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bÉcole Nationale des Ponts et Chaussées, Université Gustave Eiffel, CNRS, Laboratoire Navier, UMR
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Abstract

We propose a novel variational framework to regularize softening plasticity problems. Specif-
ically, we modify the plastic dissipation potential term by adding a contribution depending
on the cumulative plastic strain-rate gradient. We formulate the evolution of the so-obtained
strain-rate gradient plasticity model with an incremental variational principle. The time-
discretized evolution equations are deduced from the corresponding first-order optimality
conditions. To investigate the model, the problem of a bar in traction is studied. Analytical
solutions are explicitly derived, and characterized by exponential localization profiles. Con-
trary to other regularization strategies, no spurious spreading of the plastic localization band
is observed. A first numerical implementation in 1D and 2D plane strain conditions is pro-
posed based on conic programming solvers and validated against the analytical predictions.
Numerical results on plane strain von Mises plasticity show that the proposed framework
leads to mesh-independent results and efficient control of plastic localization bands.

Keywords: Softening plasticity; Strain localization; Regularization of constitutive models;
Generalised Standard Materials ; Variational principle

1. Introduction

Local constitutive models fall short to be predictive of softening, showing pathological
mesh-dependency in finite element computations. In the context of brittle fracture, varia-
tional models including the gradient of a damage variable have been shown efficient to limit
the occurrence of spurious localization by considering additional penalization terms to the
total energy (Bourdin et al., 2000, 2008; Pham et al., 2011), models which have been more
recently extended in the context of ductile fracture (Alessi et al., 2015, 2018; Miehe et al.,
2016). As softening plasticity is concerned, the influential work of (Aifantis, 1987) paved the
way to advance gradient theories, considering non-local models (Pijaudier-Cabot and Bažant,
1987; Engelen et al., 2003), higher-order gradient models (Chambon et al., 1998; Fernandes,
2008; Maugin, 1990; Frémond and Nedjar, 1996; Lorentz and Andrieux, 1999), or models
with enriched kinematics (Mühlhaus and Vardoulakis, 1987; Forest, 2009). Comprehensive
overviews of these theories can now be found in (Russo et al., 2020; Nguyen, 2021; Besson
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et al., 2023).

Within the framework of Generalized Standard Materials (Halphen and Nguyen, 1975),
the introduction of the gradient of an internal variable has been proposed (Maugin, 1990;
Frémond and Nedjar, 1996). It allows to benefit from a variational structure deriving from
the corresponding energy and dissipation potentials (Lorentz and Andrieux, 1999; Nguyen,
2021). The most common approach to introduce a gradient effect in plasticity models is
to supplement the free energy with a quadratic term of the plastic strain gradient such as
(Aifantis, 1987; Gurtin and Anand, 2009):

ψreg(ε, ε
p, p,∇p) = ψloc(ε, ε

p, p) +
A

2
∥∇p∥2, with p =

∫ t

0

∥ε̇p∥dt, (1)

where ψloc(ε, ε
p, p) is the original free energy of the local model. The material parameter

A > 0 sets a typical length scale to control plastic strain localization. This quadratic plastic
gradient regularization can be seen as a limit case of micromorphic models (Forest, 2009). It
has been used by many authors to control the plastic localization also because its numerical
implementation is relatively simple.

Nevertheless, several works pointed out the inherent drawbacks of the quadratic regular-
ization approach for softening plasticity (Jirásek and Rolshoven, 2009a; Scherer et al., 2019;
Abatour and Forest, 2023). The main issue is that the localized plastic bands eventually
spread in an uncontrolled manner in the case of non-linear softening when increasing the
loading. This is illustrated in Figure 1 for the case of a one-dimensional bar in traction
using a bilinear softening model (Jirásek and Rolshoven, 2009b). To mitigate these issues,
Forest and co-workers proposed to add an ad hoc evolution equation of the internal length
scale (Scherer et al., 2019) or to introduce a saturation of the state variables (Abatour and
Forest, 2023). In contrast, limited efforts have been made to introduce the gradient of an
internal variable rate into the dissipation potential within the context of the regularization of
softening. The few attempts include the use of an integral condition on the rate of change of
the void volume fraction for porous plasticity (Needleman and Tvergaard, 1998), or the work
of (Andrieux et al., 1996) exploring the use of a damage-rate gradient within a variational
consistent approach. Surprisingly, models including the gradient of a plastic strain-rate in the
dissipation potential are more common in works dealing with size and strengthening effects,
leading to higher yield stresses for small-size specimens (Fleck et al., 1994; Anand et al.,
2005; Reddy and Sysala, 2023).

The objective of this paper is to investigate a novel approach to softening plasticity,
introducing the regularization through the cumulative plastic strain-rate gradient in the dis-
sipation potential. As discussed before, this is in contrast to the majority of approaches
considering the plastic strain gradient in the free energy as a localization limiter. Our devel-
opments will be based on the framework of Generalized Standard Materials (GSM), thereby
benefiting from a consistent variational formulation.

We propose a whole class of models depending on the specific choice of the regulariz-
ing term. First, we restrict our attention to a specific choice in a one-dimensional (1D)
formulation, which enables to obtain analytical solutions. We discuss the resulting plastic
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(a) Stress-strain response.
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(b) Total energy evolutions.
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(c) Plastic strain profiles of the localised
solution.

