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Strategic behavior of risk-averse agents under stochastic

market clearing

Vincent Leclère, Andy Philpott

aCERMICS, ENPC, Paris, France
bElectric Power Optimization Centre, University of Auckland, New Zealand

Abstract

We discuss economic dispatch and system marginal prices in a single-settlement
wholesale electricity pool under uncertainty. Agents with coherent risk mea-
sures maximize risk-adjusted profit in a market with complete risk trading.
If agents’ risk measures are known by the system operator then prices form
a socially optimal dispatch which is revenue adequate and recovers agents’
costs in risk-adjusted expectation. We construct a non-cooperative game
to show that agents have incentives to misrepresent their risk measures to
improve their risk-adjusted profit.

Keywords: electricity market, risk, Nash equilibrium

1. Introduction

Wholesale electricity markets in many jurisdictions are cleared using
mathematical programming problems. These are often formulated as mixed
integer programming problems to account for unit commitment effects. In
the absence of such indivisibilities, the economic dispatch problems that opti-
mize production are convex and yield optimal levels of electricity generation,
transmission flows, and locational marginal prices that come from the dual
variables of flow conservation constraints. Electricity consumers at any loca-
tion pay the locational marginal price, and generation at a location is paid
the locational marginal price.

The last decade has seen dramatic growth in renewable electricity gen-
eration from wind and solar energy. Wind and sunshine are intermittent
and uncertain, and so backup thermal generation is often required to cover
periods when wind and sunshine are unavailable. Most forms of thermal gen-
eration must be made available before wind strength and solar production
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are observed. If these are modeled as random variables with known prob-
ability distributions then the most efficient dispatch on average will come
from the solution to a stochastic programming problem that maximizes ex-
pected welfare. Generally speaking, the solution to stochastic programs is
computable only when the probability distributions are finite. This enables
the stochastic programming problem to be written as a finite-dimensional
optimization problem. When the distribution is continuous, sample average
approximation, which constructs finite distributions by sampling, converges
to the optimal solution set under mild conditions and is a popular approach
to solving stochastic programs.

In the context of wholesale electricity markets we can formulate a stochas-
tic economic dispatch problem with a finite number of scenarios, which yields
optimal output levels for each generator, transmission flow, and locational
marginal prices, all defined for each scenario. Stochastic dispatch and pricing
mechanisms of this form have been studied for over ten years (see [1],[2],[3]).

Three properties would be desirable in such a pricing mechanism:

• Budget balance: is the pricing mechanism revenue adequate? This
means that the amount paid by purchasers under the mechanism is at
least sufficient to cover the amount paid to sellers. Revenue adequacy
allows for a market surplus that the market maker can capture. If there
were a deficit, external funds would need to be supplied to the market
to ensure budget balance.

• Participation: does the pricing mechanism guarantee cost recovery?
This condition asserts that prices must cover supply costs and guaran-
tee some type of individual rationality. Indeed, if prices are below the
cost of supply, then a rational supplier would refuse to participate in
the market.

• Truth revealing: is the pricing mechanism incentive compatible? In-
centive compatibility ensures that agents are incentivized to truthfully
reveal their private information to the market maker. In other words,
in the non-cooperative game, which is defined by supplying information
to the market maker, truthfully revealing private information gives a
Nash equilibrium.

As shown by [4], it is not possible for any single mechanism to have all
three properties. Pritchard et al. [3] describes a pricing mechanism that is
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individually rational in every scenario while being revenue-adequate in expec-
tation (only). In contrast, Zakeri et al. [5] present a model that is revenue-
adequate in every scenario while being individually rational in expectation
(only). In fact, as shown by [6], it is not possible to have a dispatch solution
that maximizes expected welfare and yields prices that provide revenue ade-
quacy and individual rationality in every scenario. This is not surprising as
stochastic programming solutions hedge against future uncertainty, and so
ex-ante dispatch and pricing outcomes may be suboptimal ex-post.

