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Abstract. Limit analysis (LA) is an efficient tool for computing in a
direct manner the ultimate load of a structure made of a perfectly plas-
tic material. The lower bound static approach amounts to maximize the
load factor such that one can find an optimal stress field in equilibrium
with such loading and satisfying strength conditions at each point in the
domain. In the deterministic case, the ultimate load is obtained via the
resolution of a convex optimization problem. When loading or strength
properties are random, the data of such an optimization problem become
uncertain. Robust optimization theory is a branch of mathematical opti-
mization which aim at finding an optimal solution of uncertain problems
among all possible realizations of the uncertainty within a known un-
certainty set. Applying the concepts of robust optimization to uncertain
limit analysis, one may compute a worst-case ultimate load estimate
associated with a given uncertainty set, for instance in the case of un-
certain strength properties or uncertain load cases. This paper discusses
how robust limit analysis problems can be reformulated, either exactly or
approximately, into deterministic problems. In particular, the distinction
between static and adjustable robust counterparts is introduced. In the
former case, uncertain LA problems are replaced with a deterministic
problem with reduced strength properties. In the latter case, additional
optimization variables must be introduced in order to obtain an extended
LA problem in much higher dimension.

Keywords: Limit analysis · Ultimate load · Uncertainty · Robust opti-
mization.

1 Introduction

Limit analysis [13, 22] is a powerful direct method used to estimate the col-
lapse load of a structure consisting of a perfectly plastic material. The lower and
upper bound approaches of limit analysis are naturally formulated as convex
optimization problems for which given data consist of a known material yield
criterion, a known reference loading and a known geometry [12]. However, in
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real-world applications, these parameters may be subject to uncertainty due to
factors such as inaccurate load amplitude or direction, or variations in material
strength. As a result, engineers often aim to design structures that are robust to
such uncertainties, meaning that the collapse load must be safe for all possible
combinations of uncertain parameters.

Traditionally, limit analysis has addressed this issue by either assuming a
worst-case scenario for the uncertain parameters or by performing a stochastic
analysis in which random realizations of the parameters are used. While the
first approach can be overly conservative, it can also be challenging to determine
the worst-case scenario in complex loading situations. The second approach, on
the other hand, requires assuming a probability distribution for the parameters
and solving a large number of problems to find the worst-case configuration,
which may not be achievable in practice. General definitions of the probability
of collapse have been given in [21, 3], later revisited by [2] using stochastic stress
vectors. Various works have also considered the numerical computation of limit
loads in a stochastic setting such as [28, 23] or [10, 14, 17, 1] for geotechnical
applications. For instance, the reader can refer to [15] for a recent review of
slope stability in spatially variable soils.

Alternative approaches have sought to evaluate the robustness or reliability
of structures through non-probabilistic methods. In [19], the authors consider un-
certain limit analysis of truss structures with very similar sources of uncertainties
as those investigated in this work. For this purpose, they used the info-gap deci-
sion theory [4] which is however known to be difficult to apply in practice since
robustness functions are very hard to compute in general. For the very specific
case of truss structures investigated in [19], it can however be computed via the
resolution of a linear programming problem. Similarly, mixed-integer program-
ming approaches can also be used to compute a worst-case limit load [16] but
solving such NP-hard problems is notoriously difficult and almost impossible for
large-scale problems. Using a chance-constrained programming approach, [26, 25]
considered limit analysis and shakedown theorems under normal or log-normal
strength uncertainties for von Mises plasticity.

