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Abstract

An efficient parallel implementation of the phase field method for quasi-brittle crack
simulations able to run on supercomputers with a large number of processes is
proposed. This framework uses the finite-element method on 3D structured meshes,
and was developed for distributed memory machines using the Message Passing
Interface (MPI) for workload distribution and data communication between processes.
Parallel assembly is carried out to build the matrices associated with the linear systems
of equations. In the proposed context, linear systems derived from displacement and
damage discretizations are solved using parallel solvers and preconditioners from the
PETSc (Portable, Extensible Toolkit for Scientific Computation) library. All additional
operations in this implementation are also efficiently parallelized. Performance analysis
shows linear acceleration with an efficiency of 97% for a computation on 6400
processes and over 80% for a computation on 10240 processes. The linear systems
involved in the simulations with up to 1010 degrees of freedom can be solved in a few
seconds. The methodology is applied to quasi-brittle simulations, involving alternate
solving of large linear systems and incremental evolution. The applications presented
to illustrate the parallel framework involve crack initiation and propagation in strongly
heterogeneous materials with a detailed description of the microstructure. Large
three-dimensional periodic structures and a realistic geometrical model directly
obtained by micro-CT imagery are used.

Keywords: High performance computing, Finite-element method, Phase field,
Material damage, Composite materials

Introduction
Modeling cracks in heterogeneous media is a central engineering problem for predict-
ing the strength of existing materials based on knowledge of their microstructure, or for
designing new materials with improved strength properties. Potential applications range
from composites and civil engineering materials to biomaterials and new 3D-printed
architectural materials. Modeling fracture in heterogeneous materials is a difficult prob-
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lem, facing several scientific challenges. Among these, proposing crack propagation mod-
els that take into account the effects of microstructure, such as preferential orientations
and the size effects induced by these, remains a delicate task. Another difficulty is the
ratio between the characteristic length of heterogeneities and the length of a mechanical
component of the structure, which makes direct simulations that take into account all the
details of the samplemicrostructure extremely cumbersome and limited to small volumes
within the structure.
Several models and methods have been developed to study crack initiation and propa-

gation [1–6]. In recent years, the phase fieldmethod [7–11] for quasi-fragile failure, which
is the numerical method used in this work, has established itself as a powerful computa-
tional tool for studying the failure behavior of structures. This approach has the ability to
model crack nucleation, coalescence and branching simply and efficiently.
Thismethod has become awidely used tool for describing various cracking phenomena,

and has proven its effectiveness in modeling material damage under different loading
conditions, thus providing a better understanding of the fracture behavior ofmaterials and
structures. The phase field method has been widely developed and applied to numerous
problems, such as ductile fracture [12], dynamic fracture [13,14], cohesive fracture [15,
16], hydraulic fracture [17], anisotropic damage [18,19], topology optimization for crack
resistance [20], fracture in microtomography image-based microstructure models [21–
23], among many others.
Despite its effectiveness in simulating crack initiation and propagation, a major draw-

back of the phase field method is the high computational costs involved when using the
finite-element method. Using a finer mesh and smaller loading steps to obtain accurate
results leads to very expensive simulations in terms of computing resources. One of the
current challenges is to develop methods and models capable of modeling the damage
of three-dimensional structures on a macroscopic scale, while taking into account local
heterogeneities and a realistic representation of the microstructure.
Several methods have been developed in the literature to meet these challenges, includ-

ing multi-scale methods [24–28] or computational homogenization methods [29–32],
where the prediction of fracture behavior at the macroscopic scale implies the simulta-
neous simulations on representative volume elements (RVE) at both micro and macro
scales. Other approaches have been developed to simulate damage at the structural scale
while taking into account the fine-scale features within the framework of the phase field
method, including fracture toughness and characteristic length scale calculations [33],
inverse approaches [34] or asymptotic homogenization [35].
Another approach to dealing with this problem is to perform direct calculations, using

parallel computing. The main idea behind these approaches is to decompose the global
problem into smaller, independent sub-problems associatedwith sub-domains. In [36,37],
FETI methods have been used to simulate structural failure using the phase field method.
Othermethods using parallel solvers with data distribution can be found. In [38], a parallel
algorithm on a graphics processing unit (GPU) to simulate dynamic brittle fracture with
the phase field method has been proposed. A parallel-adaptive framework for phase-
field fracture propagation has been developped in [39–41]. In [42], a parallel matrix-
free higher-order finite-element solvers has been developed to simulate the failure of
two-dimensional structures using the phase field method. A parallel framework for the
matrix-free solution to amonolithic quasi-static phase field fracturemodelwith geometric
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Fig. 1 Regularized representation of a crack: two-dimensional case: a sharp crack model; b regularized
representation through phase field

multigrid methods has been proposed in [43]. In [44], the ParaFEM library, which is a
parallel finite-element analysis library, has been used to simulate brittle fracture in three-
dimensional polycrystalline structures with the CASUP package under dynamic loading.
In [45], a hybrid MPI/OpenMP strategy has been used to simulate damage of three-
dimensional structures with the phase field method using the matrix-free framework.
The present work proposes an efficient in-house developed parallel implementation of

the phase field method, for modeling fracture behavior in large three-dimensional het-
erogeneous quasi-brittle structures. The implementation is based on high-performance
computing using distributedmemory supercomputers. Crack nucleation and propagation
are simulated using the phase field method within the framework of the finite-element
method using assembled matrices and vectors. In this context, the workload, which is
the amount of operations performed by the processes, is well balanced, and data is com-
municated efficiently between processes using the MPI library. The parallelization is not
limited to the linear solvers, but is applied to all operations involved in the alternate solver
used for the coupled mechanical and phase field problems. Linear systems of damage
and displacement problems are solved using parallel solvers and preconditioners from
the PETSc library. This in-house developed parallel implementation is highly optimized
in terms of memory allocation, and despite the use of assembled matrices and vectors to
solve the linear systems, few memory resources are used.
This paper is organized as follows. The phase field method is briefly reviewed in “Phase

field method for brittle fracture” section, the parallel implementation of the phase field
method is presented in “Parallel implementation” section , the validation of the proposed
implementation and its performance evaluation are carried out in “Validation and perfor-
mance evaluation” section. Finally, numerical applications of crack initiation and prop-
agation using three-dimensional periodic structures and highly heterogeneous material
models obtained bymicro-CT imagery are presented in “Numerical applications” section.

