated through comparison with reference computations from damage simulations using full-field
periodic heterogeneous structures with a fine description of the microstructure.
6.1. Reconstruction of the stiffness matrix C(𝑡)

This section presents two applications of the stiffness matrix reconstruction. For both applications, the RVE is a
square with inclusion of dimensions 𝐿 × 𝐿 = 1 × 1 mm2 for the plate, and the inclusion radius is 𝑟 = 0.2 mm (see
Fig. 17b). The mechanical properties of the microstructure are as follows: 𝐸𝑚 = 52 GPa, 𝜈𝑚 = 0.3 et 𝜎𝑚𝑐 = 30 MPa
for the matrix, and 𝐸𝑖 = 10000 GPa, 𝜈𝑖 = 0.3 et 𝜎𝑖𝑐 = 10000 GPa for the inclusion. For all examples in this work,
the microscopic mesh is composed of structured quadrilateral elements of size ℎ = 0.01 mm. The stiffness matrix C0
associated with the tensor ℂ0 and the matrix C̃ (see Eq. (61)) are given as:

C0 =
⎡

⎢

⎢

⎣

85.38 35.00 0
35.00 85.38 0
0 0 24.10

⎤

⎥

⎥

⎦

, (47)

and

C̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

85.38 0 85.11 0 85.11 0
−85.38 120.38 0 0 −85.11 0

0 0 0 42.28 0 84.83
85.38 0 −85.11 0 85.11 0
0 0 0 42.28 85.11 −84.83

84.29 −60.19 0 0 −84.56 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (48)
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Algorithm 1 The M-DDHAD method
1: Offline Computations
2: Define the RVE geometry and construct its mesh.
3: Construct the ellipsoid of loading paths by (12), (13).
4: for each loading path 𝑘 do
5: for 𝑡𝑛 ≤ 𝑇 do
6: Solve the microscopic problem (section 3.1).
7: Compute and store ℂ

𝑘
(𝑡𝑛).

8: end for
9: end for

10:
11: Scale transition: Micro to Macro scale
12: Harmonic analysis of damage, compute 𝜶 by (23).
13: Construct the evolution laws 𝜶 = 𝑓𝑖(𝜺).
14: Construct the operators of the anisotropic damage model: 𝐂0 , 𝐂̃ from (14) and (60).
15:
16: Online Computations
17: Define the structure geometry and construct its mesh.
18: for 𝑡𝑚+1 ≤ 𝑇 do
19: Given 𝜶𝑚 at load increment 𝑡𝑚.
20: Compute displacement:
21: Compute ℂ(𝜶𝑚) by (16).
22: Compute and assemble 𝑲𝑢 and 𝑭 𝑢 by (36), (37).
23: Compute macroscopic displacement 𝒖𝑚+1 by solving (35).
24: Compute macroscopic strain 𝜺𝑚+1.
25: Compute damage:
26: Compute 𝑑(𝜃, 𝑡𝑚) and 𝑑𝑚𝑎𝑥𝜃 (𝑡𝑚) by (21), (39).
27: Compute and assemble 𝑲 𝜀̃ and 𝑭 𝜀̃ by (45), (46).
28: Compute the regularized macroscopic strain 𝜺̃𝑚+1 by solving (44).
29: Compute macroscopic damage variables 𝜶𝑚+1 by Eq. (25).
30: end for

The first application focuses on the DDHAD method (Data-Driven Harmonic Analysis of Damage) and its improved
version [76, 77]. The aim is to illustrate, through damage modeling of the RVE, the reconstruction of the stiffness tensor
evolution ℂ(𝑡) as a function of internal variables 𝛼𝑖(𝑡), where 𝑡 is a pseudo time parameter describing the load evolution.
The damage simulation is carried out, subjecting the RVE to periodic boundary conditions, using the macroscopic strain
given by:

𝜺(𝑡) = 10−4 ×
[

2.56 −2.84
−2.84 0.69

]

𝑡, (49)

where the pseudo time 𝑡 ∈ [0, 1]. The loading step used in this simulation is Δ𝑡 = 5.10−3 (200 loading increments).
The regularization length, in this case, is chosen as 𝓁0 = 0.02 mm.

Fig. 3 illustrates the final damage state of the RVE (𝑡 = 1) associated with the macroscopic strain in Eq. (49). Fig. 4a
shows the evolution of the extracted internal variables 𝜶(𝑡) using the procedure described in Eq. (23) and Appendix A.
Unlike classical damage variable ranging between 0 and 1, internal variables 𝛼𝑖(𝑡) do not necessarily vary between 0 and
1, and can take negative values. Notably, in this case, the first three internal variables 𝛼1(𝑡), 𝛼2(𝑡) and 𝛼3(𝑡) are positive
and increasing, while the others (𝛼4(𝑡), 𝛼5(𝑡) and 𝛼6(𝑡)) are negative and decreasing. It can also be noted that the internal
variables 𝛼5(𝑡) and 𝛼6(𝑡) have very small values. Fig. 4b shows the evolution of the components of the stiffness matrix
associated with the damaged RVE. On the one hand, the components are directly computed by numerical simulation
using the phase field method [46, 45, 44] combined with the numerical homogenization technique in [73]. On the
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𝑑

Figure 3: Final damage state of the RVE (𝑡 = 1) associated to the macroscopic strain in the Eq. (49).
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Figure 4: RVE damage evolution (𝑡 ∈ [0.5, 1]): (a) Internal variables evolution; (b) Sti�ness matrix components evolution:
DDHAD vs Direct Numerical Simulation.

other hand, the stiffness matrix is reconstructed based on the extracted internal variables evolution according to the
anisotropic damage model in Eq. (16). It is quite remarkable that the reconstructed stiffness tensor evolution shows an
excellent alignement with that of the directly computed stiffness tensor. This result demonstrates that the anisotropic
damage model in Eq. (16), with six internal variables 𝛼𝑖(𝑡), is very accurate to describe the induced anisotropic damage
in this example.

