

Université Gustave Eiffel

Photogra

Keywords: Transit-Oriented Development (TOD); Data Science; Predictive Modeling; Urban Planning; Machine Learning (ML); Classification; Adaptive Algorithms

Enhancing Transit-Oriented Development with Micro-mobility:

A Renewed Node-Place Index Approach in the Hauts-de-**France Region**

Alain L'Hostis, Gustave Eiffel University Ahad Amini Pishro, Sichuan University of Science and Engineering Ndeye Aïta Cissé, Gustave Eiffel University Shiguan Zhang, SiChuan University Olivier Theureaux, Gustave Eiffel University, Railenium Heythem Adjeroud, Gustave Eiffel University Liu Yuetong, SiChuan University Hugi Xiao, SiChuan University

C.41

Transport and Geography: Sustainable transitoriented development (STOD): new perspectives and advances

28th August 2024

Overview

1. Introduction

- a. Node Place Model
- b. A Growing Model
- c. Research Aim

2. Methodology

- a. Case Study
- b. Station Areas
- c. Methodological Framework

3. Findings

- a. Influence on Ridership
- b. Cube Diagrams of the NPART Model
- c. Classification

4. Conclusion

- a. Model Reproducibility
- b. Discussion

Unsustained node Accessibility Dependency **Unsustained place** Place value

Source: Diagram conceptualized by Bertolini (1999, p. 202) and reinterpreted by Yang et Song (2021, p. 3) Redesign: Authors, 2024

Node Place Model

Evaluating the quality of transit services and the intensity of activities within a specific area to determine **the potential for transit-oriented development** [1; 2]:

- Shift from planning for mobility to planning for sustainable accessibility, by achieving integration between transport and land-use planning [3; 4];
- **Multi-criteria** analysis tool and **normative typology** of station areas [5].

- [1] Bertolini, L. (1996). Nodes and Places: Complexities of Railway Station Redevelopment. European Planning Studies, 4(3), 331-345. <u>https://doi.org/10/fr4z3r</u>
- [2] Bertolini, L. (1999). Spatial Development Patterns and Public Transport: The Application of an Analytical Model in the Netherlands. Planning Practice and Research. https://doi.org/10/fckj75
- 3] Banister, D. (2008). The Sustainable Mobility Paradigm. *Transport Policy*, 15(2), 73-80. <u>https://doi.org/10/csng4v</u>
- [4] Caset, F., Vale, D. S., & Viana, C. M. (2018). Measuring the Accessibility of Railway Stations in the Brussels Regional Express Network: A Node-Place Modeling Approach. Networks and Spatial Economics, 18(3), 495-530. https://doi.org/10/gjt5w3
- Figgins, C. D., & Kanaroglou, P. S. (2016). Forty Years of Modelling Rapid Transit's Land Value Uplift in North America: Moving Beyond the Tip of the Iceberg. Transport Reviews, 36(5), 610-634. https://doi.org/10/ggw575

Node value

RAILENIUM

A Growing Model

Since the conceptualization of the tool between 1996 and 1999, the number of studies dedicated to this approach has continued **to grow significantly** [6]:

• 79 bibliographic references listed.

- 6] Ibrahim, S., Ayad, H., & Saadallah, D. (2022). Planning Transit-Oriented Development (TOD): A Systematic Literature Review of Measuring the Transit-Oriented Development Levels. International Journal of Transport Development and Integration, 6, 378-398. https://doi.org/10/gr9c72
- [7] Nigro, A., Bertolini, L., & Moccia, F. D. (2019). Land Use and Public Transport Integration in Small Cities and Towns: Assessment Methodology and Application. Journal of Transport Geography, 74, 110-124. https://doi.org/10/gf8zgr

RAILENIUM

1. Spatial Temporal Contextualization: Adopting an intermodal perspective by considering the contributions of cycling, while analyzing temporal dynamics;

- **2. Calibration**: Enhancing the model by incorporating new relevant dimensions to improve the Transit-Oriented Development concept;
- **3. Geographic Scale**: Applying the revised model to the Hauts-de-France Region, characterized by both urban and rural areas;
- **4. Descriptive Statistics**: Assessing the influence of various variables on station attractiveness;
- **5. Classification**: Contextualizing nodes and their surroundings to develop a typology of stations;
- **6. Automation**: Developing automated techniques for data collection and analysis to ensure the model's reproducibility.

