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Cauchy stress
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M Mandel stress tensor
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a−T inverse of the transpose of

a matrix (also applies to
tensors)
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A, σ second order tensor (up-
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E Young’s modulus
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Preamble

Thomas Pardoen

Institute of Mechanics Materials and Civil Engineering (iMMC), Université
catholique de Louvain, Belgium

1.1 About MEALOR II

MEALOR is the french abbreviation for « Mécanique de l’Endommagement
et Approche Locale de la Rupture ». This translates in english into « Damage
Mechanics and Local Approach of Fracture ». The “II” means that there has
been a first magnificent edition of this summer school in Roscoff, France in
2004. The pressure for MEALOR II is extreme in view of the success of the
first version MEALOR I, almost 20 years ago !

During 10 days, young and less young scientists will be exposed to
the science of damage and fracture, taught by a series of top experts from
Europe, mainly from France, and with a few outsiders. This is not a surprize
as the Local Approach to Fracture has been originally promoted in France
under this terminology by the pioneers: André Pineau, Dominique François
and André Zaoui. Similar approaches were following the same path in the rest
of the international community, under the umbrella of the “micromechanics of
fracture” paradigm. The dogma of the local approach is to address the physical
micromechanisms of damage and fracture in direct link with the microstruc-
ture of materials and in the context of rigorous solid mechanics theory and
models. Over time, numerical modelling has become the third main pillar of
the approach which thus relies on: I. Materials microstructure and character-
ization – II. Solid mechanics theory and mechanical testing – III. Numerical
methods. The coverage of the relevant experimental methods at the scales
of interest, of the material microstructure aspects, of the advanced solid me-
chanics theoretical concepts and of the appropriate numerical methods is a
challenge and justifies why 10 days are indeed needed for the School.
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Maybe, one can see this subject as an old topic. But, is it so ? Long
term operation of nuclear reactors to 60 years and possibly to 80 years will
essentially rely on fracture mechanics, microstructure evolution and local ap-
proach considerations. The development of novel and safe large pressurized
hydrogen tanks will require advances in local approach of fracture combined
with hydrogen embrittlement. The extensive use of additive manufacturing of
complex metal components keep facing problems of premature damage and
cracking events connected to the processing and specific microstructures. The
so much hoped success of future fusion reactors is very much tied to meeting
severe requirements in terms of cracking resistance under ultra severe environ-
ment. Although, much of the school is focused on metals, many polymer-based
applications also face similar issues which can be handled using local approach
of fracture borrowed often from the metal field. The subject in thus timely and
th impact is major, not only on safety, but also on economy and on durabil-
ity. Making progresses in all these challenging problems, and on many others,
require a constant dialog between mechanics, materials (and processing) and
numerical methods.

Crack or no crack, that’s the question ? First, let us assume there is
no crack in the material, component, or structure of interest. Many modern
materials are indeed produced immune of pre-cracks owing to excellent control
of the thermomechanical processes. This is the “no crack” case. If the applica-
tion is not critical, the failure assessment analysis can be addressed starting
from a virgin system. A loading is applied. If during loading the stress is large
enough to trigger cleavage either because the yield stress is very large and that
locally one can create a stress concentration to reach the theoretical cleavage
stress with no option for relaxing the stress by plasticity, or if there is some
chemical poisoning or internal oxydation, fast fracture occurs giving rise to
the typical faceted surface. This is essentially the curse of trans- or intergran-
ular cleavage. In metals, this is observed essentially only for BCC or HCP
crystalline structures, and especially at low T°. Cleavage is by nature a statis-
tical process very much connected to the distribution of crack initiators in the
microstructure. Fortunately, most often metals fail by a ductile mechanism,
voids nucleate mostly on second phase particles, grow by plastic deformation
and finally coalesce leading to failure. This sequence of mechanisms, same as
for brittle fracture, have been unravelled in the context of the local approach
and then modelled using micromechanics theory. The local approach is able
to predict the fracture strain in the ductile regime ideally for any loading
condition and stress state.
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In the alternative scenario, a macroscopic crack is present. This
(pre)crack may result from poor manufacturing, from cyclic/fatigue loading
during operation or from corrosion. Sometimes, there is no crack but one
cannot take any risk and the safety assessment procedures impose to assume
there is a crack. This potential crack is either taken at the limit of detection of
non-destructive methods or much larger such as for nuclear pressure vessels.
In this case “with crack”, fracture mechanics is the preferred paradigm. In
fracture mechanics, a driving force expressed in terms of the energy available
for cracking (G or J) or, equivalently, stress intensity factor K, is compared
to the fracture toughness Gc, Jc or Kc, as measured on laboratory specimens.
However, fracture mechanics has limits. In particular, Jc or Kc are not always
transferable due to constraint effects and there is no convincing remedy within
the fracture mechanics framework. Furthermore, Jc or Kc is a black box telling
nothing about the underlying mechanisms and about the links with the mi-
crostructure. The local approach of fracture complements and solves for these
limitations by modelling the failure mechanisms in the fracture process zone
either by cleavage initiation or by nucleation, growth and coalescence of voids
with the crack. It does not mean that fracture mechanics is not useful any-
more, it is. It will remain the paradigm for structural integrity assessment as
well as to compare materials among one another by comparing their fracture
toughness.

This short story sets the journey for the School. Fracture is by essence
an irreversible process often associated with a lot of dissipation – which is
good to make tough materials – requiring some background on the thermo-
dynamics of irreversible processes, covered by D. Kondo and H. Maitournam
in Chapter 2. When things go well, materials deform with a lot of plasticity
before fracturing making unavoidable the use of a finite strain formalism of
plasticity, the topic of Chapter 3 presented by T. Helfer. The survivors of this
challenging start will have the right to enter Chapter 4 with T. Petit and J.
Hure and be exposed to the experimental methods used in fracture mechanics
to determine the fracture toughness of materials. The rigorous basis on lin-
ear elastic fracture mechanics is then introduced in Chapter 5 by V. Lazarus.
Linear elastic fracture mechanics is sufficient for treating brittle fracture as
well materials with limited toughness, but elastoplastic fracture mechanics
is mandatory for tough metals. This will be the subject of Chapter 6 by J.
Besson, indicating also the limits of the approach. Basically, this ends the
presentation of the macroscopic or global approach to fracture, with no ap-
praisal yet of the physics of damage and fracture as connected to the material
microstructure.

What could be seen as a second part of the School and of the book really
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enters into the local approach of fracture. It starts with the brittle cleavage
fracture by A.F. Gourgues in Chapter 7. After the Yin, comes the Yang with
Chapter 8 on the mechanism of ductile fracture covered by F. Hannard, T.
Morgeneyer, and A. Simar. This is immediately followed in Chapter 9, by D.
Kondo and L. Morin, with a classic topic of the French solid mechanics school
who is certainly the most active in the world these days: the micromechanical
modelling of the nucleation, growth and coalescence of voids leading to duc-
tile fracture. As a transition to the third part of the school, Chapter 12 by
T. Helfer and J. Hure, presents the key theoretical issues and good practices
that must be followed when simulating numerically fracture problems based
on local damage models.

In the third part of the book, the attention is put on numerical meth-
ods. One, if not the most complicated problem when simulating fracture with
damage models, is the need to introduce one or several internal lengths. This
length scale sets the thickness of the fracture process zone and, from there,
the magnitude of the energy dissipated in the near crack tip region. J. Bleyer
and S. Feld-Payet discuss in Chapter 10 the so called “non local” methods that
introduce such internal length and regularize the numerical problem. Without
non local formulation, a finite element simulation leads to a mesh sensitive re-
sponse associated to the loss of ellipticity of the underlying equations. Chapter
11 by C. Maurini gives an introduction to the variational approaches and to
their advantages. Chapter 13 written by N. Moës contemplates the question
of simulating a crack in a diffuse or sharp way with pro and cons. Finally, the
question to move, in terms of numerical formulation, from a diffuse description
of damage to a discrete representation of a crack is addressed in Chapter 14
by Sylvia Feld-Payet.

Long life to local approach of fracture – enjoy the school !

Thomas Pardoen

UCLouvain
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Thermodynamics of Irreversible Processes :
formulation of constitutive models

Djimedo Kondo

Sorbonne Université, IJLRDA

Habibou Maitournam

Ensta, Imsia

Thermodynamics of Irreversible Processes (TIP) with internal variables con-
stitutes a powerful method for the formulation of constitutive models of me-
chanical systems. In this chapter, after a brief recall on some basic concepts
of continuum mechanics, we begin by briefly presenting the two principles of
thermodynamics. Then, we present the derivation of the state laws and com-
plementary equations. Next, the introduction of the Generalized Standard
Materials (GSM) framework allows to formulate in a unified way the different
classes of standard dissipative constitutive laws, namely elastoplasticity with
or without hardening, elasticity coupled with damage.

2.1 Mass balance et equation and conservation of mo-
mentum

Let us first emphasize that there are several papers (see for instance [Halphen
and Nguyen, 1975], [Germain et al., 1983], [G.A. Maugin, 1994], [Collins and
Houlsby, 1997]) and many books devoted to the subject of thermodynamics-
based formulation of standard dissipative laws. The reader may also refer
to [Ziegler, 1983], [Lemaître and Chaboche, 1990], [Maugin, 1992], [Maugin,
1999], [Houlsby and Puzrin, 2006], [Nguyen, 2000], [Maitournam, 2012].
Concerning the basic concepts of Continuum Mechanics, the reader can also
refer for instance to [Salençon, 2001] and references cited herein.

Continuum mechanics deals with a macroscopic representation of the con-
tinuum in which the particles represent an infinitesimal volume of matter.
In this framework, and from a geometrical point of view, the particles are
considered as material points which are characterized by their position (and
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then velocity and acceleration) during the motion. This description and the
resulting concepts of deformation (or rate of deformation) is classically done
by means of two different formalisms which are known as the Lagrangian and
the Eulerian ones. A brief summary of such descriptions can be found in chap-
ter 2. Let us just recall that the deformation and the rate of deformation are
characterized by:

• the Green-Lagrange deformation in the Lagrangian description

e(X, t) =
1

2

(
Grad ξ + (Grad ξ)T + (Grad ξ)T ·Grad ξ

)
(2.1)

in which ξ(X, t) represents the displacement vector field which is function
of the Lagrangian variables (X, t).
Under the classical assumption of small perturbations this finite strain
tensor reduces to a linearized strain tensor ε, obtained as the symmetric
part of the gradient of the displacement vector field:

ε(X, t) =
1

2

(
Grad ξ + (Grad ξ)T

)
(2.2)

• the Eulerian rate of the deformation (function of the eulerian variables
(x, t)):

d(x, t) =
1

2

(
grad v + (grad v)T

)
(2.3)

which turns out to be the symmetric part of the gradient of the Eulerian
velocity field v(x, t).

Note that under small perturbation hypothesis the Eulerian strain rate tensor
d is equal to the rate of linearized strain tensor:

d =
dε

dt
= ε̇ (2.4)

Note also that the following presentation of conservation laws of mass and
of momentum is done here considering the current configuration, that is by
means of eulerian quantities (see chapter 3 for the corresponding Lagrangian
formalism).

2.1.1 Mass balance equation

With the Eulerian description in hand, we are now able to present the mass
conservation equation at time t. By definition the mass of the system occupy-
ing the domain Ωt at time t is given by

M(t) =

∫

Ωt

dm =

∫

Ωt

ρdΩt (2.5)
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in which ρ is the mass per unit volume, with for an infinitesimal domain dΩt

the corresponding mass dm = ρdΩt.
The global form of the mass conservation equation reads then:

dM(t)

dt
=

∫

Ωt

d

dt
(ρdΩt) =

∫

Ωt

(
dρ

dt
+ ρ div(v))dΩt = 0 (2.6)

This results in the local form of the mass conservation law:

dρ

dt
+ ρdiv(v) = 0 (2.7)

or equivalently:
∂ρ

∂t
+ div(ρv) = 0 (2.8)

(2.7) and (2.8) are known as continuity equation.

2.1.2 Conservation of momentum - the Cauchy stress tensor

Without searching to provide here a method of construction, we follow here a
very classical approach1 which consists in:

• starting from the fundamental principle of dynamics, extended to a con-
tinuous medium. Such fundamentals principles correspond to the conser-
vation of momentum and is expressed for a subdomain Ω′

t (included in Ωt)
at time t :

F
′ =

d

dt

(∫

Ω′

t

ρv dΩt

)
=

∫

Ω′

t

ργ dΩt (2.9)

γ = dv
dt being the Eulerian acceleration vector field.

M
′
O =

d

dt

(∫

Ω′

t

x ∧ ρv dΩt

)
=

∫

Ω′

t

x ∧ ργ dΩt (2.10)

in which F
′ and M

′
O represent the exterior forces and their moment with

respect to a point O, respectively.

Remark 1: Interestingly, one may note that the final writing of the above
equations has required the consideration of the mass conservation law.

• proposing a schematization of internal forces for which it is postulated
that in addition to body forces ρf , the part of forces F

′ exerted on the
subsystem occupying Ω′

t by the rest of the domain (Ωt − Ω′
t) are due to

contact interactions. The latter are in the form of surface forces which de-
pend linearly (and only) on the exterior unit normal n to the considered

1The alternative view is that provided by the Principle of Virtual Powers (PVP) (see
again a presentation in [Salençon, 2001]
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surface element.

The linear application between n and T corresponds to a bilinear form,
the Cauchy stress second order tensor σ (an Eulerian tensor), such that :

T (x, t,n) = σ(x, t).n (2.11)

known as the Cauchy’s postulate.

Consideration of (2.11) in (2.9) yields the equations of motion, valid in all the
domain Ωt:

(Ωt) div σ + ρf = ργ (2.12)

while introducing (2.11) in (2.10) yields the symmetry of the Cauchy stress
tensor. In components, one has σji = σij .

Remark 2: By dualization of (2.12) (multiplication by the velocity field v),
it appears that a direct consequence of the momentum conservation is the
well-known kinetics energy theorem (mechanical energy balance):

K̇ = Pext + Pint, (2.13)

for which it is recalled that K̇ represents the material derivative of K, and

• K =
∫
Ωt

ρ
2v.v dΩt is the kinetic energy of the system

• Pint is the power of internal forces, given by:

Pint = −
∫

Ω(t)

σ : d dΩ, (2.14)

• Pext, defined by

Pext =

∫

Ω(t)

ρf .v dΩ+

∫

∂Ω(t)

T .v da, (2.15)

is the power of the external forces.

It will be seen in the following that the objective formulation of the energy
conservation (the first principle of thermodynamics) will require the consid-
eration of the kinetic energy theorem, built itself from the conservation of
momentum.

2.2 The two principles of continuum thermodynamics
and the Clausius-Duhem inequality

This section is devoted to a brief presentation of the two principles of ther-
modynamics for continuous media, and of the resulting Clausius-Duhem in-
equality. To this end, it is convenient to recall first the local state postulate
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which stands that the considered systems are made up of sub-systems whose
evolution is sufficiently slow so that each sub-system can be considered as
almost in thermodynamic equilibrium at any time t. This will notably allow
to define a temperature T , a specific (per unit mass) internal energy e and a
specific entropy s.

2.2.1 The first principle : energy conservation law

This principle which expresses an energy balance for the studied system postu-
lates that the variation of the total energy (internal energy + kinetics energy)
of a system is equal to the energy that it received by exchange with the outside
(in the form of work and heat) :

d

dt
(E +K) = Pext + Pcal, (2.16)

E is the internal energy of the system. As mentioned before, Pext represents
the power of the external forces. Pcal is the calorific power, that is the received
quantity of heat.
Since the kinetics energy K and Pcal which appear in (2.16) are non objective
quantities (they depend on the observer), it is more appropriate to rewrite
the energy conservation by referring to the already presented kinetics energy
theorem (see Eq. (2.13)). It follows that the global and objective form of the
first thermodynamics principle reads:

Ė = −Pint + Pcal. (2.17)

Aiming at expressing the above conservation law in a local form, it is assumed
by taking advantage of the local state postulate that, as an additive quantity,
the internal energy of the system, E, can be put in the form:

E =

∫

Ω(t)

ρe dΩ, (2.18)

where, as mentioned before, e represents the specific internal energy (energy
per unit mass). Taking into account the continuity equation ((2.7) or (2.8)),
one gets:2

Ė =
d

dt

∫

Ω(t)

ρe dΩ =

∫

Ω(t)

ρė dΩ. (2.19)

Moreover, the calorific power Pcal consists of two terms :

Pcal =
∫

Ω(t)

r dΩ−
∫

∂Ω(t)

q da, (2.20)

2From now, to simplify the writing, the material time derivative will be denoted as
dy
dt

= ẏ for any quantity y.
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in which r and q represent respectively the volumetric power and imposed
heat flux.
Taking into account the above expressions, one gets the local form of the first
principle :

ρė = σ : d+ r − div(q) (2.21)

This clearly shows that the variation of the internal energy of a particle is
only due to the power of internal forces imposed by the exterior to the particle
(σ : d), the heat source (r) and to the heat exchange by conduction (−div(q)).

2.2.2 The second principle of thermodynamics

The second principle concerns the irreversible aspects of the system during
its evolution. To this end, it is postulated that the production of entropy
within the system is always positive. More precisely, such entropy production
is strictly positive for irreversible processes and null in the case of reversible
evolutions of the system. It is equal to the difference between the total entropy
variation and the sum of the elementary quantities of heat received divided
by the temperature.
In its global form, this principle is expressed as:

Ṡ −
(∫

Ω(t)

r

T
dΩ−

∫

∂Ω(t)

q · n
T

da

)
≥ 0, (2.22)

The entropy S of the system being an extensive quantity, a specific entropy s
can be introduced such that :

S =

∫

Ω(t)

ρs dΩ, (2.23)

The local form of the second principle follows then :

ρṡ+
1

T
div(q)− r

T
− q.grad(T )

T 2
≥ 0. (2.24)

Dissipations

By multiplying the local production of entropy (see (2.24)) by the absolute
(positive) temperature, one gets an energetic quantity, called total local dissi-
pation. The second principle then amounts to saying that this dissipation, D,
is always positive:

D = ρT ṡ+ div(q)− r − q

T
.grad(T ) ≥ 0.
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By combining this result with the local equation of the energy conservation
(2.21), the total dissipation can be rewritten as :

D = ρT ṡ− ρė+ σ : d− q

T
.grad(T ) ≥ 0 (2.25)

known as the Clausius-Duhem inequality.

The total dissipation D is constituted of two parts :

• D1 called intrinsic dissipation, is defined by :

D1 = ρT ṡ− ρė+ σ : d = ρT ṡ+ div(q)− r. (2.26)

• D2 called thermal dissipation, reads :

D2 = − q

T
.grad(T ). (2.27)

The Clausius-Duhem inequality, (2.25), implies that the total dissipation
D must be positive or null, that is D = D1 + D2 ≥ 0. A more restrictive
condition, often assumed, consists to admit that the intrinsic and thermal
dissipations are separated and are each positive:

{
D1 ≥ 0
D2 ≥ 0

(2.28)

Obviously, this assumption guarantees the positivity of D, but is not equiv-
alent to the Clausius-Duhem inequality.

2.3 State laws and evolution equations

In this section we aim at summarizing here the main procedure to obtain the
state laws from the thermodynamics potential.

2.3.1 State laws and intrinsic dissipation

A first step consists in establishing expressions of the reversible thermody-
namics forces from the knowledge of the thermodynamic potential, here the
specific internal energy e. Restricting ourselves to small perturbations assump-
tion, e is a function of the state variables: the linearized strain tensor ε, the
specific entropy s and the internal variables α the physical signification of
which depends on the type of the considered behavior.
From the expression of the intrinsic dissipation (2.26), it follows that :

ρė = (σ : ε̇−D1) + ρT ṡ. (2.29)
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As (ε, s α) are independent state variables for the state function e, one gets:

ρ
∂e

∂ε
: ε̇+ ρ

∂e

∂α
α̇+ ρ

∂e

∂s
ṡ = (σ : ε̇−D1) + ρT ṡ. (2.30)

By identification, one deduce the following relations :

T =
∂e

∂s
(2.31)

ρ
∂e

∂ε
: ε̇+ ρ

∂e

∂α
α̇ = σ : ε̇−D1. (2.32)

Noting that Equation (2.32) expresses equality between the non dissipated
part of the mechanical power and the rate of the internal energy at fixed
entropy, the reversible part of the thermodynamic forces associated with ε

and α are defined by 



σrev = ρ
∂e

∂ε

Arev = ρ
∂e

∂α

, (2.33)

These equations together with equation (2.32) constitute the state laws of the
system and allow to deduce from the internal energy e(ε, s,α) the conjugated
forces in a reversible process.
Entropy being a less "measurable" variable, it can be appropriate to replace
it by the temperature T as state variable which is more common to be observ-
able. Moreover, many processes are assumed to be isothermal. For this reason,
it can be preferable to consider instead of the internal energy e(ε, s,α), the
Helmholtz free energy Ψ(ε, T,α) as the thermodynamic potential. The op-
posite of this potential Ψ is defined as the partial Legendre transform (with
respect to s)3 of the internal energy e, that is :

−Ψ(ε, T,α) = Ts− e(ε, s,α), (2.34)

Note that, as the internal energy e, the potential Ψ(ε, T,α) = e−Ts is a state
function. With this potential in hand, the total dissipation (see Eq. 2.25) can
be rewritten as :

D = σ : ε̇− ρsṪ − ρΨ̇− q

T
.grad(T ) ≥ 0 (2.35)

and then for the intrinsic dissipation

D1 = σ : ε̇− ρsṪ − ρΨ̇. (2.36)

3The Legendre transform (not to be confused with a Legendre-Fenchel one) of a function
g is defined by g∗(k) = kxk − g(xk) where xk is determined by solving g′(xk) = k

©by-nc-sa 2023 by MEALOR II



Thermodynamics of Irreversible Processes : formulation of constitutive models 13

Moreover, the state laws, which provide the reversible part of the forces, read
now: 




s = −∂Ψ

∂T

σrev = ρ
∂Ψ

∂ε

Arev = ρ
∂Ψ

∂α

. (2.37)

It follows then from (2.36) that

D1 =

(
σ − ρ

∂Ψ

∂ε

)
: ε̇ − ρ

∂Ψ

∂α
: α̇ (2.38)

and must be positive according to the Clausius-Duhem inequality which be-
comes:

D1 = (σ − σrev) : ε̇ − Arev : α̇ ≥ 0. (2.39)

In summary, one has

D1 = σirr : ε̇+Airr.α̇ ≥ 0 and D2 = −q.grad(T )

T
≥ 0. (2.40)

in which the irreversible forces σirr associated with the strain ε and Airr to
the internal variable α are

σirr = σ − σrev ; Airr = −Arev = −ρ
∂Ψ

∂α
, (2.41)

Remark 3: In the case where the deformation ε is non dissipative (this is for
instance the case of rate-independent models), σirr = 0 and then

σ = σrev = ρ
∂Ψ

∂ε
(2.42)

For completeness, it must be mentioned that for a viscoelastic model such as
the Kelvin-Voigt one for which ε is the unique variable, σirr is not null but
given by (2.41).
The above formulations have mainly focused on the consideration of the in-
ternal energy e(ε, s, α) or of the Helmholtz free energy Ψ(ε, T, α). However,
depending on the context of loadings imposed to the system (for instance
stress-controlled loading), other state potentials can be considered.
A summary of the most usual potentials are given in the following table.
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Internal energy Helmholtz free energy Enthalpy Gibbs free energy

e = e(ε, s, α) Ψ = Ψ(ε, T, α) h = h(σ, s, α) g = g(σ, T, α)

Ψ = e− Ts h = e− 1
ρσ : ε g = h− Ts

= Ψ− 1
ρσ : ε

σrev = ρ ∂e
∂ε σrev = ρ∂Ψ

∂ε ε = −ρ ∂h
∂σ ε = −ρ ∂g

∂σ

T = ∂e
∂s s = −∂Ψ

∂T T = ∂h
∂s s = − ∂h

∂T

Arev
α = ρ ∂e

∂α Arev
α = ρ∂Ψ

∂α Arev
α = ρ ∂h

∂α Arev
α = ρ ∂h

∂α

Different energies and of their links through the Legendre transform.

Enthalpy h = e− ∂e
∂ε : ε is the partial Legendre transform of −e with respect

to ε while the Gibbs free energy g is that of h with respect to s or of Ψ with
respect to ε.

2.3.2 Complementary evolution laws

The matter presented in (2.3.1) does not provide any information about the
evolution of the internal variables. This calls for the search of complemen-
tary laws. In fact, such question goes back to Lord Rayleigh (1873, 1877)
who introduced a concept of dissipation function for problems involving vis-
cous fluids. Later, and for systems fluctuating near equilibrium, Lars Onsager
[L., 1931] postulates linear relationships between thermodynamics irreversible
forces and fluxes (of state variables)4:

F = Lχ̇ (2.43)

Satisfaction of the celebrated Onsager’s symmetry (reciprocity) relations by
L allows to comply with the Clausius-Duhem inequality. Relation (2.43) can
be also expressed by means of the notion of quadratic dissipation potential D
as introduced by Thomson, such that:

F =
∂D

∂χ̇
with D =

1

2
χ̇.L.χ̇ (2.44)

Fourier law for heat conduction constitutes an example of such a linear rela-
tion.

4In the context presented here, χ̇ represents (ε, T, α)

©by-nc-sa 2023 by MEALOR II



Thermodynamics of Irreversible Processes : formulation of constitutive models 15

It is clear that in a general context, the evolution of the internal variables
will rather require the introduction of a non quadratic dissipation potential
instead of linear relations.
A more general approach consists in introducing the hypothesis of normal
dissipativity (see [Moreau, 1970] [Germain, 1973]) which assumes that there
exists a dissipation potential Φ(χ̇) which is convex, positive scalar-valued and
minimal for χ̇ = 0, such that:

F =
∂Φ

∂χ̇
(2.45)

Such definition of irreversible forces with the properties required for Φ auto-
matically guarantees the satisfaction of the Clausius-Duhem inequality.

2.4 Thermoelasticity as a first basic example

Linear thermoelasticity can be viewed as a first example of a constitutive law
which couples elasticity to thermal dissipation. Energetic formulation of the
coupled theory of thermoelasticity goes back to Biot [Biot, 1956] based on the
Thermodynamics of Irreversible Processes (see the comprehensive textbook of
W. Nowacki [Nowacki, 1986]).
The main purpose of this section is to present in a classical manner the coupled
thermoelastic behaviour according to the thermodynamics-based formalism
introduced before. Infinitesimal transformations around a natural initial state
will be considered, by focusing on the case of small variations temperature.

2.4.1 Linear thermoelastic behaviour

Thermal conduction constitutes the unique source of dissipation in thermoe-
lastic materials. This class of materials is therefore entirely characterised by a
free energy for the reversible behavior and a heat dissipation potential which
may account for the conduction law.
Starting from Ψ(ε, T ) the state laws reduce to :

σrev = ρ0
∂Ψ(ε, T )

∂ε
et s = −∂Ψ(ε, T )

∂T
(2.46)

The intrinsic dissipation D = (σ − σrev) : ε̇ being null for any ε̇, one readily
gets :

σ = σrev (2.47)

The formulation of linear thermoelasticity under small perturbations (includ-
ing small variation of temperature) requires a classical linearization procedure
which consists in expressing the state laws in the vicinity of the initial state
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by replacing equations (2.46) by their first-order expansion with respect to
the deformation ((ε = 0) and to (τ = T − T0). One gets then:





σ(ε, T ) = ρ0
∂Ψ(0,T0)

∂ε + ρ0
∂2Ψ(0,T0)

∂ε∂ε : ε+ ρ0
∂2Psi(0,T0)

∂ε∂T τ

s = −ρ0
∂Ψ(0,T0)

∂T − ρ0
∂2Ψ(0,T0)

∂T∂ε : ε− ρ0
∂2Ψ(0,T0)

∂T 2 τ

(2.48)

which reads 



σ(ε, T ) = σ0 + C : ε− βτ

s = s0 +
β
ρ : ε+ ρ0cϵτ

(2.49)

for which the following notations are adopted:

ρ0
∂Ψ(0, T0)

∂ε
= σ0 and − ρ0

∂Ψ(0, T0)

∂T
= s0

as well as :

C = ρ0
∂2Ψ(0, T0)

∂ε∂ε
, β = −ρ0

∂2Ψ(0, T0)

∂T∂ε
and ρ0cϵ = −T0

∂2Ψ(0, T0)

∂T 2

C is the elasticity tensor, cϵ is the specific heat capacity, β is the thermoelastic
coefficient tensor.
The above set of equations must be completed by a thermal conduction law
which characterizes the thermal dissipation. The Fourier’s law is generally
adopted:

q = −K.∇T (2.50)

where K is the thermal conductivity tensor specific to the material under
consideration and dependent on the initial state. It is non-negative and sym-
metric,

Kij = Kji (2.51)

It can be easily verified that these state laws (Eq. (2.49)) derive from the
following Helmholtz free energy5:

ρPsi (ε, T ) =
1

2
ε : C : ε− β : ε(T − T0)−

ρcϵ
2T0

(T − T0)
2 (2.52)

In the usual case of isotropic thermoelastic materials, this energy potential
is expressed as:

ρ0Ψ(ε, T ) =
1

2
λ(tr ε)2 + µε : ε− β(T − T0)(trε)−

ρ0cϵ
2T0

(T − T0)
2 (2.53)

5This free energy density (2.52) can be also rewritten as

ρ0Ψ(ε, T ) =
1

2
(ε− α(T − T0)) : C : (ε− α(T − T0))−

ρ0cϵ

2T0

(1 + χ)(T − T0)
2

in which α = C−1 : β and χ = α:C:α
ρ0cϵ

T0 = α:β

ρ0cϵ
T0
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which provides the following state laws.





σ = λ(tr ε)1+ 2µε− β(T − T0)1

s = β
ρ0
(trε) + cϵ

T0
(T − T0)

(2.54)

where β = β1 for the isotropic ma terial.
The above linearized thermoelastic theory can be directly extended to the
context of finite variations of temperature. In this case, the free energy, gen-
eralizing (2.53) reads (see for instance [Maitournam, 2012]:

ρ0Ψ(ε, T ) =
1

2
λ(trε)2+µε : ε−β(T −T0)(trε)−

ρ0cϵ
T

(ln
T

T0
−1+

T0

T
) (2.55)

which only leads to the modification of the second state law in (2.54)

2.4.2 Heat equations - Thermoelastic evolution

The field equations of the thermoelastic evolution problem include the con-
servation laws and the constitutive relations. We aim at establishing here the
heat equations.
In the context of small perturbations, the mass conservation equation reads :

ρ = ρ0(1− div ξ) (2.56)

where ξ is the displacement field. In the following, we will take ρ ≈ ρ0.
The starting point for the derivation of the heat equation here is Eq. (2.26)
in which one may consider that in the thermoelasticity case the intrinsic dis-
sipation (D1) is null. Applying the Fourier law q = −K.∇T (in which K is
the thermal conductivity tensor), it follows that:

div (−K.∇T ) + ρ0T ṡ = r (2.57)

Taking advantage of the expression (2.49)b for entropy, one gets:

div (−K.∇T ) + T0β : ε̇+ ρ0cϵṪ = r (2.58)

which is known as the heat equation and can be also put in the form:

div (K.∇T ) + r = T0β : ε̇+ ρ0cϵṪ (2.59)

In addition to these equations, there are the compatibility equations (relations
between deformations and displacements), the thermoelastic constitutive law,
the initial and boundary conditions. Denoting τ = T −T0, the resulting equa-
tions to be solved read in the homogeneous isotropic case:

(λ+ µ)grad(div ξ) + µ∆ ξ + ρf − βgrad τ = ρ0
∂2ξ

∂t2
(2.60)
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together with
k∆T − ρ0cϵṪ − T0βdivξ̇ = −r (2.61)

For completeness, mention must be made of variational formulation of cou-
pled thermoelasticity problems. Some early references in this field are [Biot,
1955], [Ben-Amoz, 1965], [Herrmann, 1963]. More recently [Yang et al., 2006],
[Stainier, 2013] established variationnal principles for more general thermo-
mechanical couplings.

2.5 Generalized Standard Materials framework

A constitutive model of generalized standard material (GSM) is defined by
means of two potentials, the thermodynamics state potential and the dissipa-
tion potential. The thermodynamics potential is a function of state variables,
while the dissipation potential is a convex function of their fluxes6.

In addition to the identification of the appropriate state variables, one may

• identify an energy potential. Classically, an Helmholtz free energy
Ψ(ε, T, α) furnishes the state laws (2.37) which define the reversible forces
associated to the state variables (ε, T, α). This step allow to proceed to an
analysis of dissipation, and then to identify the dissipative (irreversible)
forces associated to each variable.

• identify a dissipation potential Φ(ε̇, α̇) which may allow to retrieve
the irreversible forces through the complementary relations. For instance
for the internal variables, one has:

Aα =
∂Φ

∂α̇
(ε̇, α̇) (2.62)

In the case where the potential Φ is not differentiable (in this case Φ is
denoted as a pseudo potential), one should refer to the notion of subdif-
ferential ∂Φ.
The evolution laws then take the form :

Aα ∈ ∂Φ(ε̇, α̇) (2.63)

Aα is said to belong to the sub-gradient of Φ at the considered point.

6An extended version of this GSM framework consists in possibly including state vari-
ables in the dissipation potential as parameters (and not arguments) accounting for the
present state.
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In general, by definition, the irreversible forces σirr and Aα belong to
the sub-gradient of Φ at (ε̇, α̇) if for any rate ε∗ and one has:

Φ(ε̇, α̇)− Φ(ε∗,α∗) + σirr : (ε∗ − ε̇) +Aα(α
∗ − α̇) ≤ 0 (2.64)

This is the so-called normality rule.

Equivalently, and coming back to the case where the deformation is not a
dissipative variable, the evolution law (2.63) can be obtained by means of
the dual potential Φ∗(Aα), through the normality rule:

α̇ ∈ ∂Φ∗(Aα) (2.65)

The dual potential Φ∗(Aα) = sup
α̇>0

{Aαα̇ − Φ(α̇)} is the Legen-

dre–Fenchel transform of Φ.

For rate-independent models, it is classically shown that a convex function
f exists such that :

Φ∗(Aα) =

{
0 if f(Aα) ≤ 0

∞ otherwise
(2.66)

which is the indicator function of a convex domain C defined by :

C = {Aα/f(Aα) ≤ 0} (2.67)

f(A) ≤ 0 defines the domain of elasticity.

From (2.37) and (2.62), in the case where the deformation is non dissipative,
the constitutive equations of the GSM, can be summarized as:

σ =
∂Ψ

∂ε
(ε,α),

∂Ψ

∂α
(ε,α) +

∂Φ

∂α̇
(α̇) = 0 (2.68)

The second equation in (2.68) is known as the Biot equation (see [Biot, 1965]
well quoted in chapter 15 of [Nguyen, 2000], or in [Stolz, 2004])7 in reference
to a series of works conducted by Biot including viscoelasticity. The reader
can also found in [Biot, 1970] the use of such type of mathematical structure
for the derivation of variationnal principles in heat transfer problems.

Equation (2.68) constitutes a set of equations which, together with the nor-
mality rule (see Eq. (2.64)), allow to establish a variational formulation for
problems involving standard dissipative models (see Section (2.8)).

7An interesting study of Biot equation in link with quasi-static stability analysis can be
found in [Abed-Meraim and Nguyen, 2007]
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2.6 Rate-independent elastoplasticity

We aim here at formulating elastoplastic models as well as coupled elasticity-
damage laws by taking advantage of GSM framework. Although the corre-
sponding constitutive laws are different in nature, they can be essentialy de-
scribed by means of a phenomenological approach based on thermodynamics
with internal variables. These constitutive laws are generally based on exper-
imental mechanical tests which make it possible to identify and characterize
the appropriate deformation mechanisms and the relevant physical quantities.
The procedure already presented in section (2.5) will be systematically fol-
lowed and, as already stated, will mainly consists in identification of the rele-
vant state variables, of the thermodynamics potential for the reversible part of
the constitutive law and of the dissipation potential (or equivalently the dual
potential) for the evolution laws. For simplicity, and as before, assumption of
small perturbations and isothermal conditions are adopted.

2.6.1 Formulation of perfect elastoplastic models

Although the presentation will concern 3D formulation of elastoplastic models,
in order to fix ideas, consider a quasi-static uniaxial test consisting of tension
followed by compression. The resulting tension-compression curve is shown on
figure (2.1). In the case of perfect elastoplastic behavior, a remarkable point
is that the absolute value of the applied uniaxial stress σ cannot exceed a
characteristic constant σ0. Moreover, an unloading of the material exhibits a
linear behavior (BD) with a permanent (plastic) strain at σ = 0 Such type of
observations applies also for multiaxial tests conditions (e.g. tension-torsion):
existence of a plastic strain and of an elasticity domain.

In agreement with the above comments, the mechanical state variables are
therefore the total deformation ε and the plastic deformation εp which will
allow to describe the inelastic and irreversible phenomena. The following par-
tition holds

ε = εe + εp

The thermodynamics potential
It is in the form of a Helmholtz free energy, given by :

ρ0Ψ(ε, εp) =
1

2
(ε− εp) : C : (ε− εp)
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FIGURE 2.1: Response of an elastic-perfectly plastic material under tension
followed by a compression

from which one deduces the state laws:




σrev = ρ0
∂Ψ(ε,εp)

∂ε = C : (ε− εp)

Arev = −ρ0
∂Ψ(ε,εp)

∂εp = −C : (ε− εp)

(2.69)

Arev represents the reversible part associated to the plastic deformation.
Analysis of the intrinsic dissipation, as described in Section (2.3.1), allows to
obtain the irreversible forces associated with the total deformation and with
the plastic strain, respectively

σirr = 0; A = Airr = −Arev = C : (ε− εp) = σ

.
Interestingly, σ appears as the thermodynamics irreversible forces associated
with the plastic strain tensor εp. Therefore, evolution of the plastic strain
tensor will depend on σ.

The plastic dissipation potential Φ(ε̇p)
First of all, let us recall, as already stated, that the evolution law is equiva-
lently given by a plastic dissipation potential Φ(ε̇p) or by its dual Φ∗(σ) which
is obtained as its Legendre-Fenchel transform. Starting with the dissipation
potential, it must be chosen convex, scalar positive-valued and minimum (in
fact null) for ε̇p = 0. The so-called normality rule (see Eq. (2.63)) is then
expressed as

σ ∈ ∂Φ(ε̇p). (2.70)
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Alternatively, the dual dissipation potential is given by :

Φ∗(σ) = sup
ε̇p

(σ : ε̇p − Φ(ε̇p))

Following (2.71), the plastic strain rate, obtained by normality rule reads then

ε̇p ∈ ∂Φ∗(σ) (2.71)

that is ε̇p belongs to the sub-gradient of Φ∗(σ).

For rate-independent models, such us the one studied here for perfect elasto-
plasticity, a general result is that the dual potential Φ∗(σ) is the indicator
function of a convex admissible domain

C = {σ such that f(σ) ≤ 0}
f(σ), called yield function, defines the elastic domain. Therefore, one has

Φ∗(σ) = IC(σ) =

{
0 if σ ∈ C

+∞ if σ /∈ C (2.72)

For the detailed computation of the plastic strain rate ε̇p (see Eq. (2.71)), a
classical mathematical result for the indicator function is

∂Φ∗ =





∅ if σ /∈ C

{0} if σ ∈ C̊ (inside of C)

NC(σ) if σ ∈ ∂C (at the boundary of C)

(2.73)

The cone of normals is defined, at a regular point on the boundary, by :

NC(σ) =

{
ε̇p such as ε̇p = λ̇

∂f

∂σ
, λ̇ ≥ 0

}
(2.74)

in which λ̇ is a positive scalar called plastic multiplier. At a singular point,
one has:

NC(σ) = {ε̇p such as ε̇p : (σ∗ − σ) ≤ 0, ∀σ∗ ∈ C} . (2.75)

Brief summary: The perfect elastoplastic model is entirely defined by means
of the two potentials:

• the Helmholtz free energy ρ0Ψ(ε, εp)

• and the dissipation potential Φ(ε̇p) or equivalently its dual Φ∗(σ) or the
corresponding yield function f(σ)

Taking advantage of the partition of the deformation (see (2.6.1)), the perfect
elastoplastic constitutive law is expressed as:

ε̇ = ε̇e + ε̇p = S : σ̇ + ε̇p. (2.76)

for which ε̇p is given by the evolution equations, that is (2.74) together with
(2.75).
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2.6.2 Case of a Drucker-Prager elastoplastic material

As an illustration, let us consider the case of elastoplastic materials whose
plastic regime is described by means of the so-called Drucker-Prager criterion
[Drucker and Prager, 1952]

f(σ) = σeq + αtr(σ)− σ0 ≤ 0 (2.77)

The equivalent von Mises stress σeq =
√

3
2s : s is defined by means of the

deviatoric part of the stress tensor s = σ − 1
3 tr(σ)1.

(2.77) defines a domain of reversibility

C = {σ such as f(σ) ≤ 0}

whose indicator function

Φ∗(σ) =





0 if σ ∈ C

∞ otherwise
(2.78)

corresponds to the dual potential.
Since the Drucker-Prager criterion (Eq. (2.77)) depends on the hydrostatic
part of the stress tensor, it is usually considered for materials which exhibit
plastic volume changes such us geomaterials (rocks, concrete), powders, poly-
mers, and even some metals (see for instance [Wilson, 2002]), etc..
In addition to its own interest, the Drucker-Prager criterion constitutes also
a generalization of the well-known von Mises criterion which is retrieved (in-
cluding for the dual potential and the dissipation potential) as a limiting case
when α → 0.
In order to build the dissipation potential corresponding to the Drucker-Prager
material, Φ(ε̇p), one may start from the dual potential Φ∗(σ) and compute
its Legendre Fenchel transform:

Φ(ε̇p) = sup
ξσ∈C

{σ : ε̇p − Φ∗(σ)} = sup
σ∈C

{σ : ε̇p}

Based on (2.77), and denoting

ε̇pm =
1

3
tr ε̇p, and ε̇peq =

√
2

3
ε̇
p
d : ε̇pd

with ε
p
d the deviatoric part of εp, it can be shown that (see proof in Appendix)

Φ(ε̇p) =





σ0

α ε̇pm if αε̇peq − ε̇pm ≤ 0

∞ otherwise
(2.79)

The condition αε̇peq−ε̇pm ≤ 0 is called the admissibility condition. ε̇peq is known
in metal plasticity as the equivalent plastic strain rate, while ε̇pm represents
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the volumetric plastic strain rate.
For completeness, one may express the normality rule which can be equiv-
alently deduced from the dissipation potential (see Eq. (2.79)) or from the
plasticity criterion. From the latter, (expressed by (2.77)), and on its regular
part, one has:

ε̇p = λ̇

(
3

2

s

σeq
+ α1

)
, (2.80)

which clearly shows the existence of plastic dilatancy (plastic volume change)
when α ̸= 0.
It is interesting to examine now the specialization of the above presentation to
the particular case of perfect elastoplastic materials obeying to the well-known
von Mises criterion. This corresponds to the case α → 0 for which (2.77) takes
the form

f(σ) = σeq − σ0 ≤ 0 (2.81)

This leads to the usual flow rule in metal plasticity:

ε̇p =
3

2
λ̇

s

σeq
, λ̇ ≥ 0 (2.82)

Interestingly, it can be shown (see also appendix) that the dissipation potential
given by (2.79) reduces in the limit α → 0 to:

Φ(ε̇p) =





σ0ε̇
p
eq if ε̇pm = 0

∞ if ε̇pm ̸= 0
(2.83)

which is a classical result in agreement with the plastic incompressibility of
materials obeying to von Mises criterion.

2.6.3 Elastoplasticity with isotropic and linear kinematics
hardening

For the formulation of elastoplastic constitutive models with hardening, we
consider both isotropic and kinematic hardening. Restricting ourselves to Gen-
eralized Standard Materials (GSM), the latter is chosen in the form of a lin-
ear kinematic rule (Prager law), the non linear kinematics hardening law of
Armstrong-Fredericks [Armstrong and Frederick, 1966] being excluded8.

2.6.3.1 General formulation

We consider again an isothermal, quasi-static uniaxial test of tension followed
by compression. The resulting tension-compression curve is shown on Figure
2.2 on which the yield stress depends on the plastic strain level. Response

8For a brief discussion concerning this point, the reader can refer to [Bouby et al., 2015].
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of the elastoplastic material with isotropic hardening is schematized on Fig-
ure 2.2a, while Figure 2.2b corresponds to materials with linear kinematic
hardening. In both cases, ε and εp are no longer sufficient to characterize the
mechanical state and one may consider a new variable describing the harden-
ing which results from specific microscopic mechanisms.

FIGURE 2.2: Elastoplastic material under uniaxial tension followed by com-
pression : a) case of an isotropic hardening; b) case of a linear kinematic strain
hardening

For isotropic hardening, the elasticity domain increases in size while remaining
symmetric with respect to the origin. This will be therefore accounted for by
means a single scalar variable, denoted β and whose mechanical signification
will be given below (see Eq.(2.93)).
In the case of kinematic hardening, the elasticity domain exhibits a transla-
tion phenomenon without change of shape (as also confirmed by experiments
for multiaxial loadings state) which depends on the plastic strain. Roughly
speaking, the material is said to have linear kinematic strain hardening when
the elastoplastic part of the uniaxial tensile curve is linear.
Having in mind the above hardening phenomena, the state variables are cho-
sen without loss of generality as (ε, εp, β).

Therefore, the thermodynamic potential (Helmholtz free energy) reads :

ρ0Ψ(ε, εp, β) =
1

2
(ε− εp) : C : (ε− εp) + ρ0Ψ

s(εp, β) (2.84)
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in which ρ0Ψ
s(εp, β) represents the stored energy due to hardening, while

1
2 (ε− εp) : C : (ε− εp) is the part of the free energy which is recoverable by
an elastic unloading.
From this potential, the state laws, delivering the reversible forces, read:





σrev = ρ0
∂Ψ(ε,εp,β)

∂ε = C : (ε− εp)

Arev
εp = ρ0

∂Ψ(ε,εp)
∂εp = −C : (ε− εp) + ∂Ψs(εp,β)

∂εp

Arev
β = ρ0

∂Ψ(ε,εp,β)
∂p = ∂Ψs(εp,β)

∂β

(2.85)

Analysis of the intrinsic dissipation, and considering that ε is not a dissipative
variable, leads to

σ = σrev = C : (ε− εp)

and then to the following expression of the intrinsic dissipation

D1(ε̇
p, β̇) = Aεp : ε̇p +Aβ β̇

in which the irreversible forces are




Airr
εp = −Arev

εp = C : (ε− εp)−X = σ −X

Airr
β = −Arev

β = −∂Ψs(εp,β)
∂β

(2.86)

with the notation X = ∂Ψs(εp,β)
∂εp which is known as the back stress.

Again, to simplify the writing, the two irreversible forces will be denoted
Aεp and Aβ . Now, for the determination of the complementary laws, a dual
potential can be introduced as the indicator function of the elasticity domain

C = {(Aεp ,Aβ) such as f(Aεp ,Aβ) ≤ 0}

f(Aεp ,Aβ) = f(σ −X,Aβ) being the yield function in presence of the com-
bined isotropic and kinematic hardening.
The complementary laws read then :





ε̇p = λ̇
∂f(Aεp ,Aβ)

∂Aεp

β̇ = λ̇
∂f(Aεp ,Aβ)

∂Aβ

, λ̇ ≥ 0 (2.87)

2.6.3.2 An elastoplastic model with combined isotropic and linear
kinematics hardenings

We briefly present here an example for which we still consider as state variables
(ε, εp, β).
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• The thermodynamic potential and the state laws
It has now the form

ρ0Ψ(ε, εp, β) =
1

2
(ε− εp) : C : (ε− εp) +

1

2
εp : H : εp +Ψst(β) (2.88)

in which H is a hardening moduli tensor9 and Ψst the contribution of
isotropic hardening to the stored energy.
Based on (2.86), the irreversible forces read





Aεp = σ −X

Aβ = −∂Ψst(β)
∂β = R(β)

(2.89)

X = H : εp being the relation between the back stress and the plastic
strain tensor. R(β) = −∂Ψst(β)

∂β

• The plasticity criterion and the flow rule
Generalizing the von Mises criterion, the plasticity criterion in presence of
the two types of hardening is taken in the form:

f(Aεp ,Aβ) = (Aεp)eq +Aβ − σ0 (2.90)

which also reads

f(Aεp ,Aβ) = (σ −X)eq +Aβ − σ0 (2.91)

The normality rule gives then




ε̇p = 3
2 λ̇

s−X
(s−X)eq

β̇ = λ̇
∂f(s,Ap)

∂Aβ
= λ̇

, λ̇ ≥ 0 (2.92)

from which it is readily seen that β̇ = λ̇ = ε̇peq =
√

2
3 ε̇

p
d : ε̇pd. It is then

concluded that the isotropic hardening state variable β is the cumulated
equivalent plastic strain.

p =

∫ t

0

√
2

3
ε̇
p
d : ε̇pddτ (2.93)

Note that R(p) (defined in (2.89)) can be estimated from experiments.

9Based on an assumption of the constitutive behaviour, the tensor H is often taken in
the form : H = HI with I the symmetric fourth order identity tensor. Notation H = 2

3
C

where C is called the strain hardening modulus is also often used.
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2.7 Local elastic damage laws for quasi brittle materials

Under various loading conditions, the main mechanisms of quasi brittle en-
gineering materials involve degradation phenomena due to nucleation and
growth of defects such as microvoids and microcracks. Such deterioration phe-
nomena induce irreversible processes and the damage localization stage can
lead to fracture occurrence.
A typical stress-strain behavior of quasi brittle materials exhibiting an elastic
behavior coupled with damage is depicted on Figure 2.3. A notable aspect of
this behavior is the existence of a softening regime due to damage. Moreover,
the damage phenomenon induces degradation of elastic property which is ob-
served during an unloading of the material.
Continuum damage mechanics (CDM) has been introduced in the 60 s and
consolidated in the 80 s by taking advantage of thermodynamics-based stud-
ies which followed the newly introduced framework of Generalized Standard
Materials [Halphen and Nguyen, 1975]. Despite the occurence of a soften-
ing regime, such procedure guarantees the models to be consistent with the
Clausius-Duhem inequality. Among several contributions, mention can be
made of [Marigo, 1981; Lemaître and Chaboche, 1985]. The theoretical frame-
work of CDM has been progressively enriched, for instance by improving the
description of damage-induced anisotropy related to microcracks orientation.
To this end, second-order tensors as well as higher-order tensors have been
considered as internal variables [Chaboche, 1992]. A related important issue
has been the modeling of unilateral effects due to microcracks closure in pres-
ence of compression-like loadings.
In what follows, and for simplicity, the internal damage variable of the ma-
terial point will be represented by a positive scalar variable α, which may
correspond to microcracks density parameter as earlier introduced by [Budi-
ansky and O’Connel, 1976].

2.7.1 A standard isotropic elastic damage model formulation

As already indicated, the GSM-based approach provides a suitable modeling
framework which allows to automatically comply with the Clausius-Duhem
inequality (2.25). In this framework, the first step consists in a suitable choice
of state variables. Owing to arguments already mentioned, the infinitesimal
strain tensor ε and a positive scalar α are chosen as the state variables. Again,
α may represent a first-order isotropic approximation of the microcracks den-
sity parameter distribution (see for instance [Krajcinovic, 1996] or [Welemane
and Goidescu, 2010] for analysis and discussion of this point). Modeling of the
nonlinear behavior of this class of materials in the context of GSM requires
two potentials.
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FIGURE 2.3: Typical response of an elastic-damage material under tensile
loading

The first potential corresponds to the free energy

ρΨ(ε, α) =
1

2
ε : C(α) : ε (2.94)

From the analysis performed in subsection (2.3.1), it readily follows that the
Cauchy stress tensor σ and the irreversible force Y associated to the damage
α reads : 




σ = ρ
∂Ψ

∂ε
(ε, α)

Y = −ρ
∂Ψ

∂α
(ε, α)

(2.95)

while the intrinsic dissipation takes the form

D1 = Yα̇ (2.96)

Y (whose unit is N/mm2 = MPa represents the damage energy release which,
in spite of the similitude, must not be confused with the fracture energy re-
lease G (whose unit is N/mm = MPa.mm) usually considered in Fracture
Mechanics.
For the complementary law, a simple choice of the dissipation potential, pos-
itive scalar-valued, convex with ḋ and null at ḋ = 0 is :

Φ(α̇) = Yc α̇ (2.97)

where Yc is a critical damage energy release, characteristic of the elasto-
damageable material. A priori, Yc may be obtained from experimental data
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concerning the elastic damage behavior of the material. Again, note that Yc

must not be confused with the fracture energy Gc. A further remark is that the
GSM authorizes a dependence of the dissipation potential with the damage
state, that is Yc can be replaced by Yc(α)
With this dissipation potential in hand, and since it is not differentiable, one
should refer to the notion of subdifferential ∂Φ. The complementary law reads
then :

Y ∈ ∂Φ(α̇) (2.98)

The irreversible force Y is said to belong to the sub-gradient of Φ at the
considered point.
Alternatively, the dual potential Φ∗(Y) of Φ, defined as its Legendre–Fenchel
transform, takes the form of an indicator function of a convex domain C which
is defined by

C = {Y/f(Y) = Y − Yc ≤ 0} (2.99)

This damage criterion, based on the damage energy release rate, reads then

f(Y) = − 1

2
ε : C′(α) : ε − Yc(α) ≤ 0 (2.100)

With the help of Φ∗ and the above corresponding damage criterion, the nor-
mality rule, α̇ ∈ ∂Φ∗(Y), which provides the irreversible damage evolution
law, reads on the regular part:

α̇ = λ̇
∂f

∂Y (2.101)

The damage multiplier λ̇ is determined by the classical Karush-Kuhn-Tucker
conditions.
This allows to build a rate formulation of the damage model by means of
a symmetric multi-branch tangent operator and paves the way for specific
numerical implementations.
Note that the general form of the isotropic elasticity stiffness tensor of the
damaged material, based on a scalar variable d takes the form

C(α) = 3k(α)J+ 2µ(α)K (2.102)

where J = 1
31 ⊗ 1 and K = I − J are the two isotropic projectors of fourth-

order tensors with the symmetries of a stiffness tensor. I is the symmetric
fourth-order identity tensor.
k(α) is the bulk modulus of the damaged material, while µ(α) represents its
shear modulus. In the recent literature, a common choice of simplification
consists in

C(α) = g(α)Cs = g(α)(3ksJ+ 2µsK ) (2.103)

Cs being the stiffness of the isotropic sound material, and g(α) a degradation
function.
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2.7.2 Modelling damage-induced unilateral effects

Modeling elasticity coupled with unilateral damage introduce difficulties that
are widely recognized in several publications including those devoted to the
modeling of gradient damage models [Amor et al., 2009]. This concern is still
debated in terms of different energy decompositions.

We focus here on the context of bimodular elastic behaviors (then with
the distinction of two domains in strain space). Clearly enough, the case of
more than two domains of separation of strain space is excluded in the present
discussion. In such context, and for isotropic behaviors, the formulation gener-
ally attributed to [Amor et al., 2009; Lancioni and Royer-Carfagni, 2009] can
be rigorously established as a special case by following a constructive method
initially introduced by [Wesolowski, 1969] and developed by [He and Curnier,
1995] based on the argument that the elastic energy must be continuously
differentiable while a jump in the elastic stiffness (or compliance) tensor is
allowed. This approach has been followed by several authors among which
[Cormery and Welemane, 2010] and [Kondo et al., 2007], to cite very few.
The main result of application of the theory by Curnier et al. [He and Curnier,
1995] in the context of an isotropic model is the following expression of the
free energy w(ε, α):

ρΨ(ε, α) =





1

2
k(α) (tr (ε))2 + µ(α)εd : εd if tr (ε) ≥ 0

1

2
ks (tr (ε))

2
+ µ(α)εd : εd if tr (ε) ≤ 0

(2.104)

which is well-known as that of Amor et a. [Amor et al., 2009].
In summary, the isotropic elastic damage behavior in the presence of unilateral
damage, will require in addition to the bulk and shear moduli of the sound
material, two degradation functions, namely that defining k(d) and µ(d) which
are the same needed for the model withouting account for the unilateral effect.

2.8 Variational formulations related to the GSM frame-
work

This section is devoted to a brief presentation of variational principles relying
on the structure of models which describe GSM behaviors. Its main objective is
to present a general structure of the variational structure of problems involving
GSM for which we rely for instance to recent study by [Nguyen, 2016] and
introduce he condensed notation:

U = (u, α), (2.105)
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in which we follow a classical notation u (instead of ξ) for the displacement
vector field and α the field of internal variables, both defined on the considered
structure Ω. Then, the overall counterpart of the free energy ρΨ

(
ε, α

)
and of

the dissipation potential Φ
(
ε̇, α̇

)
, previously considered in the GSM framework

are defined as:

W (U) =

∫

Ω

ρΨ
(
ε, α

)
dΩ, (2.106)

and

D(U̇) =

∫

Ω

Φ
(
ε̇, α̇

)
dΩ, (2.107)

in which we recall that Φ
(
ε̇, α̇

)
is possibly non-differentiable.

In order to establish the variational formulation, and based on (2.68), we rely
on

• the normality rule in its global form :

∀U̇∗, −∂D,U̇ · (U̇∗ − U̇) +D(U̇∗)−D(U̇) ⩾ 0. (2.108)

• the Biot equation in its global form

W ,U + ∂D,U̇ = F, (2.109)

in which F corresponds to the power of external forces.

It follows from (2.109) in (2.108) that:

∀U̇∗,
(
W ,U − F

)
· (U̇∗ − U̇) +D(U̇∗)−D(U̇) ⩾ 0. (2.110)

This structure can be linked to a class of variational constitutive updates that
has been proposed by Ortiz and Stainier [Ortiz and Stainier, 1999] in the form
of rate variational principles (see also Mielke [Mielke, 2005]). We follow here
a recent summarize of this principle by [Bleyer, 2022]. Considering a time
increment [tn; tn+1], for which the mechanical quantities are known at time
tn, it can be shown that the solution at time tn+1 of the mechanical problem
is that of the following minimization principle (here the dissipation potential
is taken in a general form Φ(ε̇, α̇) :

(un+1, εn+1, αn+1) = argmin
(u,ε,α)

∫ tn+1

tn

∫

Ω

(
Ψ̇(ε, α) + Φ(ε̇, α̇)

)
dΩdt−Wext(u̇)

(2.111)

where Pext(u̇) is the power of external loads. Coming back to the variational
principle (2.111), by applying an implicit Euler discretization for the state
variables, their rate can be approximated by :

ε̇(t) ≈ ε− εn

∆t
; α̇(t) ≈ α− αn

∆t
(2.112)
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where ∆t = tn+1 − tn. One can then write :

∫

Ω

∫ tn+1

tn

Φ(ε̇, α̇)dΩ dt ≈
∫

Ω

∆tΦ

(
ε− εn

∆t
,
α− αn

∆t

)
dΩ (2.113)

from which is established the following incremental variational principle:

(un+1, εn+1, αn+1) = argmin
(u,ε,α)

∫

Ω

(Ψ(ε, α)) dΩ

+

∫

Ω

∆tΦ

(
ε− εn

∆t
,
α− αn

∆t

)
dΩ

(2.114)

which can be put in the form:

(un+1, εn+1, αn+1) = argmin
(u,ε,α)

∫

Ω
(u,ε)∈K(E)

J(ε, α) dΩ (2.115)

where the incremental pseudo-potential J(ε, α) takes the following form for
the rate-dependant materials :

J(ε, α) = Ψ(ε, α) + ∆tΦ

(
ε− εn

∆t
,
α− αn

∆t

)
(2.116)

and for rate-independent materials:

J(ε, α) = Ψ(ε, α) + Φ (ε− εn, α− αn) (2.117)

Extension of this type of incremental variational approach to gradient plas-
ticity and to gradient damage models are presented in chapter 11.
For completeness, note also that the incremental variational formulation has
been already considered by [Lorentz and Andrieux, 1999] for damage mechan-
ics problems. A detailed presentation in the case of classical elastoplasticity
can be also found in [Maitournam, 2012].

Appendix: Dissipation potential for the Drucker-Prager criterion

Φ(ε̇p) = sup
σ∈C

{s : ε̇pd + 3σmε̇pm}

for which it is recalled that ε̇pm = 1
3 tr ε̇

p and

Φ(ε̇p) = sup
σ∈C

{
σeq ε̇

p
eq + 3σmε̇pm

}
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Since the criterion is defined by

σeq + 3ασm − σ0 ≤ 0,

one has
3σm ≤ σ0 − σeq

α
from which it is deduced that

Φ(ε̇p) = sup
σeq

{
σeq ε̇

p
eq +

σ0 − σeq

α
ε̇pm

}
(2.118)

which can be put in the form

Φ(ε̇p) = sup
σeq

{σ0

α
ε̇pm +

σeq

α
(αε̇peq − ε̇pm)

}

It follows that if αε̇peq − ε̇pm ≤ 0 then Φ(ε̇p) = σ0

α ε̇Pm; otherwise (if αε̇peq − ε̇pm >
0), Φ(ε̇p) = ∞
The dissipation potential reads then :

Φ(ε̇p) =





σ0

α ε̇pm if ε̇pm ≥ αε̇peq

∞ if ε̇pm < αε̇peq

(2.119)

Now, let us examine the case where lim
α→0

Φ(ε̇p). To this end we expand the

above result in three parts:

Φ(ε̇p) =





σ0

α (αε̇peq) if ε̇pm = αε̇peq

σ0

α ε̇pm if ε̇pm > αε̇peq

∞ if ε̇pm < αε̇peq

(2.120)

At the limit α −→ 0, one has then:

Φ(ε̇p) =





σ0ε̇
p
eq if ε̇pm = αε̇peq

∞ if ε̇pm > αε̇peq −→ 0 or ε̇pm < αε̇peq

(2.121)
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Compendium of finite strain (visco-)plasticity

Thomas Helfer

CEA, DES/IRESNE/DEC/SESC/LSC, Département d’Études des Com-
bustibles, Cadarache, France

Ductile failure generally involves large strains and, more generally, failure in
practical applications may involve small strain but large rotations. For those
reasons, a finite strain analysis is often required. However, most theories and
courses (including the chapters of the present textbook) describe constitutive
equations written in the framework of infinitesimal strain theory. This chapter
aims at bridging this gap.

Introduction

Constitutive equations written in the framework of infinitesimal strain theory
are commonly based on an additive split of the total strain into an elastic and
(visco-)plastic part and must satisfy constraints imposed by thermodynamics,
namely the positivity of the dissipation, expressed by the Clausius-Duhem
inequality. The class of standard generalized constitutive equations, discussed
in depth in Chapter 2 of this textbook, is particularly interesting, both phys-
ically and numerically. For the following discussion, it is worth emphasizing
the link between the trace of the strain and the change of volume, the de-
scription of which plays a central role in (visco-)plasticity, either to ensure the
incompressibility of the (visco-)plastic flow prior to damage or to describe the
growth of voids associated with a ductile failure (see Equation (3.3) below).

In contrast, finite strain constitutive equations are more diverse and must
ensure an additional condition named objectivity which guarantees that the
results do not depend of the referential used to perform the computations.
Following most classical textbooks [Simo and Hughes; Doghri; Belytschko;
Lemaitre and Desmorat; de Souza Neto et al.], three main classes of constitu-
tive equations in finite strain [Sidoroff, 1981] emerges.
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Constitutive equations written in rate form based on an additive split of the
deformation rate D into an elastic and plastic part

This class of constitutive equations can be introduced as approximations of the
F e · F p framework described below and allows an almost directly reuse of con-
stitutive equations written in the infinitesimal strain formalism. In particular,
the rate of change of volume is directly related to the trace of D. However,
constitutive equations written in rate form suffers from various theoretical
and practical drawbacks [Simo and Hughes; Doghri], such as spurious energy
dissipation, the restriction to isotropy (in most cases) and the non intuitive
introduction of objective derivatives to transport the stress and the internal
state variables to ensure the objectivity constraint. In particular, there is an
infinite choice of objective derivatives and none is more advantageous than
the others in our opinion, although this point has been a subject of fierce
debates. However those approaches are still used in many popular academic
and commercial solvers.

Constitutive equations written using lagrangian strain measures and conju-
gated stresses

Once a strain measure is choosen, the reuse of constitutive equations writ-
ten in the small strain formalism is possible. Those approaches are sound
thermodynamically and automatically objective. In particular, the standard
generalized character is preserved when transposing constitutive equations in
this framework. The main drawbacks of this approach are as follows:

• There is an infinite number of strain measures.

• There is generally no link between the change of volume and the trace of
the strain measures except in the small strain limit.

• The conjugated stresses are defined by energetic considerations and thus
are difficult to interpret physically. In particular, there is generally no link
between those conjugated stresses and the forces (contrary to the Cauchy
stress for instance). Hence, this framework is generally not suitable to
build micromechanical models.

One noticable variant of this approach is the logarithmic strain frame-
work [Miehe et al.] which, in the author’s opinion, is currently one of the
most interesting option for the macroscopic behaviors.

Constitutive equations based on the multiplicative decomposition of the defor-
mation gradient into an elastic and a (visco-)plastic part

.
This decomposition, generally refered to by the F e · F p framework has

been introduced by Lee [Lee, 1969; Mandel]. This approach is well established,
thermodynamically sound and objective, and suited to build micro-mechanical
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models, notably for single crystals. However, the constitutive equations writ-
ten in the small strain formalism can’t be reused. Furthermore, constitutive
equations written with this framework are less intuitive than those written in
the small strain framework. For instance, multiplication replaces addition and
most tensors are unsymmetric which is uncommon in the infinitesimal strain
theory.

Outline

Hence, each of the previous approaches has its advantages and its drawbacks
and this diversity of approaches partially explains why accounting for finite
strain in constitutive equations is generally considered difficult to address.
Another reason is that most solvers imposes their own strategy, adding to
theoretical issues, numerical and practical issues.

This chapter aims at providing an overview of those different approaches
and at highlighting the link between constitutive equations written in the
small strain framework and the constitutive equations written in the finite
strain framework. It proceeds as follows:

• Section 3.1 describes the kinematics and the mechanical equilibrium in
finite strain theory. It also recalls the basics of thermodynamics and dis-
cusses the notion of objectivity.

• Section 3.2 recalls the basics of visco-plastic behaviors in the infinitesimal
strain theory and discusses the limit of this framework is recalled.

• Section 3.3 discusses how lagrangian strain measures can be used to build
constitutive equations.

• Section 3.4 discusses the F e · F p framework.

• Section 3.5 discusses constitutive equations written in rate form for their
practical importance, despite their theoretical flows.

3.1 Kinematics, mechanical equilibrium and mechanical
power in the finite strain theory

This section starts by describing two aspects of the finite strain theory: the
kinematics and the mechanical equilibrium. Those two aspects are then linked
by the principle of virtual power which leads to the definition of the mechanical
power and the thermodynamics basis used to build the constitutive equations
exposed in Sections 3.3, 3.4 and 3.5.
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C r
Cc

FIGURE 3.1: The deformation mapping

3.1.1 Kinematics

Kinematics describes the change of geometry of the considered structure.

Deformation

Let x⃗c be the current position of a point in the current configuration Cc and
X⃗r its position in the reference configuration Cr (see Figure 3.1). The mapping
ϕr→c transforming X⃗r in x⃗c is called the deformation:

x⃗c = ϕr→c

(
X⃗r

)

For the sake of simplicity, the indices c and r will generally be omitted, the
tensors associated with the current configuration being noted using lowercase
letters and the tensors in the reference configuration in capital letters. The
previous equation is thus equivalent to:

x⃗ = ϕ
(
X⃗
)

Displacement

The displacement of this point is denoted u⃗:

u⃗ = x⃗− X⃗ = ϕ
(
X⃗
)
− X⃗

First order theory

The deformation ϕ can be expanded using a Taylor series as follows:

x⃗+ δ x⃗ = x⃗+
∂ϕ

∂X⃗
· δ X⃗ + · · · = x⃗+ F · δ X⃗ + . . .

where F denotes the deformation gradient. In this document, higher order
terms are not considered. The deformation gradient F satisfies:

F =
∂ϕ

∂X⃗
=

∂x⃗

∂X⃗
= I +

∂u⃗

∂X⃗
(3.1)
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Change of volume

The integral of a function f(x⃗) over the current configuration is related to the
integral over the reference configuration by the following classical relation:

∫

Ωc

f(x⃗) d v =

∫

Ωr

f
(
X⃗
)
J dV (3.2)

where J is the determinant of the deformation gradient:

J = det (F )

Applying Equation (3.2) to the special case f
(
X⃗
)
= 1 show that J can be

interpreted as a the local measure of the change of volume.‘
By conservation of mass, it is also possible to show that J is also equal

to the ratio of the mass density ρc in the current configuration and the mass
density ρr in the reference configuration:

J = det (F ) =
ρc
ρr

Growth of cavities, porosity evolution

Let us consider the case of a elementary cell containing an incompressible
matrix and cavities.

The porosity f is the ratio between the volume of void Vf and the total
volume V :

f =
Vf

V
= 1− Vm

V
where Vm is the volume of the matrix.

Taking the incompressibility of the matrix into account, i.e. ˙Vm = 0, the
porosity evolution is thus given by:

ḟ = (1− f)
V̇

V
(3.3)

From a macroscopic point of view, one finds:

ḟ = (1− f)
J̇

J

Composition

Let us consider an intermediate configuration Ci between the reference config-
uration and the current configuration. The following composition rule holds:

x⃗c = ϕi→c(Xc) = ϕi→c

(
ϕr→i

(
X⃗r

))

The chain rule leads to the following multiplicative composition rule of the
deformation gradients:

F r→c = F i→c · F r→i (3.4)
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3.1.2 Velocity gradient, deformation gradient

The velocity of a point is defined as:

v⃗ =
dx⃗

dt

The principle of virtual power (see Section (3.1.4)) naturally introduces
the gradient of the velocity in the current configuration, denoted L:

L = grad(v⃗) =
∂v⃗

∂x⃗

L is expressed in the current configuration.

Rate of deformation

The symmetric part of the velocity gradient is the rate of deformation, denoted
D:

D =
1

2

(
LT +L

)

Rate of change of volume

The time derivative of the change of volume, J̇ , is given by1:

J̇ = J tr(D) ⇔ d ln (J)

dt
= tr(D) = tr(L) (3.5)

This relation shows that there is no change of volume if the trace of the
rate of deformation D is null.

3.1.3 Stretch tensor, right Cauchy tensor, Green-Lagrange
strain

Polar decomposition

The theorem of polar decomposition of the deformation gradient states that
it exists a unique rotation R and a unique symmetric tensor U such that:

F = R · U (3.6)

U is called the stretch tensor. Equation (3.4) allows a simple interpretation
of the Polar Decomposition (3.6).

1Equation (3.5) can be established by computing the following first order development
of the determinant of the deformation gradient:

J |t+∆ t = det
(

F |t+∆ t

)

= det
(

F |t +∆F
)

= det
(

F |t +∆ tL · F |t
)

≈ det
(

F |t
)

det (I +∆tL) ≈ J |t (1 + ∆t tr(D))
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U is expressed in the reference configuration and is invariant by change of
observer. Such a tensor is called lagrangian.

As the determinant of a rotation matrix is 1, the change of volume can be
related to the determinant of the stretch tensor:

J = det (F ) = det (U)

The right Cauchy tensor and the Green-Lagrange strain

The computation of the stretch tensor is cumbersome in practice, but the
square of it exhibits the following simple expression:

C = U2 = FT · F

The symmetric tensor C is called the right Cauchy tensor. This tensor and
functions of this tensor plays a major role in finite strain theory.

C has a simple interpretation. Let dX⃗ denote a vector joining two points
infinitely close in the reference configuration. The vector dx⃗ joining those
points in the current configuration is given by F · dX⃗. The square of the
euclidian norm ∥dx⃗∥2 is given by:

∥dx⃗∥2 = dx⃗ · dx⃗ = dX⃗ · FT · F · dX⃗ = dX⃗ · C · dX⃗

The right Cauchy tensor is directly related the so-called Green-Lagrange
strain EGL, defined as follows:

EGL =
1

2
(C − I) =

1

2

(
FT · F − I

)
=

1

2

(
U2 − I

)

C and EGL are two examples of an isotropic function of the stretch tensor
as:

C =

3∑

i=1

U2
i nU

i and EGL =

3∑

i=1

(
U2
i − 1

)
nU

i

where Ui and nU
i are respectively the eigenvalues and the eigen tensors of the

stretch tensor.
Green-Lagrange strain is the first example of a strain measure, i.e. an

isotropic function of the stretch tensor that tends linearized strain when the
assumptions of the infinitesimal strain theory (see Section (3.2))

3.1.4 Mechanical equilibrium, principle of virtual power

Equilibrium in the current configuration: the Cauchy stress

In this document, we admit the existence of a second order tensor named the
Cauchy stress, denoted σ, such that:
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• the conservation of the linear momentum can be expressed by the following
partial differential equation:

d⃗iv(σ) + ρ b⃗ = 0⃗ ⇔ ∂σij

∂xi
+ ρc bj = 0 (3.7)

where b⃗ denotes the body forces by unit of mass and div is the divergence
operator in the current configuration.

• the conservation of angular momentum implies that the Cauchy stress is
symmetric:

σ = σT (3.8)

Principle of virtual power

The principle of virtual power is obtained by contracting Equation (3.7) with
the velocity v⃗⋆ of any kinematically admissible displacement u⃗⋆ and integrat-
ing over Ω: ∫

Ω

d⃗iv(σ) · v⃗⋆ dv +
∫

Ω

ρ b⃗ · v⃗⋆ dv = 0

Using the Gauss theorem, the first integral can be expressed as follows:
∫

Ωc

d⃗iv(σ) · v⃗⋆ dv =

∫

∂Ωc,t⃗

t⃗ · v⃗⋆ d−
∫

Ωc

σ : grad(v⃗⋆) dv

where grad(·) denotes the gradient operator with respect to the current con-
figuration. The traction force t⃗ satifies:

t⃗ = σ · n⃗ (3.9)

where n⃗ denotes the outer normal. Finally, the principal of virtual work reads:
∫

Ωc

σ : grad(v⃗⋆) dv =

∫

Ωc

ρ b⃗ · v⃗⋆ dv +
∫

∂Ωt⃗

t⃗ · v⃗⋆ ds (3.10)

The virtual velocity gradient grad(v⃗⋆) is generally denoted L⋆.