The second application demonstrates the ability of the proposed M-DDHAD method to accurately predict the
evolution of internal variables, as well as the evolution of the stiffness matrix components. The surrogate model is
built using offline damage simulations on the RVE using the loading step Δ𝑡 = 5.10−3 (200 loading increments)
with 500 loading paths. The regularization length is 𝓁0 = 0.06 mm. The database is constructed from the maximum
macroscopic strain:

𝜀𝑚𝑎𝑥 = 10−4 ×
[

6 7
7 6

]

. (50)
The validation is performed by subjecting the RVE to periodic boundary conditions (11), using a macroscopic

strain path that is not part of offline computations loading paths as:

𝜺(𝑡) = 10−4 ×
[

−1.12 2.13
2.13 5.47

]

𝑡, (51)

where the pseudo time 𝑡 ∈ [0, 1]. The loading step used in this validation simulation is Δ𝑡 = 5.10−3 (200 loading
increments).
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𝑑

Figure 5: Final damage state of the RVE (𝑡 = 1) associated to the macroscopic strain in the Eq. (51).

(𝑎) (𝑏)

Figure 6: RVE damage evolution (𝑡 ∈ [0.5, 1]): (a) Internal variables evolution; (b) Sti�ness matrix compounts evolution:
DDHAD vs Direct Numerical Simulation.

Fig. 5 illustrates the final damage state of the RVE (𝑡 = 1) associated to the macroscopic strain in Eq. (51). Fig.
6a shows the evolution of internal variables 𝛼𝑖(𝑡) associated with the damaged RVE. On the one hand, the effective
elastic tensor is computed at each time step and the internal variables are extracted from it as a reference solution using
Eq. (23) and Appendix A. On the other hand, internal variables are computed with the surrogate model constructed,
using the proposed M-DDHAD method. It is shown from the comparison that a very good approximation is achieved,
which demonstrates that an accurate prediction of internal variables evolution is achieved when using a macroscopic
strain path not included in offline computations. This result is confirmed by Fig 6b, which shows the evolution of the
components of the stiffness matrix computed by direct numerical simulation and those computed according to the
anisotropic damage model in Eq. (16) using the predicted evolution of internal variables.

It should be noted that, in this case, the internal variables 𝛼1(𝑡), 𝛼2(𝑡), 𝛼4(𝑡) and 𝛼5(𝑡) are positive and increasing,
while 𝛼3(𝑡) and 𝛼6(𝑡) are negative and decreasing, which is in contrast with the previous application. In general, for a
given RVE, each macroscopic strain results in a distinct evolution of these internal variables.
6.2. Notched structure with pores

The first example of multiscale damage modeling deals with crack propagation in a notched square plate with pores
submitted to tensile loading. Macrostructure dimensions are𝐿×𝐿 = 21×21 mm2 for the plate and𝐿′

×𝐻
′
= 6.4×0.05

mm2 for the notch. The geometry and the boundary conditions, for the displacement problem, are depicted in Fig. 7a.
The bottom end of the structure is fixed in both directions, left and right ends are blocked along the x-direction, and a
distributed load 𝑈 is applied to the top end of the structure in the y-direction with constant displacement increments
of Δ𝑢 = 10−5 mm. The macroscopic mesh, for all examples in this work, is composed of linear triangular elements.
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Figure 7: Notched structure with pores (homogenized structure): (a) macrostructure with boundary conditions; (b)
microstructure (RVE); (c) macroscopic mesh.

The elements size, in this case, is ℎ𝑚𝑖𝑛 = 0.025 mm in the crack propagation zone and ℎ𝑚𝑎𝑥 = 0.5 mm in the rest of
the domain (see Fig. 7c). The macroscopic characteristic length scale is chosen as 𝓁0 = 0.1 mm.

The microstructure is characterized by a porous square RVE of dimensions 𝐿 × 𝐿 = 1 × 1 mm2, and the hole
radius is 𝑟 = 0.2 mm (see Fig. 7b). The mechanical properties of the microstructure matrix are as follows: 𝐸 = 52
GPa, 𝜈 = 0.3 et 𝜎𝑐 = 30 MPa. The microscopic mesh size is ℎ = 0.01 mm. The microscopic characteristic length scale
is 𝓁0 = 0.1 mm. In this work, notches and voids in the microstructure are modeled with the mechanical properties
𝐸 = 1 MPa, 𝜈 = 0 and 𝜎𝑐 = 0.1 MPa. Offline damage simulations on the RVE are performed using the loading step
Δ𝑡 = 5.10−3 (200 loading increments) with 1089 loading paths constructed from the maximum macroscopic strain:

𝜺𝑚𝑎𝑥 = 10−4 ×
[

6 7
7 6

]

. (52)

(𝑎) (𝑏) (𝑐)

Figure 8: Notched structures with pores (Full-Field structures) with di�erent numbers of RVEs: (a) 9 × 9; (b) 21 × 21; (c)
31 × 31.

