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Abstract The Asymptotic Expansion Load Decomposition higher-order beam model is7

based on the classical two-scale asymptotic expansion in the linear elasticity framework. It8

was successively extended to eigenstrains and to plasticity in small deformations in different9

papers. The present paper offers a comprehensive and consistent presentation of our approach10

applied to civil engineering applications.11

Keywords Model reduction; Higher-order beam model; Asymptotic expansion; Plasticity;12

Structural analysis13

1 Introduction14

Until very recently, most structural engineering offices were designing structures based either15

on very simple beam models or on complex finite elements modeling. Thanks to the recent16

development of cloud-computing, a new business model is emerging: online structural anal-17

ysis. Indeed, cloud computing gives structural engineers access to more powerful computing18

platforms. It also reduces maintenance operations for the provider since only one system is19

maintained instead of adapting the software to multiple platforms (Windows, Unix, multiple20

versions of them, etc.). This is the path chosen by the start-up Strains engineering co-founded21

by Xavier Cespedes in 2014.22

The development of such tools requires interactive and real-time simulation softwares.23

Hence, an efficient mechanical modeling of structural elements and connections is critical.24

One of the main project of this start-up is the development of a higher-order beam model25

capable of capturing in more details the influence of the applied load or the boundary26

conditions for thin-walled and heterogeneous beams. Indeed, traditional design based on27

simple beam modeling presents the advantage to be easy to understand and to allow rapid28
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verification of the results. However, it is not able to give detailed information about local29

distribution of stresses. In order to obtain more detailed results, complex finite element30

modeling is necessary. Though, this requires expensive and black-boxed software and is31

computationally more demanding.32

The present paper summarizes and presents a critical review of theAsymptotic Expansion33

Load Decomposition beam model developped and implemented for Strains engineering and34

published in several contributions [13, 9, 10]. This model originates from the seminal work35

of Miara and Trabucho [19] for linear elastic beams and was first directly applied by Ferradi36

et al [13]. Because structural analysis must also take into account eigenstrains such as thermal37

load, prestress or weakly coupled swelling phenomena, this new type of loading was treated38

by Corre et al [9] in a linear elastic framework. Finally, since the total plastic strain may39

be considered as an eigenstrain, the Asymptotic Expansion Load Decomposition model was40

extended to elasto-plasticity assuming small perturbations in [10].41

The paper is organized in two sections. First, the higher-order beammodel is derived in the42

framework of linear elasticity for a given load distribution and some illustrations are briefly43

presented. Second, the higher-order beam model is extended to elasto-plasticity assuming44

small perturbations and is validated against a full 3D computation. Finally, limitations and45

outlooks of the approach are presented.46

2 The linear elastic Asymptotic Expansion Load Decomposition beam model47

Most beam models are based on ad-hoc assumptions on the 3D fields which motivated the48

denomination axiomatic. They rely on an educated guess on the 3D displacement field in49

a separated form between the longitudinal coordinate and the transverse coordinates. Then,50

straightforward application of the minimum of potential energy leads to 1D boundary value51

problems corresponding to the beam model.52

Numerous strategies were devised for building the kinematics of the beam. Remarkably,53

the extended Saint Venant solution from Iesan [15] and the formal asymptotic expansion54

method [29] delivers almost the same collection of cross-section displacements. Based on55

the seminal idea from Vogelius and Babuška [30, 31] which also originated the family of56

“hierarchical models” for plates and shells [1], Miara and Trabucho [19] made two noticeable57

observations regarding this beam kinematics. First, the formal asymptotic expansion delivers58

a free family of kinematic enrichment which is dense in the space of the 3D solution. This59

means that going sufficiently high in the expansion allows arbitrary refinement of the 3D60

solution. Second, the truncation of this family ensures that the corresponding beam model61

is asymptotically consistent except at the boundary. Indeed, for loads which do not generate62

boundary layers, Miara and Trabucho [19] proved a higher-order convergence result. This63

means that the kinematic enrichment delivered by the formal asymptotic expansion is optimal64

in terms of approximation error far from the extremities of the beam.65

In the following, the asympotic expansion procedure for deriving the AELD kinematics66

is recalled for a beam under body loads and its link with classical beammodels is highlighted.67

Then, the higher-order beam model is derived and two applications are presented.68

2.1 The kinematic enrichment based on the formal asymptotic expansion69

In this section, the formal asymptotic expansion procedure is recalled for a linear elastic70

beam loaded by an arbitrary body force. It is an opportunity to emphasize its close link with71
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Saint-Venant solution as well as the extension from Iesan [15]. It appears that a series of72

3D displacement fields distributed over the cross-section may be obtained as function of73

the classical beam generalized displacements as well as the longitudinal distribution of the74

applied load and its higher gradients. Such a basis of “sections modes” may be derived for75

any given applied load [13] and was extended to prescribed eigenstrains by Corre et al [9].76

2.1.1 The 3D problem77

𝑥2
𝑥1
𝑥3

𝐿 ℎ

𝜕Ω𝑡

Ω

S+

S−

Fig. 1: The beam 3D configuration

We consider a beam occupying the prismatic domain Ω (Figure 1) with a length 𝐿 and78

a cross-sectional typical size ℎ. The boundary 𝜕Ω is the union of the lateral (free) surface79

𝜕Ω𝑡 and the two end sections S± (clamped). The longitudinal coordinate is 𝑥3 and the80

transverse coordinates are 𝑥1 and 𝑥2 denoted as 𝑥𝛼, the corresponding reference frame is81

denoted (𝑂, 𝒆-1, 𝒆-2, 𝒆-3) where 𝑂 is an arbitrary point of the plane 𝑥3 = 0.82

The constitutive material of the beam, relating the stress tensor 𝝈 to the linearized defor-83

mation 𝜺, is only function of the transverse coordinates 𝑥𝛼 and invariant in the longitudinal84

direction. For convenience and without limitation, the corresponding fourth order stiffness85

tensor 𝑪 (𝑥𝛼) is assumed monoclinic with respect to a plane of normal 𝒆-3:86

𝐶𝛼𝛽𝛾3 = 𝐶333𝛼 = 0. (1)

The beam is only subjected to a body load 𝑓𝑖 . The corresponding 3D linear boundary value87

problem writes as:88 
div- (𝝈) + 𝒇
-

= 0 on Ω,
𝝈 = 𝑪 : 𝜺

(
𝒖-
)
on Ω,

𝝈 · 𝒏- = 0 on 𝜕Ω𝑡 ,
𝒖- = 0 on S±,

(2)

where 𝒏- is the outer normal to 𝜕Ω𝑡 , div- is the classical divergence operator and 𝜺
(
𝒖-
)
is the89

symmetric part of the displacement gradient.90

Scaling and variable separation A new set of coordinates 𝑦𝑖 is defined from the global91

coordinates,92

(𝑥1, 𝑥2, 𝑥3) = (ℎ𝑦1, ℎ𝑦2, 𝐿𝑦3) , (3)
which rewrites the derivation operator as:93

∇𝒙- =
1
𝐿

(
∇𝑦3 +

1
𝜂
∇𝑦𝛼

)
, (4)
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as well as the integration over the domain Ω as:94 ∫
Ω
𝑑Ω =

∫ 𝐿

0

∫
S
𝑑𝑥𝛼𝑑𝑥3 = 𝐿3𝜂2

∫ 1

0

∫
S0

𝑑𝑦𝛼𝑑𝑦3 = 𝐿3𝜂2
∫ 1

0
〈 〉 𝑑𝑦3, (5)

where 𝜂 = ℎ
𝐿 is the small parameter related to the slenderness of the beam, S0 is the scaled95

cross-section, independent from 𝜂 and 〈 〉 denotes integration on the scaled cross-section.96

The body load is assumed to have the following separated form:97

𝑓𝛼 =
𝜂2

𝐿
�̃�𝛼 (𝑦𝜂)𝐹 (𝑦3) and 𝑓3 =

𝜂

𝐿
�̃�3 (𝑦𝜂)𝐹 (𝑦3) (6)

where �̃�𝑖 are cross-section distributions of the load which are modulated by a single longitu-98

dinal function 𝐹 (𝑥3). In this section, capital letters denote functions of only the 𝑦3 coordinate99

(except for 𝑪) and •̃ denotes functions of only cross-section coordinates 𝑦𝛼.100

Expansion The asymptotic expansion method is a formal procedure in which all fields are101

assumed sufficiently smooth. It yields a cascade of cross-section and longitudinal boundary102

value problems which are classically solved recursively. In the present case, only the cross-103

section problems are of interest in order to derive a collection of displacement modes.104

The displacement, strain and stress variables are expanded as power series of the small105

parameter as follows [24, 29, 6]:106

𝒖- = 𝐿
(
𝑈0

𝛼 (𝑦3)𝒆-𝛼 + 𝜂𝒖-
1 + 𝜂

2𝒖-
2 + ...