In this paper, we explore stochastic dispatch and pricing mechanisms
that account for the risk aversion of agents when modeled using coherent
risk measures under an assumption of complete risk markets. Our discussion
of optimization and equilibrium in this setting draws heavily on the theory
of coherent risk measures and risked competitive equilibrium studied in the
papers ([7],[8],[9]).

The contributions of the paper are as follows:

1. We show how risk measures can be included in economic dispatch mod-
els to give risk-adjusted generation output and cost recovery in risk-
adjusted expectation.

2. We describe a competitive market structure that requires agents to
declare their level of risk aversion (and costs) to a system operator.

3. We show how incentive compatibility might fail in such a market by
describing a game in which every Nash equilibrium involves some player
misrepresenting their true level of risk aversion.

The rest of the paper is laid out as follows. In section 2 we define the
risk-adjusted economic dispatch problem and prove that a standard pricing
mechanism [5] is revenue adequate and has cost recovery in risk-adjusted ex-
pectation. The pricing mechanism defines a non-cooperative game in which
agents each declare a level of risk aversion to the system operator, who then
computes a socially optimal economic dispatch and prices based on this.
Agents then trade contracts to reduce their actual risk as measured by their
true risk measures. Some structural properties of this game are then studied
in Section 3, which presents some characterizations of Nash equilibrium. Sec-
tion 4 presents a small example to demonstrate that the mechanism defined
by the game is not incentive-compatible. Agents can improve their ex-post
risk-adjusted expected return by misrepresenting their level of risk aversion
to the system operator. Section 5 then concludes the paper.
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2. Risk-adjusted economic dispatch

In this section, we first recall the risk-neutral stochastic dispatch model
and its extension to the risk-averse setting. We then introduce a strategic
game where agents strategically display their risk aversion to the ISO. This
game is a special case of the general model studied in the next section.

2.1. Stochastic dispatch model

We recall the stochastic electricity dispatch model first formulated in
[3] and and studied in [6], [5], and [10]. These models are formulated as
stochastic linear programs in a transmission network where generation and
demand are located at nodes denoted n ∈ N . This model can be easily
extended to accommodate convex generator cost functions. We denote the
agents by index a and define δan = 1 when agent a is located at node n and
0 otherwise. We further use the following notation.

• xa is the day-ahead setpoint level which generator a is advised to pre-
pare to produce before the generation capacity of intermittent renew-
ables is known. The cost of this is a convex function ca(xa).

• Xa(ω) is the real-time dispatch produced by generator a in scenario
ω ∈ Ω.

• Ua(ω) is the amount by which generator a deviates from xa in scenario
ω.

• ra is a finite convex function such that ra (U(ω)) is the cost incurred
by generator a for deviating from its generation.

• F (ω) ∈ F is the vector of branch flows in the network in scenario ω,
where F is a set constraining the flows in the network to meet thermal
limits and the DC-Load Flow constraints imposed by Kirchhoff’s Laws.
We assume that 0 ∈ F .

We denote by τn(F (ω)) the net amount of energy flowing from the trans-
mission network into node n in scenario ω. We assume that τn is a concave
function of F with τn(0) = 0, ∀n ∈ N . The other parameters in the model
are:

• Ga(ω) the maximum output capacity of generator a in scenario ω.
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• Dn(ω) the consumer demand at node n in scenario ω.

Given these parameters, the dispatch model is:

DP: min
∑

a ca (xa) +
∑

a

∑
ω P(ω)ra (Ua(ω))

s.t.
∑

a δanXa(ω) + τn(F (ω)) ≥ Dn(ω), n ∈ N , ω ∈ Ω, [P(ω)πn(ω)]
x+ U(ω) = X(ω), ω ∈ Ω,
F (ω) ∈ F , ω ∈ Ω,
0 ≤ X(ω) ≤ G(ω), x ≥ 0, ω ∈ Ω.

The first constraint ensures demand satisfaction in each node and sce-
nario, the second defines real-time dispatch, and the two last equations en-
sure the physical acceptability of the flows. The term in square brackets is
the probability-weighted dual variable for the flow balance constraint at node
n.