Phase fieldmethod for brittle fracture
In this work, the phase field method for brittle material fracture is briefly reviewed. Let
us consider an open domain � ⊂ R

D describing a cracked solid of dimension D and
boundary ∂� of dimension D − 1. Let � be the crack surface of dimension D − 1 and let
∂�U and ∂�F be the parts of the boundary on which Dirichlet and Neumann boundary
conditions are prescribed, respectively, such that ∂� = ∂�U ∪ ∂�F and ∂�U ∩ ∂�F = ∅
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(see Fig. 1a). Considering the variational framework proposed in [7,8], the total energy
functional E(u, d) is given as:

E(u, d) =
∫

�

ψe(ε(u), d) d� +
∫

�

ψf (d) d� −
∫

�

f ∗ · u d� −
∫

∂�F

F∗ · u dS, (1)

where u is the displacement field, ε(u) = 1
2

(∇(u) + ∇(u)T
)
is the strain tensor, d is the

damage field or the phase field variable. This variable refers to the smeared crack which
varies smoothly from d = 0 representing the undamaged state to d = 1 representing the
fully damaged state (see Fig. 1b). Above, ψe(u, d) denotes the elastic energy density and
ψf (u, d) refers to the fracture energy density, and f ∗ and F∗ are body forces and prescribed
surface forces on the boundary ∂�F , respectively.
A consistent damage model for brittle fracture, developed by Miehe in [10,11], is con-

sidered here. In this model, the elastic energy density is split into positive and negative
parts using the spectral decomposition of the strain tensor, which is given as:

ψe(ε(u), d) = (g(d) + k)ψ+
e (ε(u)) + ψ−

e (ε(u)), (2)

in which g(d) = (1 − d)2 is the degradation function applied only on the positive part
of the elastic energy density to take into account, solely, degradation due to tension, k
is a small positive parameter introduced to ensure the well-posedness of the system in
case of fully damaged state of material, ψ+

e (ε(u)) and ψ−
e (ε(u)) represent the positive and

negative parts of the elastic energy density expressed as:

ψ±
e (ε(u)) = λ

2

(〈
Tr(ε)

〉
±
)2 + μTr

(
(ε±)2

)
, (3)

where λ and μ are the Lamé’s parameters, Tr(.) is the trace operator, ε+ and ε− represent
the positive and the negative parts of the strain tensors, respectively, which are expressed
by:

ε± =
n∑

i=1
〈εi〉±ni ⊗ ni, n = 2, 3, (4)

where 〈x〉± = 1
2 (x ± |x|), εi and ni are the eigenvalues and eigenvectors of the strain

tensor ε.
There are several possible choices for the expression of the fracture energy density. For

example, the so-called AT2 model [9] gives:

ψf (d) = ψc
(
d2 + �20∇d · ∇d

)
, (5)

where ∇(·) is the gradient operator, �0 is the characteristic length that governs the width
of the regularization band, ψc is a specific fracture energy density, considered here to be
a material property and can be related to the critical stress σc and the fracture toughness
Gc by [10]:

ψc = σ 2
c

2E
= Gc

2�0
, (6)
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where E is the Young’s modulus.
To solve this minimization problem, a robust algorithm based on an alternate mini-

mization or staggered scheme was introduced by Miehe in [9]. In fact, the total energy
functional (1) is not convex with respect to both unknowns (u, d), but is convex with
respect to each variable separately [46]. Accordingly, an incremental problem is obtained,
where two coupled sets of equations are solved sequentially: a damage problem is solved
by fixing the displacement field, and then a mechanical problem is solved by fixing the
damage field d.

Damage problem

Governing equations

Given the displacement field u, the minimization of the total energy functional (1) with
respect to the damage field is expressed as: find d ∈ H1(�), such that:

DδdE(u, d) =
∫

�

−2(1 − d)δdψ+
e (ε(u)) + 2ψc

(
dδd + �20∇d · ∇(δd)

)
d� = 0, (7)

∀δd ∈ H1(�), and whereDδdE(u, d) is the directional derivative of E(u, d) in the direction
of δd. The associated Euler-Lagrange equations to Eq. (7) are given by:

⎧⎪⎨
⎪⎩
(1 − d)ψ+

e − ψc
(
d − �0

2�d)
) = 0 in �,

d = 1 on �,
∇d · n = 0 on ∂�,

(8)

where �(·) is the Laplacian operator, and n is the outward-pointing normal vector on the
boundary ∂�.
The weak form of the damage problem is expressed as:

∫
�

(ψ+
e + ψc)dδd + ψc�

2
0∇d · ∇(δd) d� =

∫
�

ψ+
e δd d�. (9)

To avoid non-physical self-healing phenomena of damage, an irreversibility condition
is imposed on the phase field variable by an appropriate choice of the source term (the
right-end term in Eq. 9). At every point in�, the damage variable is an increasing function
of load evolution. Accordingly, a history functional is introduced in [9] which is given as:

H = max
τ∈[0,t]

[〈
ψ+(ε; τ ) − ψc

〉
+
]
, (10)

where t is a pseudo time parameter describing the load evolution.
The weak form (9) becomes:

∫
�

(H + ψc)dδd + ψc�
2
0∇d · ∇(δd) d� =

∫
�

Hδd d�. (11)