In this work, we propose an alternative approach that utilizes the princi-
ples of robust optimization theory [5, 7] to obtain a robust estimate of plastic
limit loads in the presence of uncertainty. This approach allows us to design
structures that are resistant to a wide range of uncertain parameters without
relying on conservative assumptions or computationally intensive analyses. More
precisely, uncertain limit analysis problems are formulated in the case of uncer-
tain strength properties. A definition of the worst-case limit load is given using
concepts of robust optimization theory. Then, in order to obtain computation-
ally tractable formulations, different decision rules are introduced, in particular
so-called static and affinely adjustable formulations. Static concepts are then ap-
plied to the definition of robust strength conditions and illustrated on the case
of a Mohr-Coulomb criterion with uncertain cohesion and friction angle. Finally,
the resolution of robust limit analysis at the structure scale is discussed for the
case of strength uncertainties and loading uncertainties.
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The manuscript is organized as follows: Section 2 introduces robust formula-
tions of limit analysis theory in the case of strength uncertainty; Section 3 details
the derivation of tractable robust counterparts of uncertain strength constraints
arising in the previous formulations; Section 4 is devoted to the resolution of
robust limit analysis problems with a specific emphasis on the case of loading
uncertainties and the corresponding affinely adjustable robust formulations; fi-
nally, Section 5 draws some conclusions and perspectives for future research.

2 Robust limit analysis with strength uncertainties

2.1 Nominal and uncertain limit analysis problem

The nominal limit analysis problem amounts to computing the maximum
load factor λN by solving the following convex maximization problem:

λN = max
λ,σ

λ

s.t. divσ + λf r + f f = 0 in Ω
σ · n = λtr + tf on ∂ΩT
σ ∈ G in Ω

(N)

where λ is the load factor, σ the Cauchy stress field in Ω, f r (resp. f f) is the
reference (resp. fixed) body force, tr (resp. tf) the reference (resp. fixed) contact
force prescribed on some part ∂ΩT of the boundary with unit normal n and G is
the material yield/strength criterion which we assume to be a convex set (possi-
bly unbounded) containing 0. In the above, the first two constraints correspond
to the local balance equation and traction boundary conditions, whereas the last
one corresponds to the strength condition which must be satisfied at all points
x ∈ Ω. Note that formulation (N) corresponds to a static formulation which will
result in a lower-bound estimate of the true collapse load when restricting to a
finite-element subspace of statically admissible stress fields.

We now consider the case where the loading is certain but the material may
possess uncertain properties such that the strength criterion is now written as
G(ζ) where ζ ∈ Rm is a vector of uncertain parameters. Contrary to probabilistic
approaches in which ζ is a random variable with a given probability distribution,
robust optimization approaches describe the uncertainty through the notion of
an uncertainty set U ⊆ Rm. It is assumed that any possible realization of the
uncertainty belongs to the uncertainty set ζ ∈ U without positing any probabil-
ity distribution. The goal of robust optimization theory is to find an optimum
solution to an uncertain optimization problem for any possible realization in
this uncertainty set. Obviously, the choice of the uncertainty set is an important
modeling step in such approaches and depends on our knowledge of the origins
of the considered uncertainty. If probability distributions are known, uncertainty
sets can be based on the size of the support or the shape of the probability dis-
tribution. For instance, its size can correspond to a certain confidence level of
the probability distribution. It can also be built from available data.
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This aspect is outside the scope of the present work, which presents a general
methodology. One key assumption on the uncertainty used to obtain interesting
results is that it is assumed to be convex. Although it can be more general, we
assume, for simplicity, that U is a convex ball of unit radius for some norm i.e.
U = {ζ ∈ Rm s.t. ‖ζ‖ ≤ 1}. In particular, we will note by Up uncertainty sets
corresponding to the Lp-ball (typically with p = 1, 2 or ∞).

The maximum load factor now becomes uncertain i.e. it depends on the value
ζ of the uncertainty realization:

λ+(ζ) = max
λ,σ

λ

s.t. divσ + λf r + f f = 0
σ · n = λtr + tf

σ ∈ G(ζ)

(1)

The main purpose of robust optimization is to provide worst-case solutions
to a given optimization problem. Our proposed theory of robust limit analysis
therefore aims at evaluating the worst-case limit load among all possible realiza-
tions. In the remaining of this section, we discuss various robust formulations.

