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Abstract. The inherent variability in atmospheric fields, which extends over a wide range of temporal and
spatial scales, is also transferred to energy fields extracted from them. In the specific case of wind power gen-
eration, this can be seen in the theoretical power available for extraction and the empirical power produced by
turbines. To model and analyse them, it is important to quantify their variability, intermittency, and correlations
with other interacting fields across scales. To understand the uncertainties involved in power production, power
outputs from four 2 MW turbines are analysed (from an operational wind farm at Pay d’Othe, 110 km south-east
of Paris, France) using the scale-invariant framework of universal multifractals (UM). Their scaling properties
were compared with power available at the same location from simultaneously measured wind velocity.

While statistically analysing the turbine output, the rated power acts like an upper threshold that results in bi-
ased estimators. This is identified and quantified here using the theoretical framework of UM and validated using
numerical simulations. Understanding the effect of instrumental thresholds in statistical analysis is important in
retrieving actual fields and modelling them, more so in wind power production, where the uncertainties due to
turbulence are already a leading challenge. This is expanded in Part 2, where the influence of rainfall on power
production is studied across scales using UM and joint multifractals.

1 Introduction

In the increasing global transition towards renewable and
carbon-neutral energy, wind power is extremely attractive, as
it has some of the lowest carbon emissions in life cycle as-
sessment (Li et al., 2020; Guezuraga et al., 2012; Wiser et al.,
2011). The levelized cost of energy (LCOE, including build-
ing and operation) has also decreased drastically in recent
decades for both offshore and onshore wind power (80 %
since early 1980 and a further 30 % in the past 5 years), giv-

ing it better economic value (Beiter et al., 2021). However,
wind is a fluctuating field and mainly owes its generation to
uneven heating of Earth’s surface by solar radiation and the
pressure gradients generated from it. Further, atmospheric
turbulence makes the characterization of the field a difficult
task (with the governing Navier–Stokes equations still re-
maining unsolvable). The small-scale fluctuations and inter-
mittency in wind are transferred to the power produced; this
is further complicated by the fact that wind turbine hubs are
located in the atmospheric boundary layer. In addition, an im-
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588 J. Jose et al.: Multifractal analysis of wind power and associated biases

Figure 1. Log–log plot of the exceedance probability, Pr(1v > s),
of only positive horizontal velocity increments,1v(τ )= v(t+τ )−
v(t), from December 2020 to July 2021, at 1 Hz from location 1 of
the RW-Turb meteorological mast along with a Gaussian distribu-
tion to illustrate the latter’s inadequacy. s is a threshold of intensity,
and τ here is 15 s.

proved understanding of turbulence is identified as one of the
leading challenges in the field of wind power by experts (van
Kuik et al., 2016). When it comes to the working of modern
turbines, one way to account for wind variations is through
variable speed turbines and adaptive torque control enabling
maximum power capture. However, the commonly used pa-
rameter for control, “turbulence intensity” (standard devia-
tion of wind speed divided by mean wind speed over 10 min),
cannot fully capture the behaviour (see the non-Gaussian be-
haviour of wind velocity in Fig. 1) and is too coarse to repre-
sent the variability (active torque controls should be respon-
sive down to a few seconds). Further, this does not consider
any effect of rain that could get transferred to loads on tur-
bines (Johnson, 2004).

To understand the complex effect of turbulence on power
production, along with access to high-resolution data, an
appropriate theoretical framework is required to character-
ize intermittency at all scales of measurement. The scale-
invariant multifractal framework of universal multifractals
(UM), which is widely used to study variability in geo-
physical fields, can be used to characterize this complexity
(Schertzer and Lovejoy, 1987, 1997). Using the framework
of UM, Fitton et al. (2011, 2014) studied scaling behaviour
and multifractal properties of wind velocity and torque fluc-
tuations at wind farm test sites (in Germany and Corsica) and
made a case for multifractal modelling of atmospheric tur-
bulence. Multi-fractality of wind speed and aggregate wind
farm power was illustrated in Calif and Schmitt (2014),
where the coupling between both fields was examined.

In light of the scientific perspectives mentioned so far, here
we try to characterize the small-scale fluctuations in wind
power production using data from an operational wind farm
at Pays d’Othe, 110 km south-east of Paris, France. However,

while analysing the variability of the field using statistical
methods, the presence of instrumental limits in the data can
introduce biases. For example, the effect of an instrumen-
tal lower threshold is discussed in Jose et al. (2021) in the
framework of UM analysis using an atmospheric extinction
coefficient (σe) as the field. Similarly, there is also bias from
the presence of zeroes in the data (Gires et al., 2014). Both
of these biases are present in statistical analyses of empiri-
cal power from wind turbines since turbines are designed to
work at a rated power (here, 2 MW) and can provide zero
or negative power (more consumption than production). The
major aim of this paper is to highlight these biases encoun-
tered during multifractal analysis and their influence on the
direct statistical analysis of turbine power. For the theoreti-
cal aspect, only the effect of the upper threshold, which has
not yet been addressed in the literature, is considered here to
avoid complexity. More analysis is intended for a follow-up
paper, where the influence of rain on wind power production
is examined along with the coupling of power as a field with
other atmospheric parameters. The details of the data col-
lection and quality are presented in the following section on
data and methods; the second part of this section briefly re-
capitulates the framework of UM. The biases encountered in
the analysis of turbine power are presented in the section that
follows, along with numerical simulations where it is identi-
fied and reproduced in the framework of UM. Acknowledg-
ing these biases, some efforts were made to characterize the
effect of rainfall and wind velocity on turbine power. The fi-
nal section concludes the study and summarizes the results.