After the optimal day-ahead setpoint x∗ is found, the intermittent gener-
ation scenario ω = ω̂ is realised, and the ISO follows the dispatch defined by(
X∗(ω̂), U∗(ω̂), F ∗(ω̂)

)
. The optimal dispatch gives nodal prices πn(ω) which

are used to compensate generators for the dispatch. As discussed in [6] there
are different ways of doing this: we consider the payment mechanism that
pays πn(ω)Xa(ω) to all generators a at node n and charges πn(ω)Dn(ω) to
demand at node n, which we denote the RA mechanism.

Definition 1. A payment mechanism is revenue adequate if and only if in
every scenario ω ∈ Ω, clearing the market does not leave the system operator
in a financial deficit. As shown by [11], revenue adequacy is equivalent to
the following statement:∑

n

πn(ω)τn(F (ω)) ≥ 0, ∀ω ∈ Ω.

The following result was demonstrated by [5] for linear costs.

Proposition 1. If (x∗, X∗(ω), U∗(ω), F ∗(ω)) solves DP, then the RA mech-
anism is revenue adequate.

Definition 2. A payment mechanism exhibits cost recovery if and only if,
in every scenario ω ∈ Ω, all generators recover their short-run (fuel and
deviation) costs. That is,

Ra(ω)− ca(xa)− ra (Ua(ω)) ≥ 0, ∀a, ∀ω ∈ Ω,

where Ra(ω) is generator a’s revenue in scenario ω.

5



We say that a market clearing mechanism exhibits expected cost recovery
if all generators recover their generation and ramping costs in expectation.
This was shown to be the case for the RA mechanism with linear costs by
[5].

2.2. Risk-adjusted dispatch

We now consider the case explored in [10] where each agent a is endowed
with a coherent risk measure. A risk measure ρ is a mapping from a space
of random variables measuring loss to real numbers (and +∞). A coherent
risk measure (see e.g., [12] for definition) can be expressed as the worst-case
expectation of loss Z over a convex set of probability distributions, i.e.,

ρ(Z) = max
Q∈Q

E[Z]. (1)

The set Q is called the risk set of the risk measure ρ. We denote the risk set
of agent a by Qa.

The theory of risked equilibrium we use is presented in detail by [8]. Fol-
lowing their model, we assume that each Qa is polyhedral and interior to the
positive orthant with a reference probability distribution P0 ⊆ ∩Qa. We also
assume that there is a complete market for trading risk using Arrow-Debreu
securities. An Arrow-Debreu security for scenario ω returns a payoff of 1 if
scenario ω occurs while requiring an advance payment of µ(ω) in the first
stage. A risked equilibrium is a set of prices for each scenario and a col-
lection of generation, consumption, and Arrow-Debreu trading actions that
minimize risk-adjusted disbenefit for each agent. By Theorem 4, Corollary 2
in [8], a perfectly competitive risked equilibrium can be found by the system
operator by solving

RADP: min max
Q∈∩Qa

∑
ω Q(ω)

∑
a (ca (xa) + ra (Ua(ω)))

s.t.
∑

a δanXa(ω) + τn(F (ω)) ≥ Dn(ω), n ∈ N , ω ∈ Ω,
x+ U(ω) = X(ω), ω ∈ Ω,
F (ω) ∈ F , ω ∈ Ω,
0 ≤ X(ω) ≤ G(ω), x ≥ 0, ω ∈ Ω.

RADP solves a risk-averse social planning problem using a risk set that is
the intersection of all the agent’s risk sets.

Proposition 2. RADP yields locational marginal energy prices that are rev-
enue adequate in every scenario, and, after trading Arrow-Debreu securities
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yielding random returns Aa(ω), each agent a recovers costs in risk-adjusted
expectation, i.e.,

min
xa,Ua,Aa

max
Q∈Qa

EQ

[
ca(xa) + ra(Ua(ω))−

∑
n

δanπnxa − Aa(ω)

]
≤ 0. (2)

Proof. RADP yields a competitive equilibrium, where each agent (including
the consumer) optimizes their risk adjusted expected welfare augmented with
returns from trading Arrow-Debreu securities. In equilibrium, the returns
for generators must recover risk-adjusted costs, and so (2) holds. To show
revenue adequacy, consider the extreme points of ∩Qa which are vectors pk,
k ∈ K, and express the inner maximum using an epigraphical variable

θ ≥
∑
ω

pk(ω)
∑
a

ra(Ua(ω)), k ∈ K.

