A priori and a posteriori error estimates of a DG-CG method for the wave equation in second order formulation - École des Ponts ParisTech
Pré-Publication, Document De Travail Année : 2024

A priori and a posteriori error estimates of a DG-CG method for the wave equation in second order formulation

Résumé

We establish fully-discrete a priori and semi-discrete in time a posteriori error estimates for a discontinuous-continuous Galerkin discretization of the wave equation in second order formulation; the resulting method is a Petrov-Galerkin scheme based on piecewise and piecewise continuous polynomial in time test and trial spaces, respectively. Crucial tools in the a priori analysis for the fully-discrete formulation are the design of suitable projection and interpolation operators extending those used in the parabolic setting, and stability estimates based on a nonstandard choice of the test function; a priori estimates are shown, which are measured in $L^{\infty}$ -type norms in time. For the semi-discrete in time formulation, we exhibit constant-free, reliable a posteriori error estimates for the error measured in the $L^{\infty}(L^2)$ norm; to this aim, we design a reconstruction operator into $C^1$ piecewise polynomials over the time grid with optimal approximation properties in terms of the polynomial degree distribution and the time steps. Numerical examples illustrate the theoretical findings.
Fichier principal
Vignette du fichier
hpDG_waves_apos.pdf (8 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04768144 , version 1 (05-11-2024)

Licence

Identifiants

  • HAL Id : hal-04768144 , version 1

Citer

Zhaonan Dong, Lorenzo Mascotto, Zuodong Wang. A priori and a posteriori error estimates of a DG-CG method for the wave equation in second order formulation. 2024. ⟨hal-04768144⟩

Collections

ENPC INRIA INRIA2
0 Consultations
0 Téléchargements

Partager

More