2 Data and methods

2.1 Data and instrumentation

The Rainfall Wind Turbine or Turbulence project (RW-Turb;
https://hmco.enpc.fr/portfolio-archive/rw-turb/, last access:
26 November 2024), supported by the Agence Nationale
de la Recherche (ANR, French National Research Agency
in English), is designed to understand the long- and
short-term effects of rainfall on wind power production,
with simultaneous high-resolution measurements on an op-
erational wind farm. Interested readers are directed to
Gires et al. (2022) for an overview of the campaign.
To briefly summarize this, the RW-Turb measurement
campaign (at Pay d’Othe, 110 km south-east of Paris,
France) consists of a meteorological mast (Fig. 2b on
the right side) on a wind farm (jointly operated by Bo-
ralex, https://www.boralex.com/our-projects-and-sites/, last
access: 26 November 2024), and JP Énergie Environ-
nement, https://pays-othe-89.parc-eolien-jpee.fr/, last ac-
cess: 26 November 2024). Figure 2a shows the location of the
project; the nine wind turbines of the Pays d’Othe wind farm
(aligned south-east and within a 4 km radius) are marked as
black vertical crosses and the meteorological mast as a star
(in the middle). Data from four Vestas V-90 (marked 1, 2, 8,
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and 9 in Fig. 2a) instruments are available: two are closer to
the meteorological mast and two are farther from it (≈ 3.5 km
from the mast). The five turbines of the Molinons wind farm
in the north are also visible within a 5 km radius (grey ver-
tical crosses). It should also be noted that a small groove is
located just south of the mast at roughly 160 m; a larger one
is to the east at roughly 100 m. Nearby the mast (i.e. within
the 1 km radius), there is a small slope in the north–south di-
rection. The meteorological mast consists of two sets of op-
tical disdrometers (OTT Parsivel2, 30 s, not used in current
study), 3D sonic anemometers (ThiesCLIMA, 100 Hz), and
a mini meteorological station (1 Hz) at heights of roughly
45 and 80 m (managed by the Hydrology Meteorology and
Complexity laboratory of the École des Ponts ParisTech –
HM&Co, ENPC).

Technical and working information on the turbine can be
found in Vestas Wind Systems A/S (2023). The turbines have
a rated power of 2.0 MW, which is pitch-regulated with vari-
able speed. The hub height of the turbines is 80 m, which is
closer to the vertical height of the upper set of devices on
the mast (≈ 78 m). The turbines have a cut-in wind speed of
4 m s−1 and a rated wind speed of 12 m s−1. This can be seen
in the power curves in Fig. 3 (last row), where the turbine
register power at the cut-in speed maintains the rated power
of 2000 kW after the rated wind speed. The cut-out speed
of the turbine is 25 m s−1 (the extreme x-axis point of the
power curves): this is the speed at which a turbine stops reg-
istering power. Generally, the turbines register positive val-
ues of wind power. However, when the power retrieved from
wind is less than what is required to work a turbine, it reg-
isters negative power. This can be seen in the power curves
as clusters around 0. Along with the wind power, the turbine
also provides information on the local velocity (at a sampling
measurement rate of 15 s), which is used for internal regula-
tion; this is used to plot the power curves in Fig. 3. The wind
power data used for the studies come from the four turbines
of Boralex – 1 and 2 are located closest to the mast (as can
be seen in Fig. 2b), and 8 and 9 are located at the farthest end
(at a sampling frequency of 15 s).

The temporal evolution and power curves (power vs. ve-
locity, with the expected curve provided by the manufacturer
in red) for the turbines are shown in Fig. 3 for 3 months (from
1 January to 1 April 2021). There are instances where the tur-
bine failed to produce any power and had to consume energy
for its basic operation. This results in negative data values,
and for realistic analysis they were considered to be zero.
This is why there is clustering of points at zero in the power
curve (Fig. 3e–h).

In addition to the empirical power provided by turbines,
the theoretical power available for extraction can be obtained
by

Pa =
1
2
ρAv3Cp, (1)

where ρ is the air density at the wind turbine height (hhub),
A the swept area of the turbine rotor, v the wind velocity
(m s−1) approximated at the turbine height, and Cp the power
coefficient or Betz coefficient (for the Vestas V-90 instru-
ments examined here, hhub = 80 m, A= 6362 m2, the rated
power is 2 MW, and Cp is 0.593). Here, Pa is estimated at the
same sampling rate as that of Pt (15 s) despite the 3D sonic
anemometer and mini meteorological station registering data
at finer sampling rates.

The value of air density is often approximated as
1.255 kg m−3 (standard value at sea level 15 °C). However,
it is known to show fluctuations and is reported to have
an effect on power generation at varying levels (Jung and
Schindler, 2019; Ulazia et al., 2018). For the purpose of
this analysis, air density was considered a varying quantity
and estimated using the current official formula of the In-
ternational Committee for Weights and Measures (CIPM),
referred to as the CIPM-2007 equation, which accounts for
humidity (Picard et al., 2008):

ρ(T ,P,Hr )=
PMa

Z(T ,P,Hr )RT (K)

×

{
1− xv(T ,P,Hr )

[
1−

Mv

Ma

]}
, (2)

where T (°C), P (Pa), and Hr (0≤Hr ≤ 1) are the tempera-
ture, pressure, and humidity from the meteorological station
at hhub. The other derived parameters are the following:

– T (K) the air temperature (K; from T );

– Z the compressibility factor (a function of T and P );

– R the molar gas constant (J mol−1 K−1);

– xv the mole fraction of water vapour;

– Ma the molar mass of dry air (g mol−1); and

– Mv the molar mass of water (g mol−1).

2.2 Scaling analysis and UM framework

Spectral analysis is widely used for characterizing scaling
properties; here, the second-order statistics of rain in the fre-
quency domain were examined for power law scaling as fol-
lows (Mandelbrot, 1982; Schertzer and Lovejoy, 1985):

E(k)≈ k−β , (3)

where k corresponds to the wave number and β is the spectral
exponent.

However, to fully characterize the complexity of the pro-
cess across its intensities and spatio-temporal variation, in-
formation on higher- and lower-order statistics is required.
For this, we use UM, which rely on the assumption of the
field being generated by an underlying cascade process with
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Figure 2. (a) Map of the Pays d’Othe wind farm (inset: location in France): the meteorological mast is at the centre, and the available
turbines are numbered – 1, 2, 8, and 9. (b) Turbine 1 and the mast. (c) Turbines 1 and 2 as seen from the bottom of the mast. The figures are
adapted from Gires et al. (2022).