Mechanical power density

Applied to real velocity, the Principle of Virtual Power (3.10) leads to the fol-
lowing definition of the mechanical power density in the current configuration
wc:

wc = σ : L = σ : grad(v⃗) = σ : D

where the rate of deformation can be introduced thanks to the symmetry of
the Cauchy stress (Equation (3.8)).
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Equilibrium in the reference configuration: the first Piola-Kirchhoff stress

The virtual power of the inner forces can be rewritten in the current configu-
ration, as follows:
∫

Ω

σ : grad(v⃗⋆) dv =

∫

Ωr

Jσ : grad(v⃗⋆) dV

∫

Ωr

τ : grad(v⃗⋆) dV (3.11)

where τ = J σ denotes the Kirchhoff stress.
Equation (3.11) still contains the gradient of the virtual velocity in the

current configuration, which can be related to the gradient of the virtual
velocity in the reference configuration, denoted Grad(v⃗⋆), as follows:

grad(v⃗⋆) =
∂v⃗⋆

∂x⃗
=

∂v⃗⋆

∂X⃗
· ∂X⃗

∂x⃗
= Grad(v⃗⋆) · F−1

Using the similarity invariance of the trace2, the virtual mechanical power
in the reference configuration, i.e. the integrand of the last integral, can be
rewritten as follows:

J σ : grad(v⃗⋆) = J tr
(
σT · grad(v⃗⋆)

)

= J tr
(
F−1 · σT · grad(v⃗⋆) · F

)

= J tr

((
σ · F−T

)T
· Grad(v⃗⋆)

)

= P : Grad(v⃗⋆)

The tensor P = J σ · F−T = τ · F−T is the first Piola-Kirchhoff stress, also
called the Boussinesq stress.

Using the Gauss theorem, the first Piola-Kirchhoff stress statisfies the fol-
lowing balance equations:

D⃗iv(P ) + ρr b⃗r = 0⃗ (3.12)

The first Piola-Kirchhoff stress is related to the traction forces using the
Nanson’s formula as follows:

t⃗ = σ · n⃗ = P · N⃗ (3.13)

where N⃗ is the outer unit normal in the reference configuration.
Expressing the equilibrium in the reference configuration can be useful nu-

merically. In particular, Equation (3.12) is widely used in solvers based on the
fast-Fourier transform (microstructure computations with periodic boundary
conditions).

2For a given matrix A and an invertible matrix B, the following identity holds:

tr(A) = tr
(

B · A · B−1
)

This property is denoted as the similarity invariance of the trace.
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Second Piola-Kirchhoff stress

As the Cauchy stress is assumed symmetric, this expression can be further
developped to introduce another useful stress measure as follows:

J σ : grad(v⃗⋆) = J tr
(
F−1 · σT · Grad(v⃗⋆)

)

= J tr
(
F−1 · σT F−T · FT · Grad(v⃗⋆)

)

= S :
(
FT · Grad(v⃗⋆)

)

where S = J F−1 · σF−T is the second Piola-Kirchhoff stress (also called
the Piola stress). This tensor is symmetric if the Cauchy stress is symmetric.
Using this property, one can write:

J σ : grad(v⃗⋆) =
1

2
S :

(
FT · Grad(v⃗⋆) +Grad(v⃗⋆)

T · F
)

=
1

2
S : Ċ⋆ = S : ĖGL ⋆

(3.14)

where Ċ⋆ is the virtual rate of the right-Cauchy tensor and the ĖGL ⋆
is the

virtual rate of Green-Lagrange strain.
Equation (3.14) shows that the second Piola-Kirchhoff stress is the power

conjugate of the Green-Lagrange strain.

Four equivalent forms of the virtual power of the inner forces

Finally, the following expression of the virtual power of inner forces in the
reference configuration yields:

∫

Ω

σ : grad(v⃗⋆) dv =

∫

Ωr

τ : grad(v⃗⋆) dv

=

∫

Ωr

P : Ḟ ⋆ dV

=

∫

Ωr

S : ĖGL ⋆
dV

(3.15)

Those equivalent expressions of the principle of virtual power leads to (at
least) three different numerical schemes in finite element solvers.

3.1.5 Thermodynamics in finite strain

Mechanical power in the reference configuration

Following Equation (3.15), the density of mechanical power in the reference
configuration wr is given by:

wr = J σ : D = J wc = τ : D = P : Ḟ = S : ĖGL (3.16)

where τ denotes the Kirchhoff stress.
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First and second principles, Clausius-Duhem inequality

Let e be the specific energy (energy per unit of mass). The first principle,
written in the current configuration, states that:

ρ ė = σ : D + ρ q − d⃗iv
(
j⃗
)

where q is the specific heat source and j⃗ the heat flux.
Let s be the specific entropy. The second principle, written in the current

configuration, reads:

ρ ṡ+ d⃗iv

(
j⃗

T

)
− ρ q

T
⩾ 0

where T denotes the temperature.
Combining those two principles leads to the Clausius-Duhem inequality:

−ρ(ė− T ṡ) + σ : D − q⃗

T
· ⃗grad(T ) ⩾ 0

This expression can be further simplified by introducing the specific free energy
Ψ = e− T s:

−ρ
(
Ψ̇− s Ṫ

)
+ σ : D − q⃗

T
· ⃗grad(T ) ⩾ 0 (3.17)

Finally, this expression can be written in the reference configuration as follows:

−ρr

(
Ψ̇− s Ṫ

)
+ τ : D − Q⃗

T
· ⃗Grad(T ) ⩾ 0 (3.18)

3.1.6 Objectivity

Objectivity refers to the invariance of the physical description by a change of
observer, also referred to as frame invariance.

The descriptions of the motions by two observers are related by a rigid
body motion:

x⃗(2) = y1→2(t) +Q1→2(t)
(
x⃗(1) − x⃗1→2

)
(3.19)

where:

• x⃗(1) and x⃗(2) are the current positions of a given point for the first and
second observers respectively.

• y1→2(t) describes the translation between the two observers.

• Q1→2(t) describes the rotation between the two observers.

• x1→2 is an arbitrary origin.
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With this definition, the deformation gradients computed by the two ob-
servers, denoted respectively F (1) and F (2) are related by:

F (2) = Q1→2(t)F
(1)

This relation is a simple application of the chain rule.
Quantities associated with the current configuration (the Cauchy stress σ,

the Kirchhoff stress τ , the rate of deformation D) are affected by the rotation
Q1→2 as follows: 




D(2) = Q1→2 · D(1) · QT
1→2

σ(2) = Q1→2 · σ(1) · QT
1→2

τ (2) = Q1→2 · τ (1) · QT
1→2

(3.20)

The Relation (3.20) for the rate of deformation D can be obtained by a di-
rect application of the chain rule. It is worth highlighting that Relation (3.20)
for the Cauchy stress σ can be obtained in two ways:

1. One may use the chain rule on the Equilibrium Equation (3.7).

2. One may invoke the invariance of the power density σ : D by
change of observer and the transformation rule for the rate of de-
formation.

Tensors that transforms according to Relation (3.20) are associated with
the current configuration and are called Eulerian tensors.

The transformation rule of the deformation gradient F can be used to
show that tensors associated with the reference configuration (stretch tensor
U , right Cauchy tensor C, Green-Lagrange strain C, second Piola-Kirchhoff
stress S) are invariant by change of observers. Such tensors are called la-
grangian.

It is worth emphasizing the fact that objectivity is not a physical principle:
it is a constraint of the constitutive equations. Constitutive equations that
does not comply with the Transformation Rules (3.20) for every change of
observer given by Relation (3.19) are inconsistent.

3.2 (Visco-)plasticity in the infinitesimal strain theory

3.2.1 Kinematics and mechanical equilibrium in the in-
finitesimal strain theory

The infinitesimal strain theory can be introduced by considering an small
perturbations of the rotation matrix and the stretch tensor as follows:

R = I + δR

U = I + δU
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where δR is a skew symmetric tensor (this classical result is admitted here)
and δU is a symmetric tensor.

The deformation gradient can be expanded as follows:

F = (I + δR) · (I + δU) ≈ I + δR+ δU

This expression shows that the δU is the symmetric part of F − I and
δR its skew symmetric part. Taking Equation (3.1) into account, the following
relations holds:

δU ≈ 1

2

(
∂u⃗

∂X⃗
+

∂u⃗

∂X⃗

T
)

δR ≈ 1

2

(
∂u⃗

∂X⃗
− ∂u⃗

∂X⃗

T
)

where T denotes the transposition of a tensor
The linearised strain tensor ϵto is defined as the first order approximation

of the stretch tensor, i.e. the symmetric part of the displacement gradient:

ϵto =
1

2

(
∂u⃗

∂X⃗
+

∂u⃗

∂X⃗

T
)

(3.21)

Using the Polar Decomposition (3.6), an alternate expression of the linearised
strain tensor ϵto can be established:

ϵto =
1

2

(
F + FT

)
− I =

1

2

(
R · U +U · RT

)
− I (3.22)

Change of volume

A first order approximation relates the change of volume J to the trace of the
strain tensor as follows:

J ≈ 1 + tr(δU) ≈ 1 + tr
(
ϵto
)

(3.23)

Equilibrium

In the initial configuration, the mechanical equilibrium is given by:

d⃗iv(σ) + ρ b⃗ = 0⃗ ⇔ ∂σij

∂xi
+ ρ bj = 0 (3.24)

where b⃗ are the unit force by unit of mass.

3.2.2 Main ingredients of (visco-)plastic behaviors in the in-
finitesimal strain theory

Under the assumptions of the infinitesimal strain theory, incompressible
(visco-)plastic behaviors are based on the following ingredients:
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• The strain tensor is splitted additively in an elastic ϵel and a (visco-)plastic
ϵin part as follows:

ϵto = ϵel + ϵin

• The stress tensor is given by the Hooke Law:

σ = D : ϵel (3.25)

• The inelastic strain evolution has the following general form:

ϵ̇in = λ̇n (3.26)

where λ̇ is either a plastic multiplier enforcing that the material remains on
the yield surface (plasticity) or an explicit fonction of the stress (viscoplas-
ticity) and where n describes the direction of the inelastic flow.

• Following Equation (3.23), the plastic incompressibility is enforced by re-
quiring that the trace of the inelastic strain to be null:

J =
ρc
ρr

= 1 =⇒
≈

tr
(
ϵin
)
= 0 =⇒ tr(n) = 0

• Following Equation 3.3, the porosity evolution is given by:

ḟ = (1− f) tr
(
ϵ̇to
)
≈ (1− f) tr

(
ϵ̇in
)

(3.27)

• Last but not least, sound behaviors are based on energetic considerations.
The mechanical power density w is the contracted product of the total strain
ϵto and the stress tensor σ:

w = σ : ϵ̇to (3.28)

3.2.3 Limitations in finite strain

Before introducing a rigorous description of visco-plastic behaviors at finite
strain, it is interesting to point out the limitations of the small strain frame-
work described in the previous paragraph, from the point of view of the be-
havior:

• The first limitation comes to the fact that the total strain is a mix of stretch
and rotation (See Equation (3.22)).

• The second limitation to the notion of objectivity which is the requirement
stating that behavior must yield to same results whatever the observer, as
detailled in Section 3.1.6. The total strain is not objective (this is indeed a
consequence of the first limitation): hence the behaviors build on top of it
are not objective.
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• The third limitation is related to the approximate nature of the Rela-
tion (3.23). Hence, using a small strain viscoplastic behavior does not guar-
antee to preserve the (visco-)plastic incompressibility.

• The last point is that the mechanical power density is not given by Equa-
tion (3.28), whatever the choice of the stress measure3.

3.3 Lagrangian stress and strain measures

So far, four stress tensors have introduced: the Cauchy stress σ, the Kirchhoff
stress τ , the first and second Piola-Kirchhoff stresses, denoted respectively P

and S.
P and σ can be related to forces acting on the body, as stated by Equa-

tions (3.9) and (3.13), and equilibrium equations in strong form, as stated by
Equations (3.7) and (3.11).

This is not the case for the the Kirchhoff stress τ and the second Piola-
Kirchhoff stress S which have been introduced through equivalent expression
of the mechanical power in the reference configuration (see Equation (3.16)) as
the conjugate of the rate of deformation D and the rate of the Green-Lagrange
strain ε̇GL respectively.

The Green-Lagrange strain εGL and the second Piola-Kirchhoff stress S

are example of lagrangian tensors (see Section (3.1.6)). It is worth highlighting
the fact that constitutive equations written in terms of lagrangian tensors are
automatically objective.

This section shows that an infinite number of strain measures can be de-
fined and, by duality, an infinite number of stress measures.

3.3.1 Lagrangian strain measures and conjugated strain
measures

Lagrangian strain measures can be defined as functions of the stretch tensors
which tends to the linearized strain ϵto when the assumptions of the infinites-
imal strain theory holds.

An important example of lagrangian strain measures is given by the Seth-
Hill strain measures E(m) defined as follows:

E(m) =





1

m
(Um − I) m ̸= 0

lnU m = 0

The special case E(2) corresponds to the Green-Lagrange strain, while

3Indeed, in finite strain, there are an infinite number of stress measures.
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Behavior

pre-processing post-processing

FIGURE 3.2: A general framework to reuse constitutive equations written in
the infinitesimal strain framework

E(0) corresponds to the Hencky strain that will be discussed in depth in
Section 3.3.3.

Given a lagrangian strain measure E⋆, a conjugated stress tensor S⋆ can
be defined by duality as follows:

wr = S : ĖGL = S⋆ : Ė⋆ (3.29)

Due to this duality, the Clausius-Duhem Inequality (3.18) can be written
as follows:

−ρr

(
Ψ̇− s Ṫ

)
+ S⋆ : Ė⋆ − Q⃗

T
· ⃗Grad(T ) ⩾ 0

where Q⃗ is the lagrangian counterpart of q⃗.
This inequality has a strong similitude with its counterpart in the infinites-

imal strain framework: E⋆ replaces the linearised strain ϵto and S⋆ replaces
the stress tensor.

In particular, classical arguments leads to the following relationship:

S⋆ = ρr
∂Ψ

∂E⋆ and s =
∂Ψ

∂T

3.3.2 A general framework to reuse constitutive equations
written in the infinitesimal strain framework

Valid finite strain constitutive equations can be obtained by selecting a la-
grangian strain measure, reusing constitutive equations written in the in-
finitesimal strain framework and interpreting the result as the conjugated
of the selected strain measure (see Figure 3.2).

This strategy has several advantages:

• Objectivity is ensured by construction.

• If the constitutive equations written in the infinitesimal strain framework
satisfies the Clausius-Duhem inequality, the finite strain constitutive equa-
tions will also satisfies the Clausius-Duhem inequality.

However, this strategy has a strong limitation due to the lack of link be-
tween the change of volume and the trace of the strain measure. As stated in
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Section 3.2.2, this link is crucial for most (visco-)plastic behaviors. Hence, the
proposed strategy is often limited to small strain but finite rotations, except
for the Hencky strain which is detailed in Section 3.3.3.

The Saint-Venant Kirchhoff hyperelastic behavior

As a trivial example of this strategy, the Saint-Venant Kirchhoff hyperelastic
behavior generalizes the Hooke law using the Green-Lagrange strain as follows:

S = D : EGL

where D is the elastic stiffness matrix.
The Saint-Venant Kirchhoff hyperelastic behavior derives from the follow-

ing free-energy:

Ψ =
1

2 ρr
εGL : D : εGL

3.3.3 The logarithmic strain framework

Another approach, popularized by Miehe et al. [Miehe et al.], is based on the
lagrangian Hencky strain, also called the logarithmic strain, defined as the
logarithm of the stretch tensor:

εtolog = ln (U) =
1

2
ln (C)

where C denotes the right Cauchy tensor in the reference configuration. Fol-
lowing Equation (3.29), the dual stress T of the Hencky strain is defined by
the following equality:

S : ε̇GL = T : ε̇tolog

Change of volume

The fundamental property of the Hencky logarithmic strain measure is that
its trace is related to the change of volume as follows:

J = exp
(
tr
(
εtolog

))

This equation shows that if the trace of the strain is null, no change of
volume may occur. With this property, the strategy exposed in Section 3.3.2
for large strain and large rotations.

Interpretation in 1D

Another nice property of the logarithmic strain framework is that if in absence
of material rotation, it can be shown that T is equal to the Kirchhoff stress
τ , which, for most metals, is almost equal to the Cauchy stress σ.

Hence, for uniaxial tensile tests, the logarithmic strain is the so-called "true
strain" and its dual is almost the so-called "true stress".
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3.4 Multiplicative decomposition of the deformation
gradient

The reference configuration has a special role in the framework described in
Section 3.3.2, a fact depicted as undesirable by some authors [Sidoroff, 1981].

An alternative approach, widely used in the litterature, is the so-called
F e · F p framework introduced by Lee [Lee, 1969; Mandel].

This framework is based on the following multiplicative decomposition of
the deformation gradient into an elastic part, denoted F e and a (visco-)plastic
part, denoted F p:

F = F e · F p (3.30)

Based on Equation (3.4), F p is interpreted as the deformation gradient into
an intermediate configuration. The main idea of this decomposition is that the
stress tensor shall only be a function of the elastic part of the deformation
gradient. This allows to interpret the intermediate configuration as a relaxed
configuration, i.e. the stress is null if F and F p coincide.

3.4.1 Decomposition of velocity gradient

The velocity gradient grad(v⃗) can be related to the deformation gradient F

as follows:

grad(v⃗) =
∂v⃗

∂x⃗
=

∂v⃗

∂X⃗
· ∂X⃗

∂x⃗
=

∂

∂X⃗

(
∂u⃗

∂t

)
· F−1

=
∂

∂t

(
∂u⃗

∂X⃗

)
· F−1 = Ḟ · F−1

Using Equation (3.30), the velocity gradient L can be decomposed as fol-
lows:

L = Ḟ · F−1 =
(
Ḟ e · F p + F e · Ḟ p

)
· F−1

=
(
Ḟ e · F p + F e · Ḟ p

)
· F−1

p · F−1
e

= Ḟ e · F−1
e + F e · Ḟ p · F−1

p · F−1
e

= Le + F e · Lp · F−1
e

(3.31)

where:

• The elastic part Le = Ḟ e · F−1
e of the velocity gradient is defined in the

current configuration C.

• The plastic part of the velocity gradient Lp = Ḟ p · F−1
p in the intermediate

configuration Ci.
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3.4.2 Expression of the mechanical power

The mechanical power per unit of volume in the current configuration pv is
given by the contracted product of the Cauchy stress and the deformation
gradient.

Assuming the symmetry of the Cauchy stress, pv can be developped as
follows:

σ : D = σ : L = σ : Le + σ :
(
F e · Lp · F−1

e

)

The term σ : Le is assumed to be reversible and must derive from an
convex free energy Ψ, as developped in Section 3.3.2, such that:

σ : Le =
1

Je
Se : ĖGL with Se = ρe

∂Ψe

∂EGL

where Se is the second Piola-Kirchhoff stress, EGL is the Green-Lagrange
strain, Je is the determinant of the elastic part of the deformation gradient
and ρe the mass density in the intermediate configuration.

The second term will be associated with the plastic dissipation in Sec-
tion 3.4.2 which introduces the Mandel stress M such that:

σ : D = σ : Le +
1

Je
M : Lp (3.32)

Plastic dissipation and Mandel stress

The Mandel stress M is defined as the dual of the plastic velocity gradient
Lp, i.e. as the stress measure which satisfies:

σ :
(
F e · Lp · F−1

e

)
=

1

Je
M : Lp

The Mandel stress M is equal to:

M = Ce · Se =
(
2EGL + I

)
· Se (3.33)

Note that the Mandel stress is not symmetric.

Clausius-Duhem inequality

The Clausius-Duhem inequality, as given by Equation (3.17) can be combined
with Equation (3.32) as follows:

−ρ

(
∂Ψ

∂EGL
: ĖGL +

∂Φ

∂y⃗
· ⃗̇y
)
+ σ : D ⩾ 0

−ρ

((
∂Ψ

∂EGL
− 1

ρ Je
Se

)
: ĖGL

)
− ρ

∂Φ

∂y⃗
· ⃗̇y + 1

Je
M : Lp ⩾ 0

where, for the sake of simplicity, terms related to heat transfer has been omit-
ted.
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Classical arguments (considering a reversible process), leads to:

Se = ρe
∂Ψ

∂EGL
and

where ρe is the density in the intermediate configuration (ρe = ρ Je).
The dissipation can then be re-written by introducing the thermodynamic

forces Y⃗ = −ρe
∂Φ

∂y⃗
associated to the internal state variables y⃗:

Y⃗ · ⃗̇y +M : Lp ⩾ 0

The dissipation is automatically positive if we introduce a convex dissipa-
tion potential ϕ minimal at zero such that:

Lp =
∂ϕ

∂M
and ⃗̇y =

∂ϕ

∂Y⃗

This expression of the plastic rate is now used to devise two examples of
constitutive equations:

• Isotropic viscoplasticity and plasticity.

• Single crystal (visco-)plasticity.

3.4.3 Isotropic viscoplasticity and plasticity

This section is devoted to describe a class of isotropic finite strain constitutive
equations associated to viscoplasticity and plasticity which is derived in a way
quite similar to the small strain theory.

Choice of the stress criterion

Du to isotropy, the dissipation potential must be a function of the invariants
of the Mandel stress:

• the trace of the Mandel stress, I1.

• the von Mises norm of the Mandel stress, Meq:

Meq =

√
3

2
Mdev : Mdev.

where Mdev is the deviatoric part of the Mandel stress.

• the determinant of the deviatoric part of the Mandel stress.
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Since the plastic flow is assumed to be isochoric, Lp must be traceless
according to Equation (3.5), so the dissipation potential can’t be a function
of I1.

In this section, we assume that the behavior oly depends on Meq. Thus,

Lp =
∂ϕ

∂Meq

∂Meq

∂M
=

∂ϕ

∂Meq

(
3

2Meq
Mdev

)
=

∂ϕ

∂Meq
N

where N =
3Mdev

2Meq
is the normal.

Isotropic incompressible viscoplasticty

ϕ =
M0 ε̇0
n+ 1

(
Meq

M0

)n+1

Isotropic incompressible plasticity

The yield surface of a plastic behavior with linear isotropic hardening is given
by:

f = Meq −M0 −H (p)

where p is the equivalent plastic strain, M0 is the yield stress and H is the
hardening slope.

3.4.4 Single crystal

It is assumed that the crystal deforms by gliding of dislocations on a set of Ns

prescribed crystallographic planes called slip planes, also called slip systems
or gliding systems.

A slip plane is characterized by its normal n⃗s and a slip direction m⃗s in the
plane (s ∈ [1, Ns]). By definition, the vectors are n⃗s and m⃗s are orthogonal.
A slip plane is also characterized by its orientation tensor N s such that:

N s = m⃗s ⊗ n⃗s

The gliding of dislocations leave the crystal orientations unchanged, so the
orientation tensors are the same in the initial configuration C0 and in the
intermediate configuration Ci.

Finally, the plastic part of the velocity gradient is given by the sum of the
glidings on all gliding planes, as follows:

Lp =

Ns∑

s

γ̇s N s

where γ̇s is the slip rate of the sth plane.
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This plastic flow is isochoric, as:

tr(Lp) =

Ns∑

s

γ̇s tr(N s) =

Ns∑

s

γ̇s m⃗s · n⃗s = 0

The expression of the plastic dissipation naturally introduces the resolved
shear stresses τ s:

M : Lp =

Ns∑

s

γ̇s τ
s

with τ s = M : N s.

A simple dissipation potential for crystal plasticity

A simple dissipation potential for the single crystal can be defined as follows:

ϕ(M) =

Ns∑

s

ϕs(|τ s|)

where each function ϕs is assumed to be convex and minimal at zero.
This dissipation potential leads to:

Lp =

Ns∑

s

∂ϕs

∂ |τ s|
∂ |τ s|
∂τs

∂τs

∂M
=

Ns∑

s

sgn (τ s)
∂ϕs

∂ |τ s|
∂τs

∂M
=

Ns∑

s

sgn (τ s)
∂ϕs

∂ |τ s| N s

where sgn (τ s) denotes the sign function:

sgn (x) =

{
1 ifx ≥ 0

−1 ifx < 0

A classical choice for ϕs is a power-law:

ϕs(|τ s|) = A

n+ 1
|τ s|n+1

3.5 Rate form constitutive equations

Another attempt to resuse implementations of behaviors written in the in-
finitesimal strain formalism is to write constitutive equations in rate form.
Even if this approach suffers from various theoretical and practical drawbacks
[Simo and Hughes; Doghri], it is still used in many popular academic and
commercial solvers.

©by-nc-sa 2023 by MEALOR II



Compendium of finite strain (visco-)plasticity 61

The departure point is the Decomposition (3.31) of the velocity gradient:

L = Le + F e · Lp · F−1
e

which, if the elastic part of the deformation gradient is small can be simplified
as follows:

L ≈ Le +Lp

Under this assumption, the rate of deformation can also be decomposed ad-
ditatively as follows:

D ≈ De +Dp

3.5.1 Hypoelasticity, objective stress derivatives

Assuming constant elastic material properties, the Hooke Law (3.25) can be
written in rate form as follows:

σ̇ = D : ϵ̇el

which would naturally lead to the following constitutive equations when trans-
posed in the finite strain framework

σ̇ = D : De

However, such a constitutive equation would be physically dubious as the time
derivative of the Cauchy stress σ̇ is not objective. Objective stress rates were
introduced to avoid this issue and allows to rewrite the previous equations as
follows:

∇
σ = D : De

There is an infinite number of objective stress rates. The most popular ones
are:

• Truesdell rate of the Cauchy stress:
∇
σ =

1

J

(
F · Ṡ · FT

)

• Green-Naghdi rate of the Cauchy stress:
∇
σ = σ̇ + σ · Ω − Ω · σ where

Ω = Ṙ · R is the angular velocity.

• Zaremba-Jaumann rate of the Cauchy stress:
∇
σ = σ̇ + σ · ω − ω · σ

At this stage, it is important to highlight that most of those objective stress
rates are only limited to isotropic constitutive equations.

3.5.2 Rate form constitutive equations

Similar to hypoelasticity, most constitutive equation written in the infinites-
imal strain theory can be reused by replacing time derivatives by objective
derivatives.
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3.6 Conclusions

This chapter introduced three approaches to finite strain constitutive equa-
tions:

• A first approach based on the lagrangian strain measures.

• A second approach based on the multiplicative decomposition of the defor-
mation gradient.

• A third approach based on the objective derivatives.

This chapter highlighted the link of such constitutive equations with the
ones written in the infinitesimal strain theory.
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This chapter is an introduction to fracture mechanics from an experimental
point of view. After an overview of the experimental observations of failure
modes and fracture mechanisms in metal alloys, the properties relevant to pre-
dict the initiation and propagation of brittle and ductile cracks are presented
based on experimental results. Some conventional and micromechanical tests
used to measure these properties are finally detailed along with the effects of
testing conditions.
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4.1 Introduction

Fracture mechanics is omnipresent in our daily life, from breaking bread for
breakfast or tearing a food package, to (fortunately) more exceptional situ-
ations such as breaking one’s leg or damaging a car during an accident. If
all these situations correspond to experimental observations of the initiation
and propagation of cracks, the different words available - breaking, tearing,
damaging - to describe them reflect notable differences between these cases.

(a) (b)

FIGURE 4.1: Two examples of experimental fracture mechanics: (a) breaking
bread, and (b) tearing food packaging.

Let’s have a closer look at each of these examples. For the case of the break-
age of a fresh bread stick (Fig. 4.1a), it is necessary to bend it sufficiently
before seeing a sudden crack appear in the crust which will then propagate
slowly in the crumb. After complete breakage, the two pieces cannot stick to-
gether exactly, which indicates that the material has been strongly deformed
locally. A completely different phenomenology can be observed in the case of
the opening of some plastic packaging (Fig. 4.1b). When pulling on it, the
material does not seem to deform until a crack appears and propagates over a
long distance (and incidentally all the contents of the package end up on the
ground). Contrary to the case of the bread stick, the two pieces of the package
can be assembled in a puzzle-like fashion, indicating the absence of significant
strain locally.
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(a) (b)

FIGURE 4.2: Two other examples of experimental fracture mechanics: (a)
breaking your leg, and (b) damaging your car

Let’s now turn to more exceptional situations. The breakage of a bone
(Fig. 4.2a) is most often the result of an impact that leads to sudden cracking.
As in the case of the packaging, the two fragments have the same geometry,
i.e., little strain is visible locally, and it is sufficient to replace the pieces face
to face and wait for the reconstitution of the bone. Finally, a car accident
(Fig. 4.2b) leads to strain and damage of metallic structures both at the scale
of the car and more locally at the scale of crack propagation. These exam-
ples from everyday life highlight the diversity of situations encountered when
one is interested in fracture mechanics. It is already possible to identify some
differences:

• Initiation vs. Propagation

The objects shown in Figs. 4.1, 4.2 have no cracks / defects in the initial state
- at least at the scale considered - and the failure is the result of two differ-
ent stages. The first one corresponds to the appearance of a crack-like defect
which is called initiation phase. This crack then propagates in the structure
in the propagation phase. This propagation can be stable - increasing the
loading a little makes the crack advances a little - or unstable when sudden
macroscopic crack propagation occurs just after the initiation.

• Quasi-static vs. Dynamic

By defining the speed of loading as slow when it is less than the speed of crack
initiation and propagation, and fast in the opposite case, the examples of bread
and packaging correspond to cases of slow loading, whereas bone fracture and
car accident are to be classified as fast loading. In the first case, the loading is
said to be static or quasi-static while in the second it is said to be dynamic.
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• Environmental effect

All the examples described above take place in ambient air, and a natural
question is whether there is an environmental effect, i.e., whether these
phenomena would occur in the same way in another environment (vacuum,
water, acid, high/low temperatures, low/high pressures). In the bread exam-
ple, the common experience tells us that waiting a few days would change the
result radically, with a brutal crack propagation without having to strongly
deform the bread stick.

• Strain at the structural scale

Another important difference between the examples is the level of strain at the
scale of the object under study that is required to lead to failure. In the case
of the bread and the car accident, the geometry of the objects is different at
the time of failure compared to the initial geometry, and the failure is said to
be macroscopically ductile. In the two other cases, the geometries appear
unchanged and fracture is said to be macroscopically brittle.

• Strain at the crack scale

Regardless of what is observed at the scale of the objects, the material may
also deform - or not - along the path followed by the crack. In the case of
packing and bone, the strains remain small at the crack scale and the failure
is therefore microscopically brittle. On the contrary, it would be impossible
to reassemble the two edges of the crack for the bread and the damaged car,
the failure being microscopically ductile.

• Fracture mechanisms

Again, regardless of the above categories, two experimental observations of
failure that would fit the same categories may differ in their microscopic
fracture mechanisms. For example, it is unlikely that the fractures of a
piece of glass and of the steel of the Titanic’s hull would proceed from the
same mechanisms. The difference is important especially when it comes to
developing physically based fracture models.
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Beyond the categories of failure sketched with the help of these examples,
the question arises of the relevant parameters to predict crack initiation
and propagation, parameters that may be different depending on the type of
failure studied. The parameters allowing to completely describe the initiation
of a crack in plastic packaging do not have reasons to be the same as those
allowing to predict the propagation of a crack in a metal sheet. Finally, these
parameters being known for each situation of interest, the question arises of
determining them by means of dedicated mechanical tests.

The objectives of this chapter are therefore the following:

• to present an overview of failure modes and fracture mechanisms ob-
served in metal alloys used in industrial applications;

• to highlight from experimental results the relevant parameters to describe
the initiation and propagation of cracks;

• to present the mechanical tests recommended in the standards as well
as some micromechanical tests to determine these parameters.

This chapter is an introduction to fracture mechanics from an experimental
point of view. Thus, the different notions are introduced on the basis of exper-
imental results using only the concepts of stresses (force per unit area) and
strains (elongation per unit length of reference). Moreover, the emphasis is
especially put on introducing the vocabulary and the keywords related to
fracture mechanics that will be further developed in this book. A selection of
key references is also given along the way.

4.2 Overview of failure modes in metal alloys

In order to complete the examples of daily life presented in the introduction,
situations from industrial applications, mainly nuclear, are detailed in this
part. These examples correspond to cases of crack initiation and propagation
in metallic alloys under quasi-static loading conditions excluding environmen-
tal effects. In particular, the objective of this section is to shed light on the
different macroscopic and microscopic behaviors. Brittle and ductile fracture
mechanisms commonly observed in metal alloys are then presented. This sec-
tion is not intended to be exhaustive: for further examples of experimental
observations of brittle and ductile fracture of metal alloys, the reader is re-
ferred to Chapters 7 & 8 of this book and to comprehensive reviews on the
topic (see, e.g., [Pineau et al., 2016]).
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4.2.1 Macroscopic vs. Microscopic behaviors

All the examples presented in this section correspond to steels, alloys widely
used in a large number of industrial applications. The addition of minor al-
loying elements and the different loading conditions lead to different failure
modes detailed in this section.

4.2.1.1 A very versatile steel

Austenitic stainless steels are alloyed with chromium and nickel. They are om-
nipresent around us: knives, forks, cookware, cars, boats all use this material
known for its good mechanical properties and resistance to corrosion. For the
same reasons, it is also used in nuclear reactors. Fig. 4.3a shows the typical
result of a tensile test at room temperature. This material has the ability to
deform very significantly - here more than 50% strain - which leads to classify
it as macroscopically ductile.
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FIGURE 4.3: (a) Typical tensile curve of an austenitic stainless steel at room
temperature (b) SEM observation of the fracture surface (Courtesy of LM2E
lab, CEA Saclay) [Hure et al., 2018]

What about the strain level at the crack scale? Fig. 4.3b shows an image of the
fracture surface, i.e., the location where the crack has separated the two pieces
of the specimen, obtained using a Scanning Electron Microscope (SEM). The
image shows the presence of craters, called dimples, most often with parti-
cles in the center of them. This observation is characteristic of the fracture
mechanism by initiation, growth and coalescence of internal voids: under me-
chanical loading, cavities appear in the material from inclusions, then grow
and eventually coalesce leading to fracture (see [Benzerga and Leblond, 2010]
and references therein). This fracture mechanism will be further detailed in
Chapters 8 & 9. Clearly, the material is highly deformed at the crack scale,
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and thus the mode of failure is microscopically ductile.

This first example shows a ductile macroscopic behavior associated with a
ductile fracture mechanism. If the concordance between what happens at the
two scales may seem natural, it is not, as illustrated in the following (counter-
)example.

4.2.1.2 A steel with holes

Let’s take the same class of material as in the previous section, the variant of
which has been specially studied for use in fast neutron nuclear reactors. In
these reactors, the material is subjected to extreme conditions - a temperature
between 450 ◦C and 650 ◦C and an intense flux of high energy neutrons - which
leads to changes in the microstructure of the material.
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FIGURE 4.4: (a) Typical tensile curve of a highly irradiated austenitic stain-
less steel at room temperature (b) SEM observation of the fracture surface
(Courtesy of LM2E lab, CEA Saclay) [Hure et al., 2022]

In particular, nanocavities appear, ranging from 10 to 100nm in diameter with
porosity levels that can exceed 10%. Fig. 4.4a shows the typical result of a
room temperature tensile test. The material deforms slightly, elastically, and
then breaks abruptly. It is therefore a macroscopically brittle case, where fail-
ure occurs without significant strain at the specimen scale.

Let’s now look at what happens at the crack scale. Here again, the SEM ob-
servation of the fracture surface provides answers as to the mechanisms at
work. Surprisingly, the fracture surface is very similar to the one shown in
Fig. 4.3b, i.e., with dimples, the essential difference being the size of these
dimples which is of the order of hundreds of nanometers. The mechanism is
therefore the same, with growth and coalescence of cavities, and involves large
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strain at the local scale. The fracture mechanism is therefore microscopically
ductile even though at the scale of the structure a brittle behavior - almost
without strain - is observed.

These first two examples show that the terminology of brittle and ductile
failure must be used with caution, and that it is necessary to specify the scale
to which one is referring. What these examples have in common is that the
fracture mechanism is ductile, but the same difficulties are encountered when
the fracture mechanism is brittle as we will see in the next two examples.

4.2.1.3 A rather hot steel

Let’s continue to look at the steels used in nuclear power plants. The ex-
ample shown in Fig. 4.5 concerns a low-alloy steel currently used for French
power plants pressure vessels. This is a fracture toughness test on a precracked
Compact Tension C(T) specimen, performed at relatively high temperature:
on the load-opening curve in Fig. 4.5a, after a yielding phase and then a tran-
sition, there is a relatively long phase where the load seems to saturate, which
corresponds to a significant development of plasticity, before the specimen sud-
denly fails. Here there is no stable crack propagation phase strictly speaking:
the crack propagates almost instantaneously as soon as the initiation appears.
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FIGURE 4.5: (a) Typical load-opening curve of a precracked C(T) specimen
of a low-alloy steel at high temperature (b) SEM observation of the fracture
surface [Petit et al., 2022]

When looking at the fracture mechanisms, it is clear that the fracture surface
corresponds to cleavage fracture, as shown in the SEM image in Fig. 4.5b.
This type of cleavage fracture corresponds to brittle fracture, which is of the
transgranular type, and results in this surface type with no real evidence of
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plastic strain, with a flat, shiny surface where planes and rivers of cleavage
can be identified.

Again, this example highlights the not necessarily trivial correlation between
the macroscopic and microscopic behaviors.

4.2.1.4 A rather cold steel

Let’s continue the study of the steel from the previous paragraph. By test-
ing the same steel, but at a lower temperature, one obtains the load-opening
curve shown in Fig. 4.6a. The curve is linear, and no plasticity seems to appear
macroscopically. Unsurprisingly, the fracture surface in Fig. 4.6b corresponds
well to what is observed macroscopically: the fracture is typically brittle, again
corresponding to transgranular cleavage.

What may appear more surprising is the complete correspondence between the
fracture surfaces of Fig. 4.5b and 4.6b: although these mechanisms are totally
similar, we have seen that they do not result in the same macroscopic behavior.
In addition to the essential characterization of the fracture mechanisms, it
therefore appears necessary to develop relevant analytical methods to correctly
quantify the multitude of existing fracture behaviors.
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FIGURE 4.6: (a) Typical load-opening curve of a precracked C(T) specimen
of a low-alloy steel at low temperature (b) SEM observation of the fracture
surface [Petit et al., 2022]

The various examples presented hereabove show that, for a given material
and microscopic fracture mechanism - qualified as brittle or ductile - different
macroscopic behaviors can be observed. The situation is in fact more complex
as different brittle and ductile fracture mechanisms are observed.
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4.2.2 Ductile vs. Brittle fracture mechanisms

4.2.2.1 Brittle fracture mechanisms

Different kind of brittle fracture mechanism exist. One may think of course of
the case of amorphous materials, such as the silica glass, but as shown previ-
ously this phenomenon is also involved in the fracture of metal alloys at very
low temperatures, as in the Titanic accident for example. This type of fracture
generally starts on an inclusion present in the material, which will break when
a critical stress is reached, and which will lead to an abrupt crack propagation
from one grain to another, separating planes in the crystal structure. This is
what we observed above in Fig. 4.5b or here in Fig. 4.7a. This brittle fracture
mechanism is called transgranular cleavage.

10 μm

(a) (b)

FIGURE 4.7: Two different brittle fracture mechanisms observed in metal
alloys: (a) transgranular cleavage in a low-alloy steel, and (b) intergranular
decohesion in a stainless steel (Courtesy of LM2E lab, CEA Saclay) [Hure
et al., 2018]

Brittle fracture can also result solely from a weakness in the grain boundary.
This is known as intergranular decohesion, an example of which is shown in
Fig. 4.7b. These fracture surfaces have a generally planar appearance and it is
difficult to identify a macroscopic zone of initiation or a direction of propaga-
tion. At the microscopic scale, they show juxtaposed polyhedra, corresponding
to the surface of the grains defining the fracture surface. Embrittling phases
may appear at the fracture surface. Often, secondary cracks can be observed.

An important point to keep in mind is that a given material may exhibit
these two fracture mechanisms depending on the conditions. One may for
example think of the segregation of some chemical species and / or
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precipitation at grain boundaries promoting intergranular decohesion.
These brittle fracture mechanisms are detailed in Chapter 7.

4.2.2.2 Ductile fracture mechanisms

Different kind of ductile fracture mechanisms do also exist. As shown in the
examples detailed in the previous sections, metal alloys are not totally ho-
mogeneous: they contain secondary phases, such as impurities, precipitates or
dispersoids.

The ductile fracture of these alloys may originate in these secondary phases,
which will give origin to cavities under the effect of a mechanical loading.
These cavities will enlarge and then merge, leading to the macroscopic failure
of the material. To describe this gradual damage phase, we speak of nucle-
ation, growth, and coalescence of cavities, which leave characteristic
marks on the fracture surfaces, called dimples. These fractures, driven by
the location of secondary phases, often located within the grains, are often
transgranular (Fig. 4.8a). The crack therefore preferentially follows these
secondary phases, which are generally randomly distributed in the material,
leading to tortuous crack paths, which distinguish them from the flat surfaces
of brittle fracture. In some materials, voids are already present, and fracture
mechanism proceeds directly by growth and coalescence (Fig. 4.8b). This frac-
ture mechanism can also be intergranular when second phases / inclusions
are located at the grain boundaries (Fig. 4.8c).

It is also observed that these mechanisms can be affected by the nature of the
applied loading (tensile, shear, multi-axial,...) which can be quantified by a
parameter called stress triaxiality. This quantity is all the higher (and all
the more harmful to failure) the more the three principal stresses are of the
same order of magnitude. At low triaxiality, ductile shearing is observed
as shown on Fig. 4.8d. Failure occurs in an extremely progressive way with
extensive strain. In this case, rotation and elongation of voids finally lead to
fracture. This mechanism is close to what is observed in pure, or near-pure,
metals where necking occurs until the strain is too high, which leads to the
separation of the two halves of the specimen. These ductile fracture mecha-
nisms are further detailed in Chapter 8. Finally, some materials may exhibit a
ductile-brittle transition (DBT) as for the nuclear reactor pressure vessel
steel described in the section 4.2.1.3, where the fracture mechanism is brittle
at low temperature and ductile at high temperature.
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FIGURE 4.8: Four different ductile fracture mechanisms in metal alloys: (a)
Transgranular void nucleation, growth and coalescence in an aluminum alloy
[Petit et al., 2019], (b) Transgranular void growth and coalescence and (c)
intergranular void nucleation, growth and coalescence in an austenitic stainless
steel [Hure et al., 2022], (d) Ductile shearing in a low-alloy steel (Courtesy of
LM2E lab, CEA Saclay)

After this short introductory overview of macroscopic vs. microscopic behav-
iors and ductile vs. brittle fracture mechanisms, let’s now have a look at the
properties controlling crack initiation and propagation.
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4.3 Searching for fracture invariants

The aim of this part is to highlight experimentally the relevant parameters
to characterize the initiation and propagation of cracks according to local
fracture mode. Hence, the terms brittle and ductile are used to describe the
fracture mechanisms and not the behavior at the structural scale.

4.3.1 From brittle fracture...

Let’s take the example of PolyMethyl MethAcrylate (PMMA), often referred
to as Plexiglas. This material is known to have a brittle fracture mechanism.
What are the relevant parameters to describe the initiation of cracks in this
material?

4.3.1.1 Crack initiation

In order to characterize crack initiation, a simple experiment consists in pulling
on notched flat specimens (Fig. 4.9a). The geometrical parameters of this type
of specimen are the radius of the notches R, the distance between the notches
ℓ and the thickness h.
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FIGURE 4.9: (a) Notched flat specimen used to characterize crack initiation
(b) Force-displacement curves for different notch radius R / distance between
notches ℓ, for a thickness h = 1.58mm

Typical force-displacement curves are shown in Fig. 4.9b. A linear elastic be-
havior is obtained until the initiation (and propagation) of a crack at the
minimum section of the specimen, for a critical value of the force Fc. What is
the invariant of these experiments, i.e., the parameter that is constant for all
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these results?

Fig. 4.10 shows that, for R ≳ ℓ (corresponding to the largest notch radius
R = 8mm and smallest ligament for R = 3mm), the critical force Fc evolves
linearly with the minimum section of the specimen, and that the effect of the
notch diameter is relatively weak. This experiment thus shows the existence
of a critical stress σc - the slope of the line in Fig. 4.10 - for which a crack
initiates in PMMA:

σ = σc ⇒ Crack initiation (4.1)
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FIGURE 4.10: Critical force as a
function of the minimum cross-
section of the specimen

Eq. 4.1 is therefore a crack initiation
criterion for brittle materials. It should
be noted that the definition used here
of the stress - average at the minimum
section - is not completely satisfactory
because of the non-uniformity of the
stresses at the notch. A more detailed
analysis would be necessary to extract
the true critical stress of the material,
for example based on the work of [In-
glis, 1913]. Nevertheless, Eq. 4.1 con-
stitutes the first pillar of fracture me-
chanics of brittle materials. The de-
termination of this critical stress σc

and its physical origin will be discussed
in Chapter 7. It is already possible
to imagine that this critical stress de-
pends, for example, on the tempera-
ture, the orientation of the material if
it is not isotropic:

σc = F (T, orientation, loading conditions...) (4.2)

Another interesting feature shown on Fig. 4.10 is that, for a given notch radius,
the critical force appears to saturate when the ligament size increases. This
regime corresponds to the case R ≪ ℓ, i.e., the notch is in fact a crack, which
is studied in the next section.

4.3.1.2 Crack propagation

In order to characterize crack propagation in brittle materials, another simple
experiment consists in pulling on a cracked specimen, i.e., a notched speci-
men whose notch radius is very small compared to all the other dimensions
(Fig. 4.11a). The notch radius is then no longer a relevant geometrical param-
eter, and only the length of the crack ℓ, the width L and the thickness h of
the specimen remain. When these PMMA specimens are mechanically loaded,
the force increases almost linearly with the applied displacement (Fig. 4.11b)
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until a critical force Fc for which the crack propagates in an unstable manner
and the specimen is broken in two. Fig. 4.11b also shows that the shorter the
crack, the higher the maximum force.
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FIGURE 4.11: (a) Cracked flat specimen used to characterize crack propaga-
tion (b) Force-displacement curves for different crack lengths ℓ, for a thickness
h = 1.58mm

What is the invariant of these experiments, i.e., the parameter that is constant
for all these results? Let’s have a look first at the results obtained at 20 ◦C.

Fig. 4.12 shows that the critical force Fc normalized by the nominal cross-
section S0 = Lh of the specimen actually varies linearly with ℓ−1/2. The
slope, noted KIc in the following, is thus the invariant we are looking for:

KIc = Σc

√
ℓ (4.3)

where Σc = Fc/S0. For all these experiments performed at a given tem-
perature, this parameter KIc is therefore constant and is equal to about
0.5MPa

√
m for this particular material at 20 ◦C. Additional experiments

would show that in fact this parameter is also independent, to some extent, of
the thickness h and the width L. It is therefore a property of the material that
characterizes its resistance to crack propagation. Let’s reformulate Eq. 4.3:

Σ
√
ℓ < KIc ⇒ no propagation

Σ
√
ℓ = KIc ⇒ propagation

(4.4)

The product Σ
√
ℓ and the quantity KIc are called stress intensity factor

and fracture toughness, respectively. The former characterizes the inten-
sity of crack loading while the latter describes the resistance of the material
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to crack propagation. Eq. 4.4 thus states that the crack propagates when the
stress intensity factor reaches a critical value which is the toughness of the
material.
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FIGURE 4.12: Critical force as a
function of the square root of the ini-
tial crack length

What is the physical origin of this quan-
tity KIc? Its unit (MPa

√
m) hardly

helps us. Some insights can be ob-
tained from Fig. 4.12 by comparing the
tests performed at two temperatures.
The higher the temperature, the lower
the slope, hence the lower the fracture
toughness. The effect of temperature is
to decrease the Young’s modulus E. An
analysis of these results indicates a new
invariant noted γc and such that:

γc =
K2

Ic

E
(4.5)

The unit of γc (Jm−2) is simpler to un-
derstand from a physical point of view.
It is an energy per unit area that can be
interpreted as the energy necessary for
the propagation of the crack. In order
to validate this hypothesis, a last experiment consists in measuring the energy
necessary to break a specimen of given section S0. To do this, we drop weights
of different heights on a cracked specimen (Fig. 4.13a). The failure energy is
estimated from the initial potential energy of the weights used.

Fig. 4.13b shows that sufficient energy must be supplied to break the bar. The
critical energy is, to a first approximation, proportional to the breaking sur-
face: the larger the surface, the more energy must be supplied. More interest-
ingly, the order of magnitude of the surface energy that can be extracted from
Fig. 4.13b - γc ∼ 1 kJm−2 - is consistent with Eq. 4.5 with KIc ∼ 1MPa

√
m

and E ∼ 1GPa. Obviously, and as in the previous paragraph, this simplified
analysis neglects many aspects - and in practice all the prefactors of the equa-
tions! - but it has allowed us to highlight the second pillar of the mechanics
of brittle fracture, namely the concepts of stress intensity factor and fracture
toughness KIc which form Griffith’s theory of fracture [Griffith, 1921]. The
origin of these concepts will be detailed in Chapter 5, and their limitations
discussed in Chapter 6. In the same way as for the critical stress, it is also
possible to imagine that the fracture toughness depends on temperature, on
the orientation of the material if it is not isotropic, and that there may be
several values of toughness depending on the loading mode:

KIc = F (T, anisotropy, loading conditions, ...) (4.6)
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FIGURE 4.13: (a) Notched bar subjected to an impact to characterize the
energy required for fracture (b) Potential energy of the weights leading (or
not) to fracture as a function of the ligament surface

This part has allowed to highlight the relevant parameters to characterize the
crack initiation and propagation, namely critical stress σc, fracture toughness
KIc and fracture energy γc, in the case of brittle fracture. The objective of
the next section is now to evaluate if these parameters remain relevant in the
case of ductile fracture.

4.3.2 ... to ductile fracture

Let’s take this time the example of an austenitic stainless steel, more precisely
type 304, the same one presented in section 4.2.1.1, and resume the experi-
ment of Fig. 4.11a with two initial crack lengths. The phenomenology is com-
pletely different compared to PMMA. Looking first at the force-displacement
curves (Fig. 4.14a), continuous evolutions are observed, with a work hardening
phase followed by a softening phase. The characteristic quantities of this test
- maximum force, displacement at failure - depend on the initial crack length.
Looking at the evolution of the crack (Fig. 4.14b), a first phase corresponds
to the blunting of the crack tip - which is thus transformed into a notch of
finite radius - then by the initiation of a new crack from the notch and its
propagation. An important point to note in this particular case is that the
work hardening part of the load curve is related to the blunting of the crack,
and the softening part to the crack propagation.
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FIGURE 4.14: (a) Force-displacement curves for different initial crack lengths
ℓ0, for a thickness h = 0.1mm (b) Crack evolution: blunting then propagation

These experiments are analyzed in more detail in the following sections, dis-
tinguishing between crack initiation and crack propagation, searching for the
invariants characterizing these two phases.

4.3.2.1 Crack initiation
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FIGURE 4.15: Crack shape at the
end of the blunting phase. Inset: ini-
tial crack

One way to characterize the crack
initiation is to look at the evo-
lution of the crack edge shape.
Fig. 4.14b shows that in a first
phase called blunting the edges of
the crack spread, the crack be-
comes a notch with a finite ra-
dius of curvature before the ap-
pearance and propagation of a new
crack. Specifically, Fig. 4.15 shows
the crack shapes of the two tests
- corresponding to the two initial
crack lengths - at the time of ini-
tiation of a new crack. For both
tests, the shapes are identical, both
for the crack opening and for the
radius of curvature of the crack
tip.

This shape is therefore an invariant to describe the crack initiation. Since this
invariant is a deformed geometry, it shows the existence of a critical strain
εc for which a sufficient damage has occurred at the crack tip to lead to the
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appearance of a new crack:

ε = εc ⇒ Crack initiation (4.7)

The situation is very different from the crack initiation observed for brittle
materials. In this last case, a criterion in critical stress was obtained whereas
a criterion in critical strain is observed for the ductile material. The physical
origin is in this case related to the fracture mechanism that will be detailed in
Chapter 8: the damage of the material is gradual by growth and coalescence
of internal cavities, explaining the choice of a criterion in strain, and early
models can be traced back to the work of Rice & Tracey [Rice and Tracey,
1969].

The extension of the initiation criterion (Eq. 4.7) to more complex cases is
still an active research topic, both from a theoretical and an experimental
point of view, because the critical equivalent (for multi-axial loading) strain
can depend on the stress state σ, on the loading path, on the temperature for
a given material:

εeqc = F (σ, T, anisotropy, ...) (4.8)

In some cases, the criterion defined by Eq. 4.8 can be sufficient, at least in first
approximation, to describe the failure of a material if the following propagation
phase is short and/or unstable. In other cases, it is necessary to describe the
propagation phase as well. Note finally that Eq. 4.8 requires also a proper
definition in the finite strain context, as discussed in Chapter 3.

4.3.2.2 Crack propagation

To characterize the crack propagation phase, two quantities are extracted from
the results presented in Fig. 4.14. The first one is the crack advance - noted
∆ℓ - and the second quantity is the energy supplied to the specimen E . The
crack advance is estimated from the optical tracking of the crack tip on the
surface of the specimen, and the energy is simply obtained by the area under
the force-displacement curve.

Fig. 4.16 shows the evolution of this surface energy - normalized by the cross-
section of the specimen - as a function of the crack advance. For both tests, this
evolution is identical (and additional experiments would show that it remains
true at first approximation by varying the thickness). This curve corresponds
to an invariant of the ductile crack propagation, and can be characterized by
two quantities. The first is the energy per unit surface that is required to lead
to crack propagation:

E
S0

= J < JIc ⇒ no propagation

E
S0

= J = JIc ⇒ propagation

(4.9)
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This critical value of the energy per unit surface is noted JIc because of its
link with the integral J [Rice, 1968] which will be discussed in Chapter 6.
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FIGURE 4.16: Evolution of the en-
ergy E normalized by the section S0

of the ligament as a function of the
crack advance

What is the physical interpretation of
this quantity? Considering two speci-
mens of which the second one has a
longer initial crack length ∆ℓ0 than the
first one, the difference of stored energy
∆E at the time of the crack propagation
is by definition JIch∆ℓ0, that is to say
JIc = ∆E/h∆ℓ0. It is therefore tempt-
ing to interpret JIc as the energy that
must be supplied to the crack for prop-
agation, as in the case of brittle fail-
ure (Eq. 4.5). The second characteristic
quantity in Fig. 4.16 is the evolution of
the energy as the crack advances:

dJ

d∆ℓ
= Tσ (4.10)

This quantity is called tearing mod-
ulus and quantifies the increase in en-
ergy required as the crack propagates.

As in the previous sections, this simplified analysis of the experimental results
needs to be refined, but as in the case of brittle fracture, it has allowed us to
highlight the notions of critical value of the integral J and of ductile tearing
modulus Tσ. Again, the origin of these concepts and their precise mathemat-
ical definitions will be detailed in Chapter 6. As for the critical strain, these
two quantities are obviously dependent on the stress state σ, the temperature
and the anisotropy:

{JIc, Tσ} = F (σ, T, anisotropy, ...) (4.11)

4.3.3 Concluding remarks

The experiments presented in this section have allowed us to highlight the
invariants related to brittle fracture - critical stress σc, fracture toughness
KIc and fracture energy γc - and ductile fracture - critical strain εc, initiation
toughness JIc and tearing modulus Tσ. These quantities that appear naturally
in experiments can also be recovered more rigorously from the mathematical
analysis of the equations of mechanics (see, e.g., [Leblond, 2003]) as detailed
in Chapters 5 & 6. Once known for a given material, these values can be used
to predict crack initiation and propagation. The objective of the following
section is to present mechanical tests to determine these fracture properties.
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4.4 Mechanical tests to quantify fracture properties

The purpose of this section is to provide a short - and non exhaustive -
overview of conventional and non-conventional tests to investigate brittle and
ductile fracture phenomena and above all to quantify the properties in frac-
ture introduced in section 4.3. But first, the importance of testing conditions
are stressed in the next paragraph.

4.4.1 On the importance of the testing conditions

In order to characterize the fracture properties of materials, some specimen
geometry and test condition have to be chosen. However, these choices may
have a strong impact on the results of the tests, as shown by the two examples
given below.

4.4.1.1 Round vs. Plate samples

Let’s take this time a material having low hardening capability such as an
aluminum alloy or a cold worked austenitic stainless steel. Various samples can
be chosen to characterize the fracture properties of such materials under tensile
loading conditions. This could be cylindrical tensile specimen (Fig. 4.17a) or
plate-like tensile specimen (Fig. 4.17b). Often the choice is dictated by the
material available.

(a) (b)

FIGURE 4.17: Failure of aluminum alloy tensile samples: (a) necking / cup-
cone fracture on a cylindrical specimen, (b) shear band fracture on a plate-like
specimen
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As shown in Fig. 4.17, for the same material, the result of the tensile test
can be different. For the cylindrical specimen, necking - localization inside
a given volume - first occurs, and then strain gradually increases inside the
neck up to the so-called cup-cone failure. For the plate-like specimen, strain
is rapidly concentrated along a particular plane, called shear band, slanted
with respect to the loading direction. At the macroscopic scale, the second
case leads to lower measured ductility. Necking and shear band formation are
two examples of mechanical instabilities: in each case an homogeneous
deformation mode is possible, but unstable, and a bifurcation is observed
towards an inhomogeneous deformation mode. Theoretical models exists to
predict such instabilities [Rudnicki and Rice, 1975].

The previous example makes clear that the failure modes observed experi-
mentally may be the result of the coupling between material behavior and
specimen geometry used, which is very important to keep in mind when ana-
lyzing the experimental results. But other effects related to the test conditions
may also affect the results.

4.4.1.2 Stiff vs. soft tensile machine

To perform the tests described in the previous section, a tensile machine -
or something similar - is obviously required. This is not without effect on
the test result as shown by the following example. Fig. 4.18 shows the load-
opening curves obtained with C(T) specimens (see inset Fig. 4.5a) of alu-
minum alloy obtained with a stiff and a soft tensile machine, respectively.
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FIGURE 4.18: (a) Typical load -
opening curve (solid symbols) and
crack propagation - opening (hollow
symbols) of a precracked aluminum
C(T) specimen

With the stiff machine, the curve is
continuous, with a hardening regime
followed by a softening regime cor-
responding to the stable propagation
of the crack. With the soft ma-
chine, the curve is similar, except
for a missing part in the softening
regime corresponding to an unstable
crack propagation, at least too fast
to be recorded by the extensome-
ter.

What happens is that, at some point
during the crack propagation, the en-
ergy stored in the machine - inside the
bars used to pull on the sample - is
enough for the crack to propagate with-
out additional energy supplied by the
tensile machine. This leads to the un-
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stable crack propagation that look like a brittle event. In a nutshell, the effect
of test conditions in fracture mechanics tests is somehow like the observer
effect in quantum mechanics, which is a keypoint to be reminded when ana-
lyzing fracture mechanics experiments.

Let’s now have a look of mechanical tests often used to measure fracture
properties.

4.4.2 Conventional and standard tests

First of all, let’s look at the tests classically performed in mechanical testing
laboratories, or even standardized tests, developed specifically for the damage
and fracture study.

4.4.2.1 Quantifying fracture strain / stress

Mechanical tests to investigate the fracture behavior of a material do not nec-
essarily require the very damaging case of a real crack. A first step can be to
quantify stress or strain values at failure for a sample free of defects, as
discussed in Sections 4.3.1.1, 4.3.2.1. A tensile test, for example, can already
be used to measure some properties such as ultimate elongation, or the value
of the necking at break. By filming the tests, Bridgman-type corrections or
image correlation - detailed below and in Chapter 8 - can be used to determine
local strain (Fig. 4.21a); by coupling these tests to finite element simulations,
local stress values can also be calculated.

Other geometries allow the investigation of more complex and representative
loadings than the uniaxial case. This involves introducing notches with very
precise radii of curvature, such as the Flat U notch (Fig. 4.19b) or axisym-
metric notched tensile (Fig. 4.19d) specimens. These tests make it possible to
improve the material behavior laws, by making them more representative
of what can occur at a potential crack tip. Due to the increase in the stress
triaxiality ratio, this type of specimen allows to reach locally level of stresses
much higher than the yield stress of the tested material. Such property is
important to study the effect of the stress level on the ductile and brittle
fracture mechanisms. Tensile and compressive directions are not always the
privileged loading in a given structure, and not necessarily the most critical
for some specific materials. If it is shear that is the loading of interest, there
are dedicated geometries like the one in Fig. 4.19a. For all these geometries,
evaluation of local strain is required, either experimentally through digital
image correlation or numerically through finite element simulations. Testing
these different geometries finally allows to obtain fracture criteria (see, e.g.,
[Roth and Mohr, 2016]).
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The Kahn specimens, described in [ASTM B871-01, 2013] and illustrated
in Fig. 4.19c, introduce an even more severe defect by machining an acute
notch. Three parameters are extracted from these tests, namely the crack ini-
tiation energy, the crack propagation energy and the tearing stress. Although
these tests do not provide an absolute value of the fracture toughness in the
sense of fracture mechanics, there are empirical relationships between these
three parameters and the evolution of the toughness. These tests therefore
allow relative changes in fracture properties to be compared quite easily.

(a) (b) (c) (d)

Stress Triaxiality η

η ≈ 0 η ≈ 2

FIGURE 4.19: Some examples of samples used to study fracture properties: (a)
Smiley shear (b) Flat Notched, (c) Kahn specimens (d) axisymmetric Notched
Tensile N(T)

Application to ductile fracture: Fracture strain εeqc

Different experimental techniques may be used to evaluate fracture strains on
the specimens described previously. One of them consists in monitoring the
evolution of the shape of the specimens with a digital camera. Using a retro-
lightning to have a strong contrast between the specimen and the background
allows to measure precisely the edge of the sample. An example of such tech-
nique is shown in the inset of Fig. 4.20a for axisymmetric notched samples
(Fig. 4.19d). In this example, an aluminum alloy is tested with different N(T)
specimens, and the minimal radius is used to compute an equivalent plastic
strain in the notch region using the Bridgman formula [Bridgman, 1964]:

εeq = 2 ln
d0
d

(4.12)

in which the factor 2 shows that the deformation corresponds to the ratio of
the surface before and after the test. Fig. 4.20a shows that the critical strain -
taken at the abrupt change of slope - depends on the specimen geometry, and
more precisely on the ratio of the initial minimal diameter d0 to the initial
radius of the notch R.
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FIGURE 4.20: (a) Force as a function of equivalent plastic strain measured
through the Bridgman formula for an aluminum alloy, for different N(T) spec-
imen geometries. Inset: optical measurement of the minimal diameter (b)
Evolution of the equivalent fracture strain as a function of stress triaxial-
ity [Shokeir et al., 2022]

Changing the geometry of the samples is in fact a way to change the stress
conditions prevailing in the notch region that can be described by the stress
triaxiality defined as [Bridgman, 1964]:

η =
σm

σeq
≈ 1

3
+ ln

(
1 +

d0
4R

)
(4.13)

Stress triaxiality quantifies the ratio of pressure over shear, and is an impor-
tant parameter for ductile fracture as detailed in Chapters 8 & 9. Fig. 4.20b
shows that the fracture equivalent strain depends exponentially on the stress
triaxiality, in agreement with the Rice & Tracey model [Rice and Tracey, 1969]
that will be detailed in Chapter 8.

Another technique, called Digital Image Correlation (DIC) and also presented
in Chapter 8, allows evaluating more precisely strains. This technique relies
on measuring the displacement of markers attached to the material. These
markers could be already present on the material or added. Once the displace-
ment field is known, strains can be computed. A typical example is shown in
Fig. 4.21 on the Smiley shear specimen (Fig. 4.19a) covered with black and
white paint.
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FIGURE 4.21: Example of DIC on the Smiley shear specimen where the
speckle pattern has been obtained with black and white paint

DIC is widely used nowadays, either to measure in-plane displacements and
strain fields at the surface of samples, but also out-of plane displacement by
using two or more cameras (stereo-correlation), and even to volume fields
through X-ray imaging. More details can be found in dedicate reviews on DIC
[Sutton et al., 2017].

4.4.2.2 Quantifying fracture toughness

To adequately measure the fracture toughness of a material, the previous
notches are not sufficient. In order to place oneself in the theoretical framework
of fracture mechanics, and to study the material in an unfavorable setting, it
is necessary to study real cracks, generating a singularity of the mechanical
fields at the crack tip. Precracked specimens are used, usually obtained
following fatigue testing of notched samples.

Standards give several types of precracked specimens for which the stress
intensity factor KI values are given as a function of the crack length. The
most commonly used are the Compact Tension - C(T) specimen (Fig. 4.22a
and Fig. 4.22c), and the three point bending tests performed on Single Edge
Notched Bending - SEN(B) specimen (Fig. 4.22b). The Pre Cracked Charpy
V-notch - PCCV (e.g. SEN(B) with 10mm2 cross section) is also often used;
however this geometry loses his load carrying capacity very early in the load
history and should be used preferentially for brittle materials [ASTM E399-
22, 2022].
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D

(a) (c)(b)

Fatigue pre-crack

Side grooves

FIGURE 4.22: Some examples of precracked samples used to quantify fracture
toughness: (a) Thick Compact Tension - C(T) specimen without side grooves,
(b) Single Edge Notched Bending - SEN(B) specimen, (c) Thin C(T) specimen
with side grooves

The [ASTM E1820-18, 2018] standard combines several approaches into a sin-
gle document, so that with a single testing procedure the results are analyzed
in a manner that is appropriate to the material behavior (for brittle material,
for ductile tearing initiation or for ductile tearing resistance).

Fracture toughness measurement requires to precrack the specimen before
testing. Contrary to polymers for which a crack is made with a razor blade,
metallic materials need to be fatigue precracked. Precracking requirements are
set in order to ensure that test results are not affected by precracking and to
ensure a reasonable number of fatigue cycles.

C(T) and SEN(B) specimens are loaded in tension and in bending, respec-
tively. If any stable tearing response occurs, the amount of slow-stable crack
extension shall be measured. After test, it is necessary to measure the initial
crack length. Standards provides the formulas to convert load-opening curves
to fracture toughness (see, e.g., [Zhu and Joyce, 2012]).

It is important to emphasize here that the specimen thickness has a major
influence on the state of the mechanical fields at the crack tip. On a very thin
specimen, such as the one in Fig. 4.22c, stresses related to the thickness direc-
tion are almost zero due to the free surface effect: the specimen is said to be
in a state of plane stress. On the contrary, on a very thick specimen, such as
the one shown in Fig. 4.22a, it is the deformation close to the crack tip in the
direction of the thickness which is almost zero: the specimen is said to be in a
state of plane strain. Note that this is mainly true at the specimen’s centre:
the outer surfaces remain in a state of plane stress. It can be seen that the
fracture toughness measured experimentally is not totally intrinsic to the ma-
terial: the toughness value is necessarily influenced by this size of the specimen.
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Application to brittle fracture: Plane strain fracture toughness, KIc

or KJc The plane-strain fracture toughness, KIc, is obtained when some prac-
tical conditions, detailed in the standards, are fulfilled. Examples include the
fact that the specimen precrack front must respect conditions of straightness,
or that the ligament and the thickness must have sufficient size to maintain a
condition of high crack-front constraint at fracture. These later requirements
ensure a particular state, called the condition of small scale yielding (SSY),
meaning that the crack front is mainly under plane strain conditions, and that
plasticity can not release ahead or behind the precrack. Indeed, plasticity al-
ways develops at the crack tip during loading. If the size of this plastic zone
remains limited, linear elastic fracture mechanics can be applied, as explained
in Chapter 5.

But this ideal linear elastic case is relatively seldomly obtained, in particular
for metallic materials. Macroscopically, the load-displacement curve shows a
non-linear section before fracture, reflecting locally a significant increase in
the plastic zone size compared to the typical size of the sample. In this case,
called large scale yielding (LSY), the elasto-plastic fracture mechanics has
to be used to determine the fracture toughness, as explained in Chapter 6.
This determination relies on the Rice J-integral properties. The standard gives
the formulas to determine J , which can be converted to equivalent K values.
The toughness is therefore noted KJc.

An example of an industrial application of these tests is shown in Fig. 4.23a,
which plots the evolution of the fracture toughness KJc as a function of the
test temperature (each point represents a specimen). The objective of this ap-
proach, described in the standard [ASTM E1921-22a, 2022], is to determine the
macroscopic fracture toughness for ferritic steels in the lower ductile–brittle
transition range. An intrinsic scatter is observed as well as an increasing evo-
lution of the fracture toughness values as a function of the temperature. It can
be observed that these phenomena, whose driving mechanisms are described
in Chapter 7, are common to all ferritic steels; the only notable difference is a
temperature shift, but otherwise they all follow the same type of distribution.
This has given the method its name: the Master-Curve approach.
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FIGURE 4.23: Examples of experimental campaigns using C(T) specimens:
(a) Brittle approach: KJc values of the fracture toughness as function of tem-
perature, for a reactor pressure vessel steel [Hure et al., 2015]. (b) Ductile
approach: R-curves of an aluminum alloy, after several heat treatment times
[Petit et al., 2018].

Application to ductile fracture: J-R curves determination

In a precracked specimen, a stable crack propagation can occur due to the in-
crease of tearing resistance with the crack propagation. Test specimens should
be side grooved in order to avoid tunneling and maintain a straight crack front.
The tearing resistance variation as a function of crack propagation is called
the J-R curve (or R-curve). The determination of the J-R curve relies on the
measurement of the crack length variation during the test.

The J-R curve for JIc determination can be generated either by a multispec-
imen technique, requiring comparatively more material, or a single specimen
technique, requiring dedicated test equipment. With the multiple specimen
technique, a serie of nominally identical specimens are loaded to various levels
and then unloaded: each specimen is then broken open and the various crack
extension lenghts are measured. The most common single specimen test tech-
nique is the unloading compliance method: the crack length is computed at
regular intervals during the test by partially unloading the specimen and mea-
suring the compliance; an alternative single specimen test method is the po-
tential drop procedure in which crack growth is monitored through the change
in electrical resistance which accompanies a loss in cross sectional area. When
the entire R-curve is of interest, only single unloading compliance tests are al-
lowed by the standard. Illustrations of this method can be found in Chapter 6.

Once the R-curve is constructed, two main parameters can be extracted:
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• The fracture toughness JIc [J/m²](generally defined as the value of J for
0.2 mm of propagation), quantifying the crack initiation resistance of the
material and which can be converted into KJc.

• The tearing modulus Tσ [MPa] (generally defined as the slope of the R-curve
between 0.2 and 1.5 mm of propagation), quantifying the crack propagation
resistance of the material.

An example of an industrial application of these tests is shown in Fig. 4.23b,
which compiles the R-curves of an aluminum alloy that has been subjected to
4 different heat treatments. It can be seen that these heat treatments have a
significant role both on the JIc (higher or lower curves on the graph) and on
T (steeper or shallower curves).

4.4.2.3 Quantifying fracture energy

The resilience test, or Charpy test, is probably one of the most performed
test all around the world. The test itself, the specimen geometry, and the
post-processing are defined by various standards, for example [ASTM E23-18,
2018]. These tests aim to quantify the ability of a material to absorb en-
ergy before failure. They consist of measuring the energy required to break a
notched bar (geometry in Fig. 4.24a), by a fast impact caused by the falling
of a rotating hammer. More details can be found in Chapter 7. Initially, the
Charpy test has been developed as a comparative test: the only information
was the absorbed energy during the test. Due to its low cost and convenience,
there is a growing interest in using the test to obtain more sophisticated frac-
ture mechanics related material information.

Application to the characterization of ductile-brittle transition

An example of an industrial application of this test is shown in Fig. 4.24b,
which plots the evolution of the fracture energy as a function of the test tem-
perature (each point represents a specimen) for a ferritic steel. The objective
of this approach is to determine the transition temperature between macro-
scopic brittle and ductile failure behavior. For ferritic steels, these curves show
three main characteristic domains: the brittle behavior (low fracture energy),
the ductile behavior (high fracture energy), and the transition domain. As for
fracture toughness (Fig. 4.23a), an intrinsic scatter is observed, and thus an
average evolution of fracture energy with temperature is first computed, and
then used to determine the ductile to brittle transition temperature (DBTT)
and the upper shelf energy (USE) values. These indexes are often used in
fracture safety analysis to estimate the material embrittlement due to aging
(index DBTT) or to determine correlation with fracture toughness parameter
(index USE).
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FIGURE 4.24: (a) Standard Charpy specimen (b) Evolution of fracture energy
obtained by the Charpy test as a function of temperature, for a ferritic steel,
and determination of fracture indexes [Hure et al., 2015]

The tests described here above are widely used to obtain the fracture prop-
erties of metallic alloys. These data can then be used to assess structural
integrity in engineering applications. Other tests, developed more recently,
aim at investigating fracture at a lower scale. These tests are referred to as
micro-mechanical fracture tests. Some examples of specimen geometries and
applications are given in the next section. Again, this section is not intended
to be exhaustive, the reader can find state of the art review e.g. in [Dehm
et al., 2018]

4.4.3 Micro-mechanical tests

Similarly to the tests described in the standards, micro-mechanical tests have
been developed to measure fracture strain / stress and fracture toughness, but
at a lower scale. This is particularly relevant to assess fracture at the scale of
the microstructure.

4.4.3.1 Quantifying fracture strain / stress

In order to improve our understanding of the phenomena at the origin of fail-
ure, and to be able to model the damage kinetics more finely, an ideal solution
is to conduct experiments allowing measurements of critical stress and strain
at extremely local levels.
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FIGURE 4.25: Bending test on a micrometric cantilever beam leading to the
failure of a brittle grain boundary (Courtesy of R. Azihari, CEA) [Azihari,
2023]

To measure a local critical stress, micro-beam bending tests can be per-
formed, for example, as shown in Fig. 4.25. This consists of machining micron-
scale cantilever beams (via Focused Ion Beam technique) directly in the re-
gions of interest, here a steel with an oxidized grain boundary. These micro-
beams can then be mechanically loaded in a SEM, using a nanoindenter: the
load required to initiate a crack is then measured, and fracture properties can
be extracted. In this example, using both the force at the onset of failure and
the force drop due to crack propagation (Inset Fig. 4.25) allows to measure
fracture stress and fracture surface energy.

