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Abstract

This paper studies how to aggregate prosumers (or large consumers) and their
collective decisions in electricity markets, with a focus on fairness. Fairness is
essential for prosumers to participate in aggregation schemes. Some prosumers
may not be able to access the energy market directly, even though it would
be beneficial for them. Therefore, new companies offer to aggregate them and
promise to treat them fairly. This leads to a fair resource allocation problem.
We propose to use acceptability constraints to guarantee that each prosumer gains
from the aggregation. Moreover, we aim to distribute the costs and benefits fairly,
taking into account the multi-period and uncertain nature of the problem. Rather
than using financial mechanisms to adjust for fairness issues, we focus on various
objectives and constraints, within decision problems, that achieve fairness by
design. We start from a simple single-period and deterministic model, and then
generalize it to a dynamic and stochastic setting using, e.g., stochastic dominance
constraints.
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1 Introduction

Many domains, such as telecommunication networks, healthcare, disaster manage-
ment, and energy-sharing systems, require fairness as a key criterion. However, fairness
is not easy to define or implement, as it can have different meanings and implications
in different contexts. However, mathematical models that address real-world problems
should not ignore fairness, even if it adds complexity to the problem. In this paper, we
investigate various methods to incorporate fairness in a multi-agent problem. Specifi-
cally, we apply fairness to the problem of aggregating prosumers, who are both energy
producers and consumers, in the energy market.

We focus on electric energy management application, where the aggregation of
prosumers is becoming more relevant due to the increasing number of prosumers.
Renewable energy generation capacities are becoming more affordable and effective,
as renewable energy investments are rising (19% in 2022, according to a report by
International Renewable Energy Agency (2023) on global trends in renewable energy).
This enables smaller prosumers, such as medium-sized industries, to invest in onsite
energy generation and storage. However, prosumers are usually too small to access the
electricity market directly, so some companies offer to aggregate them in the energy
market.

Those aggregators can be external entities responsible for every prosumer energy
transfers. In this case, there is a necessity to think of how the aggregation affects the
participants to ensure a fair allocation of benefits. This is highlighted in a report (EUR-
ELECTRIC, 2015) on designing fair and equitable market rules for demand response
aggregation, published by the association representing the common interests of the
European electricity industry, Euralectric. Indeed, there is a practical need to guaran-
tee that each agent benefits from staying in the aggregation. Further, prosumers need
to feel like they are not being disfavored compared to others, leading the aggregator
to choose a solution with a fair allocation of benefits.

In the literature, one distinguishes two main approaches in handling fairness: solve
the problem efficiently and then reallocate the benefits (Yang et al., 2021; Wang et al.,
2019; Yang et al., 2023); or change the objective function in order to get a fair solution
(Xinying Chen and Hooker, 2023). In the first approach, we model a multi-agent prob-
lem with a utilitarian objective i.e., we optimize the aggregated objectives of agents.
Then, a protocol is implemented to reallocate the benefits among agents. For example,
Shapley values (Shapley, 1952) evaluate the participation of each agent in the group
and assess their fair share. The second approach prioritizes fair solutions through the
modeling by changing the objective function. The two most studied objective func-
tions are the minimax objective (Rawls, 1971) and the proportional objective (Nash,
1950). The first one optimizes the objective of the agents who is the least well-off in
the group. The second one, derived from Nash’s bargaining solution, optimizes the
logarithm sum of agents’ objectives.

However, these approaches present some limitations. On the one side, the pro-
portional and minimax approaches focus merely on the objective function and not
decisions. This can be a problem, as in some applications there can be different char-
acteristics which are valuable. For example in an energy contract, both the flexibility
and the volume of energy traded are important features. Thus, it is hard to take into
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account both of them when the quality of a solution is determined by a single value. On
the other hand, post-allocation distributions of benefits are not adapted to problems
that are formulated over long periods of time, such as contracts in energy markets.
Indeed, those approaches require to solve the whole problem before allocating costs.
Then, it is impractical in most cases to expect each agent to wait until the problem’s
completion, which could span several months or years, to receive their fair share. Fur-
thermore, given the inherent uncertainties linked to most problems, we also want our
approach to hold in a stochastic framework. Then, fairness criteria must be redefined
considering utility distributions and associated risks over time.

In this paper, we introduce various strategies for integrating fairness considerations
into optimization problems. Our primary focus is what we refer to as fairness-by-
design. Instead of relying on ex post redistribution, like in Game Theory (Shapley,
1952), we can establish a degree of fairness directly within the model. We present two
key elements for achieving fair allocation in an aggregation. Firstly, we leverage tradi-
tional approaches, reviewed in Xinying Chen and Hooker (2023), involving objective
functions such as the utilitarian, proportional and minimax objective functions. Sec-
ondly, what sets our approach apart is that we propose acceptability constraints. Those
ensure that agents improve, in some predefined sense, their outcome within the aggre-
gation. These constraints are extended to dynamic and stochastic settings, allowing for
risk-averse and time-consistent guarantees. In comparison with Gutjahr et al. (2023),
who propose a risk-averse stochastic bargaining game, our approach handles uncer-
tainties through the objective function but also dominance constraints. This enables
us to consider various aspects of the impact of uncertainties on the problem. As a
result, our proposed model is well-suited for addressing inherent uncertainties within
multistage stochastic programs, enhancing its practical applicability. Finally, we assess
these different strategies on a toy model and provide a comprehensive analysis of the
implications associated with each modeling choice.

The remainder of the paper is organized as follows. In section 2, we delve into defi-
nitions fairness and its integration into optimization models. We propose, in section 3,
to model prosumers aggregation with acceptability constraints and a fair objective
function. section 4 expands the notion of acceptability into the dynamic framework,
while section 5 adapts acceptability and fairness to the stochastic framework.

2 Fairness: from conceptual aspects to applications

In this section, we give a general overview of how fairness is defined and modeled
across the scientific literature, while making the link to our energy application. We
first cover some definitions of fairness, before diving into the existing mathematical
treatment of the subject.

First, we present two examples to illustrate the concepts introduced in this section.

Example 1 (Multiportfolio management). An advisor is in charge of N portfolios
with individual interests across various assets. The aggregation of portfolios can be

3



modeled with the following optimization model:

Max
x

∑
i∈[N ]

ri(xi)− c
( ∑

i∈[N ]

xi

)
(1a)

xi ∈ Xi ∀i ∈ [N ], (1b)

where xi are the trades of i, constrained to be in set Xi, ri is the revenue function,
and c the trading cost function.

Example 2 (Shared Energy storage system (ESS) management). A manager is in
charge of managing an ESS, in which M buildings have invested collaboratively. We
model the aggregation of buildings with:

Min
xj

∑
t∈[T ]

∑
j∈[M ]

cjtq
j
t (2a)

pjt + ϕj
t + qjt ≥ djt ∀t ∈ [T ],∀j ∈ [M ] (2b)

xj
t := (pjt , ϕ

j
t , q

j
t ) ∈ X j

t ∀t ∈ [T ]∀j ∈ [M ] (2c)

Soct = Soct−1 +
∑

j∈[M ]

ϕj
t ∀t ∈ [T ], (2d)

where a building j is modeled by djt , its energy demand at time t; pjt , its the energy
production at t; qjt , the quantity of energy bought from the grid at price cjt ; and ϕj

t the
quantity of energy charged from the ESS at t. All variables at t are constrained by set
X j

t . Finally, Soct is the quantity of energy in the shared battery at t, modeled with
dynamic equations (2d).

In both those examples, to make all participants benefit from the aggregation,
the aggregator must ensure fair treatment. In example 1, the advisor must guarantee
equitable distribution of market costs among portfolios. In example 2, deciding how
energy from the shared battery should be allocated is not straightforward: should
access be proportional to each building’s investments, based on energy needs, or should
alternative criteria be considered?

