
HAL Id: hal-04802224
https://enpc.hal.science/hal-04802224v1

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Accelerating the Adaptive Eyre–Milton FFT-based
method for infinitely double contrasted media

Martin Dolbeau, Jérémy Bleyer, Karam Sab

To cite this version:
Martin Dolbeau, Jérémy Bleyer, Karam Sab. Accelerating the Adaptive Eyre–Milton FFT-based
method for infinitely double contrasted media. Comptes Rendus. Mécanique, 2024, 352 (G1), pp.251-
267. �10.5802/crmeca.269�. �hal-04802224�

https://enpc.hal.science/hal-04802224v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Comptes Rendus

Mécanique

Martin Dolbeau, Jérémy Bleyer and Karam Sab

Accelerating the Adaptive Eyre–Milton FFT-based method for infinitely double
contrasted media

Volume 352 (2024), p. 251-267

Online since: 22 November 2024

https://doi.org/10.5802/crmeca.269

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

C EN T R E
MER S ENN E

The Comptes Rendus. Mécanique are a member of the
Mersenne Center for open scientific publishing

www.centre-mersenne.org — e-ISSN : 1873-7234

https://doi.org/10.5802/crmeca.269
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus. Mécanique
2024, Vol. 352, p. 251-267

https://doi.org/10.5802/crmeca.269

Research article / Article de recherche

Accelerating the Adaptive Eyre–Milton
FFT-based method for infinitely double
contrasted media

Accélération du schéma Eyre–Milton adaptatif pour
l’homogénéisation par FFT des milieux à double
contraste infini

Martin Dolbeau a, Jérémy Bleyer b and Karam Sab ∗,b

a Laboratoire Navier, IPParis ENPC, Univ Gustave Eiffel, CNRS, Marne-la-Vallée,
France

E-mails: martin.dolbeau@enpc.fr, jeremy.bleyer@enpc.fr, karam.sab@enpc.fr

Abstract. Sab et al. (2024) have recently proposed an FFT-based iterative algorithm, termed Adaptive Eyre–
Milton (AEM), for solving the Lippmann–Schwinger equation in the context of periodic homogenization of
infinitely double contrasted linear elastic composites (heterogeneous materials with linear constitutive laws
that contain both pores and rigid inclusions). They have demonstrated the unconditional linear convergence
of this scheme, regardless of initialization and the chosen reference material. However, numerical simula-
tions have shown that the rate of convergence of AEM strongly depends on the chosen reference material.
In this paper, we introduce a new version of the AEM scheme where the reference material is updated itera-
tively, resulting in a fast and versatile scheme, termed Accelerated Adaptive Eyre–Milton (A2EM). Numerical
simulations with A2EM on linear elastic composites with both pores and infinitely rigid inclusions show that,
regardless of the initial chosen reference material, this algorithm has the same rate of convergence as AEM
with the best choice of reference material.

Résumé. Sab et al. (2024) ont récemment proposé un algorithme itératif basé sur la FFT, appelé Adaptive
Eyre–Milton (AEM), pour résoudre l’équation de Lippmann–Schwinger dans le contexte de l’homogénéisa-
tion périodique de composites élastiques linéaires à double contraste infini (matériaux hétérogènes avec des
lois constitutives linéaires contenant à la fois des pores et des inclusions rigides). Ils ont démontré la conver-
gence linéaire inconditionnelle de ce schéma, quel que soit l’initialisation et le matériau de référence choisis.
Cependant, les simulations numériques ont montré que la vitesse de convergence du schéma AEM dépend
fortement du choix du matériau de référence. Dans cet article, nous introduisons une nouvelle version du
schéma AEM, où le matériau de référence est mis à jour de manière itérative, aboutissant à un schéma rapide
et polyvalent, appelé Accelerated Adaptive Eyre–Milton (A2EM). Des simulations numériques avec le schéma
A2EM sur des composites élastiques linéaires avec des pores et des inclusions infiniment rigides montrent
que, quel que soit le matériau de référence initial choisi, cet algorithme a la même vitesse de convergence
que le schéma AEM avec le meilleur choix du matériau de référence.

Keywords. computational homogenization, FFT-based method, iterative scheme, linear elasticity, composite
materials.
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1. Introduction

Since Moulinec and Suquet [1, 2] pioneering work, FFT-based methods for periodic homoge-
nization of composites have become very popular. The initial corrector problem on the unit cell
is reformulated as a single integral equation known as the Lippmann–Schwinger equation [3–
5], which is solved iteratively. At each iteration, the convolution kernel of the integral equation
must be applied. This is done most efficiently in the Fourier space, by means of fast Fourier
transforms (FFT) in a discrete setting. Many authors introduced new iterative schemes which
prove more efficient in some situations. Among them, the Eyre and Milton scheme [6], the aug-
mented Lagrangian scheme of Michel, Moulinec and Suquet [7], the polarization-based schemes
of Monchiet and Bonnet [8, 9]. In a non-linear setting, Newton or quasi-Newton approaches,
combined with Krylov solvers [10, 11] deliver very efficient solution schemes [12]. Most no-
tably, by observing that the basic scheme could be seen as a gradient descent, Kabel et al. [13]
allowed the introduction of accelerated-gradient methods and other well-known optimization
methods [14, 15]. The literature on the topic is very rich, and the reader is referred to the recent
and comprehensive review by Schneider [16].

