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Abstract

The principles of origami design have proven useful in a number of technological applications. Origami tessellations
in particular constitute a class of morphing metamaterials with unusual geometric and elastic properties. Although
inextensible in principle, fine creases allow origami metamaterials to effectively deform non-isometrically. Determining the
strains that are compatible with coarse-grained origami kinematics as well as the corresponding elasticity functionals is
paramount to understanding and controlling the morphing paths of origami metamaterials. Here, within a unified theory,
we solve this problem for a wide array of well-known origami tessellations including the Miura-ori as well as its more
formidable oblique, non-developable and non-flat-foldable variants. We find that these patterns exhibit two universal
properties. On one hand, they all admit equal but opposite in-plane and out-of-plane Poisson’s ratios. On the other
hand, their bending energy detaches from their in-plane strain and depends instead on the strain gradient. The results
are illustrated over a case study of the self-equilibrium geometry of origami pillars.
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1. Introduction

Origami has long surpassed its artistic vocation. Its early
uses in architectural geometry date back to the 1920s [1, 2].
By now, origami techniques have been applied to the de-
sign of deployable structures in astronautics, robotics and
biomedical engineering [3–6]. Origami tessellations in par-
ticular make up versatile morphing 2D metamaterials that
can access various low-energy high-curvature configurations
[7, 8]. Although inextensible in principle, the fine crease
patterns of origami metamaterials enable them to effec-
tively deform non-isometrically. In this letter, we determine
the strains that are compatible with coarse-grained origami
kinematics. Strain compatibility permits to fully charac-
terize the 3D-embedded geometry when suitable boundary
conditions are prescribed. In most cases however, the ge-
ometry further solves an elastostatic equilibrium for which
we calculate the appropriate elasticity functional.

Morphing in origami metamaterials can be triggered in
response to different loading conditions such as bending,
twisting and stretching all of which couple in a manner un-
paralleled in other plates and shells; see Fig. 1. For instance,
standard pure bending kinematics of plates imply that the
curvatures in the bending plane and in the plane orthogonal
to it, κ1 and κ2, are in a proportion equal and opposite
to the in-plane Poisson’s ratio ν, i.e., ν = −κ2/κ1. Thus
auxetic plates tend to bend synclastically while anauxetic
plates tend to bend anticlastically [9]. Origami metamate-
rials do not [10]. In fact, in what follows, we demonstrate
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that they typically exhibit the exact opposite behavior, i.e.,
ν = +κ2/κ1. Other loads that induce morphing, such as
“pinching”, are unique to origami [11]. Indeed, in plates and
membranes, a pinch usually produces highly localized and
singular deformations. By contrast, pinching an origami
metamaterial brings on global and nearly-uniform defor-
mations [12, 13]. The consequence, as we shall prove, is
that membrane energy penalizes, not strains, but their
gradients, i.e., the Christoffel symbols [14–16].

Figure 1: Two views of an origami-folded hyperboloid: A periodic
“Mars” pattern is laser-etched into a PET sheet then hand-folded, circu-
larly bent and fixated with adhesive tape. The pattern is auxetic but
bends into a saddle. The letter explains the observed self-equilibrium
geometry.

Previous contributions have succeeded in describing sev-
eral aspects of origami mechanics, including calculations of
Poisson’s ratios and bending moduli [17–19]. Hereafter, we
derive an effective medium theory complete with its field
equations of compatibility and equilibrium. The theory
naturally accounts for the observations described above
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Figure 2: Zigzag sums. (a) A zigzag sum in a periodic reference configuration: translating one zigzag along another sweeps a polyhedral
surface corresponding to a crease pattern complete with a natural assignment of mountain and valley folds. (b) A super-cell in an abstract
reference state: indices (ij) are discrete coordinates for the vertices; the central node is at ξ ≡ ξ(00). (c) A super-cell in a physical folded
state: vectors (u,v, s, t) are ξ-dependent non-dimensional vectors aligned with the creases; they fully characterize fold-only configurations as
well as the tangent vectors x1 and x2. (d) A super-cell following an infinitesimal bending δx of the panels: note how the parallelograms are
slightly distorted now. (e) A global view of a finitely deformed zigzag sum (Σ): each super cell is designated by its central node’s coordinates
ξ = (ξ1, ξ2) (red dot) and is obtained by the process illustrated in panels (b-d). (f) An orthogonal zigzag sum: initially orthogonal zigzag
directions remain orthogonal during folding (g12 ≡ 0). (g) An oblique zigzag sum: initially non-orthogonal zigzag directions are sheared during
folding; even then, g12 remains constant.

and shows how the different deformation modes couple
kinematically and energetically. The subject of the theory
is a class of origami patterns that we call “zigzag sums”.
These are generated by translating one zigzag line along
another so as to sweep a periodic polyhedral surface Σ
whose edges and panels we interpret as an origami crease
pattern; see Fig. 2a. Equivalently, Σ is a periodic crease
pattern with a unit cell composed of four parallelograms.
Four quadrilaterals per unit cell is as simple as origami
tessellations can be without being trivial; moreover, here,
the quads are parallelograms. Nonetheless, zigzag sums
span various well-known patterns (e.g., the Miura-ori, the
eggbox, “Sakoda’s staircase” and “Barreto’s Mars” pat-
terns [20]) and encompass their oblique, non-developable
and non-flat-foldable variants by maintaining two basic
requirements: periodicity and parallelism. Meanwhile, the
zigzag generators provide a handful of geometric seeds that
can readily tune their deformation paths as well as the
underlying elastic behavior.