2.1 Defining, modelling and accommodating fairness

In the Oxford Dictionary, fairness is defined as the quality of treating people equally
or in a way that is reasonable. The definition is simple but subjective. Is treating
people equally, regardless of any token of individuality, considered fair in society?
Furthermore, what does it mean to be reasonable? Whatever take we have on fairness
is necessarily subjective and context-dependent. We present here some notions of the
philosophical approach to fairness (see Konow (2003) for a deeper analysis). We do
not pretend to give a thorough description of the philosophical literature, but merely
outline some concepts relevant to the following work.

When speaking of fairness, Konow (2003) distinguish fair processes from fair out-
comes. In the first paradigm, fairness is evaluated not through the outcomes, but
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through the treatment of each individual in the group that results in said outcomes.
This concept is relevant in Machine Learning, for applications like granting or deny-
ing loans, bail or parole decisions . . . In such problems, the inherent biases in the data
used for algorithm training can lead to unfair predictive outcomes. Hence, it becomes
imperative to integrate fairness into the learning process and think of ways to assess
fairness across different data populations. We refer to Jabbari et al. (2017); Caton
and Haas (2020); Rychener et al. (2022) for more details on the way fairness can be
addressed in machine learning.

On the other hand, the fair outcomes paradigm takes into consideration the indi-
vidual outcomes and makes sure that everyone gets their fair share. This approach
is favored in Game Theory where each individual (or player) is modeled with a util-
ity function whose actual value depends on the actions of all players. For a given set
of actions, we obtain a utility vector, denoted u := (u1, . . . , un), representing every
agent’s utility ui. A utility vector is then said to be fair if it satisfies a set of proper-
ties that might vary from one specific fairness definition to another. In example 1, the
utility is the benefit of each agent, whereas in example 2 the utility is the energy costs
of each building. In the remainder of this paper, we discuss fair outcomes approaches.

Intuitively, fairness can be confused with Egalitarianism where a utility vector is
said to be fair if all coordinates are equal, meaning that everyone gets the same share.
For instance, the Gini coefficient (Gini, 1921) is a commonly used indicator to measure
equality—mistaken for fairness— which evaluates how far a given distribution is from
the equal distribution. Although it makes sense in some applications, it is impractical
most of the time since people have unequal access to resources and different needs:
Indeed, in example 2, if we consider equality through the quantity of energy given from
the ESS, we would add constraints ensuring everyone gets the exact same amount of
energy:

T∑
t=1

ϕj
t =

T∑
t=1

ϕj′

t ∀j ̸= j′.

We can see the limits of such modeling as it would provide too much energy to buildings
with smaller energy consumption. Moreover, it is found to be unpopular in surveys
(Konow (2003)), as people feel they get less than they should. Thus, equal resource
(and opportunity) distribution does not address social inequality.

To counteract these side effects, the Need Principle aims at satisfying basic needs
equally first and then focusing on efficiency. This is a trade-off between need and other
distributive goals. In example 2, each building could decompose its energy demand djt
into the minimum energy needed nj

t plus energy asked for comfort sjt . Then, additional
constraints (3a) can be added to the aggregation model to ensure that everyone gets
free energy to satisfy its needs:

pjt + ϕj
t + qjt ≥ nj

t + sjt ∀t ∈ [T ],∀j ∈ [M ],

pjt + ϕj
t ≥ nj

t ∀t ∈ [T ],∀j ∈ [M ].
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Then, depending on the energy available in the ESS and the energy produced by
each building, the manager dispatches the energy to minimize the aggregated costs of
energy bought to the grid. The Need Principle finds practical application in Euphemia
(2016), an algorithm developed to optimize the orders to be executed on the Euro-
pean coupled electricity market. Euphemia pursues a dual objective: first, equitably
distributing curtailment among areas where a portion of orders are unaccepted; and
second, maximizing social welfare by optimizing the total market value in the Day-
Ahead auction. The emphasis is on maximizing order acceptance for each area, and
then the algorithm seeks an efficient solution.

A different approach was introduced by Rawls (1971): assuming that a group of
individuals has no idea of their rank or situation in society, they will agree on a social
contract aiming at maximizing the well-being of the least well-off. If the agents possess
distinct characteristics, it might be difficult to compare them and ensure equitable
treatment among them. This approach to fairness is often referred to as minimax
fairness, as it amounts in mathematics to optimizing for the worst objective among
agents. In example 1, the minimax aggregator is modeled as:

Max
x,t

min
i

{ ri(xi)− ti } (3a)

s.t. xi ∈ Xi ∀i ∈ [N ] (3b)∑
i∈[N ]

ti = c

 ∑
i∈[N ]

xi

 , (3c)

where ti represents what the aggregation charges portfolio i for trading. Then, (3c)
ensures the sum of cost charged to portfolios equals to the trading cost of the aggrega-
tion. This amounts to having transfer variables in-between agents, which is proposed
by Iancu and Trichakis (2014) to solve a multi-portfolio problem with fairness consid-
erations. We avoid transfer variables in this paper, as they may raise privacy and trust
concerns in practical application. Instead, we simplify the approach by designating
the aggregator as the sole entity with complete information on the problem.

Now that we have presented some of the philosophical concepts that define the
foundations of fairness, we discuss in the following mathematical ways to model and
assess fairness.

2.2 Mathematical models of fairness

2.2.1 Notions of fair solutions

For more than a century, fairness or inequality has been widely discussed in the liter-
ature. The first fairness notion can be traced back to Pareto (2014): a utility vector
is said to be Pareto optimal if there are no other accessible utility vector where an
individual is better off without negatively impact another. Pareto optimality does not
imply fairness in a solution, but guarantees a stability. This concept is also used when
trying to find a balance between multiple objectives: traditionally in portfolio man-
agement to find a trade-off between a high expected revenue and low risk. Naturally,
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it can be adapted to find a solution that is fair and efficient, see Little et al. (2022)
and Kamani et al. (2021).

One of the main challenges facing fairness challenges is that of resource allocation
among agents. This naturally falls into the scope of Game Theory. In a founding article
(Nash, 1950), John Nash introduced the bargaining problem where two agents, allowed
to bargain, try to maximize the sum of their utilities. As agents can cooperate, they
must have an agreement on properties a utility vector, u, should satisfy. Nash proposed
four axioms to constitute this agreement: Pareto optimality ; Symmetry, applying the
same permutation to two utility vectors does not change their order; Independence of
irrelevant alternatives, if a utility vector is the optimal utility vector within the feasible
set, it remains so if the set is reduced. Scale invariance: applying affine transformations
to the utility vector does not change the social ranking. Then, he showed that, under a
number of assumptions (among them, the set of feasible utility vectors must be convex
and compact), there exists a unique utility vector satisfying those axioms. This unique
utility vector is regarded in the literature as a viable option when seeking fairness.
It has been demonstrated that under convexity of the feasible set, it can be obtained
by maximizing the product of utilities (Nash (1953); Muthoo (1999)), and thus by
maximizing a logarithmic sum of utilities:

max
u∈U

N∑
i=1

log(ui − di),

where u ∈ U is a feasible utility vectors among N players, and d is called the disagree-
ment point, which is the strategy decided by players if they cannot reach an agreement.
This approach is referred to as proportional fairness. Some papers criticized the Inde-
pendence of irrelevant alternatives for having undesirable side effects. To overcome
those issues, Kalai and Smorodinsky (1975) proposed to replace it with a monotonic-
ity axiom, resulting in another unique utility vector, and a slightly different vision on
fairness.