Figure 3. Time series of the empirical turbine power (first row) and the power vs. velocity plot with the theoretical state curve of the turbine
(second row) for the wind turbines (1, 2, 8, and 9) at Pays d’Othe.

conserved statistical properties at each scale while inher-
iting the scale-invariant properties of Navier–Stokes equa-
tions (Schertzer and Lovejoy, 1987, 1989; Schertzer and
Tchiguirinskaia, 2020). In this framework, the probability of
a field exceeding a particular threshold across all the scales is
captured using the scale-invariant notion of singularity (γ ),
and for a multifractal field this probability scales accord-

ing to the resolution (λ: the ratio of L, the outer scale, to
l, the observational scale), with a corresponding fractal co-
dimension as the scaling exponent c(γ ) (Schertzer and Love-
joy, 1987, 1988):

p
(
ελ ≥ λ

γ
)
≈ λ−c(γ ). (4)

Nonlin. Processes Geophys., 31, 587–602, 2024 https://doi.org/10.5194/npg-31-587-2024



J. Jose et al.: Multifractal analysis of wind power and associated biases 591

This relation implies that the statistical moments q of the
field also scale with resolution and the moment scaling func-
tion K(q) as (Schertzer and Lovejoy, 1987, 1988)

〈ελ
q
〉 ≈ λK(q). (5)

Both functions are related by Legendre transform (Parisi and
Frisch, 1985). For a conservative field in the UM framework,
Kc(q) can be fully determined with only two parameters,
the multifractality index α and the mean intermittency co-
dimension C1.

Kc(q)=


C1

α− 1

(
qα − q

)
α 6= 1

C1q lnq α = 1
(6)

C1 measures the clustering of average intensity across scales
(C1 ∈ [0,1] for one-dimensional fields); when C1 = 0, the
field is homogeneous with little variability. α measures how
this clustering changes with respect to intensity levels (α ∈
[0,2]): the higher the value of α, the higher the variability,
with α = 0 being a mono-fractal field where intermittency
of the extreme is the same as that of the mean. If the UM
parameters are known, the co-dimension function of the con-
servative multifractal field cc(γ ) can also be obtained using
Lengendre transform (Schertzer and Lovejoy, 1987, 1988;
Parisi and Frisch, 1985):

cc(γ )=


C1

(
γ

C1α′
+

1
α

)α′
α 6= 1,

C1 exp
(
γ

C1
− 1

)
α = 1,

(7)

where 1
α
+

1
α′
= 1.

For a non-conservative field φλ, i.e. a field whose average
(〈φλ〉) changes with scales, a non-conservative parameter H
(not to be confused with the Hurst exponent: though for val-
ues> 0 both quantify long-range correlations, the latter does
not have a simple general expression for the multifractal pro-
cess; see the Appendix A for more details) is used in the
expression of scaling (Schertzer and Lovejoy, 1987, 1988;
Lovejoy and Schertzer, 2013):

φλ=
dελλ

−H , (8)

where=d denotes equality in the distribution (X=dY ⇔∀x :

Pr(X > x)= Pr(Y > x)) and ε is a conservative field charac-
terized by C1 and α for a conservative field H = 0. For a
non-conservative field with positive H , fractional differenti-
ation is required to retrieve a coarser field. Similarly, from a
non-conservative field with a negative value of H , the con-
servative field is retrieved through fractional integration. H
is related to the spectral slope β (Eq. 3) via the relationship
(Tessier et al., 1993)

β = 1+ 2H −Kc(2). (9)

The scaling behaviour of conservative multifractal fields can
be examined using a trace moment (TM), where a log–log
plot of upscaled fields against resolution λ is taken for each
moment q (Eq. 5). The quality of the scaling is given by the
estimate r2 of the linear regression; the value for q = 1.5
is used as a reference. A double trace moment (DTM) is a
more robust version of a TM tailored for UM fields, where
the moment scaling function K(q,η) of the field ελ(η) (the
initial field raised to power η at maximum resolution and re-
normalized) is expressed as a function of the multifractal in-
dex α (Lavallée et al., 1993).

〈
(
ελ

(η))q
〉 ≈ λK(q,η)

= λη
αK(q) (10)

From the above equation, a value of α can be obtained as
the slope of the linear part, where K(q,η) is represented for
a given q as a function of η in the log–log plot. Both the
TM and DTM techniques give reliable estimates as long as
H < 0.5 for the studied field.

Since multifractal processes are generated by cascade pro-
cesses, the average values can become too concentrated over
a certain area, leading to spurious estimates of moments
above a particular value of q (at qD, q is aboveK(q)≈+∞).
This effect is called divergence of moments. The convex na-
tures of the functions K(q) and c(γ ) are also limited by the
sample size of the data or the maximum value of the scale-
invariant threshold or singularity (γs) and the corresponding
moment (qs). The details of their computation can be found
in Schertzer and Lovejoy (1992), Schertzer and Lovejoy
(1989), and Lovejoy and Schertzer (2007). For reliable statis-
tical estimates of the moment scaling function and hence the
UM parameters, the moment orders used should not exceed
qs (moment order corresponding to the maximum singular-
ity) or qD (moment order where divergence happens).

An in-depth discussion of the methodological choices we
have made, along with an overview of other multifractal for-
malisms and their strengths and weaknesses, is provided in
Appendix A.

