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A CLASS OF SYMMETRIC-HYPERBOLIC PDES

MODELLING FLUID AND SOLID CONTINUA

SÉBASTIEN BOYAVAL

Abstract. We generalize a new symmetric-hyperbolic system of PDEs pro-
posed in [ESAIM:M2AN 55 (2021) 807-831] for Maxwell fluids to a class of

systems that define unequivocally multi-dimensional visco-elastic flows.

Precisely, within a general setting for continuum mechanics, we specify con-
stitutive assumptions i) that ensure the unequivocal definition of motions satis-

fying widely-admitted physical principles, and ii) that contain [ESAIM:M2AN

55 (2021) 807-831] as one particular realization of those assumptions.
The new class can capture the mechanics of various materials, from solids

to viscous fluids, possibly with temperature dependence and heat conduction.

1. Introduction

Continuum mechanics has kept evolving since pioneering works of Bernoullis,
D’Alembert, Euler, Cauchy etc., in particular with a view to describing motions of
various materials more and more realistically. A tenet of continuum mechanics is
the description of the motions of infinitely-many “glued” particles usually termed
bodies through functions continuous in time and space, with directional derivatives
(like ϕ−1

t defined in Section 2). The functions are defined as solutions to Boundary
Value Problems (BVPs) using Partial Differential Equations (PDEs). To define
motions of various materials, the PDEs vary: two bodies with identical initial
positions move differently depending on the modelled materials.

The variety of PDEs considered by continuum mechanics reflects the variety of
constitutive assumptions that can be postulated to complement the general contin-
uum mechanics theory and specify one model for the motions of some particular
materials (the motion of a body is unequivocally defined as a PDE solution). De-
spite many efforts toward systematization, choosing constitutive assumptions for
one particular materials remains an art despite some guiding principles and a num-
ber of existing constitutive assumptions [44].

In the present work, we discuss constitutive assumptions that lead to a large class
of (symmetric-hyperbolic) PDEs covering many materials between elastic solids and
viscous fluids. What is exactly meant by those material behaviours needs precising,
of course: this belongs to our discussion below. We also show particular examples
of constitutive laws that realize our proposed constitutive assumptions.

So far, continuum mechanics and its PDEs mainly split into solid mechanics on
the one hand, and fluid mechanics on the other hand. Solid mechanics usually
postulates a time-independent “stress-free” reference state. The stress-free state is
then mapped to all current states through a time-parametrized diffeomorphism –
the inverse of the so-called deformation field – supposedly continuous in time. On
the contrary, fluid mechanics take vortices into account, as well as viscous friction.
Such energy-dissipative phenomenas generally hinder the use of a single reference
state. But solid mechanics can also consider energy-dissipative phenomenas on the
one hand such as plasticity, see e.g. [24, 43]. And fluid mechanics can also consider
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non-Newtonian elastic fluids “with memory” [2]. So the main difference between
what is usually meant by “solid” and “fluid” behaviours is in fact different dynamics
in e.g. relaxation to an equilibrium after external forcing. Solids tend to remember
their past i.e. a stress-free configuration, while fluids tend to forget and adapt to
current configuration. Now, a number of materials behave sometimes as solids and
sometimes as fluids [16]. Constitutive assumptions that encompass standard solid
and fluid materials behaviours are therefore useful in continuum mechanics. . . and
existing propositions still need consolidating.

Maxwell proposed in 1867 a seminal 1D visco-elastic fluid model with a re-
laxation time, which formally describes elastic solids when the relaxation time is
infinite and Newtonian fluids when the relaxation time is zero [30]. Inspiring to
many rheologists, numerous extensions of the model have been proposed for various
visco-elastic materials and geometries, see e.g. [16]. But the model has proved diffi-
cult to extend soundfully to multi-dimensional flows, unless diffusion that prevents
waves is added to the model. The extension of Maxwell ideas for application to
realistic flows remains an active research topics [2, 23].

In [ESAIM:M2AN 55 (2021) 807-831] i.e. [4], we proposed a mathematically-
sound multi-dimensional formulation for flows of Maxwell fluids that captures finite-
speed waves. That proposition consists in a symmetric-hyperbolic system of bal-
ance laws compatible with elastodynamics for hyperelastic materials in the infinite
relaxation-time asymptotics λ → ∞. (Recall a symmetric-hyperbolic formulation
is essential for well-posed Cauchy problems with quasilinear systems, and typically
provided by a strictly convex mathematical entropy.) In comparison with standard
formulations of the Maxwell’s model for compressible fluids it essentially uses addi-
tional variables to model time-evolving material properties. The proposition copes
well with established extensions of Maxwell’s model; we believe it offers a sound
framework for physical extensions that aim at unifying solids with various (complex,
non-Newtonian) fluids, using additional variables to model various “imperfections”.