2. Geometric mechanics of zigzag sums

The deformations of a zigzag sum Σ are the outcome of
two competing mechanisms [22]. The first is the folding and
unfolding of Σ along its edges. The second is the isometric
bending of its panels. Signature origami kinematics emerges
when the bending stiffness of the panels is significantly
larger than the folding stiffness of the edges. Accordingly,
we can assume that individual panels bend infinitesimally;
Σ, on the other hand, can still embrace finitely curved
surfaces by accumulating small deflections across many

unit cells. Formally, we characterize the deformations of Σ
in terms of a continuous parametrization x = x(ξ) of its
mid-plane, where x is the current position of vertex ξ, with
ξ = (ξ1, ξ2) being the effective curvilinear coordinate along
the zigzags directions; see Fig. 2b-e. Consider then a non-
elementary unit cell, i.e., a supercell, centered about vertex
ξ and containing the neighboring vertices ξ(ij) placed at
x(ij). Then, the adopted origami kinematics imply that
position

x(ij) = X(ij) + r2δx(ij) (1)

is attained by a fold-only motion ξ(ij) 7→ X(ij) (Fig. 2b-c)
followed by a bending-induced perturbation r2δx(ij) that
is small compared to the characteristic size of the panels
denoted r (Fig. 2c-d). In the limit of a tessellation where
Σ contains a large number of unit cells, i.e., for r → 0, the
plane locally tangent to Σ is spanned by two vectors

x1 ≡ ∂x

∂ξ1
= lim

r→0

x(10) − x(1̄0)

r
= u− v,

x2 ≡ ∂x

∂ξ2
= lim

r→0

x(01) − x(01̄)

r
= s− t,

(2)

where u, v, s and t are the crease vectors meeting at vertex
ξ and normalized with respect to r. The apparent in-plane
deformations of Σ can therefore be quantified in terms of
an effective metric tensor g of components

gµν = ⟨xµ,xν⟩ =
[

∥u− v∥2 ⟨u− v, s− t⟩
⟨u− v, s− t⟩ ∥s− t∥2

]
. (3)

Note that bending-related contributions disappear in the
limit r → 0 and can be disregarded for now.
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Figure 3: Convergence analysis. (a) Convergence speed: the maximum error in equation (7) decreases like r or, equivalently, like the reciprocal
of the number of unit cells per row. The plot also shows that the maximum angular deflection rδ(ij) decreases in the same fashion confirming
the fold-to-bend orders of magnitude adopted in (1) and that, in the limit r → 0, all panels are flat. The inset shows the unit cell adopted for
this example. (b,c) Two iterates: snapshots of the way in which the zigzag sum converges to a smooth surface taken for 64 and 128 unit cells
per row. Note that the zigzag sum is finitely and non-uniformly stretched and bent. Illustrated surfaces are constructed by “propagating”
inextensibility constraints away from a given boundary; see [21] for details.

It is noteworthy that g12 = ⟨u, s⟩ + ⟨v, t⟩ − ⟨u, t⟩ −
⟨v, s⟩ is a motion constant (i.e., dg12 ≡ 0) as it is equal
to a combination of constant lengths and angles. Thus,
if g12 = 0 so that the zigzags ξ1- and ξ2-contours are
initially orthogonal, then orthogonality is maintained in
any subsequent motion (Fig. 2f). However, in oblique
tessellations, with g12 = ∥x1∥ ∥x2∥ cos θ ̸= 0, stretching
couples to shearing according to

tan θ dθ =
d∥x1∥
∥x1∥

+
d∥x2∥
∥x2∥

=
dg

2g11g22
(4)

with g = detg. Rather intuitively then, shearing, un-
derstood as aligning the zigzags (θ → 0 or π), always
goes to reduce the pattern’s effective area (Fig 2g). As
for the stretch ratios in directions 1 and 2, they are re-
lated to one another through a geometric Poisson’s ratio
ν ≡ −g11/g22 × dg22/dg11. A general expression for ν is
pursued in the Supplemental Material [23, App. A].
Most important is the observation that the fold-only

motion ξ(ij) 7→ X(ij) maintains crease parallelism and
periodicity: this is truly where the fact that Σ is made out
of parallelograms is crucial. Hence, folding alone produces
no curvature and, in that regard, it is bending that takes
over now. This is most apparent in the expressions of the
second-order derivatives which, in the limit r → 0, read

x11 = δx(20) − 2δx+ δx(2̄0),

x22 = δx(02) − 2δx+ δx(02̄),

x12 = δx(11) − δx(1̄1) − δx(11̄) + δx(1̄1̄),

(5)