Figure 1: Examples of numerical responses of a bar of length L in traction using a bilinear softening plasticity
model, regularized by a quadratic plastic gradient as in eq. (1) (the simulation is carried out by numerical
tools briefly described in Section 4). In the legends, σ0 denotes the initial yield stress, E is the elastic modulus
and Eu is the ultimate energy predicted by the homogeneous solution at which the stress is zero. As we
observe in Figure 1c, the width of the localisation band, initially symmetric with respect to the middle of
the bar of length L, increases until reaching the extremities of the bar. At this instant, symmetry is lost and
both the stress and the total energy show an unstable evolution in Figures 1a and 1b. Interestingly, the total
energy computed by the localised solution exceeds the total energy of the homogeneous response at some
prescribed displacement level. This phenomenon is qualified as a locking effect in (Jirásek and Rolshoven,
2009b).

localization profiles, stress responses and energy evolutions. In a second step, we analyze
other choices on the 1D traction case using a numerical resolution. Finally, we sketch the
relevance of the model in a plane strain two-dimensional (2D) simulation.

The paper is structured as follows. Section 2 introduces the incremental variational
formulation of the plasticity model in a simple 1D problem. We first recall the minimization
problem and the first-order optimality conditions related to the local constitutive model
under investigation. We then discuss the effects of adding a q–norm of the cumulative plastic
strain-rate gradient into the dissipation potential. In Section 3, we restrict our attention to
the q = ∞ case in order to exhibit analytical solutions over a bar in traction, first for any
negative isotropic hardening and then in more depth for bilinear softening. Solutions are
compared with numerical results in Section 4 and other choices for q are explored. Finally,
a 2D application is proposed in Section 5 considering the stretch of a plate in plane strain
conditions for von Mises plasticity.
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2. Variational formulation of plasticity

This section presents the variational formulation for plasticity including the cumulative
plastic strain-rate gradient as a regularizing term in the dissipation potential. As a model
problem, we consider a quasi-static evolution of a 1D bar Ω = [0, L] with imposed dis-
placements u(0) = 0, u(L) = tL at the left and right ends. We suppose that the loading
parameter t increases monotonically from t = 0. The formulation follows the framework of
the Generalized Standard Materials (Halphen and Nguyen, 1975; Nguyen, 2011, 2021) for
quasi-static rate-independent processes, assuming infinitesimal transformations and isother-
mal conditions.

As already specified, we focus on the 1D case but, to keep the notation general, we will
adopt multidimensional notations for the space derivatives. For example, we denote by u
and ε = ∇u the scalar displacement and strain fields, where ∇(·) = d(·)/dx stands for the
derivative with respect to the space variable. As usual, we decompose the strain in the sum
of the elastic, εe, and plastic, εp, contributions, ε = εe+εp. The field will depend on a loading
parameter t, that will consider as a time-variable, denoting ˙(·) = d(·)/dt.

2.1. Incremental variational formulation for the local plasticity model

The constitutive behaviour of the local plasticity model, ignoring for now the regularizing
gradient term, is determined by a local free energy potential ψ(ε, εp, p) and a dissipation
potential ϕ(ε̇p, ṗ): ψ(ε, εp, p) =

E

2
(ε− εp)2 + V (p)

ϕ(ε̇p, ṗ) = σ0ṗ+ IR+(ṗ− |ε̇p|),
(2a)

(2b)

where V (p) is an isotropic hardening function and ṗ denotes the cumulative plastic strain-
rate, E and σ0 being the elastic modulus and the initial yield stress, and IR+ the characteristic
function of R+.

Given the state of the material (un, ε
p
n, pn) at time tn and introducing a backward-Euler

approximation for the internal variables, the solution (un+1, ε
p
n+1 = εpn+∆εp, pn+1 = pn+∆p)

at the time step tn+1 is defined as the solution of the following time-discretized variational
problem (Mialon, 1986; Ortiz and Stainier, 1999):

inf
u,∆εp,∆p

∫ L

0

[E
2
(∇u− εpn −∆εp)2 + V (pn +∆p) + σ0∆p

]
dx

s.t. |∆εp| ≤ ∆p

u(0) = 0, u(L) = tL.

(3)

The first-order optimality conditions for the problem above result in the following set of
equations that (un+1,∆ε

p,∆p) must satisfy:

� equilibrium conditions for the stress:

div σ = 0, with σ = E(∇un+1 − εpn −∆εp), (4)
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� plasticity yield criterion:

|σ| ≤ σ0 −R, with R = −V ′(pn +∆p), (5)

� plastic flow rule:

∆εp = ∆p
σ

σ0 −R
, with ∆p ≥ 0, (6)

� plastic consistency condition:

(|σ| − σ0 +R)∆p = 0. (7)

The plasticity model is stress-hardening if the yield stress σp = σ0−R in the plasticity yield
criterion (5) is an increasing function of the cumulative plastic strain, i.e. if the function
V (p) is convex. In this case, the energy functional is strictly convex, the solution of the
minimization problem (3) exists and is unique, and the displacement field smooth in space.
Perfect plasticity is retrieved when R = V ′(p) = 0. This is the limit case where the plastic
strain can be a measure and the displacement can jump on the set where the plastic strain
localises (Suquet, 1981). The mathematical problem is well-posed (although its solution is
not unique in general). The energy of the localised solution stays finite and non zero, and
the solution can be approximated by standard finite-element techniques. Vice-versa, if V (p)
is a concave function, the model is stress-softening (negative isotropic hardening). In this
case, the minimization problem (3) is ill-posed (it does not admit solutions) and needs some
form of regularization (see e.g. de Borst et al., 1993)

2.2. Incremental variational formulation of the plasticity with a gradient-dependent dissipa-
tion potential

In this work, we treat the case of stress-softening plasticity (V ′′(p) < 0) by introducing a
regularizing term Ṗ = ℓ0∇ṗ in the dissipation potential depending on the cumulative plastic
strain-rate gradient, where ℓ0 is a constant length-like parameter. We consider the following
gradient-dependent dissipation potential, which replaces ϕ(ε̇p, ṗ) (2b),

ϕ(ε̇p, ṗ, Ṗ ) = σ0∥(ṗ, Ṗ )∥q + IR+(ṗ− |ε̇p|), (8)

where ∥(x, y)∥q = (|x|q + |y|q)1/q can be any q–norm with q ∈ [1,∞]1.