Local strain measurements can also be very valuable. For example,
notched specimens can be mechanically loaded in a SEM via an in situ tensile
device, as illustrated in Fig. 4.26. The objective of this experiment was to
study the role of particles on void nucleation in an aluminum alloy, in order
to improve the nucleation laws used in ductile fracture models. Using 2D dig-
ital image correlations (DIC), associated with finite element simulations, the
strain values required to break these precipitates, or to break the interface
between the precipitate and the aluminum matrix, are precisely quantified.
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FIGURE 4.26: SEM in-situ test on notched specimen to identify nucleation
kinetics based on local strain values (measured by DIC) in an aluminum alloy
[Shokeir, 2022]

The limitation of this type of experiment is that investigations can only be
completed on the surface of the sample, where the mechanical fields are in a
state of plane stress, which is not necessarily representative of an industrial
component. One solution is to carry out the same type of in situ experiment in
a laboratory tomograph or, even better, in a synchrotron: the high flux make
it possible to image the sample through its thickness, and thus to process 3D
DIC. This technique, called DVC for Digital Volume Correlation, is described
in detail in Chapter 8. This allows to assess triaxial stress states. But today
it is still difficult to image a real state of plane strain: the thicknesses must be
limited to maintain good spatial and temporal resolutions (especially in the
case of metals). In order to finely characterize the damage kinetics in a thick
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specimen, it is then necessary to carry out interrupted tests: the specimens
are then cut and polished in order to be expertised.

4.4.3.2 Quantifying fracture toughness

Micromechanical tests have also been developed to quantify fracture tough-
ness. These tests are even more challenging than the ones described previ-
ously as they require to machine an initial crack in addition to the samples
themselves. Moreover, the conditions for which fracture toughness concept is
relevant mainly restrain these tests to brittle fracture. Typically, these tests
require simulations to design the samples as well as to analyze the results.

2μm

(a) (b)

FIGURE 4.27: Two examples of micromechanical tests developed to quantify
fracture toughness: (a) Micro-cantilever on UO2 / Cr interface (Courtesy of
R. Henry, CEA LECA-STAR) [Henry, 2019], (b) Lab-on-chip on free-standing
SiO2 film (Courtesy of S. Jaddi, UCL) [Jaddi et al., 2021]

Fig. 4.27 shows two examples of micromechanical tests developed to quan-
tify fracture toughness at the local scale. Fig. 4.27a corresponds to a micro-
cantilever beam machined using Focused Ion Beam technique - basically an
microscopic milling machine - allowing to locate the sample at an interface
between UO2 and Cr. A fine notch, also machined with FIB technique, is
added at the interface to characterize fracture toughness. Note that the tests
could also have been done without the initial crack, as in the section above,
to quantify crack nucleation. A nanoindenter is then used to load the beam
up to the critical force at which crack propagates. The critical force is then
converted into fracture toughness. Fig. 4.27b corresponds to an experimental
device based on the lab-on-chip technique [Pardoen et al., 2016]. Basically two
layers are deposited on a substrate, one corresponding to the material studied
and the other acting as the tensile machine. This layer starts pulling on the
first layer as soon as the contact between the substrate is removed, due to
internal stresses.
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4.5 Conclusion

The experimental observations of fracture of metallic alloys presented in this
chapter have highlighted some key points that are important to keep in mind
when dealing with fracture mechanics, namely:

• The notions of brittle and ductile depend on the scale of the study and are
therefore to be handled with care;

• A ductile failure mechanism can lead to a brittle failure on a structural scale;

• Conversely, a brittle failure mechanism may well be associated with a sig-
nificant ductility at the scale of the structure;

• Testing condition such as specimen geometry and loading devices may have
a strong impact on test results;

• A material can have several fracture mechanisms depending on the stress
and environmental conditions.

A certain number of parameters are relevant when it comes to quantifying
crack initiation and propagation, whether it is the fracture toughness Kc /
fracture energy γc in a general way, or more specifically the notion of critical
stress σc for brittle fracture mechanisms and that of critical strain εc for
ductile failure mechanisms. Here again, some essential points must be kept in
mind:

• The knowledge of the fracture mechanism is an essential prerequisite for
the choice of the appropriate failure criterion and more generally for the
modeling of the failure;

• The failure criterion used at the scale of interest must be relevant to the
phenomenon of interest (initiation versus propagation).

Reader’s attention is drawn on the fact that one of the richest source of infor-
mation is the tested specimen itself. To analyze all the information provided,
fractography analysis and post-mortem microstructural investigations have to
be carried out.

All of these elements make it possible to choose the relevant mechanical test
with respect to the phenomenon of interest and the desired fracture property.
In other words, all mechanical tests can be fracture tests (after all, you only
need to pull hard enough), but only well performed and analyzed tests on
well chosen specimens can provide usable data for modeling and simulation.
Some specimen geometries / test types have been presented in this chapter
with examples of use. Defining the relevant fracture mechanics test for a given
problem can be a challenge in itself. For standard fracture properties at the
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usual engineering scales, a good way to proceed is to start by looking at
standard tests (e.g. in ASTM or ISO standards). These standards, which are
rather like recipes, allow for quality testing. Their specifications, sometimes
obscure (but for good reasons), can serve as starting points for developing new
tests such as the micro-mechanical tests presented in the last section.
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Linear Elastic Fracture Mechanics
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The aim of Linear Elastic Fracture Mechanics (LEFM) is to study the propa-
gation of a crack assuming that the material breaks in the linear elastic regime.
The center point for this discipline is that the stress field is amplified in the
vicinity of defects (holes, notches, cracks, etc.). This is the equivalent of the
spike effect in electromagnetism and can be visualised and measured using
photoelasticity (Fig. 5.1).

FIGURE 5.1: Visualisation of the stress field using photoelasticity. The load
is applied through the introduction of a cylinder that opens the gap on the
left side of the sample. Stress amplification can be seen in the vicinity of the
slit extremity with the development of two symmetrical lobes that are typical
for tensile cracks, but also near the two holes on the left.

This framework is currently used to assess the safety of sensitive compo-
nents, as in aeronautics or in nuclear power plants. Section 5.1 aims to give the
basis of LEFM, section 5.2 an overview of the methods to determine the key
quantities ruling the crack advance (Stress Intensity Factors, Energy Release
Rate), and section 5.3 some examples of applications. While previous sections
deal with the well-establish part of the theory, in which simplified smoothed
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out geometries are generally considered, section 5.4 will be an opening on
works under progress about perturbation approaches that permit to deal with
distorted crack geometries.

5.1 Basis of Linear Elastic Fracture Mechanics

The main ingredients and definitions of this scientific field, namely the Stress
Intensity Factors (SIF) and Energy Release Rate (ERR) are given in section
5.1.1. These quantities give an indication of the load at the crack tip. They are
used in the principles ruling the crack propagation that are given in section
5.1.2.

5.1.1 The ingredients

Consider a cracked isotropic linear elastic body Ω (Fig 5.2). Denote K the 4th
order stiffness tensor, E, ν denoting the Young modulus and Poisson’s ratio,
λ, ν the Lamé’s coefficients.

Assume here that body forces, such as weight, have a negligible effect in
comparison to the load applied via the boundary conditions. Decompose the
boundary ∂Ω of Ω in three parts (∂Ω = ∂Ωc∪∂ΩT ∪∂Ωd) without any overlap,
such as given external surface forces T⃗ d apply on ∂ΩT and given displacement
u⃗ d apply on ∂Ωd, the complementary part ∂Ωc of the boundary of Ω being
stress free. Define a crack F as a discontinuity surface of the displacement
field, meaning that a crack is constituted by two surfaces, called crack lips,
that are geometrically superposed in the unloaded configuration (Fig 5.2a),
but no longer once the load is applied. In the deformed configuration, we
suppose that the lips do not interpenetrate so that they remain traction free
(Fig 5.2b). For crack problems with lip contacts, unilateral contact conditions
have to be written on the crack lips [Bui, 2006; Marigo, 2016] and the linearity
of the problem with the applied loads is then broken.

In 3D, the crack lips are discontinuity surfaces delimited by a line, called
crack front (Fig 5.2c). In 2D, the crack lips reduces to 1D lines of discontinuity
ending with a point, the crack tip (Fig 5.2a,b).
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FIGURE 5.2: Linear Elastic Fracture Boundary Value Problems. a-b) a 2D
problem with a straight crack. c) a 3D problem with a distorted crack (surface
and front). a) The crack is closed in the initial unloaded configuration. b-c) A
discontinuity of the displacement field is observed once the body is loaded.
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5.1.1.1 Strong form of the linear elasticity problem

For a fixed crack geometry, displacement u⃗, strain ϵ and stress σ fields con-
stitute the unique solution1 of the following Boundary Value Problem (BVP)
defined by:

• partial differential equations at all points of Ω:




D⃗iv(σ) = 0⃗
σ = K.ϵ = 2µ ϵ+ λ (trϵ)1 ⇔ ϵ = K−1.σ = 1+ν

E σ − ν
E (trσ)1

ϵ(u⃗) = 1
2 (Grad(u⃗) +T Grad(u⃗)),

(5.1)

• boundary conditions (∂Ω = ∂Ωc ∪ ∂ΩT ∪ ∂Ωd):




σ.n = T⃗ d on ∂ΩT

σ.n = 0⃗ on ∂Ωc ∪ F
u⃗ = u⃗ d on ∂Ωd

(5.2)

5.1.1.2 Weak form of the linear elasticity problem

In the purpose to write the elasticity problem in the weak/variational form
and to introduce notations that will be useful in this book, introduce the
following spaces of kinematically admissible displacements:

C = {u⃗ ∈ H1(Ω) : u⃗ = u⃗ d on ∂Ωd},
C0 = {u⃗ ∈ H1(Ω) : u⃗ = 0⃗ on ∂Ωd},

(5.3)

the density of elastic energy:

w(ϵ) =
1

2
σ : ϵ =

1

2
ϵ : K : ϵ (5.4)

the internal energy Wint and the total work Wext of external forces:

Wint = −
∫

Ω/F
σ : ϵdΩ; Wext =

∫

∂Ω

T⃗ .u⃗dS (5.5)

and the potential energy:

P(u⃗) =

∫

Ω/F
w(ϵ(u⃗))dΩ−

∫

∂ΩT

T⃗ d.u⃗dS (5.6)

We get using equilibrium equations Wint +Wext = 0 (also known as principle
of virtual power):

P(u⃗) =
1

2
Wext −

∫

∂ΩT

T⃗ d.u⃗dS =
1

2

∫

∂Ωu

T⃗ .u⃗ ddS − 1

2

∫

∂ΩT

T⃗ d.u⃗dS (5.7)

1we suppose that Boundary Conditions are written in order to prevent any body rigid
motion, so that the displacement solution is unique as the strain and stress solutions. It is
for instance the case if all the components of the displacement are imposed on one part of
the boundary.
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This formula will be useful to derive the compliance formula in section 5.2.3.
The solution u⃗ of the BVP (5.1-5.2) satisfies the potential energy minimum

theorem [Marigo, 2016]:

u⃗ = argminu⃗∗∈CP(u⃗∗) (5.8)

Notice that while in 3D, P(u⃗) has the dimension of an energy, for 2D
elasticity problems, Ω is a surface so that P(u⃗) is an energy by unit thickness.

5.1.1.3 Definition of the Stress Intensity Factors (SIF)

Consider a 2D elasticity problem with a straight crack front (Fig 5.2a,b).
Denote x, y, z a direct system of axis, such as x is in continuity with the crack
surface, y is normal and z is the out of plane direction. Looking for solutions
with finite elastic energy, it is possible to show [Williams, 1952] that the stress
field is singular in the vicinity of the crack tip [Bui, 2006; Leblond, 2003]. More
precisely,

σij(r, θ) =
KI√
2πr

f I
ij(θ) +

KII√
2πr

f II
ij (θ) +

KIII√
2πr

f III
ij (θ) +O(1) (5.9)

when r → 0, (r, θ) being the polar coordinates defined from the crack tip and
the tangent to the crack lips (Fig 5.2a).

Functions fp
ij(θ) are universal (in the sense they do not depend on the

BVP) functions depending on θ only, given by:




f I
xx = cos

(
θ
2

) (
1− sin

(
θ
2

)
sin
(
3θ
2

))
f II
xx = − sin

(
θ
2

) (
2 + cos

(
θ
2

)
cos
(
3θ
2

))

f I
yy = cos

(
θ
2

) (
1 + sin

(
θ
2

)
sin
(
3θ
2

))
f II
yy = sin

(
θ
2

)
cos
(
θ
2

)
cos
(
3θ
2

)

f I
xy = cos

(
θ
2

)
sin
(
θ
2

)
cos
(
3θ
2

)
f II
xy = cos

(
θ
2

) (
1− sin

(
θ
2

)
sin
(
3θ
2

))

(5.10)
and {

f III
xz = − sin

(
θ
2

)

f III
yz = cos

(
θ
2

) (5.11)

the other components being zero. Note that in Fig. 5.1, the load is in mode I
(KII = KIII = 0) and the shape of the two symmetrical lobes is associated
to the shape of the functions f I

xx, f
I
yy, f

I
xy.

While the elastic stresses are theoretically infinite, physically the material
responds with irreversible dissipative processes (damage, plasticity...) in a zone
called Process Zone (PZ). If its size is small in comparison with the size of Ω
and the crack size, the prefactors Kp, p = I, II, III are relevant to quantify
the intensity of the stress in the vicinity of the crack tip, they are therefore
called Stress Intensity Factors.

The first term of the corresponding displacement fields expansion can be
obtained from Eq. 5.10-5.11 using the constitutive law to get ϵ and further
integration of the definition of ϵ (Eq. 5.1). It gives:

ui =
Kp

4µ

√
r

2π
ξpi (θ) (5.12)
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with:{
ξIr = (2κ− 1) cos

(
θ
2

)
− cos

(
3θ
2

)
ξIIr = −(2κ− 1) sin

(
θ
2

)
+ 3 sin

(
3θ
2

)

ξIθ = −(2κ+ 1) sin
(
θ
2

)
+ sin

(
3θ
2

)
ξIIθ = −(2κ+ 1) cos

(
θ
2

)
+ 3 cos

(
3θ
2

)

(5.13)
and

ξIIIz = 8 sin

(
θ

2

)
(5.14)

The other components are equal to zero.
While Eq. 5.9-5.11 are valid whether in Plane Stress (PS) or Plane Strain

(PE) hypotheses for the stress field, the Kolosov constant κ appearing in the
expansion of the displacement is equal to κ = 3 − 4ν in PE and κ = 3−ν

1+ν
in PS. As mentioned in Bui’s book [Bui, 2006], the solution is not exact in
PS as the corresponding strain field is not compatible with the existence of a
displacement field. However, it has been shown to be pertinent in most of the
PS problems [Bui, 2006]. A practical way to decide which is the more relevant
hypothesis is given in Triclot et al. [Triclot et al., 2023].

FIGURE 5.3: Three fracture modes: mode I for tensile crack, mode II for
plane-shear, mode III for antiplane shear

Each SIF corresponds to one mode of discontinuity of the crack lips
(Fig 5.3): mode I corresponds to symmetrical opening, mode II to plan shear,
mode III to antiplane shear. Indeed, using Eq. 5.12, 5.13 and 5.14 to evaluate
the displacement jump [[ui]] ≡ u+

i − u−
i across the crack lips, one has:

For KII = KIII = 0 : [[ux]] = [[uz]] = 0 [[uy]] =
KI(1+κ)

µ

√
r
2π

For KI = KIII = 0 : [[uy]] = [[uz]] = 0 [[ux]] =
KII(1+κ)

µ

√
r
2π

For KI = KII = 0 : [[ux]] = [[uy]] = 0 [[uz]] =
4KIII

µ

√
r
2π

(5.15)

Let us mention that the next term (of order 1 in the development of u⃗,
of order 1 in the development of σ) in the vicinity of the crack tip involves
T -stresses. They have been shown to have an impact on the selection of the
crack path [Cotterell and Rice, 1980; Mesgarnejad et al., 2020; Lebihain et al.,
2022; Shaikeea et al., 2022; Doitrand et al., subm].

5.1.1.4 Definition of the Energy Release Rate (ERR)

For a given body (that is material and geometry), the potential energy defined
in Eq. 5.6 depends only on the crack length ℓ and the applied load (T⃗ d, u⃗ d).
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When the crack length increases at constant load (T⃗ d, u⃗ d), elastic energy is
released by the creation of stress free surfaces, so that the Energy Release
Rate defined by:

G ≡ − ∂P
∂ℓ

)

T⃗ d and u⃗ d constant
, (5.16)

is a positive quantity. Positivity of G can also be demonstrated rigorously using
the potential energy minimum principle given in Eq. 5.8 and the increase of
the set C (defined in Eq. 5.3) with the crack length [Marigo, 2016].

The SIF as well as the ERR can be used to quantify the loading of the
crack tip. They are related by Irwin’s formula [Irwin, 1958]:

G =
1

E′
(
K2

I +K2
II

)
+

1 + ν

E
K2

III (5.17)

with E′ = E for PS, E′ = E/(1− ν2) for PE.

5.1.2 Crack propagation rules

The aim of this section is to discuss when and how a preexisting crack prop-
agates. Several situations will be considered. The case of a component sub-
mitted to cyclic load (fatigue crack propagation), in which the crack advance
little by little at each cycle, will be presented briefly in section 5.1.2.1. For
monotonous loading, the existence of a threshold below which propagation
does not occur is discussed in section 5.1.2.2. The dynamics of crack propaga-
tion beyond the threshold is the topic of section 5.1.2.3. Eventually, the crack
path selection is addressed in section 5.1.2.3.

5.1.2.1 Fatigue

Many industrial components are subjected to cyclic loadings (turbines, air-
planes, rails...), that progressively damage the material. In the first instance,
the advance rate of a crack da

dN during one cycle can be estimated by Paris’
law [Erdogan and Paris, 1963]:

da

dN
= C(∆KI)

n (5.18)

where C, n are material constants and ∆KI the SIF amplitude during one
cycle.

In practice, the link between the advance rate and the cyclic load is often
more complexe and there is a whole literature on fatigue crack propagation.
We will not enter in more details here. But it is worth to be aware that many
repeated cycles may growth a crack significantly until reaching the point of
catastrophic failure discussed below.

5.1.2.2 Crack propagation threshold

Pull on a sheet of paper containing a crack (Fig 5.4). You will notice that
below a certain force the crack doesn’t propagate, meaning that there exists a
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FIGURE 5.4: Paper plate containing a crack loaded in mode I, before and
after fracture.

threshold below which the crack stays harmless. The seminal Griffith criteria
[Griffith, 1920] states that the crack will not advance if :

G < Gc (5.19)

where Gc is a material constant corresponding to the energy cost to advance the
crack by unit surface. In other words, the crack cannot advance if the elastic
energy released is not enough to cover the fracture costs. In the seminal work
of Griffith [Griffith, 1920], Gc was meant as a reversible energy, in the same
way as the surface tension of a liquid. But as crack propagation is irreversible,
the costs linked to the dissipative processes occuring in the Process Zone have
to be included in Gc and are generally much larger than the reversible energy
required to separate two atoms [Marder, 2009].

In mode I, it is equivalent to Irwin’s criterion through Eq. 5.17, that is:

KI < KIc ⇒ no crack advance (5.20)

where KIc =
√

E
1−ν2Gc is the fracture toughness. The physical reasoning be-

hind this criterion is that a crack cannot propagate if the tensile stress level
near the crack tip, that can be quantified by the mode I SIF, is not high
enough. Note that the SI unit of KIc is Pa.m1/2 hence changing m in mm
does not yield a factor of 10 but 10−3/2, so that unit errors may be difficult
to perceive.

While KI and G depend on the BVP, that is on the elastic constants, the
load (T⃗ d, u⃗ d) and the component geometry, Gc and KIc are material con-
stants. Irwin’s (Eq. 5.20) and Griffith’s (Eq. 5.19) criterion are thus practical
ways to know if a preexisting crack has some risk to propagate or not for a
given BVP. Ashby diagrams can be used to obtained typical values of the ma-
terial constants depending on the kind of material [Ashby, 1989; Wegst and
Ashby, 2004].
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5.1.2.3 Dynamics of crack propagation

Once the propagation threshold is reached, the crack may propagate without
stopping leading to catastrophic failure of the specimen. It is in particular the
case in the experiments of Fig. 5.4. But in some cases, crack propagation may
only occur if the load is increased (think for instance to the tearing of a sheet
of paper). In this section, we aim to discuss in which case the propagation can
be controlled or not.

Suppose that the load (T⃗ d, u⃗ d) is proportional to one single parameter
t ≥ 0. For a given body (fixed geometry and material constants), the ERR
and SIF depend on t and ℓ only: G = G(ℓ, t) and Kp = Kp(ℓ, t). By linearity of
the BVP, the solution (u⃗, ϵ, σ) varies linearly with the applied load, so that
Kp(ℓ, t) = tK̂p(ℓ) (use Eq. 5.15), hence G(ℓ, t) = t2Ĝ(ℓ) (use Eq. 5.17), where
K̂p(ℓ) and Ĝ(ℓ) denote the SIF and ERR for unit load (t = 1), hence depend
on the crack length only. These notations allows to decouple the load and the
crack length effects.

Start with a problem containing a crack with an initial length ℓ0. Suppose
that the load t increases and that the crack growths along a prescribed path.
We aim to find the crack length ℓ(t) as a function of t in the quasi-static limit,
i.e. so that at each t, equilibrium is satisfied. Note that t denotes an instant
corresponding the load t, and not a real time. First and second thermody-
namical principles then implies [Francfort and Marigo, 1998; Bourdin et al.,
2008]:

{
(G(ℓ, t)− Gc)ℓ̇(t) = 0 (energy balance)
ℓ̇(t) ≥ 0 (irreversibility condition)

(5.21)

Quasistatic crack growth (ℓ̇(t) > 0) can thus be achieved only if t2Ĝ(ℓ(t))−
Gc = 0 for all t, hence only if Ĝ′(ℓ) < 0 (where Ĝ′(ℓ) ≡ dĜ

dℓ ). Indeed taking

the derivative of the equation with t yields 2tĜ(ℓ) + t2Ĝ′(ℓ) = 0 ⇒ Ĝ′(ℓ) =

−2Ĝ(ℓ)/t which is a negative quantity. If dĜ
dℓ > 0 then G(ℓ(t+∆t), t+∆t) > Gc

at least for a short moment ∆t > 0, meaning that the available elastic energy
is too large to stay at equilibrium, dynamical crack propagation will occur
as long as G(ℓ(t + ∆t), t + ∆t) > Gc. This case must be avoided for sensi-
tive components for which the rupture is life-threatening, since it may lead to
catastrophic failure. If needed, you may refer to the book of Freund [Freund,
1998] about the dynamical aspects of crack propagation.

Another way of thinking about quasi-static crack evolution is to suppose
that ℓ increases, instead of t as previously, and to look at the load t(ℓ) required
to get G(ℓ, t(ℓ))− Gc = 0 for all ℓ. Irreversibility and energy balance are then
automatically satisfied. This implies that t(ℓ)2Ĝ(ℓ) = Gc for all ℓ. Deriving this

equation with respect to ℓ yields t′(ℓ) = −t(ℓ) Ĝ′(ℓ)

2Ĝ(ℓ) , meaning that to control

quasistatic crack propagation, the load t must be decreased if Ĝ′(ℓ) > 0 and
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increased if Ĝ′(ℓ) < 0, in line with the results obtained previously reasoning
in term of increasing load t.

This point will be illustrated on the example of a Double Cantiveler Beam
(DCB) in section 5.3.2.

5.1.2.4 Crack propagation direction

r

θ

ϕ
s

II
I

FIGURE 5.5: Left: Kinking of a crack loaded in mode I+II. Right: definition
of the kink angle φ

In previous section, we supposed that the crack path was known. But as
in the example of Fig. 5.5 (left), the crack may deviates from its initial plane.
What about the determination of the new propagation direction φ, also called
the kink angle, that is defined in Fig. 5.5 (right)? Several criterions have been
proposed over time, notably the:

MTS Maximum Tensile Stress criterion [Erdogan and Sih, 1963]: the crack
propagates in the direction where the tensile opening stress is maximum:
∂σθθ

∂θ
(φ) = 0

Max ERR Maximum Energy Release Rate [Erdogan and Sih, 1963] : the
crack propagates in the direction where the available elastic energy is maxi-
mum, i.e. where it overcomes first the fracture costs Gc: maxφ G∗(φ), where
G∗(φ) is the ERR when the crack propagates in the direction φ.

PLS Principal of Local Symmetry [Goldstein and Salganik, 1974]: the crack
propagates in a direction where the mode II SIF is zero: K∗

II(φ) = 0 where
K∗

II(φ) is the mode II SIF for a infinetisimal small crack extension in the
direction φ.

Based on different physical arguments, they have indeed been shown to
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yield different values of φ using the formula that will be given in §5.2.4. How-
ever, for isotropic elasticity, they never differ more than 1.5 ° [Amestoy and
Leblond, 1992], so that they can be used indifferently for practical purposes.

For anisotropic materials (composites, crystal, material printed by additive
manufacturing [Corre and Lazarus, 2021]), the fracture costs Gc depends on
the direction φ. Among the above criteria, the Max ERR can be generalized
by searching for the maximum of G(φ)− Gc(φ) [Ibarra et al., 2016].

5.1.3 3D problem

Consider the general case of a 3D problem (Figure 5.2c) with a non-planar
crack surface and a curved front. Introduce a curvilinear abscissa s along the
crack front and a local direct orthonormal frame (e⃗x(s), e⃗y(s), e⃗z(s)) such that
e⃗z(s) is tangent to the crack front, e⃗x(s) is the tangent to the crack surface
orthogonal to e⃗z(s) pointing in the crack propagation direction, e⃗y(s) = e⃗z(s)∧
e⃗x(s). The 2D expansions of the stress field and displacement field remain
valid [Leblond, 1999] in this frame providing that the PE hypothesis is chosen
in Eq. 5.13. The SIF and the ERR then depend on the point s considered
along the crack front: KI(s), KII(s), KIII(s), G(s). Irwin’s, Griffith’s and
directional criterions can be written locally at each point s. Note that the SIF
at a point of the crack front located at the surface of the body are not well
defined [Bazant and Estenssoro, 1979].

5.1.4 In practice

Q

q/2
A

B
q/2

Mode I plane

Initial slit

FIGURE 5.6: Compact Tensile and Three Point Bend tests

In the case of an isotropic solid, Linear Elastic Fracture Mechanics theory
relies on the use of three materials constants. In addition to two elasticity
constants (E, ν for instance), a third one is necessary to describe the frac-
ture threshold (KIc or Gc). To measure KIc, standard tests, as e.g. Compact
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Tensile Test specimens or Three Point Bend specimens can be used (Fig. 5.6).
For these geometries, KI is known as a function of the applied load, say Q
[Tada et al., 2000]. The tests then consist to load the precracked specimens
using a mechanical testing machine, until the onset of propagation. At this
point, Q = Qc is measured and Irwin’s criterions is satisfied. This provides a
measure of KIc using KIc = KI(Qc).

FIGURE 5.7: Plate under tension containing an inclined crack

Once E, ν and KIc are known for a given material, it is possible to use
them for engineering purposes, notably to determine the maximum load or
crack size that can be tolerated in a component without major risk of failure.
For instance, consider the following BVP problem: a small horizontal crack of
length 2ℓ is submitted remotely to a tensile stress σ (Fig. 5.7 with α = 0). In
this case, KI =

√
πℓσ. Knowing that in service, σ will always be lower than

σmax, a crack of length ℓ < ℓmax where ℓmax ≡ K2
Ic/(σ

2
maxπ) can be considered

to be safe, since than KI < KIc which is below the propagation threshold.
On the other hand, knowing that the component does not contain any crack
larger than ℓmax, while the stress is smaller than σmax ≡ KIc/

√
πℓmax there

is no risk of catastrophic failure. Of course, in practice, safety margins are
applied.

For critical components subjected to cyclic load, whose rupture would
be life-threatening, damage tolerance approach [David and Lazarus, 2022] is
applied notably in the aeronautic domain. The idea, based on the fact that
almost no material is perfect, is to assess that any possible defect will not cause
catastrophic failure. More precisely, it consists to determine the number of load
cycles Nc that are needed to drive a crack by fatigue (section 5.1.2.1) until
reaching the propagation threshold (section 5.1.2.2). This pre-existing crack
considered is either a detected defect or the most dangerous undetectable one.
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5.2 Determination of the SIF and the ERR

To apply the propagation rules given in section 5.1.2, the SIF and the ERR
have to be determined. These quantities are related to the solution (u⃗, ϵ, σ)
of the BVP (Eq. 5.1, 5.2). The aim of this section is to give an overview on the
several possibilities to determine them, for more complex BVP than the one
considered in section 5.1.4 above. In a first intention, the BVP is generally
oversimplified to use analytical solutions (section 5.2.1). For more complex
BVP geometries, Finite Element Modeling can be used (section 5.2.2). For
BVP involving only one loading parameter, using the compliance formula
(section 5.2.3) are useful to determine whether the crack propagation can be
controlled or not, for instance to design experimental setups with controlled
crack propagation. To determine the crack path, the SIF after an angular kink
have to be known. This requires specific developments (section 5.2.4) as it is
difficult to catch numerically with enough accuracy.

5.2.1 Analytical solutions

Analytical solutions or tabulated solutions are available for simple elastic-
ity BVP, as for instance for an infinite plate loaded remotely (Fig. 5.7 and
Eq. 5.35). Those have been listed in handbooks (e.g. [Tada et al., 2000]).

Approaches using complex number as Airy or Muskelishvili potentials
[Muskhelishvili, 1953] have been used with success to obtain analytical so-
lutions for more complex problems [Leblond, 2003; Bui, 2006]. To satisfy your
eventual curiosity, feel free to look at my Ph.D report to see complex calcula-
tions using these methods [Lazarus, 1997]. Those methods can seem obsolete in
light of the computational progress but stay useful to validate some numerical
approach or to catch some subtil effects that cannot be obtained numerically.

5.2.2 Finite Element calculation

For more complex BVP, the elastic displacement field u⃗ can be obtained by
Finite Element Methods. Several more or less accurate methods exists to ex-
tract from u⃗ the SIF and ERR values. The most straightforward one is to use
interpolation near the crack tip based on William’s series (Eq. 5.9), looking
for the best fit in KI , KII , KIII . From there, the ERR can be obtained using
Irwin’s formula (Eq. 5.17).

Using Rice’s J-integral [Rice, 1968] is another possibility:

G = J ≡
∫

Γ

(wnx − σijui,xnj)ds

where w is defined by Eq. 5.4, Γ is a contour encompassing the crack tip
(Fig. 5.8) and n⃗ is its unit external normal. The solution is independent of
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the contour Γ provided that the crack surface can be considered to be straight
inside Γ [Rice, 1968; Corre et al., In p]. For a curved surface, it implies to take
a contour that is close enough to the tip, so that the interior can be considered
to be straight.

However, the most robust, hence used, way to proceed is to use interaction
integrals [Suquet, 2005; Gosz et al., 1998] since they involve surface integrals
that are less sensitive to local fluctuation through averaging effects:

Kp =
E′

2

∫

Ω

(
σiju

p
j,kθk,i + σp

ijuj,kθk,i − σiju
p
i,jθk,k

)
dΩ (5.22)

herein up
i = 1

4µ

√
r
2π ξ

p
i (θ) (Eq. 5.12 for unit SIF) with ξpi , p = I, II defined in

Eq. 5.13, σp
ij defined in Eq. 5.9 with Kq = δpq and θ⃗ is any vector field filling

the following conditions:

• it is equal to zero vector outside an external contour Γ2,

• equal to t⃗ inside an internal contour Γ, where t⃗ is a unit tangent vector to
the crack surface at the crack tip,

• with a continuous connection in between, that is parallel to the crack surface
along this surface.

An example of such a field is given on Fig. 5.8.
An analoguous method, called G-theta exists to obtain G [Destuynder and

Djaoua, 1981; Bui, 2006]:

G = −
∫

Ω

TGrad
(
θ⃗
)
: EdΩ = −

∫

Ω

θi,jEijdS (5.23)

where the Eshelby tensor is defined by:

Eij = wδij − ξk,iσkj (5.24)

Be aware that Grad
(
θ⃗
)

and E are not symmetrical in general.

5.2.3 Compliance formula for one parameter loading

Using the definition of G (Eq. 5.16), together with (i) Eq. 5.7, (ii) the fact
that Boundary Conditions are given at each point of the boundary (∂Ω =

∂ΩT ∪ ∂Ωu ∪ ∂Ωc), (iii) T⃗ d = 0⃗ on ∂Ωc and (iv) that the load is supposed

to be constant in the definition of G that is
∂T⃗ d

∂ℓ
=

∂u⃗ d

∂ℓ
= 0, one gets

successively:

G =
1

2

∫

∂ΩT

T⃗ d.
∂u⃗

∂ℓ
− 1

2

∫

∂Ωu

∂T⃗

∂ℓ
.u⃗ddS

=
1

2

∫

∂Ω

(
T⃗ .

∂u⃗

∂ℓ
− ∂T⃗

∂ℓ
.u⃗

)
dS. (5.25)
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G

G
2

t

FIGURE 5.8: Example of θ⃗ (white arrows) field used in the interaction inte-
grals and the G-theta method.

Suppose now that we deal with a 2D BVP problem with a single param-
eter loading as in section 5.1.2.3, either an imposed displacement q or the
conjuguate force by unit thickness Q, both being linked by Wext = Qq where
Wext is the total work of external forces by unit thickness defined in Eq. 5.5.
By linearity of the BVP, it is possible to define the rigidity/stiffness R(ℓ) and
Softness/compliance S(ℓ) of the sample, depending only on ℓ by:

Q = R(ℓ)q ⇔ q = S(ℓ)Q with R = S−1 (5.26)

Notice that in 2D, Wext is in J/m=N, Q in N/m and q in m, so that the SI
unit of R is Pa and R is in Pa−1.

Using the same ingredients than above, we get

G = 1
2

(
Q.

∂q

∂ℓ
− ∂Q

∂ℓ
.q

)
(5.27)

= −1

2
q2

dR

dℓ
Stiffness formula (5.28)

=
1

2
Q2 dC

dℓ
Compliance formula (5.29)

As the rigidity of the sample decreases and the compliance increases with the
crack length, dR

dℓ < 0 and dC
dℓ > 0 so that we retrieve that G > 0. An example

of application will be given in section 5.3.2.
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5.2.4 Expansion of the SIF for a small kinked crack incre-
ment

r

θ

I
II

r

θ

ϕ
s

II
I

FIGURE 5.9: Crack with kinked extension in the initial (left) and final (right)
configurations

Assume that the loading of the body is kept constant between the two
configurations of Fig 5.9 (same configurations with or without a kinked portion
of length l in the direction φ). Denote Kp the SIF before the kink, and Kp(l, φ)
the SIF defined in the same manner (that is by Eq. 5.9) taking the new tip
and crack direction as references for the polar parameters (Fig 5.9).

Introduce the limit K∗
p (φ) for l → 0:

K∗
p (φ) = lim

l→0
Kp(l, φ) (5.30)

J.B. Leblond (1989) has shown that:

K∗
p (φ) = Fpq(φ)Kq (5.31)

where the functions Fpq(φ) are universal functions (in the sense that they are
independent of the BVP), depending on the sole value of φ. This means that
knowing the values of Kq before the kink, K∗

p (φ) can be obtained after the kink
without the need to solve the entire elasticity problem. This remarkable result
is valid whatever the considered BVP, for isotropic and anistropic materials
[Leguillon, 1993], in 2D and 3D situations [Leblond, 1999; Leblond et al., 1999;
Lazarus et al., 2001]. However, the value of Fpq(φ) differs.

For an anisotropic material, they have not been determined yet, to the best
of our knowledge. In the case of isotropic elasticity, the values are provided in
Amestoy and Leblond [Amestoy and Leblond, 1992] for any values of φ, either
under the form of some integral equations coupled with Anderson’s formula
(equations (34)1, (35)1, (36), (39) of [Amestoy and Leblond, 1992]) or of a
serie (equation (66) in [Amestoy and Leblond, 1992]). For φ ≪ 1 (φ being
expressed in radians), the first terms are:

FI,I = 1 +O(φ2) FI,II = − 3φ
2 +O(φ3) FI,III = 0

FII,I = φ
2 +O(φ3) FII,II = 1 +O(φ2) FI,III = 0

(5.32)
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Note that despite the continuity of the displacement and stress fields when
l → 0, K∗

p (φ) is discontinuous crossing the kink, that is K∗
p (φ) ̸= Kp if φ ̸= 0.

The fact that it is discontinuous can be understood by considering an initial
mode I situation (KII = 0): while the problem is symmetrical between the
top and the bottom without a kink, the symmetry is broken as soon as a small
extension appears so that K∗

II ̸= 0 which is different from KII = 0.

In the same manner, we can define:

G∗(φ) = lim
l→0

G(l, φ) (5.33)

where G(l, φ) is the energy release rate corresponding to a kinked propagation
in the direction φ of length l. Using Irwin’s formula [Irwin, 1957], we get when
restricting to KIII = 0:

G∗(φ) =
1− ν2

E

(
K∗

I (φ)
2
+K∗

II(φ)
2
)
=

1− ν2

E
Fpq(φ)Fpr(φ)KqKr (5.34)

Equations 5.31 and 5.34 are useful to determine the propagation direction
applying the criteria Max ERR and PLS introduced in section 5.1.2.4. Indeed:

• the PSL implies: FII,I(φ)KI + FII,II(φ)KII = 0

• the Max ERR implies:
∂G∗

∂φ
= 0 ⇒ Fpq(φ)F

′
pr(φ)KqKr = 0

Hence the knowledge of Fpq(φ) permits to determine φ as a function of the
SIF KI , KII before propagation, that is of the applied load via the BVP. This
procedure can be repeated to obtained the quasistatic crack propagation path
as a function of the applied load via the successive values taken by Kp.

Moreover as the propagation in this direction requires that the elastic
energy release in this direction overcomes the fracture costs, Griffith’s criterion
has to be written on G∗(φ) and not on the initial ERR G, before the presence
of a kink. Eq. 5.34 permits to write it as a function of the initial values of
the SIF Kp and put it into practice. It will be illustrated in section 5.3.1 on a
particular geometry.

5.3 Examples of application

5.3.1 Crack embedded in a plate

5.3.1.1 SIF expression

As in the case of Fig 5.4, pull on a plate containing a crack of length 2ℓ inclined
with an angle α (Fig 5.7). If the size of the crack is small in comparison to
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the plate size, the SIF are given by :

KI = σ(cos2 α)
√
πℓ, KII = σ sin(α) cos(α)

√
πℓ, KIII = 0 (5.35)

where σ denotes the stress applied remotely. For α = 0, one retrieves the
formula given in § 5.1.4. In this case, Griffith threshold (Eq. 5.19) or equiva-
lently Irwin’s one (Eq. 5.20), yields that no propagation occurs provided that
σ < KIc√

πℓ
.

5.3.1.2 Determination of the propagation direction

For α ̸= 0, the crack is loaded in mode I+II and the propagation direction
can be obtained by one of the criteria given in section 5.1.2.4. Let us consider
here for simplicity the PLS K∗

II(φ) = 0 and that α ≪ 1 (α in radians) so that
KI = σ

√
πℓ(1 + O(α2)) and KII = ασ

√
πℓ(1 + O(α2)). Using Eq. 5.32 and

assuming that φ = O(α), then gives: K∗
II = σ

√
πℓ(φ2 + α+O(α3)) , so that:

φ = −2α+O(α3) (5.36)

which justifies our assumption.

5.3.1.3 Determination of the critical load at the onset of crack
propagation

Griffith threshold criterion (Eq. 5.19) has to be applied on G∗(φ) to ensure
that enough energy is available to propagate in the direction φ. This gives
that the propagation threshold is:

σc =

√
EGc

(1− ν2)πℓ
+O(α2) =

KIc√
πℓ

+O(α2) (5.37)

If α is not small, the awaited kink angle to get K∗
II = 0 becomes higher

and some additional terms in the expansion of Fpq(φ) or the exact values
of Fpq(φ) provided in [Amestoy and Leblond, 1992] shall be used. We have
verified that the predictions obtained in this way are conform to Erdogan and
Sih experiments [Erdogan and Sih, 1963].

When the crack becomes imperceptible ℓ → 0, Eq. 5.37 predicts that
σc → ∞ which is obviously in contraction with observations. The classical
stress criterion σc = σY , where σY is the ultimate tensile stress, takes over to
get the critical load. In practice, the cut-off length is given by writing σ = σc

together with KI = σ
√
πℓc = KIc which gives:

ℓc =

(
KIc√
πσY

)2

(5.38)

which is also the typical size of the process zone mentioned in section 5.1.1.3:
LEFM is valid provided that the sizes of the crack and of the domain are large
enough in comparison to this value. The failure stress σc as a function of ℓ is
sketched in Fig. 5.10.
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FIGURE 5.10: Sketch of the failure stress σc as a function of the crack size ℓ.

5.3.2 Propagation dynamics in a Double Cantilever Beam

P

P

b

2h

`

2∆

FIGURE 5.11: Double Cantilever Beam (DCB)

5.3.2.1 Determination of the ERR using compliance formula

Consider a Double Cantilever Beam (DCB) of height 2h, thickness b containing
a crack of length ℓ, loaded at the extremities by either a couple of opposite
force of amplitude P , or displacement ∆ (Fig 5.11). Suppose that ℓ ≫ b ∼
h, then the potential energy P can be estimated thanks to two cantilever
clamped beams of length ℓ. One has: ∆ = 4 Pℓ3

Ebh3 and Wext = 2P∆/b. With
the notations of section 5.2.3 and setting Q = P

b , q = 2∆ from which follows
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that the compliance and the stiffness are given by:

S(ℓ) ≡ R−1(ℓ) =
8ℓ3

Eh3
(5.39)

From there, one gets the ERR using the compliance formula (Eq. 5.29):

G =
12ℓ2Q2

Eh3
=

3Eh3q2

16ℓ4
(5.40)

that gives with the nominal notations P , ∆ of the load:

G =
12ℓ2P 2

Eb2h3
=

3Eh3∆2

4ℓ4
(5.41)

These last results can also be obtained directly by calculating the potential
energy P of the set of two beams and deriving it with respect to ℓ for a fixed
load.

5.3.2.2 Dynamics of crack propagation

Let us now look for the quasistatic evolution problem following Eq. 5.21.
Suppose first that the load is applied by increasing the displacement (t = ∆).
The quasistatic evolution rules lead to two situations:

1. ℓ(t) = ℓ0 as long as ℓ̇(t) = 0 ⇔ G < Gc ⇔ t < tc with

tc = ∆c =

√
4

3
Gc

ℓ40
Eh3

(5.42)

2. ℓ(t) increases once ℓ̇(t) > 0 then G = Gc so that:

ℓ(t) = ℓ0

√
t

tc
(5.43)

Second, suppose that the load is applied by increasing the force t = P .
The quasistatic evolution rules lead to two situations:

1. ℓ(t) = ℓ0 as long as ℓ̇(t) = 0 ⇔ G < Gc ⇔ t < tc with

tc = Pc =

√
GcEh3b2

12ℓ20
(5.44)

2. ℓ̇(t) > 0 then G = Gc that implies ℓ(t) =
√

GcEh3b2

12t2 hence ℓ̇(t) < 0 in

contradiction with ℓ̇(t) > 0. This means that quasistatic evolution
is not possible above the threshold.

This implies that in this DCB setting, it is possible to control propagation
applying increasing displacement but not increasing force.
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5.3.2.3 Link between the stiffness of the sample and quasistatic
propagation

Refering to section 5.1.2.3, this result is intimately related to the configuration
of the problem and the sign of Ĝ′(ℓ) that is of S′′(ℓ) and R′′(ℓ) (Eq. 5.29, 5.28).

More generally, beyond the DCB example, we have that:

• It is possible to control the propagation under increasing displacement con-
trol q if and only if R′′(ℓ) > 0

• It is possible to control the propagation under increasing force control Q if
and only if S′′(ℓ) < 0.

Using R = 1/S and S′(ℓ) > 0, it is straightforward to show that S′′ < 0
implies R′′ > 0, meaning that if the device is such as the propagation can be
controlled in force, it can also be controlled in displacement. The reverse is
not true however and the DCB is an example of such a setup.

5.3.2.4 Control by the crack length

As explained in section 5.1.2.3, it is also possible to look at the evolution of
the load t(ℓ) that is required to obtain an increasing length ℓ. The quasistatic
propagation rules give:

1. taking t = q, − 1
2q(ℓ)

2R′(ℓ) = Gc that is:

q(ℓ) =

√
− 2Gc

R′(ℓ)
(5.45)

the sign of q′(ℓ) is equal to the sign of R′′(ℓ)

2. taking t = Q, 1
2Q(ℓ)2S′(ℓ) = Gc that is:

Q(ℓ) =

√
2Gc

S′(ℓ)
(5.46)

the sign of Q′(ℓ) is equal to the sign of −S′′(ℓ)

This leads to three possible situations:

1. Hardening: if S′′ < 0 (which implies R′′ > 0), then q′ > 0 and
Q′ > 0. The propagation can be controlled both in displacement
and force control.

2. Softening: if S′′ > 0 and R′′ > 0, then q′ > 0 and Q′ < 0. The
propagation can be controlled in displacement but not in force.

3. Snapback: if R′′ < 0 (which implies S′′ > 0), then q′ < 0 and Q′ < 0.
The propagation can neither be controlled in displacement nor in
force. It means that if the load is increased a dynamical propagation
phase cannot be avoided.
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For the DCB, we can easily check using Eq. 5.39, that S′′ > 0 and R′′ > 0
so that the configuration corresponds to the second case. Examples of other
configurations corresponding to the three cases can be found in [Marigo, 2016].

5.4 Perturbed crack geometries

5.4.1 Why studying distorted/perturbed crack geometries?

Usually, the dangerousness of a crack is estimated using simplified smoothed-
out geometries with planar crack faces and a regular front shape (circular,
elliptical or straight in general). This raises several questions:

• are these shapes configurationally stable, in other words, what is the im-
pact of small imperfections? Is there a risk that they amplify during prop-
agation until the smoothed-out model becomes unrelevant or even leads to
underestimation of a potential risk of catastrophic failure? Feedback from
field experience, notably in aeronautics, shows that omitting small scale im-
perfections is efficient to avoid fatal breakdown. Use of the perturbation
approaches has allowed to prove it for most engineering actual situations
[Lazarus, 2011]. However, this will have to be confirmed for breakthrough
materials and technologies, notably those planned to respond to the urgency
of the ecological transition. For instance, the turbines envisaged in the CFM
RISE project have a unprecedented size with 4 meters of diameter and an
open air fan whose resistance to breakage must be guaranteed, in order that
there is no risk of passengers being decapitated by a blade. Increase of the
use of additive manufacturing comes also with a risk due to the inherent
heterogeneities and anisotropy [Corre and Lazarus, 2021] introduced by the
process and the directional printing process.

• the simplification leads to the introduction of safety coefficient to make
up for our ignorance. Their overestimation while being necessary to ensure
safety, has a not negligible ecological footprint. This raises the question of the
possibility to find a safe tradeoff by taking into account more complexities:
geometry, mixed mode load, heterogeneities, anisotropy.

After having introduced the principle of perturbation approaches (§5.4.2), we
will illustrate how they can be used with these aims on two examples we have
dealt with recently: crack propagation in presence of mode III (§5.4.3) and
distorted crack shape in damage tolerance approaches (§5.4.4).

5.4.2 Perturbation approaches

To illustrate the idea of perturbation approaches, consider a planar crack
embedded in an infinite body and loaded in mode I through some remote
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δ(s)n⃗(s)

F

σ

s0s

FIGURE 5.12: Planar crack loaded remotely by a remote tensile stress σ,
perturbed by some coplanar propagation δ(s)n⃗(s).

tensile σ stress (Fig 5.12). Denote KI(s) the SIF factor at point s along the
crack front, D(s0, s) the distance between two points of F , W (s0, s) a kernel
linked to the Bueckner [Bueckner, 1987] weight-functions, that is to the SIF
at point s0 when a unit doublet of point forces are applied in the vicinity of
s [Lazarus, 2011].

Slightly perturbed the crack front in its plane moving each point by a small
amount δ(s)n⃗(s) in the normal direction n⃗(s) (Fig 5.12). To the first order in
δ, the variation δKI(s0) of the SIF at any point s0 along the front is given by:

δKI(s0) =
1

2π
PV

∫

F

W (s0, s)

D2(s0, s)
·K(s) [δ(s)− δ(s0)n⃗(s0).n⃗(s)] ds.

(5.47)
and the variation δW (s0, s1) for any points s0, s1 of the front, by:

δW (s0, s1) =
D2(s0, s1)

2π
PV

∫

F

W (s0, s)W (s1, s)

D2(s0, s)D2(s1, s)
[δ(s)− δ∗∗(s)]ds.

(5.48)
where PV indicates that the integral are taken in the Principal Value sense,
and δ∗∗(s) is a composition of a translation, a rotation and a homothetical
transformation bringing s0, s1 to their final positions s0 + δ(s0)n⃗(s0), s1 +
δ(s1)n⃗(s1).

These formulas have been derived by Rice [Rice, 1989] for tensile remote
loading. They have been extended to deal with shear remote load by Favier
et al. [Favier et al., 2006]. They may be used to study analytically small
distorsions of the crack front [Lazarus, 2011], for instance to verify if a given
shape (straight or circular) is stable, that is remain keep its shape if slightly
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perturbed (e.g. [Rice, 1985; Gao and Rice, 1987; Lazarus and Leblond, 2002])
or to study propagation in an heterogeneous media (e.g. [Vasoya et al., 2016;
Lebihain et al., 2020, subm]). They may also be used iteratively to study
numerically any large perturbations of the front (e.g. [Bower and Ortiz, 1990;
Lazarus, 2003; David and Lazarus, 2022]). For the interested readers, more
details about this approach initiated by Bueckner [Bueckner, 1987]-Rice[Rice,
1985] can be found in my review paper [Lazarus, 2011]. Analoguous formulas,
although more complex exists for out of plane perturbations [Movchan et al.,
1998; Leblond et al., 2011]. In the sequel I will illustrate on two examples
how these perturbation approaches can help to meet the challenges drawn in
section 5.4.1.

5.4.3 Crack propagation in presence of mode III

Sample

16

Sample

17

Sample

18

a b c

FIGURE 5.13: Facets/segments formation and coalescence as observed by
transparency in fatigue bending experiments performed on PMMA [Chen
et al., 2015; Cambonie et al., 2019; Lazarus et al., 2020; Hattali et al., 2021].
Columns a, b: In-situ pictures of the facets in three different samples (num-
bered 16, 17, 18) observed at increasing stages of the propagation outlining
the facet apparition and further coalescence: (a) perspective view; (b) bot-
tom (first row) and front views (second row). Column c: typical postmortem
picture of the fracture facies; the black surface corresponds to the fracture
surface left by the segments and the white lines to the ultimate fracture of
the ligaments between them. The bar scales are all 1 mm.

The first is about crack propagation in presence of mode III. In this case,
it is well-known [Sommer, 1969] that the propagation is not smooth but that
segmentation/facetisation of the surface (Fig 5.13) usually appears. Using per-
turbation approach to get the variation of the SIF linked to the superposition
of (i) a small in-plane wavy distorsion of the front, and (ii) a small out-of-plane
wavy perturbation of the surface, we show that the trivial solution of straight
propagation becomes unstable when KIII/KI is larger than a threshold de-
pending on ν [Leblond et al., 2011]. However this value appeared to be too
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FIGURE 5.14: Left: Patchwork of the simulated shapes by the perturbation
approach. Right: Evolution of the number of loading cycles with the evolution
of the radius of a circular crack with the same surface area. Whatever the
shape, this evolution is almost the same than for a circular crack. Therefore,
a complex shape may safely be replaced by a circular crack of same area.

large in comparison with the experiments [Pham and Ravi-Chandar, 2014].
This could be explained performing calculations using phase-field method
[Chen et al., 2015]: these calculations showed that (i) the instability is sub-
critical, meaning that out-of-plane propagation may occur under the KIII/KI

threshold, being triggered by unavoidable defects, as observed in most of the
experiments; (ii) the wavy perturbation grows to take the shape of facets ob-
served experimentally. Once the facets have appeared, the crack propagation
is ruled by the advance of their front. At these fronts, the SIF are lower than
the ones of the initial front, due to the remaining ligaments between the facets.
This induces an apparent toughening that can be quantified using a multiscale
Cohesive Zone model [Leblond et al., 2015]. Comparison between this model
and experiments leads to a good agreement [Hattali et al., 2021].

This example illustrates that taking into account the small scale distorsions
induced by mode III using perturbation approach permits to obtain refined
predictions of the fracture threshold in comparison to the ones corresponding
to the smoothed out geometry.

5.4.4 Influence of distorted crack shape in damage tolerance
approaches

Second example concerns damage tolerance approaches (section 5.1.4). To
study the influence of distorted crack shape on lifetime prediction [David and
Lazarus, 2022], we used an incremental version of the perturbation formulas
(Eq. 5.47-5.48) to simulate the propagation of a huge number of crack shapes
following Paris’s law (Eq. 5.18). We showed that whatever the initial shape and
the Paris coefficients C and n, (i) they all tend towards a circular shape, (ii) the
evolution of the crack’s surface area with the number of cycles is independent
of the initial shape, (iii) using the surface as a measurement of crack size
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yields more accurate lifetime assessments than taking the circumcircle as is
done usually (Fig 5.14). Here again it illustrates that taking into account
distorsion of the geometry permits to estimate accurately the induced increase
of toughness.

5.5 Conclusion

Linear Elastic Fracture Mechanics is a comprehensive framework to determine
when and how a crack propagates. The load applied to the structure is ampli-
fied in the vicinity of the crack tip by a stress concentration effect (Fig. 5.1).
The Stress Intensity Factors and the Energy Release Rate quantify this am-
plification, hence are the reference quantities to determine the conditions of
crack propagation. LEFM has shown its efficiency to reduce catastrophic fail-
ure of sensitive components, notably in aeronautics, thanks nevertheless to
the application of safety margins. Their overestimation has a not negligible
ecological footprint. This raises the question of the possibility to find a safe
tradeoff by taking into account more complexities: geometry, mixed mode
load, heterogeneities, anisotropy. Methods as perturbation approaches can be
useful for this purpose.
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Global approach to fracture

Jacques Besson

Centre des Matériaux — CNRS UMR 7633 — Mines Paris PSL

The global approach to fracture allows the evaluation of the fracture prop-
erties of materials. It is based on a macroscopic evaluation of the fracture
energy without trying to finely describe the physical damage processes. The
methodology was initially developed to describe the brittle fracture of elastic
materials. It was then extended to elastoplastic materials using the analogy
between a nonlinear elastic material and a plastic material.

6.1 Introduction

The assessment of the mechanical integrity of structures that may contain
cracks must be performed to ensure safety. Cracks can be detected using non-
destructive techniques (NDT) such as ultrasonic testing, radiography, and
visual inspection. It is often required to assume that a crack having a size
smaller than the size that can be detected using NDT exists. Cracks may
appear during material processing and during the manufacturing of structures.
In-service loading such as fatigue and/or corrosion may also lead to crack
initiation and propagation.

The so-called “global” approach to fracture may be used for the safety
assessment of cracked structures. It has been developed extensively over the
last decades and it is nowadays largely applied. The first section (6.2) presents
the foundations of the approach in cases where plasticity is limited so that the
overall behavior of the structure remains elastic. This corresponds to Linear
Elastic Fracture Mechanics (LEFM). Cases, where the overall behavior is non-
linear, are discussed in section 6.3. This corresponds to Non Linear Fracture
Mechanics (NLFM).

Both LEFM and NLFM lead to the definition of parameters characteriz-
ing the loading at the crack tip: KI , T , J , Q (these parameters are described
below). As these parameters cannot be directly measured; they must be eval-
uated using techniques described in section 6.4.

Analysis of crack tip loading often assumes plane stress and plane strain
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states. These hypotheses are compared with 3D simulations in the case of a
CT specimen in section 6.5.

Section 6.6 describes the standardized experimental procedure used to eval-
uate critical values for KI and J as well as the ductile crack growth resistance
curves (J—∆a curves).

The limitations of the approach are outlined in section 6.7. In particular,
the fact that these values are not material constants is evidenced.

The text will often mention test specimens such as Compact Tension (CT),
Single Edge Notch Bend (SENB) or Single Edge Notch Tension (SENT) spec-
imens. These specimens are illustrated in fig. 6.1.

CT SENT SENB

FIGURE 6.1: Examples of commonly used test specimens.

6.2 Linear fracture mechanics

Linear fracture mechanics deals with cracks in an elastic material and can
be applied to cases where plastic deformation is limited to the crack tip. In
that case, the overall behavior of the specimen/structure remains linear. This
is, for instance, the case of ferritic steels tested at low temperatures. In the
following, mode I loading (i.e. the loading direction is normal to the crack
plane) will only be considered. Only isotropic materials are considered.
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6.2.1 Stress intensity factor: crack tip stress and displace-
ment fields

The first solution to determine stresses, strains and displacements in the vicin-
ity of a crack tip was proposed by Williams [Williams, 1957] using complex
Airy’s functions. The geometry of the crack is provided in fig. 6.2. The posi-
tion of a material point is given by cylindrical coordinates (r, θ) ; the origin
is the crack tip. In the case of plane strain conditions, stresses are given by:

σxx =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
(6.1)

σyy =
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
(6.2)

σxy =
KI√
2πr

cos
θ

2
sin

θ

2
cos

3θ

2
(6.3)

σzz = ν(σxx + σyy) (6.4)

ν is the Poisson’s ratio. The plane stress case is obtained by taking ν = 0.
The plane strain direction corresponds to the direction of the crack front (see
fig. 6.2). Displacements are given by for plane strains:

ux =
KI

2µ

√
r

2π
cos

θ

2

(
2− 4ν + 2 sin2

θ

2

)
(6.5)

uy =
KI

2µ

√
r

2π
sin

θ

2

(
4− 4ν − 2 cos2

θ

2

)
(6.6)

uz = 0 (6.7)

where µ is the shear modulus. In the above equations, KI , referred to as
the stress intensity factor, is a parameter depending on the crack length and
loading.

Several remarks can be done relative to the previous sets of equations. (i)
Stresses tend to ∞ very close to the crack tip. (ii) The equations are Taylor
expansions only valid near the crack tip.

6.2.2 Energy release rate G

Consider an elastic structure containing a crack of length a. The structure
has a stiffness k which is a function of a. A displacement u is applied to
the structure so that the force is equal to F = ku. If the crack grows by
a small amount da, the stiffness decreases. For a fixed displacement, crack
advance releases energy equal to GBda where G is the energy release rate (see
fig. 6.3). Considering the gray area in fig. 6.3, G can be evaluated as:

GBda =
1

2
k(a)u2 − 1

2
k(a+ da)u2 = −1

2

k

a
u2da (6.8)
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crack x

y

r

θ

⊗
z

FIGURE 6.2: Description of the
crack tip. ⊗ shows the plane strain
direction which is along the z-
direction.

U

F

k
(a

+
da

)

k
(a
)

GBda

∝ (da)2

u

FIGURE 6.3: Energy release rate
in a linear elastic structure

so that:

G = − 1

2B

k

a
u2 = − 1

2B

1

k2
k

a
F 2. (6.9)

Note that k′ = dk/da < 0 as the stiffness of a structure decreases as the crack
length increases. The same result is obtained assuming a constant force is
obtained as the released energy is only increased by an amount which scales
as (da)2 (light gray area in fig. 6.3).

A link can be established between G and KI . For a crack advance ∆a the
opening stress (σyy) (eq. 6.2) drops to 0 over a distance ∆a whereas the cracks
opens over the same distance following eq. 6.6. The resulting work is given by:

∆W = G∆a = B

∫ ∆a

0

σθ=0
yy (x)uθ=π

y (∆a− x)dx (6.10)

=

∫ ∆a

0

KI√
2πx

KI

2µ

√
∆a− x

2π
4(1− ν)dx (6.11)

=
2

π

K2
I

E′

∫ ∆a

0

√
∆a− x

x
dx (6.12)

Noting that the integral in the previous equation is π
2∆a, one gets Irwin’s

formula:

G =
K2

I

E′ (6.13)

where E′ is the reduced Young’s modulus: E′ = E/(1 − ν2) (E: Young’s
modulus).

It then becomes possible to establish a link between KI and the stiffness of
the structure or test specimen. As stresses and, therefore KI depend linearly
on the applied load, one may assume that KI can be expressed as:

KI =
1

B
√
W

fK(a/w)F (6.14)
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where W is a characteristic length of the structure (e.g. the width in a CT
specimen). fK is a function depending on the structure. Using eq. 6.9 together
with Irwin’s formula, one gets:

fK =

√
−1

2

k′

k2
E′BW =

√
1

2
c′E′BW (6.15)

where c = 1/k is the compliance of the structure.

6.2.3 Plastic zone size and Irwin’s correction

The von Mises stress can be evaluated using eqs 6.1 to 6.3 as:

σeq =
KI√
2πr

√
4ν2 − 4ν − 3

2
cos (θ) +

5

2

∣∣∣∣cos
(
θ

2

)∣∣∣∣ =
KI√
2πr

Feq(θ, ν). (6.16)

The limit between the elastic and plastic regions is then determined by solving
σeq = σ0 where σ0 is the yield stress of the material (one assumes here perfect
plasticity). This leads to the following expression for the radius at which the
material is elastic:

rp(θ) =
1

2π

(
KI

σ0

)2

F 2
eq(θ, ν) = ryFeq(θ, ν) (6.17)

In the plane stress case (ν = 0), the plastic zone size ahead of the crack (θ = 0)
is rp = ry with:

ry =
1

2π

(
KI

σ0

)2

.

For plane strain for the incompressible limit case mimicking plasticity (ν →
1/2), one gets rp = 0. The limit between the plastic and elastic domains are
displayed in fig. 6.4.

The overly simplistic above analysis neglects that stresses are changed due
to plasticity and are redistributed to satisfy equilibrium. In the case of plane
stresses, one assumes that the opening stress is equal to σ0 over an unknown
distance Rp. For r > Rp, the stress field is assumed to obey eq. 6.2 where
the position of the crack tip is also unknown. These hypotheses lead to the
following set of equations (where x is the position of the “virtual” crack tip
with respect to R):

equilibrium
∫ ∞

0

KI√
2πr

dr =

∫ Rp

0

σ0dr+

∫ ∞

Rp

KI√
2π(r + x)

dr (6.18)

continuity
KI√

2π(Rp + x)
= σ0 (6.19)

One therefore assumes that the opening stress (σyy) for 0 ≤ x <≤ Rp is equal
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to the yield stress σ0 which is consistent with the plane stress hypothesis. The
solution is: Rp = 2ry and x = −ry where ry is given in eq. 6.17. One notes
that the Rp is twice as large as the uncorrected radius, i.e.:

RPσ
p =

1

π

(
KI

σ0

)2

The plane strain case can be treated following the same lines. One assumes
that the opening stress σyy is equal to ασ0 is the plastic zone, where α > 1 is
referred to as the plasticity constraint factor. The opening stress can exceed
σ0 due to the highly triaxial stress state in the vicinity of the crack tip. One
usually assumes that α = 3 for highly constrained plane strain cases. This
would imply that the plastic zone size is reduced by a factor of 9 (= α2)
compared to the plane stress case. In a practical case, the plane strain state
does not exist at the crack tip surface and the high constraint factor is only
reached ahead of the blunted crack. It is generally accepted [Broek, 1982] that
the plastic zone size is only 3 times smaller than in the plane stress case, i.e.:

RPε
p =

1

3π
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FIGURE 6.4: Plastic zone for dif-
ferent values of ν
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FIGURE 6.5: Irwins’s correction.
α = 1 for plane stress.
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6.2.4 T—stress

As mentioned above, eqs 6.1—6.3 are Taylor expansions close to the crack
tip. A uniform stress in the x direction appears in the second term of the
expansion [C. and Hancock, 1991]:

σxx =
KI√
2πr

fxx(θ) + T. (6.20)

This all induces a modification of stress in the z direction equal to νT . All other
stress components are unchanged. A normalized T—stress can be defined as:

β =
T
√
πa

KI
(6.21)

This factor depends on the relative crack size (a/W ) ad on the specimen
type. A positive (resp. negative)β factor means that the crack tip triaxiality
is increased (resp. decreased). This corresponds to a situation where brittle
failure is favored (resp. potentially delayed).

6.2.5 Small scale yielding — Large scale yielding

The analysis of the stress fields around a crack tip in an elastic material shows
that stresses become very high so that yielding occurs. The size of the zone
where plasticity is active is proportional to Rp ∝ (KI/σ0)

2. Small-scale yield-
ing (SSY) corresponds to situations where Rp is much smaller than the size of
the specimen or structure. In that case, the overall behavior remains linear.
On the other hand, large-scale yielding (LSY) corresponds to situations where
the plastic zone has reached the boundaries of the structure. In that case, the
overall behavior is nonlinear. The distinction between SSY and LSY is impor-
tant with respect to the modeling of fracture. Considering a 3D structure in
cases where the crack reaches the outer surface of the structure, the plastic
zone will indeed reach a free surface. SSY still dominates if the plastic zone
size is much smaller than the thickness of the structure. In that case, plane
strain conditions exist along most of the crack front.

6.3 Nonlinear fracture mechanics

In the previous section, the loading of a crack in an elastic material was
described in terms of stress intensity factor and T—stress. Studying the non-
linear case is indeed more challenging. In the 60s, it was proposed to use
nonlinear elasticity to mimic plastic behavior. Using this hypothesis, it also
became possible to determine the stress/strain fields ahead of the crack.

©by-nc-sa 2023 by MEALOR II



142 MEALOR II

6.3.1 Nonlinear elastic behavior

The nonlinear elastic behavior is described by a stress potential (w) defined
to obtain strains as: ε = ∂w/∂σ:

w(σ) =
1

N + 1
ε0σ0

(
σeq

σ0

)N+1

so that εij = ε0

(
σeq

σ0

)N
3

2

sij
σeq

(6.22)

where σeq is the von Mises stress and s the stress deviator. Such behavior is
incompressible, thus corresponding to von Mises plasticity.

Eq. 6.22 describes a power-law hardening and does not allow for the initial
linear behavior. It is however possible to mimic the plastic behavior for any
given hardening law: σF (p) where σF represents the flow stress and p the
accumulated plastic strain. The stress tensor is given by:

σ = E : (ε− εp) (6.23)

where E is the fourth order elasticity tensor and εp the “plastic strain” which
is directly expressed as:

εp =
3

2
p

s

σeq
(6.24)

This is equivalent to plasticity for purely radial loading (i.e. when s/σeq is
constant). p is given such that:σF (p) = σeq that is p = σ−1

F (σeq). The following
equation must therefore be numerically solved:

σ = E :

(
ε− 3

2
σ−1
F (σeq)

s

σeq

)
. (6.25)

In cases where σeq < σF (0), one gets p = 0 and σ = E : ε which corresponds
to the elastic compressible behavior.

6.3.2 J integral

Path-independent integrals have been introduced into fracture mechanics by
Cherepanov [Cherepanov, 1967] and Rice [Rice, 1968]. Budiansky and Rice
[Budiansky and Rice, 1973] also showed that this “J-integral” is identical
with the energy release rate, i.e.: J = G. This relation has become a common
technique for calculating stress-intensity factors in linear elastic fracture me-
chanics (LEFM). The J-integral is defined as a contour integral around the
crack tip:

J =

∫

Γ

(
wdy − t⃗.

∂u⃗

∂x
ds

)
(6.26)

where Γ is an arbitrary contour around the tip of the crack, n⃗ is the unit vector
normal to Γ. t⃗ is the stress acting on the contour: t⃗ = σ.n⃗. Because of its path
independence [Rice, 1968], the J-integral can be calculated in the remote field
and also characterizes the near-tip situation. This establishes its role as a frac-
ture parameter. However, it should be noted that the path-independence does
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only hold if the following conditions are met: (i) time-independent processes,
no body forces (σij,j = 0), (ii) small strains, (iii) homogeneous hyper-elastic
material, (iv) plane stress-strain field, i.e. no dependence on z and (v) straight
and stress-free crack lips parallel to x.

x

y
Γ

ds

n⃗

t⃗ = σ.n⃗

FIGURE 6.6: The J contour inte-
gral.

U

F

a
+
da

a

GBda

u

FIGURE 6.7: Energy release rate
for a nonlinear material.

6.3.3 HRR fields

Using eq. 6.22, it was shown by Hutchinson [Hutchinson, 1968] and Rice &
Rosengren [Rice and Rosengren, 1968] that the stress, strain, and displacement
fields ahead of the crack tip can be determined1. The resulting fields are
expressed using polar coordinates as (plane strain) [Shih, 1983]:

σij = σ0

(
J

σ0ε0INr

) 1

N + 1
σ̃ij(θ,N) (6.27)

εij = ε0

(
J

σ0ε0INr

) N

N + 1
ε̃ij(θ,N) (6.28)

ui = ε0r

(
J

σ0ε0INr

) N

N + 1
ũi(θ,N) (6.29)

The previous equations depend on J . This dependence is linked to the fact
that the above solution must verify the path independence of eq. 6.26; this
implies that the J integral evaluated with eq. 6.27 for a given r should not
depend on r (i.e. path independence). The non-dimensional functions σ̃ij , ε̃ij ,
and ũi are however, no longer analytical but must be tabulated [Shih, 1983]. In

1Derivations are more detailed in [Hutchinson, 1968] which can be used to implement
the calculations.
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is an integration constant. Fig. 6.8 displays IN as a function of N . An example
of the non-dimensional stress functions is given in fig. 6.9 for N = 10. Note
that the analysis is still performed using a small deformation theory so that
stresses still tend to ∞ as r → 0.
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FIGURE 6.8: IN as a function of
N
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FIGURE 6.9: Functions σ̃rθ, σ̃rr,
σ̃θθ as functions of θ for N = 10.

6.3.4 Crack Tip Opening Displacement (CTOD)

As the crack is loaded, it opens and blunts. The Crack Tip Opening Dis-
placement corresponds to the local opening of the crack during loading. It
can be defined (see fig. 6.10) by the distance between the points on the crack
surface linked to the crack tip with lines of slope ±1. Fig. 6.10 displays the
crack profile for N = 3 and N = 20. For high values of N , the opening is
almost constant along the crack. Considering eq. 6.29 for N → ∞ (which
corresponds to a perfectly plastic material) displacements scale as ui ∝ J/σ0.
The ratio J/σ0 is a distance characteristic of the loading. It is representative
of the “damage process zone”, i.e. the zone where damage (brittle or ductile)
is likely to develop. Following [Anderson, 2005], the CTOD can be estimated
considering the opening displacement uy evaluated for θ = π (eq. 6.6). One
also notes that ux = 0 for θ = π. The opening displacement is then:

uy(θ = π) =
4KI

E′

√
r

2π

Considering Irwin’s correction, one assumes an effective crack at a + ry so
that CTOD can be estimated for (ry, π): In the case of plane strain, with
ry = Rp/2 (with Rp given by eq. 6.2.3 or eq. 6.2.3):

CTOD = 2uy(ry, π) =
8√
2kπ

K2
I

E′σ0
=

8√
2kπ

J

σ0
(6.30)
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with k = 2 for plane stress and k = 6 for plane strain so that CTOD =
1.27J/σ0 in the first case and CTOD = 0.74J/σ0 in the second case. The
previous derivation does not, however, account for finite deformations at the
crack tip. Other expressions for the CTOD can be found in [McMeeking,
1977] which account for the effect of hardening and finite deformations. An
important aspect of the previous equation is the definition of a length rc =
J/σ0 characterizing loading. One notes that:

rc ≈
K2

I

E′σ0
≪ K2

I

σ2
0

≈ Rp

as in most cases E′ ≫ σ0. rc characterizes the size of the damage process zone
(i.e. the zone where strains, stresses and possibly damage are high) which is
much smaller than the plastic zone size.

N = 3

N = 20

90◦

•

•

C
T

O
D

FIGURE 6.10: Crack Tip Opening Displacement (CTOD).

6.3.5 Q factor

As in the case of linear material, the stresses provided by eq. 6.27 are the
first terms of a Taylor expansion. In the case of an elastoplastic material it
was shown in [O’Dowd and Shih, 1991, 1992] that the stress field is shifted by
constant pressure when compared to the HRR stress field:

σij = σHRR
ij +Qσ0δij (6.31)

where the non-dimensional factor Q depends on the specimen geometry and
loading. A positive Q factor means that the crack tip is subjected to higher
triaxial stresses compared to the HRR solution. This corresponds to a situation
where failure (brittle or ductile) will occur earlier. On the contrary, a negative
Q factor leads to lower triaxial stresses so that fracture is delayed.
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6.4 Evaluation of fracture parameters: KI , J, T and Q

In this section, the focus is put on the use of the finite element method to
obtain parameters describing the stress/strain fields close to a crack tip.

6.4.1 Evaluation of KI and J

KI can be calculated from J = G using Irwin’s formula (eq. 6.13). Based
on a finite element solution, using the contour integral defining J (eq. 6.26)
may appear a convenient solution. However, this requires the extrapolation of
stresses and strains at Gauss points to nodes on the contour [Marigo, 2012].
In practice, G is computed as volume integrals on a ring around the crack tip
[de Lorenzi, 1982; SuoCombescure, 1992] using the “virtual crack extension”
method.

The method is depicted in fig. 6.11. One defines a meshed ring (Ω) around
the crack tip. It is bounded by an inside contour (Γi) and an outside con-
tour (Γe). The inside contour is uniformly displaced by the quantity ∆a⃗ (the
virtual crack extension). Displacements are blocked at the outside contour.
Displacements (∆x⃗) are linearly interpolated for FE nodes lying between both
contours. G is then given by:

G =
1

||∆a⃗||

∫

Ω

(
σ.

∂u⃗

∂x⃗
− w1

)
.
∂∆x⃗

∂x⃗
dΩ (6.32)

where u⃗, σ are solutions of the FE problem. The strain energy w is computed
as:

w =

∫

history

σ : dε

in cases where w is not explicitly defined (as in eq. 6.22). The integral over
Ω as well as ∂∆x⃗/∂x⃗ are evaluated using standard FE procedures. As the
virtual displacement ∆x⃗ is proportional to ∆a⃗, G evaluated using eq. 6.32 is
independent of the selected ∆a⃗.