However, existing FFT-based algorithms were not adapted to the case of infinitely double
contrasted linear elastic composites (heterogeneous materials with linear constitutive laws that
contain both pores and rigid inclusions). Recently, the authors introduced in [17] the so-called
polarization-based adaptive Eyre–Milton (AEM) scheme to address this case. They demonstrate
the unconditional linear convergence of this scheme, regardless of initialization and the chosen
reference material. Their numerical experiments indeed confirmed that AEM convergence rate
is very fast if the reference material is well chosen.

In this paper, numerical simulations with AEM, and another polarization-based scheme
named “γ = 0”-scheme, on linear elastic composites consisting of a homogeneous matrix con-
taining both pores and infinitely rigid inclusions will demonstrate the existence of an optimal
reference material. Then, an accelerated version of the AEM and “γ= 0” schemes where the ref-
erence material is updated iteratively will be presented. Two possible updating rules will be con-
sidered and compared. Numerical simulations will show that the rate of convergence of both the
termed Accelerated Adaptive Eyre–Milton (A2EM) scheme and accelerated “γ= 0”-scheme does
not depend much on the chosen initial reference material, and that it is more or less equal to
the rate of convergence of the non accelerated original scheme with the best choice of reference
material.

Following [17], the homogenization problem in the presence of pores and rigid inclusions
is formulated in Section 2, as well as the corresponding Lippmann–Schwinger equation. The
AEM scheme is recalled in Section 3. Then, the knew A2EM scheme is introduced in Section 4.
This section is followed by the discussion in Section 5 of a few practical issues regarding the
implementation of the method, namely: the optimization of the number of convolutions per
iteration and the number of variables to be stored.

The paper closes in Section 6 with a few illustrative applications, in a three-dimensional
setting. These examples clearly illustrate the performance of the proposed A2EM scheme.

2. The homogenization problem

We consider homogenization of a periodic, linearly elastic material, containing pores and
rigid inclusions, in the d-dimensional real space Rd (d = 2,3). The unit-cell is denoted by
Ω = [0,L1]× . . .× [0,Ld ] where Li > 0 are the side lengths of Ω and 〈•〉Ω is the volume average
operator overΩ. LetΩr,Ωp andΩm denote the open domains ofΩ occupied by, respectively, the
rigid inclusions, the pores and the heterogeneous matrix.
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A field X is Ω-periodic if X (y1, . . . , yd ) = X (y1 + L1, . . . , yd ) = . . . = X (y1, . . . , yd + Ld ) at any
point y = (y1, . . . , yd ) ∈ Rd . Let L2

sym(Ω) denote the space of symmetric second-order tensor
fields y 7→ t (y) (ti j (y) = t j i (y), i , j = 1, . . . , d), which are Ω-periodic and square integrable over
Ω. Adopting Einstein’s summation convention over repeated indices, we introduce the double
contraction operator “:” defined as a : b = ai j bi j , where a and b are two second-order tensors.
The bilinear form (a,b) 7→ 〈a : b〉Ω then defines a scalar product over L2

sym(Ω) and the associated
natural norm is

∥t∥L2
sym

=
√

〈t : t〉Ω, (1)

It is well-known (see e.g. [18]) that, endowed with this natural norm and scalar product,
L2

sym(Ω) can be decomposed into the two orthogonal sub-spaces S and D :

L2
sym(Ω) = S

⊥⊕D (2)

where S is the sub-space of theσ ∈ L2
sym(Ω) which are divergence-free in the sense of distributions

over Rd , σi j , j = 0, and D is the sub-space of the strains e ∈ L2
sym(Ω) which are kinematically

compatible with zero mean (e is curl-curl-free and ei j = 1
2 (ui , j +u j ,i ) where u = (ui ) is an Ω-

periodic displacement vector field).
Within the framework of linear elasticity, the fourth-order stiffness tensor C (y) = (Ci j kl (y))

(i , j ,k, l = 1, . . . , d) is defined only in the heterogeneous matrix for y ∈ Ωm, and it exhibits both
minor (Ci j kl =Ci j lk =C j i kl ) and major (Ci j kl =Ckl i j ) symmetries.