3 Turbine power, biases, and associated issues in
data analysis

3.1 Turbine power and biases

For the Vestas V-90 instruments, the rated power is 2 MW;
this means that the maximum power the turbine can produce
is 2000 kW. However, if we calculate the available power as
per Eq. (1), there are many instances where it can go beyond
the rated value (see Fig. 4c). When analysing the variability
of a field using statistical methods, the presence of instru-
mental limits in the data (here an upper limit) can introduce
biases. As briefly mentioned in the Introduction section, an
instrumental lower threshold in the data can increase α and
decrease C1 (Jose et al., 2021). In addition to this, there is
also bias from the presence of zeroes in the data (Gires et al.,
2014) (underestimation of α, deterioration of scaling), which
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592 J. Jose et al.: Multifractal analysis of wind power and associated biases

replaced negative values of the turbine power. Figure 4 shows
the real and theoretical turbine power state curves along with
the bias this poses in statistical analysis. Along with the
power produced, the turbine data provide wind velocity at
the hub (from a basic sensor installed on the hub), which is
used for its internal monitoring. For research purposes, the
wind velocity from the 3D anemometer at the mast is more
desirable as it offers a more reliable measurement (on al-
most the same horizontal plane as the turbine hub). Figure 4a
shows the empirical state curve of the turbine with this veloc-
ity, and Fig. 4b shows the same curve with the velocity from
the anemometer. There is considerably more scatter with the
latter. It should be stated that the turbines are not in the exact
location of the mast (Turbines 8 and 9 are ≈ 3.5 km away),
and hence approximation of the wind velocity from the mast
(for computing the theoretical power in Eq. 1) comes with
some biases.

From Fig. 4c and d, it can be clearly seen that the rated
power imposes an upper threshold on the turbine power (Pt),
while the power available (Pa) is the actual underlying field.
For this 1-week-long series of Pt, 21.7 % of the data were
at an upper threshold and 2.9 % were either zero or negative
(taken as zeroes in the analysis); this percentage was found
to change according to the data selected. The effect of these
limits on UM analysis is shown in Fig. 5a, where the data in
Fig. 4 are treated as an ensemble of 32 min. UM analysis was
performed on direct fields as the values ofH were within ac-
ceptable limits (H < 0.3). A unique scaling regime from 15 s
to 32 min was considered. The presence of the rated power
clips the values of the field and results in a reduced value of
α for Pt (Fig. 5a: α = 1.36, C1 = 0.00715) from that of Pa
(Fig. 5b: α = 1.93, C1 = 0.01753). Imposition of a similar
threshold (Pa <= 2000= 2000) on Pa was found to artifi-
cially reduce the estimates (α from 1.93 to 1.39, C1 from
0.10753 to 0.0076) in Fig. 5c, bringing them closer to that
of biased turbine power, Pt (Fig. 5a). Even closer values of
α were obtained when a lower threshold was also imposed
(replacing Pa values with zeroes at positions where Pt was
negative), giving α a value of 1.35 and C1 a value of 0.0077
(Fig. 5d). The results are compiled in Table 1. The scaling
quality remained similar for all the cases mentioned here,
with the r2 value (of the TM curve at q = 1.5) remaining
around 0.99 (second column of Fig. 5).

It should be noted that the effect of a threshold could be
different according to the size of the sample and the scaling
regimes studied. In the same spirit as σe in Jose et al. (2021),
the effect of rated power as an upper threshold on Pt is ex-
plored here in the theoretical framework of UM. The effect
on different scaling regimes as well as the additional com-
plexity from the known effect of zeroes (Gires et al., 2012),
though identified here, are not considered to avoid complex-
ity.

Table 1. Values of UM parameters for (a) the power produced by
the turbines (Pt), which has intrinsic thresholds (21.7 % as the upper
threshold and 2.9 % as the lower threshold); (b) the power available
(Pa) without any thresholds; (c) Pa with an imposed upper thresh-
old; and (d) Pa with an imposed upper threshold and a lower thresh-
old. The graphs can be seen in Fig. 4.

UM parameters

Field Threshold αDTM C1,DTM β H

Pt Upper+ lower 1.36 0.00715 1.6 0.31
Pa Upper 1.93 0.00753 1.39 0.21
Pa Lower 1.35 0.0077 1.44 0.23
Pa Upper+ lower 1.35 0.0076 1.44 0.23

3.2 Understanding the effect of upper threshold in the
UM framework

Let us take the upper threshold (rated power in this case) at
the largest possible scale ratio as

T =3γT , (11)

where γT is the singularity corresponding to threshold T
and 3 is the maximum resolution (length of the time se-
ries). For multifractal fields, the probabilities of exceeding
scale-independent thresholds, λγ , scale with resolution λ

(see Eq. 4). At the upper threshold T , this yields

Pr(ελ ≥ T )≈ λ−c(γT). (12)

If we set the upper threshold, i.e. set all the values of the field
greater than T equal to T (represented here by this expres-
sion: {ελ ≥ T } = T ), the probability of having values greater
than T , Pr(ελ > T ), becomes 0, reducing the above rela-
tion into Pr(ελ = T )≈ λ−c(γT). This leaves the value of c(γ )
equal to +∞ for singularities above γT (for γ > γT , c(γ )=
+∞). Here, c(γT) is the limiting non-zero value above which
c(γ ) becomes +∞.

This effect of the upper threshold (c(γ )→+∞ for γ >
γT) is similar to the effect of the sampling dimension (Ds)
in the UM framework. The maximum observable singularity
can be defined by taking the probability at the corresponding
threshold as in Eq. (12):

Pr(ελ ≥ λγS )≈
1

NsλD
, (13)

where Ns is the number of samples and λD is the number
of values per sample. Ns = λ

Ds (Ds being the sampling di-
mension, which quantifies the number of independent sam-
ples with resolution λ; for one sample, Ds = 0). Using the
notions of Ds and D, with γ corresponding to the sampling
resolution, γs can be estimated from c(γs), c(γs)=D+Ds
(Hubert and Carbonnel, 1989; Lovejoy and Schertzer, 2007).

The moment scaling function K(q) and co-dimension
function c(γ ) were discussed earlier in terms of UM parame-
ters in Eqs. (6) and (7). Both are equivalent functions, and for
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Figure 4. Illustration of the upper threshold (by virtue of a rated power of 2000 kW) in power produced by turbines. (a) Empirical and
theoretical power state curve of Turbine 1 with wind velocity from the turbine. (b) Wind velocity from location 1 on the mast. (c) Power
produced by the turbine (Pt) and actual wind power available Pa. (d) Effect of the rated power as a threshold of the time series and effect of
negative values on Pt for 1-week-long data – 20 to 26 May 2021.

multifractals they are related by a simple Legendre transform
(Parisi and Frisch, 1985; Schertzer and Lovejoy, 1993):

K(q)=max
γ
[qγ − c(γ )],

c(γ )=max
q
[qγ −K(q)]. (14)

Hence, for every singularity γ , there is a corresponding order
of moment q associated with it and vice versa: q = c′(γq ) and
γ =K ′(qγ ).