Then RADP has a solution that minimizes the Lagrangian

L(x,X, U, F, θ) =
∑
a

ca(xa) + θ +
∑
k

µk(
∑
ω

pk(ω)
∑
a

ra(Ua(ω))− θ)

+
∑
n

∑
ω

πn(ω)

(∑
k

µkpk(ω)

)
(Dn(ω)−

∑
a

δanXa(ω)− τn(F (ω)))

+
∑
ω

∑
a

σa(ω)

(∑
k

µkpk(ω)

)
(xa + Ua(ω)−Xa(ω))

over the bound constraints on the variables, where the Lagrange multipliers
(π and σ) on the other constraints of RADP are weighted by the positive
quantity

∑
k µ

kpk(ω). In particular the solution maximizes

∑
ω

(∑
k

µkpk(ω)

)∑
n

πn(ω)τn(F (ω))

for each ω independently over F (ω) ∈ F and since F = 0 is feasible, we have
for every ω, (∑

k

µkpk(ω)

)∑
n

πn(ω)τn(F (ω)) ≥ 0. □
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2.3. Strategic display of risk aversion

The mechanism above requires the truthful revelation of each agent’s ac-
tual risk set Pa to optimize risk-adjusted social welfare. Each agent, however,
might misrepresent their actual risk set as Qa ̸= Pa to improve their risk-
adjusted profit. This leads to a non-cooperative game between agents with
the following sequence of steps.

1. Each agent declares a risk set Qa and supplies this to the ISO. The
ISO assumes this is truthful and solves an economic dispatch problem

min
x,U

max
Q∈∩Qa

EQ

[∑
a

(ca(xa) + ra(Ua(ω)))

]
(3)

where we define
Q∩ :=

⋂
a∈A

Qa. (4)

2. Each agent fixes its dispatch but trades Arrow-Debreu securities to
improve its risk-adjusted payoff when evaluated using its private risk
set Pa.

3. The improved risk-adjusted payoff for agent a can be computed by
evaluating

max
Q∈P∩

EQ

[∑
a

(ca(xa) + ra(Ua(ω)))

]
where

P∩ :=
⋂
a∈A

Pa. (5)

and then evaluating each agent’s payoff at the maximizing Q.
Observe that the payoff for each agent depends on (Qa,Q−a) as a func-

tion of the intersection Q∩ and depends on (Pa,P−a) as a function of the
intersection P∩. This observation allows us to narrow down the form of the
equilibrium, as discussed in the next section.
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3. The risk-set game

The game described in the previous section has a special structure en-
abling us to derive general results. To do this, we let (Ω,F ,P0) be a discrete
probability space and denoteM the set of probability distributions on (Ω,F).
We consider a set R ⊂ 2M of admissible risk sets satisfying1

i) if Q, Q̃ ∈ R, then Q∩ Q̃ ∈ R,

ii) for all Q ∈ R, P0 ∈ Q.

Here, R defines the set of possible actions for each player in the game.

Example 1. To fix ideas, we assume that P0 is the uniform measure over
ξ1, . . . , ξN . Then any probability measure in M is uniquely defined by a
vector p ∈ ∆N−1 where ∆N−1 ⊂ RN

+ is the N − 1 dimensional simplex, that
is such that

∑
i pi = 1. We now discuss a few natural admissible risk sets R

(uniquely defined as a subset of ∆N−1) that satisfy the above condition.

