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Reduced Basis method for finite volume simulations of parabolic PDEs
applied to porous media flows

Jana Tarhini∗ Sébastien Boyaval† Guillaume Enchéry∗ Quang-Huy Tran∗

June 11, 2024

Abstract
Numerical simulations are a highly valuable tool to evaluate the impact of the uncertainties of various model

parameters, and to optimize e.g. injection-production scenarios in the context of underground storage (of CO2
typically). Finite volume approximations of Darcy’s parabolic model for flows in porous media are typically run
many times, for many values of parameters like permeability and porosity, at costly computational efforts.

We study the relevance of reduced basis methods as a way to lower the overall simulation cost of finite volume
approximations to Darcy’s parabolic model for flows in porous media for different values of the parameters such
as permeability. In the context of underground gas storage (of CO2 typically) in saline aquifers, our aim is
to evaluate quickly, for many parameter values, the flux along some interior boundaries near the well injection
area—regarded as a quantity of interest—. To this end, we construct reduced bases by a standard POD-Greedy
algorithm. Our POD-Greedy algorithm uses a new goal-oriented error estimator designed from a discrete space-
time energy norm independent of the parameter. We provide some numerical experiments that validate the
efficiency of the proposed estimator.

Keywords

single-phase flow, porous media, finite volumes, reduced basis, goal-oriented error estimate

Mathematics subject classification

35J50, 65M08, 65N15, 76S05

1 Introduction
In the context of geological storage of gases such as CO2, computational models of single phase Darcy flow are

useful to optimize the efficiency of injection, and to quantify uncertainties with a view to assessing the enduring
stability of the storage site. As concerns CO2, it is usually injected in underground storage sites such as depleted
oil and gas reservoirs or saline aquifers in sedimentary basins. In this work, we are mainly interested in the case of
saline aquifers.

In saline aquifers, the numerical simulation of single phase Darcy flows is very meaningful, in particular in a large
domain at basin scale where it is computationally costly. Indeed, brine is moved by the gas (CO2) injected outside
the storage area. In risk assessment studies, one needs to evaluate the pressure field in the surrounding aquifer
(typically along faults far from the storage domain) many times, for many values of the uncertain parameters .
Quantifying the impact of the uncertainties of model parameters, on the time evolution of the flux at underground
boundaries of the storage area, is also desired to optimize the injection process. For both purposes and given values
of the model parameters, the flow simulator computes the solution of a large linear system many times. This multi-
query setting induces costly computational efforts especially for large domains. To lower the overall simulation cost
of computations at many parameter values, we consider a Reduced Basis (RB) approach.

Many other methods have been proposed to reduce the time calculations in basin modeling and reservoir simu-
lation. For instance, in case of LGR methods, the grid is locally refined only in a region of interest depending on the
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local solution properties, whereas in other areas, where the solution is relatively smooth or uniform, grid cells can
be larger, leading to a smaller computational cost. Likewise, the Adaptive Mesh Refinement (AMR) method [4,29]
divides the computational domain into a hierarchy of grids and each grid is refined or coarsened by considering an
error estimate as the simulation progresses.

In this work, our approach consists rather in considering a reduced basis (RB) approach to replace many calls
to a parametrized High-Fidelity (HF) simulator at many parameter values, by calls to a less expensive Low-Fidelity
(LF) surrogate model with a certification of the error.

A RB procedure relies on an existing computational model, a parametrized HF simulator which can provide one
with numerical approximations of the model solutions at fixed parameter values. When the HF model consists in
large linear systems (one at each time step in a nonstationary flow simulation e.g.), a LF (reduced) computational
model is usually constructed by Galerkin projection of the HF model onto a linear subspace.

In the context of porous media flows, the choice of the appropriate numerical scheme to discretize the governing
equations in space is crucial to obtain a consistent approximation of the fluxes. Finite-difference [5, 26], finite-
volume [15] or finite-element [11, 14] methods have been classically used in industrial contexts such as reservoir
engineering. In particular the finite-volume two-point flux approximation is a reference method in this field because
of its simplicity and its stability properties (the discrete operator turns out to be an M-matrix). However, once the
grids are not Λ-orthogonal 1, this scheme is no more consistent. Over the past years, new discretization methods
have been proposed to satisfy this property: multi-point flux approximations [1], mimetic finite-differences [6],
virtual elements [3], hybrid [16] or vertex-centred finite-volumes [17] to quote just a few of them. We also mention
non-linear schemes [23,24,27] that were designed in order to obtain monotone approximations and properties such
as the positivity of the solutions or the maximum principle on these grids. In this work, we consider the average
multi-point flux approximation (MPFA-FV) method which was for instance studied in [27]. That approximation
does not preserve the positivity of the solutions or the maximum principle, but it is consistent on grids that are not
Λ-orthogonal.

In the present work, given a parametrized HF model that discretizes Darcy’s parabolic model by a MPFA-FV
method resulting in a time-series of (large) linear systems, see Section 2, we then standardly construct a parametrized
LF model by projecting (the pressure field solution to) Darcy flows at each time step, whatever the parameter value,
onto one (single) linear subspace by Galerkin method.

To that aim, we adopt a standard two-stage procedure [18, 21]. First, in a costly offline stage, we identify a
linear approximation space spanned by (snapshots of) simulations at relevant parameter values. During this stage,
HF simulations with many degrees of freedom N (several thousands of cells) are run at least N times, N being
the dimension of the linear approximation space. During the offline stage, a LF reduced computational model is
also numerically constructed. Next, in an online stage, the values of solutions and the quantities of interests at
yet-unexplored parameter values are evaluated numerically using the LF (reduced) computational model, if possible
with a computational complexity independent from N .

The offline selection of a good linear subspace for Galerkin projection is crucial to the quality of the LF model,
i.e. to control the approximation error of the LF model with respect to the HF model at every parameter values.
Regarding the applications of the RB method to parametrized HF simulator that are based on (finite-volume
discretizations of) parabolic PDEs, a standard selection technique is the POD-Greedy method based on a reliable
a posteriori error estimation, see e.g. [21].

In the present work, we propose new a posteriori error estimators. Like e.g. [21], our a posteriori error estimators
evaluate the approximation by a LF model of a HF model discretizing parabolic PDEs by the finite volume method (a
MPFA-FV discretization in our application case to single phase Darcy flows). However, by contrast with standard
RB literature, we use a discrete space-time energy norm of L2([0, T ]; H1(Ω))-type that is independent from the
parameter. We also provide goal-oriented estimators for a linear QOI, like in [18, 20] (where a parametrized HF
model based on finite element approximations is reduced using another algorithm than POD-Greedy to construct
the LF model).

To assess the accuracy of our error estimate, and the performance of our new certified RB approach (i.e. the
dimension of the reduced LF model in a multi-query scenario for monophasic Darcy flows parametrized by the
permeability), we also perform numerical simulations.

Our HF model based on MPFA-FV discretization is non-affine in the permeability parameter: we use the
Empirical Interpolation Method (EIM) [10,25] for the construction of a LF model independent from N . Moreover,

1A grid is Λ-orthogonal if the product of the permeability tensor Λ with the face normal is orthogonal to the line joining the cell
and face centers.
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to construct a lower bound of the coercivity constant (required by a rigorous error estimation) we use the Successive
Constraint Method (SCM) [12, 22]. It is noteworthy that, for accurate a posteriori error estimation taking care of
machine precision, we numerically compute quadratic-in-the-parameter forms (in the dual norm of the residual) as
in [7], using a specific orthonormal basis to represent the residual, while a traditional offline/online decomposition [8]
leads to numerical precision issues.

Our numerical results show that the proposed a posteriori error estimation guarantees a reliable evaluation of
a single-phase Darcy flow model and accurately quantify the solution error. We also proved that the goal-oriented
estimation for a given linear QOI offers for a small dimension of the reduced model a very good precision for the
output error.

This paper is outlined as follows. In Section 2, we present a discretization of single-phase flow (SPF) equations in
porous media based on the multi-point flux approximation that defines our HF numerical model. Section 3 discusses
the concept of a goal-oriented method applied to the SPF problem. We derive the a posteriori error estimation
for the primal and dual problems as well as for the output model. We also present the POD-Greedy algorithm to
construct the reduced basis. In Section 3.5, we additionally elaborate on the computation of the residual dual norm
in order to avoid the impact of round-off errors on the error bound. We then numerically study the behavior and
efficiency of the proposed estimate in Section 4. Finally, concluding remarks are given in Section 5.

2 A parametrized High-Fidelity model
In this section, we introduce the PDE modelling of single phase porous media flows, and its discretization by a

finite volume method which defines our parametrized HF simulator in the sequel.

2.1 A Darcy model of single phase porous media flows
We consider the flow of a slightly compressible fluid saturating a porous rock within a connected and bounded

polygonal domain Ω of R3 and a time T > 0. The boundary ∂Ω = ΓD ∪ ΓN of Ω is partitioned into a part where
Dirichlet boundary conditions are applied, and a part where homogeneous Neumann boundary conditions are used.

The balance of the water volume combined with Darcy’s law and with initial and boundary data leads to

ϕct∂tp−∇ · (Λ(∇p + ρg∇z)) = q, in (0, T )× Ω, (2.1a)
Λ(∇p + ρg∇z) · n = 0, on (0, T )× ΓN, (2.1b)

p = pD, on (0, T )× ΓD, (2.1c)
p(x, t = 0) = p0(x), in Ω, (2.1d)

where p denotes the fluid pressure, Λ = κ/µ the mobility tensor, κ the rock permeability tensor, µ the fluid viscosity,
ϕ the rock porosity, ct the total compressibility, ρ the fluid density, g the gravity constant and q(p) a well source
term to be precised later (in Section 2.2 after discretization). We designate by n the unit normal vector outside the
domain.

A typical multi-query setting (with parameter variations to be addressed by the RB method), occurs when the
permeability tensor κ is uncertain. We here assume that the domain is made up of two areas, corresponding to two
rock types (a reservoir one and a cap rock) each with constant isotropic permeabilities κ1 or κ2 (see e.g. Fig. 2.1)
so that

Λ =

Λ 0 0
0 Λ 0
0 0 Λ


where Λ(x) =

∑2
i=1

κi

µ 1(i)(x) and 1i denotes the indicator function of the region i.
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Figure 2.1: Typical domain configuration.