where xµν ≡ ∂2x/∂ξµ∂ξν . Therefore, the xµν at ξ are

linear functions of the bending DOFs of the super cell cen-
tered at ξ. That being said, not all δx(ij) are compatible
with the inextensibility constraints. Ultimately, it is possi-
ble to show that (x11,x22,x12) belong to a linear subspace
of R3 × R3 × R3 spanned by 4 DOFs, each attributed to
a planarity defect (δ(ij)) of one of the four panels of the
central unit cell (Fig 3a) [23, App. B]. By the rank-nullity
theorem, the xµν satisfy 9 − 4 = 5 linear compatibility
equations. Straightforward calculations show that the first
two of these equations are g12,1 = g12,2 = 0, i.e., they re-
produce dg12 = 0. The other three relations are far more
interesting; they combine into the vector identity [23, App.
B]

x22 =
⟨u, t ∧ s⟩ ⟨v, t ∧ s⟩
⟨t,u ∧ v⟩ ⟨s,u ∧ v⟩

x11. (6)

The tangent components of x22 and x11 describe the strain
gradients in the mid-plane of Σ in direction x1 and x2

whereas the normal components describe the normal cur-
vatures κ1 and κ2 of the mid-plane in the same directions.
The above identity states that these respective quantities
necessarily occur in equal proportions. Specifically, the
in-plane and out-of-plane Poisson’s ratios, ν and −κ2/κ1,
of a zigzag sum Σ are equal and opposite and are given by
the current geometry of the folds as per

ν =
κ2
κ1

=
g11
g22

⟨u, t ∧ s⟩ ⟨v, t ∧ s⟩
⟨t,u ∧ v⟩ ⟨s,u ∧ v⟩

, (7)

with κµ = ⟨xµµ,n⟩ /gµµ (no sum), n = x1 ∧ x2/ ∥x1 ∧ x2∥
being the unit normal [23, App. C].
Identity (7) is of an asymptotic nature: in the limit

r → 0 of infinitesimal unit cells, the Poisson’s ratios of
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a zigzag sum Σ converge to one another. In other, more
practical, terms, the equality is accurate within an error
proportional to r. See Fig 3 for a numerical illustration
of the convergence process and the relevant error bounds.
Identity (7) is also universal: it holds whether Σ is de-
velopable, flat-foldable, symmetric, rectangular, or not.
Therein, the mixed products (e.g., ⟨u, t ∧ s⟩) have their
signs determined by the mountain-valley assignment of the
concerned folds. This allows us to deduce the rather nice
corollary: if a zigzag sum Σ has an odd number of mountain
folds meeting at a vertex then: (i) it is necessarily auxetic;
and (ii) it necessarily bends into a saddle. In particular, all
developable zigzag sums are auxetic and bend into saddles.
Note that these results are only valid for nondegenerate
configurations, i.e., where all folds are partially folded. In-
deed, when a fold is flat, be it open or closed, mountain and
valley assignments coalesce and the Poisson’s ratio could
become null, infinite or multivalued [19]. Note also that
the proven identity features the elongations and curvatures
in two specific material directions ξ1- and ξ2-contours, be
them orthogonal or not; in particular, the identity bears no
immediate consequences on the Poisson’s coefficient defined
for two general orthogonal directions.

3. Self-equilibrium of origami pillars

The equality of the Poisson’s ratios greatly constrains
the 3D geometries accessible to a zigzag sum Σ [21, 24–26].
Consider, for tractability, the “Mars” tessellation of Fig. 4a.
The tessellation lacks mirror symmetry but is otherwise
developable, flat-foldable and equilateral. We find that
compatible metrics and curvatures satisfy [23, App. D]

g12 = 0, g11(4− g22) = 4(cosα+ cosβ)2,

κ2
κ1

= ν = −4
(cosα+ cosβ)2

g11g22
.

(8)

This is in fact a system of non-linear PDEs weighing on the
admissible configurations x. For instance, we explore the
configurations of a rectangular domain of flat dimensions
L1 × L2 that are folded and wrapped around an axis of
symmetry into an origami pillar [20]. These pillars are
surfaces of revolution with a Cartesian parametrization of
the form

x(ξ) = (ρ(ξ2) cos(ωξ1), ρ(ξ2) sin(ωξ1), z(ξ2)). (9)

Here, the axis of symmetry is the z-axis, ξ1-contours are
meridian lines and ξ2-contours are parallel lines. Equa-
tions (8) then simplify into a system of ODEs governing
z and ρ. Its solutions constitute a 2-DOF family of one-
sheeted hyperboloids (Fig. 4b,c) [23, App. E]. The range of
motion of each pillar is bounded by the maximally folded
and unfolded states of the pattern. Thus, for increasing
aspect ratio L2/L1, the pillar will have a smaller range of
motion, until it jams, or even becomes impossible to form
without tearing.