)
, (7)

107

𝜺 = 𝜺0 + 𝜂𝜺1 + 𝜂
2𝜺2 + ..., (8)

108

𝝈 = 𝝈0 + 𝜂𝝈1 + 𝜂
2𝝈2 + ... (9)

and introduced in the rescaled equations of the 3D boundary value problem (2) where each109

power 𝑝 of 𝜂 is identified. In Equation 7, Einstein’s implicite summation convention on110

repeated indices is used. Note that, Greek indices denotes transverse dimensions: 𝛼, 𝛽... =111

1, 2 and Latin indices denotes all three dimensions: 𝑖, 𝑗 ... = 1, 2, 3.112

The problem being linear, the choice of the starting order has no incidence on the final113

formulation in terms of physical variable. Here the starting order is chosen so that the leading114

order of the displacement field is 0. The starting order of the other fields is chosen accordingly115

and motivates the scaling of the load in Equation (6).116

For 𝑝 ∈ N, each compatibility equations, boundary conditions and constitutive equations117

for 𝑝 and equilibrium equations for 𝑝 − 1 yield an auxiliary problem on the cross-section118

which splits in two uncoupled boundary value problems.119

Transverse displacement First, the cross-section displacement problems (transverse mode)
T 𝑝+1 are gathered for 𝑝 ≥ 0:

T 𝑝+1 :



𝜎𝑝

𝛼𝛽,𝛽 + 𝜎𝑝−1
𝛼3,3 + 𝛿𝑝3 �̃�𝛼𝐹 = 0 on S0, (10a)

𝜎𝑝

𝛼𝛽 = 𝐶𝛼𝛽𝛾𝛿𝜀
𝑝

𝛿𝛾 + 𝐶𝛼𝛽33𝜀
𝑝

33 on S0, (10b)

𝜎𝑝

33 = 𝐶33𝛼𝛽𝜀
𝑝

𝛽𝛼 + 𝐶3333𝜀
𝑝

33 on S0, (10c)

𝜀𝑝

𝛼𝛽 = 𝑢𝑝+1
(𝛼,𝛽) , 𝜀𝑝

33 = 𝑢𝑝

3,3 on S0, (10d)

𝜎𝑝

𝛼𝛽𝑛𝛽 = 0 on 𝜕S0. (10e)
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where 𝝈−1 = 0 and 𝛿3𝑝 = 1 if 𝑝 = 3 and 𝛿3𝑝 = 0 else. Transposing the results from [8, 2],120

for a simply connected cross-section and regular enough 𝑪 and loadings, this boundary value121

problem on the displacement 𝑢𝑝+1
𝛼 is a pure traction (Neumann) problem which is well-posed122

provided that the applied load is globally self-equilibrating for cross-section translations and123

rotation:124 〈
𝜎𝑝−1
𝛼3,3 + 𝛿𝑝3 �̃�𝛼𝐹

〉
= 0 and

〈
𝑦𝛽𝜖𝛽𝛼

(
𝜎𝑝−1
𝛼3,3 + 𝛿𝑝3 �̃�𝛼𝐹

)〉
= 0, (11)

where 𝜖𝛼𝛽 is the permutation operator: 𝜖11 = 𝜖22 = 0, 𝜖12 = +1, 𝜖21 = −1. Then, under125

compatibility conditions (11), the solution is uniquely defined up to the following rigid126

motion of the section in its plane:127

𝑢𝑅,𝑝+1𝛼 = 𝑈 𝑝+1
𝛼 (𝑦3) + 𝑦𝛽𝜖𝛽𝛼Θ

𝑝+1 (𝑦3). (12)

where𝑈 𝑝+1
𝛼 is a transverse displacement and Θ𝑝+1 a twist rotation.128

Longitudinal displacement Second, the longitudinal displacement problems (warpingmode)
W 𝑝 are obtained for 𝑝 ≥ 0:

W 𝑝+1 :



𝜎𝑝

3𝛼,𝛼 + 𝜎𝑝−1
33,3 + 𝛿𝑝2 �̃�3𝐹 = 0 on S0, (13a)

𝜎𝑝

𝛼3 = 𝐶𝛼3𝛽3 2𝜀𝑝

𝛽3 on S0, (13b)

2𝜀𝑝

𝛼3 = 𝑢𝑝+1
3,𝛼 + 𝑢𝑝

𝛼,3 on S0, (13c)

𝜎𝑝

𝛼3𝑛𝛼 = 0 on 𝜕S0. (13d)

Again, for a simply connected cross-section and regular enough 𝑪 and loadings, this bound-129

ary value problem on the displacement 𝑢𝑝+1
3 is well-posed if the applied load is globally130

self-equilibrating for the longitudinal translation:131 〈
𝜎𝑝−1
33,3 + 𝛿𝑝2 �̃�3𝐹

〉
= 0. (14)

In this case, the solution is uniquely defined up to a uniform longitudinal displacement:132

𝑢𝑅,𝑝+13 = 𝑈 𝑝+1
3 (𝑦3). (15)

Resultants and macroscopic equilibrium equations The rigid motion of the section suggests133

the following definition of the beam resultants at each order 𝑝 ≥ 0:134

𝑁 𝑝

3 =
〈
𝜎𝑝

33
〉
, 𝑀 𝑝

𝛼 =
〈
𝑦𝛼𝜎

𝑝

33
〉
, 𝑀 𝑝

3 =
〈
𝑦𝛽𝜖𝛽𝛼𝜎

𝑝

𝛼3
〉
and 𝑉 𝑝

𝛼 =
〈
𝜎𝑝

𝛼3
〉
, (16)

where 𝑁 𝑝

3 is the normal traction,𝑀
𝑝
𝛼 are the bending moments1,𝑀 𝑝

3 is the moment of torsion135

and 𝑉 𝑝
𝛼 are the shear forces.136

From the compatibility conditions (10a) and (13a) it is possible to prove that these
resultants must comply with the following classical beam equilibrium equations for each
𝑝 ≥ 0: 

𝑁 𝑝

3,3 + 𝛿𝑝1𝑝3𝐹 = 0, (17a)

𝑀 𝑝

𝛼,3 −𝑉 𝑝+1
𝛼 + 𝛿𝑝1𝜇𝛼𝐹 = 0, (17b)

𝑀 𝑝

3,3 + 𝛿𝑝2𝜇3𝐹 = 0, (17c)
𝑉 𝑝

𝛼,3 + 𝛿𝑝2𝑝𝛼𝐹 = 0. (17d)

1 It will appear that 𝑀 𝑝
𝛼 is the working conjugate to the curvature 𝑈

𝑝

𝛼,33 and not the conventional
bending moment. Indeed, the classical definition is 𝑚𝑝

𝛼 =
〈
𝜖𝛼𝛽𝑦𝛽𝜎

𝑝

33
〉
= 𝜖𝛼𝛽𝑀

𝑝

𝛽 . This choice is made for
convenience.
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where 𝑝𝛼 =
〈
�̃�𝛼

〉
are the transverse loads, 𝑝3 =

〈
�̃�3

〉
is the longitudinal load, 𝜇𝛼 =

〈
𝑦𝛼 �̃�3

〉
137

are distributed bending couples and 𝜇3 =
〈
𝑦𝛽𝜖𝛽𝛼 �̃�𝛼

〉
is a distributed torsion load.138

The series of problems are now solved order by order.139

2.1.2 First-order problems140

Transverse displacement The problem T 1 is not loaded. Consequently, the transverse dis-141

placement 𝑢1𝛼 is a rigid motion and the corresponding stress is null:142

𝑢1𝛼 = 𝑈1
𝛼 (𝑦3) + 𝑦𝛽𝜖𝛽𝛼Θ

1 (𝑦3) and 𝜎0𝛼𝛽 = 0, 𝜎033 = 0. (18)