Research Aims

Photography: Moinse, 2022

HAUTS-DE-FRANCE REGION

- Segregated Cycle Lane
- Cycling Path

Source: Authors, 2024

Focus on the Hauts-de-France administrative region:

• Formed in 2015 from the merger of the Nord-Pas-de-Calais and Picardie Regions;

RAILENIUM

2. Methodology

- Well-developed transport network, including rail connections;
- Densely interconnected with a polycentric railway network, organized around the European Metropolis of Lille, the conurbation of the Mining Basin, medium-sized towns, and 'rurban' areas;
- **12.5 % rail modal share** in the region, compared to 11% on average in France;
- 2.2 % bicycle modal share, against 3.5 % average nationwide
 [8].

2. Methodology

RAILENIUM

European Metropolis of Lille

Station Areas

PedestrianandCyclingzones(buffersandisochrones)forhigh-speedandregionalrailstations,completedbymetroandtramwaystops(MultimodalHubs).

Size of station areas based on acceptable distances [9]:

- 1 km for walking;
- 3 to 4 km for cycling.

Moinse, D., & L'Hostis, A. (2024). Optimizing Intermodal Commuting by way of Detours and Breaks: Evidence of Micromobility Users in France. *Journal of Transport Geography*, 116(103821), 1-16. https://doi.org/10/gtkvs9

2. Methodology

RALENIUM

Main Indicators from the Literature

Legend

- Node and Ridership dimensions
- Place dimension
- Accessibility dimension
- Demographics dimension

4 dimensions

NPART Model:

- Node (Transit);
- Place (Development);
- Accessibility (Oriented);
- Ridership (Demand).

2. Methodology

RAILENIUM

AS (A)

Node Place Accessibility Ridership per Time (NPART)

Node (N) Place (P) High-speed train frequency **Population density P1** N2 Density Walkability **Regional train frequency P2 Employment density** N3 N4 Service span Residential land use N5 N6 Rail speed Commercial land use N7 **P4** Diversity Bikeability N8 P5 Industrial and office land use Number of directions Degree centrality Green space land use N9 POIs Local, urban and regional POIs N10 **Closeness centrality** P9 **P**7 **P8** Connectivity Land Value Residential and office real estate N11 Betweenness centrality P10 P11 Demographics Reachable stations within 1 hour N12 P12 Public housing Demand Management Access to the regional core (Lille) Household income P13 N13 N14 Access to the national core (Paris) N15 N16

Transit Facilities

Transit Performance

Network Metrics

Destination Accessibility

288 spatial temporal typologies Based on the type of area, time period, and the indicator weighting and classification methods Source: Authors, 2024

Influence on Ridership

Each indicator has been assigned a weight for both pedestrian and cycling isochrones, reflecting **its relative influence on ridership**.

RAILENIUM LUM Constante

3. Findings

金

ID	Indicators	PI	Cl	
Node				
N2	Daily frequency of high-speed service (weekend)	0.27	0.27	
N1	Daily frequency of high-speed service (weekday)	0.26	0.26	
N11	Betweenness centrality (shortest paths)	0.15	0.15	
Place				
P11	Industrial, commercial and office real estate	0.21	0.13	
P9	Superior POIs	0.16	0.15	
P8	Intermediate POIs	0.13	0.12	
Accessibility				
A7	Number of metro and tramway stops	0.31	0.28	
A6	Sharing bicycle station capacity	0.24	0.24	
A5	Bicycle parking capacity	0.17	0.17	

10/15

3. Findings

RAILENIUM

Accessible

- Pedestrian Isochrones (PI) Dependent Legend
- Class Class

12/15

	TOTAL	Accessibility	Dependency
Class 1	18	10	8
Class 2	151	2	149
Class 3	149	0	149
TOTAL	318	12	306

Cycling Isochrones (CI)

Pedestrian Isochrones (PI)

	TOTAL	Accessibility	Dependency
Class 1	34	19	15
Class 2	133	4	129
Class 3	151	0	151
TOTAL	318	23	295

Classification

3 classes of stations:

- High values across all dimensions (Class 1);
- Qualitative service and • surroundings, but links poorly connected (Class 2);
- Car-centric (Class 3). •

Extending station areas to a cycling scale doubles the number of nodes and their surrounding places considered 'accessible,' thereby upgrading them to **Class 1**.