Among all accessible pillars, the ones that are in self-
equilibrium exhibit minimum levels of strain energy ψ.
Strain energy is composed of two contributions: crease
folding and panel bending. Crease folding energy takes the
form of a classical, however nonlinear, membrane energy.
In what follows, we neglect this contribution and focus
on the less-explored influence of panel bending [27]. For
“Mars”-folded origami pillars, centered about the equator,
strain energy is exemplified on Fig. 4d. It appears that
unfolding the pattern, by increasing the angle ∠(u,v), re-
duces bending energy. The unfolding flattens the pillar and
reduces both curvatures κ1 and κ2. That trend continues
up to a point where energy is minimum (near state (iv))
and beyond which any further unfolding, or flattening, of
the pattern actually causes a dramatic increase in bend-
ing energy. This suggests that bending energy ψ depends
on some other deformation measures besides curvatures.
As a matter of fact, the bending energy density b, where
ψ =

∫
Ω
bdξ, Ω being the reference domain of the pattern,

is a quadratic form of the planarity defects δ(ij) of the
panels. For their part, the defects are linear forms of the
full, both out-of-plane and in-plane, components of the
parametrization’s second derivatives xµν . The out-of-plane
components Γ3µν ≡ ⟨n,xµν⟩ are the coefficients of the sec-
ond fundamental form; they quantify the curvatures and
torsion of the embraced surface. The in-plane components
Γσµν ≡ ⟨xσ,xµν⟩ are the Christoffel symbols; they quan-
tify, not the strains, but their gradient, i.e., terms of the
form gµν,σ. Accordingly, b = b(Γ;g) is a metric-dependent
quadratic form of the curvatures, torsion, and strain gra-
dient. Detailed derivations of the expression of b leading
to Fig. 4d can be found in the Supplemental Material [23,
App. F, G].

Back to the pillars, unfolding the pattern reduces both
curvatures and strain-gradients. However, as the geometric
rigidities associated with the curvatures (i.e., ∂2b/∂Γ3µν)
remain bounded, the ones associated with the strain gra-
dient (i.e., ∂2b/∂Γσµν) diverge for states that are close to
being flat. Such states occur near the outer rims of suffi-
ciently unfolded pillars; their presence further signals that
the pillar has reached the boundary of the kinematically
admissible domain, hence the energy blow-up observed on
Fig. 4d. Strain-gradient energy further dominates the re-
sponse of any plane, non-uniform, state such as the “ring”
observed midway through Fig. 4b. Indeed, uniformly folded
plane states do not engage panel bending and therefore
have zero energy. By contrast, non-uniformly folded states,
with gradients of folding angles, cannot be achieved with-
out panel bending. When the state is plane, it has zero
curvatures and torsion, and energy becomes function of the
strain gradient alone [12]. More generally, it is noteworthy
that ψ does not penalize strains or fold angles, however
large, so long as they are uniform. In fact, ψ does not even
refer to a specific natural state or any specific natural fold
angles in reference to which strains should be measured
[16]. Instead, it refers to a higher-order strain measure,
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Figure 4: “Mars”-folded origami pillars are one-sheeted hyperboloids. (a) A unit cell of the “Mars” pattern: the supplementary opposite
angles ensure developability and flat-foldability; an equilateral pattern is further rectangular. (b) Action of the first DOF on the shape of the
pillar: given a small enough aspect ratio L2/L1, the pillar can be inverted inside-out; here, the pattern has N = 100 unit cells per meridian,
and 8 cells per parallel, with a flat-unfolded aspect ratio L2/L1 = 8%. (c) Action of the second DOF: the pattern flattens as the opening angle
∠(u,v) at a given parallel is increased; here, the pattern has N = 100 unit cells per meridian and 40 unit cells per parallel with L2/L1 = 40%.
(d) Bending energy: plot of normalized total bending energy as a function of the opening angle ∠(u,v) at the equator for origami pillars
centered about the equator with L2/L1 = 40%; the discretely summed energy for N = 100 is plotted against the continuum limit N → ∞;
data points (i− iv) are the ones illustrated on panel (c); greyed out domain cannot be accessed with the current aspect ratio; the continuum
theory satisfactorily predicts both energy and kinematical admissibility. Adopted values: α = π/3, β = π/2.

namely Γ, which quantifies not how much the pattern is
folded, but rather how far it is from being uniformly folded.

4. Conclusion

In conclusion, we proposed a continuum theory of
origami-folded shells where the crease pattern is a zigzag
sum. The theory accounts for geometric nonlinearities and
accurately predicts the states that are accessible under
isometric folding thanks to a universal identity relating in-
plane deformations and out-of-plane curvatures. The study
further demonstrates that the energy density of origami-
folded shells can heavily depend on the in-plane strain-
gradient in a way that is unparalleled in classical shell
theories. It should be possible to extend the proposed
theory, in one form or another, to more general tessella-
tions that possess periodic folding motions. By contrast,
alternative approaches are likely to be needed to tackle tes-
sellations that do not fold periodically (e.g., Huffman grids
and Yoshimura-like patterns [28]). Finally, it would be of
interest to investigate how the proposed theory can inform
shape programming and morphing planning of origami and
kirigami structures [29–37] for robotics and 4D printing
applications.
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Appendix A. The in-plane Poisson’s ratio: Gen-
eral case