Throughout this work, we consider the storage area (S) with boundaries

Γint = {y1} × [0, z1] ∪ {y2} × [0, z1] ∪ [y1, y2]× {z1},

where we seek to predict the time evolution of the flux s defined by

s = −
∫

Γint

Λ(∇p + ρg∇z) · n dS (2.2)

over Γint for many values of κ1 and κ2.

2.2 Finite volume discretization
The single-phase flow equations are first discretized in time using the implicit Euler method, next in space using

a finite volume method. Choosing a constant time step

∆t = T

N
, N ∈ N∗ ,

we consider at each time iteration n ∈ {0, . . . , N − 1} an approximation pn+1 ≈ p(tn+1) at tn+1 = (n + 1) ∆t
solution to

ϕct
pn+1 − pn

∆t
−∇ ·

(
Λ(∇pn+1 + ρg∇z)

)
= qn+1, (2.3a)

Λ(∇pn+1 + ρg∇z) · n = 0, (2.3b)
pn+1 = pD. (2.3c)

The space discretization is performed using an admissible mesh of Ω, defined by a triplet D = (T , E ,P) where :

• T is a finite set of non empty compact convex polygonal sub-domains of Ω (the set of cells), called control
volumes such that Ω =

⋃
K∈T

K. For all K ∈ T , we denote by mK > 0 its measure and set ∂K
def= K \K.

• E is a family of subsets of Ω (the set of faces) such that for any K ∈ T , there exists a subset EK of E where
∂K =

⋃
σ∈EK

σ. For any (K, L) ∈ T 2 with K ̸= L, either the (d − 1) Lebesgue measure of K ∩ L is 0 or

K ∩ L = σ for some σ ∈ E , with σ = K|L (an interior face). We denote by mσ the (d − 1)-dimensional
measure of σ. The sets of inner and boundary faces are denoted by Eint and Eext respectively.

• P = {xK}K∈T is a collection of points within Ω indexed by T (called the cell centers, not required to be the
barycenters) s.t. xK ∈ K and K is star-shaped with respect to xK .

For each cell K ∈ T and face σ ∈ EK , nK,σ denotes the unit vector normal to σ and pointing outward to K.
Additionally, for any cell K ∈ T and any function Φ belonging to L1(K), we define ⟨Φ⟩K

def= m−1
K

∫
K

Φ dx.
Given an admissible mesh, numerically computable approximations pn

K ≈ ⟨pn⟩K are defined after space dis-
cretization by a finite volume method. We first integrate (2.3a) over a cell K to obtain∫

K

ϕct
pn+1 − pn

∆t
dx−

∫
K

∇ · (Λ(∇pn+1 + ρg∇z)) dx =
∫

K

qn+1 dx. (2.4)
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Applying Green’s formula, we can transform the first two integrals and recast (2.4) as

mK ϕKct
⟨pn+1⟩K − ⟨pn⟩K

∆t
−

∫
∂K

Λ(∇pn+1 + ρg∇z) · nK dγ =
∫

K

qn+1 dx. (2.5)

By decomposing the boundary ∂K into faces, we get

mK ctϕK
⟨pn+1⟩K − ⟨pn⟩K

∆t
−

∑
σ∈EK

∫
σ

Λ(∇pn+1 + ρg∇z) · nK,σ dS =
∫

K

qn+1 dx,

which leads one to consider the following numerical scheme

mK ϕKct(pn+1
K − pn

K) + ∆t
∑

σ∈EK

F n+1
K,σ = ∆t mK qn+1

K (2.6)

with numerical fluxes F n+1
K,σ ≈ −

∫
σ

Λ(∇pn+1 + ρg∇z) ·nK,σ dS and numerical source terms qn+1
K that allow for the

numerical computation of (pn+1
K )K∈T given (pn

K)K∈T .
The Peaceman model [13] is used here for the well source term qn+1

K = m−1
K

∫
K

qn+1 dx. We suppose that the
well is vertical and the perforations are oriented in the z-direction. The well model is then given by

qn+1
K = WIK(pbh − pn+1

K − ρg(zbh − zK)), (2.7)

where pbh is the bottom hole pressure and WIK is the Peaceman well index2 in a perforated cell K.
The flux -

∫
σ

Λ(∇pn+1 + ρg∇z) ·nK,σ dS is numerically approximated using the average multi-point flux scheme
studied in [27]. For each interior edge σ ∈ Eint, with Tσ = {K, L} the approximated flux F n+1

K,σ is defined as a convex
combination of two linear fluxes F̃ n+1

K,σ and F̃ n+1
L,σ such that

F n+1
K,σ = µK,σF̃ n+1

K,σ − µL,σF̃ n+1
L,σ , with µK,σ ≥ 0, µL,σ ≥ 0, µK,σ + µL,σ = 1. (2.8)

A numerical flux formula as given by (2.8) is clearly conservative, i.e,

F n+1
K,σ + F n+1

L,σ = 0. (2.9)

To build the linear fluxes F̃ n+1
K,σ in (2.8), we approximate the pressure gradient∇p in the direction of the conormal

vector ⟨Λ⟩KnK,σ after expressing the conormal as a linear combination of the vectors (xσ′ − xK){σ′∈SK,σ}

⟨Λ⟩KnK,σ ≈
∑

σ′∈SK,σ

αK,σσ′(xσ′ − xK). (2.10)

The decomposition (2.10) is achieved numerically by means of an optimization procedure which aims at reducing
the sum of the coefficients αK,σσ′ and the size of the stencil SK,σ

def= {σ′ ∈ EK αK,σσ′ ̸= 0} within EK [28]. In
(2.10), xσ is not the face center but an harmonic averaging interpolation point

xσ = ωK,σyK + ωL,σyL + dK,σdL,σ

dL,στK,σ + dK,στL,σ
(τσ

K − τσ
L) (2.11)

2We adopt here a usual definition of the well index [13]

WI =
2πh3

√
λ1λ2

ln(re/rw) + sd

when

Λ =

[
λ1 0 0
0 λ2 0
0 0 λ3

]
h3 is the perforation height, rw is the well radius, sd is the skin factor i.e. a dimensionless number modeling the formation damage
caused by drilling, and re is the Peaceman radius defined as

re =
0.14[(λ2/λ1)1/2h2

1 + (λ1/λ2)1/2h2
2]1/2

0.5[(λ2/λ1)1/4 + (λ1/λ2)1/4]
,

where h1 and h2 are the grid sizes in x and y directions.
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where
ωK,σ = dL,στK,σ

dL,στK,σ + dK,στL,σ
, ωL,σ = dK,στL,σ

dL,στK,σ + dK,στL,σ
, (2.12)

τK,σ = nK,σ⟨Λ⟩KnK,σ, τL,σ = nL,σ⟨Λ⟩LnL,σ, (2.13)
τσ

K = (ΛK − τK,σId)nK,σ, τσ
L = (ΛL − τL,σId)nL,σ, (2.14)

dK,σ, dL,σ are the distances of the cell centers to σ, yK , yL their projection on σ defined by (see Figure 2.2)

yK = xK + dK,σnK,σ, yL = xL + dL,σnL,σ.

xK xL

K
→

↓σ

dK,L

nK,f L

xK
xL

xσ

K

→

↓
σ

dK,σ

dL,σ

yK yLnK,σ

L

1

Figure 2.2: Harmonic averaging point.

The pressure trace at σ ∈ EK is consistently reconstructed as

Iσp =
∑

M∈{K,L}

ωM ,σpM , where
∑

M∈{K,L}

ωM ,σ = 1, ωM ,σ ≥ 0, (2.15)

using the same weights ωM ,σ as in (2.12) (for more details see [2]). With the previous approximations, the linear
fluxes read

F̃ n+1
K,σ = mσ

∑
σ′∈SK,σ

αK,σσ′ [(pn+1 + ρgz)K,σ′ − (pn+1
K + ρgzK)], (2.16)

where we used the notation

(u)K,σ =
{

Iσu if σ = K|L,
uσ otherwise.

(2.17)

Finally, to define the numerical flux F n+1
K,σ , the weights µK,σ and µL,σ can be chosen in different ways. In this

work, we set µK,σ = µL,σ = 1
2 if σ = K|L and µK,σ = 1 if σ ⊂ ∂Ω. Let us remark that in (2.16), the average value

of the boundary condition (2.1c) is used on the face σ′ if σ′ ⊂ ΓD. An additional unknown pσ′ is added if σ′ ⊂ ΓN
which can be computed by adding the homogeneous Neumann condition to the discrete system, namely:

F n+1
K,σ = 0.

Our numerical output quantity of interest (QOI) s is then defined as

sn+1 =
∑

σ=K|L
σ⊂Γint

F n+1
K,σ . (2.18)

Our HF model consists in the solutions of the N discrete linear systems obtained after assembling equations
(2.6) for all K ∈ T , n ∈ {0, . . . , N − 1}

(M + ∆tA)pn+1
M = Mpn

M + ∆t b, (2.19)

see also (3.1) below, where

• A ∈ RN ×N is a matrix containing the terms αK,σσ′ , with N = Nc + Nb (Nc is the total number of cells and
Nb the number of boundaries where we have imposed Neumann boundary condition),
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• M ∈ RN ×N is such that
M =

[
M c 0

0 0

]
,

where M c ∈ RNc×Nc is a diagonal matrix made of the quantities mK ϕKct,

• pn+1
M ∈ RN is a vector composed of the values of the pressure pn+1 in each element K ∈ T and on the edges

σ ⊂ ΓN ∩ ∂K,

• b ∈ RN contains the Dirichlet condition values as well as the source terms Qn+1
K .

The QOI (2.18) can be rewritten in
sn+1 = lTpn+1

M + c, (2.20)

with l ∈ RN . We want to reduce the computational cost associated with the multiple resolutions of equations (2.6)
and (2.20) that occur when changing the permeability values κ1 and κ2 and assembling the corresponding values
of A, b and l. We equip RN with the inner product ⟨·, ·⟩G∗ and the corresponding norm ∥ · ∥G∗ , where G∗ is
a symmetric positive definite matrix in RN ×N that will be defined in the sequel. The Euclidean norm on RN is
denoted by ∥ · ∥.