First, let us highlight that in the case of a homogeneous plastic strain evolution, Ṗ = 0,
and ϕ(ε̇p, ṗ, 0) reduces to expression (2b). As a result, the homogeneous solution of the lo-
cal model is not changed, irrespective of ℓ0 and the q–norm. Second, the chosen potential
remains a convex function of ṗ and of its gradient. It is also positively one-homogeneous so
that the resulting behavior remains rate-independent. Finally, we propose some modeling
flexibility in the choice of q which we will assess later. Note that upon choosing q = 1, the
proposed gradient-dependent dissipation potential becomes separable in ṗ and its gradient,
i.e. σ0∥(ṗ, Ṗ )∥1 = σ0(ṗ+ |Ṗ |), resulting in a gradient term akin to the Total Variation (TV)

1The case q =∞ corresponds to the max norm ∥(x, y)∥∞ = max{|x|, |y|}.
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of the cumulative plastic strain-rate gradient.

Using eq. (8) as the dissipation potential, the incremental formulation (3) now becomes

inf
u,∆εp,∆p

∫ L

0

[E
2
(∇u− εpn −∆εp)2 + V (pn +∆p) + σ0∥(∆p, ℓ0∇∆p)∥q

]
dx

s.t. |∆εp| ≤ ∆p

u(0) = 0, u(L) = tL.

(9)

Note that since we have now introduced a gradient term of the cumulative plastic strain
increment, it is thus possible to impose boundary conditions on ∆p on the boundaries x = 0
and x = L, e.g. Dirichlet boundary conditions ∆p = 0. In the following, we rather choose
free boundary conditions on ∆p which will translate into Neumann-like boundary conditions
on the dual variable associated with the cumulative plastic strain gradient, as discussed later.

Optimality with respect to the displacement yields first the equilibrium condition as in
(4). The constrained minimization on the plastic strain variables can then be rewritten as
the following min-max problem

inf
∆εp,∆p,∆P

sup
Yεp ,Yp,Z

∫ L

0

[E
2
(∇un+1 − εpn −∆εp)2 + V (pn +∆p) + σ0∥(∆p,∆P )∥q

]
dx

−
∫ L

0

[
Yp∆p+ Yεp∆ε

p + Z(∆P − ℓ0∇∆p)
]
dx

s.t. |Yεp | ≤ Yp,

(10)

where Yεp , Yp and Z are Lagrange multiplier fields introduced to enforcing the two constraints
|∆εp| ≤ ∆p and ∆P = ℓ0∇∆p. For smooth solutions, we can use the divergence theorem to
reformulate the last term Zℓ0∇∆p. We obtain

inf
∆εp,∆p,∆P

sup
Yεp ,Yp,Z

∫ L

0

[E
2
(∇un+1 − εpn −∆εp)2 + V (pn +∆p) + σ0∥(∆p,∆P )∥q

]
dx

−
∫ L

0

[
Yp∆p+ Yεp∆ε

p + Z∆P + ℓ0(divZ)∆p)
]
dx

+ℓ0

[
Z(L)∆p(L)− Z(0)∆p(0)

]
s.t. |Yεp| ≤ Yp.

(11)

We deduce here-under the following first-order optimality conditions by the classical ar-
guments of Calculus of Variations (see (Pham et al., 2011) for instance for more applications
in damage mechanics).

From the optimality of eq. (11) with respect to ∆εp, we obtain that

Yεp = −E(∇un+1 − εpn −∆εp) = −σ. (12)

By making some rearrangement of the different terms in the integrals of eq. (11), optimal-
ity with respect to ∆p and ∆P involves the Legendre-Fenchel transform of the norm σ0∥ · ∥q,
yielding the following plasticity yield criterion
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∥(Y, Z)∥∗q ≤ σ0, with Y = R + Yp + ℓ0 divZ, R = −V ′(pn +∆p), (13)

where ∥z∥∗q = supy{y · z, ∥y∥q ≤ 1} is the dual norm2. Combining constraints eqs. (12)
and (13), we have

∥(Y, Z)∥∗q ≤ σ0

|σ| ≤ Y − ℓ0 divZ −R.
(14)

Comparing with the plasticity yield criterion of the local model eq. (5), in the proposed
regularized model, the initial yield stress σ0 is replaced by Y − ℓ0 divZ where (Y, Z) belong
to the ball B = {(y, z) | ∥(y, z)∥∗q ≤ σ0} of radius σ0. In addition, the same optimality with
respect to ∆p and ∆P from eq. (11) completes eq. (13) with the generalized flow rule and
consistency condition

(∆p,∆P ) ∈ NB(Y, Z), (15)

where NB is the normal cone of B. Besides, by the last term of eq. (11), boundary conditions
on ∂Ω = {0, L} are found to be

Z(0) = 0, Z(L) = 0. (16)

For clarity, the following set of equations in eq. (17) summarizes the first-order optimality
conditions for the variational problem eq. (9):

equilibrium equation: div σ = 0 (Ω)

plasticity yield criterion: (Y, Z) ∈ B (Ω)

|σ| ≤ Y − ℓ0 divZ −R

flow rules and consistency conditions: (∆p,∆P ) ∈ NB(Y, Z) (Ω)

∆εp(|σ| − Y + ℓ0 divZ +R) = 0

|∆εp| = ∆p, ∆P = ℓ0∇∆p

Dirichlet boundary conditions: u(0) = 0, u(L) = tL (∂Ω)

Neumann boundary conditions: Z(0) = 0, Z(L) = 0. (∂Ω)

(17a)

(17b)

(17c)

(17d)

(17e)

Note that the boundary conditions eq. (17e) are considered as Neumann conditions. This
is consistent with not imposing any conditions on the plastic strain increment at either x = 0
or x = L.