2.2 Adjustable robust optimization

For a given loading and two different given realizations of the uncertainty, one
expects that the corresponding optimal stress fields will be different depending
on the uncertainty realizations. The most natural approach therefore consists
in considering the stress field and the corresponding load factor to be recourse
variables, i.e. variables which depends on ζ. Thus, we are faced with an adjustable
robust counterpart (ARC) to problem (1) defined as follows:

λARC = min
ζ∈U

λ+(ζ) = min
ζ∈U

max
σ(ζ),λ(ζ)

λ(ζ)

s.t. divσ(ζ) + λ(ζ)f r + f f = 0
σ(ζ) · n = λ(ζ)tr + tf

σ(ζ) ∈ G(ζ)

(ARC)

i.e. we find the largest load factor such that, for each uncertainty realization there
exists an optimal stress field in equilibrium, with the corresponding collapse load
factor, satisfying the strength criterion.

In the following, we also make use of the following equivalent formulation of
the ARC problem [24, 18]:

λARC = max
λ̄

λ̄

s.t. ∀ζ ∈ U ,∃σ, λ s.t. divσ + λf r + f f = 0
σ · n = λtr + tf

σ ∈ G(ζ)
λ̄ ≤ λ

(2)

where uncertainty of the objective function has been transferred to the con-
straints with the introduction of a static (non-adjustable) variable λ̄.
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2.3 Static robust optimization

Unfortunately, adjustable recourse problems are numerically challenging. In-
deed, both formulations involve either a min/max problem (ARC) or an infinite
number of constraints (2). To solve adjustable recourse problem, one typically
makes a simplifying assumption on how recourse variables depend on the uncer-
tainty, the so-called decision rules.

The most simple of such rules is to assume that recourse variables are in fact
static, i.e. they do not depend on the uncertainty. This yields to a conservative
static robust counterpart (RC) in which we look for a stress field σ and a load
factor λ, independent of the exact realization of the uncertainty, which satisfy
the strength condition G(ζ) for all ζ ∈ U . The corresponding problem can be
formulated as follows:

λRC = max
λ,σ

λ

s.t. divσ + λf r + f f = 0
σ · n = λtr + tf

σ ∈ G(ζ) ∀ζ ∈ U

(3)

What makes problem (3) a robust optimization problem is the condition
∀ζ ∈ U in the last constraint. This implies that the constraint σ ∈ G(ζ) must
be fulfilled for any possible value of ζ ∈ U . It is therefore an infinite-dimensional
constraint. One of the main goals of robust optimization theory is to make such
a problem tractable using standard convex optimization algorithms.

For instance, the robust constraint can be reformulated as:

σ ∈ G(ζ) ∀ζ ∈ U ⇔ σ ∈ GRC (4)

when introducing:

GRC =
⋂
ζ∈U

G(ζ) (5)

the robust counterpart to the uncertain strength criterion. In order for a stress
field to be admissible with respect to any possible realization of the uncertain
strength criterion G(ζ), it has to belong to the intersection of all such domains
(see Figure 1).

Now, problem (3) writes as:

λRC = max
λ,σ

λ

s.t. divσ + λf r + f f = 0
σ · n = λtr + tf

σ ∈ GRC

(RC)

which is now independent of the uncertainty realization. As a result, problem
(RC) is a classical limit analysis problem with a different strength criterion given
by (5). This makes problem (RC) very appealing provided that a simple ex-
pression for GRC can be found. It is however very hard to determine a simple
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Fig. 1: Robust strength domain GRC (in blue) obtained as the intersection of
various uncertain realizations G(ζ) (in black) of a nominal domain (in red).

expression for the infinite-dimensional set intersection appearing in (5). Exact or
approximate reformulation of strength criteria robust counterparts are discussed
in Section 3.