In opposition to bargaining games, cooperative games study games where forming
coalitions is allowed. In this theory, it is assumed that players can achieve superior out-
comes by cooperating rather than working against each other. Players must establish
their common interest and then work together to achieve it, which requires informa-
tion exchanges. In Shapley (1952), Shapley studied a class of functions that evaluate
players participation in a coalition. Considering a set of axioms (symmetry, efficiency
and law of aggregation), Shapley showed that there exists a unique value function sat-
isfying those axioms. He derived an explicit formula to compute the value of a player
i in a cooperative game with a set N of players:

ϕi(v) =
∑

S⊂N\{i}

(
|N | − 1

|S|

)−1 (
v(S ∪ {i})− v(S)

)
,

where v(S) gives the total expected sum of payoffs the cooperation S can obtain.
The values obtained {ϕi(v)}i∈N are called Shapley values. They are considered as a
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fair redistribution of gains in the group. However, they are very hard to compute in
practice (as the size of the problem grows, those values are not computable).

2.2.2 Evaluating the fairness of outcomes

As we study fairness, we naturally look for ways to measure it. In Lan et al. (2010), the
authors proposed a mathematical framework based on five axioms (continuity, homo-
geneity, saturation, partition and starvation) to define and evaluate fairness measures
of utility vectors. They established a class of functions satisfying those axioms, which
comprises various known measures on fairness, such as Atkinson’s index, α−fairness,
Jain’s index. . . Removing the axiom of homogeneity, this class is extended to measures
looking for a trade-off between fairness and efficiency. Although a variety of indices
exist, the Gini coefficient, mentioned before, is the most commonly used. For example,
in a recent paper (Heylen et al., 2019) studying the fairness in power system reliabil-
ity, the authors compared a Gini-based index to a variance-based index (similar to the
standard deviation index).

When fairness is considered in the problem (through the objective or constraints),
it comes at a price: a fair solution might not be the most efficient one. Indeed, many
articles try to find a balance between efficiency (have the best objective possible)
and fairness (have a fair solution). In Bertsimas et al. (2011), the authors established
bounds on the price of fairness for two approaches (proportional fairness and minimax
fairness) in resource allocation problems among self-interested players.

In this section, we referred to work that lay the foundations of fairness modeling in
mathematics. For a more complete review, we refer to Xinying Chen and Hooker (2023)
where the authors provided guidelines for readers to choose the appropriate definition
and modeling of fairness. They went through the list of indicators and criteria that
exist to measure and define fairness. However, they assumed that fairness can always
be reflected through the social welfare function (which corresponds to utilities in Game
Theory) of agents. This means that the well-being of different agents are comparable
through a single value.

In the following section, we present some applications of aggregations and the way
fairness is considered or evaluated.

2.3 Applications of fairness in the literature

In this article, we focus on an approach by-design, meaning that fairness is already
accommodated in an optimization model. Although fairness is commonly recognized
as crucial, in most articles the approach adopted derives from act utilitarianism: one
should at every moment promote the greatest aggregate happiness, which consists in
maximizing social welfare regardless of individual costs. For instance, in Xiao et al.
(2020), the authors studied an aggregator in charge of multiple agents within a power
system. They optimized the total revenue of the aggregation without considering the
impact on each agent individually. In Moret and Pinson (2019), an aggregator of
prosumers can focus on different indicators (import/export costs, exchange with the
system operator, peak-shaving services. . . ) to optimize its trades with the energy
market, and the trades between prosumers. The indicator to focus on must be agreed
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on by the prosumers. The authors gave a sensitive analysis on the parameters of
the problem to determine what would increase the social acceptability of such an
aggregation system. However, the model is utilitarian as it does not consider the
distribution of costs among agents.

Other articles have proposed to first optimize the problem and then reallocate the
costs or benefits. For example, some choose to model the aggregation as a coalitional
game. This is the case of Freire et al. (2015), where the authors studied a risk-averse
renewable-energy multi-portfolio problem. In order to get a fair and stable allocation of
profits, they chose the Nucleolus approach which finds a vector utility that minimizes
the incentive to leave the aggregation for the worst coalition. In particular, this solution
is in the core of the game, meaning every players gains from staying in the grand
coalition. Similarly, in Yang et al. (2021), the authors studied a group of buildings with
solar generation that mutually invest in an ESS. The approach is to, first, optimize the
problem formulated as a two-stage stochastic coalition game. Then, a fair reallocation
of costs is determined by computing the nucleolus distribution which minimizes the
minimal dissatisfaction of agents.

Some papers have handled fairness through benefit post-allocation schemes. For
example in Yang et al. (2023), the authors studied the joint participation of wind
farms with a shared energy storage. The solution is found by first solving a two-stage
stochastic program, and then reallocating the lease cost among users in a proportional
scheme. They chose to make a wind farm pay depending on its increase of revenue
after using the energy storage leasing service. In Wang et al. (2019), the authors
valued cooperation in their model, which is another way to look at cost redistribution.
They considered an aggregator which participates in capacity and energy market for
a number of energy users. In their model, the aggregator is not in charge of the users
decisions but of the trades with the energy market, therefore he must incentive users
to deviate from their optimal scheduling for minimizing total revenue. They proposed
to solve an asymmetric Nash bargaining problem to determine the incentizing costs.

Typically, fairness is dealt with through the objective function, or in a post-
allocation scheme. However, some researchers proposed constraints to ensure fairness.
For example in Argyris et al. (2022), the authors constrained the allocation feasibility
set for a resource allocation problem. They introduced a welfare function dominance
constraint: the admissible set of social welfare functions must dominate a referenced
one. Then, with a utilitarian objective, a trade-off between fairness and efficiency is
obtained. An alternative approach, proposed in Oh (2022), is to bound a fairness indi-
cator. The authors studied the energy planning of multiple agents over a virtual energy
storage system (VESS), where energy dispatch is managed by an aggregator. They
introduced two fairness indicators depending on the energy allocation, and added con-
straints bounding them in a utilitarian model. Then, they compared the results with
a minimax approach, where they optimize the minimal fairness indicator over agents.

In many cases, uncertainties are inherent to the problem. If multiple articles have
dealt with uncertainties, they rarely have a stochastic take on fairness. For example,
in both Yang et al. (2023) and Yang et al. (2021), the authors solved their problem
with a two-stage program and then redistributed the costs fairly after uncertainty
realization. Thus, there is no stochastic policy for fair redistribution. Other articles
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accommodated risk-averse profiles to game theory approaches. In Gutjahr et al. (2023),
the authors studied a risk-averse extension of the Bargaining Problem. They adapted
Nash bargaining axioms to constrain the feasible utility vectors depending on the risk
profile of players.

3 A shared-resource allocation problem in the
context of a prosumer aggregator

We present here a general framework where an aggregator aggregates prosumers’
needs (industrial prosumers, residential units, virtual power plants. . . ) and makes
transactions with the energy market for the collective. To make aggregation contracts
attractive to prosumers, we encounter two distinct challenges: first, each prosumer
needs to find the contract acceptable, ensuring that each agent derives substantial ben-
efits from the aggregation; second, the decisions made by the aggregator, leading to
benefits or losses for each prosumer, should be made fairly. Recall that, for practical
reasons, we do not want money transfers to be made between agents.

In the following, section 3.1 formalize the setting, section 3.2 explore various objec-
tive functions modeling fair decisions, section 3.3 introduce acceptability constraints,
and finally section 3.4 illustrate these notions on a toy model.

3.1 Prosumers and market structure

We denote by xi ∈ X i the set of state and decision variables modeling a prosumer
i. The technical constraints of prosumer i are represented through feasible set X i,
while the market constraints on market exchanges M ixi, common to all prosumers,
are represented with feasible set M. Finally, each prosumer wants to optimize a cost
function Li : X i → R, yielding the model (P i).

Note that model (P i) can model problems in another context than prosumers. For
example, in the case of portfolio management, xi would be the trades of agent i over
a number of assets, X i the constraints on the trades, and Li the function computing
revenue depending on the decided trades. In the community energy-storage problem,
xi are the energy flows in-between each building, the battery and the network.