Finally for completeness, non-smooth solutions may possibly exist and may exhibit jumps
of ∆p on several points Γ = {x1, . . . xJ} ⊂ Ω (assuming by simplicity Γ ̸⊂ ∂Ω). In this case,
the incremental Lagrangian (11) should be extended with the extra term

2More precisely, we have ∥z∥∗q = ∥z∥p where p is such that 1
p + 1

q = 1.
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J∑
j=1

[
σ0ℓ0 |J∆p(xj)K|+ ℓ0Z(xj)J∆p(xj)K

]
, (18)

where J(·)K denotes a jump. When considering optimality, it results for every xj ∈ Γ in

|Z(xj)| ≤ σ0

J∆p(xj)K (|Z(xj)| − σ0) = 0, with sgn(J∆p(xj)K) = sgn(Z(xj)),
(19)

where sgn (·) denotes the sign function.

Examples

If we select q = 1 (TV–norm) in the gradient-dependent dissipation potential, we end up
with ∥ · ∥∗1 = ∥ · ∥∞ and the plasticity yield criterion is

|Y | ≤ σ0, |Z| ≤ σ0

|σ| ≤ Y − ℓ0 divZ −R.
(20)

If we select q =∞, we have ∥ · ∥∗∞ = ∥ · ∥1 and

|Y |+ |Z| ≤ σ0

|σ| ≤ Y − ℓ0 divZ −R.
(21)

3. Analytical solutions with the ∞−norm

We now aim at constructing a class of localized solutions to analyze the proposed model.
We can exhibit explicit analytical solutions in the specific case of q = ∞ for the gradient-
dependent dissipation potential eq. (8). Hence we consider, in the following,

ϕ(ε̇p, ṗ, Ṗ ) = σ0max{ṗ, ℓ0|∇ṗ|}+ IR+(ṗ− |ε̇p|). (22)

As previously stated, we assume the tensile loading of a bar so that p = εp and σ > 0,
which remains constant due to the equilibrium condition with respect to displacement.

A symmetric localized plastic strain pattern is sought from the middle of the bar, so that
ṗ ≥ 0 and ∇ṗ ≤ 0 if L/2 ≤ x ≤ L. We first address general properties of the sought localized
solutions, independently of the exact form of the function V (p), before being precised, at a
later stage, as a bilinear function. For convenience, the equations are written in the time-
continuous setting, and we introduce the change of variables x̂ = (x−L/2)/ℓ0, ŵ = L/(2ℓ0),
and consider the right-hand side of the bar x̂ ∈ [0, ŵ].

3.1. General form of the solutions

By combining the yield criterion, the flow rules and the consistency conditions in eq. (17)
for q =∞, we have for all ŵ ≥ x̂ ≥ 0

Y − Z = σ0

σ = Y − divx̂ Z −R, with divx̂(·) = ℓ0 div(·)
ℓ0∇ṗ = −ṗ.

(23)

8



The last equality, between the plastic strain-rate and its gradient, can be integrated over
x̂ and t as

p = p exp (−x̂) , (24)

where p represents the maximal plastic strain at the current time t, located in the middle of
the bar at x̂ = 0. Moreover, the system of equations eq. (23) is completed by the boundary
conditions eq. (16), which read here as

Z (0) = Z (ŵ) = 0, (25)

the first, at x̂ = 0, coming from symmetric considerations. By using it, Z is found as:

Z = (σ − σ0) (1− exp (x̂))−
∫ x̂

0

R(p(y)) exp (x̂− y) dy. (26)

Moreover, by the boundary condition eq. (25) at x̂ = ŵ, the stress σ is found, with the
help of a change of variable in the above integral, as:

σ = σ0 +
V (p)− V (p exp (−ŵ))

p− p exp (−ŵ) . (27)

In the limit ŵ ≪ 1, the previous relationship is equivalent to σ = σ0+V
′(p) = σ0−R(p),

which recovers the homogeneous response if the regularization length scale ℓ0 is large enough
in comparison with the length of the bar L.

Considering the imposed displacement boundary conditions u(0) = 0, u(L) = tL, we have∫ L

0
ε(x)dx = u(L)− u(0) = tL, so that the displacement loading fixes the average amplitude

of the plastic strain as

t =

∫ ŵ

−ŵ

( σ
E

+ p exp (− |x̂|)
)
dx̂ =

σ

E
+
p

ŵ
(1− exp (−ŵ)) , (28)

where the symmetry of the plastic strain profile with respect to the middle of the bar has
been imposed. Note that σ and p have been also previously related by eq. (27).