2.4 Affinely adjustable robust optimization

Unfortunately, if (RC) problems are numerically tractable, the obtained ap-
proximation might be unreasonably conservative [8]. A middle ground is the
affinely adjustable robust counterpart (AARC), which consists in looking for
adjustable variables σ(ζ) and λ(ζ) that are affine functions of the uncertain
variable, the so-called affine decision rule [6]:

σ(ζ) = σ0 +

m∑
j=1

σjζj (6a)

λ(ζ) = λ0 +

m∑
j=1

λjζj (6b)

where the σi (resp. λi) represent 1 + m different stress fields (load factor vari-
ables) which are now static optimization variables. Inserting the affine decision
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rules (6a)-(6b) into (ARC), the corresponding AARC reads:

λAARC = max
σi,λi

min
ζ∈U

λ0 +

m∑
j=1

λjζj

s.t. div

σ0 +

m∑
j=1

σjζj

+

λ0 +

m∑
j=1

λjζj

f r + f f = 0σ0 +

m∑
j=1

σjζj

 · n =

λ0 +

m∑
j=1

λjζj

 tr + tfσ0 +

m∑
j=1

σjζj

 ∈ G(ζ)

(7)

which can also be reformulated as follows:

λAARC = max
λ̄,σi,λi

λ̄

s.t. div(σj) + λjf
r + f f = 0 ∀j = 0, . . . ,m

σj · n = λjt
r + tf ∀j = 0, . . . ,mσ0 +

m∑
j=1

σjζj

 ∈ G(ζ) ∀ζ ∈ U

λ̄ ≤ λ0 +

m∑
j=1

λjζj ∀ζ ∈ U

(AARC)

in which we removed the uncertainty from the objective function and replaced
the minimization over ζ with robust constraints. Note that equality constraints
depending on ζ have been re-expressed by identifying the corresponding terms
of the expansion in terms of ζi since U is full dimensional.

2.5 Comparison between the different approaches

Summarizing, (RC) is the most conservative formulation yielding the smallest
limit load. (AARC) is more flexible since it considers additional static variables
σj , λj for j = 1, . . . ,m and reduces to (RC) if we fix all σj = 0. As mentioned,
(ARC) is less conservative than (AARC) since we allow for more general decision
rules but is generally untractable. Finally, all of these formulations guard against
all possible realizations of the uncertainty such that we have the following or-
dering:

λRC ≤ λAARC ≤ λARC ≤ λ+(ζ) ∀ζ ∈ U (8)

In the remainder of this work, the focus is put on the tractability of the
different formulations. For (RC) to be tractable, the characterization of the safe
domain GRC must be tractable. Section 3 discusses conditions for which exact
or approximate tractable formulations can be obtained. Tractable formulations
of (AARC) are then discussed in Section 4.
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3 Robust strength conditions

3.1 Uncertain strength conditions and a tractable approximation

Tractability of robust formulations such as (AARC) is essentially driven by
how the uncertain strength criterion G depends on ζ. Unfortunately, we are
not aware of any general results. However, in most applications, such uncertain
constraints can be written in the following form:

g(σ +Σζ) ≤ 1− bTζ, ∀ζ ∈ U (9)

with σ ∈ Rd,Σ ∈ Rd×m, d being the dimension of the stress space, b ∈ Rm and
g is a convex homogeneous function.

Exact reformulations of such a constraint are possible only if G or U is poly-
hedral. In the general case, one can benefit from the following safe approximation
due to [9]: the robust constraint (9) can be safely approximated as follows:

g(σ) + ‖s‖∗ ≤ 1 (10)

where ‖ · ‖∗ is the dual norm of ‖ · ‖ defined as:

‖z‖∗ = sup
‖x‖≤1

zTx (11)

and where for j = 1, . . . ,m:

sj = max{g(Σj) + bj , g(−Σj)− bj} (12)

with Σj denoting the j-th column of Σ.

3.2 Illustrative application on a robust Mohr-Coulomb criterion

Let us consider the case of a Mohr-Coulomb strength criterion where the
cohesion c and the friction angle φ are uncertain. A negative correlation is often
encountered between both parameters, i.e. soils with low cohesion tend to exhibit
higher friction angles than with higher cohesion. We denote by ρ the correlation
coefficient between c and φ, with typical values ranging from −0.5 to −0.9 [27].
Let us therefore consider that k = (c, φ) is given by:

k(ζ) = k0 +Kζ, for ζ ∈ U (13)

where k0 corresponds to the nominal values and where the ”correlation” matrix
K is such that:

KKT =

[
∆c2 ρ∆c∆φ

ρ∆c∆φ ∆φ2

]
i.e. K =

[
∆c 0

ρ∆φ ∆φ
√

1− ρ2

]
(14)

where ∆c,∆φ are the parameters typical variations and are assumed to be pos-
itive. Note that if such variations were taken as the standard deviations of the
corresponding parameters,KKT would be the corresponding covariance matrix.
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Figure 2a illustrates the corresponding uncertainty sets obtained in the case
c = 1 MPa, φ0 = 30◦, ∆c = 150 kPa, ∆φ = 5◦, ρ = 0 and for various choices
for the norm involved in the definition of U , resulting in a corresponding L1

(diamond shape), L2 (elliptic shape) or L∞ (rectangular shape) ball in physi-
cal space. Figure 2b shows the same uncertainty sets in the case of a negative
correlation ρ = −0.5 which results in similar polyhedral or elliptic sets skewed
along the negative diagonal which encodes the negative correlation coefficient.
Let us point out that the previous choices for the uncertainty set result in simple
convex set but more complex sets could also be considered, based for instance
on available data regarding cohesion and friction angle pairs.
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(a) ρ = 0 (no correlation)
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(b) ρ = −0.5 (negative correlation)

Fig. 2: Uncertainty sets of cohesion and friction angles for c = 1 MPa, φ0 = 30◦,
∆c = 150 kPa, ∆φ = 5◦ for various sets Up corresponding to a Lp unit ball.

The robust counterpart of the Coulomb criterion therefore reads:

σ1 − σ3 + (σ1 + σ3) sinφ(ζ)− 2c(ζ) cosφ(ζ) ≤ 0 ∀ζ ∈ U (15)

where σ1 (resp. σ3) is the maximum (resp. minimum) principal stress.

Assuming that the variations ∆c,∆φ are small, linearization around k0 re-
sults in:

σ1 − σ3 + (σ1 + σ3)(sinφ0 + cos(φ0)(K21ζ1 +K22ζ2))

− 2(c0 +K11ζ1) cosφ0

+ 2c0 sinφ0(K21ζ1 +K22ζ2) ≤ 0 ∀ζ ∈ U (16)

with Kij being the components of K defined in (14).
This yields the following robust counterpart:

σ1 − σ3 + (σ1 + σ3) sinφ0 − 2c0 cosφ0 + ‖s‖∗ ≤ 0 (17)
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where:

s =

(| ((σ1 + σ3) cosφ0 + 2c0 sinφ0) ρ∆φ− 2∆c cosφ0|
|(σ1 + σ3) cos(φ0) + 2c0 sinφ0|

√
1− ρ2∆φ

)
(18)

Let us now investigate the simple case of no cross-correlation ρ = 0 with
U = {(ζ1, ζ2) s.t. ‖ζ‖∞ ≤ 1}. The previous expression reduces to:

s =

(
2∆c cosφ0

((σ1 + σ3) cos(φ0) + 2c0 sinφ0)∆φ

)
(19)

‖s‖∗ = ‖s‖1 = 2∆c cosφ0 + |(σ1 + σ3) cos(φ0) + 2c0 sinφ0|∆φ (20)

so that the robust Mohr-Coulomb criterion (17) reduces to:

σ1 − σ3 + (σ1 + σ3) sinφ0

+ |(σ1 + σ3) cos(φ0) + 2c0 sinφ0|∆φ ≤ 2(c0 −∆c) cosφ0 (21)

which can be further expressed as follows:{
σ1 − σ3 + (σ1 + σ3)(sinφ0 + cos(φ0)∆φ) ≤ 2cmin cosφ0 − 2c0 sinφ0∆φ