Mesh independence?

The independence of the J path integral is only valid if the material is assumed
to be nonlinear elastic. However, most of the time J is computed by post-
processing elasto-plastic simulations. To quantify the error which is created
in that case, a CT specimen is simulated using the following work-hardening
law2:

σF (p) = 480 + 211(1− exp(−18p)) + 279(1− exp(−3.5p)) (MPa) (6.33)

2This hardening law corresponds to that of a nuclear pressure vessel and will be used
for the other examples of this text.
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FIGURE 6.11: Virtual crack extension method to compute G.

with E = 204GPa and ν = 0.3. The J integral is computed for 10 contours
around the crack tip. When using a nonlinear elastic behavior (eq. 6.25), it is
verified that J does not depend on the used contour. This value of J is then
used as a reference value for comparison with results obtained using von Mises
plasticity. Fig. 6.12 shows the ratio of J for the ith contour (i = 1 . . . 10) to
the reference value. The plots indicate that J is not path independent in the
case of an elastoplastic behavior. However, the error remains limited (< 3% in
that case). It is also always best to use contours far from the crack tip where
plasticity is limited. More details can be found in [Brocks and Scheider, 2008].

6.4.2 Evaluation of the T stress

The T stress can be evaluated following [Yang and Ravi-Chandar, 1999] and
[Chen et al., 2001]. Considering eq. 6.1 and eq. 6.2, one notes that:

σxx − σyy|θ=0 = T +O(r1/2) (6.34)

The T stress can therefore be computed by post-processing simulations (linear
elastic behavior) to plot the difference between both stress components and
get T . This method is however inaccurate and the method proposed in [Chen
et al., 2001] provides much better results. The method relies on a contour
integral given by (plane strain case):

I =
E

1− ν2

∫

Γ

(u⃗.σ∗ − u⃗∗.σ).n⃗ dC (6.35)

using the following values for σ∗ and u⃗∗:

σ∗
xx =

cos 2θ + cos 4θ

2πr2
, σ∗

yy =
cos 2θ − cos 4θ

2πr2
, σ∗

xy =
sin 4θ

2πr2
(6.36)
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FIGURE 6.12: Ratio of J computed with an elasto-plastic behavior to the
reference J computed with the corresponding nonlinear elastic behavior for
various contours (shown by the image of half a CT specimen).

and

u∗
x = − 1

4πr

κ cos θ + cos 3θ

2ν
, u∗

y = − 1

4πr

−κ sin θ + sin θ

2ν
(6.37)

As in the case of the J integral, the computation of a contour integral in
hardly suitable using the FE method. The contour integral can be replaced
by a volume integral which is given by:

I =
E

1− ν2

∫

Ω

((u⃗FE − u⃗FE
tip ).σ

∗ − u⃗∗.σFE). ⃗gradq dΩ (6.38)

Quantities marked as ·FE are the results of the FE simulations. u⃗FE
tip is the

computed displacement of the crack tip so that there is no need to assume
that it is fixed. The q⃗ field is equal to e⃗x on Γi and 0⃗ on Γe (see fig. 6.11) and
linearly interpolated in between.

T factors for CT (fig. 6.15) and MT (fig. 6.13-a) are plotted in fig. 6.13. It
is observed that the simple method using the difference between σxx and σyy

does not provide a constant value for the T stress along the ligament ahead
of the crack tip. On the other hand, the integral method provides a constant
value for T which does not depend on the selected integration ring.
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FIGURE 6.13: Calculation of the T stress for CT specimens and MT spec-
imens. (a) View of the MT specimen (only 1

4 of the specimen is actually
meshed.) (b) β parameter computed using eq. 6.34 as a function of the rela-
tive position in the ligament (thin lines). The thick lines represent the values
obtained with the interaction integral (eq. 6.38).

6.4.3 Evaluation of the Q factor

The Q factor was introduced by O’Dowd and Shih [O’Dowd and Shih, 1991]
to better describe the stress field ahead of a crack tip in the case of finite plas-
ticity. Due to plasticity, the initially sharp crack blunts are shown in fig. 6.10
causing stress redistribution. The Q factor is difficult to evaluate as its evalua-
tion relies on the simulation of a specimen using finite strains, the computation
of the J integral and the evaluation of the HRR stress field for the evaluated
J . Q is then obtained by comparing the FE stress field and the HRR stress
fields. Due to blunting, both fields strongly differ close to the crack tip so that
the comparison is performed at a distance equal to 2× J/σ0.

The first difficulty arises from the fact that the hardening law used to model
the material is not always a power law required to evaluate the HRR field.
In this example, the hardening law used in sec. 6.5 is employed. A power law
function is fitted to match the stress-strain curve (Cauchy stress/logarithmic
strain). The fit is performed for a plastic strain equal to two times the strain
at the onset of necking. This leads to: N = 6.49, ε0 = 0.006 while σ0 was
set for the yield stress (i.e. 480MPa

√
m). As ε0 and σ0 are not independent

the Q factor is evaluated at a distance from the crack tip equal to rc =
2J/σY where σY is the average of the yield stress and the ultimate tensile
stress (σY = 584MPa in the present case). Another method to evaluate the
reference solution is to use a small-scale yielding model consisting of a circular
region of radius Rext → ∞ containing a crack and subjected to an increased
displacement of the elastic mode I singular field applied on the far outer
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boundary (eq. 6.5, 6.6). J can be computed using Irwin’s formula using the
applied KI as the SSY condition prevails [McMeeking, 1977; Chen et al., 2020].
Q is then computed as:

Q =
σFE
yy − σHRR

yy

σY

∣∣∣∣∣
x=2rc

An example of the evaluation of Q is given in fig. 6.14 in the case of a CT
specimen and a SENT specimen. The evaluation is done for J = 294 kJ/m2

in both cases. In the case of the CT specimen Q = −0.3 which is close to 0
and indicates a highly constrained state. On the other hand, Q = −1.16 for
the SENT specimen which is much less constrained than the CT. This clearly
indicates that CT specimens are likely to fail for lower values of a failure
criterion (KIc or Jc) than SENT specimens.
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a/W = 0.5
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a/W = 0.5

FIGURE 6.14: Evaluation of the Q-factor for (a) a CT specimen and (b) a
SENT specimen. J = 294 kJ/m2.

6.5 Plane stress, plane strain and 3D cases

In many cases, fracture analysis is made using the assumption that the stress
state corresponds to either plane stress or plane strain. These conditions are
indeed impossible to meet when performing actual tests. Assuming finite strain
plasticity (i.e. accounting for the thickness reduction due to large deforma-
tion), FE simulations under plane stress conditions lead to localized strains
ahead of the crack tip within one row of elements (see below). This implies
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FIGURE 6.15: (a) FE mesh of the specimen using symmetries (1T). (b) Open-
ing stress distribution.

that plane stress simulations must be limited to cases where plasticity is very
limited.

To compare the stress/stain states obtained using the different assump-
tions, a Compact Tension specimen (CT) is simulated using finite strain plas-
ticity.3 The specimen corresponds to the ASTM standard [ASTM-E1820, 2008]
with a width (W ) equal to 50mm and a crack length (a) equal to 25mm. Sev-
eral thicknesses are used: 25mm (1T, which is the thickness recommended by
the standard), 12.5mm ( 12T), 6.25mm ( 14T), and 3.125mm ( 18T). A typical
FE mesh used for the calculations is shown in fig. 6.15-(a). Symmetries are
accounted for so that only 1

4 of the specimen of represented. Simulations are
carried out up to a Crack Mouth Opening Displacement (CMOD) equal to
4.9mm.

The opening stress field for the CT-1T specimen is shown in fig. 6.15-(b).
A significant stress gradient is observed along the crack with stresses being
maximum at the center of the specimen. Plane stress conditions indeed prevail
at both ends of the crack front due to the free surface as there are no stresses
applied on the sample surface in the through-thickness direction. One can
note that the maximum opening stress (1800MPa) is much higher than the
yield stress due to an increase in stress triaxiality in the 3D structure. This
causes rapid void growth in the case of ductile failure or early failure for brittle
materials.

Opening stress profiles ahead of the crack tip at the center of the specimens
are plotted in fig. 6.16-(a). In all cases, one observes that the stress maximum

3In the text, the following hardening law is used: σF (p) = 480 + 211(1 − exp(−18p)) +
279(1 − exp(−3.5p))MPa

√
m where σF is the flow stress and p the accumulated plastic

strain strain. Von Mises plasticity is assumed. This hardening law corresponds to that of a
nuclear pressure vessel steel at −50 ◦C.
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is reached ahead of the crack tip. This effect is due to crack blunting, which
creates a free surface at the initial crack tip. One also observes that the profile
obtained for the plane strain case always differs from the 3D case (1T). When
reducing the specimen thickness, the stress maximum decreases but always
remains significantly higher than the stress level obtained assuming plane
stress (green dashed line).

Profiles of the strain along the thickness direction (Ezz) are plotted in
fig. 6.16-(b). The strain is relatively close to the plane strain case (Ezz = 0)
for the 1T specimen but can become strongly negative as the thickness is
reduced. This effect corresponds to local necking at the crack tip. The plane
strain case is specific. The contour plot in fig. 6.16-(b) shows that the strain
is highly localized within one row of elements. This result is made possible by
the fact that Ezz does not derive from a continuous displacement field (i.e.
Ezz = ∂uz/∂z) assuming plane stress.
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FIGURE 6.16: (a) Stress profiles ahead of a crack tip (CT specimens). The
maximum stress for the plane stress case is computed using the maximum
flow stress that can be reached using the hardening law (Eq. 6.33) and a
stress triaxiality equal to 1/

√
3. (b) Strain profiles for different thicknesses

(1T corresponds to a thickness of 25mm). The contour plot shows the strain
distribution for the plane strain case evidencing strong localization.

In order to generate a stress state corresponding more to the plane strain
case, it is possible to machine side grooves (SG) on both sides of the specimens.
The side groove depth is usually 10% of the thickness on both sides of the
specimen. They are relatively sharp, with a radius equal to 0.1mm. Fig. 6.17-
(a) compares stress profiles at the center of the specimen for specimens with
and without side grooves. It can be seen that in that case, the effect of the
side grooves is limited. However (see fig. 6.17-(b)) the stress distribution in
the ligament ahead of the crack is significantly modified. The highly stressed
zone becomes much larger if side grooves are used. In particular, the stress
drop close to the outer surface is almost suppressed. Therefore, side grooves
can efficiently promote a stress/strain state close to plane strain conditions.
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FIGURE 6.17: (a) Stress profile with and without side groove (1T). (b) Open-
ing stress distribution with (left) and without (right) side grooves (SG).

6.6 Testing standards and fracture criteria

The global quantities (KI , T , J and Q) introduced above can be used to derive
fracture criteria. Standards exist which allow the experimental determination
of KI and J . T and Q are to be calculated when needed (see section .6.4). In
the following, two standards will be briefly presented:

ASTM E399 Standard Test Method for Linear-Elastic Plane-Strain Frac-
ture Toughness KIc of Metallic Materials

ASTM E1820 Standard Test Method for Measurement of Fracture Tough-
ness

Other standards exist such as ISO 12135 or BS 7448. They are more or
less equivalent with minor differences which will not be discussed here. In the
following, the details of the standards are not given and the reader should
refer to the original documents to apply the methodology.

6.6.1 Linear elastic fracture — ASTM E399

Griffith’s theory stipulates that fracture occurs when the energy release rate
reaches a critical value, so that:

G =
K2

I

E′ = 2γs (6.39)
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where γs is the surface energy. The factor 2 accounts for the fact that cracking
corresponds to the formation of two surfaces. Therefore a “critical” stress in-
tensity (or toughness), KIc can be evaluated as: KIc =

√
2E′γs. In the case of

ferritic steels γs ≈ 1 J/m2 and E′ ≈ 220 GPa so that that the “critical” stress
intensity should be about 0.6MPa

√
m. This is fortunately not the case as

plasticity around the crack significantly increases the fracture energy. Linear
elastic fracture as described by ASTM 399, therefore, corresponds to fracture
under SSY. In particular the standard states (section 9.1.3) TODO that

2.5

(
KIc

σY S

)2

< W − a (6.40)

for the determined KIc value to be valid. σY S is the 0.2% offset yield stress in
tension. W − a corresponds to the size of the uncracked ligament. Recalling
that the plane strain plastic zone size is Rp = 1

3π (KI/σY S)
2 (sec. 6.2.3) the

previous equation can be rewritten using Rp as:

Rp <
1

24
(W − a) (6.41)

so that the plastic zone size is much smaller than the ligament size ; this
condition indeed corresponds to SSY. Note that the standard tolerates some
nonlinearity in the force-displacement curve.

KI is related to the applied load by the following equation:

KI = fK(a/W )
F

B
√
W

(6.42)

where B is the specimen thickness, a the crack length and W its width. fK
is a nondimensional parameter that depends on the test specimen geometry
and which is provided by the standard. For instance in the case of the CT
specimen, one gets:

fK(a/W ) =
2 + a/W

(1 − a/W )3/2

(

0.886 + 4.64
a

W
− 13.32

(

a

W

)2

+ 14.72

(

a

W

)3

− 5.6

(

a

W

)4)

.

Actual formula may slightly differ from the previous equations (as in the case
of bending specimens). Considering the load at which fracture is considered
to initiate, KIc corresponds to the value of KI computed using this load.

6.6.2 Nonlinear elasto-plastic fracture — ASTM E1820

The ASTM E1820 is used to determine J values from test specimens such as
Compact Tension (CT), Single Edge Notch Bend (SENB) and Disk-shaped
Compact Tension (DCT) specimens. The standard is designed for cases close
to a plane strain state. The standard can be applied in the fully brittle regime
(no ductile crack advance), in the fully ductile regime and in the transition
regime where a small ductile crack advance may occur before brittle failure.
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Note that the overall behavior may be nonlinear in the fully brittle regime.
The standard assumes that J can be decomposed into an elastic part and a
plastic part as:

J = Je + Jp. (6.43)

As shown in [Ernst et al., 1981] this decomposition is only possible if the load
can be expressed as the product of a function of the plastic displacement (vp)
and a function of the crack length as:

F = G(a/W )H(vp/W ). (6.44)

This decomposition has been proved experimentally in [Sharobeam and Lan-
des, 1991, 1993] using various types of specimens (CT, SENB, CCT, SENT),
different crack lengths and different materials. All specimens were machined
with a blunted notch to delay crack initiation.

Je is computed using Irwin’s formula (eq. 6.13) with KI being evaluated
using eq. 6.42. This evaluation of Jp used the area under the force versus
displacement curve Ap as shown in fig. 6.18. Ap represents the dissipated
energy. Following [Ernst et al., 1981], Jp can then be expressed for a non-
propagating crack as:

Jp = ηp
Ap

BN (W − a)
(6.45)

where ηp is a non-dimensional factor depending on the specimen geometry.
BN is the net specimen thickness accounting for the presence of side grooves.
ηp can be derived analytically as in [Merkle and Corten, 1974] but is nowadays
computed using the finite element method [Cravero and Ruggieri, 2007]. The
method is then based on the following steps: (i) perform an elastoplastic sim-
ulation of a cracked specimen, (ii) evaluation J , (iii) compute Jp as J − Je (it
is here assumed that fK is known), (iv) evaluate Ap from the FE simulation,
(v) plot Jp as a function of Ap/B(W − a). One should then obtain a linear
relation between Jp and Ap/B(W − a) the slope of which corresponds to ηp.

Eq. 6.45 is only valid for a non-propagating crack. The case of a propagat-
ing crack is also described by the standard base on the work of [Ernst et al.,
1981]. An incremental expression to compute Jp is used (where k represents
a loading step):

Jk
p =

[
Jk−1
p +

ηk−1
p

bk−1BN

(
Ak

p −Ak−1
p

)
]
×
[
1 +

γk−1
p

bk−1

(
ak − ak−1

)
]

(6.46)

where b = W − a and γp is a non dimensional factor related to ηp as:

γp = ηp − 1− b

W

η′p
ηp

(6.47)

with η′p = dηp/d(a/W ). Eq. 6.45 is retrieved if a is constant. The standard
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gives a simple expression for γp which is very close to eq. 6.47. For example,
in the case of the CT specimens, one gets:

ηp = 2 + 0.522(1− a/W ), γp = 1 + 0.76(1− a/W ).

At this point, experimental data can be processed to obtain J provided
the crack length is known. This is not an issue if brittle failure occurs in the
elastoplastic regime, for instance in the case of ductile to brittle transition.
In the case of a propagating crack, it is necessary to know a for each loading
step. Several methods can be used and the E1820 standard provides in the
case of the so-called “unloading compliance” method. The method consists in
partially unloading the specimen to measure its compliance. Such a test is
illustrated in fig. 6.19 in the case of highly ductile line pipe steel. The change
in compliance is hardly visible and accurate extensometers must be used to
measure the CMOD. As the compliance depends on the crack length a vari-
ation in compliance can be related to a variation in crack length. The main
difficulty of this method is that the compliance is modified during loading due
to the change in geometry. The standard accounts for the rotation on speci-
mens such as CT or SENB. It does not account for changes due to plasticity.
The corrected compliance in the unrotated configuration is then evaluated as:

Cc = Cm × c (6.48)

where c is a correction factor depending on the geometry and the opening
displacement. Cc is then used to compute the following factor:

u =
1

1 +
√
BeECc

(6.49)

where Be is used to account for the presence of side grooves with:

Be = B − (B −BN )2

B
(6.50)
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FIGURE 6.20: J—∆a curves for a vintage X52 line pipe steel. CT specimen
with B = 10 mm and W − a = 13 mm.

It is important to outline that the presence of side grooves is accounted for
differently in the elastic case (use Be in eq. 6.50) or plastic case (use of BN

in eq. 6.45 and eq. 6.46). In the absence of side grooves B = BN = Be. Note
also that E (and not E′) is used in eq. 6.49. Finally, a/W can be expressed
as a function of u. In the standard, a polynomial function is used. Processing
the experimental data lead to the determination of the crack advance resis-
tance curve J—∆a where ∆a = a − a0 is the crack advance. Such a curve
is plotted in fig. 6.20. In this figure, one can observe a significant influence
of the rotation correction. The standard defines a J at crack initiation (J0.2)
which corresponds to the intersection of the curve with the so-called “offset
line” which has the following expression:

J = 2σY (a− 0.2(mm))

where

σY =
1

2
(σY S + UTS)

where UTS is the ultimate tensile stress. The intersection can be easily de-
termined by fitting the experimental data as J = J0(∆a/∆a0)

n (red curve in
fig. 6.20). The line ∆a = J/(2σY ) can be interpreted as the crack advance
due to blunting only (red dashed line in fig. 6.20). In that case, crack advance
is assumed to be half of the CTOD which is implicitly assumed to be equal
to J/σY . J0.2 therefore corresponds to the value of J which the crack has
actually grown by 0.2 mm. As evidenced in fig. 6.20 the initial slope of the
J—∆a curve is not always equal to 2σY .
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The standard also gives conditions for the test to be valid. In particular,
the specimen dimensions should be such that:

B, W − a > 10J/σY = 10rc (6.51)

which mechanics that the size of the specimen must be much smaller than the
size of the damage process zone (see sec. 6.3.4 in which σ0 is replaced by σY ).
The maximum valid J is therefore Jlim = min(B,W − a)σY /10. Jlim is shown
in fig. 6.20.

Any value of J can be converted into a fracture toughness KJ using Irwin’s
formula: KJ =

√
JE′. In particular, KJ0.2

may be considered a critical value
when designing structures in the ductile regime. In the case of brittle fracture,
KIc =

√
JcE′ is considered as the toughness where Jc is the value of J at

fracture.

6.6.3 Fracture criteria?

Based on the idea that fracture corresponds to the creation of two surfaces
so that Gc ≈ 2γs, using a constant value for KIc =

√
GcE′ as a failure

criterion may appear reasonable. This approach appears to be working in the
case of brittle material such as glass or ceramics which experiences little or
no plasticity.

In the case of plastic materials, one may assume a critical value for KJ ,
i.e.KJc. In the case of brittle fracture scatter is to be expected [Beremin,
1983; Pineau et al., 2016]. This has led to the ASTM E1921 (Master curve
approach).

In the case of ductile fracture, one may assume a critical value for J0.2 (or
corresponding KJ0.2

) to describe crack initiation. If crack growth needs to be
defined, the entire J—∆a curve can be used.

6.7 Limitations of the global approach to fracture

Assuming that fracture parameters are intrinsic materials values was shown
not to be correct. In the following, three examples are given which demonstrate
that these parameters are not constant but depend on the specimen/structure
geometry and loading history.

6.7.1 Effect of geometry: brittle fracture

Experimental studies by [Sumpter and Forbes, 1992] and [Sumpter, 1993] on
SENB (Single Edge Notch Bending) and CCP (center crack panel) specimens
have evidenced a strong effect of the ratio a/W on the value of the J integral
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at crack initiation. The study was carried out at −50 ◦C on an A36 steel (brit-
tle failure). As a/W is increased in SENB specimens, J1c strongly decreases
as shown on fig. 6.21. These experimental results clearly showed that using
a using value for Jc as a failure criterion was not appropriate. The use of a
two-parameters global failure criterion using J and Q was then proposed in
[O’Dowd and Shih, 1991, 1992]. It is then possible to define a unique failure
locus as shown on fig. 6.22. The observed scatter is inherent to brittle fail-
ure. The observed failure behavior can be qualitatively explained by the RKR
model [Ritchie et al., 1973]. The main result is that the local stress triaxiality
varies depending on the crack depth. For low values of the crack length, the
Q factor is negative so that the local stress triaxiality is less than for long
cracks. A higher load level (i.e. a higher value of J) must be applied to locally
reach the critical stress, σc. Similar considerations explain the differences be-
tween SENB and CCP specimens. It is therefore clear that a unique value
for KIc cannot be defined. Using values obtained for high values of Q (i.e.
using CT specimens) leads to conservatism which may be detrimental (over-
conservatism!). For instance, pressurized pipes are loaded in tension which
corresponds to the loading applied using a SENT sample (negative Q). Values
of KIc obtained using CT specimen (slightly positive Q) leads to conservatism.

fit
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FIGURE 6.21: Evolution of JIc
as a function of a/W for SENB
specimens for a type A36 steel at
−50 ◦C [Sumpter, 1993; Sumpter
and Forbes, 1992].

fit
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FIGURE 6.22: Evolution of J1c as a
function of Q for SENB and CCP
specimens for a type A36 steel at
−50 ◦C [Sumpter and Forbes, 1992;
Sumpter, 1993; O’Dowd et al., 1995].

6.7.2 Effect of geometry: ductile fracture

Fig. 6.23 compares the J—∆a curves obtained on a ferritic steel for a Compact
Tension (CT) specimen and Single Edge Notch Tensile (SENT) specimen [Ku-
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FIGURE 6.23: J—∆a curves for SENT and CT specimens (C–Mn steel [Ku-
mar et al., 2022]).

mar et al., 2022]. It can be noticed that the SENT specimen leads to higher
J values than the CT specimens. J0.2 is equal to 512 kJ/m2 for the SENT
specimen; it is however not valid due to the relatively small ligament of the
specimen (≃ 7.5mm). J0.2 is equal to 296 kJ/m2 for the CT specimen. This
value is valid according to the standard. SENT specimens are interesting as
they are representative of loadings experienced by pipes [Thaulow et al., 2004].
They lead to higher values for J so that conservatism in the design can be
reduced. However, they are more difficult to machine as they require more
material than CT specimens. Validity is more difficult to verify due to the
higher toughness values.

6.7.3 Warm pre-stress effect (WPS)

The warm pre-stress effect [Roos et al., 1998; Lefevre et al., 2002; Bordet et al.,
2006] plays a key role in the assessment of nuclear pressure vessel integrity
during a pressurized thermal shock (PTS), for example, a loss of coolant ac-
cident (LOCA). One considers here the case of brittle fracture of a pressure
vessel steel. In fig. 6.24, the gray area represents the domain where the fracture
occurs when the cracked specimen is cooled down to a given temperature and
then tested (red loading path). This corresponds to fracture under isothermal
conditions. The domain is based on the Master Curve approach [Wallin, 1999;
ASTM-E1921, 2008]. Its lower and upper limits correspond to a 5% and a
95% failure probability.

Two thermomechanical cycles are also shown in fig. 6.24 to illustrate the
WPS effect. In both cases, a pre-cracked specimen is first loaded in the upper
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shelf of the transition curve at a temperature T1 and at values of K or J
which are below that corresponding to fracture (KIc(T1) or Jc(T1)). In the
first type of cycle (black load path), the specimen is slowly cooled at con-
stant load down to a lower temperature T2 which corresponds to the lower
shelf regime. The transition curve can be crossed without observing any frac-
ture. This is simply due to the fact that plastic deformation is necessary to
initiate cleavage fracture [Beremin, 1983]. As the yield strength of the mate-
rial increases when the temperature is decreased no plastic deformation takes
place during the cooling process, in particular when the transition curve is
crossed. At temperature T2, a higher value of the stress intensity factor has to
be applied to initiate cleavage fracture. This cycle, called load–cool–fracture
(LCF), produces a significant increase in the fracture toughness, compared to
the value determined under isothermal conditions at the same temperature,
T2. The second type of thermomechanical loading (load–unload–cool–fracture
or LUCF, blue loading path) is a little more complex since it involves a first
loading, followed by unloading at temperature T1, then the cooling step and
the final test to fracture. Here again, an apparent increase of the fracture
toughness is observed at temperature T2.

It is even possible to increase KI while decreasing temperature (dashed
path in fig. 6.24). This was experimentally demonstrated in [Bordet et al.,
2006]. Assuming that brittle fracture occurs only if plasticity is active and
considering that the size of the plastic zone should not increase, the following
condition should be respected in order to avoid fracture during the test4:

1

KI

∣∣∣∣
KI

T

∣∣∣∣ <
1

σY S

∣∣∣σY S

T

∣∣∣

or considering the size of the damage process zone:

1

KI

∣∣∣∣
KI

T

∣∣∣∣ <
1

2

[
1

σY

∣∣∣σY

T

∣∣∣+ 1

E′

∣∣∣∣
E′

T

∣∣∣∣
]
.

Needless to say, a unique value for KIc(T ) cannot represent the WPS effect.

6.7.4 Conclusions and need for the local approach

The above examples are evidence that a unique fracture parameter cannot
describe complex situations. This can lead to conservatism e.g. when CT
specimens are used to determine toughness which can be used for the safety
assessment of structures such as pipes or pressure vessels for which the Q
factor is strongly negative. Over-conservatism remains an issue if light-weight
structures are assessed or when the initial material properties are reduced due
to aging (temperature, irradiation,. . . ).

To solve these issues, the local approach to fracture can be used. It uses

4Considering that dσY S/dT < 0, dσY /dT < 0 and dE′/dT < 0.
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FIGURE 6.24: Loading paths used to evidence the WPS effect. CF: Cool—
Load, LCF: Load—Cool—Fracture, LUCF: Load—Unload—Cool—Fracture.
The gray area represents failure points obtained using the ‘standard” CF path.

physically based models which can explain the observed trends (see for in-
stance [Lefevre et al., 2002; Bordet et al., 2006] in the case of the WPS effect).
The local approach to failure requires the detailed evaluation of stresses and
strains in areas where fracture may initiate and cracks propagate. A precise
description of the material elastoplastic behavior is therefore needed. Fracture
models, which are described in this book, also require the tuning of material
parameters.

Another limitation of the global approach is that it only deals with cracks
and is a priori unable to analyze defects such as notched and crack initiation
from such defects. The local approach to fracture can handle such situations.

Recommendations on how to use global fracture parameters for the safety
assessment of structures are beyond the scope of this chapter. The SINTAP
procedure [Steel, 1999; Ainsworth et al., 2000] can for instance be used in that
case5.

5ISBN 13 978-0080449470
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brittle transgranular cleavage
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This chapter starts with a general view of brittle fracture mechanisms. Trans-
granular cleavage fracture is then addressed both at the macroscopic scale
(general phenomenology), then in relationship to microstructure (physical
fracture mechanisms). Deterministic and probabilistic modelling approaches
are then reviewed.

7.1 Introduction

Brittle fracture is generally abrupt but may result in a variety of macroscopic
failure modes, as illustrated in Fig. 7.1a. Brittle-elastic fracture occurs with-
out any sign of degradation. During quasi-brittle failure, an abnormal behav-
ior appears well before fracture, due to the energy dissipation by some stable
damage development that also affects the elastic behavior (see the decrease in
stiffness in Fig. 7.1b). Brittle-plastic failure occurs after some plastic deforma-
tion, but still abruptly (Fig. 7.1c). The most favorable case of ductile fracture
(Fig. 7.1d) involves a significant amount of strain and, frequently, after visible
strain localization.

Brittle fracture may involve a variety of physical fracture mechanisms lead-
ing to various kinds of fracture surfaces, but with little or no macroscopic de-
formation (Fig. 7.2a). Fracture mechanisms of amorphous materials are still
controversial and involve successive breakages of atomic bonds, in a more or
less continuous manner. Brittle cracking of crystals may occur along grain
boundaries (intergranular fracture, Fig. 7.2b) or across grains (transgranular
cleavage fracture, Fig. 7.2c). It may depend on thermal or chemical envi-
ronmental conditions. A typical example is stress corrosion cracking, where
coupling a rather ductile material with a weakly-aggressive chemical environ-
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FIGURE 7.1: Macroscopic failure modes as viewed on a load vs. displacement
curve.

ment and a moderate stress level may induce very brittle intergranular or
transgranular fracture.

FIGURE 7.2: Brittle fracture surfaces. (a) Macroscopic view of a broken screw;
(b) intergranular fracture of a zirconium alloy [Chosson, 2014]; (c) transgran-
ular cleavage fracture of a bainitic steel.

The following of this chapter is dedicated to brittle transgranular cleavage
fracture, but one must keep in mind that all physical fracture mechanisms are
in competition against each other. The developed approach (Fig. 7.3) is also
applied to other kinds of fracture behavior:

• Investigation of the fracture event, both at the macroscopic and at the mi-
croscopic scale to identify underlying physical mechanisms.

• Mechanical analysis and modelling to learn how to avoid this particular
brittle fracture phenomenon by either changing the material or the in-service
conditions. When physically based, the model includes information about
the material, i.e., about its microstructure, in the so-called local approach
to fracture.
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FIGURE 7.3: Principle of the local approach to fracture (here, in the case of
a foil blade).

7.2 Macroscopic phenomenology of brittle cleavage
transgranular fracture

7.2.1 Load vs. displacement behavior

In ceramics, cleavage fracture is generally associated with an elastic-brittle be-
havior. In metal alloys, plastic deformation must first occur, at least locally,
in order to reach high levels of stresses that are necessary to break atomic
bonds (typically, a few percent of the Young’s modulus). High stress triaxi-
ality levels close to scratches, notches, and crack tips strongly favor cleavage
fracture in many materials. There are several ways to quantify the resistance
to brittle fracture. The energy absorbed by the specimen (especially in im-
pact tests, Fig. 7.4a), the fracture toughness (Fig. 7.4b) and, more simply, the
fracture strain (Fig. 7.4c) are indicators of the sensitivity to brittle fracture.
Nevertheless, as will be shown later in this chapter, they are not equivalent
to each other. In impact tests, when the load vs. displacement curve is avail-
able (so-called “instrumented tests”), crack initiation is considered to occur at
maximum load. In notched specimens, unless fracture occurs close to general
yielding, stress redistribution by plastic strain often leads to a maximum in
load well before crack initiation [Griffiths and Owen, 1971].

7.2.2 Macroscopic fracture mode

Macroscopic brittle failure is generally associated with fracture surfaces that
are smooth and perpendicular to the maximum principal stress. The brittle
part of the fracture surface frequently appears bright, which allows its area
fraction (so-called “crystallinity”) to be measured using a magnifier (Fig. 7.5).
When zooming in, macroscopic ridges appear to spread from one or several
particular locations, which are fracture initiation sites (Fig. 7.5c). If only one
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FIGURE 7.4: (a) Charpy impact toughness and (b) fracture toughness load vs.
displacement curves of a low alloy ferritic steel (compact tension specimen),
after [Tankoua Yinga, 2015]. (c) Net stress vs. reduction in diameter of a
notched specimen, martensitic steel, after [Tioguem Teagho, 2019].

site appears (white arrow in Fig. 7.5c), fracture might be initiation controlled.
If several sites appear, the fracture process was controlled by crack propaga-
tion.

FIGURE 7.5: Macroscopic view of fracture surfaces of low alloy steels. (a)
Battelle drop weight tear test specimen, low alloy steel, after [Tankoua Yinga,
2015]; (b) fracture toughness specimen; (c) axisymmetric notched specimen,
after [Tankoua Yinga, 2015]. The white arrow in (c) points toward the fracture
initiation site.

7.2.3 Damage development

Transgranular cleavage fracture occurs with little or no visible crack blunting,
and with very low amounts of macroscopic plastic strain (e.g., negligible re-
duction of thickness of fracture toughness specimen, as in Fig. 7.5b). When
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fracture is controlled by initiation (e.g., in ferritic steels at very low temper-
atures), no damage is observed out of the main crack, except of some crack
branching; when fracture is controlled by crack propagation, arrested microc-
racks may be found.

7.3 Physical mechanisms of transgranular cleavage frac-
ture

As will be detailed in this section, the cleavage fracture phenomenon occurs
in three steps that are schematically represented in Fig. 7.6:

FIGURE 7.6: Brittle transgranular cleavage fracture scenario. (a) Microcrack
initiation (here, by fracture of a hard particle); (b) crack propagation across
the matrix and arrest at the first high-misorientation boundary; (c) prop-
agation across that boundary and final fracture. Thin grey lines represent
high-angle boundaries, and thick black lines represent the crack.

1. Initiation of a brittle crack, e.g., from a particle by particle cracking
or by decohesion of the particle/matrix interface (Fig. 7.6a); the
phenomenon may be further assisted by local stress concentrations
close to grain boundaries; in some cases, no particle can be found at
the cleavage initiation site, so that cleavage is supposed to initiate
from locked dislocation pile-up configurations.

2. Propagation of this microcrack into the matrix, and arrest at the
first grain boundary-type obstacle (Fig. 7.6b).

3. Propagation across that grain boundary and then from grain to
grain: unstable final fracture (Fig. 7.6c).
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7.3.1 Crack initiation

Diffraction analysis of fracture surfaces has shown that some amount of plas-
tic strain is necessary to trigger cleavage crack initiation, at least in steels
[Newbury et al., 1974]. In many instances, yet, cleavage fracture starts from
microstructural features that act as stress concentrators. These may be inclu-
sions (Fig. 7.7a), precipitates (Fig. 7.7b), or even products from the incom-
plete decomposition of a parent phase (Fig. 7.7c). The crack initiation site is
frequently located close to the boundary of the first cleavage facet.

FIGURE 7.7: Cleavage crack initiation (a) from a broken T iN inclusion (inset)
in a low alloy steel, after [Bilat, 2007]; (b) from a M23C6 carbide in a stainless
steel, with propagation into ferrite (F ) and martensite (M), after [Godin,
2018]; (c) from a martensite-austenite (M − A) constituent resulting from
incomplete decomposition of austenite into bainite in a low alloy steel, after
[Lambert-Perlade et al., 2004].

7.3.2 Crack propagation

Cleavage fracture occurs along preferential planes in the crystal structure, for
instance, along {001} planes of ferritic iron alloys. As a consequence, cleavage
fracture surfaces exhibit a number of so-called “facets”. Small local crystal
misorientations may result in non-planar propagation, with tiny lines within
the facets that are called “rivers”. The morphology of cleavage fracture surfaces
is thus characterized by facets that contain rivers. In fractographic analysis,
it is considered that rivers spread out from the (local) microcrack initiation
point (Fig. 7.8a). These rivers may actually be steps (e.g., dark features in
the bright facet highlighted with an ellipse in Fig. 7.8c). They can also result
from tearing of a more ductile secondary phase such as retained austenite in
bainitic and martensitic steels (Fig. 7.8d).

As a consequence of the crystallographic characteristics of cleavage crack-
ing, crack propagation across a grain boundary cannot be straight, because the
geometric plane parallel to the {001} cleavage plane of one grain is generally
not a {001} plane of the neighboring grains. Crack deviation is thus observed
(Fig. 7.8b), making cleavage fracture surfaces rather rough at the microscopic
scale. Grain boundaries are thus obstacles to cleavage crack propagation.

The strength of these obstacles depends on the grain boundary misorien-
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FIGURE 7.8: Propagation of cleavage fracture. (a) Cleavage facet with rivers
diverging from the local microcrack nucleation site (highlighted with a star),
after [Laurent, 2007]. (b) Cleavage microcracks deviated or arrested at grain
boundaries: longitudinal section of an axisymmetric notched specimen of a
low alloy ferritic-pearlitic steel fractured at −196 ◦C, after [Lambert-Perlade,
2001]. (c) Rivers resulting from final tearing of steps created by local crystal
misorientations, in a facet oriented nearly parallel to the electron beam (high-
lighted with the dashed ellipse), after [Laurent, 2007]; (d) enlarged view of
rivers resulting from ductile tearing of a secondary phase (white arrows) in a
martensitic stainless steel containing retained austenite, after [Godin, 2018].
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tation angle (more precisely, on the angle between the cleavage plane and the
least misoriented {001} plane of the neighboring grain), but also on the local
orientation of the grain boundary surface with respect to the two grains. In
the so-called “tilt” configuration, crack deviation is rather easy, yet in a mixed
I + II mode (Fig. 7.9a). In the so-called “pure twist” configuration, Fig. 7.9b,
the crack propagation by mixed I + III mode cannot occur at once across
the boundary. Either a ligament is left behind and has to be broken (this
dissipates some energy), or several microcracks propagate in the next grain
from the same boundary, leading to local crack branching (Fig. 7.9b). Another
possibility is also local grain boundary decohesion [Gell and Smith, 1967; Lu
et al., 2010]. All these phenomena significantly contribute to the dissipated
energy.

Grain boundary surfaces being rarely planar, the most frequent situation
is a mixed tilt + twist mode. The minimum (critical) misorientation angle
that leads to microcrack arrest at a grain boundary has been measured by
several authors [Gell and Smith, 1967; Qiao and Argon, 2003; Andrieu, 2013]
and modelled using geometrical considerations in bicrystals [Gell and Smith,
1967; Qiao and Argon, 2003; Stec and Faleskog, 2009]. The higher the twist
component, the lower the critical angle (Fig. 7.9c).

FIGURE 7.9: Propagation of a transgranular cleavage crack across a boundary
in two low alloy steels. Local crack propagation directions are indicated with
white arrows. (a) Tilt configuration in a martensitic steel, after [Chanh, 2022].
(b) Initiation of several parallel cleavage cracks in the same next grain (black
arrows), after [Bilat, 2007]. (c) Crack propagation vs. crack arrest criterion,
from topographic measurements on the fracture surface, and from Gell-Smith
(G−S) [Gell and Smith, 1967], Qiao-Argon (Q−A) [Qiao and Argon, 2003],
and Stec-Faleskog (S − F ) [Stec and Faleskog, 2009] models, after [Tankoua
et al., 2018].

According to the spatial distribution of grain orientations (the so-called
“microtexture”), clusters of several neighboring grains, separated by bound-
aries that do not resist cleavage crack propagation, may be found. They have
been reported as “cube grain clusters” [Ghosh et al., 2016a,b] and as “poten-
tial cleavage facets” [Tankoua et al., 2018]. They provide large cleavage facets
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(Fig. 7.10a) and easy crack propagation paths, detrimental to the resistance
to cleavage cracking. As they may be distributed in an anisotropic manner
following manufacturing processes such as hot or cold forming, an anisotropic
resistance to cleavage may occur (Fig. 7.10b-d) and brittle delamination cracks
may even develop along the tensile axis of broken specimens (Fig. 7.10e). This
“splitting” phenomenon tends to reduce the stress triaxiality, and thus the
probability of brittle fracture normal to the loading direction; on the other
hand, deviation of cleavage delamination cracks may further trigger complete
brittle fracture with low amounts of absorbed energy (Fig. 7.10e) [Tankoua
et al., 2018].

FIGURE 7.10: Effect of clusters of grains favorably oriented for easy cleavage
crack propagation. (a) Easy crack propagation (white arrows) along series of
cleavage facets in a low alloy steel, after [Bilat, 2007]. (b,c,d) Anisotropic re-
sistance to cleavage cracking of a low alloy steel plate, after [Tankoua Yinga,
2015; Tankoua et al., 2018]: black regions are clusters of grains favorably ori-
ented to fracture along the plane of the electron backscatter diffraction map;
experimentally determined critical cleavage fracture stresses are indicated. (e)
Broken axisymmetric notched specimen of the same steel, showing delamina-
tion by cleavage along the plane imaged in (c), followed by final fracture by
cleavage crack deviation toward the tilted plane image in (d), also after [Tank-
oua Yinga, 2015; Tankoua et al., 2018]. RD: rolling direction, TD: transverse
direction; ND: normal direction of the plate.
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7.4 Experimental evaluation of the resistance to brittle
fracture

There are several ways to evaluate the resistance of a given material to brittle
fracture. For very brittle materials such as ceramics, glasses, very high strength
fibers, and certain metal alloys (such as steels) at low temperatures, brittle
fracture may occur under uniaxial tension or under bending of unnotched bars.
The reduction of area at fracture (“fracture strain”, ϵf ) may be used to quantify
the sensitivity to brittle fracture. In the brittle-elastic failure mode this is
equivalent to considering a critical fracture stress, σf , as a single relationship
exists between both quantities.

For materials sensitive to quasi-brittle or brittle-plastic failure, the pres-
ence of a geometric flaw, such as a notch, strongly decreases the fracture
resistance. Close to the geometrical defect, the stress triaxiality is increased,
so that for a given amount of plastic strain, the hydrostatic stress (and, conse-
quently, the maximum principal stress, σI) is higher. The competition between
ductile fracture (favored by higher amounts of plastic strain) and brittle frac-
ture (favored by higher stress levels) is thus modified and fracture may be
triggered even for low amounts of strain, i.e., in a non-ductile manner. To
ensure conservative design of actual components, with complex geometry or
that might contain geometrical flaws, tests on notched specimens (such as the
Charpy specimen shown in Fig. 7.4a) have been widely used for more than
a century. The resistance of flawed specimens to brittle fracture is mainly
characterized using two properties:

• Impact toughness: a specimen (generally bearing a notch) is hit by a hammer
and the absorbed energy, as well as fracture surface features are determined.

• Fracture toughness: a precracked specimen is loaded (generally in a qua-
sistatic manner) until abrupt fracture to derive the critical value of the
stress intensity factor that leads to unstable crack propagation.

7.4.1 Impact toughness

In impact toughness tests, a notched specimen is hit by a hammer attached
to either a pendulum (such as in the Charpy impact test, Fig. 7.11a), or to a
dead weight that is allowed to fall from a given height (as in the Battelle drop
weight tear test, BDWTT, Fig. 7.11b). Standardized practices are available
for both kinds of tests [E28 Committee, 2022; ANSI/API (1996), 1996]. The
notched test piece is loaded in three-point bending, with a given amount of
impact energy that depends on the potential energy of the system just before
the hammer starts falling. Typical levels of impact energy are 20− 100 kJ for
BDWTTs, and 300− 750 J for standard Charpy impact tests.
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FIGURE 7.11: Impact toughness tests: (a) Charpy; (b) BDWTT. Dimensions
are in mm.

Charpy tests (Fig. 7.11a) provide the total amount of energy that is ab-
sorbed by the specimen before fracture, by recording the height reached by
the pendulum after hitting the specimen. Instrumented devices give access to
load vs. displacement curves. In the fully brittle case, an abrupt load drop
is observed well before the maximum load (Fig. 7.12a). The fracture surfaces
of the specimen are then observed at low magnification (Fig. 7.12b); brittle
fracture yields bright, “crystalline” fracture surfaces (Case A), whereas ductile
fracture yields dull, “fibrous” surfaces (Case E). The area fraction of “bright”
regions, which are attributed to brittle fracture (Case B), is estimated, this
is the so-called “crystallinity” parameter. Brittle specimens show negligible
deformation after fracture (Case A) whereas in ductile specimens, close to
the face that is hit by the hammer (thus, loaded in compression during the
bending test), the specimen width has significantly increased. The so-called
“lateral expansion” on the opposite face with respect to the notch is measured
there.

The total duration of an impact test is less than 0.1 s. When the speci-
men is not completely brittle, significant plastic deformation occurs, with a
typical strain rate of a few 102 s−1. As a result, self-heating of the specimen
close to the notch tip may go up to 150 ◦C for an absorbed energy of 85 J in
a steel specimen, even if non-adiabatic thermal conditions prevail during the
test [Tanguy et al., 2005a]. The Charpy absorbed impact energy includes con-
tributions from both plastic deformation (if any), crack initiation, and crack
propagation. The specimen preparation is easy, and the duration of the test is
short, so that hundreds of specimens may be tested in an automated manner
as part of production quality control procedures. The small size of Charpy
specimens also allows monitoring of progressive toughness degradation under
in-service conditions (e.g., radiation-induced embrittlement in nuclear power
plants). On the other hand, modelling of this test requires accurate knowl-

©by-nc-sa 2023 by MEALOR II



178 MEALOR II

edge about the high-speed plastic flow behavior of the material and handling
of contact, viscosity, and self-heating issues. For these reasons, the Charpy
test is mainly used for comparison purposes, either with a reference material
or with product requirements.

FIGURE 7.12: Instrumented Charpy impact tests. Load vs. displacement
curves. Macroscopic views of fracture surfaces for various impact toughness
values. B: brittle; D: ductile (shear); S; delamination split. After [Tank-
oua Yinga, 2015].

The BDWTT test is more severe than the Charpy test, and more represen-
tative of the ability of a material to arrest a long, propagating crack. This test
involves much larger specimens (Fig. 7.11b) and the absorbed energy is gen-
erally not measured, except if an instrumented hammer is used (Fig. 7.13a).
The specimen thickness, B, is the full thickness of the product (or 19mm for
thicker products). The notch is generally obtained by pressing, whereas it is
machined in Charpy specimens. To avoid artefacts induced by the fabrication
of the notch, the fracture surface is quantified at a distance larger than B
from the notch root. It is also quantified at a distance larger than B from the
face hit by the hammer (dashed box in Fig. 7.13b-c). To pass the test, the
crystallinity of the fracture surface inside this region should not exceed 15%.

Brittle fracture may appear normal to the applied stress (as in Charpy
specimens). In addition, as the crack propagates over large distances (71mm,
compared to 8mm for a standard Charpy specimen), brittle fracture may also
appear along tilted planes, causing “abnormal fracture” after some ductile
crack propagation (Fig. 7.13b-c). This appears in the case of an anisotropic
resistance to cleavage fracture (Fig. 7.10). Cleavage crack propagation may
also initiate from the compression faces (so-called “inverse fracture”) or from
delamination cracks (Fig. 7.13c). Such situations are less common in Charpy
specimens cut from the same material, because complete fracture occurs before
favorable conditions for brittle tilted cracking are met [Tankoua et al., 2018].

©by-nc-sa 2023 by MEALOR II



Brittle fracture: physical mechanisms, mechanical assessment 179

FIGURE 7.13: Instrumented BDWTT results, ferritic-bainitic steel. Load vs.
displacement curves and corresponding fracture surfaces. B: brittle; D: ductile
(shear); S; delamination split. The crystallinity is evaluated over the region
delimited by the dashed box. After [Tankoua Yinga, 2015].

7.4.2 Fracture toughness

Fracture toughness specimens are also notched but, before the test, a sharp
fatigue (pre)crack is added under conditions such that the material at the tip
of that precrack is affected only over a very small distance compared to the
plastic zone size expected to develop during the fracture toughness test itself.
In other words, the maximum stress intensity factor, Kmax, experienced to
propagate the precrack, especially at the end of the procedure, should be well
below the expected fracture toughness, KIc. Once precracked, the specimen
is loaded up to fracture. There are several possible loading conditions [E08
Committee, 2022c]. Three typical specimens are shown in Fig. 7.14, namely, a
three-point bending SEN(B) specimen, a compact tensile C(T) specimen, and
a double cantilever tensile DC(T) specimen.

FIGURE 7.14: Typical fracture toughness specimens (untested). (a) SEN(B);
(b) C(T); (c) DC(T). Thick arrows indicate the loading conditions; dashed
arrows indicate the expected propagation direction of the precrack and of
final fracture.

The load vs. crack mouth opening curve is recorded during the test (Fig.
7.15a). After abrupt fracture, the geometry of the precrack front is measured
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(Fig. 7.15b). The fracture toughness is then determined according to formulas
based on a plane strain assumption and on the linear elastic fracture mechanics
(LEFM) [E08 Committee, 2022b]. For the test to be valid, plastic deformation
at the tip of the precrack, as well as stable crack propagation must be very
limited. The slope of a straight line, plotted between the last data point of
the load vs. crack mouth opening curve and the origin, should not be lower
than the stiffness of the precracked specimen by more than 5% (Fig. 7.15a).
Thus, a particularity of this test is that the validity cannot be ensured by
following the procedure: a specimen may be tougher than expected, leading
to an invalid determination of KIc.

FIGURE 7.15: Fracture toughness test results. (a) Load vs. crack mouth dis-
placement curves showing the loss-in-stiffness criterion for the test to be valid.
(b) Postmortem measurement of the precrack geometry and fracture tough-
ness calculation.

Besides analytical formulae given by LEFM, more realistic three-
dimensional models, including the actual crack geometry and taking the
elastic-plastic flow behavior into account, may be used. By evaluating the
J-contour integral, J , and if the plastic zone size, PZS, is much smaller than
any characteristic distance of the specimen (i.e., the specimen thickness, B
and the size of the uncracked ligament at the beginning of the test, W − a),
an estimate of the fracture toughness, KJ , can be derived under plane strain
conditions: KJ =

√
JE, E being the Young’s modulus of the tested material.

Unlike impact toughness tests (Fig. 7.16a), the loading conditions are qua-
sistatic, self-heating of the specimen is not expected to occur (Fig. 7.16b). In
addition, at least for tensile specimen geometries such as C(T) and DC(T), it
is not necessary to explicitly model contact conditions between the specimen
and the loading device. Numerical issues linked to the presence of a sharp
crack can be overcome by using an initial crack blunting of about 15% of
the crack tip opening displacement (CTOD) determined at final fracture, δc
[McMeeking, 1977].
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FIGURE 7.16: Comparison of impact and fracture toughness tests, based on
finite element meshes of (a) one-quarter of a Charpy specimen, and (b) of one-
quarter of a C(T) specimen. Continuous ellipses highlight some challenges in
Charpy impact modelling. Dashed ellipses indicate the fracture process zone,
with refined meshing. (a) After [Tanguy et al., 2005b], (b) after a similar mesh
in the chapter on the global approach to fracture.

Brittle cleavage fracture involves crack initiation at some particular feature
of the material (Fig. 7.7). Sampling effects thus lead to significant experimen-
tal scatter in fracture toughness. With increasing the specimen size, and even
under plane strain conditions, the probability to find microstructural features
that favor crack initiation (e.g., a large brittle second phase) (Fig. 7.7a), and
further unstable crack propagation (e.g., a larger grain containing such a par-
ticle) (Fig. 7.6b) close to the fatigue precrack is also increased. The probability
to get lower fracture toughness values thus also increases, yet with less experi-
mental scatter than on smaller specimens. As a consequence, the experimental
values of KIc depend on the specimen size, and laboratory results cannot be
directly used in the brittle failure risk assessment of larger real structures.

7.4.3 Competition between fracture mechanisms: the ductile-
to-brittle transition (DBT)

In many body-centered cubic metals, and in particular in the ferrite phase
of iron alloys (including ferrite, bainite, and martensite microstructural con-
stituents), the plastic flow behavior is thermally activated. At low tempera-
tures, the yield strength is high, so that as soon as plastic flow is triggered, the
critical cleavage fracture stress is reached without further significant plastic
deformation; once nucleated, any microcrack instantaneously propagates in a
brittle manner. This results in a brittle-plastic failure mode (left part of Fig.
7.17a). When the temperature increases, the yield strength decreases, but the
critical cleavage fracture stress is much less (if any) sensitive to temperature.
As a result, brittle microcracks are more easily blunted by plastic flow of the
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matrix and cannot further propagate; the material is able to sustain higher
load levels before being broken. Crack blunting into voids may eventually
result in a ductile failure mode (right part of Fig. 7.17a). One can theoret-
ically define a characteristic temperature, TGY , below which the behavior is
brittle and above which the behavior is ductile, fracture occurring after gen-
eral yielding (Fig. 7.17a). In real life, however, the so-called “ductile-to-brittle
transition” (DBT) occurs over a broader temperature range.

The brittle-plastic failure mode is to be avoided in structural components.
To assess the sensitivity to cleavage fracture as a function of temperature, the
DBT is usually characterized using impact toughness or fracture toughness
tests (Fig. 7.17b). The fracture strain of notched specimens may also be used
as an indicator. The crystallinity of the fracture surface decreases when the
temperature increases, with two possible contributions: (i) some ductile crack
advance may occur until suitable conditions for cleavage cracking, ahead of the
ductile crack, are met; (ii) the cleavage crack may arrest (especially in bending
tests), and final fracture may again involve ductile tearing (Fig. 7.17c).

FIGURE 7.17: Ductile-to-brittle transition. (a) Schematic view of the phe-
nomenon. (b,c) Illustration with Charpy specimens, after [Tioguem Teagho,
2019]: (b) macroscopic curves; (c) macroscopic view of fracture surfaces, with
brittle regions delineated by thin continuous lines, for increasing test temper-
atures.
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7.5 Deterministic models of brittle cleavage fracture

7.5.1 Critical cleavage fracture stress of brittle polycrys-
talline materials

Typical values of critical cleavage fracture stresses (a few GPa) are usually
much lower than the theoretical stress required to break all atomic bonds
between two crystal planes (close to one-tenth of the Young’s modulus, so
at least 10 − 20GPa for most metals and ceramics). Stress concentration at
dislocation pile-ups, in front of an obstacle such as a grain boundary, has been
invoked to trigger cleavage microcrack initiation resulting in unstable fracture
[Zener, 1948; Stroh, 1957] (Fig. 7.18a). Another possibility is a sessile “cracked”
dislocation resulting from the reaction between dislocations from different
slip systems [Cottrell, 1958] (Fig. 7.18b). In both models, triggering plastic
deformation is necessary before a cleavage crack may nucleate. The microcrack
stability is evaluated using an energy balance criterion initially proposed by
Griffith [Griffith, 1921] for a crack of length 2c across the whole thickness of
a plate: as soon as the elastic energy release is higher than the increase in
free surface energy, crack propagation becomes unstable. The critical brittle
fracture stress of a cracked plate, σf , was thus expressed by Griffith [Griffith,
1921] as:

σf =

√
2Eγ

πνc
(plane stress)

σf =2

√
µγ

πνc
(plane strain [Griffith, 1921](1)) (7.1)

In the above equation, E is the Young’s modulus, ν is the Poisson ratio,
and γ is the free surface energy of the considered material. For a penny-shaped
crack of diameter 2c in an infinite tensile-loaded body:

σf = 2

√
µγ

c
(7.2)

[Cottrell, 1958] where µ is the shear modulus of the material.
In Cottrell’s model, the length of the dislocation pile-up was selected as half

the grain size, D. The above Griffith-like criterion yields a value of 10 Jm−2

for the surface energy in iron. This is ten times higher than the actual free
surface energy. This so-called “effective” surface energy, now denoted as γp,
includes the contribution of e.g., tearing along rivers to form the cleavage
facets (Fig. 7.8), and irreversible crack propagation across grain boundaries;
in this approach, unstable cracking is propagation-controlled. Smith [Smith,
1966, 1967] represented the microcrack by a distribution of dislocations; the
criterion for unstable crack propagation yielded the same result as Griffith-
related criteria.
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FIGURE 7.18: Schematic representation of cleavage microcrack nucleation
from (a) dislocations piled up at a grain boundary; (b) the reaction between
two slip systems in a cubic crystal structure; (c) dislocations piled up at a
grain boundary hard particle. Note that dislocations disappear once coalesced
into the crack. S is the dislocation source.

7.5.2 Influence of second phase particles on the critical
cleavage fracture stress

Besides dislocation pile-ups, Mac Mahon and Cohen [McMahon and Cohen,
1965] remarked that cleavage microcracks also nucleate from intersections of
twins and from stress concentration close to hard particles, such as grain
boundary carbides in mild steels. This stress concentration is favored by plas-
tic deformation. A Griffith-like criterion may thus be applied to a penny-
shaped crack of the same size as the hard particle. After nucleation, either the
crack immediately propagates into the surrounding grain of the matrix, or it
becomes blunted by plastic deformation. After [Oates, 1968], when the cleav-
age crack nucleates from the intersection between a slip band (respectively,
a mechanical twin) and a hard particle (Fig. 7.18c), σf does not depend (re-
spectively, depends) on temperature. In both cases, the critical step is the
transmission of the cleavage microcrack from the particle to the surrounding
matrix grain. Plastic deformation is necessary to trigger crack nucleation at
a hard particle, but a high stress level is necessary to propagate it into the
matrix [Lindley et al., 1970].

Focusing on mild steels tested at −196 ◦C, Smith [Smith, 1967, 1968] con-
sidered the nucleation of a microcrack inside a through-thickness carbide met
by a twin or a slip band, with a low value of γ denoted as γs, i.e., the free sur-
face energy, due to the high brittleness of the carbide; for crack propagation
into the matrix, he considered another, higher value of γ denoted as γp. If a
Hall-Petch relationship is used to describe the shear stress on the dislocations,
the fracture stress becomes independent of the grain size [Curry and Knott,
1979], which does not agree with experiments. Petch [Petch, 1986] extended
the theory to the non-equilibrium configuration of a dislocation pile-up in
front of a freshly cracked hard particle. He found an effect of both the carbide
size and the grain size on the critical fracture stress. More recently, gradient
plasticity associated to cohesive zone models have been applied together with
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full field finite element calculations to determine a variety of crack initiation
and propagation scenarios in a bicrystal containing a hard, brittle particle
[Giang et al., 2018].

Critical cleavage fracture stresses were first determined using plain tensile
specimens of mild steels tested at very low temperatures, then, using notched
specimens tested at the temperature for which fracture occurred at the on-
set of general plastic yielding, TGY (Fig. 7.17a). A popular example is the
three-point bending specimen proposed by Griffiths and Owen [Griffiths and
Owen, 1971]. Stress analysis was first conducted using the slip line theory by
assuming an elastic-perfectly plastic flow behavior; by introducing linear work
hardening in the constitutive behavior, Griffiths and Owen showed that the
critical cleavage fracture stress, σf , of a Fe Si alloy (determined at TGY ) was,
in fact, independent of temperature.

The values of σf are now currently determined by finite element analysis
of notched specimens, even after the onset of general yield (T > TGY ) (Fig.
7.19a), provided that the constitutive behavior is first thoroughly character-
ized. For each broken specimen, the fracture initiation site is determined by
fractography. Then, the loading history at that point is estimated using the fi-
nite element calculations, so that a value of the critical cleavage fracture stress
is determined for every specimen. It can then be plotted as a function of tem-
perature or of some microstructural parameter. For instance, in a martensitic
stainless steel, Godin [Godin, 2018] showed that the value of σf was inde-
pendent of the cooling rate; on the other hand, the ductile-to-brittle impact
toughness transition temperature was inversely proportional to the amount
of austenite retained into films between martensite laths, that was dictated
by the cooling rate (Fig. 7.19b,c). Retained austenite films did not influence
σf but strongly increased the amount of plastic strain that was necessary to
reach σf at the cleavage fracture initiation site (Fig. 7.19c).

7.5.3 Estimation of the fracture toughness from the critical
cleavage fracture stress

The concept of σf cannot be directly applied to the LEFM analysis of pre-
cracked specimens, i.e., to the determination of KIc: as soon as the specimens
are loaded, the stress field becomes infinite at the crack tip, so that the value
of σf is reached ahead of the crack front. Except for very brittle materials
such as glasses, local plastic yielding occurs before cleavage fracture. This
paradox is solved by considering the stochastic character of cleavage fracture:
the criterion σf must be met over a region where the probability to find a
cleavage crack initiation site is reasonably high. In the RKR model [Ritchie
et al., 1973], this region is quantified by a characteristic distance, Xc, ahead of
the crack tip, together with a Hutchinson-Rice-Rosengren [Hutchinson, 1968;
Rice and Rosengren, 1968] stress field, using the strain hardening exponent
of the material, n. According to [Ritchie et al., 1973], the value of Xc should
be slightly higher than the grain size (i.e., the size of a cleavage microcrack).
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FIGURE 7.19: (a) Determination of σf from fractography associated to finite
element analysis of notched specimens, high strength martensitic steel, after
[Tioguem Teagho, 2019]. (b) DBT in impact toughness (subsized Charpy) of
a martensitic stainless steel, as a function of the amount of retained austenite,
and (c) typical loading history at the fracture initiation point of double edge V-
notched specimens of the same material, for two amounts of retained austenite,
after [Godin, 2018]. WQ: water-quenched material (little amount of retained
austenite); AC: air-cooled material (higher amounts of retained austenite).

From this model, the higher the temperature, the lower the yield strength, so
that to reach σf over the critical distance Xc, work hardening (thus higher
amounts of plastic strain) must be involved, which increases the value of KIc.
The opening stress reaches its maximum ahead of the elastic-plastic boundary
along the ligament, again due to the necessary work hardening before cleavage
fracture.

The physical meaning of the Xc parameter is still not clear. Knott [Knott,
1978] considered the influence of the grain size and of the size of carbides,
in a variety of steel families. In his coarse ferritic microstructures, cleavage
was initiation-controlled and started from carbides with a low value of γp
(14 Jm−2). In finer ferrite microstructures, coarse carbides were rare and Xc

had to be increased up to several times the grain size. In bainite and marten-
site, carbides were much finer, so that carbide cracking led to smaller cracks.
Cleavage cracking may then be controlled by the propagation of the micro-
crack across the first high-angle grain boundary with the help of dislocation
pile-ups, as reported experimentally [Naylor and Krahe, 1974]. This leads to
higher values of γp (120 Jm−2) [Knott, 1978]. As a whole, the fracture tough-
ness is controlled by the size of the microstructure (i.e., of the unit crack path)
and by the temperature-dependent yield strength and plastic flow behavior,
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but σf only depends on the microstructure, for a given physical fracture mech-
anism [Bowen et al., 1986].

7.6 Probabilistic modelling of brittle cleavage fracture

To improve the resistance to cleavage fracture, especially for components with
high safety requirements, the average value, but also the scatter in experi-
mental data must be predicted by taking physical mechanisms into account.
This allows identification of the most efficient microstructural actuators and
their implementation in future materials processing stages. There are several
sources of scatter, namely, the scattered distribution of particle and grain size
(see the scenario in Fig. 7.6), and the heterogeneous nature of stress distribu-
tion in polycrystals, associated to local strain incompatibilities. To this aim,
weakest link theories have been developed and applied, especially in the case
of steels.

7.6.1 Criteria directly based on microstructural heterogene-
ity

First of all, the microstructure of the matrix itself is of prime importance in
the resistance to cleavage fracture. For instance, fine martensite packets pro-
vide smaller crack paths that coarse upper bainite packets, so that the frac-
ture toughness of mixed bainitic-martensitic steels strongly depends on the
amount of bainite. Hagiwara and Knott [Hagiwara and Knott, 1982] started
from Gaussian distributions of fracture toughness values for bainite and for
martensite, with the same standard deviation. The fracture toughness of the
mixed microstructure was modelled as a weighted average of both distribu-
tions, the weight being the bainite fraction multiplied by a cleavage sensitivity
coefficient of bainite with respect to martensite, α (1.5 to 2) fitted on the ex-
perimental fracture toughness distribution; the value of α was similar to the
ratio between inverse square roots of the average cleavage facet size of bainite
and of martensite (1.9). For a given average fraction of bainite, the scatter in
fracture toughness resulted from sampling of the microstructure by the front
of the fatigue precrack (and the associated plastic zone).

Starting from the application of Smith’s model to mild steels, Curry
and Knott [Curry and Knott, 1978] showed that in spheroidized steels, σf

could also be estimated from a Griffith-like criterion (penny-shaped crack,
γp = 14 Jm−2) using the 95th percentile of the carbide size distribution. Yang
et al. also determined the carbide size distribution in bainitic steels; the frac-
ture toughness was globally correlated with the size of carbides, but not with
the bainite packet size. By estimating local stress fields with a finite element
method, and by comparing the stress profile along the ligament with the dis-
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tance between the fracture initiation site and the precrack front, they con-
cluded that cleavage nucleation could occur under a stress between 0.85σmax

and σmax, σmax being the maximum value of the opening stress along the
ligament. Tioguem [Tioguem Teagho, 2019] measured the carbide size distri-
bution in several quenched and tempered variants of the same martensitic
steel. He then calibrated the defect size in Smith’s model from the actual crit-
ical opening stress estimated by finite element simulation at the experimental
crack initiation site (Fig. 7.19a); the resulting value corresponded to the 98th

percentile of the carbide size distribution; it actually also corresponded to the
size of carbides found at the cleavage nucleation sites.

7.6.2 Local approach to fracture: principle and first models

Probabilistic models aim at quantitatively relating the scatter in resistance to
brittle fracture to the inhomogeneous distribution of microstructural features
governing initiation and unstable propagation of cracks. To do so, the statis-
tical distribution of microstructural features is first quantified; a number of
fracture tests are carried out to quantify the scatter in macroscopic fracture
resistance (e.g., fracture toughness). The probabilistic models are based on
a weakest-link theory; the loaded component (or laboratory specimen), here-
after the “specimen” for the sake of simplicity, is divided into a number of
independent smaller regions, each of them of volume V0 and experiencing a
quasi-homogeneous stress and strain history, together with a stochastic de-
scription of microstructural features that represent potential brittle cracks.
The survival probability of the specimen is the product of the survival proba-
bilities of all these small regions. The loading history of each volume is given
by a mechanical analysis of the specimen, either using available analytical so-
lutions to two-dimensional mechanical problems [Evans, 1983; Beremin et al.,
1983], or by finite element analysis of two-dimensional [Curry and Knott, 1979]
and, nowadays, of three-dimensional problems.

For instance, Curry and Knott [Curry and Knott, 1979] combined available
results of stress fields ahead of the crack front, in plane strain conditions, with
their experimental carbide size distributions for two different steels, again with
a Griffith-like fracture criterion for unstable crack propagation from broken
carbides into the rest of the material.

Evans [Evans, 1983] also considered sampling of cracked carbides by the
so-called “active zone” ahead of the precrack front. In their model, the shape of
this active zone is defined by a heuristic function, independent of the location
across the specimen thickness. The local mechanical loading is described by a
HRR stress field. The “active zone” is split into independent strips, the long
dimension of the strips being parallel to the crack propagation direction. The
fraction of broken strips can thus be determined for any applied stress intensity
factor, K, as it is equal to the fracture probability of individual strips. As soon
as a given fraction (typically, 50%) of the total number of strips is cracked, the
specimen is considered to break. This enables to derive a fracture toughness
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distribution from the distribution of carbide strength values, S, thanks to a
Griffith criterion and a weakest-link theory for each independent strip, with:

G(S) =
(

S−Su

S+S0

)m
if S ≥ Su

G(S) = 0 otherwise
(7.3)

In the above equation, Su is a material parameter. Evans’ model thus
directly links the fracture toughness, KIc, to the statistical distribution of
carbide strength, G(S). Nevertheless, as the fraction of cracked strips is a
fixed parameter, the statistical distribution of KIc cannot be determined.

As a whole, these first models are able to relate the toughness with relevant
measurements of microstructural heterogeneity. Nevertheless, they are unable
to predict the scatter of fracture toughness, as well as size effects induced by
the stochastic character of cleavage fracture.

7.6.3 The Master Curve approach

From an experimental point of view, fracture toughness determination is far
more expensive than impact toughness determination, so that impact tough-
ness values are more readily available than fracture toughness values. On the
other hand, using laboratory fracture toughness data to assess the behavior
of real structures, while not direct, is still easier than using impact toughness
data. For these reasons, correlations between impact toughness and fracture
toughness values have been searched for in a variety of steels and led to the so-
called “Master Curve” approach [E08 Committee, 2022a; Wallin, 1991]. The
Master Curve approach assumes that the critical radius of a particle that
might break depends on its size (via a Griffith criterion) but also on tem-
perature. The distribution of particle size, r is described with the following
probability density, p(r = r0):

p(r − r0) =
ca−1

(a− 2)!

(r0
r̄

)−a

exp

(
− c

r0/r̄

)
(7.4)

c, r̄ and a being model parameters.
The effective surface energy in the Griffith criterion, γp, is the sum of

the free surface energy, γs, and of a temperature-dependent term, wp, that
represents the temperature dependence of the mobility of dislocations (T being
the test temperature, in Kelvin):

σf =

√
πE(γp + wp)

2(1− ν2)r0
(7.5)

with wp = w0 + (wp(0)− w0) exp (mT )

where w0, wp(0) and m are model parameters.
A weakest-link assumption allows calculating the survival probability of
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the specimen, 1 − pf , as the product of all elementary survival probabilities
over the plastic zone size, PZS, by considering the total number density of
particles, Na, and the fraction F of particles that are eligible to fracture
(typically, 0.1% to 1%):

1− pf = 1−
PZS∏

X=0

(1− p(r ≥ r0))
NaBFdX (7.6)

Here, B is again the specimen thickness (Figure 7.15).
The calculations are carried out as follows. The plastic zone is modelled

as a wedged region ahead of the crack tip, centered on the crack plane, of
length Xp and extending over an angle θ to either side or the crack plane.
For any value of the stress intensity factor, KI , and for every distance to
the crack tip, X, in the plastic zone, the local stress level is estimated from
an analytical formula previously calibrated using finite element calculations
results. Then, the local value of the critical radius, r0 is calculated. By using
the above equation, the fracture probability for that value of KI is determined.
By repeating the calculation over all possible values of KI , a failure probability
distribution pf (KI) is derived. Its expectation value, KIf , is then compared
with the average value of KIc over the experimental data base.

The above Eq. 7.6 can be approximated as follows [Wallin, 1984]:

pf =≈ 1− exp

(
−NaBF sin θ

∫ Xp

X=0

p(r = r0)·XdX

)
(7.7)

In the above Eq. 7.7, θ is taken as constant. X can be further normalized
by using U = X

(KIc/σy)
2 . (KIc/σy)

2 is proportional to the plastic zone size,

PZS, with σy the flow stress. Eq. 7.7 then becomes:

pf =≈ 1− exp

(
−NaBF sin θ

(
KIc

σy

)4 ∫ Up

U=0

p(r = r0)·UdU

)
(7.8)

with U = XP

(KIc/σy)
2 .

In [Wallin, 1984], it is further assumed that the integral term in the above
Eq. 7.8 is constant (although the bounds of the integration actually depend on
the fracture toughness through the definition of U). As a result, the fracture
toughness probability density can be rewritten as follows (which represents a
Weibull distribution with a Weibull modulus, m1, usually taken equal to 4):

pf ≈ 1− exp (C·Km1

Ic ), (7.9)

C being a constant.
In practice, Wallin [Wallin, 1984] assumes that below a minimum threshold
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value, Kmin, of KI , no brittle crack propagation can occur. K0 being a model
parameter, the above Weibull distribution then becomes:

pf ≈ 1− exp

(
−
(
KIc −Kmin

K0 −Kmin

)m1
)
. (7.10)

The value of Kmin is adjusted to keep m1 ≈ 4, which usually results in
10− 20MPa

√
m. In the following, it is assumed that m1 = 4.

The effects of the specimen size (thickness, B) and of the testing temper-
ature are taken into account in the K0 parameter. A reference thickness of
one inch (so-called “1T ”) is generally considered. At given temperature, the
product (KIc(B)−Kmin)

4
B is considered as constant owing to the weakest-

link assumption. Then, from the above Eq. 7.10, the fracture toughness for
any specimen thickness B may be derived, provided that small scale yielding
conditions are fulfilled for both values, B and 1T , of the specimen thickness:

KIc(B) = Kmin + (KIc(1T )−Kmin)

(
1T

B

)1/4

; (7.11)

pf ≈ 1− exp

(
− B

1T

(
KIc −Kmin

K0_1T (T )−Kmin

)4
)

. (7.12)

The value of K0_1T (T ) is related to the median value (i.e., the 50th per-
centile) of the probability distribution, Kmed_1T (T ), which is also a function
of temperature T only, by Kmed_1T ≈ 1.1K0_1T . A simple, empirical equation
(see Equation 7.13) is then used to determine the temperature dependence of
Kmed_1T and thus, the global shape of the pf vs. T curve:

Kmed_1T (T ) = 30 + 70 exp (0.019· (T − T0)) (7.13)

with T0 the value of temperature for which Kmed_1T (T ) = 100MPa
√
m.

A heuristic relationship is then used to estimate the value of T0 using
impact toughness properties. For instance, the temperature for which the im-
pact toughness is 28 J, T28J , has been shown to be correlated to T0 with a
shifting parameter, C(B), only dependent on the specimen thickness, B [E08
Committee, 2022a].

Starting from impact toughness data (Fig. 7.20a), the T0 temperature may
be estimated by using the shifting parameter, C(B). Then, using Eq. 7.12
and Eq. 7.13, fracture toughness properties may be estimated as a function of
temperature (Fig. 7.20b,c).

This method may work well for ferritic steels but must be empirically
adapted for other steel microstructures such as bainite [Lambert-Perlade et al.,
2004].
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FIGURE 7.20: Schematic view: application of the “Master Curve” approach.
(a) Impact toughness data (diamonds); from the fitted curve, T28J = −100 ◦C.
(b) After determination of T0 = −70 ◦C by using the empirical shifting param-
eter C (B), the fracture toughness is predicted as a function of temperature,
for specimen thickness 1T then B = 12.5mm, respectively, by using Eq. 7.13
and inverting Eq. 7.12. For T = T0, Kmed_1T = 100MPa

√
m. (c) For a given

temperature, prediction of the statistical distribution of fracture toughness
values.