We say that a pair of strain-stress fields, (ε,σ) ∈ L2
sym(Ω)×L2

sym(Ω), complies with the consti-
tutive equations if the following equations hold true:

ε= 0 inΩr, σ= 0 inΩp and σ=C : ε inΩm. (3)

Let E denote a macroscopic strain tensor (symmetric, second-order tensor which is uniform over
Ω). Then, the homogenization problem can be stated as follows:

Find (eE ,σE ) ∈ D ×S such that (εE = E +eE ,σE ) complies with (3) (4)

It is shown that under the assumptions stated in [17] the above problem has a unique solution,
(εE ,σE ), up to a pair (e,σ) ∈ D ×S with (e,σ) = (0,0) in Ωm, and that the homogenized stiffness
tensor C hom is defined by:

∀ E ,
1

2
E : C hom : E =

〈
1

2
σE : eE

〉
Ω

(5)

It is also shown that the problem (4) can be equivalently reformulated as follows:

Find (εE ,σE ) ∈ L2
sym(Ω)×L2

sym(Ω) complying to (3) such that X (εE ,σE ) = 0, (6)

where, for any pair of strain-stress fields (ε,σ) ∈ L2
sym(Ω)×L2

sym(Ω), the corresponding residual
field X (ε,σ) is given by:

X (ε,σ) = E −ε−Γ0 ∗ [(σ−C 0 : ε] . (7)

Here, C 0 is the reference material which is a uniform, positive-definite (ε : C 0 : ε> 0 for all ε ̸= 0),
fourth-order tensor with both minor and major symmetries, andΓ0 its associated Green operator
defined as follows.

For any τ ∈ L2
sym(Ω), the following problem:

Find eτ ∈ D such that C 0 : eτ+τ ∈ S (8)

has a unique solution eτ that depends linearly on τ. The Green operator Γ0 associated to C 0 is
defined as the linear operator that maps τ onto −eτ [3–5]:

eτ =−Γ0 ∗τ (9)
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The Green operator Γ0 has an analytical expression in Fourier space, and hence the convolu-
tion Γ0∗τ can be efficiently computed using FFT techniques [1, 2]. The Γ0 operator thus defined
enjoys a number of properties [7]:

Γ0 ∗τ= 0 ⇐⇒ τ ∈ S (10)

〈
e : C 0 :

(
Γ0 ∗τ)〉

Ω = 〈e :τ〉Ω for all τ ∈ L2
sym(Ω) and e ∈ D . (11)

To close this section, we recall the decomposition of any tensor field in L2
sym(Ω) introduced

in [17]; see also [19]. For any t ∈ L2
sym(Ω), we define its C 0-norm as:

∥t∥C 0 =
√

〈t : C 0 : t〉Ω, (12)

and its decomposition:

t D =Γ0 ∗ (C 0 : t ) and t S = t − t D . (13)

The following properties are easily established:

t D ∈ D , C 0 : t S ∈ S and ∥t∥2
C 0

= ∥t D∥2
C 0

+∥t S∥2
C 0

(14)

and 〈
t 1 : C 0 : t S

2

〉
Ω = 〈

t S
1 : C 0 : t 2

〉
Ω and

〈
t 1 : C 0 : t D

2

〉
Ω = 〈

t D
1 : C 0 : t 2

〉
Ω , (15)

for all t 1, t 2 ∈ L2
sym(Ω).

Hence, t D appears as the orthogonal projection of t on D with respect to the C 0-norm. Unless
C 0 is of the form kI , with k a positive scalar and I the fourth-order identity tensor operating on
symmetric second order tensors (I : t = t for any symmetric second order tensor t ), the subspaces
D and S are not orthogonal with respect to the C 0-norm, t S is not in S and it is not the orthogonal
projection of t on S with respect to the C 0-norm. t S is actually the projection (with respect to the
C 0-norm) of t on the subspace S ′ of t ′ ∈ L2

sym(Ω) such that C 0 : t ′ ∈ S. Combining (10) with (13),
we obtain the following characterizations of S and D :(

C−1
0 :τ

)D = 0 ⇐⇒ τ ∈ S, and eS = 0 ⇐⇒ e ∈ D . (16)

As a result, the C 0-norm of (C−1
0 :τ)D can be considered as a measure of the equilibrium error for

the stress field τ and the C 0-norm of eS can be considered as a measure of the compatibility error
for the strain field e.

Moreover, the residual X can be decomposed as:

X = X S +X D with X S = E −εS = (E −ε)S and X D =−Γ0 ∗σ=−(
C−1

0 :σ
)D

. (17)

Hence, X = 0 is equivalent to ε−E ∈ D and σ ∈ S.
It should be emphasized that multiplying C 0 by a strictly positive real does not change the

above introduced decomposition (13).

3. AEM scheme for composites containing pores and rigid inclusions

Equation (6), which is the extension of the Lippmann–Schwinger to composites containing
pores and rigid inclusions, is at the center of the so-called “FFT-based numerical homogenization
techniques” first introduced by Moulinec and Suquet [1, 2]. The reader is referred to the recent
review [16] for a more detailed description of this numerical technique.
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The AEM scheme is started with (ε0,σ0) = (0,0) and its corresponding residual X 0 = E . For
n ≥ 0, if X n = 0 then the pair (εn ,σn) is a solution of the homogenization problem, and the
iteration is stopped. Otherwise, compute X n+1, εn+1 and σn+1 as follows:

Z n =α : X n +2
(
(I −α) : X n)D (18)

λn = 〈X n : C 0 : Z n〉Ω
〈Z n : C 0 : Z n〉Ω

(19)