σ1 − σ3 + (σ1 + σ3)(sinφ0 − cos(φ0)∆φ) ≤ 2cmin cosφ0 + 2c0 sinφ0∆φ

(22)
where cmin = c0 − ∆c is the worst-case cohesion. Introducing φmin = φ0 − ∆φ
the worst-case friction angle and φmax = φ0 + ∆φ the best-case friction angle
and using the fact that sin(φmax/min) ≈ sinφ0± cos(φ0)∆φ and cos(φmax/min) ≈
cosφ0∓ sin(φ0)∆φ, the previous criterion is, in fact, a first-order approximation
(in terms of ∆c,∆φ) to the following multi-surface criterion:{

σ1 − σ3 + (σ1 + σ3) sinφmax ≤ 2cmin cos(φmax)

σ1 − σ3 + (σ1 + σ3) sinφmin ≤ 2cmin cos(φmin)
(23)

i.e. the obtained robust counterpart, for this specific case, (approximately) corre-
sponds to the intersection of two Coulomb criteria with the worst-case cohesion
and either the best or the worst-case friction angle. An illustration of such a
result is given in Figure 3. The yield surface corresponding to random realiza-
tions of c(ζ) and φ(ζ) are also represented. One can indeed see that the obtained
robust strength criterion forms a tight lower bound to the various realizations
and is made of two sets of lines approximately characterized by the minimum
and maximum friction angle φmin and φmax.

4 Solving robust limit analysis problems

4.1 Strength uncertainty with static formulation

As discussed before, for a limit analysis problem with uncertain strength
conditions, we can replace the original uncertain strength criterion by its robust



Robust optimization applied to uncertain limit analysis 11

robust criterion

Fig. 3: Robust and uncertain Mohr-Coulomb criterion : c0 = 1 MPa, φ0 = 30◦,
∆c = 150 kPa, ∆φ = 5◦. Black dashed lines denote the nominal surface, thin
coloured lines denote random realizations of the uncertain criterion. The robust
domain is represented in gray and delimited by thick black lines.
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counterpart when using a static decision rule for the stress field. This approxima-
tion is obviously conservative and can provide reasonable estimates of the robust
limit load only when the uncertainty if of small amplitude so that the optimal
stress field does not heavily depend on the uncertainty realization, making static
decision rules relevant.

In this case, the resulting robust limit analysis problem is equivalent to a clas-
sical deterministic limit analysis problem in which the nominal strength criterion
has been replaced by a smaller robust strength criterion. For a concrete imple-
mentation, the latter has to be formulated using tractable convex constraints.

As an illustration, we consider a slope stability problem for a cohesive-
frictional soil with uncertain values for the cohesion and friction angle (c = 1±0.1
MPa and φ = (30± 10)◦) for a pseudo-static earthquake loading f = (0.2g,−g).
The corresponding load factor is interpreted here as the slope safety factor
which should be larger than 1 to guarantee stability. The problem numerical
resolution relies on a general-purpose domain-specific language (DSL), called
fenics optim, dedicated to automating the formulation and resolution of con-
vex variational problems in a finite-element setting. The package is implemented
as an add-on to the FEniCS Python interface and enables to easily formulate
convex optimization problems using only a few lines of code and to discretize
them in a very simple manner using various finite-element interpolation spaces.
Their numerical resolution is performed efficiently using Mosek as the underlying
conic programming solver [20]. More details regarding the package can be found
in [11] and in [12] for its specific usage in the context of limit analysis.

Figure 4 represents the empirical distribution of the slope safety factor ob-
tained for 200 random realizations of the material parameters. The nominal
safety factor is slightly larger than 3 whereas the robust estimate is slightly less
than 2 and indeed corresponds to the lower bound of the empirical distribution.
This figure illustrates the advantage of using a robust formulation since, instead
of running 200 LA computations, one is able to obtain an accurate estimate
of the left part of the empirical distribution tail with a single computation. In
this present case, only two uncertain parameters have been considered but the
approach can be extended to a larger number of parameters. A typical example
would be the modeling of soil spatial variability using random fields for instance.
Besides, it can also be noted that the obtained estimate is not too conservative
since a non-negligible number of uncertainty realizations are associated with a
safety factor close to this robust estimate. Finally, it has to be pointed out that
the variability on the friction angle induces a large variability on the obtained
safety factor, explaining the difference between a nominal factor of 3 and a ro-
bust estimate around 2. This observation is further confirmed by the shape of
the collapse mechanisms represented in Figure 5. In the robust case, the collapse
mechanism involves a much larger volume of soil than the nominal case since
the most critical scenario corresponds to a smaller friction angle. Estimating the
amount of soil mass mobilized during slope failure is an important point when
assessing the stability of a slope and its potential of damage in case of failure.
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Again, one can see that robust limit analysis computations can also be used to
obtain a worst-case estimate of such a mobilized soil mass when accounting for
uncertainty on the soil material parameters.

