Individual based SIS models on (not so) dense large random networks - École des Ponts ParisTech
Article Dans Une Revue ALEA : Latin American Journal of Probability and Mathematical Statistics Année : 2024

Individual based SIS models on (not so) dense large random networks

Résumé

Starting from a stochastic individual-based description of an SIS epidemic spreading on a random network, we study the dynamics when the size n of the network tends to infinity. We recover in the limit an infinite-dimensional integro-differential equation studied by Delmas, Dronnier and Zitt (2022) for an SIS epidemic propagating on a graphon. Our work covers the case of dense and sparse graphs, provided that the number of edges grows faster than n, but not the case of very sparse graphs with O(n) edges. In order to establish our limit theorem, we have to deal with both the convergence of the random graphs to the graphon and the convergence of the stochastic process spreading on top of these random structures: in particular, we propose a coupling between the process of interest and an epidemic that spreads on the complete graph but with a modified infection rate. Keywords: random graph, mathematical models of epidemics, measure-valued process, large network limit, limit theorem, graphon.
Fichier principal
Vignette du fichier
sparse_vA_24-09-09.pdf (1.88 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04240258 , version 1 (19-09-2024)

Licence

Identifiants

Citer

Jean-François Delmas, Paolo Frasca, Federica Garin, Viet Chi Tran, Aurélien Velleret, et al.. Individual based SIS models on (not so) dense large random networks. ALEA : Latin American Journal of Probability and Mathematical Statistics, 2024, 21, pp.1375-1405. ⟨10.30757/ALEA.v21-52⟩. ⟨hal-04240258⟩
247 Consultations
21 Téléchargements

Altmetric

Partager

More