εn+1 = εn +λnα : X n , (20)

σn+1 =σn +λnC 0 : (2I −α) : X n , (21)

X n+1 = X n −λn Z n . (22)

Here, theΩ-periodic tensor fieldα(y) is defined over the whole unit cell as follows:

∀ y ∈Ωr, α(y) = 0. ∀ y ∈Ωp, α(y) = 2I . ∀ y ∈Ωm, α(y) = 2
(
C (y)+C 0

)−1 : C 0. (23)

The polarization schemes correspond to the case where, instead of (19), the relaxation param-
eter λn is set to a constant value, 1−γ, the damping parameter γ being in the interval [0,1). The
iteration of the Eyre–Milton scheme corresponds to γ = 0 (λn = 1) and the iteration of the aug-
mented Lagrangian scheme corresponds to γ = 0.5 (λn = 0.5). In the AEM scheme, λn is deter-
mined at each iteration n such that as to minimize the C 0-norm of the residual at iteration n +1,
X n+1 = X n −λZ n , over all possible values of λ. Since the initialization in the original Eyre–Milton
scheme is different from the zero-initialization (ε0,σ0) = (0,0), “γ = 0”-scheme will refer in the
sequel to the AEM scheme (with zero-initialization) where the relaxation parameter λn is set to 1
instead of (19).

Under a suitable geometric assumption on Ωr and Ωp, and assuming that C is uniformly
coercive in the heterogeneous matrix, it has been proved in [17] that the sequence (εn ,σn)
linearly converges to the unique solution of the homogenization problem (4) such that: (a) the
strain field in the pores is the unique solution to the following (Dirichlet) elasticity problem: the
domain Ωp is occupied by the reference material, there is no body forces and the prescribed
displacements on its boundary are those of the heterogeneous matrix; (b) the stress field in the
rigid inclusions is the unique solution to the following (Neumann) elasticity problem: the domain
Ωr is occupied by the reference material, there is no body forces and the prescribed tractions at
its boundary are those of the heterogeneous matrix.

Numerical simulations have shown that the rate of convergence of the AEM scheme strongly
depends on the choice of C 0, and it was recommended to choose C 0 of the same order as the
matrix or the unknown homogenized material C hom.

4. Accelerating AEM and “γ= 0” schemes

The idea is to update C 0 at each iteration with the twofold objective of speeding up conver-
gence and making it independent of the choice of the initial value of C 0. We consider C 0 of the
form C 0 = k0C∗ where C∗ is a fixed given stiffness tensor and k0 is a (strictly) positive multiplying
constant which must be updated. The value of k0 at iteration n is noted kn

0 , and αn denotes α
when C 0 in (23) is set to kn

0 C∗.
The accelerated AEM scheme (A2EM) is started with k0

0 > 0, (ε0,σ0) = (0,0) and X 0 = E . For
n ≥ 0, computeαn with (23) and X n+1, εn+1, σn+1 and kn+1

0 as follows:

Z n =αn : X n +2
((

I −αn)
: X n)D (24)

λn = 〈X n : C∗ : Z n〉Ω
〈Z n : C∗ : Z n〉Ω

(25)

εn+1 = εn +λnαn : X n , (26)
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σn+1 =σn +λnkn
0 C∗ :

(
2I −αn)

: X n , (27)

update kn+1
0 , (28)

X n+1 = X n −λn Z n +
((

kn
0

)−1 − (
kn+1

0

)−1
)(

C−1
∗ :σn+1)D

(29)

We propose an updating rule for k0 which results from the following analysis of the residual. Let
(ε,σ) ∈ L2

sym(Ω)×L2
sym(Ω) be a pair of strain-stress fields which complies with the constitutive

equations (3). It can be considered as a good approximation of the solution to the homogeniza-
tion problem if its residual (7) is small enough. Thanks to the orthogonal decomposition of this
residual (17), one can write:

∥X ∥2
C 0

= ∥∥(E −ε)S∥∥2
C 0

+
∥∥∥(

C−1
0 :σ

)D
∥∥∥2

C 0
. (30)

There are two contributions to the norm of the residual, ∥X ∥C 0 : the error in compatibility,
∥(E −ε)S∥C 0 , and the error in equilibrium, ∥(C−1

0 :σ)D∥C 0 . When these errors are not zero, their
ratio depends on the choice of the reference medium C 0 = k0C∗ : as k0 increases, the relative
contribution of the error in equilibrium to ∥X ∥C 0 decreases, and it increases as k0 decreases.
Since in the AEM scheme the strain is not compatible, nor the stress is in equilibrium, one has to
ensure that both the projection of E −ε ̸= 0 on S ′ and the projection of C−1

0 :σ ̸= 0 on D are small
enough.