1. If we assume that the agent can declare any polyhedral risk measure to
the ISO, then R is the set of all polyhedrons in ∆N−1;

2. If the agent can declare any AV ARα risk measure, then R is the set of
polyhedron of the form {p ∈ ∆N−1 | pi ≤ α

N
,∀i};

3. If we assume that we set a coherent risk measure ρ, and each agent can
declare a risk measure of the form tρ+(1−t)EP0, for t ∈ [0, 1], then the
admissible risk sets are of the form (1− t){P0}+ tD, for some convex
set D. This specific case is further detailed in section 3.2.

3.1. Set intersection games

Formally, we consider a game with a finite number of agents, where each
agent has the same set R of admissible actions. The actions of all agents
are collected in a strategy profile (Q1, . . . ,Q|A|) denoted (Qa′)a′∈A. The loss
of any specific agent a is a function La((Qa′)a′∈A) of the strategy profile
collecting every agent’s actions. To identify the effect of Qa on a’s loss we
sometimes write La((Qa′)a′∈A) = La(Qa,Q−a).

1The results of this section can be directly transposed to the case where R is a lower
semilattice (that is, an ordered set such that for all Q1,Q2 ∈ R, there exists a meet -
i.e., largest lower bound - Q1 ∧Q2) by simply replacing the intersection ∩ by the meet ∧.
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The key assumption in this section is that a strategy profile ((Qa′)a′∈A
impact the game only through the intersection of all actions ∩a′Qa′ . More
precisely, using the following notation:

Q∩ =
⋂
a′∈A

Qa′ , Q∩−a =
⋂

a′∈A\{a}

Qa′ , (6)

we have that, for every agent a, the loss function La is such that

La((Qa′)a′∈A) = La(Q∩, . . . ,Q∩),

which will be simply denoted ℓa(Q∩). This assumption implies the following
lemma.

Lemma 1. Let a ∈ A be an agent. Given a strategy profiles (Qa′)a′∈A, and
an action Q̃a ∈ R we have,

La(Q̃a,Q−a) = ℓa(Q̃a ∩Q∩−a).

From this lemma, we derive a first set of results.

Remark 1. Consider a strategy profile (Qa′)a′∈A, and an agent a ∈ A. We
have the following results:

1. as P0 ∈ Qa for all possible action action, the symmetric strategy profile
({P0})a∈A is a Nash equilibrium;

2. if at least two players play {P0}, then we have a Nash equilibrium.

We now provide the necessary and sufficient conditions for a strategy
profile to be a Nash Equilibrium. It states that no agent can profit from
playing a set smaller than the intersection of the other player’s action.

Proposition 3. The strategy profile (Qa′)a′∈A is a Nash equilibrium if and
only if, for each player a, any choice Q ∈ R satisfies

Q ⊆ Q∩−a ⇒ ℓa(Q∩) ≤ ℓa(Q). (7)

Proof. If (Qa′)a′∈A is a Nash equilibrium, then for all agents a ∈ A, and all
actions Q ⊂ Q∩−a we have ℓa(Q∩) = La((Qa′)a′∈A) ≤ La(Q,Q−a) = ℓa(Q).

Now suppose that (Qa′)a′∈A is not a Nash equilibrium. Let a ∈ A be
an agent that can improve its payoff by playing Q̃a ∈ R. Then, we have
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La(Q̃a,Q−a) = ℓa(Q̃a ∩ Q∩−a) < ℓa(Q∩). If we let Q = Q̃a ∩ Q∩−a then
Q ∈ R but Q does not satisfy (7). □

A straightforward consequence of Proposition 3 is that we can restrict
ourselves to the study of symmetric Nash equilibrium, as shown by the fol-
lowing corollary.

Corollary 1. If (Qa′)a′∈A is a Nash equilibrium, then (Q∩) is also a Nash
equilibrium with the same payoffs.

Further, a symmetric strategy (Q) is a Nash equilibrium if and only if for
all risk sets Q̃ ⊂ Q and all agents a ∈ A we have ℓa(Q̃) ≥ ℓa(Q).