Here,Θ1 appears as the leading order angle of twist and𝑈1
𝛼 as the second order macroscopic143

transverse displacement.144

Longitudinal displacement The longitudinal displacement problem (warping mode) W1

writes as:

W1 :


𝜎03𝛼,𝛼 = 0 on S0, (19a)

𝜎0𝛼3 = 𝐶𝛼3𝛽3 2𝜀0𝛽3 on S0, (19b)

2𝜀0𝛼3 = 𝑢13,𝛼 +𝑈0
𝛼,3 on S0, (19c)

𝜎0𝛼3𝑛𝛼 = 0 on 𝜕S0. (19d)

The applied load is self-equilibrating and the solution of this boundary value problem writes145

as:146

𝑢13 = 𝑈1
3 + 𝑦𝛼𝑈

0
𝛼,3 and 𝜎0𝛼3 = 0, (20)

where 𝑈0
𝛼,3 appears as the bending rotation and 𝑈

1
3 as the leading order longitudinal dis-147

placement.148

2.1.3 Second-order problems149

Transverse displacement The transverse displacement 𝑢2𝛼 is derived through:

T 2 :



𝜎1𝛼𝛽,𝛽 = 0 on S0, (21a)

𝜎1𝛼𝛽 = 𝐶𝛼𝛽𝛾𝛿𝜀
1
𝛿𝛾 + 𝐶𝛼𝛽33𝜀

1
33, on S0, (21b)

𝜎133 = 𝐶33𝛼𝛽𝜀
1
𝛽𝛼 + 𝐶3333𝜀

1
33 on S0, (21c)

𝜀1𝛼𝛽 = 𝑢2(𝛼,𝛽) , 𝜀133 = 𝑈1
3,3 + 𝑦𝛼𝑈

0
𝛼,33 on S0, (21d)

𝜎1𝛼𝛽𝑛𝛽 = 0 on 𝜕S0. (21e)

Again, the applied load is globally self-equilibrating. The solution of this boundary value150

problem parametrized by the elongation 𝑈1
3,3 and the curvatures 𝑈

0
𝛼,33 writes as the linear151

superposition of each contribution:152

𝑢2𝛼 = �̃�𝑒3𝛼 𝑈1
3,3 + �̃�

𝜒𝛽
𝛼 𝑈0

𝛽,33 +𝑈2
𝛼 + 𝑦𝛽𝜖𝛽𝛼Θ

2, (22)

where �̃�𝑒3𝛼 , �̃�
𝜒𝛽
𝛼 are cross-section displacements related to transverse Poisson’s effect under153

pure traction and pure curvatures which are illustrated for a square section in Figure 2. When154

the section is homogeneous, these correctors have a closed-form expression which is detailed155
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in [32] for instance. In order to be uniquely defined, the following constraints are applied to156

all these cross-section displacements:157

〈�̃�𝛼〉 = 0 and
〈
𝑦𝛽𝜖𝛽𝛼�̃�𝛼

〉
= 0. (23)

(a) Transverse mode 𝑢𝑒3
𝛼 (b) Transverse mode 𝑢𝜒1

𝛼 (c) Transverse mode 𝑢𝜒2
𝛼

Fig. 2: Transverse modes related to pure traction and pure curvatures for a homogeneous
square section with an isotropic material

(a) Warping mode 𝑢𝜒3
3 (b) Warping mode 𝑢𝑉1

3 (c) Warping mode 𝑢𝑉2
3

Fig. 3: Warping modes related to pure torsion and pure shear forces for a homogeneous
square section with an isotropic material

158

Longitudinal displacement The longitudinal displacement 𝑢23 complies with:

W2 :


𝜎13𝛼,𝛼 = 0 on S0, (24a)

𝜎1𝛼3 = 𝐶𝛼3𝛽3 2𝜀1𝛽3 on S0, (24b)

2𝜀1𝛼3 = 𝑢23,𝛼 + 𝑦𝛽𝜖𝛽𝛼Θ
1
,3 +𝑈1

𝛼,3 on S0, (24c)

𝜎1𝛼3𝑛𝛼 = 0 on 𝜕S0. (24d)
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The applied load is globally self-equilibrating. The solution of this boundary value problem159

parametrized by Θ1,3 and𝑈
1
𝛼,3 writes as the linear superposition of each contribution:160

𝑢23 = �̃�
𝜒3
3 Θ1,3 +𝑈2

3 + 𝑦𝛼𝑈
1
𝛼,3, (25)

where �̃�𝜒33 is the torsion warping2 illustrated in Figure 3a. Indeed, the displacement �̃�
𝜒3
3 is161

exactly the solution of the Neumann problem for Saint Venant’s torsion. Again, this warping162

is constrained as follows:163

〈�̃�3〉 = 0. (26)

Macroscopic constitutive equations From the solution of second order problems, the first
order stress may be written as:

𝜎1𝛼𝛽 = �̃�𝑒3
𝛼𝛽𝑈

1
3,3 + �̃�

𝜒1
𝛼𝛽𝑈

0
1,33 + �̃�

𝜒2
𝛼𝛽𝑈

0
2,33, (27a)

𝜎1𝛼3 = �̃�
𝜒3
𝛼3Θ

1
,3, (27b)

𝜎133 = �̃�𝑒3
33𝑈

1
3,3 + �̃�

𝜒1
33𝑈

0
1,33 + �̃�

𝜒2
33𝑈

0
2,33. (27c)

Expressing the traction and bending moments leads to the following constitutive equa-
tions: 

𝑁13 = 𝐴3𝑈
1
3,3 + 𝑆1𝑈

0
1,33 + 𝑆2𝑈

0
2,33, (28a)

𝑀1
1 = 𝑆∗1𝑈

1
3,3 + 𝐷1𝑈

0
1,33 + 𝐷12𝑈

0
2,33, (28b)

𝑀1
2 = 𝑆∗2𝑈

1
3,3 + 𝐷∗

12𝑈
0
1,33 + 𝐷2𝑈

0
2,33, (28c)

where:164 
𝐴3 =

〈
�̃�𝑒3
33
〉
, 𝑆1 =

〈
�̃�

𝜒1
33
〉
, 𝑆2 =

〈
�̃�

𝜒2
33
〉
,

𝑆∗1 =
〈
𝑦1�̃�

𝑒3
33
〉
, 𝐷1 =

〈
𝑦1�̃�

𝜒1
33
〉
, 𝐷12 =

〈
𝑦1�̃�

𝜒2
33
〉
,

𝑆∗2 =
〈
𝑦2�̃�

𝑒3
33
〉
, 𝐷∗

12 =
〈
𝑦2�̃�

𝜒1
33
〉
, 𝐷2 =

〈
𝑦2�̃�

𝜒2
33
〉
.

(29)

The modulus 𝐴3 is the traction stiffness, 𝐷1 and 𝐷2 are the bending stiffnesses. It is possible
to prove that 𝑆∗1 = 𝑆1, 𝑆∗2 = 𝑆2 and 𝐷∗

12 = 𝐷12. The stiffnesses 𝑆1 and 𝑆2 are related to the
first moments of inertia. Furthermore, there is a position for 𝑂, the origin of the reference
frame, such that 𝑆1 = 𝑆2 = 0 and rotating the reference frame with respect to 𝒆-3, there is an
angle such that 𝐷12 = 0. When the section is homogeneous, this choice of reference frame
corresponds to the centroid of the section oriented along one of the principal axis of the
second moments of inertia. This is assumed in the following:

𝑁13 = 𝐴3𝑈
1
3,3, (30a)

𝑀1
1 = 𝐷1𝑈

0
1,33, (30b)

𝑀1
2 = 𝐷2𝑈

0
2,33. (30c)

Similarly, the torsion is expressed as function of the macroscopic displacements and the165

eigenstrain:166

𝑀1
3 = 𝐷3Θ

1
,3, (31)

where the torsion stiffness is:167

𝐷3 =
〈
𝑦𝛾𝜖𝛾𝛼�̃�

𝜒3
𝛼3
〉
. (32)

Whereas the uncoupling between traction and bending moments may always be satisfied168

with a proper choice of the reference frame, the uncoupling between torsion is obtained here169

because of the symmetry assumption (1). This assumption may be released without limiting170

the approach presented here. Indeed, constitutive equations (30) and (31) would be simply171

coupled in such a case and would make the derivation more involved.172

2 �̃�-
𝜒3
3 is the warping used by Benscoter [4].
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2.1.4 Third-order problems173