Now, we analyse the asymptotic state of the response at large plastic strains (p≫ σ0/E).
At this stage, we assume that the negative isotropic hardening function behaves linearly, i.e.
V (p) ∼ a−σ0p where a is a constant. In this situation, as observed from eq. (5), the current
yield stress of the homogeneous response is σp = σ0 + V ′(p)→ 0. We can introduce thus Eu

as being the total energy over the bar when the stress is approaching zero. It gathers both
the dissipated energy3 and the negative isotropic hardening energy, and can be computed as
it follows:

3The monotonous loading allows to rewrite the dissipated energy from 0 to t,
∫ t

0
σ0 max{ṗ, ℓ0|∇ṗ|}dτ , as

σ0 max{p, ℓ0|∇p|} in eq. (29).
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Eu = ℓ0

∫ ŵ

−ŵ

(V (p) + σ0max{p, ℓ0|∇p|}) dx̂

= ℓ0

∫ ŵ

−ŵ

(a− σ0p exp (− |x̂|) + σ0p exp (− |x̂|)) dx̂

= (2ℓ0ŵ)a = La.

(29)

Hence Eu does not depend on the length-like parameter ℓ0, and keeps the same value as
the energy from the homogeneous response (proportional to the bar L). This property will
be illustrated here-after in Sections 3.2 and 4.2.

Let us summarize here some features of the exhibited analytical solutions. Firstly, the
evolution of the plastic strain takes the form of decreasing exponential profiles eq. (24), the
decay of which is controlled by ℓ0. Therefore, the support of plastic strain is infinite. This
stands in contrast to localized solutions more commonly found when using a quadratic term
in the free energy as in eq. (1). More precisely, such formulations typically exhibit an initially
finite support at localization, followed by a spreading phenomenon, especially in non-linear
softening regimes (Jirásek and Rolshoven, 2009b; Scherer et al., 2019; Abatour and Forest,
2023). In the present dissipation-based regularization model with q = ∞, the localization
process of cumulative plastic strains displays a stationary evolution: the ratio p/p eq. (24)
remains indeed constant. Interestingly, the ultimate energy Eu eq. (29) is independent of ℓ0,
and recovers the one found by the homogeneous solution, proportional to the length L of the
bar.

Remark. We have assumed a smooth plastic strain profile without any jumps. With a closer
investigation the jump condition eq. (19), one can show that such non-smooth solutions cannot
occur.

3.2. The solutions for the bilinear softening

In order to analyze further the previous localized response, we now consider the bilinear
negative isotropic hardening function,

V (p) = Vbi(p) =


−Hp

2

2
if p ≤ σ0

H

−σ0p+
σ2
0

2H
otherwise,

(30)

where H > 0 is the hardening modulus. By employing the function Vbi(p), one can easily
show that the homogeneous softening response predicts a linear decrease of the stress from
σ0 to 0 with the prescribed displacement (Jirásek and Rolshoven, 2009b). In the case of
localized solutions, the simplicity of Vbi(p) allows us to analyse more explicitly relationships
eqs. (27) and (28). We can distinguish three different regimes, according to the value of the
maximal plastic strain p in the middle of the bar.

� first regime (linear softening): the softening response begins, for which we have p ≤
σ0/H, and thus Vbi(p) = −Hp2/2 at each position of the bar. We obtain easily by

10



eqs. (27) and (28) a linear relationship between the stress and the prescribed displace-
ment,

σ = E

t− 2σ0

Hŵ
tanh

(
ŵ

2

)

1− 2E

Hŵ
tanh

(
ŵ

2

) . (31)

This regime ends as soon as p = σ0/H, which is equivalent, by eqs. (27) and (31), to
the following values of the stress and of the displacement:

σ = σc1 =
σ0
2
(1− exp (−ŵ))⇐⇒

t = tc1 =
σ0
2E

(1− exp (−ŵ))
(
1− 2E

Hŵ
tanh

(
ŵ

2

))
+

2σ0

Hŵ
tanh

(
ŵ

2

)
.

(32)

� second regime (nonlinear softening): p ≥ σ0/H, but we still assume p exp(−ŵ) ≤ σ0/H.
Therefore, one must use Vbi(p) = −σ0p + σ2

0/(2H) which can allow us to express the
stress after tedious calculations with eqs. (27) and (28). By letting A and B to be

A = exp(−ŵ)
(

tŵH

exp (ŵ)− 1
− σ0

)
B = exp(−ŵ)

(
ŵH/E

exp (ŵ)− 1
− 1

)
+ 1,

(33)

the stress satisfies the following second-degree polynomial equation:(
(1− exp (−ŵ))2 −B2

)
σ2 + 2 (σ0 exp (−ŵ) (1− exp (−ŵ)) + AB)σ − A2 = 0. (34)

Thus, σ turns out to be a non-linear function of the displacement t. This regimes stops
when p exp(−ŵ) = σ0/H, which is equivalent, by eqs. (27) and (34), to

σ = σc2 = 0⇐⇒ t = tc2 = σ0
exp (ŵ)− 1

ŵH
. (35)

� third regime (rupture): p exp(−ŵ) ≥ σ0/H: Vbi(p) = −σ0p+ σ2
0/(2H) at each position

of the bar, so that for t ≥ tc2, one has σ = σc2 = 0.

Figure 2a displays the elastic phase and the three previous softening phases of the stress-
strain response for the local model parameters E/σ0 = 1000 and E/H = 5, and a length
ratio ℓ0/L = 0.5. Figure 2b compares the prediction for three different length ratios. One
can note that the smaller ℓ0/L, the larger the ultimate displacement tc2 for which there is
rupture (the stress is zero), which is in agreement with (35). In parallel, a more prominent
softening behaviour is predicted after the elastic regime, with an earlier non-linear evolution
of the stress with the displacement. Figures 2c and 2d report similar comparisons for the
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(a) Stress-strain response using ℓ0/L = 0.5.
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(b) Stress-strain responses for three length ratios ℓ0/L.
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(c) Total energy evolution using ℓ0/L = 0.5.
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(d) Total energy evolutions for three length ratios ℓ0/L.