7.6.4 Local approach to fracture: the Beremin model

In the Beremin model [Beremin et al., 1983], the process zone is taken as
the plastic zone PZ of the considered specimen or component. The minimum
amount of plastic strain used to delineate the PZ does not affect the results,
as long as it remains small. The PZ is divided into N independent elemen-
tary regions, each of volume V0 (V0 being a model parameter). A weakest-link
assumption is also made. Within each of the N elementary regions, a cleavage
microcrack may initiate from microstructural defects, such as hard secondary
phases. The nature of the defects is determined by fracture surface examina-
tions. The size distribution of these defects, and thus, of resulting microcracks
is described with a two-parameter power-law equation:

p(a) = α· a−β (7.14)

with a being now the defect size, and α and β model parameters that depend
on the value of V0. A Griffith-like criterion is used to relate the critical defect
size, ac, to the local stress level, σ, so that the fracture probability, P (σ),
under the local stress level, is given by:

σ =

√
πEγs

2(1− ν2)ac

so that ac(σ) =
πEγs

2(1− ν2)σ2
(7.15)

and P (σ) =

∫ +∞

ac(σ)

p(a)da.
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Combining this probability density with the size distribution of defects
yields:

P (σ) =

(
σ

σu

)m

(7.16)

with m = 2β − 2 and in plane strain conditions,

σu =
(m

2α

)1/m√ 2

π

Eγ

1− ν2
. (7.17)

With the plain strain assumption, the scatter in fracture probability, rep-
resented by parameter m, is thus directly related to the size distribution of
defects, assumed to be uniform in space. In the more general case, m is a fit-
ting parameter. The plastic constraint and the stress state are directly taken
into account by calculating the so-called Weibull stress, σW , which is the
m− th moment of the distribution of the maximum principal stress, σI , over
the plastic zone PZ:

σW =

[∫

PZ

σm
I

dV

V0

]1/m

Pf = 1− exp

[
−
(
σW

σu

)m]
. (7.18)

This assumes that the individual fracture probability of each elementary
volume V0 in the PZ is, in fact, small. For a given value of V0, the two m
and σu parameters are adjusted on experimental results. This can be made
using tensile tests on axisymmetric notched specimens (Fig. 7.21a), such as
those shown in Fig. 7.4c. The effect of the specimen size and the possible loss
of plastic constraint are implicitly taken into account in the model through
the calculation of the Weibull stress by integration over the PZ (Fig. 7.21a).
On the other hand, the maximum principal stress depends on the plastic
flow behavior, which implicitly takes temperature and loading rate effects
into account. Once the two model parameters are identified (Fig. 7.21b), the
approach may be applied to any structural component (Fig. 7.21c). In practice,
the σu parameter must often be rendered temperature-dependent, in order for
the model to reasonably predict the DBT behavior.

For ferritic and bainitic steels with low inclusion levels, typical values of
m and σu are close to 20 and about 2000 − 3000MPa, respectively [Tanguy
et al., 2005b]. Lower values of the Weibull exponent m may be found (e.g.,
around 7) by introducing a threshold value of fracture toughness, Kmin, as in
the Master Curve approach ; the consequence is that the value of σu becomes
very high (close to 6600MPa, [Gao et al., 2005]).

In plane strain conditions, and assuming a power-law flow hardening be-
havior which leads to HRR stress and strain fields, the fracture toughness
predicted by the Beremin model only depends on the plastic flow behavior
and on the product K4

IcB (as in the Master Curve model if Kmin = 0). The
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FIGURE 7.21: Principle of the Beremin model. (a, b) Calibration of the
Beremin model: (a) determination of the Weibull stress; (b) calibration of
the two parameters m and σu. (c) Application of the calibrated model to
another component.

effect of temperature is driven by the evolution of the yield strength, σy, so

that KIcσ
(m/4)−1
y is constant.

The Beremin model has further been applied to brittle intergranular frac-
ture [Kantidis et al., 1994], and to prior ductile tearing of large clusters of
sulfide inclusions in the DBT [Renevey et al., 1996].

A variant of the Beremin model does not consider the maximum principal
stress only, but a weighted average of the maximum principal stress and the
hydrostatic stress. This aims at taking the orientation of harmful particles
and of crystallographic cleavage fracture planes into account. The effect is
significant in the case of short cracks and loss of plastic constraint, but not
for long cracks [Boåsen et al., 2019].

In order to take the polycrystalline character of many cleavage-sensitive
materials into account, full field crystal plasticity calculations have been cou-
pled to the Beremin approach in the so-called “Microstructure informed brittle
fracture” (MIBF) model [Forget et al., 2016]. In this model, additional scatter
is introduced owing to heterogeneous strain incompatibility between neigh-
boring grains. The local stress acting in each elementary volume V0 is thus
scattered around the maximum principal stress considered in the Beremin
model, σI . This scatter is determined by adjusting a probability distribution
on a set of full field crystal plasticity calculations of polycrystalline aggregates.
The number density of particles, as well as the particle size distribution are
determined experimentally. The only free parameter of the model is the free
surface energy used in the Griffith criterion, γ. In the considered bainitic steel,
a best fit yielded a very reasonable value of 8.18 Jm−2 for γ. More details may
be found in [Forget et al., 2016].
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7.6.5 Effects of plastic strain on the sensitivity to cleavage
fracture

The geometric effect of plastic strain on the sensitivity to cleavage fracture
may be taken into account through the change in true stress, as in [McMahon
and Cohen, 1965]. It also modifies the grain size and, in particular, the size
of any crack arrested at high angle grain boundaries, see Fig. 7.6b. Under
monotonous tensile loading, and assuming that plastic flow involves no volume
change, a strain-corrected Weibull stress may thus be calculated as a function
of the maximum principal strain, εI [Lambert-Perlade et al., 2004; Beremin
et al., 1983; Hahn, 1984; Martín-Meizoso et al., 1994; Margolin et al., 1997];
for instance [Beremin et al., 1983]:

σW =

[∫

PZ

σm
I

dV

V0
exp

(
−mεI

2

)]1/m
. (7.19)

Another effect of plastic strain is early fracture (or interfacial decohesion)
at hard second phases such as carbides. If, during that stage, the material is
not brittle (e.g., in ferritic steels, if the temperature is high enough), nucleated
microcracks may blunt by plastic deformation, transforming into voids instead
of propagating. As a result, a significant fraction of cleavage initiation sites is,
in fact, no longer active in the fracture process. This is the origin of the so-
called Warm Prestress (WPS) effect [McMahon and Cohen, 1965; Ripling and
Baldwin Jr., 1951; Lindley, 1966, 1967; Gurland, 1972]. As a result, both the
yield strength and the cleavage fracture stress increase [Margolin et al., 1997;
Knott, 1967; Groom and Knott, 1975]. The change in strain hardening and,
more generally, the strain history may be taken into account in the cleavage
crack initiation models from inclusions [Gao et al., 2005; Ruggieri and Dodds,
2015; Bordet et al., 2005; Wallin and Laukkanen, 2006; Bernauer et al., 1999;
Stöckl et al., 2000]. A review of strain history effects can be found in [Pineau,
2006].

More recently, the modification of microtexture induced by prior plastic
strain (such as cold forming process, or even plastic strain developed during
the fracture test itself in the DBT) has been considered. The anisotropic size
and spatial distribution of clusters that are prone to give large cleavage facets,
when loaded along particular tensile directions, has been shown to also affect
the anisotropic sensitivity to cleavage fracture (Fig. 10) [Tankoua et al., 2018;
Baldi and Buzzichelli, 1978]. This distribution may be controlled by modifi-
cations of the processing history [Tankoua et al., 2022].

7.6.6 Taking the full cleavage fracture scenario into account
in the local approach to fracture

Going back to the cleavage fracture scenario of Fig. 7.6, major microstruc-
tural sources of scatter in cleavage fracture resistance are the distribution of
defects that initiate cleavage microcracks, Fig. 7.6a, and the size distribution
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of grains, Fig. 7.6b (or of clusters of favorably oriented grains, Fig. 7.10). Three
events must occur in sequence for cleavage fracture to occur from the actual
critical region: (i) onset of plastic strain, at least in that region; (ii) initiation
of a microcrack by e.g. fracture of a hard particle, Fig. 7.6a, and propagation
into the neighboring matrix grain, Fig. 7.6b; (iii) propagation across the first
high-angle boundary, Fig. 6c. The so-called “double barrier” model was devel-
oped to take these successive events into account by conditional probability
calculations, as follows [Lambert-Perlade et al., 2004; Martín-Meizoso et al.,
1994]. In this model, the probability for a crack to initiate from a particle is a
function of the local amount of plastic strain. It can be determined by knowing
the fracture stress of the particles (or even its probability distribution), and by
using a micromechanical model to derive the stress in the particle, σp, from
the stress-strain field in the surrounding matrix (Fig. 7.22a). This requires
experimental data that are not readily available. For instance, a Heaviside
function of stress, using a threshold value σc

p determined from micromechan-
ical analysis of unit cells (Fig. 7.22a), was used in [Lambert-Perlade et al.,
2004]:

pf (σp) = 1 ifσp ≥ σc
p

pf (σp) = 0 otherwise.
(7.20)

Crack propagation into the surrounding grain (Fig. 7.6b) is determined
using a Griffith criterion; here, the critical size of a particle, ac(σI), under
given maximum principal stress σI , is determined by an effective fracture
toughness across the particle-matrix interface, Kpm

Ia , and a geometrical factor,
β′ = 1.25 that is related to a penny-shaped crack:

ac(σI) =

(
β′Kpm

Ia

σI

)2

. (7.21)

The probability Pf (σI) to find a particle of critical size ac(σI) under the
local maximal principal stress σI becomes:

Pf (σI) =

∫ +∞

ac(σI)

p(a)pf (σp)da (7.22)

where σp is a function of σI .
For complete fracture to occur, at least one microcrack initiated from the

particle, propagated in the first grain and stopped at a high-misorientation
grain boundary (Fig. 7.6b) must be able to propagate into the next grain (Fig.
7.6c). Thus, at least one grain containing a microcrack must exceed a critical
size, Dc(σI), again according to a Griffith-like criterion and again assuming
a penny-shape microcrack morphology. With pg(D) being the grain size dis-
tribution, and Kmm

Ia (T ) being the temperature-dependent effective fracture
toughness across the grain boundary, this becomes:

Dc(σI) =

(
β′Kmm

Ia (T )

σI

)2

. (7.23)
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As a consequence, the fracture probability PF (σI) under the local maximum
principal stress σI becomes:

PF = (σI) =

∫ +∞

Dc(σI)

(
1− exp

(
−Na

πD3

6
·Pf (σI)

))
· pg(D)dD (7.24)

The exponential factor accounts for the probability to find hard particles
in the considered grains of size D, Na being again the number density of hard
particles. The above equation is then integrated over the plastic zone, as in
the Beremin approach.

The size distributions of hard particles and of grains are determined ex-
perimentally, the only adjustable model parameters being Kpm

Ia (a constant)
and Kmm

Ia (T ). Kmm
Ia must be temperature-dependent in order for the model

to correctly predict the DBT behavior. In [Lambert-Perlade et al., 2004], the
model was applied to a bainitic steel that fractured from martensite-austenite
constituents (Fig. 7.7c). Acoustic emission allowed to monitor crack initia-
tion events, even well before final fracture. In the DBT, the number of such
events markedly increased with temperature, yet the minimum value (related
to Kpm

Ia ) being rather independent from temperature (Fig. 7.22).

7.7 Concluding remarks

Brittle fracture is an abrupt, stochastic phenomenon, associated to low tough-
ness levels. It is to be avoided in structural components. Examination of bro-
ken specimens allow determination of physical fracture mechanisms, namely,
crack initiation from plastic deformation features or from microstructural de-
fects, crack propagation (including across microstructural barriers) followed
by unstable fracture.

The resistance to brittle fracture is generally characterized using toughness
properties. These properties generally depend on the experimental testing
conditions, such as the specimen size and geometry, and cannot be directly
transferred from laboratory specimens to actual components. On the other
hand, physically informed “local approach to fracture” models relate a local
critical fracture stress to fractographic and microstructural features. When
using a weakest link assumption, local approach models allow predictions of
the average level and of the scatter in fracture resistance. They may be used to
determine the effects of in-service conditions, such as the temperature in the
ductile-to-brittle transition domain, and any environmental effect such as e.g.,
ingress of chemical species or irradiation-induced embrittlement. They provide
useful information about the efficiency of microstructural improvement.
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FIGURE 7.22: Calibration and application of the double-barrier model in
a bainitic steel. (a) Determination of a critical fracture stress in secondary
phase particles, from tests on notched specimens. Interfacial decohesion was
not observed at low temperatures. (b) Calibration of the model on two types of
axisymmetric specimens (AE4 and AE2, with a notch tip radius of 4mm and
2mm, respectively). (c) Comparison of model predictions with experimental
values of stress intensity factors at crack initiation and at unstable fracture
(fracture toughness), of precracked bending specimens, as a function of test
temperature. After [Lambert-Perlade et al., 2004; Lambert-Perlade, 2001].
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Ductile failure can be described at the macroscopic scale by indicators such
as the strain to fracture that depends on the applied stress state (triaxiality,
Lode parameter). In terms of mechanisms, ductile failure is the result of the
nucleation, growth and coalescence of cavities. In engineering alloys, nucle-
ation generally occurs on second phase particles. Each of these mechanisms
can be modelled using analytical expressions that are also presented in this
chapter. These models are presented from their simplest to their more ad-
vanced forms. The relevance of these model extensions are discussed.

The nucleated cavities can present strong spatial heterogeneities. These
heterogenous effects are also discussed and examples are illustrated exploit-
ing advanced characterization tools. The chapter closes with more a detailed
description of these advanced characterization methods for ductile damage
including 2D, 3D (X-ray tomography) and 4D (time resolved) imaging.

8.1 Introduction

Ductile fracture encompasses failure by plastic instability and damage driven
by plastic deformation. Ductile fracture may occur as final crack propagation
under monotonic loading, e.g. after fatigue crack propagation or after stress
corrosion cracking. It can also be the result of a forming process or a crash
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without the presence of a crack prior to ductile fracture. Ductile fracture takes
place in most cases for cubic face centred materials, such as aluminium and
copper alloys as well as austenitic steel. The main driving forces of ductile
fracture are plastic deformation and positive hydrostatic stress (σm), i.e. high
levels of stress triaxiality η defined as:

η = σm/σeq (8.1)

where σm is the hydrostatic stress and σeq is the equivalent Von Mises stress.

Ductile fracture is identified here by its damage micromechanisms. The
classical ductile fracture mechanisms are (i) void nucleation, (ii) void growth
and (iii) void coalescence. The void nucleation phase occurs typically on sec-
ond phase particles in engineering alloys. They have either lower strength
than the ductile matrix or they are brittle and give rise to voids after some
elastic or plastic deformation. The void growth is promoted by the presence
of positive hydrostatic stresses in the material. Void coalescence may occur
through internal necking of voids that have undergone substantial growth or
by void sheeting between voids with limited growth. All these mechanisms
will be detailed further in the following sections.

8.2 Modes of ductile fracture at the macro-scale

Structural metallic alloys have been continuously improved to avoid cleav-
age and intergranular fracture. Therefore, ductile failure has become cen-
tral in structural integrity assessment, together with fatigue and corrosion
[C. Tekogu, 2015]. Ductile fracture always involves void nucleation and growth
due to plasticity until they eventually coalesce, forming a micro-crack and
initiating failure of the specimen. These fundamental mechanisms will be de-
scribed in section 8.3.

There are situations where the damage sequence and the void coalescence
stage are controlling the onset of failure (see Fig. 8.1(a)). For sufficiently homo-
geneous materials, voids have similar sizes and are rather uniformly distributed
within the microstructure. In other words, the damage evolution is rather ho-
mogeneous and an "average" description of damage evolution is possible. From
a modeling perspective, ductile damage within homogeneous materials can be
described using elementary models for each mechanism, and these models will
be discussed in section 8.3.

However, in some other cases, ductility is tied to the onset of macroscopic
plastic instability of the component as a precursor to failure (see Fig. 8.1(b))
[C. Tekogu, 2015]. One example is the formation of shear bands and necking-
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type instabilities initiating failure during metal forming. Many sheet forming
operations are limited by strain localization, as typically characterized by a
forming limit diagram. Another example is the slant fracture mode usually
observed within metallic thin sheets due to the formation of shear bands near
the crack tip. These plastic instabilities can originate from multiple softening
mechanisms such as thermal softening, plastic anisotropy, or kinematic hard-
ening. In that case, damage softening is a consequence but not the cause of
plastic localisation [Pineau et al., 2016]. The final material separation within
the shear band still involves void nucleation, growth and coalescence, but only
after the local accumulation of large plastic strains and with little evidence of
any voids outside the localization band.

Nowadays, there is considerable experimental evidence that indicates that
the ductile damage process is strongly affected by microstructural hetero-
geneities, e.g. due to interactions between voids concentrated into clusters
(see Fig. 8.1(c)). These microstructural heterogeneity effects on ductile frac-
ture, which is the rule rather than the exception within commercial alloys
[Lecarme et al., 2014], are further discussed in section 8.4.

Finally, the particular case of ductile failure under shear loading, usually
with limited void growth, will be discussed in section 8.5.

FIGURE 8.1: Schematic representation of the different modes of ductile frac-
ture commonly observed in metals. After [C. Tekogu, 2015]

Strain to fracture and stress state effects

The effect of multi-axial tensile stress states on the yielding of metals has
been studied since the early 20th century by studying tubes under combina-
tions of internal pressure, torsion and tension [Lode, 1926a]. The effect of the
stress state on the failure of metals was recognized later by P.W. Bridgman,
Nobel Prize in Physics in 1946. He found out that the section of a material
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that fails after necking under atmospheric pressure can be reduced to a point,
i.e. a transition from ductile failure to purely-plastic failure, by superimposing
a hydrostatic pressure (see Fig. 8.2). This significant increase in ductility is
explained by the high hydrostatic pressure suppressing void growth, thereby
delaying damage and fracture. The effect of hydrostatic pressure, favoring
high ductility, is fundamental to the large plastic strains that can be reached
in forming processes such as extrusion [Hancock, 1992]. However, in the ab-
sence of superimposed hydrostatic pressure, structural applications usually
involve various stress states as quantified by the stress triaxiality ratio.

FIGURE 8.2: A series of tensile tests on mild steel specimens showing increase
of fracture strain (i.e. reduction of area in the neck) with increased pressure.
After P. W. Bridgman [Bridgman, 1964]

The effect of stress triaxiality on ductile fracture can be studied at the
macroscale by varying the sample geometries and thus without an in-depth
analysis of the ductile damage mechanisms. A fracture strain is determined at
the critical location in the broken sample, i.e. where the fracture is assumed
to initiate first. Failure frequently occurs within a zone of plastic deformation
localization, e.g. in the neck of a tensile specimen involving a different tri-
axiality compared to the homogeneously deforming specimen. Finite Element
(FE) calculations are thus usually needed to generate such curves as the local
stress triaxiality must be calculated in the critical location.

Such studies can also be performed using tubular specimens to deform
materials up to fracture under shear stress states combined with tensile
stresses [Papasidero et al., 2015; Barsoum and Faleskog, 2007]. The advan-
tage of such sample geometries is that they do not have a severe notch that
could lead to premature crack nucleation at elevated levels of stress triaxiality.
The determination and comparison of the strain to fracture can be ambiguous
as it can be determined in different ways:
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1. An experimental approach may be used based on digital image cor-
relation (DIC) on the sample surface [Dunand and Mohr, 2011].
The highest strain measured at fracture is then plotted. This ap-
proach is only valid if the highest strain is reached on the sample
surface. Furthermore, it strongly depends on the chosen physical
subset size for the DIC correlation, especially if the strain fields are
highly localized.

2. An hybrid experimental-numerical approach: experiments are con-
ducted and 3D finite element simulations are carried out. The strain
at fracture is determined for the mesoscopic strain or displacement
at which the sample broke in the experiment. The local strain value
is then determined inside the structure in the FE simulation [Simar
et al., 2010; Mohr and Marcadet, 2015; Brünig et al., 2008]. Partic-
ular interest must lay on the mesh size for which a reliable result
can be obtained.

Fig. 8.3(a) shows schematically the evolution of fracture strain as a func-
tion of stress triaxiality, from 1

3 for uniaxial tension to higher stress triaxial-
ity levels for thick and deeply notched samples. The fracture strain usually
strongly decreases with increasing levels of stress triaxiality and this is well
established for sufficiently large levels of triaxiality [Pineau et al., 2016].

However, Bao et al. [Bao and Wierzbicki, 2004] have reported "lower-than
expected" fracture strains for lower positive levels of stress triaxiality η (i.e.
below 1

3 for uniaxial tension, see Fig. 8.3(b)), with a minimum fracture strain
for shear (η = 0). This seminal work by Bao et al. has motivated numerous
studies on this topic. In particular, Papasidero et al. [Papasidero et al., 2015]
conducted a study for the same range of stress states but using a tubular
sample made of nominally the same material. The relationship between strain
to fracture and stress triaxiality is quite different and increases towards shear
(see Fig. 8.3(b)). The discrepancy in results may be linked to the definition of
fracture strain and the way in which it was obtained. The exact material pro-
duction route may also have affected the result. This highlights the care that
must be taken when fracture strains are compared between different studies,
as mentioned above. The underlying damage mechanisms in shear fracture
will be developed in section 8.5.

Bao et al. [Bao and Wierzbicki, 2004] also observed different fracture
strains when changing the sample geometry but keeping the same level of
stress triaxiality. The Lode parameter [Lode, 1926b] was identified as a suit-
able additional mechanical parameter to differentiate these mechanical loading
conditions and, in particular, the state of generalized shear where the Lode pa-
rameter vanishes. The Lode parameter is generally calculated from the stress
tensor [Papasidero et al., 2014], but it can also be applied to the strain rate
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a) b)

FIGURE 8.3: a) Strain to fracture versus triaxiality for critical locations in
different sample geometries ranging from uniaxial tension to deeply notched
samples. b) Strain to fracture versus triaxiality ranging from shear to bi-axial
tension for AA2024T531. After [Papasidero et al., 2015]

tensor, as suggested in Lode’s work [Lode, 1926b]. The Lode angle θ is a func-
tion of the third invariant of the deviatoric stress tensor as given in Eq.8.2:

cos(3θ) =
27

2

J3
σ3
eq

(8.2)

The Lode angle θ ranges from 0 to π
3 and it is frequent to use the non-

dimensional Lode angle parameter θ̄ (ranging from -1 to 1) [Papasidero et al.,
2014]:

θ̄ = 1− 6

π
θ (8.3)

In plane stress state, the stress triaxiality and the Lode angle parameter
are related in the following way:

θ̄ = 1− 2

π
arccos(−27

2
η(η2 − 1

3
)) (8.4)

Rather phenomenological models predict the strain to fracture based on
a fracture locus, i.e. a surface describing the fracture strain as a function of
stress triaxiality and Lode parameter (both assumed relatively constant dur-
ing straining) [Bao and Wierzbicki, 2004; Papasidero et al., 2015; Mohr and
Marcadet, 2015]. For example, Fig. 8.4 depicts a fracture envelope, defined
using the Hosford-Coulomb failure criterion [Papasidero et al., 2015], in the
stress triaxiality and Lode parameter space. Such fracture envelope is the out-
come of an extensive experimental campaign based on a variety of specimens
of different geometry to quantify the effect of stress state on the onset of
fracture.
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FIGURE 8.4: Hosford-Coulomb fracture envelope in the stress triaxiality and
Lode parameter space for AA2024-T531, after [Papasidero et al., 2015].

8.3 Ductile damage micro-mechanisms

The classical mechanism leading to ductile failure in metals involves the
void nucleation, growth and coalescence of cavities. Fig. 8.5(a) schematizes
a notched tensile sample and the evolution of the damage sequence within a
typical metallic microstructure containing coarse (in black) and smaller (in
grey) second phase particles within the matrix (in white). Void nucleation
generally occurs on these second phase particles by decohesion from the ma-
trix or by fracture of these particles. These nucleated voids then grow with
increasing plastic deformation, while new voids continue to nucleate. With in-
creasing plastic deformation and void growth, the void spacing decreases and
interactions between neighboring voids become more prevalent. The onset of
void coalescence corresponds to the localization of plastic deformation and
rapid void growth in the ligament connecting adjacent voids. After the onset
of void coalescence, the final failure of the remaining ligament may be associ-
ated with the nucleation of a second population of voids nucleating on smaller
particles, rather than localized void growth until impingement [Fabrègue and
Pardoen, 2008].

With a resolution of around 1 µm, X-ray 3D microtomography is a very
effective imaging tool to study ductile failure and will be further discussed in
section 8.6. Fig. 8.5(b, c) illustrates the visualization during an in-situ tensile
test in X-ray microtomography of the notched region of a sample made of
X100 steel and with the geometry shown in Fig. 8.5(a). Fig. 8.5(b) shows the
initial X-ray microtomography volume, i.e. before deformation, and 2D cross-
sections through the volume. Initial voids are observed in blue and in black
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within the volume and cross-sections, respectively. Only the outer edges of the
matrix are shown for clarity in 3D, while the matrix appears in gray within
the cross-sections. The evolution of the damage process is shown in Fig. 8.5(c)
by imaging the same notched region of the specimen at increasing deformation
steps (i.e. reduction of the cross-sectional areas). When comparing the first
deformation step of Fig. 8.5(c) with the initial state (Fig. 8.5(b)), it is clear
that the number of voids within the volume has significantly increased due to
void nucleation. With further deformation, significant void growth is observed
in the second step and local coalescence events are evidenced by showing in-
terconnected voids in yellow within the 3D volume. In the last step, more
generalized void coalescence initiates, resulting in microcracks forming over a
length scale large enough to trigger the catastrophic failure of the specimen.

8.3.1 Nucleation

Several void nucleation mechanisms have been identified and they can act in-
dividually, competitively, or collaboratively, depending on the material and
loading conditions [Noell et al., 2023]. These mechanisms can be differenti-
ated between particle-based nucleation and particle-free nucleation. Particle-
free void nucleation is associated with deformation-induced defects such as
vacancies, dislocation pile-ups or deformation twins. Attention is here focused
on the particle-based void nucleation mechanisms, which are most commonly
observed during ductile fracture [Pineau et al., 2016]. However, many details
regarding particle-free mechanisms have recently been reviewed by Noell et al.
[Noell et al., 2023]. Void nucleation associated with particles originates from
the fracture of brittle particles or decohesion of the particle-matrix interface.
Grain boundary decohesion associated with precipitate-free zones (PFZs) in
age-hardening alloys, i.e. void nucleation occurring at weaker grain bound-
aries, is a particular case and is further discussed in section 8.4.2.

Void nucleation has mainly been modeled with critical stress criteria or
critical strain criteria. One of the first models for void nucleation by inter-
face decohesion has been proposed by Ashby [Ashby, 1966]. In this model,
the normal stress acting across the particle-matrix interface increases with
plastic strain due to the accumulation of dislocations, and void nucleation oc-
curs when the stress at the interface exceeds a critical stress. There has been
a long debate as to whether or not there exists a critical strain to nucleate
cavities [Goods and Brown, 1979], i.e. if a strain criterion is applicable or not.
The stress acting inside or at the interface of the particle originates from the
work-hardening of the matrix around the particle. This local work hardening
being a function of the plastic strain in the material, a strain-based criterion
is thus somewhat equivalent to a local critical stress condition [Goods and
Brown, 1979].
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FIGURE 8.5: a) Schematic of the ductile damage sequence. b) Visualization
in X-ray microtomography of the notched region of a sample made of X100
steel. c) Evolution of the damage process by imaging the same notched region
of the specimen at increasing deformation steps (i.e. reduction of the cross-
sectional areas). Adapted from [Madi et al., 2019].

Needleman [Needleman, 1987] compared a stress-controlled criterion with
a strain-controlled criterion and observed quite different predictions for the
onset of plastic localization. This is due to the hydrostatic tension depen-
dence of the stress-controlled criterion which induces early flow localization.
In practice, strain-controlled void nucleation laws are frequently preferred be-
cause they are more simple to implement numerically [Pineau and Pardoen,
2007]. However, strain-controlled criteria do not capture the dependence of
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FIGURE 8.6: a) Schematic representation of the different particle-based void
nucleation mechanisms: particle fracture and interface decohesion for tension
or shear-dominated loading. In situ observation of these void nucleation mech-
anisms in (b,c) tensile loading of aluminium matrix composites [Ferre et al.,
2015] and (d) in shear loading of HSLA steel [Achouri et al., 2013].

void nucleation upon stress triaxiality [Benzerga and Leblond, 2010].

Argon et al. [Argon, 1976] proposed a stress-based criterion for void nu-
cleation by interface decohesion:

σinh + σm = σc (8.5)

where σinh is the interfacial tensile stress from the strain inhomogeneity ef-
fect, σm is the hydrostatic stress, and σc is the critical stress to reach void
nucleation. Argon [Argon, 1976] developed approximate expressions for σinh,
expressed as σinh = kAσeq, where σeq is the equivalent Von Mises stress and
kA is a geometrical factor given for a limited number of idealized cases (slender
rods, platelets and round particles). Such a model for σinh does not take into
account the interaction between particles. Argon [Argon et al., 1975] showed
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that it is a good approximation for volume fraction lower than about 1%. It
can thus be applied to clean metals with limited impurities, such as wrought
Al alloys usually containing around 1% of intermetallic particles [Hannard
et al., 2017]. However, particle interactions might not be negligible for a very
heterogeneous distribution of particles, such as within clusters of particles
that involve a larger value of the local particle volume fraction (see further
discussion in section 8.4.1).

The Beremin model [Beremin, 1981] is based on the decomposition of the
stress in the particle as the sum of the stress in the matrix and of an additional
stress transfer arising from the deformation mismatch between the particle
and the matrix 1. Particles are treated as brittle solids and the fracture of
the particle is assumed to occur when the maximum principal stress in the
particle reaches a critical value :

(
σmax

princ

)part
= σpart

crit or
(
σmax

princ

)int
= σint

crit (8.6)

Using Eshelby’s theory [Eshelby, 1957] and the secant elasto-plastic modulus
extension proposed by Berveiller and Zaoui [Berveiller and Zaoui, 1978] for
the deforming matrix, the maximum principal stress in the particle is given
by : (

σmax
princ

)part
= Σmax

princ + kb Ep εeq (8.7)

where Σmax
princ is the maximum principal stress in the matrix, kb is a stress con-

centration factor which depends on the particle shape and orientation and Ep

is the secant modulus of the matrix.

In order to derive this expression, it has been assumed that Ep is much
smaller than the Young’s modulus of the particle and the elastic strain in the
particle has been neglected. The secant modulus Ep = σeq/εeq and eq. (8.7)
becomes : (

σmax
princ

)part
= Σmax

princ + kb σeq (8.8)

For axisymmetric loadings, Σmax
princ = σm + 2

3σeq where σm is the mean stress
and this gives :

(
σmax

princ

)part
= σm + (

2

3
+ kb)σeq = (T +

2

3
)σeq + kbσeq (8.9)

In this form, eq. (8.9) is very similar to that already derived by Argon, see
eq. (8.5). The factor kb appearing in eq. (8.9) depends on the shape of the ellip-
soidal particle through Eshelby’s tensor [Eshelby et al., 1953]. In the seminal
paper of the Beremin group [Beremin, 1981], a strong temperature depen-
dence of σpart

crit was noted when comparing eq. (8.7) with experimental results

1F.M. Beremin is the name of a French research group founded in the early 1980s in-
cluding researchers from Ecole des Mines (Paris), Framatome (Saint-Marcel) and BCCN
(Dijon).
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obtained at different temperatures. Thus, it was proposed to use the tangent
modulus Et = ((σeq − σ0) /εeq) instead of the secant modulus Ep = σeq/εeq
since the effect of strain inhomogeneity should not include the yield stress σ0.

Since the interaction law given in eq. (8.7) is based on Eshelby’s theory,
the stress field is considered as homogeneous within the particle and at the in-
terface with the matrix. It is thus not possible to model the transition between
particle cracking and interface decohesion depending on particle geometry or
loading conditions. For example, Lassance et al. [Lassance et al., 2007] char-
acterized the damage process of two 6xxx series Al alloys and observed that
the dominant mode of nucleation is dependent on the particle configuration.
Particle fracture is observed for particles elongated along the main loading
direction. Interface decohesion is observed when the loading direction is per-
pendicular to the long dimension of the particle. The competition between
particle fracture and interface decohesion depends on multiple factors, such
as the flow properties of the matrix, the particle aspect ratio and the stress
triaxiality. These effects have been addressed with more advanced finite ele-
ment (FE) simulations [Lee and Mear, 1999; Roux et al., 2014].

Needleman [Needleman, 1987] suggested a modification of the Argon cri-
terion. The nucleation stress is, similarly with the Beremin and the Argon
criteria, a linear combination of the effective stress σeq and the hydrostatic
tension σm, with the proportion of each term being an adjustable parameter
c :

σeq + cσm = σc (8.10)

This criterion was first shown to provide a good characterization of void nucle-
ation by interface decohesion [Needleman, 1987] for the adjustable parameter
c equal to 0.4. Later, Shabrov and Needleman [Shabrov et al., 2004] have
shown that this criterion is also suitable for the case of particle cracking, but
in this case, the optimal value of the parameter c was found to be 0.6.

The complexity of the nucleation process is such that the critical stress
σc has to be identified from experiments [A. Pineau, 2007]. The experimental
σc does not directly represent the fundamental interface cohesive strength or
ideal particle strength, but rather some effective measures of strength depend-
ing on the choice of micromechanical model used to compute the stress inside
the particle [Kosco and Koss, 1993; Benzerga and Leblond, 2010].

The onset of void nucleation by inclusion cracking depends on the inclusion
size, with larger inclusions cracking at lower stresses [Shabrov et al., 2004;
Hannard et al., 2016]. Chapter 7 explains in details brittle fracture. This
is explained by the fact that larger particles have a greater probability of
containing a critical volume defect [Kwon and Asaro, 1990]. Fig. 8.7(b) shows
the fraction of broken particles as a function of the reconstructed particles size,
obtained within Al 6056 tensile sample observed by X-ray tomography. The
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analysis indicates a strong size effect on the probability of particle fracture.
For example, particles smaller than 1 µm are almost never fractured, while
particles larger than about 8 µm are almost always broken, see Fig. 8.7(b).

FIGURE 8.7: (a) Visualization of a sub-volume extracted from an Al 6056
tensile sample loaded along the rolling direction (T4 state, deformed up to
420 MPa), after automatized particle reconstruction. Unbroken particles are
shown in blue and broken particles in other colors. (b) Fraction of broken
particles as a function of the equivalent particle diameter (over 10,000 particles
analyzed). See [Hannard et al., 2017] for more details.

Consequently, a statistical distribution of the critical stress for nucleation
must be used in order to capture the common distribution of particle size. Such
distribution of the nucleation process has usually been introduced through the
application of Weibull statistics [Maire et al., 1997; Lewis and Withers, 1995;
Babout et al., 2004]:

P (σmax
part , Vpart) = 1− exp

(
−Vpart

V0

(
σmax,Part

princ

σw

)m
)

(8.11)

where σw and m are the Weibull stress and modulus, V0 is the volume of
particle for which the probability of survival is 37% at σw. For σw and V0 fixed,
void nucleation is confined in a narrower strength range when m increases. In
principle, a single set of Weibull parameters (m, σw, V0) should describe the
probability of void nucleation within the material at all levels of straining
[Lewis and Withers, 1995; Hannard et al., 2016].

Tanaka et al. [Tanaka et al., 1970] derived an energy-based void initiation
criterion, with a particular interest in very small particles. Indeed, the elastic
strain energy stored in very small particles could be insufficient compared
to the corresponding energy for the creation of internal interfaces. Interfacial
cracks are thus energetically favorable above a critical size and void nucleation
can be modelled with a stress criterion for particles above this critical size.
This critical size was initially estimated at about 25 nm [Tanaka et al., 1970]
but is more likely to be above 100 nm [Benzerga and Leblond, 2010].
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8.3.2 Void growth

Rice and Tracey (R&T) developed a simple void growth model [Rice and
Tracey, 1969] which has been extensively applied in the literature. This model
captures the effect of the stress state on the void growth that has been de-
scribed at the macro scale in Fig. 8.3 and 8.4. The original version was
developed for a spherical void in an infinite, rigid perfectly plastic material
and under uniform remote strain and stress. The void volume change depends
only on the hydrostatic stress, while the void shape evolution is dictated by
the deviatoric stress component. The strain rate field is expressed in terms of
the principal components ε̇1 ≥ ε̇2 ≥ ε̇3.

A version of the R&T model taking into account the aspect ratio evolution
of an ellipsoidal void, with axes aligned with the principal loading directions
(Σ1,Σ2,Σ3), has been elaborated by Thomason [Thomason, 1990]. The rate of
change of each radius (Ri, i=1,2,3) is given by:

Ṙk =

(
(1 + E)ε̇k +

√
2

3
ε̇lε̇lD

)
Rmean (8.12)

where Rmean = R1+R2+R3

3 is used because the void is not spherical.

The dilatational factor D is given by D = 0.558 sinh
(
3
2T
)

+ 0.008 ν

cosh
(
3
2T
)

for non-hardening materials and D = 0.75T for linear hardening
materials. The Lode variable is defined as ν = −3ε2

ε1−ε3
. For axisymmetric load-

ings, the Lode variable ν is equal to 1 and the dilatational factor for non-
hardening materials becomes :

D = αexp

(
3

2
T

)
(8.13)

The pre-exponential parameter α, equal to 0.283 in the original work of R&T,
was later re-evaluated by Huang [Huang, 1991] using a more accurate numer-
ical method :

α =

{
0.427 T 1/4 for T ⩽ 1,

0.427 T for T > 1.
(8.14)

The incompressible extension factor (1 + E) was initially equal to 5/3 in the
original work of R&T. Later, Worswick and Pick [Worswick and Pick, 1990]
proposed a more elaborated expression based on FE void cell calculations.

Using the incompressibility equation (ε̇1 + ε̇2 + ε̇3 = 0) and the defini-
tion of the Lode variable, integration of eq. (8.12) gives the following general
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expressions for the three principal radii of an ellipsoidal void :

R1 =

(
A+

3 + ν

2
√
ν2 + 3

B

)
R0 (8.15)

R2 =

(
A− ν√

ν2 + 3
B

)
R0 (8.16)

R3 =

(
A+

ν − 3

2
√
ν2 + 3

B

)
R0 (8.17)

where A =
(

2
√
ν2+3
3+ν Dε1

)
and B = 1+E

D (A− 1). This integrated form provides

useful estimates of the changes in volume and shape of the void in various plas-
tic flow fields. However, it should be emphasized that the integration is strictly
valid only when the principal axes of the strain rates (ε̇1,ε̇2,ε̇3) remain fixed
in direction throughout the strain path [Thomason, 1990], including uniaxial
tension (ν=1), pure shear (ν=0) and biaxial tension (ν=-1). Furthermore, the
integrated form is only correct if the triaxiality does not change during the
loading, which is not true after the onset of necking.

The R&T model has been successfully used by many authors [Marino et al.,
1985; Kumar et al., 2009; Taktak et al., 2009; Pardoen and Delannay, 1998;
Landron et al., 2011; Lecarme et al., 2014], provided that the pre-exponential
parameter α is taken as a free parameter adjusted to account for the approx-
imations in the model. Marini et al. [Marini et al., 1985] have shown that the
parameter α increases with the initial void volume fraction. Indeed, the Rice
and Tracey analysis describes the growth of a single void in an infinite per-
fectly plastic matrix. If the initial void volume fraction increases, the dilute
void growth approximation becomes less accurate because the strain fields
around the voids interact. This explains why the parameter α was found
higher than the theoretical value when adjusting the model toward experi-
mental measurements [Marino et al., 1985; Kumar et al., 2009; Taktak et al.,
2009; Pardoen and Delannay, 1998; Landron et al., 2011; Lecarme et al., 2014;
Hannard et al., 2016]. Lecarme et al. [Lecarme et al., 2014] have discussed sev-
eral possible origins for the high value of the average factor α when compared
to the one theoretically predicted by Huang (0.43).

Growth of penny-shaped void

When voids nucleate by particle cracking, voids are initially penny-shaped
(R0

z very small along the loading direction) and the mode of deformation is
dominated by opening and blunting of the void/crack tip [Tvergaard, 2011].
Based on this observation, Lassance et al. [D. Lassance, 2006] have proposed
a simple mapping between the evolution of the void aspect ratio Wvoid and
a parameter λ describing the void distribution (λ is the ratio of the average
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distance along the loading direction to the one in the normal plane):

Wvoid = λ0
exp(εeq)− 1

exp(−εeq/2)
(8.18)

The evolution law given in eq. (8.18) has shown good agreement with unit cell
calculations [D. Lassance, 2006].

Void locking

At low triaxiality, voids elongate along the loading direction while con-
tracting in the transverse direction. However, in the case of particle fracture,
the particle fragments constrain the transverse contraction of the penny-shape
void [D. Lassance, 2006; Tvergaard, 2011]. The same behavior occurs in the
case of void nucleation by interface decohesion, with the particle inside the
cavity hindering the transverse contraction of the void [Siruguet and Leblond,
2004; Bordreuil et al., 2003]).

For example, Tvergaard [Tvergaard, 2011] studied the effect of particle
fragments on the growth of initially penny-shaped voids using axisymmetric
cells (see Fig. 8.8(b)). Fig. 8.8(a) shows the evolution of the porosity for a
void initially very flat (W 0

void =0.091) with (plain line) and without (dotted
line) a cracked particle. The effect of void locking is more significant at low
triaxiality (η=1/3). For stress triaxiality larger than 2/3, the void growth is
unchanged with and without the cracked particle. Indeed, void locking effect
is expected only in the case of void contraction in the transverse directions.

8.3.3 Coalescence

8.3.3.1 Void coalescence by ligament necking

The first stage of void growth by relatively homogeneous plastic deformation
of the matrix surrounding the voids is interrupted by the localization of the
plastic flow in the ligament between the voids. This localization corresponds
to the onset of coalescence (Fig. 8.9). From that point on, a second mode of
void growth, called void coalescence, starts, driven by plasticity localized be-
tween the primary voids. The problem is quite similar to an internal necking
process at a micro-scale.

The criterion of Brown and Embury [Brown and Embury, 1973] for predict-
ing the onset of coalescence has been widely used, mainly due to its simplicity.
This criterion states that coalescence starts when two voids are close enough
to be connected by microshear bands aligned at 45° to the main axis of the
inter-void ligament. For a spheroidal void in the deformed configuration, this
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FIGURE 8.8: (a) Effect of particle fragments on the growth of initially penny-
shaped voids based on unit cell results of Tvergaard (redrawn from [Tvergaard,
2011]). A plain/dotted line corresponds to void growth with/without void
locking effect. (b) The unit cell, (1) with and (2) without the particle fragment.
The initial void aspect ratio W 0

void is 0.091 and the particle aspect ratio Wp

is 5.

condition is met when [Tekog̃lu et al., 2012]:

χ =
1√

W 2 + 1
(8.19)

where W is the void aspect ratio and χ the void spacing ratio, as defined in
Fig. 8.10.

Thomason [Thomason, 1990] developed a more advanced criterion based
on the physical interpretation of void coalescence by internal necking, i.e.
the competition between a stable and homogeneous deformation mode as op-
posed to an unstable, highly localized deformation mode in the ligament. In
the early stages of deformation, the voids are small and widely spaced, i.e.
the critical stress required to initiate localized plastic flow σn within the liga-
ment is considerably larger than the macroscopic plastic flow σz. A localized
deformation mode within the void ligaments would thus be energetically un-
favorable and the diffuse flow is better predicted by a constitutive model for
porous media (see Fig. 8.11), such as the Gurson model discussed in chapter 9.

With increasing plastic flow, the energy required to transition to a local-
ized deformation mode within the void ligaments decreases due to two different
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FIGURE 8.9: Tomography observations of the transition from (a,b) homo-
geneous growth to (c,d) internal necking of artificially and regularly inserted
voids by laser-drilling copper sheets. After [Weck et al., 2008].

contributions. First, the local stress acting on the matrix ligament increases
because the effective area fraction of the ligament decreases with void growth.
Furthermore, the transition stress σn is evolving with the geometry of the
voids because the ligament "neck" geometry increases the local stress triax-
iality. Thomason [Thomason, 1985b] has shown that this geometrical effect
can be rationalized by the use of a "plastic constraint factor", Cf , which is a
function of the void aspect ratio (Wvoid) and the void spacing ratio (χ).

The plastic limit-load of the ligament, i.e. the transition to the localized
deformation mode, is reached when the following constraint is satisfied :

σ1

(1− γχ2)
≥ Cf (Wvoid, χ)σ0 (8.20)

where γ=1 for an axisymmetric unit cell and γ = π/4 for a cubic cell.
Thomason [Thomason, 1985b,a] has used two different unit cells, namely, a

square-prismatic unit cell containing a square-prismatic void and a cylindrical
symmetric unit cell containing circular-cylindrical void, in order to assess the
sensitivity of the model to the detailed void shape. The matrix material was
assumed to be perfectly plastic in both cases. The two different unit-cell mod-
els gave very similar dependence of the constraint factor with Wvoid and χ. In
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FIGURE 8.10: Idealization of axisymmetric spheroidal voids (such as classi-
cally used for unit cell-type FEM calculation) when loading along the vertical
direction. The void aspect ratio W is defined as Lz

Lx
and the void spacing ratio

χ as Rx

Lx
.

the case of the axisymmetric cell, the following expression gives an empirical
expression for Cf which is a close approximation of the upper-bound analysis
[Thomason, 1985b] :

Cf =

[
α

(
1− χ

χWvoid

)2

+ β
1√
χ

]
, (8.21)

with α=0.1 and β=1.2. The constraint factor Cf decreases as the voids open
(Wvoid increases) and get closer to each other (χ increases), see Fig. 8.12(a).
From a physical point of view, this is explained by a lower ligament stress
triaxiality increasing the rate of plastic deformation and favoring void coales-
cence.

Several variants of the plastic constraint factor Cf have been proposed in
order to generalize and enhance the model, but the essence remains the same.
The expression for the constraint factor Cf was improved by Pardoen and
Hutchinson [Pardoen and Hutchinson, 2000] in order to incorporate material
hardening. The parameter α is replaced by a function of the strain-hardening
exponent n (α=0.1+0.217n+4.83n2) and σ0 is replaced by the current mean
yield stress σy of the matrix.

Thomason’s coalescence model does not predict any coalescence between
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FIGURE 8.11: Schematic description of the competition between the two
modes of plasticity around voids. In the early stages of deformation, the growth
is stable. At some point, the deformation localized within the void ligament.
Adapted from [Pineau and Pardoen, 2007].

very flat voids. Indeed, the constraint factor Cf given by eq. (8.12) goes to in-
finity in the limit of very flat voids, i.e. Wvoid approaches 0 (see Fig. 8.12(a)).
This trend is explained by the axisymmetric velocity fields used by Thomason
which diverge for penny-shaped cracks. In other words, eq. (8.20) will never
be satisfied for very low Wvoid and Thomason’s model predicts that no co-
alescence would occur for very flat voids. To avoid this limitation, Benzerga
[Benzerga, 2000] used improved trial velocity fields in the limit-analysis pro-
cedure (see Fig. 8.12(b)) and the numerical results are shown in Fig. 8.12(a).
Benzerga proposed a new form of the plastic constraint factor based on these
numerical results :

Cf =

[
0.1

(
χ−1 − 1

W 2 + 0.1χ−1 + 0.02χ−2

)2

+ 1.3
1√
χ

]
, (8.22)

In practice, however, the quantitative predictions obtained with the two mod-
els are very close for most cases analyzed [Benzerga and Leblond, 2010]. In-
deed, penny-shaped voids rapidly open in the loading direction, become more
rounded and Wvoid increases rapidly to values for which both models give
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FIGURE 8.12: (a) Effect of the voids configuration (Wvoid and χ) on the
plastic constraint factor Cf . (b) Unit cells used by Thomason [Thomason,
1985b,a] and by Benzerga [Benzerga, 2002].

similar results, i.e. Wvoid larger than about 1 (see Fig. 8.12(a)). Furthermore,
the highly constrained and localized character of plastic flow in the inter-void
ligament during void coalescence limits the effect of void shape (Wvoid) and
the inter-void spacing χ is the key parameter controlling the transition to the
coalescence mode [Benzerga and Leblond, 2010].

Scheyvaerts et al. [Scheyvaerts et al., 2011] further improved eq. (8.20) in
order to account for the orientation of the inter-void ligament. Indeed, the void
axes are not necessarily aligned with the principal loading directions and the
ligament is not necessarily transverse to the maximum principal stress. The
two voids are thus transformed into an effective configuration made of two
identical voids (defined by Weff and χeff ) in order to allow the evaluation of
the coalescence model and σ1 is taken as the stress normal to the ligament.
This extension of the coalescence criterion reduces to its original definition
when the voids are aligned and have the same orientation.

In many ductile metallic alloys, the growth and coalescence of primary
voids (typically larger than 1 µm) is affected by the growth of a second pop-
ulation of much smaller voids. For steels, the second population may be as-
sociated with small carbides or grain-size-controlling dispersoid particles in
Al alloys. These secondary voids do not affect the stable growth of the pri-
mary voids but strongly accelerate the void coalescence process by softening
the material in the ligament between the voids where the strains are very

©by-nc-sa 2023 by MEALOR II



228 MEALOR II

large [Fabrègue and Pardoen, 2008]. The softening induced by the growth of
this second population has been heuristically introduced in the coalescence
criterion of eq. (8.20) by multiplying the yield stress of the matrix material
by (1-f2), with f2 being the maximum value of the secondary void volume
fraction over the ligament [Fabrègue and Pardoen, 2008].

8.3.3.2 Void coalescence by void sheeting

The second mechanism by which voids can coalesce is the so-called void sheet-
ing mechanisms [Garrison Jr and Moody, 1987]. In this mechanism, void
growth of the primary void is generally limited due to low levels of stress
triaxiality. However, the strain levels, in particular locally between two voids,
are high and can give rise to the nucleation of a second population of voids (as
discussed in the previous section). The second population of voids is nucleated
on smaller second-phase particles that are present in high density between pri-
mary nucleated voids. For example, in aluminium alloys these are generally
Mn and Cr rich dispersoids of a typical size of 50-100 nm [Fabrègue and Par-
doen, 2008].

Fig. 8.13(a) shows the void sheeting mechanism between two large voids
in steel via a 2D metallography section [Cox and Low, 1974] and Fig. 8.13 (b)
shows the void sheeting mechanism for an aluminium alloy on a tomography
section of an imaged stopped crack. Fig. 8.13 (c) show the fractography for the
same material with very fine dimples between the two large voids. These fine
dimples belong to the void sheet. It is imagined that the nucleation, growth
and coalescence of the small voids occur all at once for a very small increment
of macroscopic loading and the process can even be sustained by the energy
released during elastic unloading of the material at fracture.

coalescence by void sheeting

large voids
a) b) c)

50 µm

large voids

FIGURE 8.13: Coalescence by void sheeting a) in steel, after [Cox and Low,
1974] b) for a stopped crack in a AA2139 T3 alloy observed by tomography
c) on the fracture surface for the same alloy, adapted after [Ueda et al., 2014]
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8.4 Damage mechanisms in heterogeneous materials

As discussed in previous sections, the understanding of the micro-mechanisms
leading to ductile fracture is quite advanced. Furthermore, much effort has
been devoted to the prediction and numerical modeling of these mechanisms,
but the development of predictive engineering models remains a challenge (see,
for example, the blind predictions challenges from the Sandia National Labo-
ratories [Boyce, 2014]).

One particularly challenging aspect of ductile damage is linked to mi-
crostructural variability, while modeling approaches always require some
degree of idealization of the microstructure. For example, several micro-
mechanical models are based on void unit cell-type FEM calculations. These
models would thus provide accurate predictions for sufficiently ideal mi-
crostructures, generating very regular distributions of voids and with uni-
form elasto-plastic behavior, but this is the exception rather than the rule
in engineering materials. Of course, these models remain useful and several
calibration approaches have been developed, but major questions remain in
the case of heterogeneous materials.

One difficulty associated with the introduction of an explicit representa-
tion of the microstructure in models is that it is computationally expensive,
especially for heterogeneous materials which require a larger representative
volume element in order to be representative of the entire microstructure.
Significant efforts have gone into refining these "average" models and much
progress has been made to account for heterogeneities on damage accumula-
tion [Pardoen et al., 2010]. However, there is a natural limit to their accuracy.
For example, models based on a more or less periodic void distribution can-
not properly reproduce the physical mechanisms of the failure process within
heterogeneous materials, i.e. voids growth and that will merge to form micro-
cracks that propagate throughout the heterogeneous particles field [Z. Chen,
2013; Hannard et al., 2016].

In this section, the most common types of microstructural heterogeneities
are discussed, together with experimental evidence indicating that they
strongly affect the ductile damage process. The most common types of het-
erogeneities found in polycrystalline metals are illustrated in Fig. 8.14:

1. Type I. Heterogeneous second phase distributions: The morphology
(i.e. size, shape and orientation) of coarse second phase particles
responsible for primary void nucleation usually varies significantly
within the same microstructure. Furthermore, their distribution can
be spatially concentrated into clusters.

2. Type II. Distributions of initial porosities and micro-cracks: A dis-
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tribution of initial porosities and micro-cracks, i.e. resulting from
material processing and not due to void nucleation, are also usually
observed in metals. For example, cast Al alloys often present large
amount of porosities due to gas involved in the molten state, or
micro-cracks due to heat-tearing. In wrought Al alloys, pre-existing
porosity remains much smaller than in cast alloys and typically
ranges between 0.001% and 1% [Pineau and Pardoen, 2007].

3. Type III. Crystallographic orientation of the grains. A crystallo-
graphic texture, as caused for instance by the preferred orientation
of the grains along the rolling direction, impacts the ductile failure
as void growth is driven by plastic deformation of the surrounding
material.

4. Type IV. Heterogeneity within the grain-boundary regions:
Precipitation-hardening alloys may exhibit heterogeneous precipi-
tation of coarse phases at grain boundaries, inhibiting the forma-
tion of precipitates in the grain boundary region. These Precipitate
Free Zones (PFZs) remain thus much softer compared to the core
of the grains, which promotes strain localization and intergranular
fracture.

FIGURE 8.14: Various types of microstructural heterogeneities found in poly-
crystalline metals, as described in the text.

The microstructural heterogeneity effects usually depend on the loading
direction and three types of sources of anisotropy can impact the fracture
behavior [Hannard et al., 2018]:

1. Plastic anisotropy is related to the crystallographic texture and is
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associated with a yield stress and a strain hardening which depend
on the loading direction.

2. Morphological anisotropy originates both from the shape of the
voids or from the shape of the void nucleating particles. For exam-
ple, particle cracking is favored on elongated particles preferentially
aligned along the loading direction [Beremin, 1981].

3. Topological anisotropy results from the spatial distribution of par-
ticles, particularly affecting void coalescence. For example, during
the rolling of wrought Al alloys, brittle intermetallic particles are
broken and a stringer-type particle clustering develops along the
rolling direction [Pilkey et al., 1998].

8.4.1 Clustering and anisotropic distribution of particles

The spatial distribution of brittle particles, i.e. void nucleation sites, can sig-
nificantly influence the damage process in cases of strong heterogeneity. For
example, coalescence might occur early in clusters of particles (Fig. 8.15, first
order clustering), regions in which void nucleation was fast and void close
to one another, while other regions of the material exhibit limited damage
(Fig. 8.15, homogeneous). Fig. 8.15(c) and (d) show X-Ray microtomography
reconstructed images just before fracture of tensile tests performed on alloy
Al 6056-T4 associated with a second-order clustering and after breaking these
clusters by friction stir processing, respectively [Hannard et al., 2018]. After
local redistribution and homogenization of particle distribution, the fracture
strain is significantly improved, as observed by comparing the final cross-
sections shown in Fig. 8.15(c) and (d).

Furthermore, the shape and distribution of the clusters themselves also
influence the damage sequence. For example, a strong and anisotropic large-
scale clustering of particles, i.e. particles clusters are much closer to each other
in the rolling direction compared to the transverse direction. This proximity
of clusters creates an easy percolating crack path along the rolling direction as
a crack can extend along this direction throughout the material without the
need to cross less-damaged matrix (Fig. 8.15, second order clustering(T)). On
the opposite, the presence of a tougher matrix between these clusters strongly
reduces their detrimental effect on the fracture properties by allowing a second
stage of stable void growth between clusters (Fig. 8.15, second order cluster-
ing(R)).

8.4.2 Precipitate Free Zones (PFZ) and coarse precipitates

One of the main sources of ductile damage in aluminum alloys is associated
with void nucleation on micron-sized intermetallic particles (see Fig. 8.16(a)),
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FIGURE 8.15: (a) Schematics of the damage sequence depending on the
spatial distribution of void-nucleating particles and (b) corresponding tensile
curves. (c) X-Ray microtomography reconstructed images just before fracture
of tensile tests performed on alloy Al 6056-T4, associated with a second-order
clustering and loaded along (c) the transverse direction and (d) the rolling
direction. Voids appear in black in the grey matrix and IM particles appear
in white. See [Hannard et al., 2018] for more details.

as discussed previously. However, in addition to these brittle particles, 7xxx
Al alloys often exhibit grain boundaries surrounded by a thin layer of material
softer than the grain core (see Fig. 8.16(c)), promoting strain localization and
intergranular fracture [Lezaack et al., 2022], see Type IV in Fig. 8.14. These
softer zones, called precipitate-free zones (PFZs), have been associated with
heterogeneous precipitation of coarser precipitates, which are trapping the al-
loying elements in the vicinity of the grain boundary (GB).

Fig. 8.16 illustrates the competition between intergranular and transgran-
ular fracture in the 7475 Al alloy [Lezaack et al., 2022]. Using friction stir
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processing (FSP) and post-FSP heat treatments, microstructures with simi-
lar hardening precipitates and PFZs but with very different grain structures
and intermetallic particles size distribution were generated. The formation of
elongated cracks following the grain boundaries is observed within the rolled
material, i.e. intergranular fracture (see Fig. 8.16(e)). On the opposite, fully
transgranular crack propagation is observed and intergranular damage is fully
inhibited after FSP due to grain refinement (see Fig. 8.16(f)). The compe-
tition between transgranular and intergranular failure is strongly affected by
the microstructure or the stress state, as extensively discussed in [Kamp et al.,
2002; Pardoen et al., 2010; Lezaack et al., 2022].

FIGURE 8.16: Metallographic observations and SEM fractography of 7475
Al specimens, (a) before and (b) after FSP. Intergranular and transgranular
failure mechanisms are observed in (a) and (b), respectively. Adapted from
[Lezaack et al., 2022].

The particular case of ductile damage originating from these microstruc-
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tural heterogeneities under shear loading will be discussed in the following
section 8.5.

8.5 Shear fracture mechanisms

Under shear loading the stress triaxiality at the continuum level is null. This
driving force is thus lacking for void growth and fracture. Still, failure under
shear occurs as indicated in previous sections. The study of this advanced
mechanism is currently largely debated in the community [Abedini et al.,
2018; Gross and Ravi-Chandar, 2016; Roth et al., 2018; Tancogne-Dejean
et al., 2021; Buljac et al., 2023] and some of these results will be discussed in
the present section.

Studies in steels have shown that the steel matrix may decohere from the
particles normal to the maximal principal stress direction and give rise to void
growth. The voids then elongate and rotate [Abedini et al., 2018; Roth et al.,
2018]. This mechanism can be observed in Fig. 8.17(c) for an FB600 steel for
in situ laminography data in a ligament of a flat ’smiley’-shape shear sample
shown in Fig. 8.17(a). The final fracture surface for this material is given in
Fig. 8.17(d) where a CaO particle may be seen in the center of the elongated
void. The final fracture has taken place by the nucleation of very small voids,
potentially at the ferrite bainite interface. These voids have also been sheared.

The damage mechanisms under shear loading for high-strength Al-alloys
are shown in the rest of Fig. 8.17. The evolution of a pre-existing hydrogen
pore is shown in Fig. 8.17(e, f). The void elongates, rotates and almost closes.
The final crack passes close to the void, but the void does not seem to have a
major effect on the final fracture.

Concerning intermetallic particles, they fracture normal to the direction
of the maximum principal stress, see Fig. 8.17(g, h). Despite the lack of stress
triaxiality the voids grow between the particle debris, as the intermetallic par-
ticles are known to be stiff.

Similar mechanisms have been observed by in situ laminography for an
aluminium alloy 2198, see Fig. 8.17 (i). The particle showed a crack normal
to the maximum principal stress direction. A void then grew during shearing
between the two particle parts. Finally, the void fully contributed to the final
crack. This highlights again the role of particles in shear fracture and the un-
common way in which voids may grow under these circumstances, i.e. due to
the stiff particle debris that keeps the voids open.
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This is consistent with findings by Tomstad et al. [Tomstad et al., 2022]
who found that the fracture strain in shear loading is reduced when the inter-
metallic particle content is increased.

8.6 Experimental methods for ductile damage

Various methods to quantify ductile damage have already been introduced in
the previous sections. This section provides a brief review of these methods,
with a more detailed description of recent developments regarding 2D, 3D
(X-ray tomography) and 4D (time resolved) imaging.

Experimental methods for assessing ductile damage can be divided into
indirect and direct methods. Indirect methods involve measuring physical or
mechanical properties that are affected by the presence of damage, such as
density or Young’s modulus. Direct methods involve direct imaging of the mi-
crostructure and damage, either directly during testing (in situ approaches),
by stopping the testing of the specimens (ex situ approaches), or after the fail-
ure of the specimen (post mortem observations). This section briefly reviews
direct methods, differentiating two-dimensional imaging, three-dimensional
imaging, and finally four-dimensional imaging (i.e. 3D imaging over a pe-
riod of time).

8.6.1 2D Methods

There are numerous two-dimensional approaches, including fractography and
metallography (see Fig. 8.18), to study the deformation and fracture of mate-
rials.

The goal of fractography (Fig. 8.18(a)) is to characterize the damage se-
quence from the final fracture surface, interpreting fracture mechanisms from
the surface topography and features. Réaumur (1722) already evaluated the
quality of steels by observation of their fracture surfaces, identifying surfaces
exhibiting “many little mirrors of irregular shape and arrangement” as an in-
dicator of poor quality [Lynch and Moutsos, 2006]. Zappfe and Clogg used
the term fractography for the first time in 1943, describing a new tool for
studying fracture surfaces in metals [Zapffe and Clogg, 1945]. However, these
early fractography studies were performed with high-magnification light mi-
croscopy and thus small depth of focus, hindering the investigation of rough
ductile fracture topography [Azevedo and Marques, 2010]. Nowadays, scan-
ning electron microscope (SEM) is widely used for the examination of ductile
fracture surfaces facilitated by simple sample preparation and large depth of
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FIGURE 8.17: Damage mechanisms under shear loading a) and b) damage
evolution from CaO particles observed by in situ laminography c) correspond-
ing fractography for FB600 steel, after [Roth et al., 2018]; for AA2024 d) 3D
view e) 2D laminography sections of the evolution of a void, after [Tancogne-
Dejean et al., 2021]; f) 2D laminography sections g) 3D view of the evolution
of a particle; h) 2D laminography sections of a particle in AA2198, after [Bul-
jac et al., 2023]

focus (150 µm to 10mm at 100x [Azevedo and Marques, 2010]).
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FIGURE 8.18: Schematic of a broken tensile specimen, illustrating (a) frac-
tography and (b) metallography. Adapted from [Hannard et al., 2016].

On the other hand, metallographic sections through damaged specimens
(and arrested test) or through fracture surfaces are often characterized with
various imaging techniques such as optical microscopy, SEM, Transmission
Electron Microscopy (TEM) or Electron backscatter diffraction (EBSD). For
example, metallographic observations of broken tensile samples polished down
to mid-thickness can be used to analyze the probability of fracture of inter-
metallic particles at various distances from the fracture surface (Fig. 8.18(b)).
For each particle, the high magnification SEM allows to identify particle di-
mensions and if it is broken or not broken. This also allowed to build the re-
sult of Fig. 8.7(b). The color map shows the finite element simulation used to
compute the strain history at the position of the particle within the sample.
Metallographical observations allow characterizing multiple microstructural
features that can influence the damage sequence and fracture process, such as
grain structure, distribution of impurities, or segregation of alloying elements
at grain boundaries. Recently, in situ TEM has also been used to study the
damage sequence within copper single crystals [Ding et al., 2016]. This high
resolution technique enables the investigation of the intricate interplay be-
tween dislocation sources and obstacles confined within nanoligaments during
the process of necking, i.e. during coalescence.

8.6.2 3D Methods

The word "tomography" comes from the Greek word "tomos" meaning "slice".
The technique has been initially developed for medical applications in the
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1970s. Cormack [Cormack, 1973] was the first to demonstrate the feasibility
to reconstruct the cross-section image of an object with a limited number of
X-ray radiographs. The first Computed Tomography (CT) scanner was built
later by Hounsfield [Hounsfield, 1973]. Hounsfield developed a new approach
for image reconstruction using the computers available at that time. In this
way, the concept of computed tomography was born 2. Computed tomogra-
phy improved with the development of digital computers [Stock, 1999] and
industrial X-ray computed tomography for non-destructive materials charac-
terization was marketed in the 1980’s.

8.6.2.1 The principle of X-ray tomography

The principle of X-ray tomography basically consists of an extension of clas-
sical X-ray radiography. A series of radiographs is recorded for different an-
gular positions of the sample, which rotates around an axis perpendicular to
the beam. Each radiograph provides only a projection of the variation of X-
ray absorptivity within the object. The set of radiographs (a scan) is then
combined to reconstruct the three-dimensional distribution of the local atten-
uation coefficient of the material. The reconstructed volumetric image consists
of a 3D matrix of voxels (analogous to pixels in a 2D digital image), for which
the grey level of each voxel describes the X-ray attenuation at that position.

The voxel size is dependent on the field of view and the number of de-
tector elements. Indeed, the specimen must remain in the field of view for all
rotations in order to ensure a good volume reconstruction. For a fixed voxel
size, the maximum specimen diameter is thus limited by the number of ele-
ments of the detector (usually between 1000 and 4000 pixels across the width
for a CCD detector [Maire and Withers, 2014]) multiplied by the voxel size.
Recently, commercial nanoCT systems have started to appear in research lab-
oratories. Spatial resolutions substantially below 1 µm can be achieved, but
much smaller specimen diameters than in microCT are thus required. Mi-
crotomography is usually associated with at least 50µm spatial resolution and
nanotomography for spatial resolutions substantially below 1µm [Stock, 2008].

Modern laboratory projection microCT systems operate in cone beam ge-
ometry (Fig. 8.19(a)). With the use of a cone beam, the spatial resolution is
changing with the source-to-object distance. Synchrotron X-ray microtomog-
raphy uses a parallel beam (Fig. 8.19.(b)) where the source-to-object distance
is very large (e.g. 145m on ID19 at the European Synchrotron Radiation
Facility (ESRF) [Withers, 2007]). In this case, the spatial resolution can be
tuned using different types of detectors [Babout, 2011]. The parallel beam
geometry facilitates in-situ experiments since a large distance between sam-

2Cormack and Hounsfield, generally credited with inventing computed tomography, were
awarded the Nobel Prize in Medicine in 1979.[Cierniak, 2011]
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FIGURE 8.19: Schematics illustrating (a) cone-beam and (b) parallel-beam
projection systems. Reproduced from [Withers, 2007].

ple and detector can be maintained without loss of intensity [R. Schurch and
Withers, 2015]. Synchrotron facilities offer X-rays with high flux, and high
coherence, with the ability to tune the X-ray spectrum from a broad spec-
trum to a monochromatic beam [R. Schurch and Withers, 2015]. The high
flux also facilitates in-situ experiments as it enables rapid tomography data
collection [Wu et al., 2017]. Furthermore, monochromatic X-rays are advan-
tageous since their wavelength can be specifically tuned to achieve greater
absorption contrast compared to a broad spectrum source (such as laboratory
sources) [R. Schurch and Withers, 2015]. Nowadays, multiple manufacturers
offer turnkey microCT systems for routine, day to day laboratory charac-
terisation [Stock, 2008]. However, commercial laboratory microCT employs
polychromatic radiation and provide thus lower contrast than synchrotron
microCT with monochromatic radiation. A review of commercial laboratory
microCT systems can be found in Ref. [Stock, 2008].

Recently, multi-scale correlative methods [Burnett, 2014], which involve
the coordinated use of X-ray tomography combined with other characteriza-
tion techniques have been developed ("coordinated" refers to the fact that all
analyses are performed for the same 3D region). This type of approach al-
lows a more complete understanding than either method could have provided
separately. For example, such a 3D correlative approach has been used to pro-
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FIGURE 8.20: (a) 3D X-ray microtomography cross-sections of the damage
evolution within an Al 6056 (T6 state) tensile specimen, with a voxel size
of 1.06 µm3. A few voids are tracked from scan to scan and identified by
colored arrows. (b, c) 3D perspectives of the broken specimen. (d) Fracture
surface observed by SEM, with the same orientation shown in (c). (e) to (h)
SEM images of the fracture surface, with increasing magnification. The high
magnification image in (h) shows small dimples as typically associated with a
second population of voids nucleating on dispersoids in high-strength Al alloys.
This region corresponds to the micro-crack observed in (a), as identified by
the connecting arrow. Data from [Hannard et al., 2016].

vide greater insight into the mechanisms of ductile fracture in low alloy steel
[Daly and Burnett, 2017]. An example of correlative characterization of dam-
age by in situ X-ray tomography combined with SEM fractography is shown in
Fig.8.20. The early formation of a micro-crack is observed early in the defor-
mation process, as shown in Fig.8.20(a). By performing SEM fractography in
a correlative approach, it is possible to identify the region of the fracture sur-
face corresponding to this micro-crack, as identified by the connecting arrow
(Fig.8.20(a) and (h)). In this example, in situ tomography allows identifying
micro-cracks appearing early during the test. However, the voxel size of 1.06
µm3 does not allow to observe the second population of voids that originated
such micro-cracks, as identified with the population of smaller dimples on high
magnification SEM images (Fig.8.20(h)).

8.6.2.2 Synchrotron laminography

Synchrotron laminography [Helfen et al., 2005] can be used for 3D imaging of
local regions of interest inside sheet materials at high resolution. In cases of
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scanning flat samples at high resolution, computed tomography (CT) would
cause strong artifacts by projection angles close to the sample surface [Xu
et al., 2012]. X-ray transmission is strongly reduced in this case. To overcome
this problem, synchrotron radiation computed laminography (SRCL) is used
for scanning regions of interest in flat laterally extended objects [Helfen et al.,
2005, 2012]. A wide range of engineering-relevant boundary conditions and
local stress-strain histories can be studied using synchrotron laminography
[Kong et al., 2022]. Xu et. al [Xu et al., 2012] compared the image quality
between CT and CL for flat samples and concluded that CL reconstructed
flat structures in every direction equally well whereas structures in some di-
rections could not be reconstructed well in CT.

FIGURE 8.21: Schematic representation of synchrotron radiation (a) com-
puted tomography and (b) computed laminography set-ups after [Helfen et al.,
2005; Morgeneyer et al., 2013b].

Fig. 8.21 presents the typical (a) Computed Tomogaphy (CT) and
(b) Computed Laminography (CL) set-ups at synchrotron facilities. Unlike
the rotation axis perpendicular (θ=90◦) to the beam direction in CT, the
rotation axis is inclined at an angle of θ <90◦ with respect to the beam di-
rection in the computed laminography. The projected images of the sample
are acquired over an angular range between 180 to 360◦ around the rotation
axis. Since the whole scan process takes few minutes, the sample usually has
to stay stationary before being scanned [Morgeneyer et al., 2013b]. The stack
of radiographies is then processed to reconstruct a 3D volumetric image by
using a filtered-back projection algorithm [Myagotin et al., 2013].

The ductile damage mechanisms are illustrated in Fig. 8.22 during mono-
tonic loading of a fatigue pre-cracked sample. The microstructure of the alu-
minium alloy 6061 (T6 state) is studied with 2D reconstructed sections of the
3D laminography data from a 1 mm thick pre-cracked specimen: iron-rich par-
ticles appear in white, while Mg2Si particles appear in dark gray. The fatigue
pre-crack is hardly visible in Fig. 8.22(a). It opens under load and the crack
tip blunting can be observed in Fig. 8.22(b). Void nucleation from a Mg2Si
particle is also observed in this figure. A cavity is formed at 40 µm in front
of the crack tip and 45° with respect to the loading direction. A pre-existing
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void is present in the material above the crack front. The closer the cavity is
to the crack, the larger the void growth rate. Simultaneous void growth for
some voids and void nucleation for other particles are observed.

Two types of void coalescence can be observed in Fig. 8.22(d). First, coales-
cence by internal necking between voids nucleated from coarse precipitates. A
second mechanism by void sheeting is also observed, with shear bands forming
between voids initiated from coarse precipitates. These "void sheets" formed
between larger voids are oriented at 45° from the loading direction. In these
localization bands, a second population of micro-voids is initiated on smaller
precipitates (dispersoids of chrome and manganese), which are not visible with
the voxel size of 0.7 µm [Shen et al., 2013]. The largest stress triaxiality is ex-
pected at the mid-thickness of the specimen, which should favor void growth
and coalescence by internal necking. This process is then bypassed by the for-
mation of shear bands containing micro-voids before joining the crack. From
Fig. 8.22(e), a crack has formed by voids linkages and starts to propagate
perpendicular to the loading direction. As coarse precipitates are distributed
on grain boundaries, the crack propagation is likely to follow an intergranular
mode.

!  
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(f) (e) 
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FIGURE 8.22: 2D sections of reconstructed 3D in situ laminography data at
the center of a 1mm thick AA6061 sample, adapted after [Shen et al., 2013]
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8.6.3 4D Methods and Digital Volume Correlation (DVC)

Digital volume correlation (DVC) is the extension of more classical 2D Digital
Image Correlation (DIC). The principle of DVC consists in matching the gray
levels f in the reference configuration x and those of the deformed volume g
such that

f(x) = g[x+ u(x)] (8.23)

where u is the displacement field with respect to the reference volume. In
real applications, the previous conservation of the gray level is not satisfied,
especially in laminography where deviations appear not just due to acquisition
noise but also due to reconstruction artifacts because of missing information
(angles). Another difference with respect to DIC is that no artificial image
contrast, as the typical spray paint speckle pattern in 2D DIC, can be ex-
ploited. A 3D image contrast of the microstructure is thus required for DVC,
which is a limitation of this technique for some materials. In addition, when
damage nucleates, the conservation of gray values is no longer satisfied, as
damage appears as additional dark voxels. Consequently, the solution consists
in minimizing the gray level residual ρ(x) = f(x) − g[x + u(x)] by consid-
ering its L2-norm with respect to kinematic unknowns associated with the
parametrization of the displacement field.