Fig. 4: Empirical distribution of the slope stability safety factor. The vertical
black and red lines correspond to a single deterministic limit analysis with ei-
ther nominal strength properties or using the corresponding robust strength
condition.

(a) Nominal collapse mechanism (b) Robust collapse mechanism

Fig. 5: Collapse mechanism and concentrated dissipation in slip lines for the
nominal and robust case.

4.2 Loading uncertainties

Similarly to [16, 19], we assume here that the fixed distributed and surface
loadings f f, tf are uncertain and vary, around a nominal value, inside a convex
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set. In particular, we consider that the reference loadings f r, tr are determinis-
tic. Assuming them to be uncertain adds another layer of difficulty due to the
fact that the loading direction along which one has to optimize depends on the
uncertainty realization. This specific case will be left for a future contribution.

Without loss of generality, we characterize the uncertain variation of the fixed
loadings as follows:

f f(ζ) = f f
0 +

m∑
j=1

f f
jζj = f f

0 + F fζ (24a)

tf(ζ) = tf0 +

m∑
j=1

tfjζj = tf0 + T fζ (24b)

where we introduced the matrices F f = [(f f
j)j=1,...,m] and T f = [(tfj)j=1,...,m]

and where ζ ∈ U with U a given convex uncertainty set. The corresponding
uncertain limit analysis problem therefore reads:

λ+(ζ) = max
λ,σ

λ

s.t. divσ + λf r + f f
0 + F fζ = 0

σ · n = λtr + tf0 + T fζ
σ ∈ G

(25)

4.3 Robust counterpart

Clearly, for this load uncertainty case, the use of static decision rules is
doomed to fail since one cannot expect finding, except in very specific cases,
a single stress field which is statically admissible with any realization of the
uncertain loading (24). One must therefore resort to an adjustable robust opti-
mization which, similarly to (2), reads:

λARC = max
λ̄

λ̄

s.t. ∀ζ ∈ U ,∃σ, λ s.t. divσ + λf r + f f
0 + F fζ = 0

σ · n = λtr + tf0 + T fζ
σ ∈ G
λ̄ ≤ λ

(26)

Again, in order to obtain a safe and tractable approximation to the above
robust formulation, we resort to the use of the affine decision rules (6) and obtain
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the following AARC:

λAARC = max
σi,λi

min
ζ∈U

λ0 +

m∑
j=1

λjζj

s.t. div

σ0 +

m∑
j=1

σjζj

+

λ0 +

m∑
j=1

λjζj

f r + f f
0 + F fζ = 0σ0 +

m∑
j=1

σjζj

 · n =

λ0 +

m∑
j=1

λjζj

 tr + tf0 + T fζσ0 +

m∑
j=1

σjζj

 ∈ G
(27)

which can be further formulated as follows:

λAARC = max
λ̄,σi,λi

λ̄

s.t. div(σi) + λif
r + f f

i = 0 ∀i = 0, . . . ,m

σi · n = λit
r + tfi ∀i = 0, . . . ,mσ0 +

m∑
j=1

σjζj

 ∈ G ∀ζ ∈ U

λ̄ ≤ λ0 +

m∑
j=1

λjζj ∀ζ ∈ U

(28)