Finite-element discretization

The damage field, the damage gradient and their variations are approximated in one
element by:

d = Nddi ; δd = Ndδdi ; ∇d = Bddi ; ∇(δd) = Bdδdi, (12)
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where di are the nodal values of the damage field d, Nd and Bd are vectors and matrices
of shape functions and of shape functions derivatives for scalar fields, respectively.
The discretization of the damage problem (11) leads to the following discrete system of

equations:

Kdd = Fd, (13)

in which

Kd =
∫

�

(H + ψc)NT
d Nd + ψc�

2
0B

T
d Bd d�, Fd =

∫
�

NT
d H d�. (14)

Mechanical problem

Governing equations

Given the damage field d, the minimization of the total energy functional (1) with respect
to the displacement field is expressed as: find u ∈ U = {

u ∈ H1(�)|u = u∗ on ∂�U
}

such that

DδuE(u, d) =
∫

�

σ (ε(u), d) : ε(δu) d� −
∫

�

f ∗ · δu d� −
∫

∂�F

F∗ · δu dS = 0, (15)

∀δu ∈ U0 = {
δu ∈ H1(�)|δu = 0 on ∂�U

}
and σ (ε(u), d) denotes the stress tensor,

which is expressed as:

σ (ε(u), d) = (
(1 − d)2 + k

)
σ+ (ε(u)) + σ− (ε(u)) , (16)

where σ+ and σ− represent the positive and the negative parts of the stress tensor,
respectively, given by:

σ±(ε(u)) = ∂ψ±
e

∂ε
(ε(u)) = λ

〈
tr[ε(u)]

〉
± I + 2με±(u), (17)

in which I is the second-order identity tensor.
The Euler-Lagrange equations associated to Eq. (15) are given by:

⎧⎪⎨
⎪⎩

∇ · σ + f = 0 in �,
u = u∗ on ∂�U ,
σ · n = F∗ on ∂�F .

(18)

where ∇ · (·) is the divergence operator.
To avoid the nonlinearity related to the strain tensor decomposition, two shifted strain

tensor split algorithms were introduced in [21] and expressed by:

ε±
n+1  P±

n : εn+1, (19)

in which

P±
n = ∂ε±

n
∂εn

, (20)

where ε±
n+1 and εn+1 are computed at load increment tn+1. The computation of the

projector tensorsP±
n are performed at the previous load increment tn using the algorithm

proposed in [47].
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This allows us to rewrite the stress/strain relationship as follows:

σ (ε(u), d) = C(d) : ε(u), (21)

where

C(d) = (
(1 − d)2 + k

) [
λR+[1][1]T + 2μP+]

+
[
λR−[1][1]T + 2μP−]

, (22)

in which [1] = {1; 1; 0}T and

R+(ε) = 1
2
(sign(tr(ε)) + 1) , R−(ε) = 1

2
(sign(−tr(ε)) + 1) . (23)

where sign is the signum function.
The weak form of the displacement problem is finally expressed as:

∫
�

ε(u) : C(d) : ε(δu) d� =
∫

�

f ∗ · δu d� +
∫

∂�F

F∗ · δu dS. (24)

Finite-element discretization

The displacement field, the strain tensor and their variations can be approximated in one
element by:

u = Nuui ; δu = Nuδui ; ε(u) = Buui ; ε(δu) = Buδui, (25)

where ui are the nodal values of the displacement field u, Nu and Bu are matrices of dis-
placement shape functions and of displacement shape functions derivatives, respectively.
The discretization of themechanical problem (15) leads to the following discrete system

of equations:

Kuu = Fu, (26)

in which

Ku =
∫

�

BT
u C(d)Bud�, Fu =

∫
�

NT
u f ∗d� +

∫
∂�F

NT
u F∗dS. (27)

In this work, the computations are carried out in quasi-static conditions. The damage
and displacement problems are solved alternately using the staggered scheme. It should
be noted that a single iteration is performed at each load increment as in [9]. In this
approach, the accuracy of the results is highly dependent on the loading increments size.
When relatively large time steps are used, inaccurate results can be found (see [48]).
Considering a discretization of the time interval [0, T ], the present phase field algorithm
is summarized in Algorithm (1).

Parallel implementation
The phase field method is a powerful tool to simulate material fracture and is widely used
by the scientific community. However, within the finite-element context, limitations can
be induced due to the fine mesh required to track nucleation and propagation of cracks,
especially when dealing with large three-dimensional structures. This drawback can be
overcome by massively parallel computing based on domain decomposition of the FEM
mesh, as described in the following.
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Algorithm 1 Phase field method
Initialization of the strain field ε0(x), the phase field d0(x) and the energy historyH0(x)
for tn+1 ≤ T do

Given εn, dn andHn at load increment tn
Compute damage :
ComputeHn+1(εn,Hn) by (10)
Compute and assemble Kd and Fd by (14)
Compute damage dn+1 by solving (13)

Compute displacement :
Compute P±

n (εn) andR±
n (εn) by (20), (23)

Compute and assemble Ku and Fu by (27)
Compute displacement un+1 by solving (26)
Compute strain εn+1

end for

Fig. 2 Distributed-memory machines architecture

Machine architecture andMPI framework

In the field of parallel computing, there aremainly threewidely used parallel programming
methods; The Message Passing Interface (MPI) [49] is adapted for distributed-memory
machines. The Open Multi-Processing (OpenMP) [50] is suitable for shared-memory
machines, and the Compute Unified Device Architecture (CUDA) [51] is used for GPU
acceleration. In this work, distributed-memory architectures are considered through the
Message Passing Interface. This library ensures both point-to-point and collective com-
munications between the distributed processes. This framework refers to parallel com-
puting where multiple processes operate independently and have their own memory (see
Fig. 2): each process can only access its local memory. Communication between processes
is typically achieved through message passing, where data is explicitly sent from one
process memory and received by another one. Our in-house developed implementation
belongs to data partitioning parallel computing techniques with the same code acting on
various part of data.