When γ > γs, c(γ ) = +∞; by Legendre transform K(q)
becomes linear from q > qs = c

′(γs):

γs = α
′C1

(
D+Ds

C1

) 1
α′

−
C1

α− 1
,

qs =

(
D+Ds

C1

) 1
α

. (15)

In the case of the sampling dimension, c(γ ) varies as follows:

c(γ )=

 +∞ for γ > γs
D+Ds for γ = γs
c(γ ) for γ < γs

 . (16)

Similarly, in the presence of the upper threshold here ({ελ ≥
T } = T ), c(γ ) reaches+∞ at an earlier limiting value c(γT),
where γT < γs (Fig. 6a).

cT(γ )=

 +∞ for γ > γT
c(γT) for γ = γT
c(γ ) for γ < γT

 (17)

Here, γT is defined from the threshold as initially stated in
Eq. (11), and cT(γ ) is estimated as above. From this, the cor-
responding limit moment qT can be obtained as in Eq. (15).

qT =

(
c(γT)
C1

) 1
α

(18)

To summarize, in standard data analysis with sampling lim-
itations, c(γ ) is bounded by a maximum value c(γs), above
which it becomes infinite. K(q), which is connected to c(γ )
through Legendre transform (Eq. 14), becomes linear beyond
this q (q ≥ qs) value (K(q)= (q−qs)γs+K(qs)). Similarly,
in this specific case, when an upper threshold is imposed
({ελ ≥ T } = T ), K(q) becomes linear at an earlier value of
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Figure 5. Spectral analysis (Eq. 3), TM analysis (Eq. 5), DTM curve (Eq. 10), and K(q) for (a) power produced by a turbine (Pt) with
intrinsic thresholds (upper: due to rated power; lower: due to negative values that are treated as zeroes); (b) power available (Pa), which is
the unbiased actual field; (c) Pa, where an upper threshold is imposed at the rated power of the turbine (i.e. all values of Pa above the rated
power of the turbine are artificially replaced by 2 MW; values > rated power = rated power); and (d) Pa, where an upper threshold and a
lower threshold (values set to zero, where Pt < 0) are imposed based on the turbine values. Data used: time series from 20 to 26 May 2021,
with the lowest time step of 15 s and a sample size of 32 min.

q (at qT < qs) as defined by γT (Fig. 6b).

KT(q)=

 γT(q − qT)+K(qT) for q > qT
K(qT)= qTγT− c(γT) for q = qT
K(q) for q < qT

 (19)

Using the DTM technique, for a given q,K(q,η)=K(qη)−
qK(η), which for UM fields is ηαK(q). When no thresholds
are applied, K(q,η) varies as

K(q,η)=
{

(q − 1)(D+Ds) for η ≥ η+(q)
ηαK(q) for η < η−(q)

}
, (20)

where η+(q) corresponds to the maximum values of η above
which K(q,η) becomes a plateau due to sampling limita-
tions (Eq. 15). To elaborate, K(q,η) consists of two parts

K(qη) and K(η), and η+(q) corresponds to the value of η
above which both are linear (which is qs). The transition to
the plateau starts at the lower value η−(q) (which is qs/q),
above which onlyK(qη) is linear. In the presence of an upper
threshold ({ελ ≥ T } = T ), the DTM curve will be (Fig. 6c)

KT(q,η)=
{

(q − 1)c(γT) for η ≥ η+(q)
ηαK(q) for η < η−(q)

}
, (21)

where η+(q) = qT and η−(q) = qT/q.
It is important to note here that the value of K(q,η) does

not reach the upper plateau abruptly at qT or qs. Rather, it
flattens gradually, starting from a value of η = qs/q or qT/q

(as per the value of qη inK(q,η)). The presence of the upper
threshold shifts this starting point and decreases the range of
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Figure 6. Influence of the threshold on (a) the c(γ )–γ curve, with c(γ ) reaching +∞ at γT and then γs; (b) the DTM curve, with K(q)
becoming linear at qT and then qs; and (c) the K(q)–q curve, with K(q,η) reaching the upper plateau early. Arbitrary values were used for
γs and γT; UM parameter values of the fields were taken to be α = 1.8 and C1 = 0.2.

possible values for estimation of α (slope of the DTM curve).
Hence, the presence of a plateau will result in biased (re-
duced) estimates.

3.3 Numerical simulations

Underestimation of values of α due to application of the up-
per threshold was already observed in Fig. 5c using real data.
To understand this further, conservative multifractal fields
(H = 0) were simulated using discrete cascades with values
of UM parameters close to those observed for empirical pow-
ers (Pt). Discrete cascade simulation here involves division
of a parent structure into sub-structures (retaining the value
of the parent structure multiplied by a random factor; Cham-
bers et al., 1976), iteratively following a non-infinitesimal
scale ratio while maintaining the validity of Eqs. (5) and (6).

For ease of contrast with the simulations examining lower
thresholds in Jose et al. (2021), values of α = 1.8 and C1 =

0.2 were used. UM analysis was implemented in ensembles
(sample size 128 and number of samples 100) by progres-
sively applying the upper threshold till the percentages were
observed in Pt (∼ 30 %). K(q) becomes linear at earlier and
earlier values of q (after qT), and an increasing percentage of
values at the threshold can be seen in the third column (like
in Fig. 6b). The DTM curve in the second column shows that
both α and C1 decrease with progressive application of the
thresholds (from 0 % to 30 %: α decreased from 1.8 to 1.56,
while C1 decreased from 0.17 to 0.05).