The proposed M-DDHAD method results are validated by comparison with reference computations obtained by
direct simulations on full-field periodic heterogeneous structures. A crucial consideration lies in the choice of the unit
cell size for conducting this comparison. In a very recent work [72], a similar study was considered. Simulations on
full-field periodic structures were used to validate the proposed homogenization-based phase-field method [72]. It was
demonstrated that force-displacement curves of reference structures converge to the one of the homogenized structure
when decreasing the unit cell size. For this first example in this work, the validation is carried out using a fully-meshed
notched porous structure as a reference, with the same geometry as the homogenized structure in Fig. 7a. The structure
is composed of repeated unit cells (RVEs) in Fig. 7b with the same mechanical properties. It should be noted that, in
Z.CHAFIA et al: Preprint submitted to Elsevier Page 14 of 32
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(𝑎) (𝑏)

CP

CN

Figure 9: Convergence of the solution with respect to the number of RVEs: (a) Force-Displacement curves; (b) 𝐹 𝑚𝑎𝑥
evolution (FF: full-�led, CP: crack at pore, and CN: crack at notch).

(𝑎) 7 × 7 (𝑏) 21 × 21 (𝑐) 27 × 27

(𝑑) 9 × 9 (𝑒) 17 × 17 (𝑓 ) 31 × 31

𝑑

Figure 10: Final damage state of notched structures with pores (Direct Numerical Simulations) with di�erent numbers of
RVEs: (a), (b) and (c): The crack nucleates at the pore; (d), (e) and (f): The crack nucleates at the notch.

this case, depending on the number of RVEs in full-field structures, cracks can initiate at the notch or at the pore, which
lead to take into accunt an additional factor, the location of nucleation with respect to the heterogeneities, which was not
considered in [72]. Therefore, an influence study is performed here to investigate unit cell size and nucleation location
effects. The aim is to confirm the findings in [72] and to ensure that the convergence is maintained despite the nucleation
location effect. To this end, several full-field notched porous structures with a varying number of RVEs are considered,
composed of 7×7, 9×9, 13×13, 17×17, 21×21, 25×25, 27×27, 31×31 and 35×35RVEs. The choice of the number of
RVEs is made so as to have full-field structures where cracks initiate at the pore (structures with 7×7, 13×13, 21×21,
27 × 27 and 35 × 35 RVEs) and others where cracks initiate at the notch. Figs. 8a, 8b and 8c show examples of three
configurations of structures with 9×9, 21×21 and 31×31 RVEs, respectively. In this work, all reference computations
are carried out with structured quadrilateral mesh employing the phase field method [46, 45, 44]. The elements size in
Z.CHAFIA et al: Preprint submitted to Elsevier Page 15 of 32



Multiscale anisotropic damage modelling

(𝑎) (𝑏)

(𝑐) (𝑑)

𝑑
𝑚𝑎𝑥

𝜃

𝑑

Figure 11: Damage evolution of the notched periodic structure with pores: (a) and (b) Homogenized M-DDHAD solution at

displacements 𝑈 = 2.8.10−4 mm and 𝑈 = 3.5.10−4 mm, respectively; (c) and (d) DNS solution at the same displacements,
respectively.

this example is ℎ = 0.025 mm. The characteristic length scale is 𝓁𝑓𝑓 = 𝓁0. Simulations are performed with the same
boundary conditions as the homogenized structure in Fig. 7a. Constant displacement increments of Δ𝑢 = 7.10−6 mm
are considered.

Fig. 9a shows force-displacement curves obtained from damage simulations of full-field periodic heterogeneous
structures with 7×7, 9×9, 17×17, 21×21, 31×31 and 35×35 RVEs, and the curve obtained from the homogenized
structure modeling using the proposed M-DDHAD method. It is remarkable that the curves from full-field simulations
converge towards the multiscale simulation curve as the number of RVEs increases. This result demonstrates that
increasing enough the number of RVEs reduces the variability in the structure behavior caused by local heterogeneities,
and the effective behavior of the structure is captured, which is consistent with results in [72]. This outcome is confirmed
by Fig. 9b, which illustrates the evolution of the maximum force of full-field simulations as a function of the number
of RVEs. The curve shows a convergence of the maximum force of the full-field simulations towards a value very close
to that of the multiscale simulation with respect to the number of RVEs. It can be noticed that the curve exhibits an
oscillatory behavior with respect to the number of RVEs within the structure. The observed fluctuations result from
the nucleation location effect. In Fig. 9b, maximum forces associated with structures where cracks initiate at the pore
are marked with red circles, while those associated with structures where cracks initiate at the notch are marked with
green circles. Figs. 10a, 10b and 10c depict the final damage state of full-field stuctures with 7×7, 21×21 and 27×27
RVEs, respectively. Here, the force increases until reaching a maximum value, then starts decreasing. Figs. 10d, 10e
and 10f show the final state of damage of full-field stuctures with 9 × 9, 17 × 17 and 31 × 31 RVEs, respectively. In
this case, cracks initiate at the notch and propagate until reaching the first pore. This process is characterized by an
initial decrease in force, followed by a continuous increase until a maximum value is achieved. This behavior is clearly
observed in the curve of the full-field structure with 9 × 9 RVEs in Fig. 9a.