Transverse displacement The transverse displacement 𝑢3𝛼 is derived through T 3 and loaded174

by Θ1,33, 𝑈
2
3,3 and 𝑈

1
𝛼,33. Noticing that the constitutive equation (31) and the torsion equi-175

librium equation (17c) for 𝑝 = 1, enforce Θ1,33 = 0, it appears that T 3 is exactly the same176

problem as T 2, incrementing the orders3.177

Longitudinal displacement The longitudinal displacement 𝑢33 complies with W3 and is178

loaded by Θ2,3, 𝑈
1
3,33 and 𝑈

0
𝛼,333. The applied load is not globally self-equilibrating for each179

individual loading. From the constitutive equation (30a) and the equilibrium equation (17a)180

with 𝑝 = 1 it is deduced that :181

𝑈1
3,33 = − 𝑝3

𝐴3
𝐹. (33)

Substituting this inW3 ensures it is well-posed. Furthermore, it is also convenient to ensure182

that the load is also self-equilibrating in bending. This is obtained, from the constitutive183

equations (30b) and (30c) and the equilibrium equation (17b) for 𝑝 = 1:184

𝑈0
1,333 =

𝑉 21 − 𝜇1𝐹

𝐷1
and 𝑈0

2,333 =
𝑉 22 − 𝜇2𝐹

𝐷2
. (34)

Inserting these relations in problemW3 leads to:

W3 :



𝜎23𝛼,𝛼 + �̃�
𝜒1
33

𝑉 21
𝐷1

+ �̃�
𝜒2
33

𝑉 22
𝐷2

+
(
�̃�3 − 𝑝3

𝐴3
�̃�𝑒3
33 −

𝜇1
𝐷1

�̃�
𝜒1
33 −

𝜇2
𝐷2

�̃�
𝜒2
33

)
𝐹 = 0 on S0, (35a)

𝜎2𝛼3 = 𝐶𝛼3𝛽3 2𝜀2𝛽3 on S0, (35b)

2𝜀2𝛼3 = 𝑢33,𝛼 + �̃�
𝜒1
𝛼

𝑉 21
𝐷1

+ �̃�
𝜒2
𝛼

𝑉 22
𝐷2

−
(
𝑝3
𝐴3
�̃�𝑒3𝛼 + 𝜇1

𝐷1
�̃�
𝜒1
𝛼 + 𝜇2

𝐷2
�̃�
𝜒2
𝛼

)
𝐹

+ 𝑦𝛽𝜖𝛽𝛼Θ
2
,3 +𝑈2

𝛼,3 on S0, (35c)

𝜎2𝛼3𝑛𝛼 = 0 on 𝜕S0. (35d)

The solution is parametrized by the shear forces 𝑉 2𝛼 the applied load 𝐹 and higher-order185

beam displacements. It writes as the linear superposition of each contributions:186

𝑢33 = �̃�𝑉𝛼

3 𝑉 2𝛼 + �̃�𝐹3 𝐹 + �̃�
𝜒3
3 Θ2,3 + 𝑦𝛼𝑈

2
𝛼,3 +𝑈3

3. with 〈�̃�3〉 = 0 (36)

The longitudinal displacements �̃�𝑉13 and �̃�
𝑉2
3 are warpings related to shear forces illustrated187

in Figure (3b) and (3c). Indeed, considering the whole problemW3 loaded exclusively with188

shear forces, one can identify the corresponding Neumann problems in Saint Venant’s beam189

theory. Furthermore, the equilibrium equation (35a) considered with only the shear forces190

loading and integrated on a partial section is actually Jouravskii’s Formula [16] which gives191

a fair estimate of shear stress in thin-walled beams. Finally, �̃�𝑉13 and �̃�
𝑉2
3 are related to the192

shear lag phenomenon in homogeneous thin-walled beams: when the beam is not enough193

slender, the longitudinal stress 𝜎33 is not exactly the linear distribution derived at leading194

order (Equation (27c)).195

3 This simplification comes from the symmetry assumption (1) and the scaling chosen for 𝑓𝛼 such that
bending deflection is of order 0.
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Macroscopic constitutive equations From the solution of third order problems, the second-
order stress may be written as:

𝜎2𝛼𝛽 = �̃�𝑒3
𝛼𝛽𝑈

2
3,3 + �̃�

𝜒1
𝛼𝛽𝑈

1
1,33 + �̃�

𝜒2
𝛼𝛽𝑈

1
2,33, (37a)

𝜎2𝛼3 = �̃�
𝑉𝛽

𝛼3𝑉
2
𝛽 + �̃�𝐹

𝛼3𝐹 + �̃�
𝜒3
𝛼3Θ

2
,3, (37b)

𝜎233 = �̃�𝑒3
33𝑈

2
3,3 + �̃�

𝜒1
33𝑈

1
1,33 + �̃�

𝜒2
33𝑈

1
2,33 (37c)

The traction and bending constitutive equations obtained from this stress distribution are196

identical to equations (30) incrementing the order. The second-order torsion is expressed as197

function of the macroscopic displacements and the applied load:198

𝑀2
3 = 𝐷3Θ

2
,3 + 𝑦𝑆𝛼𝜖𝛼𝛽𝑉

2
𝛽 + 𝑀𝐹

3 𝐹, (38)

where the torsion induced by the non-uniform distribution of �̃�3 in the section is 𝑀𝐹
3 =199 〈

𝑦𝛾𝜖𝛾𝛼�̃�
𝐹
𝛼3
〉
and the shear center of the beam is defined as:200

𝑦𝑆1 = −
〈
𝑦𝛼𝜖𝛼𝛽�̃�

𝑉2
𝛽3

〉
and 𝑦𝑆2 =

〈
𝑦𝛼𝜖𝛼𝛽�̃�

𝑉1
𝛽3

〉
. (39)

When the section presents two axes of symmetry, the shear center is in 𝑂 but this is not201

always true.202

2.1.5 Fourth-order and higher-order problems203

Transverse displacement The transverse displacement 𝑢4𝛼 is derived through T 3 and loaded
by𝑉 2𝛼, 𝐹, 𝐹,3,Θ2,33,𝑈

3
3,3 and𝑈

2
𝛼,33. Taking into account equilibrium equations (17c) and (17d)

and constitutive equation (38), the problem may be recast only as function of 𝐹 and 𝐹,3,𝑈3
3,3

and𝑈2
𝛼,33. This substitution ensures also that the compatibility conditions (11) are satisfied.

This leads to:

T 4 :



𝜎3𝛼𝛽,𝛽 +
(
�̃�𝐹
𝛼3 − �̃�

𝜒3
𝛼3

𝑀𝐹
3

𝐷3

)
𝐹,3

+
(
�̃�𝛼 − �̃�

𝑉𝛽

𝛼3 𝑝𝛽 − �̃�
𝜒3
𝛼3

𝐷3

(
𝜇3 − 𝑦𝑆𝛽𝜖𝛽𝛾 𝑝𝛾

))
𝐹 = 0 on S0, (40a)

𝜎3𝛼𝛽 = 𝐶𝛼𝛽𝛾𝛿𝜀
3
𝛿𝛾 + 𝐶𝛼𝛽33𝜀

3
33, 𝜎333 = 𝐶33𝛼𝛽𝜀

3
𝛽𝛼 + 𝐶3333𝜀

3
33 on S0, (40b)

𝜀3𝛼𝛽 = 𝑢4(𝛼,𝛽) on S0, (40c)

𝜀333 =
(
�̃�𝐹3 − �̃�

𝜒3
3

𝑀𝐹
3

𝐷3

)
𝐹,3 −

(
�̃�
𝑉𝛽

3 𝑝𝛽 + 𝑢
𝜒3
3
𝐷3

(
𝜇3 − 𝑦𝑆𝛽𝜖𝛽𝛾 𝑝𝛾

))
𝐹

+𝑈3
3,3 + 𝑦𝛼𝑈

2
𝛼,33 on S0, (40d)

𝜎3𝛼𝛽𝑛𝛽 = 0 on 𝜕S0. (40e)

The solution of this boundary value problem parametrized by the load 𝐹, its first gradient204