While discussing this bias in the framework before, it was
mentioned that the upper threshold was introduced at the
maximum resolution (Eq. 11, 3γT ). Since in practice the
lower scales in UM are obtained from averaging the outer
scale (at the maximum resolution), the threshold values (and
hence γT) at each stage do not correspond exactly to the orig-
inally defined one. This is the reason for an increased “tran-
sition part” (part of the curve from the straight line to the
upper plateau) of the DTM curves (second column) in the
simulations here (more than that in Fig. 6c). When the esti-

Table 2. Values of the UM parameters for the simulated fields with
an artificial imposition of the upper thresholds.

UM parameters

Percentage at the threshold αDTM C1,DTM β H

0 % 1.81 0.17 0.95 0.108
5 % 1.72 0.13 1.15 0.186
15 % 1.64 0.10 1.18 0.178
30 % 1.56 0.07 1.2 0.163

mation of α was forced at η = 1 (so that the TM and DTM es-
timates were the same), the bias in the values of α increased
as the slope estimation moved to the transition part. For ex-
ample, the already biased value of α at the 30 % threshold,
1.58 (slope at log η between −0.1 and −0.5), was further
reduced to 0.95 (slope around log η = 0). In this estimation,
C1 moreover remained similar to previous estimates at all the
thresholds.

It is interesting to note that the trend here (only for α) is
not exactly the opposite of what was observed during numer-
ical simulations with lower thresholds in the section (Jose
et al., 2021). While the imposition of a lower threshold in-
creased α and decreasedC1, the upper threshold here reduces
both UM parameters. In the specific case of turbine power, Pt
(Fig. 5a) has a combination of the upper threshold from the
rated power and the lower threshold (zeroes) from a negative
power (the latter is not considered here). This, in practice,
further reduces the range of available η for estimation of α
by imposing a lower plateau as well (see Fig. 5, third col-
umn). Also, the effect of this bias could be different when
fluctuations of the fields are selected to retrieve conserva-
tive fields since the simulations were performed directly on
conservative multifractal fields here. Since two consecutive
power values can be the same, thanks to the rated power, tak-
ing fluctuations will yield zeroes in the field and add to the
zero bias. The effect of both biases could be different when
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Figure 7. Effect of the upper thresholds illustrated using numerical simulations – discrete cascades of size 128 with 100 samples with
α = 1.8 and C1 = 0.2 as input. The thresholds were applied progressively to the simulated field: (a) no threshold, (b) 5 %, (c) 15 %, and (d)
30 %. A decrease in α and an increase in C1 with a threshold can be seen from the DTM curves (second column) of panels (a) to (d).

the aggregate power of the wind farm is considered as well:
this is not explored here either.

3.4 Data analysis reducing the biases

So far, the effect of thresholds in UM analysis has been illus-
trated in the framework of UM. To get a better idea of their
effect on scaling, UM analysis was performed of a longer
series of powers. For this, a 3-month-long continuous series
was taken (from 1 January to 1 April 2021) and UM analysis
was performed on Pa and Pt as ensembles of sample size 128
(32 min). Figure 8a and b show the curves for Pa (α: 1.93;
C1: 0.01) and Pt (α: 1.11; C1: 0.0042) respectively. Consid-
ering Pa to be the underlying field, the effects of the thresh-
olds (upper and due to zeroes) in Pt can be seen in the DTM
curve (Fig. 8b, second row). The lower plateau corresponds

to the presence of a negative power in the data (which was
replaced by zeroes), and the low value of α is due to η being
in the transition range (as already seen in Fig. 6c). Figure 8c
and d show the UM analysis for the same data but remove
the columns with thresholds. In the Pt ensemble data, the
columns with thresholds, zeroes, and repetition of data were
removed by using a limit of 0.01 %. For example, columns
with more than 0.01 % of their values ≥ 1600 were removed
to be on the safe side when analysing data without the in-
fluence of a threshold. For a more accurate comparison, the
same columns were removed from Pa as well; the results are
shown in Fig. 8c (α: 1.76; C1: 0.0095) and Fig. 8d. It can
be seen that the lower plateau disappeared for Pt and that
the values of the UM parameters (α: 1.5749 from 1.11; C1:
0.00554 from 0.0042) improved; this also increased the value
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of β (1.8 from 1.6) and consequently that of H (0.41 from
0.3). It should be noted that the values of the UM parameters
get closer to those of Pa but are not the exact values. This
suggests that there are slight differences in the properties of
both fields, even though they appear comparable when biases
are removed.

4 Conclusion

Wind turbines are designed to work at a rated power for op-
timal production of power as well as their safe functioning.
This inadvertently creates an upper threshold in the output
data of power production, and such an effect induces biases
in statistical analysis, especially when the small-scale non-
linear variability and intermittency are to be studied. The
backdrop of this study followed the campaign in Gires et al.
(2022), where the main objectives were to analyse the tur-
bine power Pt as a temporal field and to gain insights into
its correlation with rainfall, which is poorly understood, and
also with other meteorological fields, across scales using the
data averaged to these reliable frequencies. However, direct
analysis of empirical turbine power (using the framework of
UM) was found to be difficult since the output from wind tur-
bines is limited by a maximum or rated power. In time series
analysis this acts as an upper threshold, resulting in reduced
estimates of UM parameters compared to those of theoreti-
cally available wind power (Pa) for extraction. The reason for
this decrease was identified in the framework of UM and is
illustrated using theoretical formulations. The same has been
confirmed through simulations of conservative multifractal
fields as well. Basically, the presence of an upper threshold
introduces an upper plateau into the DTM curve, which is
similar to the one due to the sampling dimension, but it be-
gins at a lower value of η. This reduces the range of available
η values for estimation of the slope and hence results in a
biased value of α (reduced α and C1). Also, when it comes
to the empirical power produced by the turbines, the biases
are two-fold since a lower threshold (albeit to a much lesser
extent) is involved, because the turbine does not necessarily
always produce power and has moments that involve only
operational consumption (leaving power production values
negative). Since UM in their usual forms are not designed to
handle negative values, based on how these values are man-
aged (taken to be zero here), the values of α will be biased
further due to the effect of a lower threshold.