Figs. 11a and 11b show the crack evolution in the homogenized model at displacements 𝑈 = 2.8.10−3 mm and
𝑈 = 3.5.10−3 mm, where 𝑑𝑚𝑎𝑥𝜃 , the maximum of the damage orientation function 𝒅(𝜃) with respect to the orientation
𝜃, is represented. Similarly, Figs. 11c and 11d show the evolution of the crack in the full-field structure for the same
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Figure 12: Notched structures with pores: Internal variables 𝛼𝑖 at the �nal damage state of the structure.

displacements as the homogenized structure, respectively. The evolution of cracks in both models demonstrate excellent
agreement for corresponding loading increments. Fig 12 shows macroscopic internal variables 𝛼𝑖 at the final state of
damage of the structure. The distinct variations in each variable are clearly observed, resulting in both positive and
negative values for these variables. It should be noted that with the strain regularization of the proposed method,
a fine crack and localized internal variables are obtained in the macroscopic scale. Furthermore, a comparison of
computational times between the proposed M-DDHAD approach and the reference computations is conducted for this
example. This comparison is carried out using sequential algorithms with an HP Elitebook 850 G8 11th Gen computer
equipped with an i7-1185G7 processor and 64 Gb of RAM. The M-DDHAD method shows a high effeciency in terms
of computation time. The total number of elements used for the multiscale simulation is 𝑁𝑒 = 111916, while the
reference calculations employs 𝑁𝑟𝑒𝑓

𝑒 = 705600. The computation times for the M-DDHAD method is 𝑡 = 36min
and the average time of reference calculations is 𝑡𝑟𝑒𝑓 = 11h24min. A speed-up factor of the order of 19 has been
achieved when comparing times of damage simulations in the homogenized and the fully-meshed models. These
results demonstrates the computation time optimization achieved with the M-DDHAD method, while ensuring the
high accuracy in predicting crack nucleation and propagation.

In this work, a fine macroscopic mesh is used in the crack propagation zone in order to use the same characteristic
length as at the microscopic scale. In general, when using a coarser macroscopic mesh, careful consideration must be
given to the choice of the macroscopic characteristic length for achieving accurate results. This aspect deserves further
investigation in future works.
6.2.1. Influence of the mesh size

In this analysis, the convergence of the M-DDHAD solution with respect to the mesh size is investigated. The
example discussed in the previous section is considered, with the macroscopic characteristic length chosen as 𝓁0 = 0.6
mm. Several damage simulations of the homogenized structure are carried out using a mesh size ranging from
ℎ𝑚𝑖𝑛 = 0.4 mm to ℎ𝑚𝑖𝑛 = 0.02 mm with constant displacement increments of Δ𝑢 = 10−5 mm. Fig. 13 illustrates
force-displacement curves associated with each simulation, showing a clear converge of the solution as the mesh
is refined. This result is confirmed by Fig. 14, in which the evolution of maximum force with respect to the mesh
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Figure 13: Convergence of the M-DDHAD solution with respect to the mesh size: Force-Dislacement curves.
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Figure 14: Convergence of the M-DDHAD solution with respect to the mesh size: 𝐹 𝑚𝑎𝑥 evolution.

size is plotted. The maximum force converge as a function of the mesh size. This outcome demonstrates the mesh
independancy of the problem, which is achieved through the regularization at the macroscopic scale in the proposed
M-DDHAD method.
6.2.2. Influence of the loading increments

Here, the convergence of the M-DDHAD solution as a function of loading increments is analyzed. The same
example as in the previous analysis is considered. In this case, the macroscopic characteristic length is 𝓁0 = 0.1 mm
and the mesh size is ℎ𝑚𝑖𝑛 = 0.05 mm. Several loading increments that range from Δ𝑢 = 2.10−4 mm to Δ𝑢 = 5.10−6
are used. Force-displacement curves associated with each simulation are presented in Fig. 15a, which demonstrates a
very good convergence of the solution as loading increments decrease. The evolution of maximum force, in Fig. 15b
confirms the convergence with respect to loading increments.

6.2.3. Influence of the constructed database density
A sensitivity analysis is conducted to investigate the influence of the number of loading paths on the the M-DDHAD

solution. The first example in section 6.2 is considered. Several databases are constructed using a range of loading paths
number varying from 25 to 500. Fig. 16a illustrates force-displacement curves for each simulation performed using a
specific database. It demonstrates a clear convergence of the solution as loading paths number increases. This outcome
is confirmed by the evolution of the maximum force showed in Fig. 16b. It can be noticed that using 200 loading
paths to construct the dababase for the off-line simulations allows to build an accurate surrogate model for the on-line
simulations.
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Figure 15: Convergence of the M-DDHAD solution with respect to loading increments: (a) Force-Dislacement curves; (b)

𝐹 𝑚𝑎𝑥 evolution.