The metric g of a zigzag sum has the components g11 =
∥u− v∥2, g22 = ∥s− t∥2 and g12 = ⟨u− v, s− t⟩. Note
that the scalar products ⟨u, s⟩, ⟨u, t⟩, ⟨v, s⟩ and ⟨v, t⟩ are
combinations of lengths and angles that are isometrically
preserved; they are motion constants and so is g12. It is
somewhat more challenging to derive a relationship between
g11 and g22; this is done next. First, note that s and t can
be decomposed into

s = ⟨s,u⟩u∗ + ⟨s,v⟩v∗ + sww,

t = ⟨t,u⟩u∗ + ⟨t,v⟩v∗ + tww,
(A.1)

with

u∗ =
v ∧w

∥u ∧ v∥
, v∗ =

w ∧ u

∥u ∧ v∥
, w =

u ∧ v

∥u ∧ v∥
. (A.2)

Components sw and tw are easily determined by considering
the magnitudes of s and t. Indeed, we have

s2w = s2 − ⟨s,u⟩2 v2 + ⟨s,v⟩2 u2 − 2 ⟨s,u⟩ ⟨s,v⟩ ⟨u,v⟩
∥u ∧ v∥2

,

t2w = t2 − ⟨t,u⟩2 v2 + ⟨t,v⟩2 u2 − 2 ⟨t,u⟩ ⟨t,v⟩ ⟨u,v⟩
∥u ∧ v∥2

,

(A.3)

with u = ∥u∥, and so on. Therein, note that the only
variables are

⟨u,v⟩ = u2 + v2 − g11
2

, ∥u ∧ v∥2 = u2v2 − ⟨u,v⟩2 ,
(A.4)

and are both functions of g11. Last, we write

g22 =
⟨s− t,u⟩2 v2 + ⟨s− t,v⟩2 u2

∥u ∧ v∥2

− 2 ⟨s− t,u⟩ ⟨s− t,v⟩ ⟨u,v⟩
∥u ∧ v∥2

+ (sw − tw)
2, (A.5)

and accordingly deduce g22 as a function of g11, as well as
ν as a function of g11. It is worth mentioning that g11 and
g22 have upper and lower bounds corresponding to some
creases being maximally folded or unfolded. Beyond these
bounds the pattern would penetrate itself or break apart.
These situations can be avoided by enforcing s2w > 0 and
t2w > 0.

Appendix B. The admissible second-order deriva-
tives

Consider the vertices of a super cell placed at x(ij) =
X(ij) + r2δx(ij) where the X(ij) describe a pre-folded state
and the r2δx(ij) are bending-induced perturbations. Simi-
larly, the central vertex ξ is atX subsequent to the fold-only
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motion and is perturbed by r2δx subsequent to the infinites-
imal bending of the panels. Note that the second-order
derivatives xµν are invariant by composition with linear
motions including rigid body motions and periodic stretch-
ing and contraction. Accordingly, it is possible, without
loss of generality, to default the displacements of the central
four creases to zero. In other words, we set

δx = δx(10) = δx(01) = δx(1̄0) = δx(01̄) = 0. (B.1)

Furthermore, by linearity, the contributions of the remain-
ing displacements can be investigated independently then
superposed.

So let δx(1̄1), δx(1̄1̄), δx(11̄), δx(2̄0) and δx(02̄) all be null
for now and consider a nonzero displacement δx(11): the
latter must be orthogonal to u so as to preserve the length
of x(11) − x(01) as well as to s so as to preserve the length
of x(11) − x(10), to leading order. Hence,

δx(11) = δ(11)u ∧ s (B.2)

for some planarity defect δ(11). Similarly, we have

δx(02) = δ+v ∧ t, δx(20) = δ−v ∧ t. (B.3)

Expressions for δ± are easily obtained by observing that
the lengths of x(11) − x(02) and x(11) − x(20) are preserved.
Indeed, infinitesimal inextensibility implies〈

t+ u, δ(11)u ∧ s− δ+v ∧ t
〉
= 0,〈

v + s, δ(11)u ∧ s− δ−v ∧ t
〉
= 0,

(B.4)

namely,

δ+

δ−
=

⟨u ∧ s, t⟩ ⟨v ∧ t, s⟩
⟨v ∧ t,u⟩ ⟨u ∧ s,v⟩

. (B.5)

As for the xµν , they are given by

x11 = δx(20) = δ−v ∧ t,

x22 = δx(02) = δ+v ∧ t,

x12 = δx(11) = δ(11)u ∧ s.

(B.6)

In particular,

x22 =
⟨u ∧ s, t⟩ ⟨v ∧ t, s⟩
⟨v ∧ t,u⟩ ⟨u ∧ s,v⟩

x11. (B.7)

The contributions of δx(1̄1), δx(1̄1̄) and δx(11̄) (i.e., δ(1̄1),
δ(1̄1̄) and δ(11̄), respectively) can be readily calculated in
the same fashion and shown to yield exactly the same
constraint on x22 and x11. This can be predicted by ap-
preciating the symmetric way in which the proportionality
coefficient depends upon the crease vectors. In conclu-
sion, the above constraint holds for any combination of
admissible infinitesimal displacements of the super cell.