3 Reduced Basis technique in time-dependent setting
We now develop a goal-oriented RB procedure for HF model (2.19) and the QOI (2.20).
In Section 3.1, we define a LF model based on Galerkin projection. Then, in Section 3.2, we explain how to

compute a Galerkin projection subspace by a POD-Greedy approach. The crux of our POD-Greedy approach is
the minimization of an a posteriori error estimator of the QOI that is described in Section 3.4.

3.1 Low-fidelity model
We consider the discrete space-time problem

M + ∆tA 0 0 . . . . . . 0

−M M + ∆tA
. . . . . . ...

0 −M
. . . . . . . . . ...

... . . . . . . . . . . . . 0

... . . . . . . . . . 0
0 . . . . . . 0 −M M + ∆tA





p1
M
p2

M
...
...

pN−1
M
pN

M


= ∆t



b+Mp0
M

b
...
...
b
b


, (3.1)

in a multi-query setting where (3.1) has to be solved for many values of a parameter contained in A and b. In the
sequel, we generically denote ξ that parameter – which is simply (κ1, κ2) ∈ R2 in our application.

Numerical reduction (i.e. reduction of the computational cost without loss of accuracy) can be achieved by
replacing (3.1), for many parameter values, by its Galerkin projection onto a linear subspace spanned by a reduced
basis Zpr ∈ RN ×Npr , Npr ≪ N . The reduced solution pNpr,n+1 at time n + 1 is defined as

pNpr,n+1 = Zpr p̃
n+1, (3.2)

where p̃n+1 is the solution to(
ZT

pr MZpr + ∆t ZT
pr AZpr

)
p̃n+1 = ZT

pr MZpr p̃
n + ∆t ZT

pr b (3.3)

in the so-called online phase, once Zpr has been computed. To that aim, a reduced basis Zpr can first be computed
in a so-called offline phase, e.g. using a POD-Greedy method.
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3.2 POD-Greedy method

The aim of a POD-Greedy algorithm is to iteratively construct matrices ZN1
pr ∈ RN ×N1 , ZN2

pr ∈ RN ×N2 , . . .,
of rank N1 < N2 < . . . such that SpanZNi

pr is a subspace of the vector space SpanZNj
pr spanned by the column

vectors of ZNj
pr as soon as Ni ≤ Nj . At the end of the algorithm, ZNpr

pr ≡ Zpr is the so-called reduced basis useful
for Galerkin projection in (3.3), of dimension Npr ≪ N .

The final iteration is reached when some projection error is under a fixed tolerance ϵtol > 0, for instance

|||en|||pr(ξ) ≤ ϵtol ∀ξ ∈ Ξ,

where |||·|||pr is a norm on the HF space RN (see proposition 3.1),

en(ξ) = pn
M(ξ)− pNpr,n(ξ) (3.4)

is the "primal" reduction error at parameter value ξ, and Ξ := {ξ1, . . . , ξL} is a training set of parameter values.
Between two iterations, a scalar ric ∈ [0, 1] controls the increase Ni+1 − Ni: one only adds to ZNi

pr ∈ RN ×Ni the
largest Ni+1−Ni POD modes of a "snapshot" matrix (collecting the time evolution of the projection error at a new
selected parameter ξℓ) (see Algorithm 1). This type of basis-increase between two iterations has been introduced
in [21] and has remained a standard since, when one iteratively constructs a reduced basis with a greedy-type
algorithm that iteratively selects parameter values ξℓ1 , ξℓ2 , . . . ∈ Ξ so as to increase ZNi

pr ∈ RN ×Ni using the time
trajectory {pn+1

M (ξℓi
)}N−1

n=0 at iteration i.
The quality of the POD-Greedy selection (i.e. the accuracy reached by the approximation pNpr,n(ξ) ≈ pn

M(ξ)
for all n = 1, . . . , N and ξ ∈ Ξ) strongly depends on the parameter ξℓi

selected at iteration i. To that aim, we
propose to choose ξℓi as a maximizer of a new a posteriori estimator ∆N

pr(ξ) of the reduction error∣∣∣∣∣∣pN
M(ξ)− pNpr,N (ξ)

∣∣∣∣∣∣
pr ≤ ∆N

pr(ξ)

among all training parameter values ξ ∈ Ξ.

Algorithm 1 POD-greedy algorithm using ∆N
pr

1: Procedure Zpr = POD-Greedy(Nmax, ϵtol, Ξ, ric).
2: Npr = 1, δNpr = ϵtol + 1.
3: Take ξ1 ∈ Ξ, ℓ = 1 and set Ξℓ = {ξ1}.
4: Define Zpr = ∅.
5: while δNpr > ϵtol and Npr < Nmax do.
6: Compute pn

M(ξℓ) for 1 ≤ n ≤ N .
7: Set Spr :=

[
p1

M(ξℓ)− ProjZpr(p1
M(ξℓ))

∣∣ . . .
∣∣pN

M(ξℓ)− ProjZpr(pN
M(ξℓ))

]
.

8: Compute
[
z1| . . . |zδNpr

]
= POD(Spr, ric) using Algorithm 2.

9: Define ZNpr+δNpr
pr := orthonormalize(ZNpr

pr ∪
[
z1| . . . |zδNpr

]
) using Algorithm 3.

10: Compute δNpr = max
ξ∈Ξ

∆N
pr.

11: Set ξℓ+1 = arg max
ξ∈Ξ

∆N
pr.

12: Ξℓ+1 ← Ξℓ ∪ {ξℓ+1}.
13: Npr ← Npr + δNpr.
14: ℓ← ℓ + 1.
15: end while
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Algorithm 2 POD with ric
Input: Spr ∈ RN ×N , ric ∈ (0, 1)
Output: G∗-orthonormal

[
z1| . . . |zδNpr

]
.

1: for i← 1, . . . , N do
2: V i, σi i largest vector and eigenvalue pair of C = ST

prG
∗Spr

3: end for
4: δNpr ← 1

5: while EδNpr =

δNpr∑
n=1

λn

N∑
n=1

λn

< ric do

6: δNpr ← 1 + δNpr

7: zδNpr = 1√
σδNpr

SprṼ δNpr

8: end while

Algorithm 3 Gram-Schmidt with re-iteration
Input: vectors vi, i ∈ 1, . . . , Npr.
Output: orthonormal vectors vi.

1: for ℓ = 1, 2 do
2: for i← 1, . . . , Npr do
3: for j ← 1, . . . , (i− 1) do
4: vi ← vi − ⟨vi,vj⟩G∗ vj .
5: end for
6: end for
7: vi = vi/∥vi∥G∗ .
8: end for

3.3 A posteriori estimation of the primal error
We define the residue of pNpr,n+1 as the following linear form〈

r(pNpr,n+1),v
〉

= 1
∆t

〈
(M + ∆tA)pNpr,n+1 −MpNpr,n −∆tb, v

〉
,∀v ∈ RN (3.5)

which we also denote r(pNpr,n+1) = rn+1 for the sake of simplicity. The residual dual norm is next defined as

∥rn+1∥−1 = sup
v∈RN

⟨rn+1,v⟩
∥v∥G∗

(3.6)

and we now propose to evaluate the primal reduction error eN a posteriori (with a computable estimator ∆N
pr)

using a new space-time energy norm |||·|||pr independent from the parameter ξ.

Proposition 3.1 (Energy a posteriori error estimate for the primal problem). Denote A = 1
2 (A +AT ) + 1

2 (A −
AT ) := Asym +Askew the symmetric and skew-symmetric of matrices A. For any ξ, given lower bounds

αAsym,LB(ξ) ≤ inf
v∈RN

vTAsymv

∥v∥2
G∗

:= αAsym(ξ) (3.7)

αG,LB(ξ) ≤ inf
v∈RN

vT (M + ∆tAsym)v
∥v∥2

G∗
:= αG(ξ) (3.8)

there holds ∣∣∣∣∣∣eN
∣∣∣∣∣∣

pr :=
( N∑

m=1
⟨em,Mem⟩+ ∆t

N∑
m=1
⟨em,A∗

syme
m⟩

)1/2
≤ ∆N

pr, (3.9)
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where the upper bound is taken as

∆N
pr :=

(
T + ∆t

αG,LB αAsym,LB

N∑
m=1
∥rm∥2

−1

)1/2
, (3.10)

and where A∗
sym is the symmetric part of A∗ for a specific parameter ξ∗.

Proof. See Appendix A.1.

Note that with Prop.3.1, the primal reduction error can be evaluated numerically using the same norm of
L2([0, T ]; H1(Ω))-type for all values of the parameter ξ, as opposed to [21, Prop. 4.3] e.g.
A typical choice for the symmetric and positive definite matrix G∗ (in our numerical results of Section 4 e.g.) is

G∗ = M + ∆t A∗
sym

which allows for the simplifications
∣∣∣∣∣∣eN

∣∣∣∣∣∣2
pr =

∑N
m=1 ∥em∥2

G∗ and

αG(ξ) = ∆tαAsym(ξ) + αM (3.11)

where αM := infv∈RN
vT Mv
∥v∥2

G∗
can be computed once for all, independently of the parameter ξ.

3.4 A posteriori estimation of the QOI error
In our goal-oriented setting, one is mostly interested by the QOI (2.20) for many values of ξ

⟨l,pn
M⟩ = sn. (3.12)

Then, a reduced basis can in fact be constructed after modifying the POD-Greedy Algorithm 1 based on ∆N
pr

into a POD-Greedy based on an a posteriori estimator ∆N
s of the QOI reduction error, see Algorithm 4.