Domain decomposition

Domain decomposition is a key step in running parallel algorithms on a supercomputer.
This process is required for decomposing operations into several sub-operations to be
processed simultaneously. Themain idea of domain decomposition is to divide the spatial
domain into several smaller subdomains and assign to each process an independent task
on a specific subdomain ensuring a well-balanced workload for efficient computations.
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Fig. 3 Three-dimensional domain decomposition

In this work, within the finite-element method, three-dimensional structured meshes
with 8-node finite elements are considered. In this context, three-dimensional blocks
decomposition is used (see Fig 3). The structured mesh and spatial decomposition are
created using the Data Management of Distributed Array tool (DMDA) of PETSc library
[52].
In this context, the overall domain is partitioned into non-overlapping subdomains,

each subdomain is assigned to a computational process. A topology of processes is cre-
ated to ensure efficient use of computing resources and optimize communication between
processes. The use of the phase field method within the framework of the finite-element
method requires the resolution of two linear systems corresponding to the damage (8)
and displacement (18) problems. The principle of parallel solving for these systems lies in
the distribution of matrices and vectors across all processes. Sets of rows, corresponding
to subdomains, are assigned to each process. To compute the global matrices and vec-
tors Kd , Fd (14) and Ku, Fu (27), local operations, such as the computation of elemental
stiffness matrices and vectors, are performed independently by all processes. In the case
of cutting elements between subdomains, ghost nodes are introduced, representing addi-
tional degrees of freedom located on the boundaries of subdomains (see Fig 3). Ghost node
values are updated to provide access to informations on interior nodes from adjacent sub-
domains through data exchange between processes. The global matrices and vectors are
assembled in parallel by combining the local contributions, and once they are computed,
the resolution of the linear systems (13) and (26) is performed with parallel solvers and
preconditioners that are detailed in the next section.

Parallel solvers and preconditioners

The simulation of damage using the phase field method described in “Phase field method
for brittle fracture” section within the finite-element method leads to the resolution of
large sparse linear systems with a very small number of non-zero values as compared
with their size. Most of the computation time is devoted to solving the linear systems
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(13) and (26) of assembled matrices and vectors. The operations performed in these
resolutions can consume up to 80% of the total computation time, making them the
essential part of the numerical simulations. In this context, iterative solvers are here
considered. This kind of solvers constructs increasingly accurate approximations to the
solution through a sequence of iterations until reaching a convergence criterion. Krylov
subspacemethods are amongwidely used solvers,which include several algorithms such as
the generalized minimal residual (GMRES) [53], conjugate gradient (CG) [54], BiCGStab
[55], andBiCGStab(2) [56,57]. Iterative solvers performsoperations such asmatrix–vector
products, dot products and linear combinations. They are capable of efficiently solving
sparse, symmetric positive definite, and unsymmetric linear systems, require less memory
allocation and are highly scalable.
In the present parallel computing framework, PETSc library is used to solve damage

(8) and displacement (18) problems. The library provides a wide range of parallel solvers,
including Krylov subspace methods. In this work, an improved version of the BiCGStab
(IBiCGStab) method [58] is employed. This method is well-suited for the solutions of
large and sparse linear systems on distributed-memory machines, the type of supercom-
puter architecture used in this work. It combines elements of numerical stability and
parallel algorithm design without increasing the computational costs. In this approach,
all inner products of a single iteration step are independent and the communication time
required for these operations is overlapped efficiently with the computation time of vector
updates, which are highly parallelizable. Therefore, the cost of global communication can
be significantly reduced. The algorithm of the IBiCGStab solver is presented in Algorithm
(2).

Algorithm 2 The IBiCGStab method [58]
Initialization of vectors and parameters:
r0 = b − Ax0, u0 = Ar0, f0 = AT r0, σ0 = rT0 u0, ρ0 = α0 = ω0 = 0;
q0 = v0 = z0 = σ−1 = π0 = φ0 = τ0 = 0;
for n = 1, 2, 3, ... do

ρn = φn−1 − ωn−1σn−2 + ωn−1αn−1πn−1;
δn = ρn

ρn−1
αn−1, βn = δn

ωn−1
;

τn = σn−1 + βnτn−1 − δnπn−1;
vn = un−1 + βnvn−1 − δnqn−1;
αn = ρn

τn
, qn = Avn;

sn = rn−1 − αnvn, tn = un−1 − αnqn;
zn = αnrn−1 + βnzn−1 − αnδnvn−1;
φn = rT0 sn, πn = rT0 qn, γn = f T0 sn, ηn = f T0 tn;
θn = sTn tn, κn = tTn tn, ωn = θn

κn
;

σn = γn − ωnηn, rn = sn − ωntn;
xn = xn−1 + zn + ωnsn;
if residual norm is small enough then

STOP
end if
un = Arn;

end for

Iterative solvers stand as powerful tools for solving large-scale linear systems in parallel,
however, they are very sensitive to conditioning. In the caseof themechanical linear system



Z. Chafia et al. AdvancedModeling and Simulation in Engineering Sciences          (2024) 11:25 Page 11 of 27

(26), a large contrast in stiffness is produced due to the crack nucleation and propagation,
which makes the system poorly-conditioned [59]. As a result, iterative solvers converge
slowly and the computational efficiency decreases. Additionally, when dealing with large-
scale problems, the number of iterations of the iterative solvers growths with the mesh
refinement [60], which increases the computational time. To tackle these challenges,
preconditioning techniques stand as a key ingredient to achieving a high convergence rate.
Preconditioning consists of transforming the linear system Ku = F into the equivalent
system:

M−1Ku = M−1F. (28)

Such a strategy is called left preconditioning, where the matrix M is a preconditioner.
Right preconditioning could be used:

KM−1w = F, Mu = w, (29)

as well as bilateral preconditioning:

M−1KM′−1w = M−1F, M′u = w, (30)

where the matricesM andM′ are preconditioners.
To accelerate convergence and improve the efficiency of iterative solvers, PETSc library

offers a large number of preconditioners. In the proposed implementation, the Algebraic
MultiGrid (AMG) [61,62] preconditioner is considered. The AMG methods construct a
multilevel hierarchy of grids based solely on the algebraic properties of the linear sys-
tem matrix, which is their main advantage over geometric methods. The linear system
is solved iteratively on the coarsest grid, typically using a direct solver or an iterative
method. The coarse-grid solutions are then interpolated back to finer grids to improve
the solution accuracy. At each level of the hierarchy, AMG applies prolongation and
restriction operators to transfer information between grids, capturing both low and high-
frequency components of the error. This preconditioner can be used with PETSC library
as PCGAMG or via the external package HYPRE [63,64] as BoomerAMG. Additionally,
integrating a smoothing technique with the AMG preconditioner can improve its per-
formance by reducing the high-frequency error components. In this work, the smoothed
aggregation AMG [65] with Chebyshev-Jacobi smoother is adopted as in [43]. Its effec-
tiveness has been proven in solvingmechanical problems using the finite-elementmethod
[60,66], and using the phase field method for damage simulation in [43]. For more details
about the preconditioner AMG with Chebyshev-Jacobi smoother, see [43].
It is worth mentioning that the present methodology cannot be applied directly to

unstructured meshes. The first ingredient to be modified would be the meshing algo-
rithm, which can consist of either tetrahedral mesh construction in arbitrary geometries,
or refinedmeshes in structured grids. The second ingredient ismesh anddata partitioning,
which should be adapted to unstructuredmeshes, to balance sub-domains whileminimiz-
ing communication overheads. The rest of the methodology would remain unchanged.
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Validation and performance evaluation
In this section, the validation of the proposed implementation and the evaluation of its
performance are presented. On one hand, the validation test and the first numerical exam-
ple in “Numerical applications” section are performed on a medium-sized workstation.
This is an HPE ProLiant DL560 Gen10 server equipped with two processors Intel(R)
Xeon(R) Platinum 8260L, each with 24 cores, and a memory capacity of 6 TB. the base
frequency of the processors is about 2.4 GHz and the maximum Turbo frequency is 3.90
GHz. On the other hand, the performance analysis and all the remaining numerical exam-
ples in “Numerical applications” section are carried out on the Jean Zay HPE SGI 8600
supercomputer from the Institute for Development and Resources in Intensive Scien-
tific Computing (IDRIS-CNRS). This supercomputer is made up of 720 nodes, each node
being equipped with 40 cores and a 190 GB memory capacity. The processors installed
are Intel(R) Xeon(R) Gold 6248 with a base frequency of 2.5 GHz and a maximum Turbo
frequency of 3.90 GHz.
In this work, the relative residual is used for the IBiCGStab solver convergence criterion,

where the relative tolerence is chosen as Rtol = 10−7 for both damage (8) and displace-
ment (18) problems, in all simulations. For the AMG preconditioner, V-Cycle approach
is used for all simulations and for both problems. The linear system (13) involved in the
damage problem (8) is well-conditioned, allowing the use of a 1-level multigrid algorithm
for all simulations. It is enough to obtain a good convergence rate, while optimizingmem-
ory usage. For the mechanical problem (18), a 5-level multigrid algorithm is applied for
the validation test, the performance analysis, and the first two applications in “Numerical
applications” section, while a 6-level multigrid algorithm is applied for the two remain-
ing applications in “Numerical applications” section. All remaining AMG preconditioner
parameters are set to the default values provided by PETSc with PCGAMG.

Validation with the single notched structure

The proposed solving procedure is first validated on an academic example [9]. In this
context, a cubic domain containing an initial crack with dimensions L×H × l = 1× 1×
1 mm3 is considered (see Fig. 4). The bottom face of the structure is fixed in all directions
to simulate a rigid support, and a uniform displacement U is applied on the top face of
the structure in the z-direction. The simulation test is performed on a domain composed
of 1553 elements and the mesh size is h = 0.0065 mm. The characteristic length scale is
chosen as �0 = 0.015 mm where 2 h < �0. The structure is homogeneous isotropic with
the properties λ = 121.15 kN/mm2, μ = 80.77 kN/mm2, and Gc = 0.0027 kN/mm for
the fracture toughness. Since structured meshes are used in this work, notches and voids
are modelled by the properties λ = 0 kN/mm2 and μ = 0.001 kN/mm2. The specific
fracture energy is chosen to be at least 10 times less than the minimum of the specific
fracture energies among all phases within the structure. The computation is carried out
with constant displacement increments of�u = 10−5 mm for the first 500 time steps and
�u = 10−6 mm for the remaining time steps.
Figure 5a-c illustrate the evolution of the crack propagation for displacements U =

57.10−4 mm,U = 60.10−4 mm, andU = 62.10−4 mm, respectively. The crack is depicted
by selecting damage values in the mesh larger than 0.97. To validate the proposed in-
house parallel implementation, a comparison of force-displacement curves is made with
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Fig. 4 Validation test geometry

Fig. 5 Phase field d(x) distribution during crack evolution for the validation test for a U = 57.10−4 mm; b
U = 60.10−4 mm; c U = 62.10−4 mm

Fig. 6 Force-displacement curve of the validation test

the solution provided in [9]. In Fig. 6, a good agreement is observed with the reference
solution, which validates the proposed implementation. The slight variations may come
from the fact that the reference solution is performed in 2Dplane strain assumption, while
our solution is fully 3D.

Performance evaluation

The performance of the proposed in-house developed parallel implementation is assessed
by measuring its scalability, which indicates the ability to increase computing speed with
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the number of processes. Two parameters are widely employed for this purpose, speed-up
and efficiency. The speed-up can be defined in two situations, strong scalability and weak
scalability, defined as follows.
- Strong scalability: refers to the ability of a parallel algorithm to improve its performance

when theproblemsize remains constant but thenumber of processes is increased.Asmore
resources are added, the computation time decreases. The speed-up is in this defined as
the ratio of the computation time tref obtained using a reference number of processes pref
with the computation time tp obtained using a specified number of processes p.