We now consider an aggregator in charge of I agents, we denote x := (xi)i∈[I].
The aggregator in problem (4b), accesses the energy market as one, and its energy
exchanges are the aggregated exchanges of prosumers

∑
i M

ixi. Thus, the physical
constraint of each prosumer are conserved (see (4b)); while the constraint on the
market exchange are aggregated (see constraint (4c)). Finally, on one hand, constraint
(4d) ensure that the cost of an agent i is within an acceptable set Ai

α set they have
agreed on prior to optimization. On the other hand, FI is the agent operator that
computes the objective of the aggregator considering the I objective functions of
all prosumers. Depending of the choices of the acceptability sets Ai

α and the agent
operator FI , discussed respectively in section 3.2 and section 3.3, we obtain different
approaches to the shared resource allocation problem.

10



(P i) Min
xi

Li(xi) (A) Min
x

FI((L
i(xi))i∈[I]) (4a)

s.t xi ∈ X i s.t xi ∈ X i ∀i ∈ [I] (4b)

M ixi ∈ M.
∑
i∈[I]

M ixi ∈ M (4c)

Li(xi) ∈ Ai
α ∀i ∈ [I]. (4d)

3.2 Fair cost aggregation

Assuming that all agents have agreed to participate in the aggregation (we discuss
acceptability in section 3.3), we focus on the way the aggregator operates to allocate
aggregation benefits among prosumers.

The most natural and efficient method is the so-called utilitarian approach:

FU
I ((Li(xi))i∈[I]) =

∑
i∈[I]

Li(xi). (5a)

In this approach, the objective is to minimize total costs independently from the distri-
bution of costs among prosumers: fairness is set aside. Indeed, in case of heterogeneity
of the objective functions, all efforts of the aggregation are focused on minimizing the
dominant objective function. A possibility, that falls out of the scope of this paper
(see section 2.2), is to solve (A) and then reallocate resources with a fair scheme, or to
put in place money transfers. We thus study alternative agent operators that ensure
a fair allocation, for various fairness definitions.

First, we consider the proportional approach based on Nash bargaining solutions
(see section 2.2). For this approach, we consider the set of reachable (dis)utilities
L =

{
(L1(x1), . . . , LI(xI) | xi ∈ X i, ∀i ∈ [I], M ixi ∈ M

}
, and set the optimal

value of (P i), vi1, as the chosen disagreement point (see section 2.2). Then, Nash
(1950) introduces a set of axioms that must respect a fair repartition of (dis)utilities,
and show that if L is convex and compact, there exists a unique (dis)utility vector
satisfying those axioms. Furthermore, it is proven that Nash’s repartition is obtained
by maximizing the sum of logarithmic utilities. For our problem it corresponds to
using the agent operator :

FP
I ((Li(xi))i∈[I]) := −

∑
i∈[I]

log(vi − Li(xi)). (5b)

Note that this approach tends to advantage smaller participants. Indeed, increasing a
small cost improvement is preferred to increasing an already large cost improvement.

1We implicitly assume here that either there is a unique solution, or that we have defined a way to select
a solution among the set of optimal solutions.
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Finally, Rawls’ theory of justice leads to the minimax approach favoring the least
well-off. Here, the operator we obtain is:

FMM
I ((Li(xi))i∈[I]) := max

i∈[I]
Li(xi). (5c)

This method may not be adequate for heterogeneous agents, as it only focuses on
minimizing the costs of the most voluminous agent. To address this issue, we quantify
the well-being of an agent by looking at the proportional savings he makes in the
aggregation. Then, applying Rawls’ principle we obtain the following agent operator :

FPMM
I ((Li(xi))i∈[I]) := max

i∈[I]

vi − Li(xi)

vi
. (5d)

Note that in a minimax approach, there are multiple solutions with different
aggregated costs.

3.3 Acceptability constraints

Having established a way to split costs fairly, we must convince prosumers to be part
of the aggregation. We consider that a contract cannot be deemed acceptable for a
prosumer if they would be better off independently. We can go one step further, and
require that, to find the contract acceptable, they benefit from it. We thus define the
acceptability set Ai

α appearing in (4d) as follows:

Ai
α :=

{
ui, ui ≤ α vi

}
, (6)

where α ∈ (0, 1] is given. Acceptability sets are independent from one prosumer to
another. Thus, the overall acceptability set is the cartesian product of all acceptability
sets A := Ai1

α × · · · × AiI
α .

Remark 1. In the minimax model with agent operator FPMM
I , the optimal solution

is 1−acceptable. Indeed, if the agents don’t take advantage of the aggregation, then
Li(xi) = vi and we get a feasible 1− acceptable solution of optimal value 1. Further,
if we consider the problem:

Min
α

α (7a)

s.t xi ∈ X i ∀i ∈ [I] (7b)∑
i∈[I]

M ixi ∈ M (7c)

Li(xi) ∈ Ai
α ∀i ∈ [I], (7d)

it is equivalent to problem (A) with agent operator FPMM
I .

Remark 2. Note that our problem with the proportional operator necessarily yields
a solution (1 − ϵ)−acceptable, with ϵ > 0. Indeed, if for agent i, Li(xi) ≥ vi, then
log(vi − Li(xi)) is undefined.
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For simplicity, in the rest of the paper, we assume α = 1. We later discuss how
to extend the acceptability constraint to a dynamic (see section 4.2) and stochas-
tic framework (see section 5.3). Finally, combining different objective function with
acceptability constraints, we observe on a small illustration their impact on the
solution in the following section.

3.4 Illustration

We now illustrate in a small example the implications of each model proposed in this
section. We consider a problem with four consumers (I := {1, 2, 3, 4}) and T := 5
stages. At each stage t, we must decide how much energy qDA

t,i (resp. qBt,i) to pur-
chase from the day-ahead (resp. balancing) market for consumer i. Each consumer
has bounds [q

i
; qi] on its energy consumption, and a total consumption Qi to meet

at the end of the horizon. To model the minimum volume requirement for the day-
ahead market, we introduce binary variables bDA

t representing the decision to buy a
day-ahead. The objective for consumer i is to minimize its energy costs:

Li(xi) =

T∑
t=1

[ pDA
t qDA

t,i + pBt qBt,i ], (8a)

where pDA
t (resp. pBt ) is the price of energy at t on the day-ahead (resp. balancing)

market. We obtain the very simple aggregated model:

Min
x

FI

(
(Li(xi))i∈[I]

)
(8b)

s.t. q
i
≤ qDA

t,i + qBt,i ≤ qi ∀t ∈ [T ],∀i ∈ [I] (8c)

T∑
t=1

(qDA
t,i + qBt,i) ≥ Qi ∀i ∈ [I] (8d)

qDA
t

bDA
t ≤

∑
i∈[I]

[qDA
t,i + qDA

t,i ] ≤ M bDA
t ∀t ∈ [T ] (8e)

bDA
t ∈ {0, 1} ∀t ∈ [T ], (8f)

where F is the chosen agent operator for the aggregation. We solve this small problem
with the utilitarian operator FU

I , with the minimax operator FPMM
I and with the

proportional operator FP
I . For all agent operator , we solve the problem with and

without acceptability constraints.
We show on a small, made up, illustration how all these models can lead to different

solutions. For the prosumers parameters and market prices we use the data on tables 1
and 2. We observe the results on fig. 1 and table 3. First, it’s worth noting that
none of the consumers can individually access the day-ahead market. In the utilitarian
solution,the primary focus lies in minimizing aggregated costs, making it optimal to
always consistently access the day-ahead market as a group. To achieve this, consumer
A1 redistributes their energy load across the 5 time steps, incurring a higher individual

13



Table 1 Prices on both markets

t 1 2 3 4 5

pDA
t 2 16 1 10 1

pBt 6 25 5 15 5

qDA
t

11 11 11 11 11

Table 2 Prosumers parameters

i 1 2 3 4

q
i

0 5 0 2

qi 5 5 4 3

Qi 10 25 8 15

cost (64% higher) than when acting independently. By adding acceptability constraints
to the model, we observe that the aggregated costs of consumers does not change, but
now the charge of helping big consumers is shared between A1 and A3, and one of
them makes no savings in the aggregation.