Figure 16: Convergence of the M-DDHAD solution with respect to loading paths number (𝑁𝑙𝑝): (a) Force-Dislacement

curves; (b) 𝐹 𝑚𝑎𝑥 evolution.

6.3. Perforated structure with inclusions
In the second example, the crack nucleation and propagation of a perforated periodic structure with inclusions

submitted to shear loading is simulated. Macrostructure dimensions are 𝐿 × 𝐿 = 21 × 21 mm2 for the plate and
𝑟 = 0.2𝐿 mm for the hole (see Fig.17a). The bottom end of the structure is fixed in both directions to simulate a rigid
support, structure left and right ends are blocked along the y-direction, and a distributed load 𝑈 is applied to the top
end of the structure in the x-direction with constant displacement increments of Δ𝑢 = 2.10−5 mm. The macroscopic
characteristic length scale is chosen as 𝓁0 = 0.06 mm. The macroscopic mesh size is ℎ𝑚𝑖𝑛 = 0.025 mm in the crack
propagation zone and ℎ𝑚𝑎𝑥 = 0.5 mm elsewhere (see Fig. 17c). In this example, the RVE and the surrogate model used
for the second application in section 6.1 are considered.

Fig. 18 shows the full-field perforated structure with inclusions used to validate this case. It is composed of repeated
unit cells in Fig. 17b (25×25 RVEs) and where material has been removed from the central hole. The full-field structure
has the same geometry and reference computations are carried out employing the same boundary conditions as the
homogenized macroscopic structure in Fig. 17a. Constant displacement increments of Δ𝑢 = 2.10−5 mm is considered.
The characteristic length scale is 𝓁𝑓𝑓 = 𝓁0.

Fig. 19, illustrates force-displacement curves of the multiscale damage simulation and the reference computations
using the full-field structure. It demonstrates an excellent agreement between both solutions and the variation between
maximum forces is close to 1%. Figs. 20a and 20b show the crack evolution in the homogenized model at displacements
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Figure 17: Perforated structure with inclusions (homogenized structure): (a) macrostructure with boundary conditions; (b)
microstructure (RVE); (c) macroscopic mesh.

Figure 18: Perforated structure with inclusions (Full-Field structure): 25 × 25 RVEs.
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Figure 19: Perforated structure with inclusions: Force-Displacement curve.

𝑈 = 7.9.10−3 mm and 𝑈 = 9.10−3 mm. Similarly, Figs. 20a and 20a show the evolution of the crack in the full-field
structure for the same displacements as the homogenized structure, respectively. The evolution of cracks in both models
demonstrate excellent agreement for corresponding loading increments. Fig 12 shows macroscopic internal variables
𝛼𝑖 at the final state of damage of the structure.
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Figure 20: Damage evolution of the perforated structure with inclusions: (a) and (b) Homogenized M-DDHAD solution

at displacements 𝑈 = 7.9.10−3 mm and 𝑈 = 9.10−3 mm, respectively; (c) and (d) DNS reference solution at the same
displacements, respectively.
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Figure 21: Perforated structure with inclusions: Internal variables 𝛼𝑖 at the �nal damage state of the structure.
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In this example, an anisotropic behavior was observed, in which the crack propagates only in the tensile zone,
without employing any split at the macroscopic scale as in the phase field method [46, 45, 44]. This significant outcome
is the result of the offline calculations, which included loading paths in compression, for which no microscopic damage
occured. This choice of loading paths ensures that effects of both tensile and compressive stresses accurately captured
during damage evolution.
6.4. Perforated structure with inclined layers

As a third example, the crack nucleation and propagation of a perforated periodic structure with inclined layers
submitted to tensile loading is considered. The microstructure is characterized by a square RVE with a inclined layer
of dimensions 𝐿 × 𝐿 = 1 × 1 mm2 for the plate, and the layer width is 𝑒 =

√

2
4 mm (see Fig. 22b). The mechanical

properties of the microstructure are as follows: 𝐸𝑚 = 52 GPa, 𝜈𝑚 = 0.3 et 𝜎𝑚𝑐 = 0.1 GPa for the matrix, and 𝐸𝑙 = 10.4
GPa, 𝜈𝑙 = 0.3 et 𝜎𝑙𝑐 = 0.01GPa for the layer. The microscopic mesh size isℎ = 0.01mm. The microscopic characteristic
length scale is𝓁0 = 0.06mm. Offline damage simulations on the RVE are performed using the loading stepΔ𝑡 = 5.10−3
(200 loading increments) with 1089 loading paths constructed from the maximum macroscopic strain:

𝜺𝑚𝑎𝑥 = 10−3 ×
[

0.65 1.4
1.4 0.65

]

. (53)
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Figure 22: Perforated structure with inclined layers (homogenized structure): (a) macrostructure with boundary conditions;
(b) microstructure (RVE); (c) macroscopic mesh.