For this purpose, it is natural to normalize each projected field by its norm. We therefore define
the normalized total error, ∆, as:

∆2 = (
∆S)2 + (

∆D)2
(31)

where

0 ≤∆S =
∥∥(E −ε)S

∥∥
C 0

∥E −ε∥C 0

=
∥∥(E −ε)S

∥∥
C∗

∥E −ε∥C∗
≤ 1 (32)

0 ≤∆D =

∥∥∥(
C−1

0 :σ
)D

∥∥∥
C 0∥∥C−1

0 :σ
∥∥

C 0

=

∥∥∥(
C−1∗ :σ

)D
∥∥∥

C∗∥∥C−1∗ :σ
∥∥

C∗
≤ 1 (33)

are the normalized compatibility and equilibrium errors, respectively.
Since ∆S (respectively, ∆D ) is a measure of the compatibility (respectively, equilibrium) error,

then we set ∆S = 0 (respectively, ∆D = 0) for ε = E (respectively, σ = 0). A natural stopping
criterion of the AEM scheme (and its accelerated version) which ensures that both the projection
of E −ε ̸= 0 on S ′ and the projection of C−1

0 :σ ̸= 0 on D are small enough can be: ∆≤ tol where
tol is a user-prescribed relative tolerance.

Remembering that the AEM scheme is formulated in terms of the residual X , our idea is
to choose k0 in such a way that X gives equal weight to both normalized equilibrium and
compatibility errors. We find that setting:

k0 =
∥∥(

C−1∗ :σ
)∥∥

C∗
∥E −ε∥C∗

, (34)

leads to the following equations:

∆= ∥X ∥C 0

∥E −ε∥C 0

,
∆D

∆
=

∥∥X D
∥∥

C 0

∥X ∥C 0

and
∆S

∆
=

∥∥X S
∥∥

C 0

∥X ∥C 0

, (35)

which means that the ratio of the compatibility and equilibrium errors in X is equal to the ratio
of the corresponding normalized errors in ∆.

Hence, we propose the following updating rule in (28), which we term equiprojection rule:

kn+1
0 =

∥∥(
C−1∗ :σn+1

)∥∥
C∗∥∥E −εn+1

∥∥
C∗

(36)



Martin Dolbeau, Jérémy Bleyer and Karam Sab 257

As pointed out in [20], the polarization-based schemes are actually related to a classical
numerical solution method, the Douglas-Rachford splitting. Based on numerical simulations on
heterogeneous linear and nonlinear materials (which may contain pores but no rigid inclusions),
Schneider [21] recommended the use of an updating rule, initially proposed by Lorenz and Tran-
Dinh [22] for general Douglas-Rachford splitting and Alternating Direction Method of Multipliers
(ADMM) methods, given by:

C∗ = I , kn+1
0 =

∥∥σn+1
∥∥

L2
sym∥∥εn+1

∥∥
L2

sym

. (37)

Finally, we will study also what we term the accelerated “γ = 0”-scheme which is A2EM scheme
where the relaxation parameter λn is set to 1 instead of (25).

5. Efficient implementation of the accelerated schemes

At first sight, A2EM scheme should require the use of an additional convolution at each
iteration in order to update the residual (22). This is not the case if we organize the algorithm
as follows. Let (ε,σ) be a pair of strain-stress fields complying to the constitutive equations (3)
and X its corresponding residual (7) with its decomposition (17). We have:

X D =−(
C−1

0 :σ
)D =−k−1

0

(
C−1

∗ :σ
)D = k−1

0 W where − (
C−1

∗ :σ
)D =W . (38)

The idea is to keep W in memory and to update it without an additional convolution. Hence, the
first modified A2EM is started with k0

0 > 0, (ε0,σ0) = (0,0), W 0 = 0, X 0 = E and ∆0 = 1. For n ≥ 0,
compute X n+1, W n+1, εn+1, σn+1, kn+1

0 and ∆n+1 as follows:

Y n = (
αn : X n)D (39)

Z n =αn : X n −2Y n +2
(
kn

0

)−1 W n (40)

λn = 〈X n : C∗ : Z n〉Ω
〈Z n : C∗ : Z n〉Ω

(41)

εn+1 = εn +λnαn : X n , (42)

σn+1 =σn +λnkn
0 C∗ :

(
2I −αn)

: X n , (43)

W n+1 = (
1−2λn)

W n +λnkn
0 Y n , (44)

kn+1
0 =

∥∥(
C−1∗ :σn+1

)∥∥
C∗∥∥E −εn+1

∥∥
C∗

, (45)

X n+1 = X n −λn Z n +
((

kn+1
0

)−1 − (
kn

0

)−1
)

W n+1, (46)

∆n+1 =
∥∥X n+1

∥∥
C∗∥∥E −εn+1
∥∥

C∗
. (47)

There is only one convolution per iteration in the above scheme, namely for the computation
of Y . As far as memory space is concerned, there are 5 variables to store and update in the above
scheme: X , W , ε,σ and the intermediate variable Y . Indeed, there is no need to store Z which is
only used in the computation ofλ.