Proof. Since

Q ⊆ Q∩ ⇒ Q ⊆ Q∩−a ⇒ ℓa(Q∩) ≤ ℓa(Q),

because (Qa′)a′∈A is a Nash equilibrium, the result follows by Proposition 3.
The second part is a special case of Proposition 3 □
Another consequence of Proposition 3 is that the loss incurred at a (sym-

metric) Nash equilibrium is non-increasing with respect to inclusion, or, in
other words, the best Nash-Equilibrium is the one resulting from the most
risk-averse declaration. More precisely, we have the following result.

Corollary 2. Let (Q) and (Q̃) be two symmetric Nash equilibria such that
Q ⊂ Q̃. Then (Q̃) Pareto-dominates (Q), that is, for every agent a, ℓa(Q) ≥
ℓa(Q̃).

Proof. If Q ⊂ Q̃, then applying Proposition 3 to the Nash equilibrium (Q̃)
implies ℓa(Q̃) ≤ ℓa(Q) for every agent a. □

3.2. One parameter case

In some settings, the set of admissible risk sets R can be defined by a
small number of parameters. We are especially interested in the case where
R is defined by a single parameter t ∈ [0, 1], such that if t ≤ t′, we have
Qt ⊂ Qt′ , with Q0 = {P0}. Such a case arises for example if we consider
D = ∂ρ(0) where ρ is a coherent risk measure (e.g., Average Value at Risk),
and define

R =
{
(1− t){P0}+ tD | t ∈ [0, 1]

}
.

Proposition 4. In the one-parameter case, we have the following results.
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ta tb tc

Figure 1: Example of Nash Equilibrium. We have a two-agent game, each curve repre-
senting the loss of one agent with respect to Qt, where t = min(t1, t2) is the minimum of
the action of both players. We see that the set of Nash equilibrium is [0, ta] ∪ [tb, tc].

1. (Qt) is a Nash equilibrium if and only if, for all t ≤ t̄, and all a ∈ A,
we have ℓa(Qt) ≥ ℓa(Qt̄);

2. If (Qt) and (Qt̄) are two Nash equilibrium, with t̄ ≥ t, then (Qt̄) Pareto-
dominates (Qt);

3. Let T be the set of t ∈ [0, 1] such that, for all a ∈ A, τ 7→ ℓa(Qτ ) is non-
increasing on [0, t]. Then, T is a non-empty set of Nash equilibrium of
the form [0, t∗) or [0, t∗].

Nash equilibria in our one-dimensional framework are typically not unique.
We say that Nash equilibrium t♯ dominates Nash equilibrium t if every agent’s
payoff in t♯ equals or exceeds its payoff in t, with at least one agent strictly
better off. Nash equilibrium t♯ is a (locally) nondominated equilibrium if
(there exists a neighborhood in which) no other Nash equilibrium dominates
it.

Proposition 5. If T = [0, t♯], which is the case if, for each agent a, supt∈T ℓa(Qt)
is attained, then t♯ defines a locally non-nondominated Nash Equilibrium
while every t ∈ [0, t♯) defines a (locally) dominated Nash equilibrium.

Remark 2. Unfortunately, T does not describe all equilibrium. Indeed, in
figure 1, T = [0, ta], while the set of Nash Equilibrium is determined by
[0, ta] ∪ [tb, tc].
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4. Stochastic dispatch example

In the previous section, we studied the structure of the Nash Equilibrium
associated with the risk-set game. We have seen that there always exists a
Nash Equilibrium, which consists of all agents declaring to be risk neutral.
Still, it is also the worst possible Nash-Equilibrium, in the sense that any
other would Pareto-dominate it. Nothing was said, however, about truly
revealing its risk set. The monotonicity property shown would lend to the
idea that the agent should declare the largest set possible to find a larger
Nash Equilibrium, resulting in lower cost. This idea is, unfortunately, false.
Indeed, the following toy example showcases how a player might benefit from
declaring a smaller risk set and another a larger risk set.

4.1. Toy example setting

Consider a situation with two agents: an electricity generator operating
a thermal plant, a wind farm, and an electricity consumer. We consider
a single period with two decision stages. In the first stage, the generator
chooses a forward dispatch x for its thermal plant. In the second stage, a wind
generation outcome ξ (ω) is observed, and the generator then dispatches extra
energy U(ω) from the thermal plant. The total generation is x+U(ω)+ξ (ω)
which equals the consumer demand. This is an example of RADP where V
is absent.