Figure 23: Perforated structure with inclined layers (Full-Field structure): 25 × 25 RVEs
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Macrostructure dimensions are𝐿×𝐿 = 21×21 mm2 for the plate and 𝑟 = 0.2𝐿mm for the hole (see Fig. 22a). The
boundary conditions used in this example are similar to those used in the first one. Constant displacement increments
of Δ𝑢 = 2.10−5 mm are considered. The macroscopic characteristic length scale is 𝓁0 = 0.06 mm. The macroscopic
mesh size is ℎ𝑚𝑖𝑛 = 0.03 mm in the crack propagation zone and ℎ𝑚𝑎𝑥 = 0.5 mm elsewhere (see Fig. 22c).
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Figure 24: Perforated structure with inclined layers: Force-Displacement curve.
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Figure 25: Damage evolution of the perforated structure with inclined layers: (a) and (b) homogenized M-DDHAD solution

at displacements 𝑈 = 5.3.10−3 mm and 𝑈 = 7.10−3 mm, respectively; (c) and (d) DNS reference solution at the same
displacements, respectively.
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Figure 26: Perforated structure with inclined layers: Internal variables 𝛼𝑖 at the �nal damage state of the structure.

Results of this exemple are validated using the full-field perforated structure with inclined layers depicted in Fig.
23. It is composed of repeated unit cells in Fig. 22b (25×25 RVEs) with the same mechanical properties. The full-field
structure has the same geometry as the homogenized macroscopic structure in Fig. 22a and computations are carried
out employing the same boundary conditions. The characteristic length scale is 𝓁𝑓𝑓 = 𝓁0. Constant displacement
increments of Δ𝑢 = 2.10−5 mm are considered.

Fig. 24, illustrates force-displacement curves of the multiscale damage simulation and the reference computations.
It shows a very good agreement between both solutions and the difference between maximun forces is below 3%. Figs.
25a and 25b show the crack evolution in the homogenized model at displacements 𝑈 = 5.5.10−3 mm and 𝑈 = 6.10−3
mm. Similarly, Figs. 25a and 25a show the evolution of the crack in the full-field structure for the same displacements
as the homogenized structure, respectively. The evolution of cracks in both models demonstrates a relatively good
agreement for corresponding loading increments. Fig 12 shows macroscopic internal variables 𝛼𝑖 at the final state of
damage of the structure.

In this example, the geometry and material properties of the RVE are chosen so that cracks initiate and propagate
in the inclined layers. Cracks orientation at the microscopic scale is effectively transferred to the macroscopic scale.
As a result, the macrostructure behavior is influenced by the direction of crack propagation at the microstructure level
and an inclined crack is initiated and propagated, rather than the horizontal crack. It must be noted that the crack
propagation angle is smaller than 45° for the M-DDHAD approach. Also, the position of the crack nucleation in the
homogenized model is slightly different from that of the full-field structure. These results show that the proposed M-
DDHAD method captures well the anisotropy induced by the microstructure and is capable of accurately simulating
the behavior of complex heterogeneous structures.

Only a single fiber orientation was considered in the examples within this work. Future works could focus on
incorporating multiple fiber orientations within the same simulation to capture the damage behavior of more complex
and realistic structures. This extension could be achieved by introducing additional parameters into the surrogate model,
not only incorporating fiber orientation, but potentially using multiple RVEs. Furthermore, it is possible to investigate
stochastic multiscale simulation to consider the variability in the microstructure.
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6.5. Perforated structure with vertical layers
For the last example, the crack nucleation and propagation of a perforated periodic structure with vertical layers

submitted to tensile loading is considered. Macrostructure dimensions are 𝐿 × 𝐿 = 21 × 21 mm2 for the plate and
𝑟 = 0.2𝐿 mm for the hole (see Fig.27a). The boundary conditions used in this example are similar to those used in
section 6.2. A constant displacement increments of Δ𝑢 = 2.5.10−5 mm is considered. The macroscopic characteristic
length scale is 𝓁0 = 0.06 mm. The macroscopic mesh size is ℎ𝑚𝑖𝑛 = 0.03 mm in the crack propagation zone and
ℎ𝑚𝑎𝑥 = 0.5 mm elsewhere (see Fig. 27c).

The microstructure is characterized by a square RVE with a vertical layer of dimensions 𝐿 × 𝑙 = 1 × 1 mm2 for
the plate, and the layer width is 𝑒 = 0.1 mm (see Fig. 27b). The mechanical properties of the microstructure are as
follows: 𝐸𝑚 = 52 GPa, 𝜈𝑚 = 0.3 et 𝜎𝑚𝑐 = 0.1 GPa for the matrix, and 𝐸𝑙 = 10.4 GPa, 𝜈𝑙 = 0.3 et 𝜎𝑙𝑐 = 0.01 GPa for
the layer. The microscopic mesh is consists of elements of size ℎ = 0.01 mm. The microscopic characteristic length
scale is 𝓁0 = 0.06 mm. Offline damage simulations on the RVE are performed using the loading step Δ𝑡 = 5.10−3
(200 loading increments) with 500 loading paths constructed from the maximum macroscopic strain:

𝜺𝑚𝑎𝑥 = 10−4 ×
[

3.5 6
6 7

]

. (54)
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Figure 27: Perforated structure with vertical layers (homogenized structure): (a) macrostructure with boundary conditions;
(b) microstructure (RVE); (c) macroscopic mesh.