One can actually reduce to 4 variables to store if the auxiliary strain field εa introduced in [17]
is used in the above scheme instead of both ε and σ. Indeed, let (ε,σ) be a pair of strain-stress
fields complying to the constitutive equations (3). Then, εa is given by:

εa = 1

2

(
(C 0)−1 :σ+ε) , (48)
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and one can easily check that (ε,σ) can be retrieved from εa by formulas:

ε=α : εa , σ=C 0 : (2I −α) : εa . (49)

Using these formulas at iteration n, we find that:

εn+1 =αn :
(
εn

a +λn X n)
, (50)

σn+1 = kn
0 C∗ :

(
2I −αn)(

εn
a +λn X n)

, (51)

εn+1
a = 1

2

((
kn+1

0

)−1
(C∗)−1 :σn+1 +εn+1

)
= 1

2

(
kn

0

kn+1
0

(
2I −αn)+αn

)
:
(
εn

a +λn X n)
. (52)

Hence, the second modified A2EM scheme is started with k0
0 > 0, ε0

a = 0, W 0 = 0, X 0 = E and
∆0 = 1. For n ≥ 0, compute X n+1, W n+1, εn+1

a , kn+1
0 and ∆n+1 as follows:

Y n = (
αn : X n)D (53)

Z n =αn : X n −2Y n +2
(
kn

0

)−1 W n (54)

λn = 〈X n : C∗ : Z n〉Ω
〈Z n : C∗ : Z n〉Ω

(55)

kn+1
0 = kn

0

∥∥(2I −αn) :
(
εn

a +λn X n
)∥∥

C∗∥∥E −αn :
(
εn

a +λn X n
)∥∥

C∗
, (56)

εn+1
a = 1

2

(
kn

0

kn+1
0

(
2I −αn)+αn

)
:
(
εn

a +λn X n)
, (57)

W n+1 = (
1−2λn)

W n +λnkn
0 Y n , (58)

X n+1 = X n −λn Z n +
((

kn+1
0

)−1 − (
kn

0

)−1
)

W n+1, (59)

∆n+1 =
∥∥X n+1

∥∥
C∗∥∥E −εn+1
∥∥

C∗
. (60)

The main steps are summarized in Algorithm 1.

Algorithm 1 The A2EM algorithm with the equiprojection rule (36)

1: ε← 0
2: X ← E
3: W ← 0
4: k0 ← k0

0
5: repeat
6: Y ← (α : X )D whereα is computed with C 0 = k0C∗ and standard FFT are used with the

analytical expression of the Green operator in Fourier space.
7: λ← 〈X :C∗:Z 〉Ω

〈Z :C∗:Z 〉Ω with Z =α : X −2Y +2k−1
0 W

8: β← ∥E −α : (ε+λX )∥C∗
9: knew

0 ← k0β
−1∥ (2I −α) : (ε+λX )∥C∗

10: ε← 1
2 ( k0

knew
0

(2I −α)+α) : (ε+λX )

11: X ← X −λ(α : X −2Y +2k−1
0 W )+ ((knew

0 )−1 − (k0)−1) ((1+2λ)W +λk0Y )
12: W ← (1−2λ)W +λk0Y
13: k0 ← knew

0
14: ∆← β−1∥X ∥C∗
15: until Convergence criterion met ∆≤ tol
16: ε←α : ε
17: return ε
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In the accelerated “γ = 0”-scheme, where λn = 1, the intermediate variables Y n and W n are
not needed: there are only two variables to store: εa and X . This scheme is started with k0

0 > 0,
ε0

a = 0, X 0 = E and ∆0 = 1. For n ≥ 0, compute X n+1, εn+1
a , kn+1

0 and ∆n+1 as follows:

kn+1
0 = kn

0

∥∥(2I −αn) :
(
εn

a +λX n
)∥∥

C∗∥∥E −αn :
(
εn

a +λX n
)∥∥

C∗
, (61)

εn+1
a = 1

2

(
kn

0

kn+1
0

(
2I −αn)+αn

)
:
(
εn

a +λn X n)
, (62)

X n+1 = E −αn+1 : εn+1
a −2

((
I −αn+1) : εn+1

a

)D
, (63)

∆n+1 =
∥∥X n+1

∥∥
C∗∥∥E −αn+1 : εn+1
a

∥∥
C∗

. (64)

The main steps of the accelerated “γ= 0”-scheme are summarized in Algorithm 2.

Algorithm 2 The accelerated “γ= 0”-scheme with the equiprojection rule (36)

1: ε← 0
2: X ← E
3: k0 ← k0

0
4: repeat
5: β← ∥E −α : (ε+X )∥C∗ whereα is computed with C 0 = k0C∗
6: knew

0 ← k0β
−1∥ (2I −α) : (ε+X )∥C∗

7: ε← 1
2 ( k0

knew
0

(2I −α)+α) : (ε+X )

8: k0 ← knew
0

9: X ← E −α : ε−2((I −α) : ε)D where α is computed with C 0 = k0C∗ and standard FFT
are used with the analytical expression of the Green operator in Fourier space to compute the
D-projection.