Last, note that

⟨x12,x1⟩ =
〈
δ(11)u ∧ s,u− v

〉
= −δ(11) ⟨u ∧ s,v⟩
= −δ− ⟨v ∧ t, s⟩
= −δ− ⟨v ∧ t, s− t⟩
= −⟨x11,x2⟩ .

(B.8)

That is: ∂1⟨x1,x2⟩ = 0. In the same manner, one shows
that ∂2⟨x1,x2⟩ = 0 in order to recover dg12 = 0 as claimed
in the main text.

Appendix C. The in- and out-of-plane Poisson’s
coefficients are equal and opposite

Projecting the proportionality constraint of x11 and x22

along the normal n yields

κ2g22 =
⟨u ∧ s, t⟩ ⟨v ∧ t, s⟩
⟨v ∧ t,u⟩ ⟨u ∧ s,v⟩

κ1g11 (C.1)

by the definition of the normal curvatures in directions 1
and 2. Projecting along x1 yields

⟨x22,x1⟩ =
⟨u ∧ s, t⟩ ⟨v ∧ t, s⟩
⟨v ∧ t,u⟩ ⟨u ∧ s,v⟩

⟨x11,x1⟩ . (C.2)

But

⟨x22,x1⟩ = ∂2⟨x2,x1⟩ − ⟨x2,x12⟩

= ∂2⟨x2,x1⟩ −
1

2
∂1⟨x2,x2⟩

= −1

2
∂1g22,

(C.3)

since dg12 = 0. Also, ⟨x11,x1⟩ = ∂1g11/2. Projecting over
x2 yields similar relations so that overall

− dg22
2

=
⟨u ∧ s, t⟩ ⟨v ∧ t, s⟩
⟨v ∧ t,u⟩ ⟨u ∧ s,v⟩

dg11
2

. (C.4)

Hence, the in-plane Poisson’s coefficient is

ν = −dg22/g22
dg11/g11

=
g11
g22

⟨u ∧ s, t⟩ ⟨v ∧ t, s⟩
⟨v ∧ t,u⟩ ⟨u ∧ s,v⟩

=
κ2
κ1

(C.5)

and matches, up to a sign, the out-of-plane Poisson’s coef-
ficient −κ2/κ1.

Appendix D. The Poisson’s ratios of the “Mars”
pattern

The “Mars” pattern is a developable flat-foldable zigzag
sum. Let us suppose that the pattern is equilateral so that
u = v = s = t. Now we have

⟨u, s⟩ = −⟨v, t⟩ = cosα, ⟨u, t⟩ = −⟨v, s⟩ = cosβ.
(D.1)
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We are at liberty to adopt a mountain-valley assignment
convention: we let creases s, t and v be mountains and let
crease u be a valley. Then, inspection of (A.3) reveals that
sw = −tw. This allows to greatly simplify (A.5) ultimately
into

g22 = 4− 4
(cosα+ cosβ)2

g11
. (D.2)

The Poisson’s coefficient is deduced by differentiation. It
reads

ν = −4
(cosα+ cosβ)2

g11g22
(D.3)

and is automatically equal to κ2/κ1.
Recall that g11 and g22 are bounded. In the maximally

unfolded state, cos(u,v) = − cos(α − β) so that, in any
case, g11 remains smaller than 2 + 2 cos(α− β). The other
bounds are similarly deduced and, overall, we have

4 cos2
(
α+ β

2

)
≤ g11 ≤ 4 cos2

(
α− β

2

)
,

4 sin2
(
α− β

2

)
≤ g22 ≤ 4 sin2

(
α+ β

2

)
.

(D.4)

Appendix E. “Mars”-folded hyperboloids

Consider an axisymmetric origami pillar folded out of an
equilateral “Mars” pattern with a parametrization x ∈ R3

of the form

x = (ρ(ξ2) cos(qξ1), ρ(ξ2) sin(qξ1), z(ξ2)). (E.1)

We denote L1 and L2 the dimensions of the origami pattern
in its flat, maximally unfolded, reference state. We then
let ξ1 ∈ [−S1/2, S1/2] and ξ2 ∈ [−S2/2, S2/2] with

S1 =
L1

2 cos((α− β)/2)
, S2 =

L2

2 sin((α+ β)/2)
. (E.2)

The pillar is obtained by folding the pattern then glueing
together the ends ξ1 = 0 and ξ1 = S1. In other words, we
let q = 2π/S1.

With these notations, it straightforward to see that

x1 = (−qρ(ξ2) sin(qξ1), qρ(ξ2) cos(qξ1), 0),
x2 = (ρ′(ξ2) cos(qξ1), ρ

′(ξ2) sin(qξ1), z
′(ξ2)),

x11 = (−q2ρ(ξ2) cos(qξ1),−q2ρ(ξ2) sin(qξ1), 0),
x22 = (ρ′′(ξ2) cos(qξ1), ρ

′′(ξ2) sin(qξ1), z
′′(ξ2)),

(E.3)

with ρ′ ≡ dρ/dξ2, ρ
′′ ≡ dρ′/dξ2 and so on.