Figure 2: Analytical solutions.

evolution of the total energy. The energy tends toward its ultimate value Eu = La with
a = σ2

0/(2H) according to eqs. (29) and (30). However, for a fixed displacement t, the energy
decreases with regards to the length ratio ℓ0/L, even if Eu is independent of it.

In the analytical solutions illustrated in Figure 2, no snap-back is observed, due to the
chosen values here for the model parameters. This specific feature will however be described
later in Section 4.

4. One-dimensional numerical results

4.1. The numerical resolution

The previously derived solutions in Section 3.2 are now compared to numerical results.
The numerical resolution of the incremental variational problem (9) is however not trivial.
Indeed, due to the presence of the gradient term, the resolution of plastic strain evolution
is not local anymore, as usual in strain-gradient plasticity models. In addition, the use of a
q–norm dissipation potential instead of a quadratic gradient term brings yet another level of
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complexity since the former is non-smooth, as opposed to the latter. A monolithic resolution
using a standard global Newton-Raphson method is therefore doomed to fail due to the lack
of differentiability.

Fortunately, conic optimization solvers have recently emerged as a viable alternative to
solve difficult, highly non-smooth problems arising in various fields of mechanics, see for in-
stance (Bleyer, 2022a) for an overview. In particular, classical elastoplastic evolution can be
formulated in this framework, resulting in a convex second-order cone program. Dedicated
primal-dual interior point solvers, such as Mosek for instance (MOSEK, 2019), can be lever-
aged for their resolution.

We use the same strategy in the present case. Here, the quadratic elastic energy and
the gradient-dependent dissipation potential are both convex functions and can easily be ex-
pressed with the help of quadratic cones. However, when considering the negative isotropic
hardening function, we are in presence of a concave function. More precisely, the soften-
ing incremental problem (9) can be formulated as minimizing the difference of two convex
functions. This class of problem is called difference of convex (DC) programming. The most
common and effective heuristic for finding local optima is the convex-concave procedure, see
for example (Lipp and Boyd, 2016), which involves convexifying the concave function by
linearizing it around a current iterate and solving the associated convex problem, then iter-
ating. We use this strategy by linearizing V (p) around a current estimate p(k) of the plastic
strain, thereby replacing the non-convex function V (p) with V (p(k)) + V ′(p(k))∆p. In this
procedure, the estimate p(k) is updated at each iteration of the convex-concave procedure.
Convergence of the latter is obtained if the relative change of value of the objective func-
tion is less than 10−4. In practice, we observe that the convex-concave procedure converges
in less than 10 iterations on average. The flowchart in Algorithm 1 summarizes the procedure.

Similarly to (Bleyer, 2022a), we make use of the interior-point solver Mosek (MOSEK,
2019) and the FEniCS (Logg et al., 2012) software package for discretizing variational prob-
lems using the finite-element method combined into the fenics optim package, see (Bleyer,
2020, 2022b). As spatial discretization is concerned, the displacement field u is discretized
using a continuous quadratic Lagrange function space. The plastic strain field εp is dis-
cretized using a discontinuous piecewise affine space. Finally, due to the gradient term, the
cumulative plastic strain p is discretized with a continuous linear Lagrange function space.
A companion Zenodo repository (Bacquaert et al., 2024) accompanies the present paper to
reproduce the one-dimensional tests from Sections 4.2 to 4.4.

Remark. The cumulative plastic strain p and the plastic strain εp are interpolated separately.
This separation is necessary to express the dissipation potential ϕ(ε̇p, ṗ, Ṗ ) in eq. (8) by a
proper constraint, i.e. the relaxed convex constraint IR+(ṗ− |ε̇p|). Consequently, only p must
be regular enough to give a sense to Ṗ = ℓ0∇ṗ (by a continuous linear interpolation), whereas
a discontinuous interpolation can be used for εp.
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Algorithm 1 The iterative solution procedure.

Input: (un, ε
p
n, pn) at time tn.

Output: (un+1, ε
p
n+1 = εpn +∆εp, pn +∆p) at time tn+1.

Initialize iterations with k = 0 and p(k) = pn.

repeat
Linearize the negative hardening function: V (pn +∆p)← V (p(k)) + V ′(p(k))∆p.
Solve the convexified minimization problem from eq. (9) for (un+1,∆ε

p,∆p) with p(k).
Evaluate the value Jk of the objective function.
Update the estimate of the cumulative plastic strain: p(k+1) ← pn +∆p.
Set k ← k + 1.

until |Jk − Jk−1| ≤ TOL.|Jk|. ▷ TOL. = 10−4 is used in every numerical simulation.

4.2. Comparisons to the analytical solutions

First, we cross-validate the previous analytical solution and the numerical implementa-
tion on the case q =∞ investigated in section 3 using the bilinear softening function Vbi(p)
eq. (30). The parameters of the constitutive model are first set to E/σ0 = 1000, E/H = 5,
and ℓ0/L ∈ {0.1, 0.3, 1}. In order to trigger a localized solution after the elastic regime, an
imperfection on the initial yield stress σ0 is introduced in the middle of the bar by decreasing
it by 1% in the region [L/2− d, L/2 + d] with 2d = L/100. The prescribed displacement is
discretized into 50 load-steps until t = 10σ0/E and the bar divided into 100 elements.

Figures 3a and 3b show the stress-strain responses and the total energy evolutions with
the applied displacement. The analytical solutions and numerical results exhibit a perfect
agreement.
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(a) Stress-strain responses.
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(b) Total energy evolutions.