To define an a posteriori estimator ∆N
s for a QOI linear in the primal problem, let us now introduce for all

n = 1, . . . , N a dual problem which evolves backward in time

Mψn
M,n = −l, (3.13a)

(M + ∆tAT )ψm
M,n = Mψm+1

M,n m = 0, . . . , n− 1. (3.13b)

Since M , AT and l do not depend on time, we only solve once the following problem:

MΨN
M = −l, (3.14a)

(M + ∆tAT )Ψn
M = MΨn+1

M n = 0, . . . , N − 1. (3.14b)

Then we appropriately shift the results by defining

ψm
M,n = ΨN−n+m

M m = 0, . . . , n. (3.15)

Let us also introduce a reduced basis Zdu for the dual problem, such that at time t = n one computes an
approximation of the dual solution in (3.14) as

ΨNdu,n = Zdu Ψ̃n, (3.16)

by a Galerkin projection, with Ψ̃n solution to(
ZT

du MZdu + ∆t ZT
du A

TZdu
)
Ψ̃n = ZT

du MZdu Ψ̃n+1. (3.17)

We denote by εn = Ψn
M−ΨNdu,n the dual reduction error at t = n and ϱn the residue associated with the dual

problem
⟨ϱn,v⟩ = 1

∆t

〈
(M + ∆t AT )ΨNdu,n −MΨNdu,n+1, v

〉
, (3.18)

with a residual dual norm taken as
∥ϱn∥−1 = sup

v∈RN

⟨ϱn,v⟩
∥v∥G∗

. (3.19)
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Proposition 3.2 (Energy a posteriori error estimate for the dual problem). Given the same data as in Prop. 3.1,
there holds for all ξ

∣∣∣∣∣∣εN
∣∣∣∣∣∣

du :=
( N−1∑

m=0
⟨εm,Mεm⟩+ ∆t

N−1∑
m=0
⟨εm,A∗

symε
m⟩

)1/2
≤ ∆N

du (3.20a)

in the space-time energy norm |||·|||du independent of the parameter ξ, with

∆N
du :=

(
T + ∆t

αG,LB αAsym,LB

N−1∑
m=0
∥ϱm∥2

−1

)1/2
. (3.20b)

Proof. See Appendix A.2.

Proposition 3.3 (Output error evaluation). Given the same data as in Prop. 3.1, one can define two reduced
outputs:

sNs,n =
〈
l,pNpr,n〉

+ ∆t

n−1∑
n′=0

〈
rn′+1, ΨNdu,N−n+n′〉

(3.21)

with approximation error bounded as

|sN − sNs,N | ≤ ∆t
( N∑

n=1
∥rn∥2

−1

)1/2
∆N

du =: ∆N
s , (3.22)

or
s̃Ns,n =

〈
l,pNpr,n〉

(3.23)
with approximation error bounded as

|sN − s̃Ns,N | ≤ ∆t
( N∑

n=1
∥rn∥2

−1

)1/2
∆N

du + ∆t

N−1∑
n=0

∣∣〈rn+1, ΨNdu,n〉∣∣ =: ∆̃N
s . (3.24)

Proof. See Appendix A.3.

The optimal selection between these two definitions, based on their accuracy and efficiency, will be elucidated in
Section 4. There, we present a comparative analysis of the numerical results obtained by POD-Greedy algorithms
with ∆N

s and ∆̃N
s , where the construction of Zdu is simultaneous to that of Zpr, see e.g. Algorithm 4.

3.5 Computational aspects
Having addressed the offline computation of the reduced basis, we notice that for online computations, the

reduced systems (3.3) and (3.17), required to evaluate (3.22), (3.24), depend on N . An affine decomposition
strategy is a classical way to ensure the rapid assembly of the reduced system in the online stage. In the following,
we also discuss the practical computation of the residual dual norm and the coercivity constant.

Affine decomposition. To construct the reduced matrix ANpr ∈ RNpr×Npr and reduced vector bNpr ∈ RNpr

defined as ANpr = ZT
prAZpr and bNpr = ZT

prb in equation (3.3), we still need to compute A and b depending on ξ.
This evaluation, which depends on N , is detrimental to the rapid online evaluation of the reduced basis solution
when varying the parameter values. To accelerate the construction, we rewrite A and b as

A =
Da∑

d=1
θa

d(ξ)Ad, b =
Db∑

d=1
θb

d(ξ)bd. (3.25)

In (3.25), Ad ∈ RN ×N , 1 ≤ d ≤ Da and bd ∈ RN , 1 ≤ d ≤ Db do not depend on ξ and they are computed
and stored once during the whole offline stage. Thus, for each new parameter ξ, we only have to compute the
two sets of scalars {θa

d(ξ)}Da
d=1 and {θb

d(ξ)}Db
d=1 and assemble ANpr and bNpr . This operation only depends on the

dimension Npr of the reduced basis. Note that, in our case this affine decomposition does not exist. We therefore
use the Empirical Interpolation Method (EIM) [19, 25] (see also Appendix C) to build such an approximation for
A and b. Taking into account the definition of the numerical flux given by (2.8), (2.15) and (2.17), we consider the
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Algorithm 4 POD-Greedy Algorithm with ∆N
s

1: Procedure [Zpr,Zdu] = POD-Greedy(Nmax, ϵtol, Ξ, ric).
2: Npr = 0, Ndu = 0.
3: δNs = ϵtol + 1.
4: Take ξ1 ∈ Ξ, ℓ = 1 and set Ξℓ = {ξ1}.
5: Define Zpr = ∅ and Zdu = ∅.
6: while δNs > ϵtol and Npr < Nmax do.
7: Compute pn

M(ξℓ) for 1 ≤ n ≤ N .
8: Compute Ψn

M(ξℓ) for 0 ≤ n ≤ N − 1.
9: Set Spr :=

[
p1

M(ξℓ)− ProjZpr

(
p1

M(ξℓ)
) ∣∣ . . .

∣∣pN
M(ξℓ)− ProjZpr

(
pN

M(ξℓ)
) ]

.
10: Set Sdu :=

[
Ψ0

M(ξℓ)− ProjZdu

(
Ψ0

M(ξℓ)
) ∣∣ . . .

∣∣ΨN−1
M (ξℓ)− ProjZdu

(ΨN−1
M (ξℓ))

]
.

11: Compute Z̃δNpr
pr = POD(Spr, ric).

12: Compute Z̃δNdu
du = POD(Sdu, ric).

13: Define ZNpr+δNpr
pr := orthonormalize(ZNpr

pr ∪ {Z̃
δNpr
pr }) using Algorithm 3.

14: Define ZNdu+δNdu
du := orthonormalize(ZNdu

du ∪ {Z̃
δNdu
du }) using Algorithm 3.

15: Compute δNs = max
ξ∈Ξ

∆N
s .

16: Set ξℓ+1 = arg max
ξ∈Ξ

∆N
s .

17: Ξℓ+1 ← Ξℓ ∪ {ξℓ+1}.
18: Npr ← Npr + δNpr.
19: Ndu ← Ndu + δNdu.
20: ℓ← ℓ + 1.
21: end while

vector v̂ =
(
(αK,σσ′)K∈T ,σ∈EK ,σ′∈SK,σ , (αK,σσ′ωM ,σ′)K∈T ,M∈Tσ′ ,σ∈EK ,σ′∈SK,σ ,σ′∈Eint

)
and seek for a linearization of

it depending on the parameter ξ ∈ Ξ through the operator IMEIM such that

v̂(ξ) ≈
MEIM∑
d=1

θd(ξ)ṽd := IMEIM [v̂(ξ)],

where θd(ξ) ∈ R. If such an approximation exists, we can then replace the terms of each vector ṽd, 1 ≤ d ≤ MEIM in
the flux formula and obtain the matrices Ad and the vectors bd, 1 ≤ d ≤ MEIM independently from the parameter
ξ. In terms of online cost, we need O((Da + 1)N2

pr) and O(DbNpr) to assemble the left-hand side and right-hand
side respectively in (3.3). The reduced system is then solved with O(NN3

pr).

Residual norm evaluation. Using the affine decomposition and the fact that ∥rn+1∥2
−1 = (rn+1)T (G∗)−1rn+1

(which results from Cauchy-Schwartz inequality), we can now rewrite the dual norm of the residual as

∥rn+1∥2
−1 =

Db∑
d=1

Db∑
d′=1

θb
d(ξ)θb

d′(ξ) bT
d (G∗)−1bd′ − 2

Da∑
d=1

Db∑
d′=1

θa
d(ξ)θb

d′(ξ) (p̃n+1)TZT
prA

T
d (G∗)−1bd′

+
Da∑

d=1

Da∑
d′=1

θa
d(ξ)θa

d′(ξ) (p̃n+1)TZT
prA

T
d (G∗)−1Ad′Zprp̃

n+1

− 2
∆t

Db∑
d=1

θb
d(ξ) (p̃n+1 − p̃n)TZT

prM(G∗)−1bd + 2
∆t

Da∑
d=1

θa
d(ξ) (p̃n+1 − p̃n)TZT

prM(G∗)−1AdZprp̃
n+1

+ 1
∆t2 (p̃n+1 − p̃n)TZT

prM(G∗)−1MZpr(p̃n+1 − p̃n). (3.26)

Its evaluation is very sensitive to round-off errors as stressed in [9]. Hence, a naive implementation of (3.26)
may suffer from accuracy issues. These can be circumvented by following the method of [7]. We first introduce the
Riesz’s representative of the residual R such that〈

R(rn+1),v
〉

G∗ = rn+1(v), ∀v ∈ RN .
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Using the affine decomposition (3.25), the Riesz representation of the primal residual is given by

R(rn+1) = 1
∆t

(G∗)−1MZpr(p̃n+1 − p̃n) +
Da∑

d=1
θa

d(ξ)(G∗)−1AdZprp̃
n+1 −

Db∑
d=1

θb
d(ξ)(G∗)−1bd. (3.27)

Setting Dr = Db + DaNpr + Npr, we define the coefficient vector r̂n+1 ∈ RDr as

r̂n+1 =
(

1
∆t

(p̃n+1 − p̃n)T , θa
1(ξ)(p̃n+1)T , . . . , θa

Da
(ξ)(p̃n+1)T , −θb

1(ξ), . . . , −θb
Db

(ξ)
)T

,

and the vector η̂ ∈ RDr as

η̂ =
(
(G∗)−1MZpr, (G∗)−1A1Zpr, . . . , (G∗)−1ADaZpr, (G∗)−1b1, . . . , (G∗)−1bDb

)T .