The residuals of the correlation, ρ(x) may in some cases be used to quan-
tify the damage evolution in the material, see e.g. [Buljac et al., 2018]. Digital
volume correlation was successfully applied to ductile fracture of engineering
materials [Morgeneyer et al., 2013a, 2014].

Fig. 8.23 shows an example of an application of DVC in ductile fracture.
Here, the intermetallic particles present in the Al alloy provided the necessary
image contrast with the Al-matrix to be able to perform the correlation. The
strain field for the first load step given in Fig. 8.23(b). It shows a heteroge-
neous strain field with a localized slant band. This band remains active for the
following load steps. The final fracture occurred along this strained band. The
new insight gained from DVC is that this kind of heterogeneity was present
from the very early loading onwards. It could not be reproduced by continuum
level plasticity models [Morgeneyer et al., 2014]. Crystal plasticity effect may
be at the origin of the found strain field and be the precursor of the final slant
fracture [Morgeneyer et al., 2021].

8.6.4 Conclusions

These new imaging techniques have allowed significant progress in the under-
standing of ductile fracture. The advantage of non-destructive methods, that
are significantly improving in resolution every year, is their ability to track
damage while straining (4D methods). The understanding of damage mecha-
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FIGURE 8.23: DVC applied to ductile fracture of an Al-alloy: a) region of
interest scanned by laminography, the ROI for DVC is marked in white, b-e)
cumulated equivalent strain fields for increasing macroscopic displacement f)
final crack path along the former strain localization band. After [Morgeneyer
et al., 2014]
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nisms and the models described in section 3 have largely benefited from these
new techniques for their validation and improvements.
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This chapter aims at presenting basic concepts of modeling fracture in ductile
porous materials. The approach is mainly based on the so-called local approach
which relies on the use of constitutive models describing voids growth and
coalescence phenomena. A prototype of such constituve law is the Gurson-
Tvergaard-Needleman model which is presented in detail. For completeness,
we also provide elements of some recent coalescence criteria. The chapter
terminates with various extensions of the GTN models including those devoted
to voids shape effects.

9.1 Introductory comments

Ductile fracture through voids nucleation, growth and coalescence is the dom-
inant mode of failure of metallic alloys at medium and high temperatures as
shown in chapter 8. This mode of failure occurs after large deformations, due
to the propagation of macroscopic cracks leading to the tearing of structures.

As detailed in chapter 8, ductile failure follows three stages [Garrison and
Moody, 1987] : (i) voids are nucleated at the level of inclusions or second phase
particles (see for instance recent studies based on 3D tomography [Hannard
et al., 2018]) by decohesion of the particle-matrix interface, or by rupture of
these inclusions (see Figure 9.1a); (ii) these cavities grow and deform by plastic
flow of the surrounding matrix: this is the growth phase (see Figure 9.1b); (iii)
finally, in the coalescence phase, neighboring cavities eventually join to form
a macroscopic crack leading to the ruin of the structure (see Figure 9.1c).

There are several approaches to model ductile fracture: uncoupled models
such as the Rice-Tracey one [Rice and Tracey, 1969] (in which the porosity
does not change the mechanical behavior; see chapter 8) and coupled mod-
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(a) (b) (c)

FIGURE 9.1: Three main mechanisms of ductile fracture. (a) Void nucleation,
(b) Void growth and (c) Void nucleation. After Morin [2015].

els (in which the damage changes the mechanical behavior). In the coupled
approach, which is often referred to as the local approach to fracture, the mod-
eling of ductile fracture is essentially based on a detailed physical description
of the local fracture process zone [Besson, 2010]. The most advanced models
of ductile fracture are then based on a micromechanical approach with an up-
scaling procedure whose main objective is to define the macroscopic behavior
of a plastic material containing voids.

It results a material constitutive law with a progressive softening induced
by the growth of cavities [Benzerga et al., 2016]. The mechanics of ductile
fracture appears therefore mainly as a problem of deriving appropriate con-
stitutive laws for elastoplastic materials with an evolving porosity. Then, the
numerical integration of the homogenized constitutive laws of ductile porous
materials, in a finite element code, is necessary to proceed to a structural
calculation.

Within the local approach to ductile fracture, two mathematical modeling
frameworks allow the development of micromechanical models:

• The “nonlinear homogenization” approach which is based on the use of rig-
orous bounds for nonlinear composites for non linear composites (including
voided materials) whose constituents behaviors are described by means of a
single potential (in particular purely viscous materials) [Ponte Castañeda,
1991; Willis, 1991; Michel and Suquet, 1992]. This approach allows to es-
tablish expression of the macroscopic criterion of the porous material and
to take into account voids shape effects [Danas and Ponte Castañeda, 2009;
Danas and Aravas, 2012] and crystal anisotropy [Agoras and Ponte Cas-
tañeda, 2013; Mbiakop et al., 2015a].

• The classical limit analysis based approach, which relies on a coupling be-
tween limit analysis and Hill-Mandel type homogenization. This approach
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follows the the pioneering work of Gurson [1977] (see also [Gurson, 1975])
and is generally considered to be the most suitable to describe both the
growth phase and the coalescence phase in ductile fracture.

In this chapter, we will begin by presenting the main ingredients that
are needed to define constitutive models of ductile failure. This will be il-
lustrated through the Gurson model and its direct extension, the so-called
Gurson-Tvergaard-Needleman (GTN) model. Then, we will focus on some de-
velopments allowing to account for voids shape effects or plastic anisotropy of
the matrix. The last part of the chapter will be devoted to a presentation of
various micromechanical modeling of coalescence phenomena.

9.2 Homogenization and limit-analysis

Limit-analysis combined with Hill-Mandel homogenization is a convenient
framework to derive constitutive equations for porous ductile solids as it per-
mits to effectively operate the scale transition. The objective of this section
is to provide the basic ingredients which allows the derivation of the relation-
ship between stress and strain at the macroscale, for a given description at
the microscale.

Since ductile failure involves large plastic deformation, a formulation ac-
counting for finite deformations is necessary. Therefore, we will adopt an eule-
rian description, with σ and d the Cauchy stress and the rate of deformation,
respectively.

9.2.1 Hill-Mandel homogenization theory

We first recall general results of the Hill-Mandel homogenization theory [Man-
del, 1964; Hill, 1967], which can be declined in two approaches depending on
the boundary conditions assumed for the RVE: kinematic boundary conditions
or static boundary conditions. In practice, ductile failure models are derived
using the kinematic approach, we will restrict ourselves to this case.

Macroscopic stress and strain rate

We consider a representative volume element Ω containing a void ω. The
porosity (volume fraction of void) is defined as

f =
vol(ω)
vol(Ω)

. (9.1)

We assume that the RVE is subjected to homogeneous boundary strain
rate conditions:

v(x) = D · x, ∀x ∈ ∂Ω, (9.2)

©by-nc-sa 2023 by MEALOR II



260 MEALOR II

where v is the microscopic velocity field and D a second-rank symmetric
tensor.
By using Green’s formula (

∫
∂Ω

uinj dS =
∫
Ω
ui,j dV for any vector u) or

divergence theorem and the above definition of the boundary condition (9.2),
it can be shown that

⟨d⟩Ω =
1

vol(Ω)

∫

Ω

d dV = D, (9.3)

where the notation ⟨·⟩Ω stands for volume averaging over Ω. Therefore, D is
called the macroscopic rate of deformation.
Noting that dij =

1
2 (vi,j + vj,i), the proof of (9.3) follows from the result:

∫

Ω

vi,j dV =

∫

∂Ω

vinj dS (Green’s formula)

=

∫

∂Ω

Dikxknj dS (boundary condition)

= Dik

∫

Ω

(xk) ,j dV (Green’s formula)

= Dik

∫

Ω

(δkj) dV

= vol(Ω)Dij . (9.4)

Knowing by analogy that
∫
Ω
vj,i dV = vol(Ω)Dji, this proves the result (9.3).

The macroscopic stress Σ is defined as the volume average of the micro-
scopic stress σ

Σ = (1− f)⟨σ⟩Ω−ω, (9.5)

where the notation ⟨·⟩Ω−ω stands for volume averaging over the sound volume
Ω− ω:

⟨·⟩Ω−ω =
1

vol(Ω− ω)

∫

Ω−ω

(·) dV. (9.6)

Hill-Mandel lemma

Let us consider v a kinematically admissible velocity field (verifying the
boundary conditions (9.2)) and σ a statically admissible stress field (verifying
div(σ) = 0 in Ω) and satisfying the conditions σ.n = 0 on ∂ω.
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The volume average ⟨σ : d⟩Ω is given by

1

vol(Ω)

∫

Ω

σijdij dV =
1

vol(Ω)

∫

∂Ω

σijnjvi dS (principle of virtual work)

=
1

vol(Ω)

∫

∂Ω

σijnjDikxk dS (boundary condition (9.2))

=
1

vol(Ω)

∫

Ω

(σijDikxk) ,j dV (divergence theorem)

=
1

vol(Ω)

∫

Ω

(σijDikδkj) dV (equilibrium)

= ΣijDij (definition of Σ)
(9.7)

This proves the Hill-Mandel lemma:

⟨σ : d⟩Ω = Σ : D. (9.8)

It should be stressed that this Lemma still holds also for uniform stress bound-
ary conditions as well as for periodic ones.
Note also that the Hill lemma will serve as basis for the micro-macro upscaling
for the porous material.

9.2.2 Limit-analysis

The derivation of the Gurson model that will be presented below is based on
the theoretical framework of Limit Analysis which can be found in [Salençon,
2002]. The textbook [Leblond, 2003] also introduced the main concepts of this
theory for the derivation of the macroscopic strength of ductile porous media.

Classical limit-analysis1 considers rigid-ideal-plastic materials within a
small displacement - small strain (linearized) framework. Under such assump-
tions the macroscopic strength locus of a porous medium can be determined
using the upper-bound theorem (see e.g. [Salençon, 2002]).
The starting point is that the strength of the solid phase is characterized by
a convex set of admissible stress states, C which in turn is defined by a con-
vex strength criterion ϕ(σ) ≤ 0. The dual definition of the strength criterion
consists in introducing the support function π(d) of C, which is defined on the
set of symmetric second order tensors d and is convex w.r.t. the microscopic

Eulerian strain rate d = 1
2

(
grad(v) + grad(v)

T
)
:

π(d) = sup
σ∗∈C

σ∗ : d. (9.9)

π(d) represents the maximum “plastic” dissipation capacity the material (here

1The reader interested by the distinction between classical and sequential limit analysis
can refer to the recent paper [Leblond et al., 2018])
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the solid phase) can afford. Its macroscopic counterpart is defined as

Π(D) = inf
v∈K(D)

(1− f)⟨π(d)⟩Ω−ω with d =
1

2

(
grad(v) + grad(v)

T
)
.

(9.10)
In this definition the set K(D) consists of those velocity fields v which are
kinematically admissible with D and plastically admissible (for instance, this
leads to a traceless d in the case of incompressible plasticity).
Using the Hill-Mandel lemma, the fundamental inequality of limit-analysis
reads :

Σ : D ≤ Π(D), (9.11)

where D is arbitrary and independent of Σ.

The parametric equation of the strength locus is then given by

Σ =
∂Π

∂D
(D). (9.12)

This combination of Hill-Mandel homogenization and limit-analysis will
thus permit to provide a macroscopic strength criterion, a macroscopic flow
rule as well as an evolution equation of the porosity.

In practice, the determination of the macroscopic yield locus is done by
the following steps:

1. Choice of a RVE Ω;

2. Choice of a trial velocity field v kinematically admissible with D;

3. Calculation of the macroscopic plastic dissipation Π(D) (for the
postulated velocity field);

4. Derivation of the macroscopic yield locus Σ = ∂Π(D)/∂D.

9.3 The Gurson model for ductile porous materials

Gurson’s model [Gurson, 1977] (see also [Gurson, 1975]) plays a central role
in the modelling of ductile failure. It is considered as the most important con-
tribution to this field since not only it explicitly accounts for the effect of the
porosity on the non linear constitutive behavior of ductile porous materials,
but also it paved the way to predict degradation and then failure phenomena
in this class of materials.

9.3.1 Gurson’s macroscopic criterion for porous materials

The original Gurson model [Gurson, 1977] is based on the derivation of a
macroscopic yield criterion and normality rule, which, completed by porosity
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evolution equation, define a ductile failure model. Therefore, we first present
the basics of the derivation of the macroscopic plasticity criterion of the con-
sidered ductile porous material.

Gurson’s approach is based on the limit-analysis of a hollow sphere made
of a rigid-plastic material and subjected to an arbitrary loading, in the frame-
work of Hill-Mandel homogenization. This choice of a spherical cell containing
a spherical void can be considered as the most simple three-dimensional ele-
mentary cell representative of a ductile porous material.

Position of the problem

We consider a spherical “elementary cell” Ω of external radius b containing a
concentric spherical void ω of internal radius a (see Figure 9.2). The porosity
at a current time is thus defined by f = a3/b3. The spherical coordinates and
associated local orthonormal basis are respectively denoted by r, θ, φ and
(er, eθ, eφ).

spherical void

homogeneous strain rate 

boundary conditions

a

b

von Mises matrix

FIGURE 9.2: Spherical cell considered by Gurson

The material is assumed to be rigid-perfectly-plastic and to obey von Mises
criterion

ϕ(σ(x)) = σ2
eq − σ2

0 ≤ 0, ∀x ∈ Ω− ω, (9.13)

where σ0 is the yield stress (here the material strength since perfect plasticity
is considered) and σeq is the equivalent von Mises stress defined by

σeq =

√
3

2
σ′ : σ′, σ′ = σ − 1

3
(trσ) I, (9.14)

with I is the second-order unit tensor.
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The corresponding support function (the local plastic dissipation) is obtained
by applying (9.9)) for (9.13):

π(d) = σ0deq, (9.15)

where d is a traceless strain rate tensor and deq the equivalent strain rate
defined by

deq =

√
2

3
d : d. (9.16)

Finally, the spherical cell is subjected to conditions of homogeneous bound-
ary strain rate:

v(x) = D · x , ∀x ∈ ∂Ω, (9.17)

where v denotes the velocity, x the position-vector at current time and D the
macroscopic strain rate tensor.

The considered trial velocity fields

In order to determine the macroscopic plastic dissipation, trial velocity fields,
supposedly mimicking the local mechanisms of deformation, are required. Gur-
son considered two simple families of incompressible velocity fields

v(x) = vA(x) + vB(x) (9.18)

defined by

vA(x) =
b3

r2
Dmer ; vB(x) = D′ · x, (9.19)

where Dm = (trD)/3 denotes the mean macroscopic strain rate and D′ =
D−Dm I the deviatoric part of the macroscopic strain rate tensor. The first
term vA corresponds to the radial expansion of the cavity while the second
term vB corresponds to a homogeneous strain rate.

The associated local strain rate is given by

d(x) = dA(x) + dB(x) (9.20)

with

dA(x) =
b3

r3
Dm(−2er ⊗ er + eθ ⊗ eθ + eφ ⊗ eφ) ; dB = D′. (9.21)

Macroscopic plastic dissipation

For the velocity field defined previously, the estimate Π of the macroscopic
plastic dissipation (9.10) is given by

Π(D) =
1

vol(Ω)

∫

Ω−ω

σ0deq dΩ (9.22)

=
1

vol(Ω)

∫ b

a

4πr2σ0⟨deq(r)⟩S(r) dr, (9.23)
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where the symbol ⟨·⟩S(r) denotes an average value over the sphere S(r) of
radius r. It can be shown that Π is of the form

Π(D) =
1

vol(Ω)

∫ b

a

4πr2σ0

√
D2

eq +
4b6

r6
D2

m

〈√
1 + η(x)

〉
S(r)

dr, (9.24)

where the function η(x) is given by

η(x) =

4

3
dA(x) : dB(x)

(dAeq(x))
2 + (dBeq(x))

2
. (9.25)

In order to calculate analytically the macroscopic plastic dissipation, ap-
proximations are then introduced. Assuming that η is a small parameter,
the expression

√
1 + η(x) can be replaced by a Taylor expansion; at the

first order (which is the only case that Gurson considered) this leads to
⟨
√
1 + η(x)⟩S(r) = ⟨1 + η(x)/2⟩S(r) = 1. Then, a closed-form expression of

the macroscopic plastic dissipation ΠGurson(D) can be obtained:

ΠGurson(D) = σ0

[
arg sinh

(
2Dmx

Deq

)
−
√

4D2
m +

D2
eq

x2

]x=1/f

x=1

. (9.26)

It must be noted that higher-order expansion of the term
√
1 + η(x) would

lead to other expressions of the macroscopic plastic dissipation [Leblond and
Morin, 2014]. In particular, the third-order approximation permits to account
for the effect of the third invariant of the stress tensor.

Macroscopic yield surface

The macroscopic yield surface associated with the macroscopic dissipation
ΠGurson(D) is defined by

Σ =
∂ΠGurson

∂D
(D). (9.27)

Since ΠGurson depends on D only through Dm and Deq one has

Σ =
∂ΠGurson

∂Dm

∂Dm

∂D
+

∂ΠGurson

∂Deq

∂Deq

∂D
=

1

3

∂ΠGurson

∂Dm
I +

∂ΠGurson

∂Deq

2D′

3Deq
.

(9.28)
This implies that the macroscopic mean and equivalent stresses Σm and

Σeq are given by





Σm =
1

3

∂ΠGurson

∂Dm

Σeq =

∣∣∣∣
∂ΠGurson

∂Deq

∣∣∣∣ ,
(9.29)
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which, after calculation, reads





Σm =
2σ0

3

(
arg sinh

(
λ

f

)
− arg sinh(λ)

)

Σeq = σ0

(√
1 + ξ2 −

√
f2 + ξ2

) , with ξ =
2Dm

Deq
. (9.30)

This is the parametric equation of the yield criterion. It can be written explic-
itly by noticing that

cosh

(
3

2

Σm

σ0

)
=

1

f

(√
f2 + ξ2

√
1 + ξ2 − ξ2

)
(9.31)

and
Σ2

eq

σ2
0

= 1 + f2 + 2ξ2 − 2
√
f2 + ξ2

√
1 + ξ2. (9.32)

The combination of these two equations leads to the usual form of Gurson’s
criterion

ΦG(Σ, f) =
Σ2

eq

σ2
0

+ 2fcosh

(
3

2

Σm

σ0

)
− 1− f2 = 0. (9.33)

A remarkable point of this macroscopic criterion lies in the contribution of
the mean stress Σm, due to the cavity (in the case f ̸= 0). Also, as expected,
the criterion (9.33) reduces to von Mises criterion in the case f = 0. It is
also noticeable that in the case of a purely hydrostatic loading (Σeq = 0), the
criterion reduces to

Σm = −2

3
σ0log(f), (9.34)

which is the exact solution of a rigid-plastic hollow sphere subjected to a
hydrostatic loading. In the case of a purely deviatoric loading (Σm = 0) the
yield criterion reduces to

Σeq = (1− f)σ0, (9.35)

which is only an upper estimate of the exact limit-load in this case. For com-
pleteness, it must be emphasized that the nonlinear variational homogeniza-
tion model of [Ponte Castañeda, 1991] (see also [Suquet, 1995]) leads to a
better upper bound Σeq = σ0

1−f√
1+2f/3

.

The yield locus is represented in the meridian plane (Σm/σ0; Σeq/σ0) for
several values of the porosity in Figure 9.3.

In the case f = 1, the yield criterion reduces to Σ = 0, which corresponds
to a complete degradation of the material which accounts for the final failure.

9.3.2 The original Gurson model

The previous macroscopic yield criterion (9.33) must then be completed in or-
der to formulate the searched constitutive law: this is the original (primitive)
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FIGURE 9.3: Yield surfaces of Gurson’s model for several values of the poros-
ity.

Gurson model which includes a macroscopic plastic flow rule, an evolution
equation of the porosity and an expression for the elastic strain rate. Since
ductile failure is a process involving large strains, Gurson’s model is formu-
lated in a finite deformation framework. Only the main ingredients are pre-
sented hereafter (see Chapter 3 for a detailed description of finite deformation
modelling).

First, let us assume (as classically) that the total Eulerian strain rate D

is given by the following decomposition

D = De +Dp, (9.36)

where De is the elastic strain rate and Dp is the plastic strain rate. Only the
total Eulerian strain rate D is compatible and can be put of the form

D =
1

2

(
grad(V) + grad(V)

T
)
, (9.37)

where V is the macroscopic velocity of the material point.
The plastic strain rate Dp is given by the property of normality of the

flow rule (which is preserved during the upscaling procedure, see for instance
[Rice, 1971]):

Dp = Λ̇
∂ΦG

∂Σ
(Σ) = Λ̇

(
f

σ0
sinh

(
3

2

Σm

σ0

)
I + 3

Σ′

σ2
0

)
(9.38)

where Λ̇ is the plastic multiplier. As expected, the plastic strain rate is com-
pressible, due to the presence of a cavity.
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Then, the elastic strain rate De is connected to some objective time-
derivative (here the so-called Jaumann derivative) of the Cauchy stress tensor
using an hypoelasticity law:

Σ̃ = Σ̇+Σ ·Ω−Ω ·Σ = λtr(De)I + 2µDe. (9.39)

In this equation, Ω is an antisymetric rotation-rate tensor. In the case where

Ω =
1

2

(
grad(V)− grad(V)

T
)
. (9.40)

For few more information about objective time-derivatives of the Cauchy
stress, see for instance chapter 3. Obviously, the above coupling between elas-
ticity and plasticity still holds under linearized strain conditions, the hypoe-
lastic law being replaced by the classical Hooke’s law.

Finally, the evolution equation of the porosity is deduced from the strain
rate (in the case where nucleation is neglected). The contribution of elasticity
to ductile fracture phenomena is generally small (at least under monotonic
loadings), so that the rate of the porosity is supposed to depend only on
the plastic strain rate. Therefore, it is directly deduced from the property of
plastic incompressibility of the matrix:

f =
ωΩ− Ω̇ω

Ω2
=

Ω− ω

Ω
× Ω̇

Ω
= (1− f)tr(Dp), (9.41)

where the property ω = Ω is used due to incompressibility of the matrix.
At this stage, it is interesting to note that the intrinsic dissipation for the

Gurson model reads
D = Σ : Dp (9.42)

which corresponds to the plastic power. Despite the porosity changes (see
equation (9.41)), its evolution does not contribute to the dissipation D. More-
over, f is not related to some normality property as there is no thermodynamic
force associated to it. This situation in which the porosity evolution is closely
related to the plastic flow rule suggests that the Gurson model cannot be
considered as a plastic-damage one in the usual sense.

9.3.3 The Gurson-Tvergaard-Needleman (GTN) model

The primitive Gurson model has been extended by Tvergaard and Needle-
man [1984] in order to include several important features of ductile fracture
problems such as: strain hardening, void nucleation and coalescence. Overall,
these modifications are heuristic but they permit to improve considerably the
predictive capabilities of the primitive Gurson model.

Strain hardening

An important drawback of the Gurson model is that it is derived from classical
limit-analysis which restricts by essence the behavior of the matrix to that of
a rigid-perfectly-plastic material.
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In order to account for strain hardening, the constant yield limit σ0 in the
criterion (9.33) is replaced by some “average yield stress” σ̄ given by:

σ̄ ≡ σ(ε̄) (9.43)

where σ(ε) is a function providing the local yield limit as a function of the
local accumulated plastic strain ε, and ε̄ represents some “average equivalent
strain” in the heterogeneous, porous material. The evolution of ε̄ is governed
by the following equation [Gurson, 1977]:

(1− f)σ̄ : ˙̄ε = Σ : Dp (9.44)

which expresses the heuristic assumption that the plastic dissipation in the
heterogeneous porous material is equal to that in a fictitious “equivalent” ho-
mogeneous material with equivalent strain ε̄ and yield stress σ̄.

Void nucleation

Contrary to voids growth, voids nucleation is generally difficult to be ade-
quately modeled. A classical description is obtained by assuming that the
rate of nucleated voids depends only on the strain rate through its scalar
measure ε̄

fnucleation = Aε̇. (9.45)

The parameter A generally depends on the equivalent strain ε̄ because nucle-
ation is supposed to require important strain but it is also limited by the initial
distribution of inclusions. The model of Chu and Needleman [1980] assumes
that the parameter A follows a Gaussian distribution

A =
fN

sN
√
2π

exp

[
−1

2

(
ε− εN
sN

)2
]
, (9.46)

where fN , εN and sN respectively represent the volume fraction, average nu-
cleation strain and standard deviation of the nucleating voids. The evolution
equation of the porosity is then given by

ḟ = ḟgrowth + ḟnucleation. (9.47)

It must be noted that other laws have been proposed using stress-based cri-
terion (see for instance [Benzerga and Leblond, 2010]).

Coalescence and refinement of the RVE

A simple way to account for voids coalescence mechanism consists in replacing
the porosity f in the yield criterion by an effective porosity qf∗. This allows
to improve the prediction of the model with unit cell calculations (e.g. using
a cubic unit-cell):

ΦGTN (Σ, f, σ̄) =
Σ2

eq

σ̄2
+ 2qf∗cosh

(
3

2

Σm

σ̄

)
− 1− (qf∗)2 = 0. (9.48)
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Indeed, it has been shown that during the void growth stage, the growth
kinetics are underestimated by Gurson’s which has lead to the introduction
of the parameter q (also known as Tvergaard’s parameter). It can also be
interpreted as a heuristic coefficient which plays a role of adjustment of the
porosity at failure. For instance, in the case of a cubic unit-cell, the cell loses
its bearing capacity when the spherical void reaches the exterior boundary of
the cube, that is for f = π/6 ≈ 0.52 while the spherical Gurson cell loses its
carrying capacity for f = 1. Therefore, to account approximately for the cell
shape, this parameter q is therefore generally taken as q ≈ 1.5. Then, this
effective porosity qf is replaced by qf∗ in the criterion in order to reproduce
coalescence using the following (crude) modelling proposed by [Tvergaard and
Needleman, 1984]:

f∗ =

{
f if f ≤ fc
fc + δ(f − fc) if f > fc,

(9.49)

where fc and δ > 1 are material parameters. This models stipulates that if the
porosity reaches a critical value fc, it is artificially increased (as the parameter
δ is greater than 1) to reproduce coalescence phenomena.

Heuristic modification of the GTN model to account for shear damage

A previous remark on the Gurson model is the absence of the third deviatoric
stress invariant J3 (or Lode angle) in the plastic criterion. However, various
results from specific tests have shown that this lode angle effect can be non
negligible (see experiments by [Bao and Wierzbicki, 2004] and [Barsoum and
Faleskog, 2007]). In addition, in the case of pure shear loadings, Gurson’s
model predicts no void growth because the evolution equation of the poros-
ity reduces to ḟ = 0. Probably, on the basis of these experimental evidences,
Nahshon and Hutchinson [2008] proposed a modification of the porosity evo-
lution equation (9.41) in which is now incorporated the effects of the third
deviatoric stress (s) invariant, J3:

ḟ = (1− f)tr(Dp) + kωfω(Σ)
Σ′

ijD
p
ij

Σeq
. (9.50)

in which ω(Σ) = 1− ( 272
J3

Σ3
eq
)2, with J3 = dets.

Such heuristic modification of the mass balance conservation suggests to inter-
pret f as a (non dissipative) damage parameter and not as porosity. This very
simple model has permitted to reproduce several micromechanical simulation
including shear-dominated loadings [Tvergaard and Nielsen, 2010].

Predictions of the model

The predictions of the GTN model are illustrated in an evolution problem of
a material point for two values of the stress triaxiality T = Σm/Σeq = [1; 3],
respectively in Figures 9.4 and 9.5. The case considered for this illustration
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is that of a hardenable material (following a power-law isotropic hardening
law) containing initial voids (with f0 = [0.0001; 0.001; 0.01]) with no nucle-
ation (fN = 0) and no shear damage contribution (kω = 0). Coalescence is
accounted for by considering typical values fc = 0.05 and δ = 5.

For a given triaxiality, the first observation is that the initial porosity has
an important influence on the overall behavior. Indeed, if the initial porosity
increases, the stress level decreases and softening occurs more rapidly. This
is in agreement with the dependence of the yield locus with respect to the
porosity (represented in Figure 9.3).

The triaxiality is also an important parameter because, for a given initial
porosity, an increase of the stress triaxiality leads more softening. This is due
to void growth that is driven by stress triaxiality (see equation (9.41)): an
increase of the stress triaxiality leads to an increase of the void growth rate
which in turns accelerate softening (because of the direct dependence of the
yield locus upon the porosity).

Finally, the influence of coalescence has been specifically highlighted be-
cause it accelerates the degradation of the material with an abrupt softening.
Coalescence is thus determinant for the prediction the failure.

9.4 Some micromechanical extensions of the GTN model

Despite its important successes in reproducing several experiments of duc-
tile fracture (including e.g. the cup and cone failure and failure of CT spec-
imen), the Gurson and GTN approaches can be insufficient for several prac-
tical situations. Indeed, due to the hypotheses made in its derivation (spher-
ical void, plastic isotropy of the matrix, diffuse plasticity) it cannot account
for anisotropic materials, non-spherical voids, nanosized voids for instance.
Furthermore, Gurson’s analysis is by essence restricted to the void growth
stage due to the conditions of homogeneous boundary strain rate which ex-
clude strain localisation within the RVE: the modelling of coalescence in a
micromechanical approach also requires modifications in the analysis.

The (micromechanical) extensions of Gurson’s model therefore can be
(mainly) divided into three categories:

1. A modification of the shape of the void to account for non-spherical
voids, such as spheroidal or ellipsoidal voids;

2. A modification of the local plastic criterion to account for other
matrix behavior, such as plastic anisotropy and single crystals be-
havior;

3. A modification of the velocity fields in order to describe strain lo-
calization in the RVE (for the modelling or coalescence) or simply
improve the description of void growth.
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(a)

(b)

FIGURE 9.4: Predictions of the GTN model in the case T = 1. (a) Evolution
of the normalized macroscopic stress Σeq/σ0 and (b) Evolution of the porosity
f . The predictions without coalescence are represented with full lines and the
predictions with coalescence are represented with dotted lines.

These two first items (voids shape effects and plastic anisotropy) are an-
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(a)

(b)

FIGURE 9.5: Predictions of the GTN model in the case T = 3. (a) Evolution
of the normalized macroscopic stress Σeq/σ0 and (b) Evolution of the porosity
f . The predictions without coalescence are represented with full lines and the
predictions with coalescence are represented with dotted lines.

alyzed here while section 9.5 will be devoted to the modelling of coalescence
phenomena.
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9.4.1 Void shape effects

The most restrictive limitation of Gurson’s model is the hypothesis of spheri-
cal voids. This is in practice not realistic because voids generally deform and
look more like ellipsoids than spheres. Cavities possessing three different axes
have been observed experimentally (see Figure 9.6(a)) using scanning electron
microscopy techniques [Benzerga et al., 2004], and numerically (see Figure
9.6(b)) after the shearing of initially spherical cavities [Nielsen et al., 2012].
Taking into account the shape effects is therefore necessary to better approx-
imate the real shape of the cavities. In particular it is essential to describe
failure at low stress triaxiality because in that case, the porosity decreases
but coalescence is still reached by interactions between elongated voids: void
shape effects are thus important in shear-dominated loadings.

(a) (b)

FIGURE 9.6: Non-spherical cavities obeserved (a) Experimentally using SEM
[Benzerga et al., 2004] and (b) Numerically during intense shearing [Nielsen
et al., 2012].

The Gologanu-Leblond-Devaux (GLD) model for spheroidal voids

The GLD model is an extension of Gurson’s model for spheroidal (oblate or
prolate) voids. Its derivation is based on a limit-analysis of a spheroidal cell
containing a confocal spheroidal cavity (and made of a von Mises matrix).
The voids geometry considered is a spheroid with rotational symmetry axis
Oz, half-axes a2 and b2, containing a confocal spheroidal void with half-axes

a1 and b1. The porosity is given by f =
a1b

2
1

a2b22
.

In the case of an axisymmetric loading the yield criterion is given by

ΦGLD(Σ) =
C

σ2
0

(Σzz − Σxx + ηΣh)
2
+2(1+g)(f+g)cosh

(
κ
Σh

σ0

)
−(1+g)2−(f+g)2 = 0

(9.51)
where C, η, Σh, g and κ are parameters that depend on the geometry.
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The Madou-Leblond model for ellipsoidal voids

Since the GLD model is restricted to spheroidal voids, it is not relevant for
general loading conditions. To overcome this restriction Madou and Leblond
[2012] have proposed an extension of this model to general ellipsoidal cavities.
In this model, the elementary cell Ω is ellipsoidal and contains a confocal
ellipsoidal cavity ω of semi-axes a > b > c oriented along the (local) unit
vectors ex, ey, ez. The cavity boundary is characterized by the quadratic
form P defined by

P(u) ≡ (u.ex)
2

a2
+

(u.ey)
2

b2
+

(u.ez)
2

c2
. (9.52)

The matrix P ≡ (Pij) of the quadratic form P is expressed in the fixed frame
(e1, e2, e3) of the observer and permits to describe the orientation and semi-
axes ratios of the ellipsoidal cavity; indeed its diagonalization provides the
semi-axes and the local unit vectors ex, ey, ez defining the orientation. A
mixed analytical-numerical limit-analysis has been performed on this elemen-
tary ellipsoidal cell and led to the macroscopic yield criterion [Madou and
Leblond, 2012]

ΦML(Σ,P, f, σ0) =
Q(Σ)

σ2
0

+2(1+g)(f+g) cosh

[L(Σ)

σ0

]
−(1+g)2−(f+g)2 ≤ 0.

(9.53)
In equation (9.53):

• Q(Σ) is a quadratic form of the components of the Cauchy stress tensor Σ

defined by
Q(Σ) = Σ : Q : Σ (9.54)

where Q(P, f) is a fourth-order tensor which is related to classical Willis’s
bound for non-linear composites (see [Madou and Leblond, 2012]);

• L(Σ) is a linear form of the diagonal components of Σ in the basis (ex, ey,
ez) defined by

L(Σ) = κH : Σ (9.55)

where κ(P, f) is a scalar and H(P, f) a second-order tensor of unit trace;

• g(P, f) is the so-called ‘second’ porosity. It is related to the volume frac-
tion of a fictitious prolate spheroidal void obtained by rotating the com-
pletely flat ellipsoid confocal to the ellipsoidal cavity ω about its major axis.
This parameter is null in the case of prolate voids, non-zero in the case
of oblate voids, and reduces to the classical ‘crack density’ of Budiansky
and O’Connell in the case of penny-shaped cracks. It naturally arises in
the limit-analysis procedure of the ellipsoidal void and permits to account
for the effect of a penny-shaped crack (having a null porosity) on the yield
surface [Madou and Leblond, 2012].

©by-nc-sa 2023 by MEALOR II



276 MEALOR II

The flow rule is deduced from the normality property and the evolution
equation is given as in Gurson’s model. The originality of this model is an
evolution equation of the matrix P (characterizing the shape and orientation
of the ellipsoidal voids) given by

Ṗ = −P.(Dv +Ωv)− (Dv +Ωv)T .P (9.56)

where Dv and Ωv are respectively the strain-rate and rotation-rate tensors of
the cavity. These rates are given by:

{
Dv = L : Dp

Ωv = Ω+ R : Dp,
(9.57)

where Ω is the rotation-rate tensor of the material (antisymmetric part of
the velocity gradient). The tensors L(P, f) and R(P, f) are fourth-order ‘lo-
calization tensors’, as the tensor L relates the (local) void strain-rate Dv

to the macroscopic strain-rate D, and the tensor R relates the (local) void
rotation-rate Ωv to the macroscopic rotate-rate Ω. They are based on plastic
corrections of the elastic formula provided by [Ponte Castañeda and Zaidman,
1994] in the elastic case, determined by numerical analyses. The details and
expressions of these tensors can be found in [Madou et al., 2013].

9.4.2 Plastic anisotropy of the matrix

Another important limitation of Gurson’s model concerns the hypothesis of
isotropic von Mises matrix which is not realistic in several situations including
textured materials or single crystals. In the case of textured materials, the
plastic behavior is no longer isotropic and there is a clear need to account for
anisotropy. In the case of porous plastic single crystals, crystalline anisotropy
is also necessary to describe the stress state surrounding intragranular voids.

The Benzerga-Besson model for orthotropic materials

The most common case of texture-induced anisotropy is orthotropy. In this
case, the material has three planes of symmetry orthogonal to each other
whose intersections correspond to the axes of anisotropy; the yield strength
of the material is different along these three axes. [Hill, 1948] proposed an
extension of the Gurson criterion by taking into account this orthotropy in a
phenomenological way, in the form of a quadratic criterion. In this context,
Benzerga and Besson [2001] proposed to replace the local von Mises criterion
in the limit-analysis procedure by the local Hill’s anisotropic criterion:

ϕ(σ) = σ : A : σ − σ2
0 ≤ 0 (9.58)

where A is Hill’s matrix. Using the same velocity fields than Gurson, Benz-
erga and Besson [2001] have succeeded to determine the macroscopic plastic
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dissipation which leads to the criterion

ΦBB =
Σ : A : Σ

σ2
0

+2f cosh

(
κΣm

σ0

)
− 1− f2 = 0, κ =

3

2

√
5

2h1 + h2 + 2h3
,

(9.59)
where the coefficients h1, h1 and h1 are related to the tensor H defined by
H : A = A : H = K (K being the deviatoric projection tensor). Naturally, this
criterion allows to retrieve the Gurson one when the matrix is isotropic.

Combining voids shape and plastic anisotropy effects

The above extension which accounts for plastic anisotropy of the matrix has
been followed by a series of studies that simultaneously take into account of
both plastic anisotropy and voids shape effects. Among these studies, mention
can be made of [Monchiet et al., 2006], [Keralavarma and Benzerga, 2008],
[Monchiet et al., 2008], [Keralavarma and Benzerga, 2010] or [Morin et al.,
2015b].

The successive influence of void shape and plastic anisotropy is represented
in Figure 9.7, by considering Gurson’s model for spherical voids within an
isotropic matrix (with f = 0.01), the GLD model for spheroidal voids within
an isotropic matrix (for a prolate cavity with an aspect ratio of 5 and f =
0.01), as well as the Keralavarma-Benzerga [Keralavarma and Benzerga, 2010]
and the Monchiet criteria [Monchiet et al., 2008] for spheroidal voids within an
anisotropic matrix (for a prolate cavity with an aspect ratio of 5 and f = 0.01
embbeded in an anisotropic matrix).

0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Σ m / σ 0

( 
Σ

 z
 z

 −
 Σ

 x
 x

 )
 /

 σ
 0

 

 

Monchiet et al.
Keralavarma and Benzerga
Numerical
Gologanu et al.
Gurson

FIGURE 9.7: Influence of void shape and plastic anisotropy on the yield locus.
After [Morin et al., 2014].
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The case of single crystals porous materials

Comparatively to studies on polycrystals, few works have been devoted to the
constitutive response of 3D plastic single crystals containing voids. However,
the importance of the crystalline anisotropy to describe the stress state sur-
rounding intragranular voids has been clearly evidenced from experimental
point of view as well as analytically and numerically (see for instance [Kysar
et al., 2005] [Srivastava and Needleman, 2013]). Based on the variational non-
linear homogenization method of [deBotton and Ponte Castañeda, 1995] and
guided by limit-analysis results, [Han et al., 2013] have first proposed a multi
yield criterion for 3D porous FCC single crystals containing spherical voids.
These authors made use of the Schmid law. In the following of this work,
Paux et al. [2015] have proposed a model based on limit analysis for which
they considered a regularized form of the Schmid law. For completeness, it
must be mentioned that [Mbiakop et al., 2015b] have developed a model for
viscoplastic single crystals with ellipsoidal voids. Interestingly, these authors
have also shown that these three models deliver very close estimates for rate-
independent porous plasticity in the case of low plastic anisotropy (namely,
face-centered cubic crystals) and spherical voids.

9.5 Micromechanical modelling of coalescence

The coalescence phase has been experimentally observed using various experi-
mental techniques, such as scanning electron microscopy [Benzerga et al., 1999;
Benzerga, 2000], computed tomography [Weck et al., 2008] or synchrotron
laminography [Shen et al., 2013]. Several modes of coalescence have been ob-
served: (i) by internal necking (Figure 9.8a), (ii) by shear (Figure 9.8b), and
(iii) by columns (Figure 9.8c). During the coalescence by internal necking (or
coalescence in layers), the cavities meet in a plane perpendicular to the main
direction of the loading: the inter-cavity ligament contracts in a way similar
to necking of a bar in tension. This mode of coalescence is the most common.
During shear coalescence, the cavities meet in shear bands at 45 degrees to
the main loading direction. Finally, during coalescence in columns, the cavities
meet in bands parallel to the loading direction.

9.5.1 Numerical observations in unit-cell calculations

Numerical calculations on unit-cells have permitted to improve our under-
standing of the mechanisms of coalescence. In particular, the pioneering work
of Koplik and Needleman [1988] highlighted key micromechanical aspects of
coalescence by internal necking. They considered a cylindrical cell containing
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a

b

c

FIGURE 9.8: Three main modes of coalescence. (a) Coalescence by internal
necking (also know as coalescence in layers) [Benzerga et al., 1999]. (b) Co-
alescence in shear [Benzerga, 2000]. (c) Necklace coalescence (also known as
coalescence in columns) [Benzerga, 2000]. In the three cases considered, the
loading is vertical.

a spherical void and subjected to quasi-periodic boundary conditions2, for
various proportional loading paths. We reproduce in Figure 9.9 typical results
associated with these simulations, namely the evolution of equivalent stress,
porosity, void aspect ratio, and radial strain [Benzerga and Leblond, 2010].
Coalescence is characterized by a transition from a triaxial state of cell de-
formation to a uniaxial state (pure extension in the axial direction) (Figure
9.9d). This transition corresponds to a localization of the plastic deformation
in the inter-cavity ligament, involving the presence of elastic regions above
and below the void, which impose quasi-nullity of the horizontal components
of the overall strain rate. This localization leads to a rapid tightening of the
inter-cavity ligament, which explains the very rapid growth of the porosity
(Figure 9.9b) having as a direct consequence an abrupt softening of the ma-
terial (Figure 9.9a).

The particularity of coalescence is therefore the localization of the defor-

2This modeling is an approximation of a periodic VER subjected to periodic conditions.
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FIGURE 9.9: Micromechanical simulations results on a cylindrical cell con-
taining an initially spherical cavity, subjected to axisymmetric macroscopic
loading at fixed triaxiality. (a) Evolution of equivalent stress; (b) Evolution
of porosity; (c) Evolution of void aspect ratio; (d) Evolution of radial strain.
After Benzerga and Leblond [2010].

mation in the ligament between neighboring cavities: the plasticity is no longer
diffuse as it was in the growth phase. The Hill-Mandel boundary conditions
used in the derivation of growth models prohibit this phenomenon and are
therefore not adapted to model the coalescence phase. In essence, coalescence
can be viewed as a classical plasticity problem (with plastic and rigid zones),
which can be solved by the limit analysis method provided that elasticity and
strain hardening are neglected. The only ingredient that is required is a proper
description of strain localisation in the ligament between neighboring voids.

9.5.2 The Thomason-Benzerga-Leblond model

The Thomason model

On the basis of some experimental observations, Thomason [1985] had the
intuition that coalescence occurred as a result of the localization of plastic
deformation in the ligament between cavities and therefore proposed velocity
fields to describe this phenomenon. His model is based on a limit-analysis of
a prismatic cell containing a prismatic void subjected to boundary conditions
allowing a localization of the deformation in the ligament between neighbor-
ing voids; localization is implicitly taken into account by using appropriate
velocity fields in the limit-analysis procedure. Nonetheless, the analytical de-
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termination of the macroscopic dissipation of a prismatic voided cell being
difficult, Thomason only proposed a numerical calculation of the integral giv-
ing this dissipation and then proposed an empirical criterion in order to fit
his numerical results. The Thomason criterion reads

ΦT =
Σ33

σ̄
− (1− χ2)

[
0.1

(
χ−1 − 1

W

)2

+ 1.2
√
χ−1

]
(9.60)

where Σ33 is the coalescence stress supported by the porous medium (the
main loading is oriented along a e3 axis). The value of this stress depends
on the spacing between the cavities through the parameter χ (related to the
porosity in the localization band) and on the shape of the cavity through the
parameter W .

The Benzerga-Leblond model

Benzerga and Leblond [2014] have revisited the analysis of Thomason [1985]
and succeeded in deriving a fully analytic coalescence criterion. Their analysis
is based on the limit-analysis of a cylindrical cell containing a cylindrical
void, characterized by the void aspect ratio W ≡ h/R, the ligament parameter
χ ≡ R/L and the cell aspect ratio λ ≡ H/L (see Figure 9.10). The local
orthonormal basis associated with the cylindrical coordinates r, θ, z is denoted
(er, eθ, ez) and that associated with the Cartesian coordinates x1, x2, x3 is
denoted (e1, e2, e3), with e3 = ez.

In the approach proposed by the authors, coalescence is assumed to occur
in the plane e1–e2, due to a major applied stress parallel to the axis e3. As
observed by Koplik and Needleman [1988], coalescence starts when the strain
rate localizes in the horizontal ligament between neighbouring voids. The cell
is consequently divided into two parts, the central one Ωlig containing the
plastic horizontal inter-void ligament and the void ω, and the rigid regions
above and below the void denoted Ω − Ωlig. Therefore, the cylindrical cell is
subjected to boundary conditions of the following form:

{
vr(r = L, z) = 0 −H ≤ z ≤ H
vz(r, z = ±H) = ±D33H 0 ≤ r ≤ L.

(9.61)

The velocity field considered by Benzerga and Leblond [2014], verifying
the property of incompressibility and the boundary conditions, is





vr(r) =
HD33

2h

(
L2

r
− r

)

vz(z) =
HD33

h
z

(−h < z < h). (9.62)

This velocity field, which is represented in Figure 9.10, implies that the overall
horizontal strain rate components are nil. It should be noted that this velocity
field introduces a tangential discontinuity at the interface between the plastic
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FIGURE 9.10: Cylindrical cell and velocity field considered by Benzerga and
Leblond [2014]. After Morin et al. [2015a].

and rigid parts which is not physical but admissible within the limit-analysis
procedure3.

The overall (analytical) yield criterion derived from limit-analysis using
this trial velocity field reads:

ΦBL =
Σ33

σ0
− 1√

3

[
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2
+

χ3 − 3χ+ 2

3χW

]
.

This model improves Thomason [1985]’s model because (i) it is analyt-
ical and (ii) it provides a tighter upper bound which makes the limit-load
closer to the exact one. Owing to its analytical character, it has then been
improved or extended in order to account for flat voids [Hure and Barrioz,
2016], shear loadings [Torki et al., 2015] or plastic anisotropy [Keralavarma
and Chockalingam, 2016] among others.

The coalescence criterion is represented in the plane (Σm/σ0; (Σ33 − Σ11)/σ0)
for several values of the ligament parameter χ = [0.2; 0.4; 0.6; 0.8] in Figure
9.11. In this plane, the coalescence criterion corresponds to a line because the
criterion reads Σ33 = Σcoal

33 . An increase of the value of the ligament parameter
χ leads to a reduction of the yield loci size.

3In the presence of a velocity discontinuity, the plastic dissipation should be taken in the
sense of distributions with a strain rate concentrated on a surface.
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FIGURE 9.11: Yield surfaces of Benzerga-Leblond model for several values of
the ligament parameter χ.

9.5.3 On the use of coalescence criterion with void growth
models

The coalescence criteria presented above are then used in conjunction with the
void growth criteria within a hybrid approach [Benzerga et al., 1999; Zhang
et al., 2000; Pardoen and Hutchinson, 2000; Benzerga, 2002]: the final yield
surface of a porous medium thus corresponds to the intersection between that
corresponding to growth and that corresponding to coalescence: we represent
in Figure 9.12a the yield surface associated with Gurson [1977] criterion for a
spherical cavity of porosity f = 0.1 and a yield surface associated with Ben-
zerga and Leblond [2014]’s coalescence criterion. The final (hybrid) criterion
corresponds to the intersection between the two criteria (Figure 9.12b).

This hybrid approach has been successfully used to simulate crack prop-
agation in 3D specimens and can thus be considered as a physically-based
alternative to the (crude) modelling of coalescence as done in the GTN model
(see Eq. 9.49). Nonetheless, in the hybrid approach, the presence of corners on
the yield surface may trigger artificial plastic flow localization at the macro-
scopic scale.

9.5.4 Towards a unified description of void growth and coa-
lescence

In addition to the presence of corners on the yield surface, another drawback
of the hybrid approach is that growth and coalescence are described with
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FIGURE 9.12: Practical use of a coalescence criterion with a growth criterion.
The parameters are f = 0.1 for Gurson’s model and χ = 0.46 and W = 1 for
the Benzerga-Leblond model. After [Morin, 2015].

different geometries which makes the resulting criterion only approximate. The
development of a unified framework of void growth and coalescence permits
to settle interrogations of this kind [Morin et al., 2016].

In contrast with the model of Benzerga and Leblond [2014] (where the
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coalescence condition is enforced by D11 = 0), the cylindrical cell is now
subjected to boundary conditions of the following form (see Figure 9.13):

{
vr(r = L, z) = D11L −H ≤ z ≤ H
vz(r, z = ±H) = ±D33H 0 ≤ r ≤ L.

(9.63)

FIGURE 9.13: Cell considered to describe both growth and coalescence. After
Morin et al. [2016].

In order to describe the growth of the void prior to the localization of the
strain rate in the ligament, Benzerga and Leblond [2014]’s velocity field is
extended by (i) dropping the condition D11 = 0 and (ii) allowing the sound
region (which corresponds to the rigid region when coalescence takes place)
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to deform uniformly. A velocity field satisfying these conditions is

0 ≤ |z| ≤ h





vr(r) =
3

2

H

h
Dm

L2

r
+

[
3

2

(
1− H

h

)
Dm − D33

2

]
r

vz(z) =

[
D33 − 3

(
1− H

h

)
Dm

]
z

(9.64)

h ≤ |z| ≤ H





vr(r) =
3Dm −D33

2
r

vz(z) = (D33 − 3Dm)z + 3HDm.

(9.65)

The calculation of the macroscopic plastic dissipation using this velocity field
leads to a yield criterion which is defined by curved and straight parts. The
curved (regular) part of the yield locus is given by the criterion

Φ(Σ) =

(
Σ33 − Σ11 +A

cσ0

)2

+2χ2cosh

(√
3
Σ11 − (1− c)Σ33 −A− cB

cσ0

)
−1−χ4

(9.66)
where





A = σ0(1− c) sgn(D11)

B =
σ0

3
√
3

χ3 − 3χ+ 2

Wχ
sgn(Dm).

(9.67)

The straight part of the yield criterion, corresponding to the coalescence phase,
is given by




Σ33 =
σ0√
3

[
ln

(
1 +

√
1 + 3χ4

3χ2

)
+ 2−

√
1 + 3χ4

]
+

σ0

3
√
3

χ3 − 3χ+ 2

Wχ∣∣∣∣Σ33 − Σ11 −
cσ0√
3

(
2−

√
1 + 3χ4

)∣∣∣∣ ≤ σ0(1− c).

(9.68)
In addition, using this velocity field, it can be shown that corners are absent
of the yield locus in contrast with the hybrid approach.

Illustrative results for the yield locus of a cylindrical hollow cell are pro-
vided in Figure 9.14 for a void aspect ratio W = 1 and two values of the
ligament parameter, χ = 0.4 and 0.6, associated with the unified criterion,
a hybrid criterion (obtained as previously by truncating Gurson’s yield locus
with the Benzerga-Leblond yield locus). In addition, numerical simulations
of limit-analysis performed for the same exact cells using the finite element
method have been plotted in order to highlight the main features of the unified
approach. On the “coalescence line”, the predictions of the hybrid and unified
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models coincide because they are based on the same trial velocity field. The
main difference is that the transition between growth and coalescence phase
is smooth using the unified criterion; the absence of corners (also observed in
the numerical results) may thus be one advantage of this approach.
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FIGURE 9.14: Comparison of the yield surfaces obtained using the hybrid
approach and the unified model. After Morin et al. [2016].

This model is interesting from a theoretical point of view because it de-
scribes both growth and coalescence with a single class of velocity fields, thus
emphasizing the basic unity of the two stages and the possibility of their uni-
fied description. In this approach, the yield locus has no corners, in agreement
with numerical results of limit-analysis [Morin et al., 2016].

9.6 The case of sub-micron voids

Despite their great interest in practical situations involving structural materi-
als, the above growth and coalescence models may not be suitable to describe
the growth of sub-micron voids. Indeed, it is now well admitted that size
effects arise when plasticity occurs at small scales related to several factors
including notably the Hall-Petch effect, an increase of geometrically necessary
dislocation densities in presence of high strain gradient and some patterning
of dislocation cells associated to grain refinement. Mention has to be made to
the work of Hure et al. [2020] who have evidenced a notable size effect on the
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growth of very small voids (≤ 10 nm), resulting in a reduced void deforma-
tion. The development of models for ductile porous materials with sub-micron
voids has mainly followed two approaches.

Strain-gradient plasticity

The first class of models is based on a refinement of Gurson [1977]’s model
by considering strain gradient plasticity model in the matrix surrounding the
void. This approach is generally considered relevant for micron-sized voids for
which conventional plasticity is not adapted. When the size of the cavities is
comparable to or smaller than the internal length of the plastic solid a strong
dependence of the yield locus with the void size is observed. In this context,
Monchiet and Bonnet [2013] have considered Fleck and Hutchinson [1997]’s
model, which includes a dependence of the strain gradient (double gradient of
velocity) within the local plastic potential:

π(d,η) = σ0ξeq = σ0

√
d2eq + l21η

(1)
ijkη

(1)
ijk + l22η

(2)
ijkη

(2)
ijk + l23η

(3)
ijkη

(3)
ijk, (9.69)

where η
(1)
ijk, η

(2)
ijk, and η

(3)
ijk are related to the invariants of the strain gradient

rate η and l1, l2 and l3 are the internal length scales of the material. After
computation of the macroscopic plastic dissipation, the resulting macroscopic
Gurson type yield criterion depends on the void size through the ratio a/l1
(where a is the cavity size):

Φ(Σ, f) =
Σ2

eq

σ2
0

+ 2fcosh

(
3

2β

Σm

σ0

)
− 1− f2 = 0 (9.70)

in which

β =
3

lnf

[
Arcsinh

(α
u

)
−
√
1 +

u2

α2

]u=1

u=f1/3

with α =
1

3

√
2

5

a

l1
. (9.71)

This model predicts, for small voids, (i) a reduction of softening and (ii) a
decrease of the growth rate. This effect is generally referred to as smaller is
slower (see Figure 9.15).

Interface approach of size effects

The second approach is based on an extension of Gurson [1977]’s model by rep-
resenting the cavity surface through a stress interface model, which is generally
assumed to correspond to nano-sized voids. For these materials, an increase
of the strength is observed, due to the presence of surface effects at the inter-
face between the bulk material and the void. By following the limit analysis
approach, [Dormieux and Kondo, 2010] has succeeded to extend the Gurson
strength criterion (9.33) to the case of ductile nanoporous materials, with the
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FIGURE 9.15: Influence of void size on the evolution of the normalized equiv-
alent stress in the case T = 3. After Monchiet and Bonnet [2013].

aim of predicting void-size effects. The methodology proposed by these au-
thors relies on the consideration of imperfect coherent interfaces at the cavity
layer for which is performed the limit analysis based on the same velocity field
as in the Gurson computation. A remarkable extension of the model related
to the void-size-dependent strength criterion has been established by Gallican
and Hure [2017] who have simultaneously adding coalescence modeling and
plastic anisotropy in nanoporous materials.

9.7 Brief Conclusions and some current researches di-
rections

The aim of this chapter is to introduce to basic developments of limit-analysis
based models for ductile fracture. Before concluding and indicating some cur-
rent research directions, it must be recalled that in addition to the textbook
[Leblond, 2003], there are several reviews papers to which the reader may re-
fer for detailed presentation of some specifics points. Among these reviews,
mention has to be made of [Besson, 2010], [Benzerga and Leblond, 2010] or
[Benzerga et al., 2016].

©by-nc-sa 2023 by MEALOR II



290 MEALOR II

Gurson model primarily relies on the limit analysis of a hollow sphere sub-
jected to a homogeneous macroscopic strain rate. This has led to an upper
bound of a macroscopioc strength surface of the ductile porous material. This
constitutes the main micromechanical component of the model which has been
built by transforming the obtained strength criterion into a plasticity criterion
which by normality property delivers the macroscopic flow rule of the porous
material. Such flow rule is completed by the porosity evolution equation ob-
tained by mean of mass conservation law. We have also seen the importance of
a proper micromechanics-based modeling of both void growth and coalescence
phenomena. The Gurson-Tvergaard-Needleman constitutes a basic prototype
of ductile fracture model which can be improved. However a remaining ques-
tion is the thermodynamics consistency of such model. This question raises
also that of the status of the porosity f which, obviously, is not a dissipa-
tive variable since it does not enters in the intrinsic dissipation. This point
requires further research development. Concerning coalescence, the unified ap-
proach, obtained by combining voids growth and coalescence criteria seems to
be promising. There is probably still needs of researches in this direction. Ow-
ing to the absence of internal length in the GTN model, and to the occurrence
of softening phenomena before failure, nonlocal formulations can be required.
Several recent studies provide new insights on this aspects (see for instance
[Zhang et al., 2018], [Tuhami et al., 2022], etc.) and this must be helpful for
ductile failure prediction of structures.
At the nanoscale, void size effects are supposed to arise. Recent developed
models by incorporating surface effects in a thin layer close to the void bound-
ary allow to predict voids size effects which affect the initial yield surface
and thus modifies plasticity before straining. Recent developments include the
derivation of a micromechanical model for nanovoid coalescence as in [Galli-
can and Hure, 2017]. This paves the way for the derivation of complete models
dedicated to nanovoided ductile materials.

For completeness, we provide here some comments on current research
on non linear homogenization of ductile heterogeneous materials which can be
useful for elastoplastic porous materials with hardenable constituents, mention
has to be made of [Cheng et al., 2017] who have proposed a decoupling between
reversible and dissipative phenomena approach. This has led them to obtain
a macroscopic model described by an overall free energy and a macroscopic
dissipation potential. In order to fully handle the coupling between reversible
and dissipative phenomena such as elasto(visco)-plasticity, one may refer to
incremental variational approach as introduced by Lahellec and Suquet [2007].
In this framework, the concerned non linear behaviors of constituents are
described by means of two potentials, namely a free energy and a dissipation
potential as it is the case for Generalized Standard Materials. The incremental
variational approach has been followed and implemented with some variants
by several authors among which [Brassart et al., 2012], [Agoras et al., 2016]
and [Lucchetta et al., 2019] which, in principle, allow to deal with elastoplastic
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porous materials without porosity evolution (this is still a matter of research).
Unfortunately, although reversible and dissipative processes are coupled at
small scale, the incremental variational approach does not allow to separate
them at macroscopic scale. Moreover, these studies are still in a early state of
development which does not allow to use them for structural computations.
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This chapter is dedicated to the description of issues encountered when per-
forming numerical simulations of fracture using local damage models. First,
these issues are evidenced based on a prototypical analytical example. Finite-
element method is then recalled, and numerical examples are shown to lead
to pathological mesh dependency. Good practices and ad-hoc solutions are
finally described.
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10.1 Introduction

Broadly speaking, theoretical models aiming at predicting brittle and ductile
fracture presented in Chapters 4-9 can be divided into two categories. The
first one, referred to as uncoupled models, essentially corresponds to the
definition of a critical value of some variables to predict the onset of failure.
Beremin (Chapter 7) and Rice & Tracey models (Chapter 8) fall into this
category. These models are applied as a post-processing of analytical and / or
numerical results, emphasizing the underlying assumption that damage is not
coupled with the mechanical behavior, hence the name. While this approach
may seem rather crude, it is relevant and efficient for a large number of ap-
plications, ranging from the prediction of brittle fracture in steels [Beremin,
1981; Andrieu et al., 2012] to the determination of the onset of ductile fracture
[Marini et al., 1985; Keralavarma et al., 2020]. This chapter is focused on the
second category, that can be referred to as coupled models, where the evolu-
tion of damage is described in the local constitutive equations (see Chapter 2).
The prototypical example related to ductile fracture is the Gurson-Tvergaard-
Needleman (GTN) model described in Chapter 9 in which the porosity is in-
cluded in the yield criterion. Fracture is described by the progressive decrease
of the stresses down to zero as the loading increases. This softening behavior
at the scale of the material, although sound and consistent with the physics
of fracture, leads to some issues when applied at the structural scale.

The aim of the chapter is thus to:

1. evidence these issues based on analytical and numerical examples
analysed using theoretical arguments where the mathematical de-
tails are mostly hidden for simplicity. The description of those issues
is important to understand why so-called non-local and variational
approaches to fracture may be required (see Chapters 12 and 11).

2. present good practices when using these models in numerical sim-
ulations if non-local approaches are not required or available, both
cases still being common in practice.

This chapter is organized as follows. Section 10.2 recalls some mathemat-
ical results showing that, in presence of softening behaviors, the boundary
value problem is ill-posed regarding the questions of the uniqueness, exis-
tence and regularity of the solutions. These issues are illustrated with a sim-
ple analytical example. After a quick reminder of the finite element method
in Section 10.3, Section 10.4 describes some practical consequences of those
mathematical issues on finite element simulations. and some good practices
and ad-hoc solutions are finally given in Section 10.5.
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10.2 Theoretical analysis of local damage models

In this section, the mathematical conditions for which a mechanical problem
has an unique regular solution are first briefly recalled. A simple example
is then detailed to highlight various issues related to the use of softening
behaviors in structural mechanics problem.

10.2.1 General results

The framework of standard generalized materials, introduced in Chapter 2,
enables to study the mathematical properties of initial boundary value prob-
lems in damage mechanics. This framework is convenient, but it is worth
highlighting that the issues exposed below are general (and generally speak-
ing even more salient). It is also worth highlighting that this framework is also
the basis of many regularization techniques (see Chapter 11) and variational
approaches to fracture (Chapter 12).

Under the hypotheses of the infinitesimal strain theory and a quasi-static
evolution and following [de Andrès et al., 1999; Andrieux et al., 2004; Mielke
and Ortiz, 2008], the evolution of a mechanical system of standard general-
ized materials over a time step, from time t to time t +∆ t, can be formally
characterized by the following variational principle involving an incremental
potential [Lorentz, 1999; Andrieux et al., 2004] :

min
u,α

∫

Ω

∫ t+∆t

t

[
ρΨ̇(ϵto(u)(s), α(s)) + ϕ (α̇(s))

]
ds dV − Pext(u) (10.1)

where ρΨ is the free energy density which depends on a single (for simplicity
here1) state variable α, ϕ is the dissipation pseudo-potential, u is the displace-
ment field and Pext is the power of external forces.

After a backward-Euler time discretization and after removing constant
terms from the global potential, one obtains the following time-discretized
incremental variational principle:

u(t+∆t), α(t+∆t) = argmin
u,α

L(u, α) (10.2)

where the incremental Lagrangian introduced in Chapter 2 is used:

L(u, α) =
∫

Ω

[
ρΨ(ϵto(u), α) + ∆tϕ

(
α− α(t)

∆t

)]
dV −Wext(u) (10.3)

1The subsequent discussion can be generalized without any difficulty to more variables
and of tensorial nature.
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with Wext denoting the work of external forces, and u(t) and α(t) stands for
the known values of the displacement and internal state variable at the begin-
ning of the time step.

Existence and uniqueness to the minimization problem (10.2) can be
ensured if the incremental potential is coercive, convex and lower semi-
continuous. A precise definition of those mathematical properties is out of
the scope of the present text and the reader is referred to classical mathemat-
ical textbooks [Ekeland and Temam, 1974; Raviart, 1983]. It is sufficient to
mention that they are not met in the context of brittle or ductile coupled frac-
ture models and we only discuss here the consequences on several examples
and give appropriate references for the interested reader.

10.2.2 A particular example

In order to highlight the consequences of dealing with softening behaviors, let
us consider the simplest 1D isotropic damage behavior characterized by the
following free energy :

ρΨ(ϵ, d) =
1

2
(1− d)E ϵ2 (10.4)

where E stands for the Young’s modulus of the material, and d ∈ [0 : 1] is
a damage variable. This function is convex with respect to each variable ϵ
and d taken separately 2, but not with respect to both as ∂2Ψ/∂d∂ϵ < 0 for
ϵ > 0. Hence the existence and uniqueness of the minimization problem (10.2)
is not guaranteed, leading to some pathological behaviors. Following a suitable
choice of the free energy, the stress - strain curve can be of the type shown on
Fig. 10.1. The consequences of such behavior are detailed in the following.

2This point is crucial for the "alternate minimization scheme" detailed in Chapter 11.
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FIGURE 10.1: Prototypical softening stress-strain curve
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FIGURE 10.2: Uniaxial tensile test on a bar of length L.

Following [Forest and Lorentz, 2004], let us consider the uniaxial tensile
test on a bar of length L made of a material following the behavior depicted
on Figure 10.1 where a displacement U is imposed on the right part of the bar
(Figure 10.2). The behavior is first elastic and the solution is unique with an
homogeneous stress σ given by:

σ = E ϵ with ϵ =
U

L
.

The onset of damage is characterized by a stress peak σmax and a strain
σmax/E. Even after this point, the stress σ is still homogeneous. According to
Figure 10.1, a given stress level σ can then be reached by a strain ϵ1 on the
elastic part of the curve or by a stress ϵ2 on the softening part of the curve.
Let us now assume that the bar is split into two parts. In the first part, of
length ld, damage develops, leading the following solution:

σ = E ϵ1 = σmax +H
(
ϵ2 −

σmax

E

)
and (L− ld)ϵ1 + ld ϵ2 = U.

This allows us to exhibit an infinite number of solutions as the length ld
is unspecified, which proves the non-uniqueness of the solutions.

However, as pointed out by Marigo [Marigo, 2000], only the solutions with

©by-nc-sa 2023 by MEALOR II



304 MEALOR II

zero length, i.e. damage localized on points, correspond to stable minima of
the Lagrangian (10.3). The solution is still not unique, as the localization of
the damaging points can be chosen arbitrarily.

From a physical viewpoint, localization on specific points is related to the
presence of random heterogeneities at the microscopic level that acts as pref-
erential initiation sites. A preferential site then damages while the rest of the
bar unloads elastically. From a numerical point of view, numerical instabilities
can play the role of such heterogeneities.

Fracture without dissipation

The previous paragraph highlights another pathology of local damage mod-
els. The energy dissipated during the tensile test is given by:

S ld

∫ ϵR

0

σ ϵ d ϵ
ld→0−−−→ 0 (10.5)

where S is the section of the bar and ϵR is the strain where the material is
fully damaged (see Figure 10.1). This energy thus depends on the length of
the damaged region. Since the latter is null for stable solutions, such damage
behavior predicts fracture with no energy dissipation, which is a physical non-
sense and have a significant impact on numerical simulations, as discussed in
Section 10.4.1.

Absence of solution

The uniaxial tensile test described in the previous paragraph can be
changed to exhibit a trivial case where no solution exists. Consider an im-
posed force F rather than an imposed displacement. As the material cannot
bear a stress greater than σmax, no solution can be found if the imposed force
is greater than S σmax. Mathematically, the non-existence of a solution is re-
lated to the lack of coercivity of the Lagrangian (10.3).

This issue may be overcome by considering that the material cannot
be fully damaged or, equivalently that a residual stiffness can be intro-
duced, which can be done in numerical simulations [Lorentz, 2003] (see Sec-
tion 10.3.3). For a damage model, one simple way of introducing a residual
stiffness is to bound the damage variable to a value strictly smaller than 1 (1
corresponding in most models to a fully damaged material). Another general
solution is to add a purely elastic contribution to the model with a Young’s
modulus much smaller than the one of the considered material. In both cases,
one shall check that this residual stiffness does not impact the numerical re-
sults. This technique has also been used in [Francfort and Marigo, 1993] to
perform an extensive study of the mathematical properties of a specific dam-
age model.
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T T

Rigid blocks

Totally damaged zone

FIGURE 10.3: Bar in uniaxial tension due to an external traction force. Split
of the bar in two rigid blocks.

Local or global minima

When the Lagrangian (10.3) is convex, a local minimum is also a global
minimum [Céa, 1971; Demengel, 1999]. When the Lagrangian is not convex,
the question of considering only global minima arises. Lorentz discusses this
question by considering the previous uniaxial tensile test with an imposed
force F . Due to the lack of coercivity of the Lagrangian, for any positive ap-
plied force, a global minimum corresponds to a split of the bar in two, where
the right part is placed at infinity (see Figure 10.3). This is in contradiction
with common sense, as one expects that the bar behaves elastically for any
force below S σmax, i.e. before damage initiation. This elastic behavior corre-
sponds to a local minimum of the Lagrangian (10.3).

Non-existence of smooth solutions

Assuming that at least one solution to the minimization problem (10.2)
exists, another issue is related to the regularity of this solution: shall we expect
any property of continuity and differentiability ? The results presented in Sec-
tion 10.2.2 shows that the answer is negative. In the case of an isotropic model
with residual stiffness, Francfort et al. [Francfort and Marigo, 1993] established
that, even with a regularized (convexified) version of the Lagrangian, natural
candidates for solutions of the (global) minimization problem (10.2) are highly
irregular: those candidates can be interpreted as multi-scale mixings of sound
and damaged regions. Mathematically, this kind of solutions is associated with
the lack of lower semi-continuity of the Lagrangian (10.3). This result has di-
rect consequences on the numerical simulations, as discussed in Section 10.4.1.

Local damage models correspond to softening behaviors at the material
scale. For such behaviors, existence and uniqueness of the solution of a me-
chanical problem can not be guaranteed from a theoretical point of view. In
practice, it has been shown that various issues arise even in a very simple
situation as the bar in tension considered here. These issues are also expected
in more complex situations such as the ones solved numerically. Therefore, in
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the following, the most widely used numerical method used to solve mechani-
cal problems - finite element method FEM - is briefly presented, emphasizing
the numerical parameters introduced by this method. Typical finite element
simulations using a local damage model are then shown.

10.3 Brief overview of the finite element method

In this section, a brief overview of the numerical implementation of the finite
element method is detailed, emphasizing the numerical aspects that may affect
simulations of fracture using local damage models.

10.3.1 Principle of virtual power

Assuming that the minimization problem associated with the internal state
variables α|t+∆ t for a given estimate of the displacement field u|t+∆ t is lo-
cal, i.e., that the internal state variables at the end of the time step can be
expressed as implicit functions of the strain at the end of the time step, or
equivalently, as implicit functions of the strain increment strain ∆ ϵto, the
stress tensor σ can be considered as only a function of ∆ ϵto.

From a given state at a time t, a finite element solver determines the dis-
placement field at the end of the time step u|t+∆ t, using the principle of
virtual power, which arises from the first variation of the Lagrangian (10.3).
The principle of virtual power states that for any admissible virtual displace-
ment v⋆, u|t+∆ t must satisfy:
∫

Ω

σ|t+∆ t

(
∆ ϵto

(
u|t+∆ t

))
: Grad(v⋆) =

∫

Ω

f.v⋆ dV +

∫

∂ΩT⃗

t.v⋆ dS (10.6)

where f and t correspond to imposed body force and surface force, respec-
tively. For the sake of clarity, the notation σ|t+∆ t

(
∆ ϵto

(
u|t+∆ t

))
will be

simply replaced by σ. Eq. 10.6 requires to compute σ from ∆ ϵto, which cor-
responds to the numerical integration of the constitutive equations.

10.3.2 Discretization

The finite element method is based on a discretization of the domain Ω in
elements as depicted on Figure 10.4a. For some specific geometrical elements
(triangles and quadrangles in 2D, tetrahedra and hexahedra, pyramids and
prisms in 3D), it is possible to build the so-called Lagrange interpolation basis.
Each basis function φ(n) is associated with a node n and has the following
properties:
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• φ(n)
(
X⃗j

)
= δij , where X⃗j denotes the coordinates of the jth node.

• The support of φ(n) is limited to the elements containing the ith node (Fig-
ure 10.4b). This guarantees the sparsity of the stiffness matrix (see Sec-
tion 10.3.3).

• The restriction of φ(n) to an element is a polynomial.

• φ(n) is continuous at the boundary of the element.

As a consequence, the displacement is approximated by a piece-wise poly-
nomial function. The approximation is linear if the order of all monomials of
this approximation is equal to one, quadratic if the maximal order is two, etc...

a) b)

FIGURE 10.4: a) Mesh of the domain Ω b) Basis functions and integration
points

The approximation of the unknown displacement field in this finite space,
still denoted u|t+∆ t for the sake of simplicity, and the virtual displacements
can be decomposed as follows:

u|t+∆ t =

N∑

n=1

U⃗ (n) ⋆ φ(n) =

N∑

n=1




U
(n)
0
...

U
(n)
d


 φ(n)

and

v⋆ =
N∑

n=1

V⃗(n) ⋆ φ(n) =
N∑

n=1




V
(n) ⋆
0
...

V
(n) ⋆
d


 φ(n), (10.7)

where d is the space dimension. The coefficients V
(n) ⋆
i defining a virtual dis-

placement can be grouped in a vector V⃗⋆ of RN d such that:

V⃗⋆ =
(
V

(1) ⋆
0 V

(1) ⋆
1 . . . V

(N) ⋆
d

)T
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10.3.3 Numerical resolution

Local resolution

Evaluating Eq. 10.6 according to the discretization described in Eq. 10.7
requires to compute:

F⃗ (i)
e =

∫

Ωe

σ : Grad
(
φ(i)

)
dV

where Ωe is the domain of the considered element, where σ requires to per-
form the numerical integration of the constitutive equations.

Each finite element provide a quadrature rule which allows to evaluate
this integral, knowing the value of the integrand at Ng specific points named
integration points or Gauss points, as follows:

F⃗ (i)
e ≈

Ng∑

g=1

wg Vg σ
(
X⃗g

)
: Grad

(
φ(i)

)(
X⃗g

)
(10.8)

where wg is the weight of the integration point, Vg is a specific volume (the
jacobian of the transformation between the element and a reference element)
and X⃗g is the position of the integration points. The choice of the quadrature
rule, i.e., the choice of the number of integration point Ng, their locations
X⃗g and their weights wg, determines the quadrature order, i.e., the maximal
order of the polynomials for which the Formula (10.8) is exact [Zienkiewicz,
1977; EDF, 2021].