Then,

g11 = q2ρ2 and g22 = ρ′2 + z′2 (E.4)

depend on one another through the in-plane kinematical
constraint

ρ′2 + z′2 = 4− 4
(cosα+ cosβ)2

q2ρ2
. (E.5)

The out-of-plane constraint, i.e., x11 ∥ x22, immediately
yields

z′′ = 0. (E.6)

Together, these two ODEs can be integrated into

z′ = cst, ρ =

√
4c2(ξ2 − ξo)2 +

(cosα+ cosβ)2

q2c2
, (E.7)

with c2 = 1 − z′2/4. Hence, the origami pillar embraces
a hyperboloid. The pattern does not cover the whole
hyperboloid however and is limited to the band spanned
by ξ2 ∈ [−S2/2, S2/2]. Overall then, and up to rigid body
motions, the folded pillar has two degrees of freedom. The
first is c: it describes the shape of the hyperboloid; as it
goes from 1 to 0, the hyperboloid changes from a “yoyo”
into a cylinder. The second is ξo: it specifies how the band
of length L2 that the pattern covers is centered on or offset
away from the equator.
Not all values (c, ξo) are admissible however since can-

didate solutions must further satisfy the upper and lower
bounds weighing on the metric, namely (D.4). In the
present case, these read

4 cos2((α+ β)/2) ≤ q2ρ2 ≤ 4 cos2((α− β)/2). (E.8)

For a centered band (ξo = 0) in particular, these bounds
reduce to

4 cos2
(
α+ β

2

)
≤ (cosα+ cosβ)2

c2
,

c2q2S2
2 +

(cosα+ cosβ)2

c2
≤ 4 cos2

(
α− β

2

)
,

(E.9)

and place a maximum bound on the aspect ratio S2/S1 =
qS2/(2π) of origami pillars that can be formed. In the
main text, the angle ∠(u,v) at the equator is used rather
than c. These two are in a one-to-one correspondence

2− 2 cos(u,v) = g11 =
(cosα+ cosβ)2

c2
. (E.10)

Appendix F. Bending energy – General case

We have found that the admissible xµν satisfy five linear
constraints: three describe the proportionality of x11 and
x22, and two reduce to dg12 = 0. Thus, the admissible xµν

belong to a four-dimensional linear subspace of (R3)3 space.
Each dimension is spanned by a DOF that we attribute to
one planarity defect δ(ij), (i, j) ∈ {1, 1̄}2 such that

δx(11) = δ(11)u ∧ s,

δx(1̄1) = δ(1̄1)s ∧ v,

δx(1̄1̄) = δ(1̄1̄)v ∧ t,

δx(11̄) = δ(11̄)t ∧ u.

(F.1)

Here too, we began by defaulting the same displacements
as in (B.1) to zero. Next, we derive expressions for the δ(ij)

in function of the xµν .
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Generalizing equation (B.6), it is possible to derive full
expressions for the xµν in terms of the δ(ij). We find,

x11 =
⟨u, s ∧ v⟩
⟨t, s ∧ v⟩

δ(11)v ∧ t+
⟨v,u ∧ s⟩
⟨t,u ∧ s⟩

δ(1̄1)t ∧ u

+
⟨v, t ∧ u⟩
⟨s, t ∧ u⟩

δ(1̄1̄)u ∧ s+
⟨u,v ∧ t⟩
⟨s,v ∧ t⟩

δ(11̄)s ∧ v.

(F.2)

As for x12, it is readily available and reads

x12 = δ(11)u∧s−δ(1̄1)s∧v+δ(1̄1̄)v∧t−δ(11̄)t∧u. (F.3)

These two vector equations provide a system (with two
redundant equations), which can be solved for the δ(ij).
For instance, projecting x11 over u and x12 over v leads
to a 2× 2 system

⟨x11,u⟩ =
⟨u, s ∧ v⟩ ⟨u,v ∧ t⟩

⟨t, s ∧ v⟩
(δ(11) + δ(11̄)),

⟨x12,v⟩ = ⟨u, s ∧ v⟩ δ(11) − ⟨u,v ∧ t⟩ δ(11̄),
(F.4)

which can be solved for δ(11) and δ(11̄) to give

δ(11) =
⟨x11,u⟩ ⟨t, s ∧ v⟩+ ⟨x12,v⟩ ⟨u, s ∧ v⟩

⟨u, s ∧ v⟩ ⟨t− s,u ∧ v⟩
,

δ(11̄) =
⟨x11,u⟩ ⟨t, s ∧ v⟩ − ⟨x12,v⟩ ⟨u,v ∧ t⟩

⟨u,v ∧ t⟩ ⟨t− s,u ∧ v⟩
.

(F.5)

Similar considerations lead to

⟨x11,v⟩ =
⟨v,u ∧ s⟩ ⟨v, t ∧ u⟩

⟨t,u ∧ s⟩
(δ(1̄1) + δ(1̄1̄)),

⟨x12,u⟩ = −⟨u, s ∧ v⟩ δ(1̄1) + ⟨u,v ∧ t⟩ δ(1̄1̄),
(F.6)

and to

δ(1̄1) =
⟨x11,v⟩ ⟨t,u ∧ s⟩ − ⟨x12,u⟩ ⟨v,u ∧ s⟩

⟨v,u ∧ s⟩ ⟨t− s,u ∧ v⟩
,

δ(1̄1̄) =
⟨x11,v⟩ ⟨t,u ∧ s⟩+ ⟨x12,u⟩ ⟨v, t ∧ u⟩

⟨v, t ∧ u⟩ ⟨t− s,u ∧ v⟩
.