Recall that the inverse demand function P (z) gives the marginal wel-
fare that the consumer receives from consuming z. Thus the consumer’s

welfare when consuming X(ω) is expressed as
∫ X(ω)

0
P (z)dz while the asso-

ciated cost is X(ω)P (X(ω)), resulting in a consumer disbenefit of Zc(ω) =∫ X(ω)

0
P (z)dz −X(ω)P (X(ω)). On the other hand, the generator disbenefit

Zg is the cost of generation minus the revenue from selling the energy.
From now on, we assume that the inverse demand curve is P (z) = a− bz,

the generator has generation cost 1
2
cx2 in stage 1, and 1

2
dU(ω)2 in stage 2.

Straightforward computation shows that the total disbenefit is

Zs(ω) =
1

2
cx2+

1

2
dU(ω)2+

1

2
b(x+U(ω))2−(a−bξ)(x+U(ω))+

1

2
bξ2−aξ. (8)

Note that, given x, and realization of ξ(ω) in scenario ω the ISO will choose
U(ω) to minimize Zs(ω) giving U(ω) = (a− bξ − bx)/(b+ d).

For the risk sensitivity, we assume that both agents consider a risk mea-
sure of the form

ρλ(Z) = (1− λ)E[Z] + λW[Z] (9)
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where W is the worst-case risk measure, and λ ∈ [0, 1]. This falls into the
setting of section 3.2. We denote λg and λc as the true risk parameters
of the generator and the consumer, respectively. Following the setting of
section 2.3, the agents do not have to reveal their risk parameters truthfully
but instead declare tg and tc, respectively. Assuming truthful revelation,
the system operator then chooses t = min{tg, tc} and computes a dispatch
minimizing ρt(Zs).

To further simplify the example, we assume that the wind generation
outcome ξ is either g or h with equal probability and that g < h. We also
choose the following numerical values: a = 200, b = 1, c = 2, d = 1, g = 10,
h = 90.

4.2. System operator dispatch

Based on the declared risk parameter t, the system operator computes the
dispatch that minimizes the risk-adjusted disbenefit ρt(Zs). In particular, we
have U(ξ) = 100− ξ − x, and the social disbenefit is

Zs(ω) =
5

4
x2 − 100(ξ + x) +

1

4
ξ2 +

1

2
xξ − 10000.

We can then see that, for all x ≤ 200, Zs(ξ = g) ≥ Zs(ξ = h), meaning
that the worst scenario is the low wind outcome ξ = g, i.e., W[Zs] = Zs(g).
We can, therefore, deduce the risk-adjusted disbenefit for the system operator
as

ρt(Zs) =
5

4
x2 − 20tx− 75x+ 3000t− 13975,

which has minimizer x = 8t+ 30 yielding in turn

U(ω) =

{
80− 4t, ξ = g
40− 4t, ξ = h.

Using p(ω) = P (x+ U(ω) + ξ), we get the prices in each scenario

p(ω) =

{
80− 4t, ξ = g
40− 4t, ξ = h.

4.3. Agent response to dispatch

In this example of a risk set game, the agent declares a risk parameter tc
(resp. tg) to the system operator, which deduces a dispatch as seen above.
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The agent can then trade risk minimizing disbenefit using their true risk-
measure, i.e., ρλg(Zg) for the generator (resp. ρλc(Zc)) for the consumer.
Note that if the market for risk is complete, then this leads to a risked
equilibrium with effective risk measure parameter λ = min{λg, λc}.

In the following sections, we show that, in this example, the generator
has an incentive to declare tg = 0 to the system operator, while the consumer
has an incentive to declare tc = 1.