Global resolution

The left hand side of the Principle of Virtual Power (10.6) defines a linear
form on the virtual displacements v⋆ defined by (Equation (10.7)), and by
extension, a linear form on the space RN d of the coefficients V⃗⋆. A classical
theorem on linear forms in finite dimension then states that there exists a
unique vector F⃗i of RN d such that:

∫

Ω

σ : Grad(v⃗⋆) = F⃗i · V⃗⋆

The vector F⃗i is called the inner forces. This vector is a function of the
displacement u|t+∆ t, or equivalently of the unknown coefficients U⃗, through
the stress tensor σ which is a function of the strain increment (which itself is
a function of the displacement u|t+∆ t).

Using the following expression of the gradient of virtual displacements,

Grad(v⃗⋆) =

N∑

n=1

V⃗(n) ⋆ ⊗ Grad
(
φ(n)

)
,
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the components of the inner forces can be expressed as follows:

∫

Ω

σ : Grad(v⃗⋆) dV =
N∑

n=1

(∫

Ω

σ · Grad
(
φ(n)

)
dV

)
· V⃗(n) ⋆

=

N∑

n=1

F⃗ (n)
i · V⃗(n) ⋆

or, equivalently:

F⃗i =
(
F

(1)
i,0 F

(1)
i,1 . . . F

(N)
i,d

)T

The same reasoning allows to define the external forces F⃗e from the right
hand side of Equation (10.6). The inner and external forces thus satisfies:

F⃗i · V⃗⋆ = F⃗e · V⃗⋆

This equality being true for every vector V⃗⋆, another classical theorem
states that the inner and external forces must be egal:

F⃗i = F⃗e (10.9)

Equation (10.9) is the discrete expression of the mechanical equilibrium. In
theory, Equation (10.9) allows to determine the coefficients U⃗ of the unknown
displacements u|t+∆ t. In practice, as this equation is in general non linear, an
iterative procedure must be used. This iterative procedure aims at determining
the zero of the residual vector R⃗:

R⃗

(
U⃗

)
= F⃗i

(
U⃗

)
− F⃗e,

Most finite element solver relies on a more or less elaborate variant of the
Newton-Raphson algorithm. Let U⃗(n) be the current estimate of the solution,
the next estimate is given by:

U⃗(n+1) = U⃗(n) + δ U⃗(n) with δ U⃗(n) = − ∂R⃗

∂U⃗

−1∣∣∣∣∣
U⃗(n)

R⃗

(
U⃗(n)

)
(10.10)

where

K =
∂R⃗

∂U⃗
=

∂F⃗i

∂U⃗

denotes the stiffness matrix of the system. It can be shown that the computa-
tion of the stiffness matrix requires to compute the consistent tangent operator

defined as the derivative
∂σ

∂ϵto
[Feld-Payet et al., 2011]. This derivative can be

computed during the behavior integration step.

The computation of the so-called Newton correction δ U⃗(n) requires the
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resolution of a linear system (see Equation (10.10)). From a numerical point
of view, sparsity of the stiffness matrix is then very desirable as specific algo-
rithms exists for sparse matrix, both in terms of memory usage and numerical
performances. Using the expression of the gradient of the displacement and
the expression of the inner forces, it can be shown that the coefficient K(i, j)
is null if the support of the basis functions φ(i) and φ(j) do not overlap.

It is worth mentioning that the standard Newton algorithm is not very
robust and may fail to converge, in particular for non-convex problems as the
ones encountered with local damage models. The convergence of the Newton
algorithm is very sensitive to the choice of the initial estimate of the solution,
which is generally either the displacement at the beginning of the time step
or an extrapolation of the previous solutions. Unstable propagations in quasi-
statics are thus particularly difficult to address as the evolution of the solution
may be discontinuous in time [Monerie et al., 2001; Helfer, 2006]. A wide
literature has been devoted to that matter, the arc-length method and other
variation of the Riks algorithm being very popular solutions.

10.3.4 Synthesis of numerical parameters

This short overview of the numerical implementation of the finite element
method allowed to highlight various numerical parameters involved in this
method:

• Mesh size and structure ;

• Order of the approximation of the displacements, commonly linear or
quadratic ;

• Quadrature rule for the numerical integration, commonly full (Eq. 10.8 is
exact) or reduced ;

In addition, some approximations can be made regarding the computation
of the term Grad

(
φ(n)

)
in the computation of the inner and external forces.

The purpose of the next section is to present some numerical examples of
the effect of these parameters on the results of finite element simulations using
local damage models.

10.4 Numerical artifacts

The finite element method is expected to converge to the exact solution as
the size of the elements decreases, under certain conditions on the quality of
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the mesh and regularity of the exact solution. As detailed in Section 10.2.2,
softening behaviors are not expected to lead to smooth solutions. This lack
of regularity leads to various spurious numerical phenomena which are now
detailed. As described by Section 10.2.2 and 10.2.2, softening leads to very
irregular and strongly localized solutions of the continuous problem. In quasi-
statics, this is linked to the loss of ellipticity of the boundary value problem.
From a numerical point of view, after discretization of the problem thanks to
the finite element formulation, this problem leads to the dependence of the
results on the orientation and size of the finite element mesh, as illustrated in
the next sections.

10.4.1 Dependence of the dissipated energy to the mesh size

Following the discussion of Section 10.2.2, in case of spurious localization,
the dissipated energy is proportional to the element size (in the direction
perpendicular to the band) and thus changes with the mesh size. In this sec-
tion, some numerical examples are given to show this particular issue. The
case of ductile fracture is considered as it allows exhibiting various numerical
problems associated with such simulations. A Gurson-Tvergaard-Needleman
model, presented in Chapter 9, is considered to describe the material behav-
ior of the material. This model is still widely used, and relies on the following
yield criterion:

ϕ (σ, f) =

(
σeq

R(p)

)2

+ 2q1 cosh

(
3

2
q2

σm

R(p)

)
− 1− (q1f)

2 (10.11)

where R(p) is the yield stress of the matrix material surrounding the voids. In
this model, porosity f dictates the size of the yield surface and evolves under
mechanical loading. Fig. 10.5 shows the typical behavior of this model re-
garding the evolution of both stress and porosity, for different constant stress
triaxiality T = σm/σeq. In each case, a softening regime is observed after a
critical applied strain where stress decreases to zero (Fig. 10.5a), representing
material failure. This softening regime is induced by the increase of porosity as
shown on Fig. 10.5b. Clearly, the mechanical behavior shown on Fig. 10.5 falls
into the category represented in Fig. 10.1, and as discussed previously, some
numerical issues are expected to arise by using such constitutive equations in
finite element simulations. Two different problems can be highlighted. For a
given mesh size, Fig. 10.6 shows the typical outputs of finite element simula-
tions on an axisymmetric notched sample (Fig. 10.6a) and on a pre-cracked
Compact Tension sample (Fig. 10.6b) for different type of finite elements. As
recalled in the previous section, choosing a type of finite element means a dis-
cretization space - here linear (4) or quadratic (8) - a number of Gauss points
- standard or reduced (RI) integration - and a mathematical relation relating
displacement at nodes to strains at Gauss points - standard or BBAR method
(ICQ). For notched sample, i.e., rather smooth stress / strain gradients, the
dependence to the finite element type is rather weak, at least for the onset of
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FIGURE 10.5: Typical outputs of the Gurson-Tvergaard-Needleman consti-
tutive equations under axisymmetric loading conditions at constant stress
triaxiality. Evolution of (a) stress and (b) porosity as a function of applied
strain
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FIGURE 10.6: Typical outputs of finite element simulations on (a) axisym-
metric notched sample and (b) 2D pre-cracked Compact Tension sample using
Gurson-Tvergaard-Needleman (GTN) constitutive equations, for various finite
elements types
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failure. However, for cracked samples where strong stress / strain gradients
arise at the crack tip, the choice of finite element leads to very different be-
haviors. The origin of this discrepancy can be traced back by looking at the
local fields. Fig. 10.7 shows the values of the porosity at Gauss points for two
different element types leading to differences on the load-opening curves. Two
particular features can be observed. First, damage - here porosity increase -
occurs at the scale of a single layer of elements (Fig. 10.7a). This observation
is consistent with the general results given at the beginning of this chapter
emphasizing that softening behaviors lead to localization at the smallest scale
possible, here the height of the finite element. The second salient feature is
that localization can in fact occurs at a scale smaller that the height of the
finite element. Fig. 10.7b shows that, for that particular choice of finite ele-
ment, localization occurs mainly in one layer of Gauss points. The differences

(a) (b)

FIGURE 10.7: Porosity fields at Gauss points for the finite element simula-
tions of 2D pre-cracked Compact Tension sample, for (a) ICQ4 and (b) Q8RI

elements

observed in Fig. 10.7 provide a simple explanation of the differences reported
in Fig. 10.6b as, broadly speaking, the energy required to propagate a crack
as in Fig. 10.7a will be twice the one as for Fig. 10.7b. Besides the effect of the
element type, but basically for the same reason, another problem is shown on
Fig. 10.8 where the same simulations are performed for a given element type
but this time for two different mesh size. In both cases, an effect of mesh size
is observed, i.e., there is no convergence of the finite element results with re-
spect to mesh size. As for the case of the choice of the element type, the effect
is rather weak, but still there, for situations involving smooth stress / strain
gradients, but severe in the case of cracked samples. In the latter, a brittle
behavior would emerge as mesh size is decreased to zero, which is unphysical.
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FIGURE 10.8: Typical outputs of finite element simulations on (a) axisym-
metric notched sample and (b) 2D pre-cracked Compact Tension sample us-
ing Gurson-Tvergaard-Needleman (GTN) constitutive equations, for different
mesh size

These numerical examples have been obtained with the GTN model in the
context of ductile fracture, but similar results could be shown for other models,
either for brittle or ductile fracture, as soon as the constitutive equations
involves a softening behavior. The key output is the pathological dependence
to the mesh size and to the finite element type, which is severe for situations
involving strong stress / strain gradients but moderate in other cases.

10.4.2 Dependence of the crack path to the mesh orientation

In the numerical examples given in the previous section, the effects of numer-
ical parameters have been assessed on the macroscopic load - displacement
curves. These parameters have also an effect on microscopic behavior such as
crack path. Fig. 10.9 shows the output of a simulation of an axisymmetric
specimen using the GTN model for a given mesh size and type but different
mesh orientations. The global responses are similar for all the orientations.
However, the total porosity for each mesh size at total failure shows a differ-
ent crack path for each mesh orientation, which indicates mesh dependence. In
both cases, the localization of the damage in a band of one element is notice-
able: this corresponds to the most localised solution that can be represented
by the finite element method.
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a) b)

FIGURE 10.9: Finite element simulations of an axisymmetric specimen under
uniaxial loading for a given mesh size and type for different mesh orientation:
(a) global mesh (b) load - displacement curves and crack paths (from [Tuhami
et al., 2022]).

10.5 Good practices and ad-hoc solutions

The previous sections have shown that using local damage models / con-
stitutive equations with a softening behavior leads theoretically to mathe-
matical issues - non-uniqueness, no dissipation - and numerically to spurious
mesh (size and type) dependencies in finite element simulations. Chapters 10
and 11 present advanced approaches to overcome the difficulties of local dam-
age models, which are robust mathematically, physically and even numerically.
However, such approaches are not always available in standard finite element
solvers or are not compatible with all constitutive equations. Therefore, some
good practices and ad-hoc solutions are listed below:

• Be pragmatic

Depending on the problem considered, it may not be required to simulate
the full crack path with a mesh-independent numerical simulations. Consider
using a uncoupled fracture model that may be sufficient to predict crack ini-
tiation. Non-regularized finite element simulations may also be sufficient to
predict crack initiation for situations involving weak stress / strain gradients.

• Choose your element type carefully

Other problems than mesh dependency may affect finite element simula-
tions using coupled fracture models. One particular example is related to the
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large deformation involved in ductile fracture modelling, leading to volumetric
locking. Here again, special finite elements have been developed to overcome
this issue [Chen et al., 2020], but may not be available in standard finite ele-
ment solver. Some standard finite elements behave however better than others
(quadratic reduced integration, B-Bar).

• Use mesh size as a material parameter

Since previous examples have shown that damage localizes in a band of
one (or half) element height, one may use a mesh such that the element width,
denoted h, in the direction normal to the crack path is constant [Tanguy et al.,
2005]. The energy dissipated is proportional to h, which allows to control the
dissipated energy. This very simple strategy allows at least to compare simu-
lations performed on different sample geometries and / or on different finite
element solvers, for situations where the crack path is known. An obvious di-
rect consequence of this strategy is that mesh convergence can not be studied.

• Incorporate mesh size into the constitutive equations

Another approach, proposed by Hillerborg et al. [1976], consists in incorpo-
rating the element size h in the constitutive equations such that the dissipated
energy given by Equation (10.5) is independent of h. This generally results in
a non-intuitive constitutive equation where the softening part of the traction
curve depends on the mesh size. This technique is however still widely used
for concrete in civil engineering [Fichant, 1996; Gangnant, 2016; Draup et al.,
2019].

• Consider using Cohesive Zone Model

When the crack path is known, Cohesive Zone Models (CZM) may be
a good alternative to simulate fracture, either for brittle or ductile frac-
ture [Yoon and Allen, 1999; Monerie, 2000]. Across a given interface, cohesive
zone models relate the traction forces acting on the interface to the displace-
ment jump at the interface. The normal component of the displacement jump
can be seen as the crack opening displacement. Cohesive zone models can
be seen as the limit of standard constitutive models in a band of fixed size,
see [Suquet et al., 1994] for details. CZM corresponds to 2D elements in 3D
FEM [de Borst, 2003; Feyel, 2004]. Those elements are inserted in the mesh
along the crack path when the latter is known. When the crack path is un-
known, cohesive elements can be introduced at the boundaries of all finite
elements [Xu and Needleman, 1995]. The reader is referred to the paper of
Tijssens et al. [2000] for a critical discussion of this strategy. The fact that
displacement jumps at the element boundaries is natural in Discontinuous
Galerkin Methods has been exploited by Hansbo and Salomonsson [2015] to
introduce cohesive zone models.
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10.6 Conclusion

In this chapter, theoretical and numerical issues have been presented related
to the use of local damage models, or more generally constitutive equations in-
volving a softening behavior, for structural calculations. Existence and unique-
ness of smooth solutions can not be guaranteed theoretically, which manifests
itself by mesh dependence of macroscopic load - displacement curves and mi-
croscopic crack paths in finite element simulations. Some ad-hoc solutions
have been proposed to limit the consequences of these issues. However, re-
covering fully mesh independent results requires dedicated theoretical models
and numerical tools that are described in the next chapters.
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This chapter provides a general overview of several methods which can be
used to regularize problems exhibiting localization issues. All of them are
characterized as being nonlocal in the sense that they introduce, in one way
or another, a typical internal length scale which relates the state of a variable
at one point with others in the neighborhood (i.e the local state principle is
no longer valid). The different methods are classified depending on how such
nonlocality is introduced, either by averaging, higher gradients or additional
degrees of freedom.

11.1 Introduction

Apart from the pragmatic solutions discussed in chapter 10 to solve the prob-
lem of mesh dependence, it is also possible to enrich the description of the
continuous medium, i.e. to introduce additional pieces of information on the
internal structure of the material. This is justified, from the physical point
of view, by the fact that a material point is actually associated with a rele-
vant substructure (e.g. grains, holes,...) and the influence of the neighboring
points should be taken into account during localization. This means that the
local assumption of the generalized media is no longer valid for localization
processes. This enrichment is often used to model size effects through the
introduction of an additional internal length scale. The fact that a classical
Cauchy continuum description fails to reproduce any size effect shares some
strong links with the fact that softening material behaviors lead to unlimited
localization. As a result, enriched continua, able to model scale effects, have
also been used for the purpose of limiting the localization process when the
latter is competing with the material internal length scale.
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micromorphic models gradient models regularized models
ρΨ(ϵto, α)+ 1

2A∥∇χ∥2 ρΨ(ϵto, α)+ 1
2A∥∇ϵto∥2 Ψ(ϵtonl, α)

+ 1
2Hχ∥ϵto − χ∥2 or or

ρΨ(ϵto, α)+ 1
2A∥∇αχ∥2 ρΨ(ϵto, α)+ 1

2A∥∇α∥2 Ψ(ϵto, αnl)
+ 1

2Hχ(α− αχ)
2

TABLE 11.1: Enrichment principle of the most commonly used regularization
methods (inspired from [Lorentz, 2019]) where α designates a damage related
variable.

Enrichment of the classical continuum description can be done in various
ways, notably by adding:

• regularized variables using integral or gradient-based averaging;

• higher-order gradients;

• additional kinematic degrees of freedom, e.g. with the micromorphic models.

In the following, we will give a brief review of these different methods (sum-
marized in table 11.1), while focusing on their use as regularization strategies.
In particular, local balance equations or evolution equations of state vari-
ables might be modified: this requires to modify some parts of the standard
numerical solvers. Moreover, the identification of material parameters is also
consequently more or less impacted by the regularization strategy. The quest
for a proper material identification or for a physical microscopic origin of such
additional parameters still remains a difficult challenge as of today and will
not be discussed in the following. A general overview can also be found in other
works, such as [Jirásek, 2008; de Borst et al., 1993; Besson et al., 2023] and
their references. In particular, we suggest the work of Lorentz and Andrieux
[2003] for a thorough attempt at classifying and investigating the properties
and/or deficiencies of various regularization techniques.

11.2 Independently defined nonlocal variables

The first class of approaches consists in defining smoothed nonlocal mechan-
ical fields from their local counterpart: these new nonlocal fields do not only
depend on the value of their local counterpart at the considered material
point, but also on their value in a certain region around this point, thus in-
troducing the notion of characteristic length. Introduction of these nonlocal
variables impacts the constitutive equations but not the kinematic relations
or the classical equilibrium equations. Despite this attractive feature, there
is still a choice to be made regarding where to replace a local variable by its
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nonlocal counterpart in the constitutive equations. For a detailed discussion
on this topic, we refer the reader to [Forest and Lorentz, 2004].

11.2.1 Integral models

The most intuitive manner to introduce a smoothed variable is to use a spatial
average of the local variable. The use of the concept of non-local mean was
introduced in the 1960s with the work of Eringen [1966c], then Kröner [1967],
Kunin [1968] and Edelen [1969]; Edelen et al. [1971]; Eringen and Endelen
[1972]. These works aimed at a better description of the phenomena which
take place in crystals at a scale close to the one of the inter-atomic forces. The
concept of non-local averaging was latter used as a localization limiter in the
1980s by Bažant et al. [1984] and Pijaudier-Cabot and Bažant [1987] in the
framework of damageable elastic behavior. A synthesis of non-local approaches
for plasticity and damage was proposed by Bažant and Jirásek [2002], which
was completed by Jirásek and Rolshoven [2003] in the framework of plasticity.

The non-local integral approach consists, schematically, in defining the
nonlocal variable at a point x⃗ as the weighted average of the local quantity of
interest χ over a restricted volume Ω surrounding the point under considera-
tion, i.e.:

χnl(x⃗) =
1∫

Ω
β(x⃗, ξ⃗)dξ⃗

∫

Ω

β(x⃗, ξ⃗)χ(ξ⃗)dξ⃗ (11.1)

where β is a given non-local weight function (which can be a Gaussian for
example). In this case, the characteristic length scale is related to the width
of the Gaussian profile.

This approach can be, in principle, applicable to any type of model. How-
ever, it raises some difficulties: e.g. choosing a suitable weight in the neigh-
borhood of a boundary or a material interface, designing specific algorithms
to build the connectivity table of integration points where χ is defined or to
compute the non-local integral and its gradients [Baaser and Tvergaard, 2003].

11.2.2 Models using the gradient of an internal variable

The models using the gradient of an internal variable are considered as the
differential counterpart of the integral methods. These models can be divided
into two categories: explicit gradient models and implicit gradient models.

11.2.2.1 Explicit gradient models

Following the work of Aifantis on the description of the dynamics of disloca-
tions at a microscopic scale, models using the gradient of the local variable or
the thermodynamic forces are developed, notably by Zbib and Aifantis [1988];
Mühlhaus and Aifantis [1991]; de Borst and Mülhaus [1991, 1992]; Pamin
[1994] and de Borst and Pamin [1996].

The principle of these models is to define explicitly the additional nonlocal
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variable as a function of the local variable and its derivatives of order n:

χnl(x⃗) = f (χ(x⃗),∇nχ(x⃗)) (11.2)

This type of relation can be obtained by using a Taylor series expansion of
the local variable χ and substituting this expansion into equation (11.1) to
evaluate the integrals [Engelen et al., 2003]. Let us underline that the gradient
dependence makes the stress response at a material point depend on the be-
havior in an infinitesimal neighborhood; the explicit gradient approximation
is thus only weakly nonlocal.

Depending on the choice of the order of approximation in equation (11.2),
different formulations can be considered. For example, to model ductile failure,
Engelen et al. [2003] propose to disregard terms of order four and higher,
leading to:

χnl(x⃗) = χ(x⃗) + ℓ2∆χ(x⃗) (11.3)

with ℓ the characteristic (or internal) length introduced in the regularized
model and ∆ the Laplacian operator. In the case of an elastic-plastic behavior,
these authors have proposed to consider, for χ, the equivalent strain measure
κ and to add the Laplacian of the considered equivalent strain measure to the
yield function F of the classical plasticity theory:

Fnl(σ, κ,∆κ) = F (σ, κ) + g (κ, ℓ)∆κ (11.4)

where the variable g governs the gradient influence and is a function of the
characteristic length scale ℓ (e.g. g = −h ℓ2 where h < 0 is the softening
modulus). In this study, the authors underline the drawbacks associated with
the use of an explicit model, such as the impossibility to obtain a zero stress
state at failure, numerical instabilities and the necessity to have rather small
loading increments.

11.2.2.2 Implicit gradient models

The implicit gradient models also involve higher-order gradients, but these
gradients are not directly inserted in the constitutive equations. This time,
the non-local variable χnl is implicitly defined as the solution of a Helmholtz-
type differential equation involving the local variable χ:

χnl − ℓ2∆χnl = χ in Ω (11.5)

where the Laplacian operator now acts on the non-local variable contrary to
(11.3).

To uniquely define the non-local variable, the PDE (11.5) must be com-
pleted with an additional boundary condition. Since it is desirable to get
χnl = χ when χ is a constant, the following Neumann condition is generally
adopted:

n⃗ · grad(χnl) = 0 (11.6)
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It must be noted that such implicit gradient models are equivalent to the
integral ones when choosing the Green function associated with the PDE as
the non-local weight function (cf [Peerlings, 1999] and [Engelen et al., 2003]).

The implicit gradient models were first developed in the context of damage
with Peerlings et al. [1996], who proposed a brittle elastic model. Then Engelen
et al. [2003] developed this approach for elasto-plasticity based on ductile
damage in small deformations. In particular, the authors showed that, for
the chosen constitutive behavior, the implicit version of the gradient model
avoids a number of numerical difficulties associated with the use of the explicit
version. More recently, an implicit gradient method has been used:

• in quasi-statics, within the small strain framework, to regularize a phe-
nomenological damage model [Feld-Payet et al., 2011] with mixed nonlocal
elements enabling to deal with both spurious localization and volumetric
locking (see figure 11.1)

• in quasi-statics, within the large strain framework, to regularize a Gurson
type damage model with two internal lengths associated to void growth and
nucleation [Tuhami et al., 2022] (see figure 11.2) and simulate complex crack
propagation such as cup-cone failure [Tuhami et al., 2023].

• in dynamics to regularize a Gurson type damage model and reproduce ex-
perimental results obtain on a DP450 steel [Davaze et al., 2021].

• to regularize an incremental fatigue damage model that aimed at describing
fatigue crack propagation in a Ni-based superalloy [Voreux, 2022].

This method is thus very versatile but cannot be as easily applied on bounded
local variables e.g. damage. Indeed, in this case, one can observe under-shoot
of the nonlocal variable with respect to the upper-bound (e.g. d = 1) which
cannot be reached.

11.3 Higher-order gradient models

Regularization strategies relying on higher-order gradients can in fact be clas-
sified into two different groups depending on which type of variable gradients
are taken:

• strain-gradient models

• gradient of internal variable models

Strain gradient models refer to generalized continua where the strain gra-
dient, or the second displacement gradient, is considered as an additional state
variable. Such models result in the introduction of higher-order stresses and
generalized equilibrium equations.
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FIGURE 11.1: Damage maps for a tensile test on a double notched specimen.
Top: zoom on the 3 considered meshes. Middle: maps obtained with standard
finite elements [Feld-Payet, 2010]; the crack path is influenced by the finite
element mesh. Bottom: maps obtained with mixed non local elements (from
[Feld-Payet et al., 2011]); the crack path does not depend on the mesh size.
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FIGURE 11.2: Same test on an axisymmetric specimen as figure 10.9, but
with a regularized formulation based on the implicit gradient method with
two internal lengths (from [Tuhami et al., 2022]). The crack path does not
depend on the mesh orientation.
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Internal variable gradients, on the other hand, lead to additional dissipative
thermodynamic forces, which only affect evolution equations for the internal
variables but not equilibrium equations. Consequently, the latter group mod-
ifies only the constitutive description, while the kinematic and equilibrium
equations remain standard. In the following, we make the distinction with
variational gradient models for which gradients of internal variables enrich
the free-energy potential and/or the dissipation potential. As a consequence,
the modified evolution equations are obtained as a direct consequence of the
associated variational principle rather than being postulated beforehand.

11.3.1 Strain-gradient models

Some enriched continuum formulations keep the displacement field as the only
independent kinematic field and improve the resolution by incorporating de-
formation gradients (i.e., higher-order spatial derivatives of displacements)
into the constitutive equations. These theories were put forward by the works
of Aero and Kuvshinskii [1960]; Grioli [1960]; Rajagopal [1960] and Trues-
dell and Toupin [1960] that considered only the components corresponding to
the gradients of rotations. Subsequently, the gradient theory was extended to
include the effects of expansion gradients (stretch gradients [Toupin, 1962]),
second order gradient (second strain gradient [Mindlin, 1965]) and all order
gradients [Green and Rivlin, 1964b]. This theory was then used in plasticity
and led to the emergence of the so-called mechanism-based strain gradient
plasticity theories [Gao et al., 1999; Huang et al., 2000; Shi et al., 2000].

Strain-gradient models consider as a state variable the strain gradient
grad(ϵto) = grad(∇su⃗) in addition to the strain ε = ∇su⃗. While the lat-
ter is associated with the Cauchy stress σ, the former is associated with the
higher-order stress Σ which satisfy the balance equation:

d⃗iv
(
σ − d⃗iv(Σ)

)
= 0 (11.7)

in the absence of body forces. Regarding the constitutive behavior, one gen-
erally assumes an uncoupled behavior between classical and higher-order
stresses/strains and a quadratic elastic model for the higher-order part. In this
context, the ratio between higher-order and classical elastic moduli defines a
characteristic length scale. As stated before, the identification of higher-order
moduli or their derivation from micromechanical considerations is still an im-
portant challenge at this day. Moreover, such models yield higher-order bound-
ary conditions lacking simple physical meaning. Besides, the elastic response
of these models differs from that of the classical models if the deformations
are not uniform. Finally, such models require higher regularity conditions for
the displacement field that standard finite-element discretizations fail to guar-
antee, which makes their use more difficult in practice.

Simplified versions can then be obtained by considering only specific parts
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of the strain gradient such as the volume dilation εV = tr(ε), see [Fernandes
et al., 2008].

Applications of strain-gradient regularization can be found in [Chambon
et al., 2001] for geomaterials or in [Jouan et al., 2014] for concrete. However,
Le et al. [2018] showed by studying 1D solutions that strain-gradient models
cannot properly account for damage localization as they fail in reproducing
the energetic equivalence of brittle fracture (mesh-independent finite and non-
vanishing energy dissipation to produce a crack).

11.3.2 Variational models with gradients of internal vari-
ables

Following a similar idea as explicit and implicit gradient models, various works
have proposed to limit the occurrence of large gradients of internal state vari-
ables by considering additional penalization terms to the total energy. A typ-
ical example of such kind of regularization is a quadratic expression of the
gradient, such as 1

2A∥∇α∥2, that can also be found in many diffuse inter-
face models of various branches of physics, e.g. Allen-Cahn and Cahn-Hilliard
models for phase separation, Ginzburg-Landau theory of supraconductors, etc.

Maugin [1990]; Frémond and Nedjar [1993, 1996] have introduced such
ideas and extended the classical thermodynamic framework of internal state
variables to such a setting. Doing so, it becomes possible to derive the corre-
sponding state and evolution equations which now involve additional non-local
terms. It is important to stress that such non-local constitutive equations are
deduced from variational arguments as opposed to explicit/implicit gradient
models in which they are directly postulated, see also [Lorentz and Andrieux,
1999; Lorentz, 1999, 2003; Lorentz and Benallal, 2005]. Finally, a more thor-
ough analysis of such gradient damage models and their link with a regularized
formulation of brittle fracture is provided in Chapter 12.

As discussed by Nguyen [2015] for instance, gradient models of standard
generalized materials also benefit from the underlying variational structure
obtained from the corresponding energy and dissipation potentials account-
ing for the additional gradient contributions. Let us thus assume that the
free energy potential Ψ(ϵto, α, g) is a function of the strain, an internal state
variable α and its gradient g = grad(α). Similarly, we assume that the pseudo-
dissipation potential ϕ(α̇, ġ) is a function of the state variable rate α̇ and its
gradient ġ. We now consider that the same incremental energy minimization
applies in the presence of such gradient terms, that is the evolution equations
at time t + ∆t from a state at time t are obtained by solving the following
time-discretized variational principle:

min
u⃗,α,g

∫

Ω

[
ρΨ(ϵto, α, g) + ∆tϕ

(
α− α(t)

∆t
,
g − g(t)

∆t

)]
dV −Wext(u)

s.t. g = grad(α)
(11.8)
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where Wext denotes the work of external loadings. Note that we do not consider
any body or surface forces associated with the state variable α or its gradient.

First, the optimality conditions with respect to the displacement field re-
sult in the standard balance of momentum for the stress field σ. In the absence
of any dependence on g, the optimality conditions with respect to α result in
the definition of the associated thermodynamic force and the corresponding
Biot equation as follows:

0 = Ynd + Yd (11.9)

0 =
∂ρΨ

∂α
+

∂ϕ

∂α̇
(11.10)

where the partial derivative should be extended to the notion of sub-
differentials in the non-smooth case.

In the presence of the gradient term, we can introduce the quantity Z as
the Lagrange multiplier associated with the gradient constraint to obtain the
following saddle point problem:

max
Z

min
u⃗,α,g

∫

Ω

[
ρΨ(ϵto, α, g) + ∆tϕ

(
α− α(t)

∆t
,
g − g(t)

∆t

)

−Z · (g − grad(α))

]
dV −Wext(u)

=

∫

Ω

[
ρΨ(ϵto, α, g) + ∆tϕ

(
α− α(t)

∆t
,
g − g(t)

∆t

)

−Z · g − d⃗iv(Z)α
]
dV −Wext(u) +

∫

∂Ω

Z · nαdS

(11.11)

Thus we obtain for the new optimality conditions with respect to α:

Ynd + Yd − d⃗iv(Z) =
∂ρΨ

∂α
+

∂ϕ

∂α̇
− d⃗iv(Z) = 0 in Ω (11.12)

Z · n = 0 on ∂Ω (11.13)

and with respect to g:

0 = Znd +Zd −Z (11.14)

=
∂ρΨ

∂g
+

∂ϕ

∂ġ
−Z (11.15)

As a result, we obtain an additional balance equation between local ther-
modynamic forces Y and their non-local counterpart Z. In particular, the Biot
equation (see 2.68) is no longer a purely local problem characterizing the state
variable evolution but a global problem involving equilibrium and boundary
conditions at the structure scale.

11.3.2.1 Example: damage gradient model

As a first example, let us consider the case of a damage model with α = d. In
such cases, the standard pseudo-potential can be generally written as:

ϕ(ḋ) = R(d)ḋ, with ḋ ≥ 0 (11.16)
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where R(d) denotes the damage resistance threshold, which depends on d in
general. In this case, the pseudo-potential can be explicitly integrated in time
since:

R(d)ḋ =
d
dt

w(d) where w(d) =

∫ d

0

R(d̂) dd̂ (11.17)

In this case, the time-continuous variational principle reads:

min
u⃗,d

∫

Ω

[
ρΨ(ϵto, d) + w(d)

]
dV −Wext(u) (11.18)

so that we obtain a formulation equivalent to a single energy potential ρΨ+w.
It must be mentioned that this specific case of GSM, where the pseudo-
potential becomes a state function, corresponds to the case of simple dissi-
pative systems introduced by Ehrlacher and Fedelich [1989].

As a result, the extension to damage gradient models can be performed by
considering a damage-gradient dependent pseudo-potential, for instance:

ϕ(ḋ, ġ) = R(d)ḋ+Ag · ġ (11.19)

where A is a positive constant. Such a model yields the variational problem

min
u⃗,d

∫

Ω

[
ρΨ(ϵto, d) + w(d) +

A

2
grad(d) · grad(d)

]
dV −Wext(u)

(11.20)
We can observe that this extension is equivalent, at least formally, to consider
the following damage-gradient dependent free-energy:

ρΨ(ϵto, d,grad(d)) = ρΨ(ϵto, d) +
A

2
grad(d) · grad(d) (11.21)

leading to the same variational principle and evolution equations. The main
difference lies in whether the additional term is considered as being part of
the free energy or of the dissipation. As regards the evolution equations, we
have for this example:

Ynd =
∂ρΨ

∂d
(11.22)

Yd ≤ R(d) (11.23)

Z = Agrad(d) (11.24)

where the inequality stems from the irreversibility condition ḋ ≥ 0 , which is
to be completed with the consistency condition ḋ(Yd − R(d)) = 0. Besides,
the last equation is obtained from (11.15). Note that for the construction
based on the dissipation (11.19), we have Znd = 0 and Zd = Z = Agrad(d),
while for the energy-based construction (11.21), we have here Zd = 0 and
Znd = Z = Agrad(d). In any case, the resulting damage evolution criterion
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is obtained from (11.12) as:

Yd = −Ynd + d⃗iv(Z) ≤ R(d) (11.25)

−∂ρΨ

∂d
≤ R(d)−A∆d (11.26)

We can observe that the laplacian term enters the damage criterion which is
no longer local. Clearly, the obtained model is different from implicit gradient
models as discussed before.

11.3.2.2 Example: gradient plasticity

As a second example, let us consider the case of softening plasticity models
(i.e. with negative hardening). In this case, softening-induced localization is
driven by a cumulated plastic strain variable p. Therefore, the corresponding
gradient model will include additional terms involving grad(p) in the total
energy functional.

As regards the initial local model, let us assume for simplicity a von Mises
elastoplastic behavior with isotropic hardening with state variables being the
plastic strain εp and the cumulated plastic strain p with the following poten-
tials:

ρΨ(ϵto, εp, p) =
1

2
(ϵto − εp) : D : (ϵto − εp) + ρΨh(p) (11.27)

ϕ(ε̇p, ṗ) =

{
σ0ṗ s.t.

√
2/3∥ε̇p∥ ≤ ṗ and tr(ε̇p) = 0

+∞ otherwise
(11.28)

where ρΨh(p) denotes the hardening potential which is non-convex in the
case of softening plasticity. For this standard material behavior, the evolution
equations with respect to p yield the plastic yield criterion:

Ynd = ρΨ′(h) = H(p) (11.29)

Yd ≤ σ0 −
√

3

2
s : s (11.30)

⇒
√

3

2
s : s ≤ σ0 +H(p) (11.31)

Let us now consider that the free energy is complemented by a quadratic
potential of the plastic strain gradient:

ρΨ(ϵto, εp, p,grad(p)) = ρΨel(ϵ
to, εp)+ρΨh(p)+

A

2
grad(p)·grad(p) (11.32)
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Then, Znd = Zd = Agrad(p) and we have:

Ynd = ρΨ′(h) = H(p) (11.33)

Yd = −Ynd + d⃗iv(Z) ≤ σ0 −
√

3

2
s : s (11.34)

⇒
√

3

2
s : s ≤ σ0 +H(p)−A∆p (11.35)

Again, the plastic yield criterion is now non-local as it depends on the cu-
mulated plastic strain laplacian, recovering the Aifantis [1987] model. Again
the non-local character of the constitutive law of such models makes their
numerical implementation challenging. Moreover, as discussed in various ref-
erences, they possess various weaknesses such as the fact that localization
bands keep on broadening after stress saturation at large strains [Jirásek and
Rolshoven, 2009; Scherer et al., 2019] as in gradient-enhanced damage models
[Geers et al., 1998; Simone et al., 2004].

11.4 Models with enriched kinematics

Another type of regularization method consists in adding kinematic degrees
of freedom, leading to generalized Cosserat media.

11.4.1 Generalized Cosserat media

The first formulation of a generalized continuous medium was proposed by
the Cosserat brothers [Cosserat and Cosserat, 1909]. It consists in consider-
ing the material particles as objects having not only degrees of freedom in
translation but also in rotation. They are described by the rotation of a rigid
reference frame constituted by three orthogonal unit vectors. After Günther
[1958] reopened the question of a continuous oriented medium and underlined
its link with the theory of dislocations, the idea of the Cosserat brothers was
taken up again to lead to the emergence of generalized Cosserat theories:

• the couple-stress elasticity with the works of Mindlin and Tiersten [1962];
Toupin [1962, 1964] and Koiter [1964];

• The theory of elasticity with microstructure (see Mindlin);

• the multipolar theory with the works of Green and Rivlin [1964a]; Green
[1965].

• the micropolar and micromorphic theories with the works of Eringen and
Suhubi [1964] and Eringen [1964, 1966a,b];
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All these theories characterize the motion of a solid body by additional fields
which are independent of the displacement field and provide additional infor-
mation about the kinematics at the lower scale. A unifying thermomechanical
constitutive framework for generalized continua has been proposed by [Forest
and Sievert, 2003]. Stefanou et al. [2017] studied how Cosserat elastoplastic
model can be used for strain localization limitation in softening plasticity.

11.4.2 Micromorphic models

Among these higher order continua, the micromorphic continuum is one of
the most general one. Its principle consists in adding to the displacement de-
grees of freedom, an additional degree of freedom which is typically related to
a microdeformation of the underlying microstructure. Additional energy con-
tributions are considered to penalize the difference between the macroscopic
and microscopic deformation variables. In the original micromorphic model
by Eringen and Suhubi [1964]; Eringen [1964], the microdeformation tensor
was related to the deformation of a triad of director vectors characterizing
the underlying microstructure. In the following, we rather adopt the generic
approach presented in [Forest, 2009] where the microdeformation αχ is related
to a given state variable α. Again, we consider here only scalar variables for
the sake of simplicity. The rationale behind the use of micromorphic models in
the context of regularization is to select a state variable which is responsible
for the localization process. As mentioned before, the micromorphic model
is obtained by extending the free-energy with terms involving the difference
α−αχ and the gradient of the microdeformation grad(αχ). Choosing isotropic
quadratic potentials for simplicity we therefore have:

ρΨ̃(ϵto, α, αχ,grad(αχ)) = ρΨ(ϵto, α)+
1

2
Hχ(α−αχ)

2+
1

2
Agrad(αχ)·grad(αχ)

(11.36)
where Hχ, A ≥ 0 are additional material parameters and ρΨ the free-energy
of the original local model. Note that, in this framework, the pseudo-potential
is unchanged i.e. it is of the form ϕ(α̇).

A similar variational principle as (10.1) can be considered for characteriz-
ing the evolution of the micromorphic model, it reads as:

min
u⃗,α,αχ

∫

Ω

[
ρΨ(ϵto, α) +

1

2
Hχ(α− αχ)

2 +
1

2
Agrad(αχ) · grad(αχ)

+∆tϕ

(
α− α(t)

∆t

)]
dV −Wext(u⃗)

(11.37)
The optimality condition with respect to the displacement u remain un-

changed, they provide the local balance equation for the stress σ =
∂ρΨ

∂ϵto
obtained from the local free-energy potential. The optimality conditions with
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respect to α yields a similar evolution equation as (11.10):

0 = Ynd +Hχ(α− αχ) + Yd (11.38)

0 =
∂ρΨ

∂α
+Hχ(α− αχ) +

∂ϕ

∂α̇
(11.39)

which remains of local nature (no divergence or other differential operator)
but with an additional term Hχ(α−αχ). Finally, the optimality condition for
the microdeformation αχ turns out to be the following variational problem:
Find αχ such that:

∫

Ω

[Agrad(αχ) · grad(β) +Hχ(αχ − α)β] dV = 0 ∀β (11.40)

which is the weak form associated with:

αχ − A

Hχ
∆αχ = α in Ω (11.41)

grad(αχ) · n⃗ = 0 on ∂Ω (11.42)

Note that we did not consider any Dirichlet boundary condition on the mi-
crodeformation αχ although it is possible to do so, at least mathematically.
Similarly, we did not consider any source term related with such microdefor-
mation.

As a result, we again recover similar equations as in implicit gradient mod-
els where

√
A/Hχ can be interpreted as a regularization length scale ℓ. Note

however that, in implicit gradient models, the evolution equation pertaining to
the local constitutive behavior do not take into account the term Hχ(α−αχ)
appearing in (11.39). Instead, the local variable is replaced with the non-local
one for the next iteration.

Moreover, when considering the micromorphic modulus Hχ → ∞, the
quadratic penalty term will enforce α = αχ while the term Hχ(α−αχ) becomes
indeterminate. However, from the weak form (11.41), we know that:

Hχ(α− αχ) = −A∆αχ = −A∆α (11.43)

As a result, we recover the expressions of the gradient of internal variable
models for a quadratic gradient potential. The latter can therefore be seen as
a constrained version of such micromorphic models when enforcing equality
between the microdeformation αχ and the original state variable α.

One major interest in using such micromorphic models relies in the fact
that the material constitutive equations remain local and are only modified by
the inclusion of an additional thermodynamic force. Let us note that it is pos-
sible to add several nonlocal variables simultaneously. One potential drawback
is that the use of micromorphic models requires the identification of an addi-
tional material parameter Hχ. Even if it is expected that if Hχ is sufficiently
large, the model will converge to that of the corresponding internal variable
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gradient counterpart, the influence of a large yet finite value of Hχ must be
assessed case by case. This method has recently been used with a dynamic
explicit resolution scheme in the context of metal forming by Diamantopoulou
et al. [2017] or irradiated materials by Scherer et al. [2019]. It has also been
used in dynamics to regularize a Gurson type damage model and get as close
as possible to experimental results obtain on a DP450 steel [Davaze, 2019]
(see figure 11.3).

FIGURE 11.3: Load-displacement curves obtained with different meshes on
FN and V45 specimens with the non-local micromorphic approach (from
[Davaze, 2019]). The crack path does not depend on the mesh size.

11.4.3 Discussion

There are other less widespread methods in the literature. For example, the
Thick Level Set approach to fracture [Moës et al., 2011] proposes to impose the
damage distribution: minimization of the energy then aims at determining the
evolution of the boundaries between the undamaged and damaged material.
Different methods have also been proposed to counteract the loss of hyperbol-
icity of the constitutive equations in dynamics. They are known as temporal
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localization limiters and encompass notably the concepts of models with delay
effects [Ladevèze, 1991] and of bounded damage rate model [Allix and Deü,
1997; Allix, 2013]. However, these methods have not been as studied as the
nonlocal models. In particular, Lorentz and Andrieux [2003] have tried to clas-
sify these nonlocal formulations. Their analysis of the models concluded that,
usually, "effective regularization and preservation of the grounding energetic
basis cannot be gained together" since "these regularization techniques are
thus more pragmatic than based on physical derivations". Still from a prag-
matic point of view, in our opinion, convergence of the method is a critical
point. Other issues can be tackled as long as there are no major convergence
issues. For example, the enlargement of the localization band that happens
when introducing the gradient of a strain related quantity, can be limited by
insertion of a discrete crack (see chapter14). Being able to simulate crack ini-
tiation and propagation thanks to regularized damage models opens the door
to the possibility of identifying the involved parameters and, in particular, the
characteristic length.
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The variational approach to fracture and
regularized fracture models

Corrado Maurini

Sorbonne Université

Abstract. This chapter provides a primer to the variational approach to
fracture. After a review of the variational approach to linear elasticity, we
formulate the fracture mechanics problem as an energy problem and introduce
the damage models obtained as its variational approximation.

12.1 Introduction

The variational approach to fracture formulates fracture and damage mechan-
ics as energy minimization problems. It exploits the related variational struc-
ture for the analysis of the solutions and to devise robust numerical solution
strategies. The roots of this viewpoint are the works of Griffith [Griffith, 1921],
Francfort, Marigo and Bourdin [Francfort and Marigo, 1993, 1998; Bourdin
et al., 2000; Francfort et al., 2008], and the related mathematical literature,
see e.g. [Ambrosio et al., 2000; Braides, 2002]. This approach led to notable
progresses in the theoretical understanding of fracture mechanics and its link
with damage models. It is at the basis of a game-changing numerical simu-
lation tools of fracture through smeared damage models, which is known as
“phase-field” method.

The aim of this chapter is to give a first introduction to the variational
approach to damage and fracture. The exposition includes:

(i) a short review of the variational formulation for a linear elastic
problem for a body with a pre-existing crack,

(ii) the introduction of variational approach to the sharp interface Grif-
fith model of brittle fracture,

(iii) the introduction of the variational approach to gradient damage
models and their link with the brittle fracture problem.
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A final section will give a short overview of the open issues and current research
topics in the field.

12.2 Variational formulation of the elastic problem for a
body with a pre-existing crack

Before introducing the variational approach to fracture, we review the classical
variational formulation of a linear elastic problem for a solid with a pre-existing
crack. This preliminary step is necessary to introduce the notation and to
define the potential energy of a cracked body and the energy release rate.

Let us consider a body represented by the domain Ω ⊂ Rn, including a
crack set Γ in the form of a “regular" subset of co-dimension 1 of Ω, i.e. sur-
faces for n = 3, curves for n = 2, points for n = 1. Linear elastic fracture
mechanics assumes the solid to be linear elastic in Ω \Γ and neglects geomet-
ric nonlinearities.

The potential energy of the cracked body ΩΓ ≡ Ω \ Γ is

P(u⃗,Γ) :=

∫

Ω\Γ
W (ε(u⃗)) dx− L(u⃗), (12.1)

with

W (ε) :=
1

2
(K : ε) : ε, L(u⃗) =

∫

∂fΩ\Γ
f⃗ .u⃗ ds+

∫

Ω\Γ
b⃗.u⃗ dx

where W (ε) is the elastic energy density, u⃗ the displacement vector, ε(u⃗) =
sym(∇u⃗) the linearized strain, K the elastic constitutive tensor, and L(u⃗) is
the work of the external forces, which are assumed to be conservative. The
loading is given by applied displacement u⃗d on the part of the boundary ∂uΩ,
applied surface traction f⃗ on the part of the boundary ∂fΩ ≡ ∂Ω \ ∂Ωu and
bulk forces b⃗ on Ω. We denote by

C(Γ) = {u⃗ ∈ H1(Ω \ Γ) : u⃗ = u⃗d on ∂Ωu \ Γ}
C0(Γ) = {u⃗ ∈ H1(Ω \ Γ) : u⃗ = 0⃗ on ∂Ωu \ Γ}

the affine space of admissible displacements and the associated vector space
of admissible variations, such that ∀u⃗ ∈ C(Γ), ∀v⃗ ∈ C0(Γ), u⃗+ v⃗ ∈ C(Γ). The
regularity requirement u⃗ ∈ H1(Ω\Γ), where H1 denotes the standard Sobolev
space, means that the admissible displacements must have square integrable
first derivatives on the uncracked domain Ω \ Γ, in order to ensure a finite
elastic energy: P(u⃗,Γ) < +∞. To simplify the presentation, let us assume
that the crack set and the Dirichlet boundary conditions do not allows for
rigid body modes, i.e. that:

u⃗ ∈ C0(Γ) and ε(u⃗) = 0 ⇒ u⃗ = 0⃗. (12.2)
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Hence, we can characterize the solution of the elastic problem for a given crack
set Γ as the unique solution of the following minimization problem

u⃗∗ = argmin
u⃗∈C(Γ)

P(u⃗,Γ), P(Γ) := min
u⃗∈C(Γ)

P(u⃗,Γ) = P(u⃗∗,Γ). (12.3)

which is also known as the principle of minimum total potential energy. The
notation in equation (12.3) means that

u⃗∗ ∈ C : P (u⃗∗) ≤ P (u⃗) , ∀u⃗ ∈ C(Γ). (12.4)

Taking u⃗ = u⃗∗+h ˆ⃗u with h ≥ 0 and v⃗ ∈ C0 and performing a Taylor expansion
in h, the condition above writes as

∀ˆ⃗u ∈ C0 : 0 ≤ P
(
u⃗∗ + h ˆ⃗u

)
− P (u⃗∗) = hDu⃗P(u⃗∗)(ˆ⃗u) + o(h) (12.5)

where

Du⃗P(u⃗)(ˆ⃗u) :=
d

dh
P
(
u⃗+ hˆ⃗u

)∣∣∣∣
h=0

=

∫

Ω\Γ
σ (u⃗) : ε

(
ˆ⃗u
)
dΩ − L

(
ˆ⃗u
)

denotes the first directional derivative of the functional P with respect to u⃗
in the direction ˆ⃗u with the stress tensor defined by

σ (u⃗) :=
∂W

∂ε
(ε(u⃗)) = K : ε (u⃗) .

Since for any v⃗ ∈ C0, −v⃗ ∈ C0, the inequality implies that the solution of
the minimization problem must satisfy the following first-order optimality
condition:

u⃗ ∈ C : Du⃗P(u⃗)(ˆ⃗u) = 0, ∀ˆ⃗u ∈ C0, (12.6)

which is the weak formulation of the linear elastic problem for the cracked

body. Writing L
(
ˆ⃗u
)

explicitly, eq. (12.6) can also be written as

∫

Ω\Γ
σ(u⃗) : ε

(
ˆ⃗u
)
=

∫

Ω

b⃗ · ˆ⃗u dΩ +

∫

∂fΩ

f⃗ · ˆ⃗u dS = 0 ∀ˆ⃗u ∈ C0. (12.7)

Integrating by parts and using classical arguments of the calculus of variations
one can show that the weak form above implies the equilibrium equations in
the strong from

d⃗ivσ + b⃗ = 0⃗ in Ω \ Γ, σ.n⃗ = f⃗ on ∂Ωf ,

The equation above completed by the compatibility equation ε(u⃗) = sym(∇u⃗)
and by the admissibility condition u⃗ ∈ C(Γ) gives the full set of equation of
linear elasticity.
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12.3 Variational formulation of the Griffith model

Griffith [Griffith, 1921] formulated the fracture mechanics problem as the prob-
lem of minimizing the total energy of the cracked body, sum of the potential
energy and the energy required to create the crack. In the simplest model, the
energy required to create the crack is supposed to be proportional to its sur-
face S(Γ) (or length in 2D). The energy per unit of surface required to create
the crack is the fracture toughness Gc. Francfort and Marigo [Francfort and
Marigo, 1998] provided a sound mathematical formulation of this idea. We
introduce below the basics of this variational formulation to brittle fracture.
We consider first the “static problem", consisting in finding the cracked state
of the solid for a given load. Hence, we introduce the quasi-static evolution
problem in the time-discrete setting. We start considering in the following
subsection the problem of finding the crack state for a given loading, without
considering an evolution.

12.3.1 Static problem: the energy release rate and the Grif-
fith criterion

Given a preexisting crack Γ0, the variational approach to sharp-interface Grif-
fith fracture mechanics defines the cracked state of the solid as the solution of
the following minimization problem for a total energy functional sum of the
elastic energy of the cracked body and the energy required to create the crack:

min
u⃗∈C(Γ),Γ⊇Γ0

E(u⃗,Γ), E(u⃗,Γ) := P(u⃗,Γ) +Gc S(Γ), (12.8)

where the condition Γ ⊇ Γ0 translates the crack irreversibility condition. This
problem is extremely difficult to solve because the displacement field can jump
on the crack set Γ which is itself an unknown of the problem.

We start considering the simpler case of a two-dimensional solid where the
crack path Γs is given and the only unknown is the crack length s along this
path. In this case, the energy minimization problem simplifies to

min
s≥s0

E(s), E(s) := P(s) +Gc s (12.9)

where
P(s) := min

⃗u∈C(Γs)

P(u⃗,Γs)

is obtained by solving the linear elastic problem with given crack length for-
mulated in the previous section and s0 is the initial crack length.

As analysis illustrative example, consider the double-cantilever beam in
Figure 12.1 with Young modulus E, thickness 2h and depth b under the plane-
stress condition, with the straight crack Γℓ parametrized by its length s. The
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FIGURE 12.1: Double cantilever beam.

beam is loaded by an applied displacement t on the left end. A classical ap-
proximate analytical solution for this problem can be obtained using a beam
model approximation, which gives:

P(s) =
Ebh3

4s3
t2.

A refined approximation of the potential energy can be obtained by solving
the linear elastic problem at given crack length s with a finite element solver.

The optimal crack length s∗ ≥ s0 must respect the condition

0 ≤ E(s)− E(s∗) = dE(s)
ds∗

(s− s∗) + o(|s− s∗|), ∀s ≥ s0

which, at the first order in s− s∗ reads as

s∗ ≥ s0 : E ′(s∗) (s− s∗) ≥ 0, ∀s ≥ s0. (12.10)

If s∗ > s0, then we can take s ≥ s0 such that s− s∗ ≥ 0 but also s ∈ (s0, s
∗)

such that s − s∗ ≤ 01. Hence, for s∗ > s0 the condition 12.10 implies that
E ′(s∗) = 0. If s∗ = s0, then s > s0 = s∗ implies that s − s∗ ≥ 0 and
12.10 implies only that E ′(s∗) ≥ 0. Wrapping up, we have that s∗ ≥ s0 and
E ′(s∗) ≥ 0. Moreover, either s∗ = s0 or E ′(s∗) = 0. We can synthetically write
these conditions as a set of inequalities:

s∗ − s0 ≥ 0, E ′(s∗) ≥ 0, E ′(s∗) (s∗ − s0) = 0 (12.11)

These inequalities are called Karush-Kuhn-Tucker conditions (KKT) for the
unilaterally constrained optimization problem 12.9. They are first order neces-
sary conditions that the solution of the minimization problem must respect.
We obtain similar inequalities as soon as we have an inequality constraint.
This kind of result will be used later in similar situations without explicit

1For example, take s = s∗ ± (s∗ − s0)/2)
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proof.

The opposite of the derivative of the potential energy with respect to the
crack length defines the energy release rate

G(s) := −E ′(s)

With this definition, the inequalities 12.11 write as

s∗ ≥ s0, G(s∗) ≤ Gc, (G(s∗)−Gc) (s
∗ − s0) = 0, (12.12)

which gives the Griffith criterion for crack propagation. It states that for the
solution of the static fracture mechanics problem with a given crack path (i)
the crack length cannot decrease, (ii) the energy release rate cannot exceed the
fracture toughness Gc, and (iii) the crack can propagate only if G(s∗) = Gc.
The computation of the energy release rate requires to evaluate the derivative
of the potential energy of the system with respect to the crack length. In
some situations, this can be done analytically, but more often G is computed
numerically by solving a linear elastic problem and suitable post-processing.

The reasoning above shows that the standard Griffith criterion is a di-
rect consequence of the energy minimization principle under an irreversibility
constraint for the crack length. The variational viewpoint allows for the gen-
eralization of the model to more complex situation, including arbitrary crack
patterns, anisotropic or heterogeneous media, nonlinear elasticity, cohesive
fracture energy, multi-physical couplings, . . .

12.3.2 Quasi-static irreversible evolutions

Let us consider the solid loaded by an imposed displacement on the boundary,
whose intensity is proportional to a scalar t and monotonically increasing:
ud(t) = t ud(1). The loading parameter t can be assimilated with the time
variable. If we assume to discretize the time variable with n steps {ti}ni=0,
knowing the crack Γi−1 at the time ti−1, the crack state at time ti is found
by solving the incremental minimization problem

(u⃗i,Γi) := argmin
u⃗∈C(Γi−1),Γ⊇Γi−1

E(u⃗,Γ) (12.13)

where Γ ⊇ Γi−1 translates the irreversibility condition of the crack set and
implies that the surface energy Gc S(Γ) in 12.8 is dissipated during the evo-
lution.

For the case of a crack on a predefined path, the first-order optimality
conditions 12.11 write as:

si − si−1 ≥ 0, E ′(si) ≥ 0, E ′(si) (si − si−1) = 0. (12.14)

Taking the limit of 12.14 for ti → ti−1, one can define a time-continuous
evolution s(t) that will satisfy the following evolution law at each time t:

ṡ(t) ≥ 0, E ′(s(t)) ≥ 0, E ′(s(t)) · ṡ(t) = 0. (12.15)
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The “smoothness” in time is guaranteed as far as we consider evolution prob-
lems based on global energy minimality. This will not be the case when con-
sidering local minimizers. The three conditions above can be interpreted as an
(i) irreversibility condition, (ii) a stability condition, and an energy balance
condition (iii), typical of the theory of rate-independent evolution problems.
We refer the reader to [Mielke and Roubíček, 2015] for further details on this
point. In these notes, we will consider only the time-discrete version of the
evolution, which is at the basis of the numerical work, see also [León Baldelli
and Maurini, 2021].

12.3.3 Regularized “phase-field” variational formulation

The arbitrariness of the jump set for the displacement in eq. 12.8 renders the
problem extremely complex from the theoretical and numerical standpoints.
This is called a free discontinuity problem, for which a wealth of mathemat-
ical literature is now available [Ambrosio et al., 2000]. An efficient method
for its numerical solution, initially introduced in analogue problems of image
segmentation [Mumford and Shah, 1989; Ambrosio and Tortorelli, 1992], is
the use of regularized formulations smearing the sharp discontinuities across
bands of non-vanishing width [Braides, 1998]. Bourdin et al. [Bourdin et al.,
2000] applied the Ambrosio-Tortorelli regularized formulation to the fracture
mechanics problem.

This approach introduces a smooth scalar field α and the regularized en-
ergy functional

Eℓ(u⃗, α) =
∫

Ω

(
(1− α)2 + kℓ

)
W (ε(u⃗)) dx+

Gc

2

∫

Ω

(
α2

ℓ
+ ℓ∇α · ∇α

)
dx,

(12.16)
where ℓ is a scalar regularizing parameter and kℓ = o(ℓ) a small residual
stiffness.

The mathematical results based on the direct methods of the calculus
of variations and asymptotic analysis (gamma-convergence) show that, for
ℓ → 0, global minimizers of the regularized energy 12.16 tend toward global
minimizers of the Griffith energy eq. 12.8 [Chambolle, 2003; Ambrosio and
Tortorelli, 1992]. In particular, Giacomini [Giacomini, 2005] shows that the
solutions of the quasi-static evolution problem eq. 12.13 may be approximated
by solving at each time step the following minimization problem:

(u⃗i, αi) ∈ argmin
u∈Ci, α∈D(αi−1)

E(u⃗, α) (12.17)

with

Ci ≡ {u⃗ ∈ H1(Ω), u⃗ = u⃗d(ti) on ∂uΩ}, (12.18)

D(β) ≡ {α ∈ H1(Ω), α ≥ β, α = 0 on ∂αΩ}, (12.19)

where we assume α to be null where Dirichlet boundary conditions on the
displacement are imposed (i.e. ∂αΩ ≡ ∂uΩ).
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As discussed in the next section, α can be interpreted as a damage variable
and the regularized energy 12.16 as the energy of a gradient damage model.
The crack irreversibility translates into an unilateral minimization on the
damage field. This model allows for the prediction of crack evolutions without
a priori hypotheses on the crack path.

The variational approach to fracture provides a mathematical framework
to study the link between damage and fracture mechanics. In this framework,
the mathematical results of gamma-convergence are a cornerstone. However,
direct methods of the calculus of variations and gamma-convergence give in-
formation only on global minimizers. The global minimality requirement is
at the basis of the mathematical analysis leveraging the direct methods of
the calculus of variations. Global minimality is also fundamental to retrieve
crack initiation within the Griffith model and to assure the smoothness in time
of the evolutions. However, global minimality is debatable for two reasons of
opposite and complementary nature [Francfort et al., 2008]:

• In macroscopic physics, defining physically observable states as global mini-
mizers of the energy is a too strong requirement. The common experimental
evidence shows that we can observe a physical system in a meta-stable state,
which is only a local minimum of the energy.

• The energy functional 12.16 is strongly non-convex and can have many local
minima. Numerically, one can find, after space discretization, stationary
points or local minimizers depending on the initial seeding point. Finding
global minimizers large-scale nonlinear system with hundreds of thousand
or millions of unknowns is not feasible with the current technology.

These limitations call for richer mechanical models (as cohesive fracture
models or gradient damage models) and for formulations based on local energy
minimality criteria, giving the interpretation of ℓ as a physical length-scale.
This will be the object of the following section.

12.4 Gradient damage models and their use as a phase-
field regularization of brittle fracture

We consider gradient damage models of fracture where the energy functional
is in the following form

Eℓ(u⃗, α) =
∫

Ω

W (ε(u⃗), α) dx+w1

∫

Ω

(
w(α) + ℓ2 ∇α · ∇α

)
dx−L(u⃗), (12.20)

with an elastic energy density in the form

W (ε, α) =
1

2
(K(α) : ε) : ε, σ :=

∂W

∂ε
= K(α) : ε.
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The energy functional is a slight generalization of eq. 12.16. However, we
analyze here the behavior of the model for a fixed value of ℓ, and we define
a solution at the time step i as an unilateral local minimizer of the energy
above starting from the solution at the previous time step i− 1.

(u⃗i, αi) = arg loc min
(u⃗,α)∈Ci×D(αi−1)

E(ˆ⃗u, α̂), (12.21)

where locmin means that the solution (u⃗i, αi) ∈ Ci×Di is such that ∀(u⃗, α) ∈
Ci ×D(αi−1):

∃h̄ > 0 : E(u⃗i, αi) ≤ E(u⃗i+h (u⃗− u⃗i), αi+h (α−αi)) ∀h ∈ (0, h̄). (12.22)

Taking the first order expansion of the inequality above with respect to h one
gets the first order optimality conditions:

{
Du⃗E(u⃗i, αi)[u⃗− u⃗i] ≥ 0, ∀u⃗ ∈ Ci,
DαE(u⃗i, αi)[α− αi] ≥ 0, ∀α ∈ Di,

(12.23)

where Du⃗ and Dα denote the directional derivative of the energy functional
E with respect to the displacement and the damage, respectively, with

Du⃗E(u⃗i, αi)[v⃗] =

∫

Ω

σ(u) : ε(v⃗)−
∫

Ω

b⃗ · v⃗ dΩ −
∫

∂fΩ

f⃗ · v⃗ dS

DαE(u⃗i, αi)[β] =

∫

Ω

(
1

2
(K′(α) : ε(u⃗)) : ε(u⃗) + w′(α)

)
β + 2 ℓ2∇α · ∇β dx.

By suitably selecting the variations v⃗, β and applying standard localization
arguments, one can show that, for smooth solutions, the first-order optimal-
ity condition 12.23 is equivalent to the following equilibrium equation and
equilibrium boundary condition

divσ + b⃗t = 0⃗ on Ω, σ.n⃗ = f⃗t on ∂fΩ,

and to the damage criterion on the bulk Ω:

α− αi−1 ≥ 0, (12.24a)

1

2
K′(α)ε(u⃗) : ε(u⃗) + w1 w

′(α)− 2w1ℓ
2∆α ≥ 0, (12.24b)

(
1

2
K′(α)ε(u⃗) : ε(u⃗) + w1 w

′(α)− 2w1ℓ
2∆α

)
(α− αi−1) = 0, (12.24c)

and on the boundary where the damage is not prescribed ∂Ω \ ∂αΩ:

α− αi−1 ≥ 0, ∇α · n⃗ ≥ 0, (∇α · n⃗)(α− αi−1) = 0 (12.24d)

n⃗ being the outer unit normal to the boundary and ∆α the Laplacian of the
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damage. The equilibrium equation is obtained as for the elastic case of Sec-
tion 12.2. The set of inequalities are a direct consequence of the presence of
the unilateral constraint on the damage variable. They are the result of gen-
eralization to the infinite dimensional setting of the basic reasoning detailed
in Section 12.3.1 for equations 12.14. For smooth-in-time solutions, equivalent
conditions are obtained in a time-continuous setting as a consequence of an
evolution principle based on irreversibility, energy balance, and stability. We
refer the reader to [Pham and Marigo, 2010a,c; Marigo et al., 2016] for further
details.

A fundamental question is to understand how the properties of the consti-
tutive functions K(α) and w(α) affect the solutions of an evolution problem. A
first step is to analyze the solutions with homogeneous damage, which is tanta-
mount to the analysis of the response of a material point. We focus here on the
purely isotropic case where K(α) = a(α)K0, where a(α) is an isotropic stiffness
modulation. The reader can find a more general presentation in [De Lorenzis
and Maurini, 2022].

Following [Pham et al., 2011b], a first important distinction is between
materials showing a finite or infinite dissipation at complete failure, denoted
as weakly brittle or strongly brittle materials, respectively. In strongly brittle
materials, one can renormalize the damage variable in the interval [0, 1] and
assume that a(0) = 1, a(1) = 1, w(0) = 0, w(1) = 1. The constant w1 in 12.20
can be interpreted as the energy required to fully damage a volume element,
commonly denoted as specific fracture energy [Comi and Perego, 2001].

For homogeneous solutions with ∆α = 0, the damage criterion 12.24 and
the stress-strain relationship imply that the domains of admissible strains and
stresses are given by:

Aε(α) =

{
ε : (K0 ε) : ε ≤ −2w1w

′(α)

a′(α)

}
,

Aσ(α) =

{
σ :

(
K−1

0 : σ
)
: σ ≤ 2w1w

′(α)

s′(α)

}
,

where s := a−1 is the modulation of the elastic compliance. The material is
said to be with

• strain hardening (resp. softening) if Aε is increasing (resp. decreasing) with
α, i.e. if −w′(α)/a′(α) is increasing (resp. decreasing),

• stress hardening (resp. softening) if Aσ is increasing (resp. decreasing) with
α, i.e. if +w′(α)/s′(α) is increasing (resp. decreasing).

These properties are equivalent to convexity conditions of the energy density
and its Legendre transform, see [Pham and Marigo, 2010b]. In [Pham et al.,
2011b] and [Pham et al., 2011a], we show that to recover an energetic equiva-
lence with Griffith brittle fracture, it is essential to use a strongly brittle mate-
rial with stress-softening (see also the following Section). For stess-hardening
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materials the energy (eq. 12.16) is strictly convex and the solution of the evo-
lution problem is unique. Stress-softening is at the origin of all the interesting
phenomena (and difficulties): multiple solutions, bifurcations, loss of stability.
The strongly brittle behavior is necessary to obtain damage localizations with
a well-defined fracture energy, assimilable to a fracture toughness.

Purely local softening damage models, corresponding to ℓ = 0 in 12.20, are
not well-posed. For a local model all the solutions are unstable in the softening
regime. As shown by the gamma-convergence result, damage gradient regular-
ization leads to a correct approximation of brittle fracture model in the limit
ℓ → 0. This is more difficult to obtain with strain-gradient regularization. We
refer the reader to [Le et al., 2018] for a specific discussion of these aspects.

The energy functional 12.16 includes as a special case the Ambrosio-
Tortorellli functional 12.16 used in [Bourdin et al., 2000] to approximate the
evolutions of the Griffith model 12.8. However here the global minimality re-
quirement is replaced here by a local one. A meta-stable state, obtained as
unilateral local minimum of the energy is accepted as stable state during an
evolution. This implies that, even if global minimizers of the energy of damage
models converge towards global minimizers of the Griffith energy functional
12.8, the evolutions obtained by the damage model (local minimization) and
the Griffith model (global minimization) presented above may be very differ-
ent. As effectively resumed by [Lancioni and Royer-Carfagni, 2009], while the
original formulation of [Bourdin et al., 2000] assumes that brittle fracture is
the model and uses the Ambrosio-Tortorelli regularisation 12.16 as the ap-
proximation. The damage model formulation takes the opposite viewpoint:
the gradient damage model is the model and brittle fracture à la Griffith is
the approximation.

12.4.1 Traction of a stress-softening bar: one-dimensional
analysis

The study of the apparently trivial case of the traction of a one-dimensional
bar discloses the basic properties of the damage models, including their ability
to recover crack nucleation and their link with brittle fracture à la Griffith.
To this end, we consider the competition of the two fundamentally different
damaging modes: (i) solutions with damage homogenous in space, and (ii)
solutions with localized damage. In both cases, the mechanical equilibrium
imposes the stress to be constant throughout the bar. We briefly resumed
below the key results and refer the reader to [Hamouche et al., 2016; Pham
et al., 2011b; Le et al., 2018] for further details.

For a bar of length L with imposed end-displacements u(0) = 0 and u(L) =
Ut = t, the energy 12.16 reads as

Eℓ(u, α) =
∫ L

0

a(α)E0
u′(x)2

2
+ w1

(
w(α) + ℓ2 α′(x)2

)
dx, (12.25)

where E0 is the undamaged Young modulus of the material.
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Repeating the passages exposed in the previous section for the case of the
one-dimensional bar energy, one finds that

(i) the equilibrium equation implies that the stress

σ = E0a(α) ε, ε :=
du

dx

is a constant throughout the bar;

(ii) the damage criterion is in the form of eq. 12.24, with on x ∈ (0, L)

α− αi−1 ≥ 0, (12.26a)

E0 a
′(α)

2
ε2 +

(
w′(α)− 2ℓ2

d2α

dx2

)
w1 ≥ 0, (12.26b)

(
E0 a

′(α)

2
ε2 +

(
w′(α)− 2ℓ2

d2α

dx2

)
w1

)
(α− αi−1) = 0, (12.26c)

or in terms of the stress σ

α− αi−1 ≥ 0, (12.27a)

−s′(α)

2E0
σ2 +

(
w′(α)− 2ℓ2

d2α

dx2

)
w1 ≥ 0, (12.27b)

(
−s′(α)

2E0
σ2 +

(
w′(α)− 2ℓ2

d2α

dx2

)
w1

)
(α− αi−1) = 0, (12.27c)

where s = a−1 is the compliance-modulation function.

Homogeneous solutions and their stability.

For homogeneous solutions the damage yield criterion expressed in terms of
the strain or the stress σ writes as, respectively:

|ε| ≤ ε̄(α) :=

√
w1

E0

√
−2w′(α)

a′(α)
, |σ| ≤ σ̄(α) :=

√
w1E0

√
2w′(α)

s′(α)
.

(12.28)
where ε̄(α) and σ̄(α) are the strain and stress limit, function of α. For a given
damage level, the material is stress-hardening if σ̄′(α) > 0 or stress-softening
if σ̄(α) < 0, strain-hardening if ε̄′(α) > 0 or strain-softening if ε̄(α) < 0.

Considering an evolution problem for an initially undamaged bar (α = 0),
the solution remains purely elastic until the stress reaches the elastic limit :

σe = σ̄(0) =
√

w1E0

√
2w′(0)

s′(0)
. (12.29)

Indeed, for smaller loading the damage criterion is verified as a strict inequality
and 12.24 imposes the variations of αi = αi−1 = 0. After that the elastic limit
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FIGURE 12.2: Response and stability of the homogenous solutions of the one-
dimensional traction problem with two variants of the gradient damage model
12.25, see [Pham et al., 2011a].

is reached, the damage level is calculated by solving the damage criterion
equality:

αH(ε) := ε̄−1(ε)

where ε̄−1 is the inverse function of ε̄, which is well-defined provided that
the material is strain-hardening, for which α′

H(ε) > 0. We assume that this
condition is always verified, otherwise, the homogeneous solution would be
not unique. Given the damage, the stress-strain relation would be given by:

σH(ε) := σ̄(αH(ε))

The maximum allowable stress in the homogeneous response is

σM := max
ε>0

σH(ε) = max
0≤α≤1

σ̄(α). (12.30)

Figures 12.2-top reports the homogeneous response obtained for two mod-
els used in numerical applications:

• (AT1): w(α) = α, a(α) = (1− α)2,

• (AT2): w(α) = α2, a(α) = (1− α)2.
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FIGURE 12.3: Localized solution with the AT1 model: damage field along the
bar.

The model (AT2) is particularly interesting because corresponds to the regu-
larized approximation of Griffith proposed in [Ambrosio, 1990; Bourdin et al.,
2000]. In this case, being w′(0) = 0, the elastic limit is null and the homoge-
neous response is with non-null damage for any non-vanishing loading. It show
stress-hardening phase, followed by stress-softening. The model (AT1) has a
non-null elastic limit, corresponding also to the maximal allowable stress given
by σe = σc =

√
w1E0.

The homogeneous response gives a solution to the evolution problem re-
specting the first order conditions 12.24. Its knowledge is important to char-
acterize the material behavior. However the actual structural response can be
different because this solution may be unstable. We analyzed point in dept
in [Pham et al., 2011b], by studying for a general class of models the sign of
second derivative of the energy around the homogeneous state along all ad-
missible perturbations non-decreasing the damage. It is possible to obtain an-
alytical expressions of the stability limits. The results for the (AT1) and (AT2)
models are reported in Figures 12.2-bottom. The stability diagrams highlight
a scale effect: the stability limit for the homogeneous solution depends on the
ratio between the bar length L and the internal length ℓ. For short bars with
(L ≪ ℓ) the homogeneous solution may be stable also in the stress-softening
regime, whilst for long bars (L ≫ ℓ), it becomes unstable immediately after
leaving either the elastic (AT1) or the stress-hardening (AT2) phase. We reader
can find in [León Baldelli and Maurini, 2021] a numerical algorithm to per-
form the stability analysis of the homogeneous solution numerically and an
in-depth discussion of this topic.

Localized solutions.