Table 3 Percentage of savings
vi−Li(xi)

vi made by Ai in the corresponding model.

Utilitarian Minimax Proportional

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

None -0.64 0.46 0.73 0.46 0.30 0.30 0.67 0.30 0.74 0.21 0.80 0.21
Average 0.48 0.37 0.0 0.37 0.30 0.30 0.67 0.30 0.74 0.21 0.79 0.21

Conversely, the proportional operator adopts a more bargaining-oriented approach,
resulting in collaboration only during time slots when A1 and A3, more flexible and
with lower consumption than A2 and A4, intend to consume. This leaves A2 and A4

(together they cannot access the day-ahead market either) to operate independently
during other time slots, resulting in limited savings (21%) compared to the utilitarian
approach. As noticed in remark 2, the solution is necessarily 1−acceptable. Therefore,
the solution is the same with and without acceptability constraints. Moreover, the
proportional solution yields the worst aggregated costs.

Lastly, the minimax approach finds a middle ground, where A1 and A3 assist A2

and A4 on most time steps but withdraws support on some occasions, allowing them to
avoid expensive consumption. In this case, all consumers achieve similar proportional
savings, amounting to approximately 30% compared to operating independently, at
the exception of A3 that can save up to 67%. This means that any solution where A3

shifts its consumption to other time slots to help other access the day-ahead market,
this would increase its costs to much, then A3 would save less than 30%: this is not an
optimal solution for the minimax approach. Again, adding acceptability constraints
does not change the solution, as the minimax problem is innately 1−acceptable (see
remark 1).

4 Fairness for long-term problems

In most use cases we can assume that the aggregation of prosumers is thought to
stay in place over long periods. One of the challenges of this long-term setting is
to incentivize prosumers not to leave the aggregation, which requires adjusting the
acceptability constraints of the static case.

14
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Fig. 1 We observe the result of the static Problem (8) with parameters given in tables 1 and 2. The
columns correspond to the results of different models we solve. The first one is the non-aggegated
model: we solve each (P i) independently. Then, there are three groups of two columns, each group
corresponding to a choice of agent operator (FU

I ,FPMM
, FP

I ). Then, given an objective function, are
the model, first without and then with, acceptability constraints Aα. Each column is decomposed in
4 blocks corresponding to the cost incurred by each consumer i.

4.1 Problem formulation

We consider a problem with T stages corresponding to consecutive times where deci-
sions are made. At each stage t ∈ [T ], prosumer i makes a decision xi

t ∈ X i
t ,

incurring a cost Li
t(x

i
t). Those stage-costs are then aggregated through a time operator

F i
T : RT → R. Thus, the prosumer i’s problem reads:

(P i
T ) := Min

xi
t

F i
T

(
(Li

t(x
i
1))t∈[T ]

)
(9a)

s.t xi
t ∈ X i

t ∀t (9b)

M i
tx

i
t ∈ Mt ∀t. (9c)

A typical example of time-aggregator F i
T is the (actualized) sum of stage costs

i.e., , dropping the dependence in xi for clarity’s sake:

F i
T ((Lt)t∈[T ]) =

∑
t∈[T ]

rtLt,
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for r ∈ (0, 1]. Alternatively, F i
T can be defined as the maximum over stage costs. This

might happen for energy markets where a prosumer aims at peak shaving i.e., mini-
mizing peak electricity demand. Further, time-aggregation operators may vary among
prosumers, who may express different sensitivity to time. In the remainder of the paper,
for clarity’s sake, we always consider the time-aggregator as the sum of stage-costs.
Actualization rates are directly included in the definition of the stage-cost Li

t.
We now write the aggregation problem within this framework. Note that we can

cast the current multistage setting into the setting of section 3, by considering that
we have I × T prosumers. Thus we need to define an operator FI×T that takes
{Li

t}t∈[T ],i∈[I] as input.
However, in most settings, it is reasonable to assume that a prosumer remains

consistent throughout the entire horizon. Consequently, the global aggregation opera-
tor FI×T can be modeled as aggregating over prosumers the aggregation over time of
their stage-cost, i.e., FI×T = FI ⊙FT where the ⊙ notation stands for

FI ⊙FT

(
(Lt

i)i∈[I],t∈[T ]

)
= FI

(
F1

T

(
(L1

t )t∈[T ]

)
, . . . ,FI

T

(
(LI

t )t∈[T ]

))
. (10)

Finally, we obtain the following model for the aggregation of prosumers in a
dynamic framework:

(AT ) := Min
xi
t

FI ⊙FT

(
(Li

t)i∈[I],t∈[T ]

)
(11a)

s.t xi
t ∈ X i

t ∀t (11b)∑
i∈I

M i
tx

i
t ∈ Mt ∀t (11c)

(Li
t)t∈[T ] ∈ Ai. (11d)

Where we recall that we defined FT as the sum, and suggest to choose FI from
(FU

I ,FP
I ,FPMM

I ) (see section 3.2).
We have shown how to construct a fair objective function of the aggregated model

(AT ). However, we have yet to adapt the notion of acceptability to this long-term
framework, which is discussed next.

4.2 Dynamic acceptability

In long-term problems, for the aggregation to be acceptable, prosumers should not
be tempted to leave the aggregation in between stages. Therefore, we extend our
notion of acceptability constraint in eq. (6), to a dynamic framework. First, denote
vit := Li

t(x
i,⋆
t ), the optimal independent cost of prosumer i at stage t, where xi,⋆ is the

optimal solution of Problem (9).
The acceptability constraint eq. (6) consist in requiring, for each prosumer i, that

its vector of costs (Li
t)t∈[T ] is less than (vit)t∈[T ]. Unfortunately, there is no natu-

ral ordering of RT , and each (partial) order will define a different extension of the
acceptability constraint (6). We present now a few interesting options.
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Maybe the most intuitive choice is the component-wise order (induced by the
positive orthant), i.e., comparing coordinate by coordinate. This results in the stage-
wise acceptability constraint As, which enforces that each agent benefits from the
aggregation at each stage:

Ai
s =

{
(ui

t)t∈[T ] | ui
t ≤ vit, ∀t ∈ [T ]

}
. (12a)

As this approach might be too conservative for our model, we consider two other
ordering.

First, we can relax the stage-wise acceptability by considering that at each stage
t, each prosumer benefits from the aggregation if we consider its costs aggregated up
to time t. This result in progressive acceptability constraint Ai

p:

Ai
p =

{
(ui

t)t∈[T ] |
t∑

τ=1

ui
τ ≤

t∑
τ=1

viτ , ∀t ∈ [T ]
}
. (12b)

Second, as in eq. (6), we ensure that each agent, aggregating its cost over the
whole horizon, benefits from the aggregation. We thus consider average acceptability
constraint:

Ai
a =

{
(ui

t)t∈[T ] |
T∑

t=1

ui
t ≤

T∑
t=1

vit
}
. (12c)

Remark 3. We have that Ai
s ⊆ Ai

p ⊆ Ai
a. The acceptability constraint should be

chosen as to strike a balance between aggregated cost efficiency (obtained with larger
acceptability set), and incentive to stay in the aggregation (obtained with smaller
acceptability set).

4.3 Numerical illustration

We take the same example as in section 3.4 and try out different combinations of oper-
ator FI×T and acceptability set A. Figure 2 represent the distribution of prosumers’
costs for these different cases, while table 4, report their proportional savings.

We observe on fig. 2 that increasing acceptability constraints (from none, to aver-
age, progressive and finally stage-wise) protects each prosumer, especially small ones,
but induce higher aggregated costs. For example, with a utilitarian operator and no
acceptability constraints, A1 pays 64% more in the aggregation than alone. This can
be seen as a defect in the model, as A1 would have no interest in participating in the
aggregation, that can be corrected by enforcing average acceptability. Note that, in
this case, A3 pays the same cost whether he is in the aggregation or not.