Clearly, (28) bears striking similarities with (AARC) in the sense that we
look for 1 + m stress fields statically admissible with a given loading (here we
have an additional fixed loading for each j = 1, . . . ,m compared to (AARC)). In
particular, uncertainty has been removed from the equilibrium equations whereas
only the last two constraints are robust ones which must be reformulated. In
particular, the robust strength constraint can be reformulated, either exactly
or approximately, using the results of Section 3. Finally, the last constraint can
be reformulated as follows using the dual norm ‖ · ‖∗ to the norm involved
in the definition of the uncertainty set U . Indeed, introducing the vector Λ =
(λj)j=1,...,m, we can write:

λ̄ ≤ λ0 +ΛTζ ∀ζ ∈ U
⇔ λ̄+ max

ζ∈U
{−ΛTζ} ≤ λ0 (29)

⇔ λ̄+ ‖−Λ‖∗ ≤ λ0

which results in a tractable convex constraint for classical uncertainty sets.
In conclusion, we see that the robust reformulation of (28) is close to a classi-

cal limit analysis problem except that the number of stress fields and load factor
is now 1 +m and that the strength criterion will couple all stress variables in a
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single constraint which would have been exactly or approximately reformulated
to guarantee the robust constraint σ0 +

∑m
j=1 σjζj ∈ G, ∀ζ ∈ U . As a result,

the resulting robust problem will still be convex and representable using conic
constraints. It will however be much larger in size than a deterministic problem.

5 Conclusions

In this work, we have proposed an extension of limit analysis theory to an
uncertain setting using the robust optimization (RO) framework. Since limit
analysis problems can be formulated as convex optimization programs, we can
naturally apply robust optimization concepts when considering uncertain data.
We covered two different sources of uncertainty, namely strength and loading
uncertainty.

An important aspect of RO is related to the use of static or adjustable opti-
mization variables. In the present LA case, it amounts to deciding whether we
consider the stress field and load multiplier that we optimize for to be indepen-
dent or dependent on the uncertain parameters. The main feature of RO is to
propose tractable reformulations of uncertain constraints as standard determin-
istic constraints, possibly involving a much larger number of variables. Various
results have been obtained for the two cases of static and adjustable formulations.

First, the use of static variables results in the static robust counterpart (RC)
which deserves the following comments:

– (RC) is a standard deterministic LA problem where the uncertain strength
criterion is replaced with a safe estimate called the robust strength domain
GRC.

– The robust strength domain is the smallest possible strength domain corre-
sponding to all uncertainty realizations.

– Obtaining an explicit expression for the robust domain depends on how
constraints depend on the uncertain parameters.

– Tractable approximations of the robust domain have been provided and il-
lustrated on the case of a Mohr-Coulomb example.

– The resulting LA problem can be solved using standard tools and the result-
ing load estimate is a conservative safe approximation for all realization.

Clearly, this is a very conservative approach. In particular, finding such a stress
field is not always possible. Our experience suggests that static formulations can
be used only when considering strength uncertainty and in the case where this
uncertainty is of small amplitude. Intuitively, this corresponds to the fact that
the collapse stress field is only mildly perturbed by the realization of the uncer-
tainty.

Second, in the general case where adjustable formulations are needed, sim-
ple decision rules must be chosen for the robust problem to be tractable. In
particular, the case of loading uncertainty can only be tackled using adjustable
formulations. More precisely:
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– Affine decision rules assume an affine dependence of the load factor and
stress field with respect to the uncertain parameters.

– Robust strength constraints take the form (9) which can be reformulated
either exactly or approximately.

– The corresponding affinely adjustable problem can be reformulated to yield
the deterministic optimization problem (AARC).

– The latter involves a much larger number of optimization variables com-
pared to the nominal limit analysis problem. This number depends on the
dimension of the uncertainty space.

Further research will focus on the numerical implementation of the proposed
formulations in order to assess their efficiency on more involved examples. In this
respect, specific strategies should probably be investigated in order to reduce
the computational cost of the corresponding large-scale optimization problems,
especially when considering AARC formulations. Analyzing such more advanced
examples would therefore shed light on the necessity, or not, of considering more
complex decision rules than affine rules such as piecewise-linear or nonlinear
decision rules.
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