4. Conclusion

C README MIT license

14/15

1. Codes for Generating Railway Station Neighborhoods

- Pedestrian and Cycling Buffers
- 🔹 Pedestrian and Cycling Isochrones 🗹

2. Codes for Spatial and Statistical Data Collection

Node (N) Transit	Place (P) Development	Accessibility (A) Oriented -	Ridership per Time (RT) Demand ==
N1: Frequency (Weekdays, High-speed Rail)	P1: Population Density	A1: Length of Walking Paths	RT1: Peak-Hour Ridership (Weekdays)
N2: Frequency (Weekends, High-speed Rail)	P2: Employment Density	A2: Intersection Density	RT2: Off-Peak Hour Ridership (Weekdays)
<u>N3: Frequency (Weekdays,</u> <u>Regional Rail)</u> 🗹	P3: Residential Land Use	A3: Pedshed and Bikeshed Ratios	RT3: Peak-Hour Ridership (Weekends)
N4: Frequency (Weekends, Regional Rail)	P4: Commercial and Public Service Land Use	A4: Length of Cycling Paths	RT4: Off-Peak Hour Ridership (Weekends)
<u>N5: Service Span</u> <u>(Weekdays)</u> ✓	P5: Office and Industry Land Use	A5: Cycling Parking Capacity	
<u>N6: Service Span</u> <u>(Weekends)</u> ☑	P6: Green Space Land Use	A6: Public Sharing Bicycles	
N7: Commercial Rail Speed 🗹	P7: Proximity Points of Interest	A7: Metro and Tramway Stops	
N8: Number of Directions	P8: Intermediate Points of	A8: BRT and Bus	

Model Reproducibility

0 i=

Automation of data collection and analysis process.

Exclusively relied on **coding**, avoiding the use of tools such as GIS.

RAILENIUM

Coding publicly shared in a *GitHub* repository:

- Tutorial for generating geographical areas;
- Collecting and measuring Node, Place, Accessibility, and Ridership per Time data;
- Analyzing data.

4. Conclusion

Combining Geography and Statistics

Main Findings:

- Positive association between Node (Transit), Place (Development), Accessibility (Oriented), and Ridership (Demand);
- Integration of micro-mobility aligns with similar urban planning principles as **Bicycle-based TOD** [10];
- Statistical innovations;
- Intrinsic link between TOD and proximity on a multi-scalar level;
- Recommendations to urban planners and policymakers: Optimizing urban development strategies and improving connectivity and accessibility by identifying high-potential areas (Class 2).

Perspectives:

• **Territorial diagnosis** to qualify the typology of stations and provide a more nuance and micro-geographic perspective, based on a case study of a **railway corridor** encompassing the 3 types of stations and station areas.

Lee, J., Choi, K., & Leem, Y. (2016). Bicycle-Based Transit-Oriented Development as an Alternative
 to Overcome the Criticisms of the Conventional Transit-Oriented Development. *International Journal of Sustainable Transportation*, 10(10), 975-984. <u>https://doi.org/10.1080/15568318.2014.923547</u>

Dylan Moinse

Laboratoire Ville Mobilité Transport Gustave Eiffel University <u>dylan.moinse@univ-eiffel.fr</u>