On the other hand, choosing an agent operator reflecting fairness (like minimax
or proportional) also tends to protect smaller prosumers. Indeed, the acceptability
constraints are two distinct tools designed to protect agents’ self-interests in the
aggregation. Consequently, if we can observe a change in solution when increasing
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Fig. 2 The columns correspond to the results of different models we solve. The first one is the
independent model: we solve each (P i

T ) independently. Then, there are three groups of four columns,

each group corresponds to a choice of agent operator (FU ,FPMM ,FP ). Then, given an operator, we
have the model first without then with different acceptability constraints (Ai

a,Ai
p,Ai

s). Each column
is decomposed in 4 blocks corresponding to the share of each consumer i.

Table 4 Percentage of savings
vi−Li(xi)

vi achieved by Ai in the corresponding model.

Utilitarian Minimax Proportional

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

None -64% 46% 73% 46% 30% 30% 67% 30% 74% 21% 80% 21%
Average 48% 37% 0% 37% 30% 30% 67% 30% 74% 21% 79% 21%
Progressive 55% 23% 44% 23% 40% 23% 62% 23% 45% 23% 56% 23%
Stagewise 80% 14% 80% 14% 80% 14% 80% 14% 80% 14% 8% 14%

acceptability in those models, this is more impactful when utilizing a utilitarian oper-
ator. Indeed, in the utilitarian model, A2 achieves savings ranging from 14% to 46%
of his independent cost. In contrast, under the minimax approach, the savings range
from 14% to 30%, and with the proportional approach, the savings fall between 14%
and 21%.
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5 Accommodating fairness to uncertainties with
stochastic optimization

Problems with energy generation, especially from renewable sources, and prices on
energy markets are inherently uncertain. Then, in addition to acceptability and fair-
ness, we must tackle the challenge of handling uncertainties (while being fair about how
we handle those). We want to address this issue by extending the problem presented
in section 3 to a stochastic framework. To that end, we introduce random variable ξ,
along with probability space (Ω,A,P), which gathers all sources of uncertainties in
the problem. For the sake of clarity, we assume that Ω is finite.

In the same way that we decomposed the problem in section 4 with T time steps,
we can decompose the problem here with Ω scenarios. Thus, there are similarities
with the previous section. The main difference is that the set of time-step {1, . . . , T}
has a natural ordering, while the set of scenario Ω does not, which leads to discussing
different partial orders on RΩ than on RT .

5.1 Static stochastic problem formulation

The problem at hand is naturally formulated as a multi-stage stochastic problem. For
simplicity reasons, we first consider a 2−stage relaxation of the problem: in the first
stage, here-and-now decisions must be made before knowing the noise’s realization;
in the second stage, once the noise’s realization is revealed, recourse actions can be
decided.

We first adapt the individual model (P i) to a stochastic framework:

(P i,ρ) := min
xi(ξ)

ρ
[
Li(xi(ξ), ξ)

]
(13a)

s.t xi(ξ) ∈ X i a.s (13b)

M ixi(ξ) ∈ M a.s, (13c)

where ρ is a (coherent) risk-measure i.e., a function which gives a deterministic
cost equivalent to a random cost, reflecting the risk of a decision for prosumer i, see
e.g., Artzner et al. (1999). The choice of ρ depends on the attitude of i towards risk. For
example, the risk measure associated with a risk-neutral approach is the mathematical
expectation Eξ. Alternatively, a highly risk-averse profile will opt for the worst-case
measure supξ. Another widely used risk measure is the Average Value at Risk (a.k.a
Conditional Value at Risk, or expected shortfall, see Rockafellar et al. (2000)), or a
convex combination of expectation and Average Value at Risk.

Now, we adapt the deterministic aggregation model (A). We fall upon the same
challenge as in section 4. With multiple scenarios, we can consider that we have I ×Ω
prosumers and we need to choose an operator FI×Ω : RI×Ω → R, leading to:

(Aρ) := Min
x

FI×Ω

(
(Li(xi(ξ), ξ))i∈[I]

)
(14a)

s.t xi(ξ) ∈ X i ∀i ∈ [I] a.s (14b)
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∑
i∈[I]

M ixi(ξ) ∈ M a.s (14c)

Li(xi(ξ), ξ) ∈ Ai ∀i ∈ [I] a.s. (14d)

We know risk measures and prosumers objectives. As in section 4.1, there are multiple
possible choices for such operators. We can assume that this operator FI×Ω results
from the composition of two operators: an uncertainty-operator F i

Ω dealing with the
scenarios, which can differ from one prosumer to another; and an agent operator FI ,
as defined in section 3.2. However, contrary to section 4, it is not clear if we should
aggregate first with respect to uncertainty (meaning that a prosumer manages its own
risk) or with respect to prosumers (meaning that the risks are shared). We next discuss
reasonable modeling choices of aggregation operators, and acceptability constraints.

5.2 Stochastic objective

For the sake of conciseness, we are going to consider two possible uncertainty aggre-
gator: a risk-neutral choice, where F i

Ω is the mathematical expectation Eξ, and a
worst-case operator where F i

Ω is the supremum over the possible realization supξ. For
the agent operator FI , which reflects the way to handle fairness, we consider either
the utilitarian FU

I or the proportional minimax FPMM
I options (see section 3.3 for

definitions).
We suggest four different compositions of F i

Ω and FI to construct the aggregation
operator FI×Ω. Again, for simplicity of notations, we write Li instead of Li(xi(ξ), ξ).

First, we introduce the risk-neutral and utilitarian operator FUS
I×Ω which aims at

minimizing the aggregated expected costs of prosumers:

FUS
I×Ω

(
(Li)i∈[I]

)
= FU

I ⊙ EΩ

(
(Li)i∈[I]

)
(15a)

=

I∑
i=1

∑
ξ∈Ω

πξ Li(xi(ξ), ξ). (15b)

Alternatively, considering a robust approach on uncertainties, we have the operator
FUR

I×Ω which minimizes the worst-case aggregated costs of prosumers:

FUR
I×Ω

(
(Li)i∈[I]

)
= sup

ξ∈Ω
⊙FU

I

(
(Li)i∈[I]

)
(16a)

= sup
ξ∈Ω

{ I∑
i=1

Li(xi(ξ), ξ)

}
. (16b)

Remark 4. We claim that supξ∈Ω ⊙FU
I makes more sense than FU

I ⊙ supξ∈Ω as the
later aggregates prosumer’s costs that may appear in different scenarios, which means
optimizing for impossible costs realization.

On the other hand, we have supξ∈Ω ⊙FU
I = FU

I ⊙ supξ∈Ω, by associativity of sums.

Similarly, by associativity of supremum, we have supξ∈Ω ⊙FPMM
I = FPMM

I ⊙supξ∈Ω.
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As the first two operators do not model fairness considerations into the model, we
now look for a fair distribution, by using FPMM

I to aggregate prosumers’ costs. First,

let xi,⋆(ξ) be the2 optimal solution of (P i,ρ), and denote vi,ρξ := Li(xi,⋆(ξ), ξ), the

cost incurred by i when operating alone under uncertainty realization ξ. Finally, vi,ρ

is the random variable taking values vi,ρξ for the respecting realization ξ.
In sections 3.4 and 4.3, we have shown that the proportional savings minimax

approach is more adapted to our problem than the proportional approach. Thus, in a
stochastic framework, we propose the operator FMS

I×Ω :

FMS
I×Ω

(
(Li)i∈[I]

)
= FPMM

I ⊙ EΩ

(
(Li)i∈[I]

)
(17a)

= max
i∈[I]

{ E
[
vi,E]−∑

ξ∈Ω πξ Li(xi(ξ), ξ)

E
[
vi,E

] }
. (17b)

Finally, combining the robust and the proportional savings minimax approaches, we
obtain the operator FMR

I×Ω which focus on the prosumer having the worst worst-case
cost:

FMR
I×Ω

(
(Li)i∈[I]

)
= sup

ξ∈Ω
⊙FPMM

I

(
(Li)i∈[I]

)
(18a)

= sup
ξ∈Ω

{
max
i∈[I]

{ vi,Eξ − Li(xi(ξ), ξ)

vi,Eξ

} }
. (18b)

Remark 5. Note that here, depending on the operator’s choice, we could have a model
with different risk-measure profiles for the prosumers.