(F.7)

Most importantly, the planarity defects δ(ij) are linear
forms of the full, in- and out-of-plane, components of the
parametrization’s second derivatives.
Now each panel in the unit cell, contributes a term

g(ij)(r2δ(ij)), (i, j) ∈ {1, 1̄}2, to the bending energy den-
sity of the tessellation equal to the bending energy of the
relevant panel for a given planarity defect r2δ(ij). The
potential g(ij) can be nonlinear in principle, but given that
the planarity defects are of order O(r2), it is reasonable to
linearize it in the vicinity of r → 0, that is while assuming,
at the same time, that the plane is the natural state of the
panels. In conclusion, the bending energy density of the
tessellation takes the form

b =
∑

(i,j)∈{1,1̄}2

1

2
D(ij)(δ(ij))2 (F.8)

where the D(ij) are the panels flexural rigidities normal-
ized with respect to the area of a reference unit cell

and where the δ(ij) have been shown to be configuration-
dependent (i.e., (u,v, s, t)-dependent) linear forms of the
second derivatives xµν . Equivalently, bending energy den-
sity b = b(Γiµν ; gαβ) can be written as a metric-dependent
quadratic form of the Christoffel symbols and of the curva-
tures. This is done next in the particular case of the “Mars”
pattern.

Note that while we linearized b into a quadratic form in
the limit r → 0 (i.e., for infinitesimal panel bending), we
make no a priori assumptions regarding the macroscopic
curvatures (i.e., the xµν). These are free to take finite
values. Last, the flexural rigidities D(ij) are material con-
stants. Here, we suppose for simplicity that they are all
equal to D.

Appendix G. Bending energy – The “Mars” pat-
tern

Similar considerations to the ones that led to equa-
tion (A.3) show that the current configuration of the folds
(u,v, s, t) can be determined from the tangent vectors
(x1,x2). Indeed, we have, in the case of an equilateral
“Mars” pattern,

u =
1

2
x1 +

cosα− cosβ

g22
x2 − unn,

v = −1

2
x1 +

cosα− cosβ

g22
x2 − unn,

s =
cosα+ cosβ

g11
x1 +

1

2
x2,

t =
cosα+ cosβ

g11
x1 −

1

2
x2,

(G.1)

with

un =

√
1− g11

4
− (cosα− cosβ)2

g22
(G.2)

being a known function of the metric tensor. Thus, the
coefficients appearing in the expression of b can be written
in terms of the metric tensor as well

⟨s,u ∧ v⟩ = −⟨t,u ∧ v⟩ = un
√
g/2,

⟨u, s ∧ t⟩ = ⟨v, s ∧ t⟩ = −cosα+ cosβ

g11

√
gun,

(G.3)

with g = detg = g11g22. As for the remaining terms
involving the xµν , they can be expanded into combinations
of the Christoffel symbols Γσµν ≡ ⟨xµν ,xσ⟩ and of the
coefficients of the second fundamental form Γ3µν ≡ ⟨xµν ,n⟩.
Namely, we have

⟨x11,u⟩ =
1

2
Γ111 +

cosα− cosβ

g22
Γ211 − unΓ311,

⟨x11,v⟩ = −1

2
Γ111 +

cosα− cosβ

g22
Γ211 − unΓ311,

⟨x12,u⟩ =
1

2
Γ112 +

cosα− cosβ

g22
Γ212 − unΓ312,

⟨x12,v⟩ = −1

2
Γ112 +

cosα− cosβ

g22
Γ212 − unΓ312.

(G.4)
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Recall that, in the present case where the curvilinear
coordinates are rectangular, the Christoffel symbols read

Γ111 =
1

2
g11,1, Γ211 = −1

2
g11,2,

Γ112 =
1

2
g11,2, Γ212 =

1

2
g22,1,

Γ122 = −1

2
g22,1, Γ222 =

1

2
g22,2.

(G.5)

In conclusion, the total strain energy of a “Mars” pattern
is

ψ(x) =

∫
Ω

b(Γ;g)dξ1dξ2 (G.6)

where the bending strain energy density is

b(Γ;g) =
D

2

(
(δ(11))2 + (δ(1̄1))2 + (δ(11̄))2 + (δ(1̄1̄))2

)
(G.7)

with the planarity defects δ(ij) being the metric-dependent
linear forms given in (F.5) and (F.7). Therein, note how the
rigidity coefficients in front of the in-plane strain-gradient
are proportional to the term 1/un which diverges when g11
and g22 approach their maximum and minimum values, i.e.,
at the boundary of the domain of kinematical admissibility.
Meanwhile, the rigidity coefficients weighing the curvatures
remain bounded.
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