Alain L'Hostis

Laboratoire Ville Mobilité Transport Gustave Eiffel University

Ahad Amini Pishro

Sichuan University of Science and Engineering

Ndeye Aïta Cissé

Laboratoire Ville Mobilité Transport Gustave Eiffel University

Xavier Lehmann

Laboratoire Ville Mobilité Transport Gustave Eiffel University

Shiquan Zhang

SiChuan University

Olivier Theureaux

Laboratoire Ville Mobilité Transport Gustave Eiffel University, Railenium

Heythem Adjeroud

Laboratoire Ville Mobilité Transport Gustave Eiffel University

Liu Yuetong SiChuan University

Huqi Xiao SiChuan University

Related publications by authors:

Moinse, D., & L'Hostis, A. (2024). Optimizing Intermodal Commuting by way of Detours and Breaks: Evidence of Micromobility Users in France. *Journal of Transport Geography*, 116(103821), 1-16. <u>https://doi.org/10/gtkvs9</u>

Amini Pishro, A., L'Hostis, A., Chen, D., Chen, M., Amini Pishro, M., Zhang, Z., Li, J., Zhao, Y., & Zhang, L. (2023). The Integrated ANN-NPRT-HUB Algorithm for Rail-Transit Networks of Smart Cities: A TOD Case Study in Chengdu. *Structure*, 13, 24. https://doi.org/10/gsmfkx

Amini Pishro, A., Yang, Q., Zhang, S., Amini Pishro, M., Zhang, Z., Zhao, Y., Postel, V., Huang, D., & Li, W. (2022). Node, Place, Ridership, and Time Model for Rail-Transit Stations: A Case Study. *Scientific Reports*, 12(1), Article 1. https://doi.org/10/gtq7fd

Moinse, D., Goudeau, M., L'Hostis, A., & Leysens, T. (2022). Intermodal Use of (e-)Scooters with Train in the Provence-Alpes-Côte d'Azur Region: Towards Extended Train Stations Areas? *Environmental Economics and Policy Studies*, 34. https://doi.org/10/gqpz86

Many thanks for your attention!

金

RAILENIUM

Literature Review

ed Vehi

al Vehicles

RAILENIUM

Isochrones

金

1 km

RAILENIUM

Size of Station Areas

Legend		
Stations:	Network:	Studied Areas:
Train Station	Metro or Tramway Line	Pedestrian Buffer or Isochrone
Urban Rail Transit Stations		Cycling Buffer of Isochrone

Lille Fla République Beaux-Arts ille Grand Pala 3.14 km² Legend 0.5 km

Stations: Lille Flandres and Lille Europe

• Urban Rail Transit Stations

----- Railway Line

Networks:

Metro or Tramway Line

— Voronoi Diagram

Pedestrian Buffer

Studied Areas:

Cycling Buffer

Pedestrian Isochrone

Cycling Isochrone

金

Data Collection

Legend

Transit Network:

- Stud
- Saint-Omer Railway Station
- ----- Railway Line

Census Grid:

RAILENIUM

Correlation Matrices

æ

RAILENIUM

Dimension	ID	Indicators
Ridership per Time (<i>RT</i>)	RT1	Weekday (12 AM to 6 AM)
	RT2	Weekday (6 AM to 10 AM)
	RT3	Weekday (10 AM to 3 PM)
	RT4	Weekday (3 PM to 8 PM)
	RT5	Weekday (8 PM to 12 AM)
	RT6	Weekend

Source: Authors, 2024

Sampling: 318 station areas

RAIL ESCARCH & INNOVATION

Classes 1 2 3

Classes 1 2

Class 1 Class 1

Class 1

Class 1

Class 1

Class 1

Classes 1 3

Classes 1 2

Classes 1 2

Classes 1 2

Class 1

Class 1 Class 2

Profile of Stations

Pedestrian Isochrones (PI)

Discrepancies between walking and cycling scales

PI +

Population density (*P1*) Bus stops (*A8*) Employment density (*P2*) Pedestrian network (*A1*) Cycling network (*A4*) Bicycle parking capacity (*A5*) Shared bicycles (*A6*) Motorization rate (*A11*)

CI +

Residential land use (P3) Office and industry land use (P5) Green spaces (P6) Public housing (P12) Average income (P13) Superior POIs (P9) Cycling network (A4)

Source: Authors, 2024