Figure 3: Comparisons of analytical solutions and numerical results for the stress response and the energy
evolutions. Legend is reused from Figures 2b and 2d for each curve.

Figure 4 compares the plastic strain profiles for the three ratios ℓ0/L. For ℓ0/L = 0.1 and
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ℓ0/L = 0.3, analytical solutions in Figures 4a and 4b match the numerical results with the
exponential profiles all along the loading. Again, the smaller ℓ0, the more pronounced the
decays of the plastic strain from the middle of the bar. In the case of ℓ0/L = 1, one can note
apparently a mismatch between the numerical result and the analytical solution in Figure 4c.
The numerical plastic profile is almost homogeneous late in the loading process. In fact,
Figure 4d precises the instant at which this difference occurs. All along the loading phase
for which σ > 0, the numerical result agrees with the analytical one (in green lines). After
when σ = 0, the exponential profiles (in orange lines) no longer correspond to the numerical
ones which, as seen in Figure 4c, increase homogeneously. Nevertheless, this difference of
prediction does not impact the evolution of the total energy since, at this point the ultimate
one Eu has been exactly reached as Figure 3b showed.
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(a) Plastic strain profiles for ℓ0/L = 0.1.
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(b) Plastic strain profiles for ℓ0/L = 0.3.
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(c) Plastic strain profiles for ℓ0/L = 1.
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solution near σ = 0).

Figure 4: Comparisons of analytical solutions and numerical results for the plastic strain profiles.

4.3. With snap-back responses

Here we select a higher hardening modulus H in order to observe softening responses
with an initial snap-back after the elastic regime. To this goal, let us denote by Hsb =
2E tanh(ŵ/2)/ŵ (ŵ = L/(2ℓ0)) the minimal value of H for snap-back to occur, according to
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eq. (31). The evolution of Hsb and the snap-back occurrence domain is displayed in Figure 5.
Note that for an infinitely small bar (ℓ0/L = ∞), the condition of snap-back is the one of
the homogeneous solution, i.e. H/E > Hsb/E = 1.
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Figure 5: Phase-diagram showing the snap-back limit Hsb as a function of the ℓ0/L and the relative hardening
modulus H/E. Parameters in the upper pink zone lead to localized solution with snap-back.

We consider in the following E/σ0 = 1000, ℓ0/L = 0.2, H ∈ {Hsb/2, Hsb, 2Hsb, 4Hsb}, and
a displacement until t = 3σ0/E discretized by 50 load-steps. As above, a small imperfection
is introduced in the middle of the bar, discretized by 100 elements.

Figures 6a and 6b compare the numerical results and the analytical solutions in terms of
the stress and of the total energy. In the case of H ≥ Hsb, both numerical evolutions join the
analytical predictions after the time-jump at the end of the elastic regime. This jump can
also be illustrated in Figure 7, by plotting the plastic strain profiles for H ∈ {Hsb, Hsb} near
t = σ0/E. One can note that the localization process starts from a strictly positive value of
p in the middle of the bar.
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(a) Stress-strain responses.
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Figure 6: Comparisons of analytical solutions and numerical results for the stress response and the energy
evolutions by increasing the hardening modulus H such as H ∈ {Hsb/2, Hsb, 2Hsb, 4Hsb}.
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(a) Plastic strain profiles for H/σ0 = Hsb/σ0 at t/(σ0/E) ≤
3/2.
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(b) Plastic strain profiles for H/σ0 = 2Hsb/σ0 at t/(σ0/E) ≤
3/2.

Figure 7: Comparisons of analytical solutions and numerical results for the plastic strain profiles in case of
snap-back.

4.4. Numerical observations for the bilinear softening and some q <∞–norms

Here, we briefly envision other q–norms as possible choices for the gradient-dependent dis-
sipation potential. In the following, we use q ∈ {1.01, 1.2, 2, 4} <∞ and the bilinear function
Vbi(p). Note that conic programming solvers can perfectly accommodate all values of q be-
tween 1 and∞ using power cones for instance, see again (Bleyer, 2022a). The parameters of
the constitutive model are set to E/σ0 = 1000, E/H = 5, and ℓ0/L ∈ {0.025, 0.05, 0.1}. The
loading scenario stays the same as the one described in Section 4.2, with identical spatial and
time discretization choices. However, in opposition to Section 4.2, Dirichlet boundary condi-
tions are applied at both ends of the bar on the cumulative plastic strain (p(0) = p(L) = 0),
which was found more effective for localization for several values of q compared to introducing
a material imperfection.

Figure 8 shows the evolution of the plastic strain profiles over the loading time. For
q ≥ 1.2, the effect of ℓ0 is clearly visible, increasing the width where the plastic strain
is maximal. For q = 1.2, this maximum is reached in an area qualitatively resembling a
plateau. For q = 2, the profile is more regular, without significant contrast, and resembles a
harmonic function. For q = 4, the profile is more angular in the middle of the bar, similar to
the exponential profile obtained for q =∞ (see Figure 4). However, for q = 1.01, the effect of
ℓ0 is almost negligible, especially for ℓ0/L = 0.05 and ℓ0/L = 0.1. The plastic strain occupies
almost the entire bar, except for the extremities where Dirichlet boundary conditions are
applied.
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Figure 8: Plastic strain profiles for different q <∞−norms and lengths ratios ℓ0/L.