10: ∆← β−1∥X ∥C∗
11: until Convergence criterion met ∆≤ tol
12: ε←α : ε
13: return ε

Both AEM and “γ= 0” schemes can be accelerated using the Lorenz and Tran-Dinh updating
rule (37) instead of the equiprojection rule (36). In this case, equation (56) becomes:

kn+1
0 = kn

0

∥(2I −αn) : (εn
a +λn X n)∥L2

sym

∥αn : (εn
a +λn X n)∥L2

sym

, (65)

and equation (61) becomes (65) where λn is set to 1.

6. Illustrative applications

We test the performances of the AEM and “γ = 0” schemes and their accelerated versions,
with the equiprojection updating rule (36) or the Lorenz and Tran-Dinh one (37), on doubly
contrasted linear materials containg both pores and rigid inclusions. All the schemes have been
implemented in the Janus Python library1. For the Green operator discretization scheme, we
used the finite differences scheme proposed in [23] which results in improved accuracy of the
local fields over more classical discretization strategies.

1Available at https://github.com/sbrisard/janus.

https://github.com/sbrisard/janus
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6.1. The micro-structures

We consider 2 micro-structures to compare the performances of the above mentioned
schemes:

• Micro-structure A: a cubic unit cell consisting of a matrix (phase 1) with an infinitely rigid
spherical inclusion of radius 0.25 (phase 2) located at its center and pores of radius 0.25
(phase 3) centered at the vertices of the unit cell (see Figure 1). The matrix is linear elastic
and isotropic with Poisson ratio ν1 = 0.3 and shear modulus µ1 = 1. The unit cell is
discretized with a 32×32×32 grid.

Figure 1. A. 3-phase 3D medium with double contrast, of size 32*32*32. The pore is in light
blue, the inclusion in grey and the matrix is hidden.

Figure 2. B. Matrix-fiber-pore system, of size 256*256*256 (the matrix is hidden).

• Micro-structure B: a fiber composite with gas injection. The gas is injected in the fiber-
reinforced composites to reduce the weight and some effects like residual stress. This
results in a three-phase micro-structure containing identical spherical pores (5% volume
fraction) and fibers with random orientation (10% volumetric fraction). See Figure 2.
The fibers are infinitely rigid and the stiffness in the pores is null. In order to avoid any
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artificial contact, there is a minimal distance of 4
p

3 voxels (corresponding to 4 voxels in
diagonal) between two fibers, two pores or between a fiber and a pore. The unit cell is
discretized with a 256×256×256 grid.
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Figure 3. ∆ at iterations 20(a), 50(b), 100(c) and 500(d) as a function of k0. Reference
material is of the form C 0 = k0C matrix. Comparison between AEM scheme and “γ = 0”
scheme on micro-structure A.

6.2. Influence of the reference material on the convergence of the AEM and “γ= 0”-schemes

We consider microstructure A with reference material of the form C 0 = k0C matrix, which means
that we set C∗ =C matrix. Figure 3 represents the normalized total error ∆ at iterations 20, 50, 100
and 500 as a function of k0. It clearly shows that the rate of convergence is optimal for some value
of k0, kopt

0 , close to 1, as predicted by the estimation given in [17], and that the rate of convergence
is getting much worse as k0 deviates from kopt

0 . Another important observation is that the rate of
convergence of both schemes (AEM and “γ = 0”) is the same for k0 smaller than kopt

0 , and that
AEM converges faster than “γ= 0” otherwise.

6.3. Influence of the initial reference material on the convergence of the accelerated
schemes

We still consider microstructure A with reference material of the form C 0 = kn
0 C matrix where kn

0
is given by the updating rule (36) or by the Lorenz and Tran-Dinh one (37). Figure 4 (respectively,
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Figure 5) represents the normalized total error ∆ at iterations 20, 50, 100 and 500 of the A2EM
scheme (respectively, accelerated “γ = 0”-scheme) as a function of the initial value of k0, k0

0 , for
both updating rules. In addition, we have also plotted the AEM scheme (respectively, the “γ= 0”-
scheme) for which k0 remains constant (equal to k0

0) for all iterations.
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Figure 4. ∆ at iterations 20(a), 50(b), 100(c) and 500(d) as a function of k0
0 , the initial value

of k0. The reference medium is of the form C 0 = kn
0 C matrix. Comparison on micro-structure

A between the AEM scheme (kn
0 = k0

0 remains unchanged) and the A2EM scheme with the
equiprojection updating rule (36) and the Lorenz and Tran-Dinh updating rule (37).

Figures 4 and 5 show that ∆ almost does not depend on k0
0 after some iterations (50 in this

case) for both accelerated schemes with both updating rules. More precisely, if k0
0 is less than kopt

0
(the optimal value of k0 for the non accelerated scheme) then the performance of the accelerated
scheme is very comparable to non accelerated schemes with k0 = kopt

0 . On the other hand, for
k0

0 greater than kopt
0 , the rate of convergence of the accelerated scheme is a bit slower than non

accelerated schemes with k0 = kopt
0 , but much faster than non accelerated schemes with k0 = k0