𝐹,3, the elongation𝑈3
3,3 and the curvatures𝑈

2
𝛼,33. It writes as:205

𝑢4𝛼 = �̃�𝐹𝛼𝐹 + �̃�𝐹∇𝛼 𝐹,3 + �̃�𝑒3𝛼 𝑈3
3,3 + �̃�

𝜒𝛽
𝛼 𝑈2

𝛽,33 +𝑈4
𝛼 + 𝑦𝛽𝜖𝛽𝛼Θ

4, (41)

The cross-section displacement �̃�𝐹𝛼 is related to the non-uniform distribution in the section206

of the applied load �̃�𝛼. Similarly, �̃�𝐹∇𝛼 is related to the variations of 𝐹 and the non-uniform207

distribution of �̃�3 in the section.208
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Higher orders The induction process may be pursued any higher order. This leads to the209

derivation of new displacement localizations only related to higher derivatives of 𝐹 relevant210

for faster variations of 𝐹.211

Note that, the use of the asymptotic expansion method is based on the scaling in Equa-212

tion (3). Hence the rescaled coordinates 𝑦𝑖 have been used in the expression of the auxiliary213

problems T 𝑝 andW 𝑝. However, the distinction between the two sets of coordinates is no214

longer necessary in practice once the section modes are defined. The use of the coordinates215

𝑦𝑖 is therefore dropped in the following and replaced by the use of the coordinates 𝑥𝑖 .216

2.2 The higher-order beam model217

Families of kinematic enrichment In the asymptotic expansion procedure, three families of218

kinematic enrichment emerged. First, the rigid motion of the section was carried by the219

six macroscopic variables 𝑈 𝑝

𝑖 , 𝑈
𝑝

𝛼,3 and Θ
𝑝

3 . They are respectively related to the following220

displacement modes:221

�̃�-
𝑈1 =

©«
1
0
0

ª®¬ , �̃�-
𝑈2 =

©«
0
1
0

ª®¬ , �̃�-
𝑈3 =

©«
0
0
1

ª®¬ , �̃�-
Θ2 =

©«
0
0

−𝑥1
ª®¬ , �̃�-

Θ1 =
©«
0
0
𝑥2

ª®¬ , �̃�-
Θ3 =

©«
−𝑥2
𝑥1
0

ª®¬ .
(42)

Second, the six correctors related to the six beam resultants4 were derived: �̃�𝑒3𝛼 , �̃�
𝜒1
𝛼 , �̃�

𝜒2
𝛼 ,222

�̃�
𝜒3
3 , �̃�𝑉13 , �̃�𝑉23 . They are also referred to as Saint Venant’s modes [15, 12]. This collection of223

12 modes (rigid and Saint-Venant) is denoted BSV. Third, a family of modes related to the224

body force and its longitudinal variations was obtained: �̃�-
𝐹 , �̃�-

𝐹∇, �̃�-
𝐹∇2 ..., which is denoted225

B 𝑓 . This suggests gathering all these modes in the following kinematic approximation for226

the 3D displacement:227

𝒖- =
𝑛∑︁

𝑘=1
�̃�-
𝑘 (𝑥𝛼)𝑋 𝑘 (𝑥3) (43)

where 𝑛 is the number of modes and 𝑋 𝑘 (𝑥3) are longitudinal unknown fields. It is demon-228

strated in [19] that the modes generated for a single prescribed body load distribution 𝑓𝑖 in229

the cross-section is a Hilbert basis of the solution space for 𝒖-.230

Load superposition With proper scaling, it is possible to consider other loadings in a separate231

form between longitudinal coordinate and cross-section coordinates such as surface traction232

on the lateral boundary of the cross-section as well as prescribed eigenstrains. Furthermore,233

whereas most loadings in engineering practice comply with the separate form requested in234

equation (6) the latter may be too constraining in some specific cases. The problem being235

linear, it is possible to superpose loads. In that case, the collection of modes �̃�-
𝑖 may become236

linearly dependent and is orthogonalized.237

In practice, it appears that decomposing a cross-section load distribution into several238

distinct loadings improves the quality of the solution. For instance, in Equation (6), one may239

modulate �̃�3 (𝑥𝜂) with 𝐹 (𝑥3) separately from �̃�𝛼 (𝑥𝜂) with another function𝐺 (𝑥3). However,240

this doubles the number of kinematic degrees of freedom related to the applied load (third241

family). The best trade off between the load decomposition and the accuracy of the solution242

has not yet been explored in details.243

4 From the traction, bending and torsion constitutive equations (30) and (31), 𝑢𝑒3
𝛼 , 𝑢

𝜒𝛽
𝛼 and 𝑢𝜒3

3 are directly
related to 𝑁3, 𝑀𝛽 and 𝑀3.
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Minimum potential energy principle The higher-order beam model is obtained, inserting244

the approximated kinematics (43) in the minimum potential energy principle of the 3D245

problem (2). Indeed, the variable separation between longitudinal and cross-section coordi-246

nates allows the separation of the corresponding integrals. Since all cross-section modes are247

known there remains only a boundary value problem related to the longitudinal coordinate.248

The corresponding equilibrium equations write as:249

∀𝑙, 𝑋 𝑘𝐴𝑘𝑙 + 𝑋 𝑘
,3 (𝐵𝑘𝑙 − 𝐵𝑙𝑘 ) − 𝑋 𝑘

,33𝐶𝑘𝑙 − 𝐹𝑙 = 0 (44)

where:250

𝐴𝑘𝑙 =
〈
�̃�𝑘𝑖,𝛼𝐶𝑖𝛼 𝑗𝛽 �̃�

𝑙
𝑗 ,𝛽

〉
, 𝐵𝑘𝑙 =

〈
�̃�𝑘𝑖 𝐶𝑖3 𝑗𝛽 �̃�

𝑙
𝑗 ,𝛽

〉
,

𝐶𝑘𝑙 =
〈
�̃�𝑘𝑖 𝐶𝑖3 𝑗3�̃�

𝑙
𝑗

〉
, and 𝐹𝑘 =

〈
�̃�𝑘𝑖 �̃�𝑖

〉
.

(45)

Boundary conditions In the 3D problem (2), the beam extremities were assumed fully251

clamped. Considering the approximated kinematics (43), this is achieved enforcing 𝑋𝑖 =252

0 at extremities. Other boundary conditions may be applied. Indeed, the first six modes253

corresponds to the rigid motion of the section. Restraining only these degrees of freedom254

is actually the boundary condition classically used in structural mechanics: warping and255

transverse displacements are let free.256

2.3 Applications257

Two case study are briefly presented. The first case study illustrates the advantage of introduc-258

ing displacementmodes related to the distribution in the cross-section of the applied load. The259

second case study was extended to eigenstrains and illustrates the possibility of describing260

more accurately the effect of prestress in a beam. In both cases, the auxiliary problems (10)261

and (13) generating the kinematic enrichment were solved with 2D quadratic Lagrange finite262

elements. Two different strategies were used for the higher-order beam solution.263

2.3.1 Cantilever box girder beam under a concentrated load264

A cantilever beam of span 10 m with a box section 3 m wide is investigated (Figure 4). The265

width and the height of the box are 1 m. The thickness of the walls is 5 cm. The beam is fully266

clamped at its first extremity and loaded by a concentrated force in the middle of the section267

at the other extremity (Figure 4).268

In addition to the six rigid modes (42) and the six Saint Venant modes (BSV), 3 warping269

and 3 transverse displacement modes (Figure 5) are included in the kinematics (B 𝑓 ). These270

modes clearly illustrate the local influence of the distribution in the section of the concentrated271

load.272

Because they lead to ordinary differential equations, beam models are suited for closed-273

form solutions. The homogeneous part of equations (44) have solutions of the form 𝑒𝑘𝑥3274

which may be found explicitly solving a quadratic eigenvalue problem [28]. This technique275

was used in [13] in order to find the solution of the beam loaded at its extremity. It presents276

the advantage to yield a solution extremely rapidly. However, because it may include sharp277

decaying exponential functions, its implementation requires specific treatment. Furthermore,278

it is restricted to linear problems with specific longitudinal distribution of the applied load.279

Figure 4 shows the reconstructed beam solution. The local settlement related to the application280

of the concentrated force is very well captured.281
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Fig. 4: Cantilever box girder beam under applied load [13]