Figure 9 displays the force responses for q ∈ {1.01, 2, 4}. For q = 2 and q = 4, the
higher the value of ℓ0, the less brittle the softening response becomes. For q = 1.01, this is
less evident, as the softening regimes appear linear with the same slope. Additionally, the
maximum yield stress at the end of the elastic regime exceeds σ0, with an increasing excess
for larger ℓ0. This is the well-known strengthening-size effect from plastic flow constraints
(here p(0) = p(L) = 0), which can be found in numerous strain gradient plasticity models
due to the use linear-growth nonlocal energies (Anand et al., 2005; Chiricotto et al., 2016;
Dahlberg and Ortiz, 2019; Reddy and Sysala, 2023).
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Figure 9: Stress-strain responses for different q–norms. The length ratios ℓ0/L from Figure 8 are reused for
each value of q.

5. A two-dimensional example

5.1. Constitutive equations for von Mises plasticity

The one-dimensional plasticity model is now straightforwardly extended to von Mises
plasticity. To this goal, the following free energy and gradient-dependent dissipation poten-
tials are considered:ψ(ε, εp, p) =

κ

2
tr (ε− εp)2 + µ dev (ε− εp) : dev (ε− εp) + V (p)

ϕ(ε̇p, ṗ, Ṗ ) = σ0∥(ṗ, Ṗ )∥q + IR+(ṗ− ∥ε̇p∥) + I{0}(tr ε̇
p),

(36a)

(36b)

with Ṗ = ℓ0∇ṗ and I{0} the characteristic function of {0}. µ and κ are the shear and the
bulk moduli. devx is the deviatoric part of x, trx its trace. In the present example, as in
Section 3, the gradient-dependent dissipation potential is chosen to be q = ∞ and we use
the bilinear hardening function (30) for V (p).

5.2. Plane strain tension test

The loading scenario under consideration closely aligns with the one detailed by Anand
(2012): a specimen with a rectangular cross-section, characterized by edge-lengths a = 20mm
and 3a/2 = 30mm, undergoes stretching in plane strain conditions. The bottom edge is
clamped, while the top edge is subjected to a prescribed condition of no horizontal displace-
ment and an increasing vertical component U . Left and right edges are traction-free. The
material parameters are summarized in Table 1.

κ (GPa) µ (GPa) σ0 (MPa) H (GPa) ℓ0 (mm)
150 70 200 20/50/200 2

Table 1: Material parameters of the von Mises constitutive model.

As for the bar in traction in 1D, the finite element discretization employs quadratic el-
ements for the displacement vector u. The cumulative plastic strain p is discretized using
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linear elements, while a discontinuous piecewise interpolation is employed for the plastic
strain tensor εp.

To investigate the mesh sensitivity of the model, we employ four unstructured triangular
meshes by varying the element size hmesh, such as ℓ0/hmesh ∈ {1, 2, 4, 8}. In Figure 10a,
the force-versus-displacement curves resulting from simulations on the different meshes are
presented, while Figure 10b illustrates the evolution of the total energy. In the Figures, two
hardening moduliH ∈ {20, 200MPa} are considered. These findings demonstrate a very good
convergence with respect to mesh refinement. Notably, the force and total energy exhibit
minimal sensitivity to the largest mesh size employed. For the higher modulus H = 200MPa
one observes a time-jump after the elastic regime until about U = 0.03mm. At this instant,
the total energy immediately decreases during this time-step. This evolution is completely
reminiscent of the snap-back ones for the bar in traction in 1D. For the lower modulus H =
20MPa, no snap-back is visible, and the total energy increases monotonously. Additionally,
on the finest mesh (ℓ0/hmesh = 8), Figure 11 illustrates the isovalues of the cumulative plastic
strain for three different instants. Interestingly, the patterns change according to the value of
H. One can observe localization patterns with either inclined or horizontal crossing bands,
with maximal values of p either in the bulk of the plate or at its left and right edges.

(a) Force response. (b) Dissipated energy.

Figure 10: Effect of the mesh size refinement in the simulations.
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Figure 11: Isovalues of the cumulative plastic strain on the most finest mesh (ℓ0/hmesh = 8) at three instants
on the deformed configuration of the plate magnified by a factor 10.
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6. Conclusion

In this work, we proposed a regularization approach for softening plasticity within the
framework of Generalized Standard Materials. To achieve this, we introduced a cumulative
plastic strain-rate gradient into the dissipation potential. We formulated an incremental vari-
ational formulation focusing on a one-dimensional problem. For the special norm q =∞, we
considered the traction of a homogeneous bar to derive analytical solutions with localization.
Specifically, we found exponential profiles whatever the specific expression of the negative
isotropic hardening function. This represents a pivotal aspect of the regularization approach,
as other models featuring a quadratic gradient term in the free energy do not exhibit the
same characteristic in case of non-linear strain-softening. In addition, it was shown that the
regularization approach was able to predict a well-controlled evolution of the total energy,
which interestingly turns out to be independent of the introduced length-like parameter at
break. Numerical tests were conducted under the scope of conic programmings to validate
the analytical solutions exhibited in the case of a bilinear softening law. By a simple gen-
eralization to the multi-dimensional case, the regularization approach was applied on von
Mises plasticity. The stretch of a rectangular specimen was performed under plane strain
conditions. Excellent results were found with mesh refinement, underscoring the relevance
and efficiency of the regularization approach. Future works will consider applications on
more sophisticated constitutive behaviours, for example taking into account the mean stress
dependency in yield criteria as it is relevant for geomaterials, as well as more numerical ex-
periments. Other norms q <∞ will also be the subject of further studies as the ones sketched
in Section 4.4.
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Mühlhaus, H., Vardoulakis, I., 1987. The thickness of shear bands in granular materials.
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