Ss(p) = tref
tp

pref . (31)

When very large meshes are employed, solving the systems (13) and (26) involve a very
large number of unknowns. Then, using a single process requires an enormous amount
of computing time. For this reason, the reference computations are performed with n
processes instead of using a single process for sequential computations (tref �= tseq).
-Weak scalability: is the ability of a parallel algorithm to improve its performance as both

the problem size and the number of processes are increased proportionally. In this case,
the workload assigned to each process remains constant as the problem size increases. In
the ideal case, the computation time then remains constant. The speed-up is defined as:

Sw(p) = tref
tp

p. (32)

Efficiency is defined for both scalability cases and evaluates how computational
resources are used effectively in a parallel algorithm. It is expressed as the ratio of the
speed-up with the number of processes:

Es,w(p) = Ss,w(p)
p

. (33)

It is important to mention that, in this work, the performance analysis does not take
into account the preliminary operations such that mesh construction and partitioning,
data import and memory allocation. For the analysis, all the operations involved in the
load increments described in Algorithm (1) are considered:

• Computations on the elements (local stiffness matrices and vectors).
• Matrices and vectors assembly.
• Boundary conditions application for the displacement problem (18).
• Problems solving (13) and (26).
• Data exchanges between the processes.

To investigate the scalability of this framework, the notched homogeneous structure in
Fig. 8 submitted to tensile loading is considered. The weak scalability computations are
carried out on domains ranging from 1.3×106 to 3.5×109 elements, with the number of
elements per process being fixed to 703, the number of processes starting from 40 and
progressively increasing up to 10240 processes. The strong scalability computations are
performed in a domain with 219×106 elements. The number of processes is progressively
increased from 640 to 10240. Both scalability analysis are performed over 5 loading incre-
ments with 20 iterations of the displacement problem (26) and 1 iteration of the damage
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Table 1 Configurations used in weak scalability computations

N◦ El/dir N◦ DOFs/d N◦ DOFs/u N◦ Procs Workload (w3) Time (s)
239 13 824 000 41 472 000 40 69.88 297.15

302 27 818 127 83 454 381 80 70.09 302.69

380 55 306 341 165 919 023 160 70.00 301.38

479 110 592 000 331 776 000 320 70.03 300.72

603 220 348 864 661 046 592 640 69.97 304.11

760 440 711 081 1 322 133 243 1280 70.00 302.97

957 879 217 912 2 637 653 736 2560 69.96 302.54

1206 1 758 416 743 5 275 250 229 5120 69.97 307.16

1520 3 518 743 761 10 556 231 283 10240 70.00 337.01

Table 2 Configurations used in strong scalability computations

N◦ El/dir N◦ DOFs/d N◦ DOFs/u N◦ Procs Workload (w3) Time (s)
640 69.97 304.11

1280 55.54 153.64

2560 44.08 77.58

603 220 348 864 661 046 592 3840 38.51 52.29

5120 34.99 40.25

6400 32.48 32.66

10240 27.77 23.06

Fig. 7 a Speed-up; b Efficiency

problem (13) (the first loading increments are used where no damage has yet occurred).
Tables 1 and 2 present the configurations used and computation times forweak and strong
scalability analysis, respectively, where N◦ El/dir is the number of elements per direction,
and N◦ DOFs/d and N◦ DOFs/u are numbers of degrees of freedom of the damage and
displacement vectors d and u in (13) and (26), respectively.
The weak and strong scalability are shown in Fig. 7a and b, which present the effective-

ness of the proposed phase field method parallel implementation. Regarding strong scal-
ability, the present implementation shows very good scaling performance. The achieved
speed-up closely approximates the ideal one. The efficiency is 97% for a computation on
6400 processes for 333 elements per process and greater than 80% for a computation on
10240 processes for 233 elements per process. This result is due to thewell-balancedwork-
load distribution and optimized data exchanges between processes. The weak scalability
analysis reveals that the proposed framework maintains a consistent level of performance
when the problem size is increased. A linear speed-up can be noticed regardless of the
processes number and the problem size.
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Fig. 8 Geometry of the notched homogeneous structure

In terms of memory allocation, the proposed parallel implementation makes optimal
use of resources. A domain with more than 12×106 elements can be simulated with less
than 190 GB of memory capacity, considering that solving the linear systems of damage
(13) and displacement (26) problems is carried out with assembled matrices within the
finite-element method. This optimization of memory management indicates that large-
scale simulations can be carried out using fewer resources [45], thereby reducing the costs
associated with computational infrastructures.
These results confirm that the proposed implementation scales efficiently with the

problem size and the available computing resources, and that the scalability improvement
is not limited solely to parallel solvers. It encompasses all operations performedwithin the
loading increment loop mentioned above, which validates the effectiveness of the parallel
implementation and shows its potential for tackling larger computational problems with
improved efficiency.

Numerical applications
In this section, numerical applications of crack initiation and propagation using the pro-
posed parallel implementation are presented.

Notched homogeneous structure

Asafirst example, the crackpropagation in a cubic notched structure (see Fig. 8) submitted
to shear loading is considered. The problem is simulated using 48 processes with the
medium-sizedworkstation. The structure is homogeneous isotropic having the properties
λ = 30 kN/mm2,μ = 20 kN/mm2, andGc = 2.6.10−7 kN/mm for the fracture toughness.
The domain is composed of 1553 (3.72 × 106) elements, with dimensions L × H × l =
1 × 1 × 1 mm3. The elements size is h = 0.0065 mm. The characteristic length scale
is chosen as �0 = 2h. As depicted in Fig. 8, The notch occupies only half the length
of the structure in both x- and y-directions. Concerning the boundary conditions for
the displacement problem, the bottom face of the structure is fixed in all directions to
simulate a rigid support and all the structure faces are blocked along the z-direction.
A uniform displacement is applied to the top face of the structure according to U =
j�u (e1 + e2), where e1 and e2 are the normal unit vectors along x- and y-directions and j
is the load increment number. The computation is carried out with constant displacement
increments of �u = 4.6.10−6 mm.
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Fig. 9 Damage evolution of the notched homogenous structure at time steps a U = 39.10−5 mm; b and d
U = 56.10−5 mm; c U = 60.10−5 mm