Fig. 5: Six displacement modes related to the applied load. Transverse modes (left) and
warping modes (right). [13]

2.3.2 Prestressed cable in a cantilever beam282

The higher-order beammodel is further illustratedwith a cantilever concrete beamprestressed283

with a steel cable. The section of the beam is represented in Figure 6. The beam is 20m long.284

The concrete domain is denoted by Ω𝑐 and the steel domain by Ω𝑠 . A constant eigenstrain285

𝜺∗ = 𝜀∗33𝒆-3 ⊗ 𝒆-3 is applied in Ω𝑠 , with 𝜀∗33 = 7.10
−3, corresponding to 23MN pretension in286

the cable. Both materials are homogeneous and isotropic with: (𝐸, 𝜈)concrete = (35 GPa, 0.2)287

and (𝐸, 𝜈)steel = (200 GPa, 0.3). Note that, a real concrete beam would require additional288

reinforcement bars as well as a non-linear constitutive behavior. This simplified example is289



14 Lebée, A. et al.

Ω𝑐

Ω𝑠

𝑦2

𝑦1𝑦3

1.80 m

0.2 m
5 m
0.14 m

1 m

Fig. 6: Section of the prestressed beam

chosen here to illustrate the ability of eigenstrain modes to capture rather fast variations of290

the strain in the section.291

The sectional modes are computed up to the fourth gradient of the eigenstrain. The 5292

first orthonormalized modes associated to the eigenstrain �̃�-
𝑇 , �̃�-

∇𝑇 , �̃�-
∇𝑇 2 , �̃�-

∇𝑇 3 and �̃�-
∇𝑇 4 ,293

denoted B𝜀 , are represented in Figure 7. These three transverse modes and two warping294

modes clearly illustrate the action of the cable in the concrete beam.

(a) Transverse mode 𝒖-𝑇 (b) warping mode 𝒖-∇𝑇

(c) Transverse mode 𝒖-∇𝑇
2 (d) warping mode 𝒖-∇𝑇

3

(e) Transverse mode 𝒖-∇𝑇
4

Fig. 7: The 5 eigenstrain modes related to the prestress in the steel cable used in case study 2.



Title Suppressed Due to Excessive Length 15

reference model higher-order beam model
type of elements 15-nodes pentahedron 6-nodes triangle + 41 longitudinal knots
number of elements 99680 1788 + 1
CPU computation time 1805 s 24 s

Table 1: Main features of the 3D solution and solution 𝑆

(a) 3D computation (b) Higher-order beam model

Fig. 8: Deformed structure under pre-tensioned steel cable (amplification factor = 100), [9]

The higher-order beammodel was discretized with NURBS shape functions. Contrary to295

the closed-form solution previouslymentioned, this allows to apply various load distributions.296

Additionally, NURBS shape functions are known to mitigate locking phenomena. This was297

confirmed in a detailed study of the present implementation in [9].298

The reconstructed solution is presented in Figure 8. As expected, the prestressed cable299

compresses and raises the beam. The higher-order beam model captures transverse dis-300

placements illustrated by the lowering of the edges of the table. It also captures warping301

displacements illustrated by the punching effect of the cable which can be observed at the302

end of the beam. A 3D reference solution was also computed by means of Code_Aster on a303

very similar mesh. The deformed beam is also presented in Figure 8 and the computation data304

is summarized in Table 1. It appears that, the model presented here shows very satisfying305

results with a significantly reduced computational cost. Indeed, only very few additional306

modes (3 to 5) and their corresponding beam DOF were required for capturing fairly well the307

applied eigenstrain. These time performances can still largely be improved by more advanced308

implementations and numerical techniques.309

However, detailed analysis shows that in the vicinity of the boundaries, the quality of310

the solution is not as satisfying as in the bulk of the beam (see details in [9]). This is not311

surprising since higher-order convergence results has only been obtained in configurations312

were boundary layers related to the beam extremities are not present. In order to better313

describe the mechanical behavior close to boundary conditions, the approach developed314

independently by Strains Engineering consists in the introduction of new modes specific to315

these boundary conditions in the reduced basis.316

3 The Asymptotic Expansion Load Decomposition elasto-plastic beam model317

Introducing elasto-plastic behavior is more challenging. The inherent non-linearity of plas-318

ticity and the incremental nature of plastic analysis makes the definition of a relevant kine-319

matics more difficult. Two main approaches are followed when solving an elasto-plastic320
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beam problem: 1D elasto-plastic beam model based on a priori cross-section analysis or 3D321

elasto-plastic beam models based on a 3D beam kinematics.322

The first natural approach is to express the plastic flow in terms of generalized beam323

variables and to solve an elasto-plastic 1D problem. This requires the elasto-plastic analysis324

of the cross-section for pure or combined generalized stresses and the derivation of the325

corresponding yield surface. The cross-section analysis may be incremental or based on326

limit analysis but assumes a uniform distribution of generalized stresses in the longitudinal327

direction: normal force, shear forces, bending moments and torque. A key difficulty is328

the derivation of a yield surface directly function of the beam generalized stress taking329

into account correctly their possible interactions as well as hardening. There were recent330

improvements in this direction, approximating the yield surface with facets or ellipsoids [5].331

Once the yield surface is defined, there remains to compute the elasto-plastic response of the332

beam, either with closed form solutions [25], limit analysis [22] or by means of finite element333

approximations [3, 23]. This approach has the advantage to present fast computation time,334

since only a 1D elasto-plastic problem needs to be solved. However, its accuracy remains335

limited by the beam theory assumptions. First, it cannot handle local phenomena related to336

the distribution of the applied load as well as to the boundary conditions. Second, it provides337

only an averaged description of the actual stress in the beam.338

In order to improve the accuracy of the beam model, the second classical approach339

consists in setting a beam kinematics expressing the 3D displacement field in a separate form340

between the transverse coordinates and the longitudinal coordinate. This kinematics may be341

defined a priori or may evolve during the incremental procedure. For a fixed increment of the342

generalized displacements, the corresponding 3D stress is computed and the yield criterion343

is expressed locally. A local algorithm such as the radial return is processed on the whole344

body to compute the local plastic state of the beam. This locally admissible stress state is345

integrated on each cross-section yielding the corresponding longitudinal distribution of the346

beam generalized stresses. Finally, the beam global equilibrium is ensured with a standard347

Newton-Raphson procedure. The main difficulty lies again in the definition of a relevant348

kinematics able to describe the displacement related to plastic flow.349

Most approaches where the kinematics is fixed a priori rely on the ones already discussed350

in linear elasticity such as Euler-Bernoulli, Timoshenko kinematics or even Saint-Venant351

solution, eventually with non-linear geometric corrections. Once the kinematics is defined,352

there remains to choose the number of integration points in the cross-section in order to353

compute precisely the local plastic flow.Multiplying integration points improves the accuracy354

of the results at the price of a higher computation time of the cross-sections integrals. This355

is the spirit of multi-fiber beam models (see for instance [18]). Another direction is to enrich356

arbitrarily the section kinematics with degrees of freedom not necessarily related to classical357

cross-section displacements. This concept was formalized extensively by Carrera et al [7]358

and co-workers.359

Because plastic flow may not be easily known a priori a natural improvement of the360

preceding methods is to update the beam kinematics during the load increments. This is the361

direction followed here using the asymptotic expansion.362

3.1 Adaptation of the higher-order beam model to the elasto-plastic behavior363

The linear higher-order beam model presented in the previous section is extended to elasto-364

plasticity in the small strains framework. Hence, the boundary value problem expressed in365
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Equation (2) is now considered with a 𝐽2 elasto-plastic constitutive law and will be solved366

classically following a Newton-Raphson incremental scheme.367

As for linear elasticity, a 3D approximated kinematics is formulated in a separated form in368

order to perform the dimension reduction. The first collection of modes to take into account369

is the basis of Saint Venant modes BSV as well as the basis of force modes B 𝑓 related370

to the applied load described previously. Nevertheless, this kinematics is not sufficient for371

describing accurately the possibly discontinuous plastic flow which may occur in the cross372

section. Therefore, the plastic strain computed at a given iteration of the Newton-Raphson373

procedure is taken into account for enriching the kinematics of the following iteration. This374

is possible using the procedure described in the previous section for a fixed plastic strain 𝜺p375

distribution in the cross-section. Considering now the whole beam, 𝜺p is not longitudinally376

uniform. Hence, several chosen cross-sections may be used for taking snapshots of the plastic377

strain in order to sufficiently enrich the kinematics of the model. These new plastic modes378

are computed and added to the kinematics on the fly. The basis of modes specific to a cross-379

section plastic strain distribution is denoted by B𝜀 . Finally, the kinematics of the model is380

evolving during the Newton-Raphson procedure and is the union of the basis BSV, B 𝑓 and381