The Riesz representative is then written as

R(rn+1) =
Dr∑

d=1
r̂n+1

d η̂d, (3.28)

and the norm is given by

∥R(rn+1)∥2
G∗ =

〈 Dr∑
d=1

r̂n+1
d η̂d,

Dr∑
d=1

r̂n+1
d η̂d

〉
G∗

. (3.29)

The evaluation of (3.29) is divided into three steps:

1. We construct an orthonormal basis ζ of η̂ by applying a modified Gram-Schmidt algorithm with reorthogo-
nalization (see Algorithm 3).

2. We evaluate each term η̂d =
Dr∑
i=1
ηd,iζi, with ηd,i = ⟨η̂d, ζi⟩G∗ .

3. We compute (3.29) using

∥R(rn+1)∥2
G∗ =

〈 Dr∑
d=1

r̂n+1
d

( Dr∑
i=1

ηd,iζi

)
,

Dr∑
d=1

r̂n+1
d

( Dr∑
i=1

ηd,iζi

)〉
G∗

=
Dr∑
i=1

Dr∑
j=1

( Dr∑
d=1

r̂n+1
d ηd,i

)( Dr∑
d=1

r̂n+1
d ηd,j

)〈
ζi, ζj

〉
G∗

=
Dr∑
i=1

( Dr∑
d=1

r̂n+1
d ηd,i

)2
.

(3.30)

Steps 1 and 2 are performed in the offline stage, while steps 3 is completed during the online stage. We follow the
same strategy to define to residual dual norm of the dual problem.

Coercivity constant computation. The coercivity constant defined by (3.7) is the minimum of the generalized
Rayleigh quotient and we have that αAsym is the smallest eigenvalue of the following generalized eigenvalue problem

Asymv = λG∗v. (3.31)

To avoid the resolution of the generalized eigenvalue problem (3.31) which requires for instance O(N 3) using a QR
algorithm, we consider the successive constraint method (SCM) [12,22] (see also Appendix B) which, using (3.25),
provides an upper bound αAsym,UB(ξ) ∈ R and a lower bound αAsym,LB(ξ) ∈ R for the coercivity constant such that

αAsym,LB(ξ) ≤ αAsym(ξ) ≤ αAsym,UB(ξ).

The evaluation of these bounds do not depend on N . The coercivity constant αAsym in the a posteriori estimation
formula is then replaced by its corresponding lower bounds. Noting that, once αAsym,LB(ξ) is computed, we can
replace it in (3.11) to obtain a lower bound for αG.
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4 Numerical results
In this section, we numerically validate the theoretical results obtained for the reduction of problem (2.1). Our

main goals are to study both efficiency and computation cost of the proposed estimators.
The following parameters are considered:

µ = 1.5× 10−5 Pa.s, ct = 1.4× 10−7 Pa−1, g = 9.81 m/s2, ρ = 700 kg/m3,
pbh = 4.13× 107 Pa, ϕ = 0.2, rw = 0.1, zbh = 0 m.

We use pD = 105 Pa as Dirichlet boundary condition. The total duration of the simulation is T = 200 days and the
time step is ∆t = 10 days. The initial pressure is defined by

p0
K = pD − ρg(zK − zD),

where zD = 80 m.
We consider a three-dimensional domain

Ω = [−2.686 · 10−3 m, 1996 m]× [6.1 · 10−5 m, 1996 m]× [−1000.13 m, 2.686 · 10−3 m]

(see Figure 4.2), where an anticline is located in the middle. In depth, a high permeability zone whose values κ1
belong to [10−13, 10−12] is surrounded by two impermeable over- and under- burdens where the permeability κ2 is in
the range [10−17, 10−15]. To represent this geometry, a Corner Point Grid (CPG) with hexahedra and non-planar
faces, is used. The number of cells N is equal to 15210. A well is located in the center of Ω and perforated along
27 cells whose centers lie within the bounding box [945.819, 1049.83]× [946.32, 1049.62]× [−715.73,−537.624]. The
boundary Γint is given by

Γint = {818.87} × [818.87, 1125.95]× [−816.148,−490.622]
∪ {1125.95} × [818.87, 1125.95]× [−816.148,−490.622]
∪ [818.87, 1125.95]× {818.87} × [−816.148,−490.622]
∪ [818.87, 1125.95]× {1125.95} × [−816.148,−490.622]
∪ [818.87, 1125.95]× [818.87, 1125.95]× {−816.148}
∪ [818.87, 1125.95]× [818.87, 1125.95]× {−490.622}.

To apply the EIM, SCM and Greedy processes, a sample of parameter values Ξtraining = {ξ1, . . . , ξL} is generated
by randomly choosing ξ = {κ1, κ2} from their ranges and by taking L = 100. The distribution of the values is shown
in Figure 4.1. Ξtraining is used in the offline stage and a new sampling set Ξtest is introduced in the online stage
to validate the previous processes and, in particular, control the quality of the EIM and SCM. Ξtest is constructed
using unexplored parameters κ1 and κ2 from the same range of values given above.

10−13 10−12

10−17

10−16

10−15

κ1

κ2

1

Figure 4.1: Permeabilities’ distribution used for the offline stage
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(a) 3D domain (b) 2D slice

Figure 4.2: Spatial repartition of the permeabilities within Ω: the yellow zone includes cells having the high
permeability value κ1 and the low permeability value κ2 is used in the blue zone.

4.1 Affine decomposition of the scheme coefficients
To construct the reduced model, we start by applying the EIM as discussed in Section 3.5. We plot in Figure

4.3 the evolution of the interpolation error defined as

e∞
M,max = max

ξ∈Ξtraining

∥v̂(ξ)− IM[v̂(ξ)]∥L∞

∥v̂(ξ)∥L∞
, (4.1)

with respect to the number of parameters M. The final number of selected parameters is MEIM = 10.

2 4 6 8 10
10−16

10−13

10−10

10−7

10−4

10−1

M

E
rr
or

e∞M,max

1

Figure 4.3: Evolution of the EIM interpolation error (4.1) with respect to the number of selected parameters M.

To evaluate the accuracy of the linearization with MEIM = 10, we compute the maximum relative error for new
values of ξ ∈ Ξtest. On this sampling, we obtained

max
ξ∈Ξtest

∥v̂(ξ)− IMEIM [v̂(ξ)]∥L∞

∥v̂(ξ)∥L∞
= 4.25 · 10−16.

4.2 Bounds on the coercivity constants
We consider the successive constraint method to compute a lower bound for the coercivity constant αAsym

defined in (3.7). We use the same training set Ξtraining and the affine decomposition obtained with the EIM. For
this test, we have used M1 = M2 = 5 and tol = 1e − 04 (see Appendix B). Since MEIM = 10, we have to solve 10
eigenvalue problems to define B. The offline greedy algorithm 5 generates a parameter set ΞM of dimension M = 20.
Again to check the quality of the SCM result in the online stage, we compute lower and upper bounds for αAsym

for both samplings. More precisely, we compute the values of the ratio

rAsym(ξ) =
αAsym(ξ)− αAsym,LB(ξ)

αAsym,UB(ξ)− αAsym,LB(ξ) ,

and observe that rAsym is in the range [0.999, 1.00479] for all ξ belonging to Ξtraining and Ξtest.
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4.3 POD-Greedy algorithm
As a first test, we construct the reduced model obtained with a POD-Greedy algorithm and the a posteriori

estimator ∆N
pr. We define the following errors

eN
pr,max = max

ξ∈Ξ

∣∣∣∣∣∣eN
∣∣∣∣∣∣

pr, ∆N
pr,max = max

ξ∈Ξ
∆N

pr, ηN
pr,max = max

ξ∈Ξ

∆N
pr

|||eN |||pr
,

where eN and ∆N
pr are given by (3.4) and (3.10) respectively. Figure 4.4 shows the evolution of the a posteriori

error estimator ∆N
pr,max along with the true error eN

pr,max with respect to the basis dimension Npr. In Figure 4.4a,
the training parameter set Ξtraining is used to evaluate these error indicators, while Ξtest is used in Figure 4.4b
following the same sequence of introduction of basis vectors as in POD-Greedy process. The results confirm that
the proposed estimator is reliable as it forms an upper bound of the true error in both cases. In the offline phase,
the POD-Greedy algorithm generates a basis of dimension Npr = 92, for which the maximum relative error defined
as

EN
pr,max = max

ξ∈Ξ

∣∣∣∣∣∣eN
∣∣∣∣∣∣

pr∣∣∣∣∣∣pN
M

∣∣∣∣∣∣
pr

,

reaches 4 ·10−10. To analyse the efficiency of the estimator, we detail in Table 1 the value of the effectivities ηN
pr,max

in the offline stage for different basis dimensions. We can see that the effectivities are quite good O(3) and the
estimator can be safely used to replace the true error.
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Figure 4.4: Maximum true and estimated errors as functions of the basis dimension for the primal problem using
the parameter samplings Ξtraining on the left and Ξtest on the right.

Npr EN
pr,max ηN

pr,max

5 1.04e-03 658.1
13 7.94e-05 1061.3
23 5.05e-05 2327.8
33 9.12e-07 1549.5
43 2.81e-07 1400.9
54 7.39e-08 1376.7
68 1.08e-08 677.4
80 7.46e-09 447.1
92 4e-10 392

Table 1: Effectivities of the primal a posteriori error estimate with respect to the basis dimension Npr in the offline
stage.
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In addition, we compare in Figure 4.5, the evolution of eN
pr,max with respect to the basis dimension Npr using a

POD-Greedy algorithm driven by different choices of the a posteriori error estimator, which are the ones presented
in [21] and defined as

∆̄pr,1,max =
( N∑

n=1

∆t

αAsym

∥rn∥2
−1

)1/2
, for G∗ = A∗, (4.2)

and

∆̄pr,2,max =
( N∑

n=1

∆t

αAsym

∥rn∥2
−1

)1/2
, for G∗ = M + ∆tA∗. (4.3)

For Npr < 60, eN
pr,max behaves in the same way as for the three choices. For Npr > 60, a slight difference appears

between the three curves. This trend occurs for both Ξtraining and Ξtest.