Fig. 10 Force-displacement curve of the notched homogeneous structure

Figure 9a-d shows crack evolution (in red) at displacements U = 39.10−5 mm, U =
56.10−5 mm, andU = 60.10−5 mm, respectively. The force-displacement curve is shown
in Fig 10. Figure 11a shows the number of iterations of each loading increment for the
damage and displacement solvers. Three phases can be noticed: the first concerns the
undamaged structure where the force-displacement curve is linear. The damage problem
takes a single iteration to converge while the displacement problem takes 7 iterations. In
the second phase, the number of iterations of the damage problem increases, while the
displacement problem keeps the same number of iterations. This is due to the low values
of the damage. The third phase is characterized by the crack propagation, the number of
iterations of the displacement problem increases significantly due to the discontinuity of
the structure stiffness caused by the crack. Figure 11b shows the resolution times of both
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Fig. 11 a Iterations number of the damage and displacement problems resolution; b Times of the damage and
displacement problems resolution and time of loading increments of the notched homogeneous structure

Fig. 12 Geometry of the notched periodic structure with pores: a Three-dimensional structure; b RVE; c Slice of
the structure at the position y = l

2

damage anddisplacement linear systems for each time step, aswell as the execution timeof
all the operations in each load increment. The time needed to solve the damage problem is
very short compared with the displacement problem resolution. The evolution of the load
increments time looks the same as the resolution of the displacement problem.This proves
that solving the displacement problem is the dominant part of the simulation and themost
costly in terms of computations. The cumulative times for computing and assembling the
global matrix and vector Kd , Fd (14) and solving the damage linear systems (13) over all
load increments are 69s (1.15min) and 93s (1.55min), respectively. The cumulative times
for computing and assembling the global matrice and vector Ku, Fu (27) and solving the
mechanical linear systems (26) are 689s (11min) and 1918s (32min), respectively. The
total execution time for all loading increments is 2893s (48min), compared to nearly 38h
with a sequential execution. Then, we can observe that the total time devoted to solve the
mechanical problems takes 66% of the total time.

Notched periodic porous structure

In the second example, the crack propagation of a notched periodic structure with pores
submitted to tensile loading is simulated (see Fig. 12). The structure dimensions are L ×
H × l = 1 × 1 × 1 mm3 and the pores radius is r = 43.10−3 mm. The position of the
notch is similar to that of the validation test in “Validation and performance evaluation”
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Fig. 13 Damage evolution of the notched periodic structure with pores at time steps a U = 15.10−5 mm; b
U = 18.10−5 mm; c U = 21.10−5 mm

Fig. 14 Force-displacement curve of the notched periodic structure with pores

Fig. 15 a Iterations number of the damage and displacement problems resolution; b Times of the damage and
displacement problems resolution and time of loading increments of the notched periodic structure with pores

section. The matrix (see Fig. 12) has the properties λ = 30 kN/mm2, μ = 20 kN/mm2,
and Gc = 1.32.10−7 kN/mm for the fracture toughness. The structure is composed of
3013 (27.27 × 106) elements. The elements size is h = 0.0033 mm and the characteristic
length scale is �0 = 2h. For the displacement problem, the bottom face of the structure is
fixed in all directions to simulate a rigid support, all the structure faces are blocked along
the x- and y-directions, and a distributed loadU is applied to the top face of the structure
in the z-direction. The simulation is performed using Jean Zay supercomputer with 1200
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Fig. 16 Geometry of the periodic structure with pore and inclusions: a three-dimensional structure; b RVE; c a
half of the structure (x ∈ [0, L

2 ]); d slice of the structure in the position x = L
2

processes. The computation is carried out with constant displacement increments of
�u = 1.25.10−6 mm.
Figure 13a-c show the damage evolution at displacements U = 15.10−5 mm, U =

18.10−5 mm, andU = 21.10−5 mm, respectively. The force-displacement curve is shown
in Fig 14. The proposed parallel implementation can simulate the crack propagation jump-
ing from pores to pores in this example. As in the previous example, Fig. 15a shows the
same phases of evolution in the number of iterations. However, in this case, a pic in the
number of iterations is observed when the crack reaches the boundary of the sample, lead-
ing to the full damage of the structure. In some cases, the displacement problem solver
for (26) has difficulties converging. Figure 15b shows the times to solve the damage (13)
and displacement (26) problems and the time of the execution of all the operations for
each load increment. The cumulated times for the damage and displacement problems
resolution are 30s (0.5min) and 784s (13min), respectively. The time of all loading incre-
ments execution is 1137s (19min), instead of about 15 days with a sequential execution.
The total time devoted to solve the mechanical problems takes 68% of the total time.

Periodic structure with pore and inclusions

For the third example, the crack initiation and propagation of a periodic structure with a
centered pore and inclusions submitted to tensile loading is performed (see Fig. 16). The
structure matrix have the properties λm = 30 kN/mm2, μm = 20 kN/mm2, and Gm

c =
10−7 kN/mm for the fracture toughness. For the inclusions, λi = 300 kN/mm2, μi = 200
kN/mm2, and Gi

c = 10−5 kN/mm. The structure is composed of 4053 (66.43 × 106)
elements, with dimensions L × H × l = 1 × 1 × 1 mm3. Pore and inclusions radii are
R = 0.2 mm and r = 43.10−3 mm, respectively. The elements size is h = 0.0025 mm
and the characteristic length scale is �0 = 2h. Boundary conditions for the displacement
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Fig. 17 Damage evolution of the notched periodic structure with pores at time steps a U = 173.10−6 mm; b
U = 177.10−6 mm; c U = 180.10−6 mm; d and e Slices of the damage state (c)