B𝜀 . This union of basis is orthonormalized to form the total basis B with a total number of382

modes 𝑛mod.383

This approach presents two major advantages. First, it does not require additional elasto-384

plastic computations in the cross-section. Second, the number of beam degrees of freedom385

remains very limited (about 20) thanks to the sparsity of the kinematics. From the optimality386

result proved in [19], this approach is expected to be more efficient than arbitrary kinematic387

refinements.388

Note that, contrary to Nonuniform Transformation Field Analysis [20, 21, 14] where a389

basis of plastic strains is introduced with the corresponding plastic multipliers, in the present390

approach, displacement plastic modes are added to the total 3D displacement approximation391

and plasticity is processed at each integration point of the 3D body.392

3.2 The elasto-plastic algorithm393

The implementation of the general framework introduced in the previous section is now394

detailed. This requires first the definition of the numerical approximation of the 3D body.395

Then, the incremental resolution of the elasto-plastic problem is adapted so that processing396

the local constitutive equations remains standard whereas the global equilibrium iterations397

are performed with the reduced basis.398

3.2.1 Numerical approximation of the higher-order beam model399

The approach suggested in the previous section requires the definition of a 3D mesh of400

the beam composed of cross-sections meshes positioned along the longitudinal direction401

(Figure 9). Indeed, these cross-sections will be the domain of integration of the constitutive402

law.403

Longitudinal discretization A longitudinal discretization of the beam is defined for the404

generalized displacements 𝑋𝑚 (𝑥3) introduced in Equation (43). The same collection of405

NURBS basis functions for each 𝑋𝑚 (𝑥3) is chosen:406

𝑋𝑚 (𝑥3) =
𝑛NURBS∑︁
𝑖=1

𝑁 𝑖 (𝑥3)𝑋𝑚,𝑖 (46)
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Fig. 9: Discretization of a square beam

where 𝑁 𝑖 (𝑥3) are the NURBS interpolation function and 𝑋𝑚,𝑖 are the corresponding degrees407

of freedom. A set of 𝑁𝑠 > 𝑛NURBS longitudinal integration points is also defined for the408

integration of the interpolation functions. It is natural to place the cross-section meshes at409

the positions of these longitudinal integration points.410

Cross-section discretization The cross-section mesh used for the computation of the modes411

is the same as the one used in Section 2.3.2: the modes are computed by means of quadratic412

Lagrange triangle elements:413

�̃�-
𝑚 (𝑥𝛼) =

𝑛sec∑︁
𝑗=1

𝑳-
𝑗 (𝑥𝛼)�̃�𝑚, 𝑗 (47)

where 𝑛sec is the number of nodes in the section, 𝑳- 𝑗 (𝑥𝛼) are Lagrange interpolation functions414

and �̃�𝑚, 𝑗 are the nodal values of the displacement.415

The local state variables, Δ𝜺, Δ𝜺p and Δ𝝈 are computed in the 𝑁𝑠 cross-sections meshes416

at the Gauss points of the quadratic triangle elements.417

Plastic-mode cross-section During the computation, sections where a plastic strain is not418

zero are collected. All cross-sections where plasticity occurs could be used for the compu-419

tation of the plastic modes: for each plastic strain distribution in each cross section, one or420

several modes could be computed. However, it would excessively increase the number of421

generalized displacement degrees of freedom 𝑛dof and also increase the computation time422

dedicated to the corresponding modes. In order to limit the number of plastic modes to a few,423

only one cross-section called plastic-mode cross-section is chosen for taking snapshots of424

the plastic strain distribution. As a first approach, this choice is based on an educated guess.425

3.2.2 Adaptation of the Newton-Raphson procedure426

Formulation of the tangent stiffness of the beam model For a given basis of 𝑛mod displacement427

modes, the numerical approximation of the total displacement may be written as follows:428

𝒖-(𝒙-) =
𝑛mod∑︁
𝑚=1

𝑛NURBS∑︁
𝑖=1

𝑛sec∑︁
𝑗=1

𝑳-
𝑗 (𝑥𝛼)𝑁 𝑖 (𝑥3) �̃�𝑚, 𝑗𝑋𝑚,𝑖 =

𝑛NURBS∑︁
𝑖=1

𝑛sec∑︁
𝑗=1

𝑳-
𝑗 (𝑥𝛼)𝑁 𝑖 (𝑥3)𝑢𝑖, 𝑗 (48)

where the 𝑛3D = 𝑛NURBS × 𝑛sec local displacement degrees of freedom are:429

𝑢𝑖, 𝑗 =
𝑛mod∑︁
𝑚=1

�̃�𝑚, 𝑗𝑋𝑚,𝑖 . (49)

Considering the second form of (48), it appears that the 3D strain 𝜀(𝒖-) and consequently the430

local constitutive equation may be directly computed from 𝑢𝑖, 𝑗 without the need to specify431
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the basis B. Hence, provided the finite element solution is stored as the collection of the432

𝑢𝑖, 𝑗 , the local integration of the constitutive equations as well as the computation of the local433

elasto-plastic tangent stiffness remain unchanged compared to a 3D formulation.434

For a fixed basis B, injecting the numerical approximation of the kinematics (48) into435

the principle of virtual work corresponding the elasto-plastic 3D problem (2) leads to the436

expression of the residual expressed in terms of the increment of the 𝑛dof = 𝑛mod × 𝑛NURBS437

generalized displacement degrees of freedom Δ𝑋𝑚,𝑖 and the corresponding test degrees of438

freedom. The standard Newton-Raphson procedure is used in order to cancel this residual439

which leads to the following formal reduced equilibrium equation:440

[𝑲ep]B
{
𝛿𝑿-

}
B
= {𝑹}B , (50)

where [𝑲ep]B ∈ (R𝑛dof )2 is the global tangent stiffness matrix of the beammodel expressed in441

basis B, computed with the local elasto-plastic tangent stiffness,
{
𝛿𝑿-

}
B
is the finite element442

vector of the generalized degrees of freedom 𝛿𝑋𝑚,𝑖 and {𝑹}B ∈ R𝑛dof is the residual vector.443

Because, the tangent stiffness as well as the residual both depend on the choice of the basis444

B, they need to be updated each time the basis is changed.445

Significant computational time is gained because 𝑛dof which sets the size of the tangent446

stiffness is much smaller than the rather large 𝑛3D which is required for a sufficiently detailed447

description of the fields in the cross-section.448

Description of the numerical procedure The basis of modes B is first initialized and is449

composed BSV and 𝑛fAE modes associated to the applied load B 𝑓 . While increments do not450

generate plastic flow, the basisB remains unchanged. The global tangent stiffness corresponds451

to the elastic one and each increment is solved in one iteration.452

Let assume that increment 𝑛 generates a non-vanishing plastic strain Δ𝜺p𝑛 at the first453

iteration 𝑘 = 1. In this case, before starting the second iteration, the basis of modes is454

enriched and orthonormalized with 𝑛pAE modes computed from the plastic strain distribution455

Δ𝜺p𝑛 observed in the plastic-mode cross-section, following [9]. This also requires the update456

of the residual.457

It has been noticed from experience that plastic modes computed at subsequent iterations458

of the increment were very similar. Therefore the basis B used at iteration 𝑘 = 2 is kept until459

the convergence of the increment is reached. However, the converged plastic strain of the460

increment Δ𝜺p𝑛 may have changed. Hence, at the first iteration 𝑘 = 1 of the following461

increment 𝑛 + 1, the basis B is updated, replacing only plastic modes with new ones. Again,462

at the second iteration 𝑘 = 2 the basis is updated and then remains fixed until the convergence463

of the increment. This choice of updating the plastic modes only at the first two iterations of464

the increment remains valid as long as the load increments are not too important.465