We define the a posteriori error estimators proposed by Martin as

∆N
Martin,1 =

N∑

m=1

∆t

αAsym

∥rm∥2−1, G∗ = A∗

and

∆N
Martin,2 =

N∑

m=1

∆t

αAsym

∥rm∥2−1, G∗ = M +∆tA∗.
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Figure 4.5: Maximum true error as a function of the primal basis dimension using Ξtraining on the left and Ξtest on
the right for a POD-Greedy algorithm driven by (3.10), (4.2) and (4.3).

Next, we build a reduced output by first considering the choice (3.21). We use a POD-Greedy algorithm detailed
in Algorithm 4 along with the a posteriori error estimator (3.22). We compare, in that case, the evolution of eN

s,max
and ∆N

s,max defined as

eN
s = |sN − sNs,N |, eN

s,max = max
ξ∈Ξ
|sN − sNs,N |, ∆N

s,max = max
ξ∈Ξ

∆N
s ,

with respect to the primal basis dimension Npr using Ξtraining and Ξtest. The results are given in Figure 4.6. We
notice that, although the reliability of the estimator is verified, ∆N

s is not efficient and the effectivities

ηN
s,max = max

ξ∈Ξ

∆N
s
eN

s

are quite large as shown in Table 2.
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Figure 4.6: Maximum true and estimated errors for the first choice of the reduced output as functions of the primal
basis dimension using the parameter samplings Ξtraining on the left and Ξtest on the right.

Npr Ndu ηN
s,max

5 10 2.11e+06
13 19 8.08e+06
24 32 9.83e+06
35 44 1.27e+08
47 56 7.21e+06
59 69 4.95e+06
73 84 1.47e+08
86 98 2.72e+08
103 114 1.08e+08

Table 2: Effectivities obtained with the posteriori error estimator (3.22) with respect to the primal and dual basis
dimensions Npr and Ndu in the offline stage.

We also observe that ηN
s,max becomes less efficient as the final simulation time is increased from T = 10 days to

T = 100 days (see Figure 4.7).
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Figure 4.7: Maximum true and estimated errors for the first choice of the reduced output as functions of the primal
basis dimension with T = 10 days (on the left) and T = 100 days (on the right).
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We also consider the output estimator presented in [18] as

∆̄s,1,max =
( N∑

n=1

∆t

αAsym

∥rn∥2
−1

N∑
n=1

∆t

αAsym

∥ϱn∥2
−1

)1/2
, for G∗ = A∗, (4.4)

and

∆̄s,2,max =
( N∑

n=1

∆t

αAsym

∥rn∥2
−1

N∑
n=1

∆t

αAsym

∥ϱn∥2
−1

)1/2
, for G∗ = M + ∆tA∗, (4.5)

and compare in Figure 4.8 the evolution of eN
s,max as a function of primal basis dimension Npr using a POD-Greedy

algorithm controlled by (3.22), (4.4) and (4.5). We observe that the true error is exactly the same using (3.22) and
(4.5).
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Figure 4.8: Estimated errors for the first choice of the reduced output as a function of the primal basis dimension
for a POD-Greedy algorithm driven by (3.22), (4.4) and (4.5) using Ξtraining on the left and Ξtest on the right.

We now employ the second definition of the output error (3.23) and estimator (3.24) and analyze the evolution
of the POD-Greedy algorithm in the offline and online stages. The results are shown in Figure 4.9. We define the
following errors

ẽN
s = |sN − s̃Ns,N |, ẽN

s,max = max
ξ∈Ξ
|sN − s̃Ns,N |, ∆̃N

s,max = max
ξ∈Ξ

∆̃N
s , η̃N

s,max = max
ξ∈Ξ

∆̃N
s

ẽN
s

.

Table 3 shows that the proposed estimator is very close to the true error and behaves better in terms of effectivity
compared to ηN

s,max: indeed, from Npr = 59, η̃N
s,max behaves as O(1). However, we observe that the first choice of

the reduced output (3.21) and the corresponding a posteriori error estimate (3.22) provide better results in terms
of accuracy and size of the basis dimensions: to obtain a precision of 1e− 10, we need a primal basis of dimension
Npr = 24 and a dual basis of dimension Ndu = 32 with the first choice while the second choice requires bases whoses
sizes are Npr = 72 and Ndu = 84. Finally, we introduce the output estimator presented in [18] as

¯̄∆s,1,max =
( N∑

n=1

∆t

αAsym

∥rn∥2
−1

N∑
n=1

∆t

αAsym

∥ϱn∥2
−1

)1/2
+ ∆t

N−1∑
n=0

∣∣〈rn+1, ΨNdu,n〉∣∣, for G∗ = A∗, (4.6)

and

¯̄∆s,2,max =
( N∑

n=1

∆t

αAsym

∥rn∥2
−1

N∑
n=1

∆t

αAsym

∥ϱn∥2
−1

)1/2
+ ∆t

N−1∑
n=0

∣∣〈rn+1, ΨNdu,n〉∣∣, for G∗ = M + ∆tA∗, (4.7)

and compare, in Figure 4.10, the evolution of ẽN
s,max using a POD-Greedy algorithm controlled by (3.24), (4.6) and

(4.7). We observe that the accuracy is the same when employing the estimators (3.24) and (4.7) and that the curve
related to (4.6) lies above the other curves for Npr < 70 and below them for Npr > 70.
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ẽN
s,max

∆̃N
s,max

(b) Online phase

2

(a) Offline phase

0 20 40 60 80 100
10−20

10−15

10−10

10−5

100

Basis dimension Npr

E
rr
or

eN
s,max

∆N
s,max

(a) Offline phase

0 20 40 60 80 100
10−20

10−15

10−10

10−5

100

Basis dimension Npr

E
rr
or

eN
s,max

∆N
s,max

(b) Online phase

0 20 40 60 80 100
10−20

10−17

10−14

10−11

10−8

10−5

Basis dimension Npr

e
N s,
m
a
x

∆N
s,max

∆̄N
s,1,max

∆̄N
s,2,max

(a) Offline phase

0 20 40 60 80 100
10−20

10−17

10−14

10−11

10−8

10−5

Basis dimension Npr

e
N s,
m
a
x

∆N
s,max

∆̄N
s,2,max

∆̄N
s,1,max

(b) Online phase

0 20 40 60 80 100 120
10−13

10−10

10−7

10−4

10−1

Basis dimension Npr

E
rr
or

ẽN
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Figure 4.9: Maximum true and estimated errors for the second choice of the reduced output as functions of the
primal basis dimension using Ξtraining on the left and Ξtest on the right.

Npr Ndu η̃N
s,max

5 10 103103
13 19 222673
24 32 2066.3
35 44 23.6
47 56 1266.5
59 69 1.26
72 84 1.06
85 99 1.34
100 115 1.18
113 129 1.0
125 143 1.01

Table 3: Effectivities for the a posteriori error estimator (3.24) with respect to the primal and dual basis dimensions
Npr and Ndu in the offline stage.
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Figure 4.10: Estimated errors for the second choice of the reduced output as a function of the primal basis dimension
for a POD-Greedy algorithm driven by (3.24), (4.6) and (4.7) using Ξtraining on the left and Ξtest on the right.

4.4 Computational time effort
Here we give an indication of the time spent at each stage of the construction and evaluation of the reduced

model.

Offline stage. We plot in Figure 4.11 the evolution of the computation times related to the different stages of
the reduced-basis construction as functions of the primal basis dimension Npr. The time is calculated as a factor
of the time u required to run one single high-fidelity simulation. Concerning the EIM and SCM algorithms, these
two procedures are applied once at the beginning of the offline stage before starting the POD-Greedy process. This
explains why their cumulated times appear as constant in the plot. These times amount to 100 × u seconds and
39×u seconds respectively. The cumulated time spent in the Greedy process is represented in blue up to Npr = 103.
For each greedy iteration, the given values include the times required to assemble and compute the reduced solutions
(3.2) and (3.16) and the residuals (3.27)–(3.30) for all parameters of the sampling. These operations depend on the
sizes Npr and Ndu and therefore increase as the Greedy process evolves. The "Greedy" time therefore includes the
time spent in assembling the reduced primal and dual systems (3.3) and (3.17) for all parameters of the sampling.
This time is represented under the label "LF assembly" too. It is quite significant in the offline stage since all
products involving the terms of the affine decompositions with the new bases matrices should be updated. This
cost is of course substantially reduced in the online stage once the bases are fixed. The cumulated calculation time
of the POD method is represented in Figure 4.11. It is linear with respect to Npr. It includes the times required to
run the high-fidelity simulations and the extractions of the POD modes. In both cases, for each selected parameter,
these times are roughly constant.
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Figure 4.11: Offline time computation effort.

Online stage. Given a new parameter value ξ ∈ Ξtest, with our implementation, the time used in the online
stage to compute pNpr,N and its corresponding reduced output at T = 200 days and with Npr = 92 is divided
by a factor of 10 compared to one HF run needed to obtain pN

M. The high-fidelity model (2.1) is solved using a
stabilized bi-conjugate gradient method with an incomplete LU preconditioner, where the tolerance is set to 10−14.
The reduced model (3.3) is directly solved using an LU-Decomposition.

5 Conclusion
In this work, we have discussed a reduced basis method for (finite volume approximations of) parabolic PDEs.

We have introduced a new rigorous a posteriori estimator to evaluate the reduction error in a new discrete space-
time energy norm independently of the parameter. We have performed numerical simulations in the context of
porous media flows (single-phase flows of slightly compressible fluid parametrized by the permeability) to assess
the reliability of the a posteriori error bound and its efficiency at selecting a reduced basis within a POD-Greedy
algorithm.

Our numerical results show that our new approach can efficiently reduce the computational cost of engineering
studies with many parameter values in the context of porous media flows, especially on choosing well the reduced
output in goal-oriented cases with linear QOIs. The discussed methodology can be also considered to estimate
different types of linear quantity of interests such as the pressure variation along faults far from the well injection
area. Indeed, understanding how injection activities affect pressure distribution in fault networks helps in mitigating
risks associated with CO2 migration, fault activation, and potential leakage into overlying aquifers.