Further, as already pointed out, other (coherent) risk measures uncertainty-
aggregator could be used. Similarly, other agent-aggregators, as those presented in
section 3.2 might be relevant as well.

We now turn to extending the acceptability constraint (6) to a stochastic setting.

5.3 Stochastic dominance constraints

As in section 4.2, to induce acceptability, we are requiring that, for each prosumer i,
its random cost Li(xi(ξ), ξ) is less than the random cost of the independent model
vi,E . Unfortunately, there is no natural ordering of random variable (or equivalently
of RΩ), and each (partial) order will define a different extension of the acceptability
constraint (6).

We now present four acceptability constraints, using various ordering on the space
of random variable, leveraging the theory of stochastic dominance (see Dentcheva and
Ruszczynski (2003) for an introduction in the context of stochastic optimization). In
this section, we give the mathematical expression of acceptability constraints, but
mixed integer formulation can be found in appendix A.

2We assume uniqueness of a way of selecting an optimal solution, as in section 3)
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In a very conservative perspective, we consider the almost-sure order, comparing
random variables scenario by scenario:

Ai,ρ
a.s :=

{
ui,ρ, ui,ρ

ξ ≤ vi,ρξ , ∀ξ
}
. (19a)

We can relax the almost-sure ordering, by not requiring to benefit from the aggre-
gation for all scenarios, but distributionally. For example, if we have two scenarios ξ
and ζ, with same probability, we consider that it is acceptable to lose on ξ if we do
better on ζ, that is such that ui,ρ

ξ ≤ vi,ρη and ui,ρ
η ≤ vi,ρξ . To formalize this approach, we

turn to stochastic first-order dominance constraints (see Dentcheva and Ruszczynski
(2003)), and leverage 1st order acceptability:

Ai,ρ
(1) :=

{
ui,ρ, ui,ρ ⪯(1) vi,ρ

}
(19b)

:=
{
ui,ρ, P(ui,ρ > η) ≤ P(vi,ρ > η), ∀η ∈ R

}
:=

{
ui,ρ, E

[
g(ui,ρ)

]
≤ E

[
g(vi,ρ)

]
, ∀g : R → R, non-decreasing

}
.

One downside of this acceptability constraint is that the modeling entails numerous
binary variables, posing practical implementation challenges.

We can thus consider a relaxed, less risk-averse version of 1st order acceptabil-
ity, relying on stochastic second-order dominance constraints, an known as increasing
convex acceptability, which is equivalent to :

Ai,ρ
(ic) :=

{
ui,ρ, ui,ρ ⪯(ic) vi,ρ

}
(19c)

=
{
ui,ρ, E

[
(ui,ρ − η)+

]
≤ E

[
(vi,ρ − η)+

]
∀η ∈ R

}
=

{
ui,ρ, E

[
g(ui,ρ)

]
≤ E

[
g(vi,ρ)

]
, ∀g : R → R, convex, non-decreasing

}
.

Moreover, increasing convex acceptability is also easier to implement than 1st order
acceptability (see appendix A).

Finally, the risk-neutral acceptability constraint simply compares two random
variables through their expectation:

Ai,ρ
E :=

{
EP [u

i,ρ] ≤ EP [v
i,ρ]

}
. (19d)

We can decide to use another convex risk measure instead of the expectation in the
above constraint.

Remark 6. We have that Ai,ρ
a.s ⊆ Ai,ρ

(1) ⊆ Ai,ρ
(ic) ⊆ Ai,ρ

E . Therefore, we get a range

of solutions from the most to less constrained model.

5.4 Numerical illustration

We consider the stochastic version of the example presented in section 3.4, where bal-
ancing prices {pB

t }t∈[T ] are random variables with uniform, independent, distribution
over [0.35pDA

t , 5pDA
t ]. The problem can be formulated as a multi-stage program, where
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day-ahead purchases are decided in the first stage 0, and then each stage corresponds
to a time slot where we can buy energy on the balancing market at price pB

t .
We are going to solve and discuss the sample average approximation of the two

stage approximation of this problem. More precisely, we draw 50 prices scenario, and
solve a two-stage program where the first stage decisions are the day-ahead purchases,
and the second stage decisions are the balancing purchases from time slot 1 to T . We
set I = 4, T = 10 and we draw Ω = 50 scenarios of balancing prices. For the prosumers
parameters and market prices we use the data on tables 2 and 5.

Table 5 Prices on both markets

t 1 2 3 4 5 6 7 8 9 10

pDA
t 3 3 7 4 2 10 7 4 7.5 8

qDA
t

12 12 12 12 12 12 12 12 12 12

Table 6 Percentage of expected savings
E
[
vi,sup

]
−E

[
Li(xi(ξ)

]
E
[
vi,sup

] made by Ai and expected aggregated costs

E
[
FI(L

1(xi,⋆(ξ))i∈[I])
]
in the corresponding model.

Utilitarian Stochastic Minimax Proportional Stochastic

Acceptability constraints A1 A2 A3 A4
⊕

Ai A1 A2 A3 A4
⊕

Ai

None 2% 52% -14% 52% 684 32% 36% 32% 32% 770
Expected 4% 51% 1% 48% 684 32% 36% 32% 32% 770
Increasing convex 22% 44% 25% 36% 721 32% 36% 32% 32% 770
First order 36% 24% 34% 18% 882 23% 21% 28% 19% 918
Almost sure 43% 17% 41% 14% 930 37% 17% 33% 16% 941

Utilitarian Robust Minimax Proportional Robust

Acceptability constraints A1 A2 A3 A4
⊕

Ai A1 A2 A3 A4
⊕

Ai

None -19% 53% 6% 49% 686 22% 48% 21% 38% 693
Expected 0% 51% 0% 48% 686 22% 48% 21% 38% 693
Increasing convex 22% 43% 25% 33% 738 29% 43% 29% 33% 720
First order 25% 22% 28% 15% 920 28% 26% 33% 18% 881
Almost sure 43% 17% 40% 14% 930 43% 17% 40% 14% 930

We solve the problem with different combinations of aggregation operators and
acceptability sets, and can compare the impact of each combination on the solution.
We read prosumers’ expected percentage of savings with risk-neutral and worst-
case approaches on table 6. Moreover, we can observe the distribution of prosumers’
expected costs with a risk-neutral (resp. worst-case) approach on fig. 3 (resp. fig. 4).

Our first comment is that the problems, previously identified, from a utilitarian per-
spective with no acceptability constraints are still present in a stochastic framework.
Indeed, both with the risk-neutral utilitarian FUS

I×Ω and worst-case utilitarian FUR
I×Ω
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operators, we observe on table 6 that some prosumers can pay more in the aggrega-
tion compared to being alone (A3 pays +14% in the stochastic approach, and A1 pays
+19% in the robust approach). This highlights the necessity for either acceptability
constraints or an aggregation operator.
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I×Ω +AE
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E
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E
(1)AE
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Fig. 3 The columns correspond to the results of different models we solve, with a stochastic
approach. The first one is the independent model: we solve each (P i,E ) independently. The second col-
umn corresponds to the problem solved with operator FUS

I×Ω without acceptability constraints. Then,
the four following columns correspond to the same problem with increasingly strong acceptability
(AE

E,A
E
(ic)

,AE
(1)

,AE
a.s). The following column is for the problem solved with operator FMS

I×Ω without

acceptability constraints, followed by four columns with different acceptability sets. Each column is
decomposed in 4 blocks corresponding to the expected share E[Li(xi(ξ), ξ)] of each consumer i.