4.3.1. Generator

Recall that in scenario ω, the generator disbenefit is

Zg(ω) =
1

2
cx2 +

1

2
dU(ω)2 − P (ω)(x+ U(ω) + ξ(ω))

which simplifies to

Zg(g) = 88t2 + 280t− 5500

Zg(h) = 88t2 + 440t− 4700

after substituting x = 8t + 30. Thus, for all values of t, the worst case
disbenefit is Zg(h). The risk-adjusted disbenefit for the generator is then

ρλg(Zg) =
1

2
(1− λg)(88t

2 + 280t− 5500) +
1

2
(1 + λg)(88t

2 + 440t− 4700).

Irrespective of λg, this function is increasing in t, so the generator would
prefer the system operator to use tg = 0. It has an incentive to misrepresent
itself as less risk-averse than it really is.

4.3.2. Consumer

Recall that in scenario ω, the consumer disbenefit is

Zc(ω) = −W (ω) + P (ω)(x+ U(ω) + ξ(ω))

Using that x = 8t+ 30 and U(ω) =

{
80− 4t, ξ = g
40− 4t, ξ = h

we get

Zc(ω) =
1

2
b(x+ U(ω))2 − (a− bξ)(x+ U(ω)) +

1

2
bξ2 − aξ

+(a− b(x+ U(ω) + ξ(ω))) (x+ U(ω) + ξ(ω))

=

{
−8 (t+ 30)2 , ξ = g

−8 (t+ 40)2 , ξ = h.
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The worst case scenario is then the low wind scenario ξ = g, is in the low
wind scenario. Thus, the consumer risk-adjusted disbenefit is given by

1

2
(1+λ)(−8 (t+ 30)2)+

1

2
(1−λ)(−8 (t+ 40)2) = 2800λ+(80λ−560)t−8t2−10 000.

In particular, for all λ ∈ [0, 1], the lowest disbenefit for the consumer is
obtained by choosing tc = 1.

However, since t = min{tg, tc}, the consumer has to accept that the
system operator will use t = 0 from the generator’s offer.

4.4. Payoffs

Finally, we explore the trade in Arrow-Debreu securities that emerges in
equilibrium. It is convenient to express these in terms of payoffs Πa(ω) rather
than disbenefits. If the system operator dispatches assuming t = 0, then the
payoffs to agents (generator and consumer) are:

Πg(g) = 5500

Πg(h) = 4700

Πc(g) = 7200

Πc(h) = 12800

Given these payoffs, consider the following trades in Arrow-Debreu secu-
rities. The generator pays 1

2
(1 + λ)(−400) + 1

2
(1− λ)(400) = −400λ, i.e., he

sells 400 Arrow-Debreu securities at price 1
2
(1 + λ) giving payoff −1 when

ω = g and buys 400 Arrow-Debreu securities at price 1
2
(1 − λ) paying off 1

when ω = h.
The consumer pays 1

2
(1 + λ)(400) + 1

2
(1 − λ)(−400), i.e., she buys 400

Arrow-Debreu securities at price 1
2
(1 + λ) paying off 1 when ω = g and sells

400 Arrow-Debreu securities at price 1
2
(1− λ) paying off 1 when ω = h.

This example illustrates how it is optimal for the generator to offer tg = 0
to the system operator, even if λg > 0. They then evaluate their payoff using
min{λa}. In general, this assumes that they know the risk sets of the other
agents. If not, agent a might optimize the choice of tg, assuming a probability
distribution for λj, j ̸= a.
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5. Conclusions

In this paper, we describe a pricing mechanism that guarantees both
revenue adequacy in all scenarios and cost recovery in risk-adjusted expected
cost. The application of this mechanism assumes the existence of a complete
market for trading risk using Arrow-Debreu securities, which will not be the
case in practice. Nevertheless, we expect that markets with deep contract
markets might exhibit some of the behavior we describe. Unfortunately,
our mechanism does not ensure the truthful revelation of risk sensitivity by
the agents. Further, we showed by example that some agents might have
incentives to under-declare their risk aversion, while others have incentives
to exaggerate their risk aversion. It is interesting to speculate on how market
regulators might detect this misrepresentation. For example, one could use
observed contract trades to estimate the risk profile of the agents or at least
statistically check consistency between risk declaration and actual trades.
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