A Proofs of various propositions

A.1 Proof of Proposition 3.1
Proof. For each v ∈ RN , we have

⟨(M + ∆tA)en,v⟩ =
〈
Men−1,v

〉
−∆t ⟨rn,v⟩. (A.1)

We apply en to (A.1). We apply Cauchy-Schwarz inequality and use (3.6). This leads to

⟨(M + ∆tA)en, en⟩ ≤ ∥M1/2en−1∥∥M1/2en∥+ ∆t ∥rn∥−1∥en∥G∗ . (A.2)

Now, recalling Young’s inequality (for c ∈ R, d ∈ R, ρ ∈ R+):

2|c| |d| ≤ 1
ρ2 c2 + ρ2d2, (A.3)
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and apply it twice: once for c = ∥M1/2en−1∥, d = ∥M1/2en∥ and ρ = 1 to get

2∥M1/2en−1∥ ∥M1/2en∥ ≤ ⟨Men−1, en−1⟩+ ⟨Men, en⟩ (A.4)

and another time for c = ∥rn∥−1, d = ∥en∥G∗ and ρ = √αAsym to obtain

2∥rn∥−1∥en∥G∗ ≤ 1
αAsym

∥rn∥2
−1 + αAsym ∥en∥2

G∗ . (A.5)

Now the definition of the coercivity constant (3.7) leads to

2∥rn∥−1 ∥en∥G∗ ≤ 1
αAsym

∥rn∥2
−1 + ⟨Asym e

n, en⟩. (A.6)

Combining (A.2), (A.4) and (A.6) yields

⟨Men, en⟩+ ∆t ⟨Aen, en⟩ ≤ 1
2 ⟨Men−1, en−1⟩+ 1

2 ⟨Men, en⟩

+ ∆t

2 ⟨Asym e
n, en⟩+ ∆t

2αAsym

∥rn∥2
−1.

(A.7)

Since ⟨Askew e
n, en⟩ = 0 and ⟨Asym e

n, en⟩ = ⟨Aen, en⟩, we obtain

⟨Men, en⟩ − ⟨Men−1, en−1⟩+ ∆t ⟨Asym e
n, en⟩ ≤ ∆t

αAsym

∥rn∥2
−1. (A.8)

Finally, we sum (A.8) over {1, . . . , n} and consider that e0 = 0 to get

⟨Men, en⟩+
n∑

m=1
∆t ⟨Asym e

m, em⟩ ≤
n∑

m=1

∆t

αAsym

∥rm∥2
−1. (A.9)

From (A.9), we have
N∑

n=1
⟨Men, en⟩ ≤ ∆t

αAsym

N∑
n=1

(N + 1− n)∥rn∥2
−1 ≤

T

αAsym

N∑
n=1
∥rn∥2

−1. (A.10)

As a consequence,
N∑

n=1
⟨Men, en⟩ ≤ T

αAsym

N∑
n=1
∥rn∥2

−1. (A.11)

On the other hand, using (A.9), we can write
n∑

m=1
⟨Asyme

m, em⟩ ≤ 1
αAsym

n∑
m=1
∥rm∥2

−1, ∀n ∈ {1, . . . , N}. (A.12)

Now (A.11) with (A.12) for n = N enable the following inequality
N∑

m=1

[
⟨Mem, em⟩+ ∆t ⟨Asym e

m, em⟩
]
≤ T + ∆t

αAsym

N∑
m=1
∥rm∥2

−1 (A.13)

where it is possible to use (3.8) and write

αG,LB

N∑
m=1

[
⟨Mem, em⟩+ ∆t ⟨A∗

sym e
m, em⟩

]
≤

N∑
m=1

[⟨Mem, em⟩+ ∆t ⟨Asym e
m, em⟩]

≤ T + ∆t

αAsym

N∑
m=1
∥rm∥2

−1

≤ T + ∆t

αAsym,LB

N∑
m=1
∥rm∥2

−1

(A.14)

i.e. an upper bound of the error that is independent of the parameter ξ as opposed to [21, Prop. 4.3].
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A.2 Proof of Proposition 3.2
Proof. We start by writing〈

(M + ∆tAT )εm,v
〉

=
〈
Mεm+1,v

〉
−∆t

〈
ϱm,v

〉
, ∀v ∈ RN ,

and then take v = εm to obtain〈
(M + ∆tAT )εm, εm

〉
= ⟨Mεm+1, εm⟩ −∆t

〈
ϱm, εm

〉
.

We apply Cauchy-Schwarz inequality and use (3.19)〈
(M + ∆tAT )εm, εm

〉
≤ ∥M1/2εm+1∥∥M1/2εm∥+ ∆t ∥ϱm∥−1 ∥εm∥G∗ . (A.15)

Similarly to the primal problem, we apply inequality (A.3) twice and get

2∥M1/2εm+1∥∥M1/2εm∥ ≤
〈
Mεm+1, εm+1〉

+ ⟨Mεm, εm⟩ , (A.16)

2∥ϱm∥−1∥εm∥G∗ ≤ 1
αAsym

∥ϱm∥2
−1 + αAsym∥εm∥2

G∗ . (A.17)

Based on the definition of αAsym , (A.17) becomes

2∥ϱm∥−1∥εm∥G∗ ≤ 1
αAsym

∥ϱm∥2
−1 +

〈
Asym ε

m, εm
〉

= 1
αAsym

∥ϱm∥2
−1 +

〈
Aεm, εm

〉
, since

〈
Askew ε

m, εm
〉

= 0

= 1
αAsym

∥ϱm∥2
−1 +

〈
εm,ATεm

〉
= 1

αAsym

∥ϱm∥2
−1 +

〈
ATεm, εm

〉
.

(A.18)

Now, inequalities (A.15)–(A.18) lead to

〈
Mεm, εm

〉
−

〈
Mεm+1, εm+1〉

+ ∆t
〈
ATεm, εm

〉
≤ ∆t

αAsym

∥ϱm∥2
−1. (A.19)

We finally sum (A.19) over {n, . . . , N − 1} and suppose that εN = 0. We get

〈
εn,Mεn

〉
+ ∆t

N−1∑
m=n

〈
εm,ATεm

〉
≤ ∆t

αAsym

N−1∑
m=n

∥ϱm∥2
−1. (A.20)

Inequality (A.20) holds true for all n ∈ {0, . . . , N − 1}. So we can write

N−1∑
n=0
⟨εn,Mεn⟩ ≤ ∆t

αAsym

N−1∑
n=0

N−1∑
m=n

∥ϱm∥2
−1

≤ ∆t

αAsym

N−1∑
n=0

(n + 1)∥ϱn∥2
−1

≤ N∆t

αAsym

N−1∑
n=0
∥ϱn∥2

−1

= T

αAsym

N−1∑
n=0
∥ϱn∥2

−1.

(A.21)

Then,
N−1∑
n=0

〈
εn,Mεn

〉
≤ T

αAsym

N−1∑
n=0
∥ϱn∥2

−1. (A.22)
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On the other side, again using (A.20), we have in particular for n = 0

∆t

N−1∑
m=0

〈
εm,ATεm

〉
≤ ∆t

αAsym

N−1∑
m=0
∥ϱm∥2

−1. (A.23)

Combining (A.22) and (A.23), leads to

N−1∑
m=0

[
⟨εm,Mεm⟩+ ∆t

〈
εm,ATεm

〉]
≤ T + ∆t

αAsym

N−1∑
m=0
∥ϱm∥2

−1. (A.24)

Now, since 〈
εm,ATεm

〉
=

〈
Aεm, εm

〉
=

〈
Asym ε

m, εm
〉
,

we get
N−1∑
m=0

[〈
εm,Mεm

〉
+ ∆t

〈
εm,Asym ε

m
〉]
≤ T + ∆t

αAsym

N−1∑
m=0
∥ϱm∥2

−1. (A.25)

Finally, we recall the definition of αG, which results in

N−1∑
m=0

[〈
εm,Mεm

〉
+ ∆t

〈
εm,A∗

sym ε
m

〉]
≤ T + ∆t

αG,LBαAsym,LB

N−1∑
m=0
∥ϱm∥2

−1. (A.26)

A.3 Proof of Proposition 3.3
Proof. From (3.13), we have 〈

M(ψk
M,n −ψ

k+1
M,n) + ∆t ATψk

M,n, ek+1〉
= 0.

We then sum over k = 0, . . . , n− 1, to obtain

⟨M(ψ0
M,n −ψ

1
M,n), e1⟩+ ⟨M(ψ1

M,n −ψ
2
M,n), e2⟩+ . . . + ⟨M(ψn−1

M,n −ψ
n
M,n), en⟩+ ∆t

n−1∑
k=0
⟨ATψk

M,n, ek+1⟩ = 0,

which gives us

⟨Mψ0
M,n, e1⟩−⟨Mψ1

M,n, e1⟩+ ⟨Mψ1
M,n, e2⟩ − ⟨Mψ2

M,n, e2⟩+ . . .

+ ⟨Mψn−1
M,n, en⟩ − ⟨Mψn

M,n, en
n⟩+ ∆t

n−1∑
k=0
⟨ATψk

M,n, ek+1⟩ = 0,

leading to
n−1∑
k=0
⟨Mψk

M,n, ek+1⟩ −
n−1∑
k=1
⟨Mψk

M,n, ek⟩+ ∆t

n−1∑
k=0
⟨ATψk

M,n, ek+1⟩ = ⟨Mψn
M,n, en⟩.

Since ⟨Mψ0
M,n, e0⟩ = 0, the above equation becomes

n−1∑
k=0
⟨Mψk

M,n, ek+1 − ek⟩+ ∆t

n−1∑
k=0
⟨ATψk

M,n, ek+1⟩ = ⟨Mψn
M,n, en⟩.