Though these biases have been identified, as of now, no so-
lutions are available to account for them, and more method-
ological developments are required for this solution. The
same is required to understand the combined effect of both
biases. It is also worth mentioning that such an upper thresh-
old is very likely to affect other statistical analyses relying on
scale invariance as well. However, this is beyond the scope of
the current paper and would require separate investigations.
Due to the presence of the above-mentioned biases in Pt, the

actual wind power available at the turbine hub for extraction
(Pa = f (v,ρ); Eq. 1) was used as a proxy to understand the
small-scale variability in the follow-up UM analysis. Since
the presence of thresholds in the data – imposed by limita-
tions of operations as well as measurement – exists in many
geophysical situations, understanding them is important for
retrieving the actual characteristic parameters and modelling
them. In the case explored here, since the characterization
of power production already suffers from various influences
that are poorly understood and accounted for, understanding
the biases in the data treatment will help avoid more uncer-
tainties.

Appendix A: Diversity of multifractal formalisms and
theoretical choices

In response to questions from referees and therefore poten-
tial questions from readers, we felt it necessary to discuss
in greater depth the methodological choices we have made.
The purpose of this Appendix is therefore to provide, in a
fairly autonomous way to ease reading, a better overview of
the formalisms, highlighting their strengths and weaknesses,
their common features, and their diversity. This Appendix is
also valid for Part 2 of this publication.

A1 Deterministic and stochastic multifractals as well as
dimension and co-dimension formalisms

In this paper and its companion paper (Jose et al., 2024),
we use a stochastic multifractal framework (Schertzer and
Lovejoy, 1984, 1983, 1989, 1992), for the fundamental rea-
son that it is much more general than a deterministic mul-
tifractal framework (Parisi and Frisch, 1985; Halsey et al.,
1986). This large difference is fundamentally due to the num-
ber of samples required to get reliable information. While
a unique sample is sufficient for a purely deterministic pro-
cess, the determination of extremes of a stochastic process
may require a very large number of samples. This difference
is also illustrated by the fact that a stochastic event has a fi-
nite occurrence frequency, while it may occur on an infinite
number of samples. This results from the fact that a proba-
bility frequency can be understood as the (finite) limit of the
ratio of two diverging numerations: “favourable cases” and
“all cases”. If both numerations scale with a dimension ex-
ponent, then the frequency scales with the difference of these
dimensions, which is usually called co-dimension. This can
be written as follows for a process ελ at resolution λ= L/`
(outer scale L, observation scale `) when assessing its prob-
ability of diverging more quickly than λγ , i.e. with a singu-
larity γ :

Pr(ελ ≥ λγ )≈
Nλ(ελ ≥ λγ )

Nλ
≈
λD(γ )

λD
= λD(γ )−D

= λ−c(γ ), (A1)
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Figure 8. UM analysis of data from 1 January to 1 April 2021 as ensembles of sample size 128 (32 min): (a) Pa (as the data are), (b) Pt
(as the data are), (c) Pa (columns with the threshold removed on the basis of the Pt data below), and (d) Pt with the columns of the upper
threshold and zero data removed.

where the co-dimension c(γ ) and the dimensionD(γ ) satisfy

D = c(γ )+D(γ ), (A2)

where D is the embedding dimension of the process and
thus generalizes the definition of the co-dimension C(A) of
a D(A)-dimensional sub-space A in a D-dimensional vector
space:

D =D(A)+C(A). (A3)

Equation (A1) provides the first insight into the funda-
mental fact that scaling exponents of probabilities are co-
dimensions, while those of numerations are dimensions.

It seems paradoxical that the dimension or determinis-
tic multifractal formalism was introduced to explain the ob-
served non-linearity of statistical scaling exponents, specifi-
cally that of the velocity structure functions (Anselmet et al.,
1984), which are the statistical moments of the velocity in-
crements. This was done with the help of strong assumptions:

the singularities of the velocity increments, defined as lo-
cal Holder exponents, were assumed to be geometrically and
rather deterministically distributed over embedded fractals.
In many respects, the f (α) formalism (Halsey et al., 1986),
which deals with multifractal strange attractors, further em-
phasized this implicit non-random and geometric framework.
A dimension formalism such as the f (α) formalism is for-
mally related to the co-dimensions (γ,c(γ )) according to

αD =D− γ ;fD(αD)=D− c(γ ). (A4)

The sub-index D is introduced to α and f for two reasons:

– Both α and f depend on the embedding dimension D,
e.g. by taking cuts of dimensions smaller than D, while
(γ,c(γ )) do not depend on it.

– Another “historical” α has a quite different meaning, as
briefly mentioned below.
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The same dependence on D occurs for the scaling expo-
nent τ (q) of the partition function (Hentschel and Procaccia,
1983; Jiang et al., 2019), which is strongly related to that of
the statistical moment scaling exponent K(q),

< ελ >≈ λ
K(q), (A5)

as follows:

τD(q)= (q − 1)D−K(q). (A6)

A2 Partial equivalence between dimension and
co-dimension formalisms

In fact, we implicitly used the partial equivalence between
both formalisms for the introduction of the co-dimension
(Eq. A1). Before insisting on its partiality, let us stress that
it is merely defined by Eq. (A4), a very broad but rather
straightforward generalization of Eq. (A3). Equation (A4)
thus defines the framework transformation of going from one
formalism to another.

Unfortunately, this equivalence is only partial because the
dimension framework is much more limited than the co-
dimension one. A major difference is that the numeration di-
mensionD(γ ) is bounded below and above (0≤D(γ )≤D),
while the co-dimension c(γ )) being statistically defined as
the opposite of the scaling exponent of the probability expo-
nent generally has no upper bound (0≤ c(γ ). For instance,
c(γ ))=∞ merely corresponds to a singularity γ that almost
never happens, including at a finite resolution. According to
Eq. (A4), c(γ )>D would correspond to a negative dimen-
sion D(γ ).