0 .
After some iterations (here between 20 and 50), kn

0 reaches an asymptotic value which is
independent of the initial value k0

0 , as shown in Figure 6. Moreover, it is seen that: (a) both
updating rules lead to comparable rates of convergence, and (b) the accelerated AEM converges
faster than the accelerated “γ= 0” as illustrated in Figure 7 which represents∆ at iterations 20, 50,
100 and 500 as a function of k0

0 for both AEM and “γ= 0” schemes accelerated with the updating
rule (36).
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Finally, we present in Figure 8 the normalized total error ∆ at iterations 50, 100, 500 and
1000 of the AEM and “γ = 0”-schemes and their accelerated versions with the equiprojection
updating rule (36) as a function of k0

0 , the initial value of k0 (which is not updated for AEM and
“γ = 0”-schemes). It is seen that the convergence rate for micro-structure B is slower than the
convergence rate for the simpler micro-structure A, probably because the stress, strain fields
are less smooth. Again AEM is faster than “γ = 0” and there is a common optimal value of
reference material (around 10 times the matrix stiffness and 6 times the homogenized material)
for which the convergence is remarkably fast. This optimal performance is retrieved by A2EM
and accelerated “γ= 0” schemes for any choice of k0

0 , and especially for k0
0 lower than the optimal

value.
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Figure 5. ∆ at iterations 20(a), 50(b), 100(c) and 500(d) as a function of k0
0 , the initial value

of k0. The reference medium is of the form C 0 = kn
0 C matrix. Comparison on micro-structure

A between the “γ = 0”-scheme (kn
0 = k0

0 remains unchanged) and the accelerated “γ = 0”-
scheme with the equiprojection updating rule (36) and the Lorenz and Tran-Dinh updating
rule (37).
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Figure 6. kn
0 as a function of the initial value k0

0 , for n = 20(a) and n = 50(b), in the A2EM
scheme for both updating rules. Micro-structure A.
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Figure 7. ∆ at iterations 20(a), 50(b), 100(c) and 500(d) as a function of k0
0 , the initial value

of k0. The reference medium is of the form C 0 = kn
0 C matrix. Comparison on micro-structure

A between the A2EM and accelerated “γ = 0” schemes with the equiprojection updating
rule (36).
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Figure 8. ∆ at iterations 50(a), 100(b), 500(c) and 1000(d) as a function of k0
0 , the initial

value of k0. The reference medium is of the form C 0 = kn
0 C matrix. Comparison on micro-

structure B between the AEM and “γ = 0” schemes and their accelerated version with the
equiprojection updating rule (36).

7. Conclusions

We proposed to accelerate the AEM scheme, a recent iterative method for the numerical
solution of the Lippmann–Schwinger equation with periodic boundary conditions for the case of
linear materials containing pores and rigid inclusions. This scheme is derived from the classical
Eyre–Milton scheme [6] and the polarization-based schemes [8], where at each iteration, the
direction of the increment is preserved, while its amplitude is optimized. When the amplitude
is not optimized, the scheme is called “γ = 0”-scheme. The main contributions of the present
paper are summarized below.

(1) Numerical simulations with AEM and “γ = 0” schemes on micro structures containing
both pores and rigid inclusions have been conducted with reference material of the
form C 0 = k0C∗, where C∗ is a fixed given stiffness tensor and k0 is a (strictly) positive
multiplying constant. It is observed that the convergence of these schemes is very fast for
some optimal value of k0, kopt

0 . Besides, the rate of convergence is getting much worse
as k0 deviates from kopt

0 . Our simulations show that the optimal reference material could
deviate from the estimations given in [17]: the optimal reference material is 10 times the
matrix and 6 times the homogenized material for micro-structure B.
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(2) The rate of convergence of AEM and “γ = 0” are the same for k0 lower than kopt
0 while

AEM is faster than “γ= 0” otherwise.
(3) We proposed to accelerate AEM and “γ = 0” schemes for k0 ̸= kopt

0 by updating the
reference material of the form C 0 = kn

0 C matrix where kn
0 at iteration n is given by the

proposed equiprojection updating rule (36) or by the Lorenz and Tran-Dinh one (37).
(4) Efficient implementation of these accelerated schemes in terms of memory and number

of convolutions per iteration has been proposed. It is shown that only one convolution
per iteration is needed for both accelerated schemes, and that A2EM needs twice mem-
ory as accelerated “γ= 0”.

(5) Numerical simulations with both A2EM and accelerated “γ = 0” schemes and both
updating rules on micro structures containing pores and rigid inclusions show that, after
some iterations (50 in the considered example), the rate of convergence almost does not
depend on the choice of the initial value of k0 and that it is comparable to the rate of
convergence of the non accelerated schemes with the optimal value k0 = kopt

0 .
(6) The numerical simulations show that the A2EM scheme is faster than the accelerated

“γ= 0” scheme.

In summary, we recommend the use of A2EM and accelerated “γ = 0” schemes with the
equiprojection rule, and to to start these schemes with a reference material that underestimates
the homogenized one. In future works, these schemes will be applied to nonlinear materials,
where their robustness with respect to the material contrast will be particularly helpful. There is
also a need for additional mathematical studies on the convergence of the proposed accelerated
schemes.
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