If we choose a fair approach through the objective (operators FMS
I×Ω and FMR

I×Ω),
we guarantee a higher percentage of savings to all prosumers than in the utilitarian
approach. For example, with no acceptability constraints, all prosumers save at least
32% of their costs in a risk-neutral approach, and 21% in a robust approach, compared
to respectively −14% and −19% with the utilitarian approach. This comes at the price
of efficiency, especially in the risk-neutral case, as the expected aggregated costs of
the minimax approach is 13% higher than with the utilitarian approach. This remains
true as the level of acceptability increases.

On the other side, when solving this problem with a utilitarian approach (operators
FUS

I×Ω and FUR
I×Ω), we can increase the guaranteed percentage of savings by constraining

more the acceptability. Indeed, with FUS
I×Ω, all prosumers save at least from 1% with
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expected acceptability to 22% with increasing convex acceptability, and with FUR
I×Ω,

it is from 0% to 22%. However, increasing the acceptability to first-order or almost-
sure does not improve this guarantee, as now the problem gets too constrained. For
example, with almost-sure acceptability, the choice of the operator on uncertainty is
inconsequential: the distribution of costs is the same with both operators FUS

I×Ω and
FUR

I×Ω. Notably, there exists a substantial gap between increasing-convex acceptability
and first-order acceptability. For example, with the minimax stochastic operator FMS

I×Ω,
the costs increases from 770 with increasing convex acceptability, to 918 with first-
order acceptability.
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Fig. 4 This figure can be read in the same manner as fig. 3, except that the two considered operators
are FUR

I×Ω and FMR
I×Ω.

Thus, we obtain here a range of solutions with different balances between efficiency
and fairness, but also different visions on risk. In this example, if we want to give
the same guarantees to every prosumers, the natural choice would be operator FMS

I×Ω.
However, if we want to opt for an approach less costly, the operators FUS

I×Ω and FUR
I×Ω

combined with increasing convex acceptability seem like reasonable options.

Conclusions

We have introduced, developed and analysed, a model for fair prosumer aggregation.
First, we discussed acceptability constraints to discourage prosumers from leaving
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the aggregation. We then compared different choices of objective function (utilitar-
ian, minimax and proportional). Through a stylized (and more easily interpretable)
deterministic case study, we showed how different combinations of objectives and con-
straints influence solutions, emphasizing the importance of fairness and acceptability
considerations. We then extended the model to dynamic and stochastic frameworks,
aligning it with what we expect practical problems to be (i.e., , decision-making most
likely is for a sequence of time periods, under uncertainty). In this context, we adapt
acceptability constraints to account for long-term horizons and uncertainties, and we
showcase their impact on solutions using similar stylized instances. In our numerical
example, it appears that the proportional min-max agent aggregator, with progressive
acceptability constraint in the dynamic case (resp. increasing convex acceptability in
the stochastic case), seems to be a good compromise between efficiency and fairness.
Recall that the framework discussed here is not reduced to prosumer aggregation in
energy markets only, and can be adapted to other aggregation problems in energy sys-
tem management problems (e.g., virtual power plant, portfolio management in energy
markets, ancillary service provision, etc.).

In future work, we plan to discuss the extension of the aggregation problem to
a multistage stochastic program, thus having both extension discussed in this paper
simultaneously. This will require to discuss possible aggregators FT×Ω×I over agent,
time and uncertainty simultaneously. If we can easily assume a factorization of the
form FI ⊙ FT×Ω, it would not be realistic to describe FT×Ω as the composition of
a time aggregator and an uncertainty aggregator. Indeed, such a factorization would
not guarantee time-consistency of the problem, and might not even preserve non-
anticipativity. Further, acceptability constraints need to be defined through the use of
multivariate stochastic order (see Dentcheva and Ruszczyński (2009); Armbruster and
Luedtke (2015); Dentcheva and Wolfhagen (2016)) whose mathematical programming
representation are more involved.
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A Modeling of stochastic dominance constraints

We present here practical formulas to implement the stochastic orders dominance con-
straints introduced in section 5.3. Those constraints establish a dominance between
vi,ρ, the random variable representing i independent costs, and ui,ρ, the random
variable representing i costs in the aggregation.

A.1 First-order dominance constraint model

The first-order dominance constraints (19b) model is based on Gollmer et al. (2008).
Lemma 1. In Problem (Aρ), acceptability constraints ui,ρ ⪯(1) vi,ρ can be modeled
with:

biξ,η ∈ {0, 1} ∀η ∈ [Ω], ∀ξ ∈ Ω (20a)

ui,ρ
ξ − vi,ρη ≤ M biξ,η ∀η ∈ [Ω], ∀ξ ∈ Ω (20b)

Ω∑
ξ=1

πξb
i
ξ,η ≤ aη ∀η ∈ [Ω]. (20c)

We denote aη := P(vi,ρ > vi,ρη ), which is a parameter for the aggregation problem.

Proof. As Ω is assumed to be finite, vi,ρ follows discrete distribution with realizations
vi,ρη for η ∈ Ω. Then,

ui,ρ ⪯(1) vi,ρ ⇐⇒ P(ui,ρ > η) ≤ P(vi,ρ > η) ∀η ∈ R
⇐⇒ P(ui,ρ > vi,ρη ) ≤ P(vi,ρ > vi,ρη ) ∀η ∈ Ω.

Then, using P(X > x) = E[1X>x], and introducing binary variables biξ,η = 1ui,ρ
ξ >vi,ρ

η
,

we get:

(
P(ui,ρ > vi,ρη ) ≤ P(vi,ρ > vi,ρη ) ⇐⇒

Ω∑
ξ=1

πξb
i
ξ,η ≤ aη

)
∀η ∈ Ω.

To linearize the definition of biξ,η, we rely on big-M constraint:

biξ,η ∈ {0, 1} ∀η ∈ Ω,∀ξ ∈ Ω

ui,ρ
ξ − vi,ρη ≤ Mbiξ,η ∀η ∈ Ω,∀ξ ∈ Ω.

A.2 Increasing convex dominance constraint model

The increasing convex dominance constraints (19c), is based on Carrión et al. (2009).
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Lemma 2. In problem (Aρ), the acceptability constraint ui,ρ ⪯(ic) vi,ρ can be modeled
with:

siξ,η ≥ 0 ∀η ∈ [Ω], ∀ξ ∈ Ω (21a)

siξ,η ≥ ui,ρ
ξ − vi,ρη ∀η ∈ [Ω], ∀ξ ∈ Ω (21b)

Ω∑
ξ=1

πξs
i
ξ,η ≤ aicη ∀η ∈ [Ω]. (21c)

We denote aicη := E[(vi,ρ − vi,ρη )+].

Proof. As in appendix A.1, we know that vi,ρ follows a discrete distribution with
realizations vi,ρη ) for η ∈ Ω. Then,

ui,ρ ⪯(ic) vi,ρ ⇐⇒ E
[
(ui,ρ − η)+

]
≤ E

[
(vi,ρ − η)+

]
∀η ∈ R

⇐⇒ E
[
(ui,ρ − vi,ρη )+

]
≤ E

[
(vi,ρ − vi,ρη )+

]
∀η ∈ Ω.

We introduce positive variables siξ,η = (ui,ρ
ξ −vi,ρη )+, for η ∈ Ω. Thus, we can model

the increasing convex dominance constraints as:

(
E
[
(ui,ρ − vi,ρη )+

]
≤ E

[
(vi,ρ − vi,ρη )+

]
⇐⇒

Ω∑
ξ=1

πξs
i
ξ,η ≤ aicη

)
∀η ∈ [Ω].
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