3.3 Application to a cantilever beam466

To illustrate the efficiency of themodel presented, a steel beam clamped at one end and loaded467

on its free end is investigated. The beam is a wide flange beam HE600M. This cross-section468

is class 1 in Eurocode 3, meaning that the beam reaches its limit of elasticity with no risk of469

local buckling. The geometry of the 6 m long beam is detailed in Figure 10. A load is applied470

with eccentricity at the top edge of the free end of the beam, as represented in Figures 10471

and 11. The force 𝐹 is applied on the length 𝑙 = 230 mm. The study is decomposed into 10472

time steps, and the load is incrementally increased of 0.25 MN at each step until it reaches473
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Fig. 10: Dimensions (mm) of the
HE600M section, mesh and ap-
plied load

𝐹

𝑥3
𝑥1
𝑥2

Fig. 11: 3D representation of the HE600M can-
tilever beam loaded at its end

2.5MN and then it is released following the reversed path. The following values are chosen474

for the Young’s modulus the Poisson’s ratio, the strain hardening modulus and the yield475

modulus:476

𝐸 = 210 GPa, 𝜈 = 0.3, 𝐻 = 0.02𝐸, 𝜎0 = 235MPa (51)

Higher-order beam solution 𝑆1D The section of the solution 𝑆1D is meshed with 399477

quadratic triangle Lagrange elements, as shown in Figure 10. The NURBS interpolation478

functions are represented in Figure 12. The corresponding integration sections are repre-479

sented in Figure 13. The mesh is refined close to the clamped extremity since plasticity is480

expected to occur mainly at this location.

1

0.5

0
0 1 2 3 4 5 6

Fig. 12: Second-order NURBS basis func-
tions used for the longitudinal interpolation
of the element

𝑥3

Fig. 13: Longitudinal mesh composed of 19
integration sections

481

The plastic-strain cross-section is placed at 𝑥3 = 0.25 m at the 5th integration point. The482

number of forcemodes is 𝑛fAE = 4 , and of plasticmodes is 𝑛pAE = 9. During the computation,483

the maximum number of modes in the basis is 22. Indeed, in the orthormalization procedure,484

redundant modes are discarded. The number of interpolation shape functions being 11, the485

maximum number of degrees of freedom during the computation is therefore 𝑛dof = 242.486

3D Reference solution A 3D reference solution is computed with the finite element software487

Code_Aster. The beam is meshed by extruding a cross-section with 430 triangles along488

the longitudinal axis. The longitudinal discretization is the same as for the beam model489

and forms 7740 prismatic elements in total. The prismatic elements are interpolated with490

quadratic functions.491
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Comparison with the 3D reference solution The beam solution is 80 times faster to compute.492

The corresponding deformed structure is presented in Figure 14. The torque due to the493

eccentricity of the load induces a longitudinal rotation of the cross-section, and the transverse494

part of the load induces a bending of the beam.

Fig. 14: Deformed shape of the beam after the 10 load increments (solution 𝑆1D)

495

In order to compare both solutions, the deflection at point A placed on the free extremity496

of the beam (𝑥3 = 6m) is represented in Figure 15 during the 20 time steps of the study. The

𝑆ref
𝑆1D

𝐴

𝑥3 𝑥1
𝑥2𝐴

Fig. 15: Deflection at point 𝐴 for loading and unloading

497

results obtained with the beam solution 𝑆1D are consistent with the reference solution. The498

beam solution satisfactorily captures the plastic branch despite a low kinematic hardening499

(𝐻 = 0.02𝐸). The curve of 𝑆1D is slightly above the curve of 𝑆ref: for 𝑢𝐴 = 0.8m, solution 𝑆1D500

associates a force 2, 42% higher than the force obtained by 𝑆ref. As expected, the unloading501

occurring between time steps 𝑡11 and 𝑡20 is elastic. The gap between the beam solution and502

the 3D solution induces a difference between the two residual displacements observed at503

𝑡20. For the solution 𝑆1D considered here, the relative distance between the two solutions504

at 𝑡20 is of 8.51%. This relative distance originates from the gap observed at 𝑡10 which505

is maintained between 𝑡11 and 𝑡20 since the unloading is elastic. A residual displacement506

closer to the 3D reference could be obtained with more refined longitudinal meshes and507

with higher interpolation order for the interpolation functions. But in regards with the very508

low computational time offered by the beam solution, the results obtained can be considered509

satisfying for engineering applications.510
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In order to assess the accuracy of the beam solution when compared to the reference511

solution the six components of the plastic strain computed by the solution 𝑆1D and by the512

reference solution at 𝑥3 = 0, 5 m for the given displacement 𝑢𝐴 = 0.8 m of point A, are513

presented in Figure 16. All the variables presented for a fixed displacement of point A are514

obtained by linear interpolations between the increments defined in Section 3.3 and figured515

by markers in Figure 15.

(a) 𝜀p11 computed by 𝑆1D (left)
and 𝑆ref (right)

(b) 𝜀p22 computed by 𝑆1D (left)
and 𝑆ref (right)

(c) 𝜀p33 computed by 𝑆1D (left)
and 𝑆ref (right)

(d) 𝜀p12 computed by 𝑆1D (left)
and 𝑆ref (right)

(e) 𝜀p13 computed by 𝑆1D (left)
and 𝑆ref (right)

(f) 𝜀p23 computed by 𝑆1D (left)
and 𝑆ref (right)

Fig. 16: Plastic strain in solutions 𝑆1D and 𝑆ref close to the clamped extremity at 𝑥3 = 0.5 m
for 𝑢𝐴 = 0.8 m

516

The axial plastic strain presented in Figures 16a to 16c shows that nearly all parts of517

the section have reached the elastic limit. As expected, the eccentricity of the load on the518

free extremity of the beam creates a slightly uneven progression of plasticity in the section.519

Therefore the highest values of the plastic strain components are observed at the top left and520

the bottom left of the section where the absolute values of the stresses are largest. The plastic521

strain computed by 𝑆1D is slightly lower than the plastic strain computed by 𝑆ref for each522

component. A late detection of plasticity due to the longitudinal refinement is suspected to523

originate this phenomenon.524

The non-axial components presented in Figures 16d to 16f seem less satisfying but525

their amplitude is about 10 times lower than the axial components. Thus, the beam solution526

presented here shows satisfying results with a good comparison with the 3D solution.527
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4 Discussion and outlooks528

Several applications of the AELD higher-order elasto-plastic beam model were presented.529

The model is based on an enrichment of the reduced kinematics updated on the fly and does530

not need any a priori knowledge on the solution of the problem.531

Both in linear elasticity framework and in 𝐽2 elastoplasticity, the beam model required532

a computation about 80 times shorter than for the reference 3D solution computed on533

Code_Aster with comparable meshes. These gains in computation time are already very534

interesting and could be even larger by means of parallelization, in particular for the compu-535

tation of the tangent stiffness matrix.536

The numerical differences between the beam solution and the reference solution for537

the examples presented are low, and could still be lowered. Indeed, the computation of the538

displacement modes is optimal only far from boundary conditions. At the clamped extremity539

the local stress varies rapidly. The model could therefore be improved if displacement modes540

specific to the boundary conditions were computed and added to the kinematics of the541

model. Furthermore, the choice of the plastic-mode cross-section was arbitrary and could be542

automated based for instance on the location of the first occurence of plasticity in the beam.543

We conclude that the present beam model offers already interesting perspectives for544

engineering applications on the cloud. Nevertheless, it is meant to be validated on more545

complex case-studies.546

Several extensions of the linear elastic AELD model are straightforward. The low and547

medium frequency dynamic behavior is easy to derive including inertia contributions from548

the assumed kinematics [26]. Buckling analysis may also be adapted [27], as the eigenstrains549

enrichment is a suitable basis for representing the pre-stress in the beam and deriving the550

geometric stiffness operator. Similarly, other weak couplings (thermal, humidity, creep etc.)551

or non standard physics [17] may be incorporated in the model. . Furthermore, the elasto-552

plastic beammodel has been presented herewith an isotropicmaterial and a 𝐽2 yield criterion.553

Its adaption to different yield criteria is easy and the extension to more complex materials554

like reinforced concrete was achieved with a Rankine yield criterion in [11].555

Finally, as long as strains remains small, the kinematic enrichment provided by the556

asymptotic expansion remains relevant. Hence, the authors are considering a co-rotational557

formulation of the AELD beammodel in order to introduce geometric non-linearities related558

to large displacements and rotations.559
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