Localized solutions can be constructed by assuming that the damage evolves
only in a segment of the bar. Because of the complementary condition in 12.24,
the damage criterion must be verified as an equality in the zone where the
damage evolves. In the one-dimensional case, the associated equation has a
first integral and, assuming that the rest of the bar in undamaged, it reduces
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to the solution of

− σ2

2E0w1
(s(α)− 1) + w(α) = ℓ2α′2 (12.31)

in a segment of unknown length with α = α′ = 0 on the boundary. The
solution of this non-linear boundary value problem gives the damage profile
and the length of the damaging zone for each level of stress. The case of
vanishing stress is particularly important: it is the regularized representation
of a crack. For σ → 0, the length of the localization zone, say D, and the
energy dissipated in this solution, say Gc, are given by

D = c1/w ℓ, Gc = cw w1 ℓ. (12.32)

where c1/w = 2
∫ 1

0

√
1/w(α) dα and cw = 4

∫ 1

0

√
w(α) dα are two dimension-

less constants. Figure 12.3 reports the fully localized damage profile for the
model AT1, for which c1/w = 4 and cw = 8/3. In equation 12.32 the expression
for the localization length D is obtained by integrating eq. 12.31 for σ = 0 on
the interval (x0 −D/2, x0) where α goes from 0 to 1, where x0 is the center
of the localization zone:

dα

dx
=
√
w(α)/ℓ ⇒

∫ x0

x0−D/2

dx = ℓ

∫ 1

0

1√
w(α)

dα

whilst the dissipated energy is calculated with the following change of variable

Gc = w1

∫ D

0

w(α(x)) + ℓ2α′(x)2 dx = 2w1

∫ D

0

ℓ2α′(x)2 dx

= 4w1

∫ 0

−D/2

ℓ2α′(x)2 dx = 4w1

∫ 1

0

ℓ2α′ dα = 4w1ℓ

∫ 1

0

√
w(α) dα (12.33)

where we used that α′ =
√
w(α)/ℓ for σ = 0.

An explicit solution for the localization profile as a function of the stress
is available for the special model with linear softening introduced in [Lorentz
et al., 2012] and [Alessi et al., 2014] with

w(α) = 1− (1− α)2, a(α) =
1− w(α)

1 + (γ − 1)w(α)
, (12.34)

where γ > 1 is a parameter modulating the softening response. In this model,
for sufficiently long bars, the localized solution for a given stress σ < σc has a
damage field in the form, see [Alessi et al., 2014]

α(x) = 1−
√
1 +

(
σ2

σ2
c

− 1

)
cos2

(
x− x0

ℓ

)
on

[
x0 −

π

2
ℓ;x0 +

π

2
ℓ
]
,

(12.35)
with σc =

√
2E0w1/γ and Gc = πw1ℓ.
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Conclusions and comparisons to Griffith.

Brittle fracture may be phenomenologically described by two key material
parameters: the fracture toughness Gc, which is the energy dissipated in a
crack of unit length, and the limit stress σc, defined as the stress level at
failure in an uniaxial traction test. The results of the previous section for the
traction problem show the following properties:

1. the presence of maximum admissible stress σM in the material re-
sponse, see 12.30

2. the presence of crack-like solutions with vanishing stress and a finite
dissipated energy, that can be dissipated to the fracture toughness
Gc, see 12.33

A large class of models shows a similar behavior for brittle structures that are
long enough with respect to the internal length. Our analysis concludes that
the gradient damage models introduced here are good candidates to model
brittle fracture if they respect three fundamental conditions: (i) stress soft-
ening, at least for sufficiently high damage levels, (ii) strain hardening, and
(iii) strongly brittle. The existence of a non-null elastic limit (w′(0) > 0) is
desirable for physical and computational reasons. In this sense, the model
(AT1) is preferable over the model (AT2) used in [Bourdin et al., 2000]. Their
response is mainly characterized by the two material parameters Gc and σc.
For strongly brittle materials, the link with the Griffith’s fracture model may
be emphasized by replacing the volume dissipation constant w1 with the dissi-
pation in a localized solution Gc and rewrite the energy density in 12.20 in the
form 12.16: where the internal length should be chosen to recover the correct
limit stress, i.e. using 12.29 and 12.32 as follows:

ℓ =
2w′(0)

s′(0) cw

GcE0

σ2
c

. (12.36)

For numerical applications, we often choose to retain the model (AT1). Indeed,
it combines the simplicity of its numerical implementation with the good con-
stitutive properties: it has an energy density quadratic with respect to α, it is
strongly brittle, it has a finite elastic limit, and it shows stress-softening, and
the energy is quadratic with respect to the damage variable.

Figure 12.4 reports the numerical solution for a two-dimensional version of
the traction test obtained through a finite element code implementing the AT1
model. The time history can be deduced from Figure 12.4-left, which shows
the time evolution of the elastic and dissipated energy. In agreement with the
analytical predictions, the solution is homogeneous and elastic for t < te = tc.
At t = tc the homogeneous solution becomes unstable and the numerical al-
gorithm finds a new minimum of the energy corresponding to the solution
with one localization (a transverse crack). For t < tc the elastic energy is a
quadratic function the applied displacement (linear elasticity) and the dissi-
pated energy is null. For t > tc the elastic energy is null and the dissipated
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FIGURE 12.4: Numerical simulation of the traction test using the AT1 model
(E0 = 1.0, Gc = 1.0, ℓ = 0.1) for a bar of length L = 1.0 and width W = 0.1.
The vertical gridlines denote the analytically calculated elastic limit t = Ue =
L
√
3Gc/8E0ℓ = σcL/E0 and critical Griffith loading t = UG =

√
2GcL/E0;

the horizontal gridline is the dissipated energy for a transverse crack according
to the Griffith model.

energy is equal to Gc times the width of the bar W , as in a Griffith model. The
localization profile of Figure 12.4-right coincides with the one reported in Fig-
ure 12.3. This example is particularly useful to show that, although this kind
of gradient damage models are energetically equivalent to Griffith, the evolu-
tion they predict may be different from the one given by the Griffith model.
The Griffith model requires to accept global minimization as evolution law to
retrieve crack nucleation. According to the global minimization criterion, the
crack would appear as soon the cracked solution is energetically cheaper than
the elastic solution, i.e. at tG =

√
2GcL/E0 (see Figure 12.4-left). The result

given by the gradient model on nucleation appears physically more acceptable
because it implies the presence of limit stresses in the material. Moreover it
introduces a size effect depending on the ratio between the structural size L
and the internal length ℓ, which is coherent with the experimental observa-
tions. The energy of the purely elastic solution and the energy of the solution
with one damage localization exactly coincide to those of the Griffith model
is the internal length ℓ is sufficiently small with respect to the bar length.
However, the energy barrier between the two solutions strongly depends on ℓ:
the limit stress goes to infinite for ℓ → 0. Ignoring this energy barrier, as done
in the Griffith model ruled by a global minimization principle is not acceptable.

12.4.2 Numerical implementation

In the regularized approach, the numerical solution of the quasi-static frac-
ture/damage problem is obtained by looking for the solution of the minimiza-
tion problem 12.17. This is done by an iterative method introduced in [Bour-
din et al., 2000], based on the alternate minimization of the energy functional
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with respect to displacement, at blocked damage field, and with respect to the
damage field, at blocked displacement, until convergence, see Figure 12.5. The

FIGURE 12.5: Alternate minimization algorithm

first sub-problem is a standard elastic problem, with the stiffness modulated
by the damage field. The second sub-problem involves the minimization of a
convex functional under box-constraints (the irreversibility condition on the
damage field). Variational inequalities solvers are available in the open-source
library PETSc [Balay et al., 2020]. For space-discretization, we employ stan-
dard finite elements with linear basis functions and uniform isotropic meshes
with typical mesh size h ∼ ℓ/5. This implies the recourse to parallel comput-
ing for full-scale simulations. We refer to [Francfort et al., 2008; Farrell and
Maurini, 2016] for further details and extensions of the algorithm.

12.4.3 An example of complex crack pattern: the thermal
shock problem

The shrinkage of materials, induced by cooling or drying, may lead to arrays
of regularly spaced cracks. Similar phenomena appearing at very different
length-scales have always intrigued researchers and common people: drying
of concrete, the exposure of glass or ceramics to a thermal shock, the drying
of soils, or the cooling of lava fronts with the formation of columnar joints.
The understanding and the predictive simulation of the morphogenesis and
propagation of similar complex crack patterns is a major issue for classical
fracture mechanics, which usually studies the propagation of a single pre-
existing crack. Yet similar problems may be naturally tackled, theoretically
and numerically, in the framework of the variational approach to damage and
fracture mechanics.

We studied in [Sicsic et al., 2014; Bourdin et al., 2014] the thermal shock
of a brittle slab, for which experimental results are available in [Bahr et al.,
1986; Shao et al., 2010; Geyer and Nemat-Nasser, 1982]. The specimen is a
thin slab, free at the boundary, composed of a homogeneous material without
prestress in its initial configuration. In experiments, several slabs are stacked
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FIGURE 12.6: Complex fracture pattern for ℓ0 = Gc/
(
EGcβ

2∆T 2
)
= 0.05 ℓ

in a domain of size 150ℓ×150ℓ×20ℓ. The simulation includes 44×106 elements
with an approximate mesh size h = ℓ/5. To help the visualization, the crack
surfaces are colored with the distance from the bottom edge, where the thermal
shock is applied.

together, uniformly heated at temperature T0 and then quenched in a cold
bath inducing a temperature drop ∆T on the lateral surfaces. To include the
material shrinkage induced by the thermal effects in the damage model, we
consider an elastic energy density including the effect of the thermal strains:

W (ε, α) =
a(α)

2
(K : (ε− ϵ0)) : (ε− ϵ0) (12.37)

where ϵ0 = β(Tt − T0) is the thermally induced inelastic deformation, β be-
ing the thermal expansion coefficient and Tt the temperature field at time t.
As a first approximation, Tt is calculated as the solution of thermal evolu-
tion problem on the homogeneous undamaged solid by solving the transient
heat equation. Taking a uniform temperature field T0 as initial condition, a
temperature drop ∆T is imposed on the boundary exposed to thermal shock.
The dimensional analysis of the energy 12.37 highlights three characteris-
tic lengths: the size of the domain L, the internal length ℓ, and the Griffith
length ℓ0 = Gc/

(
Eβ2∆T 2

)
. Using the material’s internal length as the ref-

erence unit, the problem can be reformulated in terms of two dimensionless
parameters, the size of the structure L/ℓ (a geometric parameter) and the
intensity of the thermal shock ℓ0/ℓ (a loading parameter). This is a significant
departure from the classical Griffith setting where the only relevant parame-
ter is L/ℓ0 [Jagla, 2002; Jenkins, 2005; Bahr et al., 2010]. The time-discrete
quasi-static evolution problem is solved numerically with the classical alter-
nate minimization algorithm. Figure 12.6 shows the crack pattern generated
during a three-dimensional simulation. During the simulation, a disordered
pattern of small cells nucleates in the first time steps and propagates quasi-
statically inside the domain with a selection mechanism that lets a more and
more regular honeycomb pattern with cells of increasing diameter emerge. We
refer the reader to [Sicsic et al., 2014; Bourdin et al., 2014] for further de-
tails on this problem, including comparison with experimental results and a
semi-analytical treatment of the crack nucleation problem.
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12.5 Extensions and current research problems

These notes give a short overview of the basic of the variational approach of
fracture and damage mechanics. After [Bourdin et al., 2000], the research field
has enjoyed a spectacular growth in the period between 2010 and 2020. Nowa-
days, the method is the largely used by the community in computational me-
chanics to solve complex fracture problem. A large amount of papers appeared
in the last decade developed new variants of the basic model and proposed
extensions of the application fields, including anisotropic materials, heteroge-
neous materials, viscoelasticity, large deformations, multi-physical couplings.
I refrain here from giving an updated review of the literature on the topic.
Instead, I provide, from a personal perspective, a list of the most important
limitations of the approach presented here, pointing the reader to few refer-
ences addressing the related issues:

• Compressive loadings and multiaxial nucleation criteria. One of the main
limitation of the original Francfort-Marigo model and its regularization pre-
sented in these notes is to provide a symmetric response in traction and in
compression [Amor et al., 2009; Kumar et al., 2020]. For example, reversing
the sign of the loading in the traction test of Figure 12.4 would lead to the
same crack evolution, but with displacements of opposite signs and the un-
physical interpenetration of the crack lips. This renders the model physically
admissible only for traction-cracks. This has also important implications on
the crack nucleation criteria under multiaxial loading. Several models have
been proposed in the literature to bypass these issues, but, to the best of
my knowledge, none of them give reliable results under compressive loading.
To bypass some of the difficulties of the available variational approaches,
some authors propose to depart from the variational framework and for-
mulate non-associate damage models [Kumar et al., 2020]. As a drawback
they lost all the advantages of the variational theory. Vice versa, our current
research effort aims at tackling the problem of crack nucleation under mul-
tiaxial loading by extending the current variational approach. We refer the
reader to [Amor et al., 2009; De Lorenzis and Maurini, 2022] for a detailed
discussion of this topic.

• Coupling with plasticity and ductile fracture. The models presented in these
notes neglect plastic strains. Several models coupling plasticity and damage
have been proposed in the literature [Alessi et al., 2014]. They provide inter-
esting features and a fertile playground for further research, see also [Marigo,
2023]. The results of [Alessi et al., 2014] and [Dal Maso et al., 2016] show
that the coupling between plasticity and damage provide an equivalent co-
hesive behavior. In our view, similar ideas can be exploited to solve the issue
about nucleation under multi-axial loading within a variational framework.

• Cohesive models. The gradient damage models can be regarded as a smeared
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version of cohesive fracture models. Eric Lorentz has shown how the mod-
ulation of the softening response of the damage model can result in the
modulation of the macroscopic cohesive behavior and proposed interesting
extension in this context [Lorentz et al., 2012; Lorentz, 2017].

• Dynamics. We assumed the evolution to be quasi-static and rate-
independent, neglecting visco-elastic or inertia effects. However, this ap-
proach is not self-consistent: the solutions can be discontinuous in time,
because of snap-back instabilities, like in Figure 12.4. Including inertial ef-
fects would be necessary. Extensions to dynamics have been proposed in the
literature with appealing results [Bleyer and Molinari, 2017; Borden et al.,
2012; Geromel fischer, 2018]. However, fundamental difficulties remain in
the understanding of the properties of the solutions of the damage models
when including inertial effects [Geromel fischer, 2018].
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Diffuse or sharp crack modeling?

Nicolas Moës

Ecole Centrale de Nantes et Institut Universitaire de France (IUF)

The chapter answers the above question by detailing the pros and cons of
each model, both in their theoretical and computational settings. After the
discussion, it is argued that the best answer is most likely in between both
models. This chapter may be viewed as an argument for the next chapter
devoted to the transition from a diffuse description of damage to a discrete
representation of a crack.

"A continuous transition to discontinuity would be a gentle rupture" (in-
spired to the author by Monty Python’s spirit)

13.1 Introduction

Some diffuse crack models have been discussed in detail in previous chapters.
A diffuse model, often called regularized model, uses a regularization length.
The regularization avoids the spurious localizations that plague purely locally
models. The mathematical space in which the displacement field is sought only
involves continuous fields. The displacement field exhibits however very high
gradients along the crack path. The displacement has high gradient across
this length to mimic a displacement discontinuity. The mesh size needs to be
smaller than this length (say at least 3 to 5 elements over the regularization
length). It is often thought that the introduction of a regularization length in
diffuse models is governed by the sole intent to smear out the crack. It must
not be forgotten that the length is also needed because the underlying bulk
constitutive model is softening and requires a length to be viable theoretically
and computationally. Otherwise, so-called spurious localization occurs with
inadequate work dissipated values.

Contrary to diffuse crack models, sharp crack models use mathematical
spaces with discontinuous displacement fields. As the crack propagates, the
finite element space must adapt to allow for these discontinuities. This can be
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done by meshing explicitly the crack (and adapt the mesh as cracks grow) or by
keeping a fixed mesh and enrich the finite element space. The enrichment may
be performed at the element level with the embedded discontinuity approach
or at the nodal level with the partition of unity (extended or generalized finite
element method). The displacement discontinuity may also be created in a
more abrupt manner by removing elements along the crack path.

Should one use a diffuse or a sharp approach to model crack propagation?
This is an interesting question for which the answer is not at all straightfor-
ward.

The chapter is organized as follows. A short bibliography on diffuse and
sharp crack models is first given. This allows one to see the wide variety of
existing diffuse models as well as sharp crack models. A section then discusses
"Why do we compute?". This question is rather important when choosing
between a diffuse or a sharp crack model. Then comes the core of the chapter :
pros and cons for diffuse and sharp models. The chapter ends by the argument
that the best answer lies most likely in the combination between diffuse and
sharp approaches.

13.2 A short bibliography

Diffuse and sharp crack models are available in several versions.

13.2.1 Diffuse crack models

The main diffuse models are

• The non-local integral model: the evolution of the damage at a point is
governed by a non-local force, calculated as the average of the local force
over a certain length around the point [Bazant et al., 1984; Pijaudier-Cabot
and Bazant, 1987; Lorentz and Andrieux, 2003]. Recently, a novel way to
estimate this length has been proposed in the so-called eikonal approach
[Rastiello et al., 2018]. A non-local integral version on the displacement field
also exists [Rodríguez-Ferran et al., 2005];

• The higher order kinematic gradient model [Aifantis, 1984; Triantafyllidis
and Aifantis, 1986; Schreyer and Chen, 1986] or including additional rota-
tional degrees of freedom [Mühlhaus and Vardoulakis, 1987];

• The damage gradient model: the energy depends on the damage variable
and on the damage variable and its gradient [Frémond and Nedjar, 1996;
Pijaudier-Cabot and Burlion, 1996; Nguyen and Andrieux, 2005];

• Fracture was also recast in a energy minimization problem giving the so-
called variational approach to fracture [Francfort and Marigo, 1998]; This
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sharp model was later regularized in [Bourdin et al., 2000, 2008] using the
work of Ambrosio and Tortorelli [1990];

• At about the same time, the phase-field approach was emanating from the
physics community [Karma et al., 2001; Hakim and Karma, 2005, 2009] and
then developed for mechanics applications [Amor et al., 2009; Miehe et al.,
2010; Kuhn and Müller, 2010; Ambati et al., 2015; de Borst and Verhoosel,
2016];

• More recently, a variant to the phase-field has appeared under the name of
Lip-field. The damage field needs to satisfy a Lipschitz constraint [Moës and
Chevaugeon, 2021; Chevaugeon and Moës, 2021].

The gradient damage model has been compared to the non-local integral model
by [Peerlings et al., 2001] and to the phase-field model by [de Borst and
Verhoosel, 2016]. An energetic analysis with a comparison between different
forms of regularization can also be found in [Lorentz and Andrieux, 2003].
All the above mentioned models use a length scale to regularize the local
damage model. The delay damage models is an exception to this rule by
making use of a regularization time. It can only be used within dynamics
simulation (the regularization time gets then somehow multiplied by the wave
speed to get a regularization length). The delay damage forbids damage to
jump to its maximum value in a too short time. This allows damage to spread,
thus creating a length effect. The delay damage was introduced in [Suffis and
Combescure, 2002; Suffis et al., 2003, 2007]. It was further studied in [Zghal
and Moës, 2021] showing some drawbacks of the approach.

The above presentation did concentrate on the continuum formulations.
Each of them needs then to be discretized to be used by a computer. Among
the models, the easiest to implement is the phase-field approach due to its
variational nature. This explains its current success. A time-discretization is
first performed which gives an incremental objective function. This function
is then minimized using an alternate minimization. For instance, for elasto-
damage models, a basic finite element solver is used to update the displacement
field while another basic finite element solver updates the damage. These two
solvers alternate until convergence. Then the next time-step is considered.
The irreversibility of damage from one time step to the next may be taken
into account by an augmented lagrangian approach [Wheeler et al., 2014]
or by minimization under the proper irreversibility constraints. Another ap-
proach which is very popular is the so-called "Miehe Trick" [Miehe et al., 2010]
which changes the functional to be minimized for a simpler treatment of the
irrerversibility. The Miehe trick is easy to implement and this explains its suc-
cess. By modifying the functional, it loses however the Gamma convergence
property of the approach for the Griffith model.
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13.2.2 Sharp crack models

Let us now give a short bibliography on the sharp crack models. The Griffith
model [Griffith, 1920] is undoubtedly the first one chronologically speaking. A
sharp crack is considered inside an elastic bulk and the crack is driven by a
critical energy release rate. This energy is related to the stress intensity factors
which can be used to determine the crack path.

The Griffith model was generalized later by the notion of cohesive zone
which removes the crack tip singularity by spreading its effect over some length
called the process zone length. The process zone is an area in front of the crack
tip where the material degrades progressively. If the process zone is of non-
negligible size compared to the size of the structure (and of the crack), the
Griffith model is no longer valid and needs to be replaced by the cohesive zone
model which introduces a characteristic length.

A cohesive model dedicated to quasi-brittle material was developed by
Barenblatt [Barenblatt, 1959] and another one for ductile materials was de-
veloped by Dugdale [Dugdale, 1960]. The cohesive model is a rather simpler
model than most diffuse models but yet is able to represent complex phenom-
ena as size effect in the fracture of concrete. This led to a great popularity of
the approach. It is also very much used for fragmentation analysis.

Griffith and cohesive models may be recast as energy minimization prob-
lems [Francfort and Marigo, 1998] giving the so-called variational approach
to fracture. Finally, this diffuse and sharp models short bibliography needs
also to mention the peridynamics approach [Silling, 2000; Javili et al., 2018]
which is hard to classify since it does not rely on a continuum based model
but rather on a set of points spread over the domain.

The most common numerical method to discretize the above sharp models
is the finite element method (or its extensions). At some point in the past the
meshless approach or the boundary element method were also popular. In the
use of finite elements, there are three main possibilities.

• Keep a fixed mesh and let the crack travel along element edges by creating
double nodes. This leads to a non-physical dependence between mesh orien-
tation and crack path. This approach is however used for large simulation
of fragmentation with many fragments because it is the only possible way
so far to give answers in a reasonable amount of time.

• Remesh to align to the crack path. Remeshing tools have made huge progress
in the past 25 years and are now able to follow complex 3D crack paths.
There is however the issue of projecting the solution from one mesh to
another mesh that needs to be handled with care.

• Keep the mesh fixed but let the crack enter the elements. This can be done
either by the crack band model [Bazant and Oh, 1983], the embedded dis-
continuity approach [Simo et al., 1993] or more evolved enrichment strategy
that are detailed below. Note that the crack band model is a way to imple-
ment easily cohesive zone models without creating double nodes. The crack
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is assumed to run inside a layer of elements. This model is however quite
sensitive to mesh orientation.

Enrichment strategies are based on the partition of unity method [Melenk
and Babuska, 1996] which allows to embed extra approximation functions
inside finite elements. If these functions are chosen discontinuous or singular,
they can be used to represent the crack path or its tip. This leads to the
extended finite element method (X-FEM) [Moës et al., 1999] or generalized
finite element method (GFEM) [Duarte et al., 2001]. Another point of view on
crack inside elements is given by duplicating the cut elements and providing a
distinct approximation on each side [Hansbo and Hansbo, 2002, 2004; Molino
et al., 2004; Burman and Hansbo, 2012; Burman et al., 2015].

Finally, still in the category of keeping the mesh fixed but the letting
cracks go inside elements, the crudest approach is the kill element method
which is highly mesh orientation dependent. A more evolved approach in the
kill element family is the eigenerosion [Pandolfi and Ortiz, 2012].

13.3 Why do we compute ?

Choosing between diffuse and sharp crack models depends on the type of
problem at stake. We detail in this section, several big families of situation
for computational fracture: fatigue, dynamic loading, monotonic loading and,
finally, manufacturing processes.

Fatigue

Metallic parts placed under contact in a vibrating environment will eventually
be subject to crack propagation. This is a big concern for instance in bearings.
The contact zone between the parts is composed of a sticking zone (no relative
displacement) and a sliding zone. The crack appears in the sliding zone and
propagates inside one of the parts. The number of cycles needed for a crack
to appear and its afterwards path are the two main goals of fretting fatigue
simulations [Baietto et al., 2013]. These simulations are still a big challenge
for three main reasons. First, the sliding contact needs to be solved precisely.
Then, cracks nucleate and grow under pressure. The crack faces are themselves
under contact and sliding. Finally, due to the very large number of cycles, they
may not be all individually computed, and "jump cycle" strategies are needed.

Another area in which contact, friction and fatigue are present is the rolling
contact [Mai et al., 2017]. For instance the recurring passage of the train wheels
on the rails may here and there provoke cracks.

Aside from fretting fatigue or rolling contact, fatigue on its own is already
highly complex. The number of cycles needed for a crack to nucleate depends
on the loading type and the material at stake. Current models recognize that a
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simple stress intensity factor approach does not allow to match experiments.
Realistic models need to introduce T-stress effects as well as plastic effects
around the crack tip.

Fatigue is crucial in many applications where safety is an issue. Aircraft
engines are subjected to fatigue loading with take-off and landing cycles which
adds up to the fact that the rotor is turning. This is similar to gas turbine
in nuclear plants. For these components, the importance is how often main-
tenance needs to be carried out. A too long period between two maintenance
operations creates a hazard and too many maintenance operations is not eco-
nomically viable. A trade-off needs to be built from a scientific standpoint.
The main question is: how many flights (or cycles for gas turbines) are needed
for a defect not initially detected to become detectable? Simulation tools are
key to answer this question.

On the bright side of fatigue, small strain and displacement assumptions
are usually valid and the crack paths are not too complex from the topological
point of view (maybe branching but rare coalescence and a limited number of
cracks).

Dynamic loading

Consider a metallic ring expanding at a given radial velocity. This velocity
may for instance be created by an electromagnetic field. At some point, in
the expansion, the ring will break into fragments. The higher the expansion
velocity, the more fragments will be generated. When a crack appears, an
unloading wave is sent out. The neighboring zones are subject to the further
ring expansion as well as the incoming unloading waves. It is the combination
of these two phenomena that determines the fragment sizes. Ring expansions
are rather academic examples of fragmentation. Yet, they are very useful to
test computational tools for fragmentation. Getting the proper number of
fragments, their sizes and ejection velocities is a challenge.

A less academic example is the destruction of satellites under impact.
The impact creates a huge amount of debris with different size and veloci-
ties. Knowing the space map of these debris to collect or avoid them is very
important for the safety of spatial navigation.

Monotonic loading

Monotonic loading is the focus of the MEALOR II summer school. Mono-
tonic loading, just by the name, may seem simpler to handle than the fatigue
and dynamic loading case. There are however difficulties hidden behind this
peaceful word. A monotonic loading means that one considers a loading that
grows slowly with some given speed and "direction". Even though the loading
is slow, the response may not always be quasi-static. At some point in time,
kinetic energy may grow abruptly. Consider a bar stretched with an imposed
displacement through a spring. The spring may be viewed as a model for the
stiffness of the testing machine imposing the displacement and we can view
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the bar as the specimen being tested. If the machine stiffness is higher than
the bar stiffness, a quasi-static response is expected. But, if the machine stiff-
ness is lower than the bar stiffness, the quasi-static response will be highly
dynamical when rupture occurs. The reason is that the system has stored a
big amount of elastic energy prior to failure and this amount is much bigger
than the amount of energy needed to break the specimen. The left over en-
ergy not dissipated by failure is transformed into kinetic energy. Note that the
above discussion is also connected to earthquake for which the loading is slow
and gradually stores energy in the ground close to geological faults.

Manufacturing processes

We end the description with this peculiar but rather important area for frac-
ture mechanics. A crack is not always a disappointing phenomenon. For fabri-
cation, the crack is an ally to transform the shape of raw materials and produce
parts. Blanking, piercing, boring, tool machining are processes in which cracks
appear. High deformation is at stake and especially shear deformation leading
to shear bands and then to fracture. What is the surface quality of the cut?
What is the level of springback? How much energy is involved in the process
and how can it be optimized? These are important questions in the control
and optimization of manufacturing processes.

The four areas discussed above are for sure non exhaustive. We could for
instance add the topic of fracture mechanics for health and biology (tissue
cutting, bone fracture, kidney stone fracturing, ...).

13.4 Pros and cons

The strength of diffuse models is to handle complex crack patterns, crack nu-
cleation and provide results rather independent on mesh orientation On the
contrary, the Griffith model cannot handle crack initiation and the cohesive
zone models is quite sensitive to mesh orientation if the mesh is fixed and
does not adapt. However, the lack of sharp crack faces inside diffuse damage
zones leads to difficulties reported in the literature. The most obvious one is
the need to have fine meshes along crack paths to capture the high displace-
ment gradients even far away from active crack fronts, leading to very high
computational costs. Another limitation is related to the tension-compression
asymmetric response of the damage model which is introduced in the elastic
energy density. The common ones are isotropic (volumetric-deviatoric decom-
position or spectral splits) and do not account for the crack orientation. As
a consequence, as damage reaches its limit, the crack boundary conditions
without contact (zero tension and shear) are not satisfied, leading to unphys-
ical response [Strobl and Seelig, 2015, 2016]. Besides that, due to the limited
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finite element kinematics, mesh orientation dependency appears [Strobl and
Seelig, 2018]. Another important limitation of the diffuse models is the lack
of access to accurate crack openings. This is problematic for instance for hy-
draulic fracturing in which the flow scales with the cube of the crack opening.
A slight error in the opening gives a rather large error on the flow. Finally,
the absence of clear discontinuity renders it difficult to impose contact and
friction. Contact and friction are for examples particularly important for crack
growth under rolling contact or fretting fatigue.

Following this discussion, we give a more exhaustive lists of pros and cons.

Pros for the diffuse crack models

• Ability to represent very complex crack path or networks of cracks (branch-
ing, coalescence) as well as the nucleation process.

• Simplified implementation (no jump representation).

• Ability to take into account triaxiality effects that would be complicated to
do in a purely discontinuous approach.

• Ability to use complex bulk constitutive models.

Cons for the diffuse crack models

• Need to use small elements along the crack to represent the high gradients.

• Locking effects in tension-compression asymmetric models (impossibility to
reach zero shear stresses).

Pros for the sharp crack models

• Natural limitation of the level of deformation and distortion in the elements
(good property for ductile failure).

• Ability to coarsen the mesh.

• Gives realistic surfaces for fragmentation, cutting, machining, ...

• Direct access to the displacement jump on the crack faces (important to set
up mechanical conditions such as contact, friction, hydraulic loads, ...).

• The mathematical proof of Gamma convergence is not necessary because
the displacement jump is present in the formulation.

Cons for the sharp crack models

• The management of the displacement jumps clearly adds complexity to the
implementation. It requires enrichment in the X-FEM/GFEM setting or
remeshing in the traditional FEM setting.

• The management of branching and coalescence points is a complex issue.
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13.5 The best of both worlds

We have seen in the previous section that there are pros and cons to both
diffuse and sharp crack models. It would be nice to keep only the pros by
combining the two models.

There are two ways to do this. One way is to create a unified model that
is both diffuse and sharp, thus a model that is able to take into account
softening and then be able to drive the localization to a sharp discontinuity
(and tell X-FEM where to inject the jump). A model belonging to this hybrid
category exists and is called the Thick Level Set approach to fracture [Moës
et al., 2011]. In this model, the damage is forced to be linked to a level set
field. The zero level set corresponds to the damage front and the lc level
set is the crack location where lc is the regularizing length. Although it has
theoretical advantages, the TLS model did not create breakthrough because
it is rather tedious to implement and after years of studies, robustness issues
have emerged. These are related to the non-convexity of the formulation with
respect to the damage variable. This non convexity was first noticed by Stolz
and Fremond [Frémond and Stolz, 2017].

A second way to gather the pros of both diffuse and sharp crack models is
to transition from a diffuse to a sharp crack model. There has been a sustained
effort in the past 20 years to introduce sharp crack faces inside diffuse damage
zones, mainly in two directions. The first one is frequent remeshing to follow
the crack [Feld-Payet et al., 2015; Hussein et al., 2020; Eldahshan et al., 2021].
The second one is through enrichment with discontinuous approximation func-
tions over a fixed mesh. Early studies were performed by [Simone et al., 2003]
who modeled the transition from non-local damage to sharp cracks, and by
[Comi et al., 2007] who used enrichment functions in the X-FEM to facili-
tate the transition from a damage model to a cohesive zone model. We also
mention the contribution of [Seabra et al., 2012] who placed discontinuity sur-
faces in plastic zones for ductile failure, as well as the works [Tamayo-Mas
and Rodríguez-Ferran, 2014; Tamayo-Mas and Rodriguez-Ferran, 2015] that
placed them in damage zones. More recent works may also be found in [Geelen
et al., 2018; Wang and Waisman, 2016; Giovanardi et al., 2017; Muixí et al.,
2021].

The next chapter discuss in details how to transition from a diffuse de-
scription of damage to ta discrete representation of a crack.
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From a diffuse description of damage to the
discrete representation of a crack

Sylvia Feld-Payet

DMAS, ONERA, Université Paris Saclay, F-92322 Châtillon — France

The aim of this chapter is to provide the reader with guidelines to analyze and
compare the different strategies in the literature designed to obtain a discrete
crack representation from a diffuse damage model. To do so, these strategies
are decomposed into elementary components that can be selected according
to the user’s requirements.

14.1 Introduction

This chapter focuses on continuous media represented by a damage model
(with or without coupling with the constitutive behavior) where material
degradation is represented through a scalar field, referred to as a damage
field. The aim is to use this continuous damage field to build a discrete crack
path. The different terms used along this chapter to describe a discrete crack
path are illustrated in Figure 14.1.

As continuous-discontinuous strategies can be rather complex, it can be
helpful to decompose them into elementary components. These components
are the methods chosen to answer the three following questions:

• Where to insert the discontinuity?

• When to insert the discontinuity?

• How to resume computation?

The following sections tackle each of these points. The interested reader can
find more details in [Feld-Payet, 2023].
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FIGURE 14.1: Illustration of the terms used to describe a discrete crack path.

14.2 Where to insert the discontinuity?

This section provides a description of the tools dedicated to define a continu-
ous crack surface from a chosen orientation criterion. This step might not be
necessary, depending on the choice of crack representation. In the case where
crack is represented by a volume (in 3D or an area in 2D) without any control
on its size (e.g. with the element deletion or the Thick Level Set methods),
then this step is not necessary. However, if the crack is represented by a con-
tinuous band of one or several elements or by an hypersurface (i.e. a manifold
of dimension n − 1 in a space of dimension n), it is necessary to be able to
define the crack surface.

14.2.1 Orientation criteria

In case of crack propagation, the crack surface corresponds to the surface
where the points of the crack front are supposed to advance. From the phys-
ical point of view, this surface corresponds to the most damaged area where
strains are localized. These expectations based on physics are translated into
mathematical terms by orientation criteria. These criteria lead to a selection
of either a set of vectors or a scalar field that will serve to define the crack
surface.

14.2.1.1 Orientation criteria leading to a vector field

A first type of orientation criterion relies on local fields near the crack front
to build vectors that are either tangent or normal to the crack propagation
direction. These vectors are usually defined at the integration points since
they are usually obtained through a tensor analysis, i.e.:
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• either a bifurcation analysis, from the acoustic tensor in case of coupled
damage model without any regularization as in [Belytschko et al., 2003;
Song et al., 2006, 2008; Huespe et al., 2012; Crété et al., 2014; Wolf et al.,
2018; Nikolakopoulos et al., 2021],

• or an analysis of the principal directions of the strain tensor [Areias and
Belytschko, 2005; Dufour et al., 2012], the stress tensor [Belytschko et al.,
2003; Song et al., 2006; Bobiński and Tejchman, 2016a], the damage gradient
velocity [Beese et al., 2018], or the anisotropic damage tensor [Javanmardi
and Maheri, 2019].

This type of analysis provides at each integration point, not one vector, but
several vectors. Choosing, amongst this set of vectors, one that is consistent
with the other selected vectors in the neighborhood is still a challenge since
there is not a general methodology. However, several authors have followed
the recommendation of Rabczuk and Belytschko [2007] and selected, for each
integration point, the vector corresponding to the maximum displacement
gradient or an equivalent strain.

14.2.1.2 Orientation criteria leading to a scalar field with a ridge

A second type of orientation criterion relies on local fields near the crack front
to build a scalar field with maximum values where the crack should propagate.
Among the different scalar fields considered in the literature, some of them
also come from the exploitation of a tensor field: e.g. Wells and Sluys [2001]
have proposed to consider an equivalent stress obtained from the norm of the
deviatoric stress. This exploitation may require a prior spectral decomposi-
tion in order to build a function of the eigenvalues, e.g. the eigenvalues of the
strain tensor for Simone et al. [2003] and Bobiński and Tejchman [2016b]. But
the simplest choice is to consider directly the damage field as in [Broumand
and Khoei, 2013; Seabra et al., 2013; Feld-Payet, 2010; Feld-Payet et al., 2015;
Bottoni et al., 2015]. If several options are available, the best choice, as sug-
gested by Bottoni et al. [2015] is to select a scalar field related to material
degradation with the highest gradients near the crack surface.

14.2.1.3 Relation between the scalar and vector fields

Whether the considered field is a vector field or a scalar field with a ridge does
not really matter, since these fields are related to the same crack surface. For
the vector field, authors generally aim at providing an approximation of the
normals to the scalar field iso-values, as illustrated in Figure 14.2, since the
spatial evolution of their norms and directions can be helpful to determine
the crack position. Besides, it should be possible to change the nature of the
considered field by rather simple operations: e.g. spatial derivation of a scalar
field to obtain vector fields and projection or norm calculation of vectors to
obtain a scalar field.
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FIGURE 14.2: Relation between the vector field (in blue) and the scalar field f
presenting a ridge (in orange): authors usually consider vectors corresponding
to the normal components of the scalar field gradient that are thus orthogonal
to the iso-values.

14.2.2 Crack path tracking

The bridge between these vector or scalar fields and the definition of a crack
surface, either explicitly (i.e. with a mesh) or implicitly (i.e. with an iso-value
of a locally monotonous scalar field) is crossed thanks to crack path tracking
algorithms.
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A: Partial domain method
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B: Search for a maximum value
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C: θ-simplified medial-axis

FIGURE 14.4: Principles of: A- the partial domain method (inspired from
[Feist and Hofstetter, 2006]) with the set of considered vectors in blue and
the locally monotonous scalar field in green, B- a method that looks for the
maximum of a projection result (inspired from [Bottoni et al., 2015]) and
C- the θ-simplified medial-axis (inspired from [Tamayo-Mas and Rodríguez-
Ferran, 2015]) with the considered iso-value of f in orange.
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FIGURE 14.5: Principles of: A- the global method, B- the Crack Path Field
method and C- the Marching Ridges method. The scalar field with a ridge is
represented in orange, the set of considered vectors is represented in blue and
the constructed field that is locally monotonous near the crack is in green.

©by-nc-sa 2023 by MEALOR II



394 MEALOR II

14.2.2.1 Different types of algorithms

Originally, crack path tracking algorithms were developed to define a contin-
uous surface from a vector field obtained from a tensor analysis and given
element by element. Over time, regularity requirements have been added. In-
deed, the orientation criteria (as evoked in section 14.2.1) usually lead to fields
that lack regularity due to the problem’s discretization. As noted by Cervera
and Chiumenti [2006], this problems still remains with a finer mesh. In this
respect, two types of crack path tracking algorithms can be distinguished: the
first type focuses on continuity, whereas the second aims at bringing more
regularity (which implies continuity). The different options are gathered in
Figure 14.3. The input data are either a scalar field presenting a ridge or a set
of vectors that are usually close to the normals to the scalar field iso-values.
The output data are either a set of vectors that are tangent to the crack incre-
ment surface or a scalar field that is locally monotonous near the crack. With
a monotonous scalar field, the crack usually corresponds to a specific iso-value
and a study of the values at nodes enables to know which elements are crossed
by the crack. Conversion between these two types of output data is possible,
either by building tangent vectors from the intersection points between the
iso-value corresponding to the crack and the elements’ edges or by building a
monotonous scalar field from the signed distance between any point and the
closest tangent vector through projection.

14.2.2.2 Optional pre-processing step

In order to improve regularity of the crack path, a pre-processing step can
be considered to improve regularity of the considered input fields. There are
some quite simple methods that consist in taking into account, rather than a
local value, the mechanical state in the neighborhood. Usually, the considered
area is within a short distance from the crack front, i.e. the so-called exclusion
radius criterion. Besides, for crack propagation, only the points ahead of the
crack front are considered. The values for the points in the considered area
are then used to perform:

• averaging techniques: e.g. Saloustros et al. [2018] have computed a stress
tensor from average values at the nodes of each element;

• or smoothing techniques: e.g. Song et al. [2006] have used a mobile least
square technique to smooth the stress field in dynamics; the superconvergent
patch recovery technique of Zienkiewicz and Zhu [1992a,b] was used in [Feld-
Payet, 2010; Feld-Payet et al., 2015] in order to build a smoothed scalar field;
L2-projection is also a solution that has been used by Oliver et al. [2014]
who referred to it as a h-based regularization or Eldahshan et al. [2021] who
referred to is as the Galerkin’s smoothing method.

Let us underline that the nature of the input field before and after this step
remains the same.
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With the same objective in mind, some authors consider non local val-
ues, such as the non local strain in [Patzák and Jirásek, 2003; Jirásek and
Zimmermann, 2001] and the non local stress in [Roth et al., 2015].

14.2.2.3 Algorithms for more continuity

These approaches are meant to be used with a field of vectors defined element
by element. The idea consists in building the crack surface element by element:
one starts from a point in a root element and uses the normal vector in this el-
ement to define the first crack increment. Starting from the intersection point
between this increment and the sides of the element, the normal vector in the
next element leads to the following crack increment and so on. This procedure
directly leads to a mesh of the crack surface and is designated as the local
method . It is also possible to follow a similar procedure and to build, element
by element, a monotonous scalar function with a gradient approaching the
normal vector: this only requires to solve rather simple systems of equations
with an arbitrary first value imposed for the root element. The crack surface
then corresponds to a particular iso-value of this function. This is the partial
domain crack tracking method proposed by Feist and Hofstetter [2006] illus-
trated in Figure 14.4-A. These rather cost-effective methods can however lead
to implementation difficulties for the intersection management part, particu-
larly in 3D. Indeed, if an element already has 3 intersected edges, then the
normal vector of this element cannot be taken into account. Occurrence of
this situation depends on the order in which the elements are processed.

14.2.2.4 Advanced algorithms for more regularity

From a vector field to a monotonous function

To the author’s knowledge, the only method that uses a vector field to obtain
a monotonous function is the global method proposed by Oliver et al. [2004].
Schematically, the idea is to start from a set of vectors that correspond to
normals to the iso-values of a scalar field presenting a ridge and to build a
monotonous function by orienting the normals in the same direction (instead
of having different directions on each side of the crack), see Figure 14.5-A.
One assumes that there is no evolution along the tangent direction. In prac-
tice, the monotonous scalar field is obtained through the resolution of a heat-
conduction-like problem with adiabatic heat flux conditions at the boundary
and no internal heat source. This resolution brings some issues as it involves
an anisotropic conductivity-like tensor with a singular character that can be
source of ill-posedness. Specific practical measures can be taken to overcome
this problem (see notably [Jäger et al., 2008a,b, 2009; Annavarapu et al.,
2016; Riccardi et al., 2017]). In the end, the crack surface corresponds to the
iso-value of the monotonous function that intersects the current crack front.
This type of approach have notably been followed by Cervera and Chiumenti
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[2006]; Dufour et al. [2012]; Huespe et al. [2009, 2012] in 2D and Beese et al.
[2018] in 3D.

Projection of the scalar field gradient to obtain a monotonous function

Construction of a monotonous scalar field thanks to the global method poses
a certain number of difficulties due to the resolution of the auxiliary problem.
Other methods have then been proposed to obtain more directly a monotonous
function. They exploit the projection of a scalar field’s gradient to obtain a
function that is locally monotonous with an iso-zero surface corresponding to
the crack increment surface. The gradient is usually projected onto a vector
that could be a good approximation of the normal near the crack surface.
Indeed, the scalar product then enables to focus on the gradient component
that changes its sign across the crack surface. Considering all the gradient field
components, as in [Eldahshan et al., 2021] with projection onto any edges,
presents the risk of taking into account a non-null gradient in the direction
tangent to the crack and may lead to loss of crack surface continuity.

There are two propositions that follow this principle of projecting the scalar
field with a ridge onto a specific vector field. They differ notably by the choice
of this specific vector field and how the projection result is exploited:

• The Crack Path Field method has been proposed with different vectors
for the projection: in dynamics, Lloberas-Valls et al. [2016] relied on the
gradient of a scalar field corresponding either to the sum or the product of
the displacement components, whereas in quasi-statics, Oliver et al. [2014]
and Dias et al. [2018] relied on the result of a bifurcation analysis. In any
case, these vectors are selected so that they are as close as possible to the
normals to the considered scalar field’s iso-values. Projection onto these
vectors of the scalar field gradient leads to a set of data at integration points
that are used to compute, through the resolution of a linear system, a finite
element approximation of the projected field at the nodes (illustrated by
the green curve g in Figure 14.5-B). Analysis of the resulting nodal data
indicates which elements are crossed by the iso-zero surface, i.e. the crack
surface.

• The Marching Ridges method presents the advantage of always using the
same vector field for the projection without requiring any additional analy-
sis. Indeed, Feld-Payet [2010]; Feld-Payet et al. [2015] proposed to consider
a polar grid in a plane orthogonal to the crack front and centered at the
crack front. The considered vectors are then the grid’s orthoradial vectors,
represented in blue in Figure 14.5-C). The result of the projection is aver-
aged over several radii for a specific direction. This averaging operation is
performed for a finite number of directions, with a user controlled angular
increment. Analysis of the evolution of the sign of these values (correspond-
ing to the function g in green in Figure 14.5-C that is locally monotonous
near the crack) indicates which directions correspond, in average for a given
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crack increment length, to an iso-zero surface corresponding to the scalar
field ridge. Let us note that an intermediate output of this method is the
projection field g, which is a locally monotonous scalar field. However, this
method also provides crack advance tangent vectors since it directly defines,
for a given point of the crack front, the next point on the ridge: this is the
point located at a distance equal to the considered crack increment length,
in the selected direction. Resuming this search from the next point on the
ridge thus leads to a set of tangent vectors discretizing the ridge. Although
this method is based on a two-dimensional analysis, its authors proposed a
general extension to 3D by considering several orthogonal planes distributed
along the crack front in order to compute a set of tangent vectors.

In both cases, derivation of the scalar field necessitates prior smoothing of this
field (see section 14.2.2.2) and crack branching can be captured.

From a scalar field with a ridge to a set of tangent vectors

Contrarily to methods considering vectors at the element level, methods that
exploit directly a scalar field aim at inserting a straight crack increment over
several elements at once. The increment starts at the current crack front and
its end can be determined either by focusing on placing the end of the crack
increment on the ridge or by focusing on an average positioning of the incre-
ment on the ridge. The different methods could be divided into three main
categories:

• Methods that exploit a cloud of points. These methods consist in computing,
for each considered point of the crack front, its position on the next front by
averaging the positions of different integration points ahead of the front, with
a weight involving the value of the considered scalar field, the distance to the
current crack front and possibly the area associated with each integration
point. These methods are quite popular due to their simplicity and have been
used in 2D by Wells and Sluys [2001]; Simone et al. [2003]; Mediavilla Varas
[2005]; Mediavilla et al. [2006]; Seabra et al. [2011]; Bobiński and Tejchman
[2016b]; Wang and Waisman [2016] and in 3D by Peerlings et al. [2008];
Javani Joni [2011]; Javani et al. [2016]. As such, these methods were meant
to deal with propagation of one crack only. But it is also possible to exploit
a cloud of points to deal with crack initiation by fitting the first increment.
For example, El Ouazani Tuhami [2022]; El Ouazani Tuhami et al. [2023]
proposed to fit an ellipse based on the principal directions of the cloud after
a singular value decomposition.

• Methods that look for the maximum of a projection result. Another type
of rather simple methods consists in projecting the scalar field onto a line
passing through the possible directions and choosing the direction corre-
sponding to the maximum value along this line. This line can be a portion
of circle [Broumand and Khoei, 2013; Bottoni et al., 2015] or a straight line
that is orthogonal to the last crack increment [Bottoni et al., 2015], as in
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Figure 14.4-B. In order to limit the effect of the finite element discretization
for the evaluation along this line, the considered values are often smoothed
before or after the projection: smoothing may involve a fourth-order polyno-
mial [Comi et al., 2007], Bézier curves [Seabra et al., 2013] or a convolution
product by means of a Gaussian function [Bottoni et al., 2015]. Some au-
thors have also searched for more regularity along the direction of crack
propagation by averaging the result of this evaluation for several lines lo-
cated at different distances from the crack front, as in [Seabra et al., 2013].
These methods are based on a two-dimensional analysis: in 3D, it would be
possible to use the strategy proposed in Feld-Payet [2010]; Feld-Payet et al.
[2015] to consider several orthogonal planes distributed along the crack front
in order to compute a set of tangent vectors.

• Methods that fit a manifold of the same dimension with a symmetry hy-
pothesis. These methods share the same principle: to fit locally the scalar
field with a manifold of the same dimension and then to assume that the
ridge lies at the center of symmetry of this manifold. It is important to note
that there is a symmetry assumption which may not be always suited for
the considered applications. In the simplified medial-axis approach, Tamayo-
Mas [2013]; Tamayo-Mas and Rodríguez-Ferran [2015]; Tamayo-Mas et al.
[2019] have proposed to fit spheres or circles so that they are bitangent to
a chosen iso-value of the scalar field, see Figure 14.4-C. Their centers are
assumed to lie on the ridge. It is then possible to perform a second fitting
procedure that minimizes the distance between these centers and a fixed size
crack increment to determine the crack advance. In order to avoid insignif-
icant small branches, branches with a separation angle between tangency
points below a prescribed angle are discarded. One of the main advantages
of this method is that it enables to capture crack branching directly. One
of its main drawbacks, to this day, is that the crack can only start from
a boundary. A similar strategy has been proposed by Geelen et al. [2018].
It consists in minimizing the gap between the scalar field and an auxiliary
field with a symmetry axis representing the damage ridge. It provides the
orientation of a series of connected, linear segments representing the crack.
Crack branching can be tackled if one assumes beforehand a sufficient num-
ber of branches. For now, this method has only been applied in 2D with a
phase-field damage model.

Analysis

The choice between the numerous crack path tracking methods in the litera-
ture stems from a compromise between, on the one hand, implementation and
computation costs and, on the other hand, performance. The most expensive
techniques are the ones that rely on a vector field (i.e. the global method and
the Crack Path Field) since this field generally comes from a tensor analysis.
In that case, the vectors are usually provided at each integration point. This
leads to a high number of data that presents the advantage of more local
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precision, but the disadvantage is a greater difficulty to bring continuity and
even regularity to the resulting crack surface. On the contrary, crack path
tracking methods relying on a scalar field with a ridge (or its gradient) tend
to consider an average direction over several elements for each crack incre-
ment, which means less precision but more regularity and cost-effectiveness.
The most cost-effective methods are the ones that exploit a cloud of points (by
averaging their position or fitting an increment) and the ones that look for the
maximum of a projection result. These methods may be sufficient if there is
propagation of only one crack front. But, in case of branching, these methods
would require additional steps. This would increase their cost and would lessen
their interest compared to other techniques that are already able to directly
provide several directions at once. Only a few techniques already enable to
deal with crack branching. They usually all involve a separation angle which
helps to distinguish real branches with numerical artifacts. This parameter
corresponds to the minimum angle between two branches for them to be both
taken into account: 90 to 100 degrees for Tamayo-Mas [2013]; Tamayo-Mas
et al. [2019], 60 degrees for the meshless computation of Rabczuk et al. [2010],
40 degrees for Saloustros et al. [2018] and twice the angular precision, i.e. 10
to 20 degrees, for Feld-Payet [2010]; Feld-Payet et al. [2015]. The smaller the
separation angle, the earlier crack branching can be captured.

14.2.3 Building a 3D discrete surface

The crack path tracking methods that lead to a three-dimensional locally
monotonous scalar field defined at the nodes directly provide an implicit defi-
nition of the crack surface. However, when the output of the crack path track-
ing procedure is a set of tangent vectors, additional operations are necessary
to obtain an implicit or explicit definition of the crack: they are described in
the following, along with the different ways to switch from an implicit to an
explicit definition and conversely.

14.2.3.1 From a set of tangent vectors to a mesh

There are several solutions to build the mesh of the next crack increment from
a set of tangent vectors. The simplest one may be to:

1. select a finite numbers of duet points with one point on the current
crack front and its counterpart on the next front (e.g. from the ends
of the tangent vectors);

2. build a mesh by filling the space between the current and the next
front points with triangular elements.

Some difficulties may arise, e.g.:

• when crack propagation directions overlap,

• when a point of the current crack front located on the boundary is associated
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with a propagation vector oriented towards the inside of the domain (and
not along the boundary),

• or when there are obstacles along the way.

Several solutions have already been proposed for some of these problems, see
[Pereira et al., 2009; Chiaruttini et al., 2010; Gupta and Duarte, 2014; Garzon
et al., 2014].

14.2.3.2 From a set of tangent vectors to a locally monotonous
function

The tangent vectors given at different points of the current crack front can be
used to update level set functions [Stolarska et al., 2001] to describe implicitly
the crack. Different steps of reinitialization and reorthogonalization are then
necessary: e.g. see [Duflot, 2007] for a comparison of different techniques.
These operations are more complex than a simple interpolation but they also
ensure more regularity for the crack surface.

14.2.3.3 Conversion between explicit and implicit representations

From an explicit representation of the crack increment surface, i.e. a mesh,
it is possible to define a signed distance from this crack surface to obtain an
implicit definition. Conversely, from a locally monotonous field, it is possible
to study its nodal values to determine the intersection of the elements’ edges
with a specific iso-surface corresponding to the crack surface: this defines new
surfacic elements that discretize the crack surface. Let us note that these
operations do not bring more regularity to the crack surface.

14.2.4 Some challenges

To this day, there are still some difficult points with the determination of the
crack path, especially for 3D problems.

14.2.4.1 Crack initiation inside the structure

Crack initiation completely inside the structure (i.e. away from any boundary)
is not often tackled in the literature. Although this issue is not specific to the
3D case, it is all the more challenging in 3D.

The first step is to determine a point belonging to the crack surface. When
dealing with a vector field, crack initiation starts at the level of an element and
the centroid of the element can be considered as a starting point [Saloustros
et al., 2018]. When dealing with a scalar field with a ridge, it is possible to
choose a point that is independent of the finite element discretization since
smoothing and averaging techniques are commonly used. For example, Feld-
Payet et al. [2015] and Javani et al. [2016] have proposed to consider a weighted
average of the points exceeding a critical damage.
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Once a crack initiation point is determined, the next step consists in build-
ing the first crack increment. When dealing with a vector field, crack incre-
ments are of the size of the elements and the exhaustion method (i.e. repeating
the crack increment search and insertion as many times as possible) is gener-
ally used to insert several crack increments in one time step . When dealing
with a scalar field with a ridge, the crack shape and size can be more ar-
bitrary. The main goal is to determine at least a plane for the first crack
increment [Javani et al., 2016; Feld-Payet et al., 2015; El Ouazani Tuhami,
2022]. Non-planar surfaces could also be determined by first searching for the
intersection of the crack surface with the three basic reference plane and then,
from one intersection (e.g. the longest), performing another search in planes
orthogonal to this first crack segment, as proposed by [Feld-Payet, 2010; Feld-
Payet et al., 2015].

From here, the crack shape could be optimized, although this is not the
usual way to proceed yet. To this day, simple crack shapes are usually consid-
ered (rectangular or elliptical). As long as the first crack increment is small
enough, this is often sufficient to obtain a more realistic shape after a few
crack propagation steps.

14.2.4.2 Crack branching, non planar evolution and multi-cracking

A major challenge in 3D is crack branching. Not only are they only a few crack
path tracking algorithms that can directly handle crack branching, but there is
also an additional difficulty to determine, from data computed along the crack
front, consistent sets of directions that correspond to different branches. It
can then be useful to compare the computed directions for adjacent segments
along the crack front in local frames and to compare the difference with a
separation angle to distinguish between two branches. If the difference between
the directions for two adjacent crack front segments is close to the angular
precision of the crack path tracking method, then they may correspond to
the same branch. For example, if the directions for two adjacent crack front
segments are less than 20 degrees apart and they were determined with the
Marching Ridges method with an angular precision of 10 degree, then these
directions are associated with the same branch. Thanks to these local frames,
it is also possible to deal with complex evolution of the same crack front, as
illustrated in figure 14.6.

Once, the directions for the different branches have been assembled, it is
useful to consider each branch separately, especially for the insertion criterion
(see section 14.3). The same holds for multiple cracks. Dealing with several
cracks simultaneously is easier if each crack is considered independently. To
do so, one can search for several potential crack initiation points. A set of
elements having reached a given criterion (e.g. a minimum damage value) can
be built around each computed point. If this criterion is chosen so that the
selected areas do not overlap, it is then possible to consider crack initiation in
each area independently.
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FIGURE 14.6: Some local frames used to deal with non planar evolution. Di-
rection of unit vector x⃗l is the same direction as the previous crack increment.
Unit vector y⃗l is defined based on the tangent direction of the crack front (in
light blue). The dashed part corresponds to an hypothetical crack advance in
the 0° direction along the xl axis.

14.2.5 Crack merging

The last difficulty is finally the merge of the crack either with another crack
or with a boundary. In such cases, there are only a few data available ahead
of the crack front which may cause some trouble for the crack path tracking
algorithm supposed to enforce enough regularity. It is then possible to take
advantage of the knowledge of the description of the free boundary or of the
other crack to guide the crack increment so that it takes the shortest path to
it.

14.3 When to insert the discontinuity?

Another essential component of a continuous-discontinuous strategy is a cri-
terion to indicate that material degradation is such that a discrete crack can
appear, or in other words, that the continuous-discontinuous transition can
occur. This criterion is here referred to as an insertion criterion.
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14.3.1 Objectives of the insertion criterion

The specific meaning of the insertion criterion depends on whether the crack
increment length is fixed or not.

If only cracks of fixed size are considered (as in [Feld-Payet, 2010; Feld-
Payet et al., 2015; Wang and Waisman, 2016]), the insertion criterion only
serves to indicate when the crack increment can be entirely inserted. The
insertion criterion is then generally evaluated at the location of the crack
increment which needs to be determined beforehand (see section 14.2).

In the case where the crack increment size is not set by the user, then the
insertion criterion also serves to determine the crack increment length. This
length is determined by the local state of the continuous damage field along the
location of the crack path support, as illustrated in Figure 14.7 (construction of
this crack support is explained in section 14.2). For 3D problems, from a crack
path support determined element by element or built with constant length
increments in all the directions, one can rely on the material degradation
variable value to define limit points and build a contour for the crack increment
from these points, e.g. by using Bezier curves as in [El Ouazani Tuhami,
2022]. This results in variable crack advance depending on the direction, which
enables a more realistic crack representation.

0

1

D
am

ag
e

crack front

FIGURE 14.7: Crack path support where damage is evaluated represented by
the dashed line in a 2D case on the left and schematically in 3D on the right.

14.3.2 Choice of the insertion criterion

General requirements for the computation are that the solution should be
unique and that the evolutions of the local state should be progressive (i.e.
there should not be any large perturbation). These requirements guide the
choice of the insertion criterion which mainly depends on:

• the choice of the continuous damage model (regularized or standard formu-
lation);

• whether the remaining energy in the cut area can still be dissipated after
crack insertion.
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One can distinguish two types of situations:

1. For standard models where damage is coupled with the constitutive
behavior, the insertion criterion should enable to insert a discon-
tinuity before loss of uniqueness of the solution. At this point, a
relatively important quantity of energy is still stored within the el-
ements lying under the inserted crack increments. This energy is
then usually dissipated thanks to cohesive zone insertion or dam-
age dissipation within a band of elements (often with a width of one
element).

2. For standard uncoupled damage models or regularized coupled dam-
age models, the choice of the insertion criterion is less constrained.
In this case, the user can either choose to insert a crack when the
underlying elements are fully damaged or to insert a discontinuity
before complete failure, with a cohesive zone model or a band of
damaging elements enabling to dissipate the remaining energy.

14.3.3 The insertion criteria

The insertion criteria mostly used in the literature are listed below. They can
be used alone or combined.

14.3.3.1 Stability and uniqueness

For standard models where damage is coupled with the constitutive behav-
ior without any regularization formulation, stability and uniqueness criteria
seem the most appropriate. However, as underlined by Areias and Belytschko
[2005], there is still a need for a procedure that is sufficiently robust and gen-
eral. These authors however mention that in the case of elasto-plasticity, the
analysis proposed by Boussaa and Aravas [2001] appears to be general enough.

14.3.3.2 Critical value of a local quantity

The most used criteria are the ones based on a critical value of a local quantity
that reflects the degradation state. This quantity can be an inelastic defor-
mation as proposed by Wells and Sluys [2001], a softening parameter as con-
sidered by Bobiński and Tejchman [2016b], or the additional deformation due
to the opening of smeared cracks for Jirásek and Zimmermann [2001]; Jirásek
[2004]. But most authors rely on a critical value of a damage type parameter
as in [Hambli, 2001; Simone et al., 2003; Pourmodheji and Mashayekhi, 2012;
Javanmardi and Maheri, 2019; Roth et al., 2015]. The associated critical val-
ues vary depending on how the remaining energy after the transition can be
dissipated (notably between 0.4286 for Pourmodheji and Mashayekhi [2012]
and 0.99995 for Simone et al. [2003], both considering a bounded damage vari-
able with values between 0 and 1).
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Different critical values necessarily lead to different values of force transmitted
through the increment to be inserted, which are important to control during
the transition. To control the transmitted force value, it is either possible to
set the critical value of the chosen quantity to ensure a specific value of trans-
mitted force if the relationship between these quantities is exactly known (as
in [Wells and Sluys, 2001]) or to consider an additional criterion imposing
directly a maximum value of transmitted force (e.g. 100 MPa in [Wolf et al.,
2018]).

14.3.4 Challenges

The choice of the insertion criterion, especially the choice of a critical value,
is also influenced by some numerical challenges.
First, the impossibility to numerically deal with a strictly null value of trans-
mitted effort within an element may force to choose a slightly different critical
value than the theoretical one (e.g. values 0.99, 0.999 or 0.99995, instead of 1,
have been tested by Simone et al. [2003]).
Secondly, the locus of evaluation for the insertion criterion is also an open
question. The considered quantities are all local within this context and the
associated fields are more or less smooth depending on the finite element
discretization. This may lead to difficulties to estimate quantities too closely
from the crack front as noted by Wolf et al. [2018] and Bobiński and Tejchman
[2016b]. That is why Broumand and Khoei [2013] and Bobiński and Tejchman
[2016b] have proposed to evaluate the insertion criterion in a sufficiently large
area ahead of the crack front. Let us note that, if the crack is represented by
an hypersurface, then an evaluation along the increment to be inserted may
be more relevant, as in [Feld-Payet, 2010; Feld-Payet et al., 2015].
Another challenge is to limit the disturbances associated with a discontinuity
insertion within a continuous model. These disturbances are closely related to
the inserted increment size, which, if not previously set, may depend on the
crack insertion criterion. A compromise should be found to insert increments
small enough to limit disturbance but long enough to avoid too frequent in-
sertions and cumulating the disturbances’ effects. Inserting an increment with
uncontrolled length with the exhaustion method (as in [Crété et al., 2014; Wolf
et al., 2018; Javanmardi and Maheri, 2019]) may indeed cause some numerical
issues. Setting a fixed increment size (as in [Feld-Payet, 2010; Feld-Payet et al.,
2015]) should help from a numerical point of view: if the crack increment is
not long enough, a second insertion should be triggered right after the first
one, and so on. This option automatically prevents the insertion of too small
increments, for better or for worse. Finally, an interesting compromise might
be to follow the proposition of Seabra et al. [2013] by inserting increments
of variable sizes (the length being determined by a critical damage value) in
several steps if necessary.

Let us note that these propositions are valid for 2D problems where the
size of a crack increment is easy to define. However, for 3D problems with
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different crack advances along the front, the notion of size must be re-defined.
For example, El Ouazani Tuhami [2022]; El Ouazani Tuhami et al. [2023] has
proposed to consider the crack surface area.

14.3.5 Prospects

The choice of an insertion criterion remains deeply motivated by numerical
reasons whereas this step may be the most closely related to the physics of
the failure phenomenon. This apparent contradiction may be explained by the
necessity of first obtaining converged computation results before being able to
compare them with experimental tests. Another explanation may also lie in the
difficulty to exploit experimental tests to assess strains (by derivation of noised
displacement fields, which requires the introduction of an undefined length to
divide these displacements) and to detect crack initiation and propagation,
especially in areas with very large deformations and in a very short time.
With the development of acquisition tools (not only in 2D, but also in 3D
with tomography and laminography [Bouterf et al., 2020]), of the numerical
methods for image analysis and of the numerical tools to compare calculations
with experiments [Feld-Payet et al., 2022], one can hope that there will be, in
the near future, experimental data available to validate the proposed insertion
criteria.

14.4 How to resume computation?

After inserting a discontinuity, the next step is to resume computation.

14.4.1 Challenges

The insertion of a discontinuity in a continuous model necessarily involves a
change in the problem’s discretization. This change is all the more drastic
when there is a switch between dissipation in a volume to dissipation on a
surface since the positions of the integration points are no longer the same.
This is valid for mesh adaption as well as crack representation with X-FEM as
reported in [Wells and Sluys, 2001; Simone et al., 2003; Broumand and Khoei,
2013; Seabra et al., 2013; Wang and Waisman, 2016; Javanmardi and Maheri,
2019]. It is then necessary to transfer the history-dependent variable fields
to be able to resume computation with the new discretization. According to
Perić et al. [1996], a transfer operator should:

• preserve the relations between the transferred fields (e.g. the strain tensor
should be equal to the symmetric part of the displacement gradient);
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• preserve global equilibrium (i.e. consistency between the stresses and the
external forces);

• minimize numerical diffusion (e.g. the damage bandwidth should not be
enlarged after transfer);

• enable the respect of the boundary conditions.

In practice, all these constraints cannot be respected simultaneously. Conse-
quently, transfer involves some numerical perturbations which must be min-
imized. Usually, minimization of numerical diffusion prevails during transfer
and specific measures are considered after transfer to restore the fields’ con-
sistency (see section 14.4.3).

14.4.2 Field transfer

To limit numerical diffusion, transfer only involves local data. Consequently,
the first step of the field transfer is to determine in which element of the pre-
vious discretization the considered new point is. From here, different transfer
operators are considered depending on the type of data (i.e. stored at the
nodes or at the integration points). Variables stored at the nodes are usu-
ally transferred by direct interpolation from the nodal values in the previous
discretization using an element’s shape functions (with the rare exception of
Espinosa et al. [1998] who uses an auxiliary mesh): see Figure 14.8 for an
example of application. On the contrary, different options are available to
transfer the data at the integration points.

Transfer using the nodes

The transfer procedure used by Lee and Bathe [1994], Perić et al. [1996], Me-
diavilla Varas [2005] and Khoei and Gharehbaghi [2009] after mesh adaption
and Broumand and Khoei [2013] after element subdivision with X-FEM, can
be decomposed into three steps:

1. extrapolation of the values at the old integration points to the nodes
of the old mesh (with averaging at the nodes shared by several
elements);

2. transfer the values at the nodes of the old mesh to the nodes of the
new mesh;

3. interpolation of the values at the new nodes to determine the value
at the new integration point.

The main problem with this procedure is the first extrapolation step that
may be the source of non negligible numerical diffusion according to Me-
diavilla Varas [2005]. More elaborate techniques are required to limit this
phenomenon like the use of a global least squares approximation proposed
by Hinton and Campbell [1974] or of an iterative procedure as proposed by
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A: Before insertion B: After transfer
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FIGURE 14.8: Maps of the vertical displacement field (stored at the nodes)
and the damage field (stored at the integration point) before and after transfer,
before returning to equilibrium at the next time step. Nodal interpolation was
used to transfer nodal data and least square smoothing was used to transfer
integration point data.

©by-nc-sa 2023 by MEALOR II



From a diffuse description of damage to the discrete representation of a crack 409

Loubignac et al. [1977]. Camacho and Ortiz [1997], inspired by the work of
Ortiz and Quigley [1991], proposed to use L2-projection to smooth the data
and obtain nodal values before evaluating the values at the new integration
point. However, Boroomand and Zienkiewicz [1999] underlined that, as L2-
projection is performed over the whole domain, numerical diffusion can still
occur.

Transfer using a local smoothed approximation

It is also possible to provide a local smoothed approximation of the data
stored at the integration points without using the nodes. For example, Wells
and Sluys [2001] used, for a change of discretization due to crack insertion with
X-FEM, a weighted average of the integration point data in the considered old
element. A technique applicable within a more general framework is to build
a local polynomial approximation of the considered field. This technique is
referred to as diffuse approximation by Villon et al. [2002]. The polynomial
coefficients can be obtained thanks to a weighted least square approximation
based on values of the field to transfer at the old integration points. Once the
polynomial coefficient are known, the value at the new integration point can
be obtained by simple polynomial evaluation. According to Feld-Payet [2010],
this method is rather efficient as long as the number of sampling points is
limited (i.e. 13 integration points for 6-node triangles [Feld-Payet et al., 2015]
and 30 points with quadratic thetrahedral elements): see Figure 14.8 for an
example of application. See [Brancherie et al., 2006; Feld-Payet, 2010] for more
details on the implementation. In a similar way, Boroomand and Zienkiewicz
[1999] have proposed to consider only the data in a patch of elements around
the new integration point to limit numerical diffusion.

Direct transfer without smoothing

Another type of transfer operator aims at reducing numerical diffusion by
directly transferring data between integration points without any smoothing.

Contant value transfer

The simplest method is to transfer the value of the closest integration point.
It is possible to limit the old integration point candidates to those in the same
old element as the new point as in [Wang and Waisman, 2016]. Simone et al.
[2003] choose to transfer the maximum value in the element. This type of
transfer should be more appropriate if the integration point position and the
element size do not vary much (e.g. for refined meshes).

Direct interpolation

Ortiz and Quigley [1991] proposed to associate shape functions to the old
integration points and to use them to interpolate or extrapolate values at the
new integration points belonging to the same element. However, this results
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in discontinuous fields when extrapolation is used to deal with new points
outside the group of old points unless specific measures for mesh subdivision
are taken, as suggested by Boroomand and Zienkiewicz [1999]. This technique
is thus more appropriate for a crack insertion with element sub-division for
X-FEM and has, for example, been applied by Seabra et al. [2013, 2011].
Espinosa et al. [1998] proposed a similar approach based on an auxiliary mesh
with 3-node triangular elements connecting the integration points in the old
mesh.

Some guidelines

Patzák and Jirásek [2004] compared three transfer operators, which were based
on the closest-point transfer, least-squares projection, and shape-function pro-
jection: in this study, the transfer relying on the shape-functions caused a
non-negligible numerical diffusion. The closest-point transfer is obviously the
most cost-effective one. However, smoothing is expected to deal better with
large mesh size variations.
Whatever the choice of transfer operator is, a general recommendation could
be to transfer fields when and where non-linearities are not too important
and/or the energy is relatively lower. Moreover, the more local the change of
discretization, the better.
Finally, let us note that the perturbations associated with transfer are also
likely to highlight any instability in the problem. So it is important to deal
with any source of trouble first (for example using specific measures to deal
with volumetric locking) and to ensure that the problem does not depend on
the discretization at the time of transfer. On the contrary, let us note that
viscous effects can help to reduce the perturbations’ effect.

14.4.3 Re-equilibrium

After transfer, the fields are no longer consistent and this generally causes
some convergence difficulties for the next time step. It is then useful to enable
time step division, as in [Boroomand and Zienkiewicz, 1999; Feld-Payet, 2010].
However, since this solution results in an increasing number of increments and
thus a higher computational cost, some propositions have been made to help
retrieve equilibrium more efficiently:

• transfer of only a few selected variables and exploitation of local relations to
compute the remaining variables, as proposed by Camacho and Ortiz [1997];
Mediavilla Varas [2005]; Broumand and Khoei [2013].

• introduction of a relaxation step with vanishing local residual forces, as
proposed by Broumand and Khoei [2013]; Javanmardi and Maheri [2019];
Seabra et al. [2013];

• introduction of an additional step with the boundary conditions of the
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FIGURE 14.9: Illustration of a complete continuous-discontinuous strategy
on the initial configuration at three different moments in the computation
for a test inspired from [Mediavilla Varas, 2005] and described in [Feld-Payet
et al., 2015] with crack representation through mesh adaption. The non local
accumulated plasticity field (which drives damage for the considered model)
was used to determine where to insert the crack path thanks to the Marching
Ridges method. The moment of insertion was determined based on a critical
value of the damage field. Nodal interpolation and least square smoothing
were used to transfer data respectively at the nodes and at the integration
points after crack insertion. The procedure proposed in [El Ouazani Tuhami,
2022] was used to ease the return to equilibrium.
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current increment, either with an elastic behavior as proposed by Medi-
avilla Varas [2005], or with the complete constitutive behavior to also ad-
just plasticity and damage, as proposed by El Ouazani Tuhami [2022]; El
Ouazani Tuhami et al. [2023].

14.5 Conclusion

This chapter has proposed to decompose the continuous-discontinuous strate-
gies into elementary components:

• orientation criteria, crack path tracking algorithms and methods to build a
3D crack path to know where to insert the discontinuity;

• insertion criteria to know when to insert the discontinuity;

• transfer operators and re-equilibrium methods to resume computation.

An example of application for a ductile problem with crack represented thanks
to mesh adaption is presented in Figure 14.9.
The choice of the solutions is very problem-dependent so it is important to
know the advantages and limits of each option to select the most appropriate
combination. This choice could be made easier if there were more numerical
comparisons or benchmark tests to compare similar elementary components.

Many challenges remain from the numerical point of view, especially to
deal with complex 3D crack initiation and propagation. Eventually, it is the
confrontation with experimental results that will enable to validate the differ-
ent choices.
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Modeling damage and fracture are an essential factor in ensuring control of forming 
processes and estimating service life expectancy. Linear fracture mechanics models 
proposed by Griffith (1920) and the subsequent non-linear approaches by Rice are now 
widely used in the industry. However, these so-called global approaches cannot account 
for all experimental observations and can thus lead to very conservative practices. 

To overcome these limitations, so-called local approaches have been developped since 
the 80s. The associated models are based on an analysis of local stresses and strains. 
They are now implemented in numerous finite element solvers.

This collective work aims at gathering a state of the art on damage mechanics and local 
approaches to fracture. It was presented during the second edition of the MEALOR 
summer school in Banyuls, France, from August 21st to September 1st, 2023.