Figure 28: Perforated structure with vertical layers (Full-Field structure): 23 × 23 RVEs
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Figure 29: Perforated structure with vertical layers: Force-Displacement curve.
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Figure 30: Damage evolution of the perforated structure with vertical layers: (a) and (b) homogenized M-DDHAD solution

at displacements 𝑈 = 5.3.10−3 mm and 𝑈 = 7.10−3 mm, respectively; (c) and (d) DNS reference solution at the same
displacements, respectively.

Fig. 28 shows the full-field Perforated structure with vertical layers used to validate this case. It consists of repeated
unit cells in Fig. 22b (23×23RVEs) with the same mechanical properties. The full-field structure has the same geometry
and reference computations are carried out employing the same boundary conditions as the homogenized macroscopic
structure in Fig. 27a. Constant displacement increments of Δ𝑢 = 2.10−5 mm are considered. The characteristic length
scale is 𝓁𝑓𝑓 = 𝓁0.
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Figure 31: Perforated structure with vertical layers: Internal variables 𝛼𝑖 at the �nal damage state of the structure.

Fig. 29, illustrates force-displacement curves of the multiscale damage simulation and the reference computations.
Figs. 30a and 30b show the crack evolution in the homogenized model at displacements 𝑈 = 5.3.10−3 mm and
𝑈 = 7.10−3 mm. Similarly, Figs. 20a and 20a show the evolution of the crack in the full-field structure for the same
displacements as the homogenized structure, respectively. The evolution of cracks in both models demonstrate excellent
agreement for corresponding loading increments. Fig 12 shows macroscopic internal variables 𝛼𝑖 at the final state of
damage of the structure.

In this example, similarly to the previous one, the geometry and material properties of the RVE are chosen so that
cracks initiate and propagate in the vertical layer. Despite the fact that tensile loading is vertical, crack propagation
is also vertical, in contrast with the horizontal crack of an isotropic damage model. The vertical orientation of the
crack at the microscopic scale is well captured at the macroscopic scale even though a slight inclination is observed
in the homogenized model. A very good agreement is noticed between the force-displacement curves of reference and
homogenized solutions in Fig. 29. After the linear elastic response, during which the structure is not yet damaged,
a slight decrease in force is observed. Then, it increases again. This behavior is due to the vertical propagation of
cracks. In fact, the structure undergoes a partial degradation while retaining a large part of its stiffness. Interestingly,
the location of crack nucleation around the central hole agree very well in this case. These outcomes demonstrate the
effectiveness of the proposed M-DDHAD approach in capturing anisotropic damage solely based on the microstructure
influence, without requiring any additional assumptions at the macroscopic scale.

7. Conclusion
An efficient data-driven multiscale modelling framework of anisotropic damage (M-DDHAD) method has been in-

troduced, where the homogenized anisotropic damage model is constructed purely on the knowledge of Representative
Volume Elements (RVE) of the material microstructure. The technique involves three main steps: (i) the construction
of a database, obtained by performing off-line calculations of crack propagation in Representative Volume Elements
(RVE); (ii) the construction of an anisotropic damage model constructed from the data-base using Harmonic Analysis
of Damage; (iii) Off-line calculations, where damage is computed using the constructed model in tandem with a strain-
gradient regularization technique.
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The first step involves crack phase field simulations on RVEs of microstructures with arbitrary geometries. A
collection of proportional loads is defined in the macro strain space. For each load step along these paths, crack
propagation is simulated with phase field. A numerical homogenization method is used to compute the corresponding
homogenized elastic tensor. In a second step, the macroscopic model is constructed from the database. Using Harmonic
Analysis of Damage, an anisotropic damage model defining the evolution of the macroscopic elastic tensor as a function
of macro internal variables is defined without specific assumptions about the anisotropy related to the RVE geometry.
The macro internal variables are extracted for each homogenized elastic tensor in the database. Then, an interpolation
technique in the macro strain space is carried out ot define their evolution. A simplified technique is proposed to ensure
irreversibility of the anisotropic damage. Finally, in a third step, the macro damage evolution is computed using the
constructed model. The macroscopic problem uses the constructed anisotropic damage model, and a strain-gradient
regularization is applied to guarantee mesh-independence.

The technique accuracy and robustness has been assessed on several structural problems with different microstruc-
tures, involving a strong anisotropic fracture behavior. To evaluate the accuracy of the method, the results obtained
from the macro (homogenized) model have been compared with direct numerical simulations (DNS) of structures
where all the microstructural details have been finely meshed. Very good accuracy has been obtained both regarding
the force-displacement curves as well as crack paths. Remarkably, the method is able to capture initial as well as induced
anisotropic damage during the evolution of the macro loading. For strongly oriented microstructures, the corresponding
macro crack direction is well captured. Mesh-independence has been validated. As another important feature of the
method, there is no need to define a strain decomposition at the macro level to guarantee that cracks occur only in
traction. In the method, off-line loading paths involve compressive path, where the microstructure can be subjected to
complex triaxial compressive mechanical states. Then, the model automatically captures if micro damage occurs in
these situation or not, depending on the microstructure, and captures in the construction of the macro internal variables
evolution laws interpolated in the database. Finally, the method is efficient, as no coupling between the macro and micro
scales, such as in FE2 method, is needed. A speed-up factor of the order of 19 has been achieved when comparing times
of damage simulations in the homogenized and the fully-meshed models.