Fig. 18 Force-Displacement curve of the notched periodic structure with pores

problem are similar than in the previous example. The computations are carried out with
constant displacement increments of �u = 45.10−8 mm. The simulation is performed
using Jean-Zay supercomputer with 3200 processes.
Figure 17a-c illustrate the crack evolution (in red) at the time steps U = 173.10−6 mm,

U = 177.10−6 mm, and U = 180.10−6 mm, respectively. Figures 17d, e show slices of
the Fig. 17c. The curve force-displacement is shown in Fig 18. This example shows that
the proposed implementation is capable of modelling crack initiation and propagation in
complex heterogeneous structures andmaterials. It can be noticed that two circular cracks
are generated from the central pore, and have a wavy shape due to their interaction with
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Fig. 19 a Iterations number of the damage and displacement problems resolution; b times of the damage and
displacement problems resolution and time of loading increments of the notched periodic structure with pores

the inclusions. Figure 19a shows the number of iterations of each loading increment for
the damage (13) and displacement (26) linear systems resolution. In this case, unlike the
previous example, the number of iterations fluctuates along the whole simulations, which
might be due to the interaction between the crack propagation and the heterogeneities
within the structure. When the cracks reach the boundary of the sample, the number of
iterations jump and the solver converges very slowly. The search for better convergence of
the iterative solver with hole simulation in such problems deserves to be studied in future
work. Figure 19b shows the resolution times of damage (13) and displacement problems
(26) resolution and the time of the execution of all the operations for each load increment.
The cumulative times for solving thedamage anddisplacementproblemsare 142s (2.3min)
and 3618s (60.3min), respectively. The complete execution of all loading increments took
4443s (74min), instead of approximately 5 months with a sequential execution. The total
time devoted to solve the mechanical problems takes 81% of the total time.

Experimental image-based microstructure obtained from XR-µCT

In the last example, the crack initiation and propagation of a realistic geometricalmodel of
a microstructure directly obtained from X-Ray micro computed tomography (XR-μCT)
of lightweight concrete is simulated (see Fig. 20). For more details about the numerical
model, see [23]. A centered pore of a radius R = 0.15 mm is added to force the crack
nucleation. The phase properties are chosen as follow: λm = 30 kN/mm2, μm = 20
kN/mm2, and Gm

c = 8.10−8 kN/mm for the matrix, and λi = 300 kN/mm2, μi = 200
kN/mm2, and Gi

c = 8.10−6 for the aggregates. The structure is composed of 5003 (125 ×
106) elements, with dimensionsL×H×l = 1×1×1mm3. The elements size is h = 0.0002
mm and the characteristic length scale is �0 = 2h. The boundary conditions for the
displacement problem are similar to the previous example. The simulation is performed
using Jean-Zay supercomputer with 6000 processes. the computation performed with
constant displacement increments of �u = 4.10−7 mm.
Figure 21a-c illustrate the structure damage states at the time steps U = 157.10−6 mm,

U = 178.10−6 mm, and U = 200.10−6 mm, respectively. Figures 21d, e show slices of
the Fig. 21c. The Force-Displacement curve is shown in Fig. 22. This example shows that
the proposed implementation is capable of modelling crack initiation and propagation in
highly heterogeneous structures, in particular, real structures obtained using experimen-
tal imagery techniques. The framework can manage the nucleation of several cracks in
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Fig. 20 Geometry of the realistic microstructure obtained from experimental XR-μCT: a Three-dimensional
structure; b a half of the structure (x ∈ [0, L

2 ])

different locations and their connections. Figure 23a shows the number of iterations of
each loading increment for the damage and displacement solvers. Figure 23b shows the
resolution times of damage and displacement problems resolution and the time of the
execution of all the operations for each load increment. The cumulative times for solving
the damage and displacement problems are 102s (1.7min) and 3220s (53.7min), respec-
tively. The time of all loading increments execution is 4150s (69.1min), instead of about
10 months with a sequential execution. The total time devoted to solve the mechanical
problems takes 77% of the total time.

Conclusions
In this work, an efficientin- parallel implementation of the phase field method has been
proposed to simulate damage of quasi-brittle heterogeneous materials on supercomput-
ers. This implementation, developed in the context of the finite-element method, is capa-
ble of modelling damage in very large heterogeneous three-dimensional structures with
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Fig. 21 Damage evolution of the real structure at time steps a U = 157.10−6 mm; b U = 178.10−6 mm; c
U = 200.10−6 mm; d Slice of the damage state (c)

Fig. 22 Force-Displacement curve of the real structure

improved efficiency and using fewer resources than other available techniques. The par-
allel implementation of the phase field method is based on domain decomposition, each
process performs computations on a subdomain. The MPI library is used to ensure data
distribution and communication between processes. To solve the damage and displace-
ment problems, global matrices and vectors are computed and assembled in parallel. The
resolution of the linear systems is performed in parallel using the IBiCGStab solver and
Smoothed Aggragation AMG preconditioner. The performance analysis has been carried
out using the Jean Zay supercomputer from IDRIS. The efficiency has been 97% for a
computation on 6400 processes and greater than 80% for a computation on 10240 pro-
cesses, whichmakes this proposed implementation fast and extremely efficient. The linear
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Fig. 23 a Iterations number of the damage and displacement problems resolution; b times of the damage and
displacement problems resolution and time of loading increments of the real structure

systems involved in the simulations with up to 1010 degrees of freedom can be solved in
a few seconds. Numerical applications of crack initiation and propagation using three-
dimensional periodic structureshave been presented. A complete damage simulation of a
realistic geometrical model of lightweight concrete obtained by micro-CT imaging with
375 × 106 degrees of freedom was carried out with 500 time steps. Using 6000 processes,
the simulation was performed in just 1 hour and 9 minutes instead of around 10 months
employing a sequential implementation. These results demonstrate the effectiveness of
the proposed implementation.
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