A3 Universality and stochasticity

One important feature of the stochastic framework is that it
provides universal behaviour, i.e. processes that are attrac-
tive, stable, and determined by only a limited number of pa-
rameters. We briefly recall that this is the case for the UM
(Schertzer and Lovejoy, 1987, 1997) that satisfy a broad gen-
eralization of the central limit theorem: their generators are
attractive and stable through re-normalized summations. We
recall that their statistics are defined by the three parameters
which follow and which are physically meaningful:

– For the scaling exponent H 1 of the mean field, when
H = 0, the mean field is strictly scale-invariant and the
field is said to be conservative.H 6= 0 often results from
a fractional integration of this order of a conservative
field.

– The co-dimension C1 ≥ 0 of the mean field measures
the mean intermittency, i.e. how the mean fluctuations

1As discussed below, this is related to the historical Hurst ex-
ponent, although it is rarely identical to it; see Eq. (A9) and the
associated comments.

are increasingly concentrated scale by scale. When
C1 = 0, there is no intermittency and the field is sta-
tistically homogeneous.

– The multifractal index 0≤ α ≤ 2 measures the variabil-
ity of the intermittency when departing from the mean
field. When α = 0, the field is uni-fractal or mono-
fractal: α = 2 corresponds to a maximal intermittency
and to the so-called log-normal model. α is also the
Levy stability index (Lévy, 1937) of the cascade gen-
erator.

The corresponding UM scaling moment function is there-
fore

K(q)=−qH +Kc(q); Kc(q)= C1
qα − q

α− 1
, (A7)

where Kc(q) denotes the scaling moment function of a con-
servative UM field. We believe that the case studies of the
textual body confirm that Eq. (A7) allows a much richer
data analysis than the frequently used deterministic indica-
tors, such as 1αD = αD,max−αD,min.

A4 Hurst exponent and its multifractal generalizations

Scaling time series analysis has been strongly focused on the
estimation of the historical Hurst exponent H (Hurst, 1951),
in particular with respect to its critical value H = 0.5 that
is supposed to discriminate long-range dependency and per-
sistence (H > 1/2) from short-range dependency and anti-
persistence (H < 1/2). The multifractal ideology has ruined
the dogma of its uniqueness and justified divergent estimates
where not accidental, but it did result from a given physics,
i.e. that of intermittency. Among the many ways of defin-
ing a generalized Hurst exponent (GHE, Gómez-Águila and
Sánchez-Granero, 2021), it is straightforward to consider the
scaling exponent H (q) of the qth root of the (absolute) qth-
order statistical moment of the field 2:

H (q)=−K(q)/q. (A8)

This definition is very generic and is an effective measure
of the evolution of the qth-order statistical moment, if any,
with respect to its order q. In particular, the uniqueness of
H (H (q)≡H ) is recovered for fractional integrations of ho-
mogeneous processes. By contrast, fractional integrations of
multifractal processes yield a non-constant part, e.g. for a
fractional integration of a conservative field with the scaling
moment function Kc(q):

H (q)=H −Kc(q)/q. (A9)

In the generic case of universal multifractals, Kc(q) only de-
pends on the universal parameters C1 and α (Eq. A7). Be-
cause H (2) is often considered the historical Hurst exponent

2The minus sign that appears in this relation is only due to
the left-hand side being a scaling exponent with respect to scales,
whereas the right-hand side is with respect to the resolution.
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(Kantelhardt, 2002), it is only equal to H for homogeneous
processes according to Eq. (A9).

The main drawback of the generalized Hurst exponent
H (q) is that it gives access to the statistics of the cascade
generator less directly than with the scaling moment func-
tion K(q). This may explain why many GHE studies have
limited outputs due to a lack of theoretical guidance, e.g. by
only providing raw statistics of H (q) such as its minimum
and maximum over a given range of q.

A5 Detrending frameworks

Multi-fractal detrended fluctuation analysis (MFDFA; Kan-
telhardt, 2002) is a popular scaling analysis technique that
explicitly uses the concept of the generalized Hurst exponent.
However, this is not done directly on the field of interest but
rather on the standard deviations of the residues of polyno-
mial regressions on the running sum of the fluctuations of the
original time series. It thus corresponds to a multifractal ex-
tension of the (fractal) DFA; Peng et al., 1994), as generally
presented.

Let us provide some details about this. Let Y (i) be the cu-
mulative fluctuation of the original time series x(k) of the
mean value < x >:

Y (i)=
i∑

k=1
[x(k)−< x >]. (A10)

The series is split intoNs non-overlapping sub-series of finite
size s, and a detrending polynomial yν(i) with constant order
m is fitted into each sub-series by least squares. This yields
the following root mean square variation over the νth sub-
series:

F (ν,s)=

[
1
s

s∑
i=1
{Y [(ν− 1)s+ i] − yν(i)}2

]1/2

. (A11)

Averaging over the Ns sub-series of size s yields the total
variation for the DFA analysis:

F (s)=

[
1
Ns

Ns∑
ν=1

F 2(ν,s)

]1/2

(A12)

The generalization to MFDFA is straightforwardly ob-
tained by introducing the statistical order q instead of 2:

Fq (s)=

[
1
Ns

Ns∑
n=1
[F 2(ν,s)]q/2

]1/q

. (A13)

The estimate of H (q) is obtained using the logarithmic slope
of Fq (s):

Fq (s)≈ sH (q)
⇔H (q)≈

lnFq (s)
lns

. (A14)

It is similar but not identical to the scaling of the trace mo-
ment of the original field.

A6 Deferring to future work

A priori, H (q) is not unique, since it may depend like Fq (s)
on the orderm of the detrending polynomials yν(i), and there
is no obvious theoretical guidance on how to choose this
order. In addition, the cumulative fluctuation obviously in-
creases the order of integration H by a unit (Eq. A10). Con-
versely, the obtained estimates (Eq. A14) must be reduced by
the same amount to indirectly estimate H (q) for the original
series. The most serious theoretical drawback is the linear
decomposition into local polynomial trends and stochastic
fluctuations. Moreover, as the former is maximized by least
squares, the importance of the fluctuations is minimized even
though they are initially at the centre of the analysis. Because
of these many issues, we defer the MFDA and variants of our
data to future work.
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