Some points still deserve improvements and constitute perspective for this work, including handling non-
proportional loads, extensions to 3D, and the selection of the macro regularization length scale.
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A. Appendix: formulation of spherical harmonics in 2D
In 2D, parametrizing 𝒏 by the angle 𝜃 in polar coordinates as 𝑛1 = 𝑐𝑜𝑠(𝜃), 𝑛2 = 𝑠𝑖𝑛(𝜃):
𝑑0(𝑡) =

1
2𝜋 ∫

𝜋

−𝜋
𝑑(𝜃, 𝑡)𝑑𝜃, ℎ0(𝑡) =

1
2𝜋 ∫

𝜋

−𝜋
ℎ(𝜃, 𝑡)𝑑𝜃, (55)

𝑫 and 𝔻 are specified by [25] as:
𝑫 = 2

𝜋 ∫

𝜋

−𝜋
𝑑(𝜃, 𝑡)𝑭 (𝜃)𝑑𝜃, 𝔻 = 8

𝜋 ∫

𝜋

−𝜋
𝑑(𝜃, 𝑡)𝔽 (𝜃)𝑑𝜃, (56)

where 𝑭 (𝜃) is given by
𝑭 (𝜃) = 𝑵 − 1

2
𝑰 , (57)

with 𝑵 = 𝒏⊗ 𝒏 and 𝑰 being the second-order identity tensor. Finally, the fourth-order generalized harmonic tensor
𝔽 (𝜃) is given in [25, 76] as follows:

𝑭 (𝜃) = 𝑵 ⊗𝑵 − 1
6

(

𝑰 ⊗𝑵 +𝑵 ⊗ 𝑰 + 𝑰⊗𝑵 +𝑵⊗𝑰
)

+ 1
24

(

𝑰 ⊗ 𝑰 + 𝑰⊗𝑰
)

(58)

where the product
(

𝑨⊗𝑩
)

𝑖𝑗𝑘𝑙
=
(

𝐴𝑖𝑘𝐵𝑗𝑙 + 𝐴𝑖𝑙𝐵𝑗𝑘
).

Z.CHAFIA et al: Preprint submitted to Elsevier Page 28 of 32



Multiscale anisotropic damage modelling

B. Appendix: tensor expressions in DDHAD model
Eq. (16) can be re-written in the vector form:

[𝑪(𝜶)] = [𝑪
0
] − 𝑪̃ ⋅ 𝜶 (59)

where [𝑪(𝜶)] is a (6 × 1) vector containing the components of ℂ as:

[𝑪]𝑇 =
[

𝐶1111 𝐶1122 𝐶1112𝐶2222 𝐶2212 𝐶1212

]

. (60)

In this notation, [𝑪0
] is similar than [𝑪] but contains the components of ℂ0. Furthermore, 𝑪̃ is a (6 × 6) matrix

with the vectors 𝑪 𝑖𝑗𝑘𝑙 as columns as:
𝑪̃ =

[

𝑪1111 𝑪1122 𝑪1112 𝑪2222 𝑪2212 𝑪1212] , (61)
where the different (6 × 1) vectors 𝑪 𝑖𝑗𝑘𝑙 are given by the expressions [77]:

𝑪1111 = 𝒂 + 𝑽 11 +𝒁1111, 𝑪1122 = 𝒃 − 𝒂 −𝒁1111, 𝑪1112 = 1
2
𝑽 12 +𝒁1112 (62)

𝑪2222 = 𝒂 − 𝑽 11 +𝒁1111, 𝑪2212 =
1
2
𝑽 12 −𝒁1112, 𝑪1212 = 𝒂 − 1

2
𝒃 −𝒁1111 (63)

with

𝒂 = 1
2𝜋 ∫

𝜋

−𝜋
𝜂0(𝜃)𝑽 𝑑(𝜃)𝑑𝜃, 𝒃 = 1

2𝜋 ∫

𝜋

−𝜋
𝜅0(𝜃)𝑽 ℎ(𝜃)𝑑𝜃, (64)

𝑽 𝑝𝑞 = 2
𝜋 ∫

𝜋

−𝜋
𝜂0(𝜃)𝐹𝑝𝑞(𝜃)𝑽 𝑑(𝜃)𝑑𝜃, 𝒁𝑝𝑞𝑟𝑠 = 8

𝜋 ∫

𝜋

−𝜋
𝜂0(𝜃)𝐹𝑝𝑞𝑟𝑠(𝜃)𝑽 𝑑(𝜃)𝑑𝜃, (65)

and

𝑽 𝑑(𝜃) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
0

𝐹11(𝜃) − 𝐹22(𝜃)
2𝐹12(𝜃)

𝐹1111(𝜃) − 2𝐹1122(𝜃) + 𝐹2222(𝜃) − 4𝐹1212(𝜃)
4𝐹1112(𝜃) − 4𝐹2212(𝜃)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑽 ℎ(𝜃) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
1

𝐹11(𝜃) − 𝐹22(𝜃)
2𝐹12(𝜃)

0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (66)
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