Using the final condition of the dual problem (3.13), we can write

⟨Mψn
M,n, en⟩ = −⟨l,pn

M − pNpr,n⟩ =
n−1∑
k=0

[⟨Mψk
M,n, ek+1 − ek⟩+ ∆t ⟨ATψk

M,n, ek+1⟩]. (A.27)
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Equation (A.27) can be rewritten as

⟨l,pn
M − pNpr,n⟩ = −

n−1∑
k=0
⟨(M + ∆tA)pk+1

M ,ψk
M,n⟩+

n−1∑
k=0
⟨(M + ∆tA)pNpr,k+1,ψk

M,n⟩

+
n−1∑
k=0
⟨Mpk

M,ψk
M,n⟩ −

n−1∑
k=0
⟨MpNpr,k,ψk

M,n⟩

= −∆t

n−1∑
k=0
⟨b,ψk

M,n⟩ −
n−1∑
k=0
⟨MpNpr,k,ψk

M,n⟩+
n−1∑
k=0
⟨(M + ∆tA)pNpr,k+1,ψk

M,n⟩

+
n−1∑
k=0
⟨(M + ∆tA)pNpr,k+1,ψNdu,k

n ⟩ −
n−1∑
k=0
⟨(M + ∆tA)pNpr,k+1,ψNdu,k

n ⟩

+
n−1∑
k=0
⟨MpNpr,k,ψNdu,k

n ⟩ −
n−1∑
k=0
⟨MpNpr,k,ψNdu,k

n ⟩+ ∆t

n−1∑
k=0
⟨b,ψNdu,k

n ⟩ −∆t

n−1∑
k=0
⟨b,ψNdu,k

n ⟩

= ∆t

n−1∑
k=0
⟨rk+1,ψk

M,n −ψ
Ndu,k
n ⟩+ ∆t

n−1∑
k=0
⟨rk+1,ψNdu,k

n ⟩

= ∆t

n−1∑
k=0
⟨rk+1, ΨN−n+k

M −ΨNdu,N−n+k⟩+ ∆t

n−1∑
k=0
⟨rk+1, ΨNdu,N−n+k⟩

= ∆t

n−1∑
k=0
⟨rk+1, εN−n+k⟩+ ∆t

n−1∑
k=0
⟨rk+1, ΨNdu,N−n+k⟩.

(A.28)

• First choice. The error bound is evaluated according to

|sn − sNs,n| =
n−1∑
k=0

∆t |⟨rk+1, εN−n+k⟩|. (A.29)

We use (3.6) and Cauchy Schwarz inequality to obtain

|sn − sNs,n| ≤
( n−1∑

k=0
∆t ∥rk+1∥2

−1

)1/2( n−1∑
k=0

∆t ∥εN−n+k∥2
G∗

)1/2
. (A.30)

Inequality (A.30) is valid for n = N . Hence, we can write

|sN − sNs,N | ≤
( N−1∑

k=0
∆t ∥rk+1∥2

−1

)1/2( N−1∑
k=0

∆t ∥εk∥2
G∗

)1/2
. (A.31)

We have from the definition of αG that

αG ∥εk∥2
G∗ ≤

〈
(M + ∆tAsym)εk, εk

〉
. (A.32)

We then sum over {0, . . . , N − 1} and use (A.24) to obtain

αG

N−1∑
k=0
∥εk∥2

G∗ ≤
N−1∑
k=0

〈
(M + ∆tAsym)εk, εk

〉
≤ T + ∆t

αAsym

N−1∑
k=0
∥ϱk∥2

−1. (A.33)

Therefore,

|sN − sNs,N | ≤ ∆t
( N∑

n=1
∥rn∥2

−1

)1/2
∆N

du =: ∆N
s . (A.34)
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• Second choice. The error bound at n = N is evaluated according to

|sN − s̃Ns,N | ≤ ∆t

N−1∑
n=0
|⟨rn+1, εN−N+n⟩|+ ∆t

N−1∑
n=0
|⟨rn+1, ΨNdu,N−N+n⟩|

≤ ∆t
( N∑

n=1
∥rn∥2

−1

)1/2
∆N

du + ∆t

N−1∑
n=0
|⟨rn+1, ΨNdu,n⟩| =: ∆̃N

s .

(A.35)

B Successive constraint method
Let Ξ be a set of parameter values. For each ξ ∈ Ξ, the successive constraint method (SCM) consists in finding

an upper bound αUB(ξ) and a lower bound αLB(ξ) of the coercivity constant α(ξ) through an offline-online strategy.
The SCM relies on the affine decomposition assumption (3.25), which enables us to express α(ξ) as

α(ξ) = inf
v∈RN

Da∑
d=1

Θa
d(ξ)v

TAdv

∥v∥2
G∗

= inf
v∈RN

Da∑
d=1

Θa
d(ξ)wd. (B.1)

To define the lower bound αLB(ξ), we express (B.1) as a minimization problem
α(ξ) = inf

w∈W
J (ξ, w), (B.2)

where the set W is defined as

W :=
{
w = (w1, . . . , wDa) ∈ RDa | ∃ v ∈ RN s.t. wd = vTAdv

∥v∥2
G∗

, 1 ≤ d ≤ Da

}
,

and the objective function is given by
J : Ξ× RDa → R

(ξ,w) 7→ J (ξ,w) =
Da∑
d=1

Θa
d(ξ)wd.

The idea of the SCM is based on creating two sets WLB and WUB, such that WUB ⊂ W ⊂ WLB, where we
perform the minimization over these two sets and define

αLB(ξ) = min
w∈WLB

J (ξ,w) and αUB(ξ) = min
w∈WUB

J (ξ,w).

Definition of WUB. We introduce the subset of parameter values ΞM ⊂ Ξ obtained using a greedy algorithm
(see Algorithm 5). The construction of ΞM requires a training set Ξtraining and a fixed tolerance 0 ≤ tol ≤ 1 that
controls the relative gap between the lower and upper bounds.

For all 1 ≤ j ≤ M and for each ξj ∈ ΞM,

1. we assemble A(ξj) =
∑Da

d=1 Θa
d(ξj)Ad,

2. we solve the generalized eigenvalue problem
A(ξj)y = λG∗(ξ∗)y, (B.3)

and extract the smallest eigenvalue αj and its corresponding eigenvector vj ,

3. we compute the vector wj ∈ RDa such that

(wj)d = (vj)TAdv
j

∥vj∥2
G∗

,

4. we define the set
WUB =

{
wj | 1 ≤ j ≤ M

}
,

and compute the upper bound
αUB(ξ) = arg min

w∈WUB

J (ξ,w).
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Algorithm 5 Construction of ΞM
Input: tol, Ξ.

1: Choose arbitrary ξ1 ∈ Ξ.
2: Set j = 1 and Ξj = {ξ1}.
3: Compute ηj(ξ) = αUB(ξ)−αLB(ξ)

αUB(ξ) .
4: while max

ξ∈Ξ
ηj(ξ) > tol do

5: Compute ξj+1 = arg max
ξ∈Ξ

ηj(ξ).
6: Set Ξj+1 = Ξj ∪ {ξj+1}.
7: j ← j + 1.
8: ηj(ξ) = αUB(ξ)−αLB(ξ)

αUB(ξ) .
9: end while

Definition of WLB. First, we need to introduce the constraint interval

B =
Da∏
d=1

[
inf

v∈RN

vTAdv

∥v∥2
G∗

, sup
v∈RN

vTAdv

∥v∥2
G∗

]
,

obtained by computing, once at the beginning of the SCM, the smallest and largest eigenvalues of a problem similar
to (B.3) and obtained by replacing A(ξj) by Ad. We define the set

Wj
LB(ξ) =

{
w ∈ B | J (ξ

′
;w) ≥ α(ξ

′
), ∀ξ

′
∈ PM1(ξ; Ξj);

J (ξ
′
;w) ≥ αj−1

LB (ξ
′
), ∀ξ

′
∈ PM2(ξ; Ξ\Ξj)

}
,

where PM(ξ;D) := {M closest points to ξ in D}.

C Empirical interpolation method
The efficiency of the RB method relies on the affine decomposition (3.25) proposed in Section 3.5. However,

this decomposition is not always available. But the empirical interpolation method (EIM) can provide one to
approximate, in our case, v̂(ξ) with an affine sum. Given a family of parameter-dependent vectors T = {v̂(ξ) ∈
RF ; ξ ∈ Ξtraining}, the EIM aims at finding an approximation to the elements of T through an operator IMEIM

that interpolates the vector v̂(ξ) at some selected points. Using a greedy process, we construct the set of vectors
{ṽ1, . . . , ṽMEIM} and the interpolation points {x1, . . . , xMEIM} such that

IMEIM [v̂(ξ)] ≈
MEIM∑
i=1

Θi(ξ)ṽi, (C.1a)

where Θd(ξ) ∈ R and ṽi ∈ RF , 1 ≤ i ≤ MEIM, do not depend on ξ.
To begin the procedure, we randomly choose ξ1 from Ξtraining and set v̂1 = v̂(ξ1). The first interpolation point

is chosen such that
x1 = arg max

1≤j≤F
|v̂1

j |,

where v̂1
j is the j-th element of v̂1. We then initialize the first basis function as

ṽ1 = v̂1/v̂1
j1

,

with 1 ≤ j1 ≤ F , the index corresponding to the selected point x1. At the m-th step, m = 2, . . . , MEIM−1, given the
set of interpolations points {x1, . . . , xMEIM−1} and the set of basis elements {ṽ1, . . . , ṽMEIM−1}, we select the next
snapshot as the worst approximated one by the current interpolant. To do so, we first write the m equations stating
the equality between the current EIM approximation and a vector v̂(ξ) at the current m interpolation points. This
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leads to the following lower triangular linear system:
1 0 · · · 0 0
ṽ1

j2
1 · · · 0 0

...
...

...
...

ṽ1
jMEIM−1

ṽ2
jMEIM−1

· · · 1 0
ṽ1

jMEIM
ṽ2

jMEIM
· · · ṽMEIM

jMEIM
1




Θ1
Θ2
...

ΘMEIM−1
ΘMEIM

 (ξ) =


v̂j1

v̂j2
...

v̂jMEIM−1

v̂jMEIM

 (ξ).

We choose

ξm+1 = arg max
ξ∈Ξtraining

∥v̂(ξ)− Im[v̂(ξ)]∥L∞ . (C.2a)

The (m + 1)-th interpolation point is then defined as

xm+1 = arg max
1≤j≤F

|rm+1
j |

with rm+1 = v̂(ξm+1)− Im[v̂(ξm+1)] and the corresponding basis vector is taken as

ṽm+1 = rm+1/rm+1
jm+1

.

We repeat this procedure until a given tolerance ϵEIM > 0 is reached, i.e.

max
ξ∈Ξtraining

∥v̂(ξ)− Im[v̂(ξ)]∥L∞ < ϵEIM.
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