Here, in this work, we extend the proposition we made in [4] to general constitu-
tive assumptions. In Section 6, we precisely state those general constitutive assump-
tions. Our general constitutive assumptions are new in the sense that they comple-
ment usual constitutive assumptions (ensuring widely-admitted physical principles
like thermodynamics, frame-indifference) to cover a large class of models rigorously
unifying unequivocal solid and fluid motions at finite-wave speed i.e. in a hyper-
bolic (PDE) framework. The assumptions cover, in particular, standard motions
that have long been proposed for elastic solids, our formulation of visco-elastic mo-
tions for fluids of Maxwell-type [4] possibly non-isothermal [6],as well as motions
that are new to our knowledge (see Section 6). We believe such new general consti-
tutive assumptions are needed to model well a number of real motions, geophysical
flows like ladnslide in particular. The article is organized as follows.

In Section 2, we give a short introduction to continuum mechanics, see e.g.
[29, 24, 43, 15] for more.
In Section 3, we recall how one defines some classical isentropic motions of hyper-
elastic solid materials, given a stored energy functional.
In Section 4, we propose a class of stored energy functionals that allow one to
define many isentropic motions of hyperelastic solid materials with good mathe-
matical and physical properties on following the classical approach above.
In Section 5, we recall how one standardly defines fluid motions, not isentropic.
In Section 6, we propose our new class of visco-hyperelastic fluids, which bases
on the admissible and reasonable constitutive assumptions of Section 4 and which
takes full advantage of our previous ideas in [4] for extension to fluids. The new
class of materials can depend on temperature; it covers standard and new motions.
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In Section 7, we conclude about the new class and its perspectives. We also state
one possible set of constitutive assumptions for a class of rigid heat-conductors
(following seminal ideas of Cattaneo) that naturally couples with our constitutive
assumptions of Section 6 for solid/fluid thermo-mechanics without heat conduction.

Note that the stored energy functionals that allow one to define isentropic mo-
tions of hyperelastic solid in Section 4 can be found in most textbooks [29, 24,
43, 15]. But we are not aware of a similar study, that carefully constructs stored
energy functionals achieving the (standard) constitutive assumptions for isentropic
motions of hyperelastic solids, as from our proposed class. In particular, to satisfy
constitutive assumptions, we propose to require stored energy functionals satisfying
(H2), and show in Proposition 1 that this is actually achievable, see Section 4.

2. Continuum Mechanics setting

In this work, we use Einstein convention for repeated indices. We denote t the
time, and xi, i = 1 . . . d the coordinates in a Cartesian basis ei of the Euclidean
space Rd = {x = xiei, xi ∈ R} for d = 2 or 3.

We consider (continuous) bodies that fill Rd for t ∈ [0, T ), such that there exists
a diffeomorphism ϕ−1

t (x) = a ∈ Rd onto a stress-free configuration also equipped
with another Cartesian coordinate system {aα, α = 1 . . . 3}. (The terminology
“stress-free” will be clarified in Section 3 below.)

We identify ϕ−1
t (x) = a with a particle of mass density ρ̂ given any x ∈ Rd, and

we assume ρ̂ constant i.e. considered materials are homogeneous in mass density.
We assume the back-to-label map ϕ−1

t smooth with respect to x ∈ Rd and t,
so one can first establish isentropic (i.e. time-reversible) deformations ϕt of one
time-independent stress-free configuration diffeomorphic to Rd such as “purely elas-
tic solid” motions of hyperelastic materials, see Sections 3 and 4. Non-isentropic
motions with dissipation (viscous vortices e.g. in fluids) are standardly considered
next only. The essence of the present work is to propose in Section 6 a new class
of fluids that are characterized by a relaxation time like in [30], and that allow one
to define unequivocally multi-dimensional non-isentropic motions like in [4].

Denoting σijk Levi-Civita’s symbol for i, j, k ∈ {1, 2, 3}, u := ∂tϕt the velocity,
F = F i

αei ⊗ eα the deformation gradient where F i
α := ∂αϕ

i, |F | its determinant

and F̂ its cofactor (equiv. transpose adjugate), the following conservation laws

∂tF
i
α − ∂αu

i = 0(1)

∂t|F | − ∂α

(
F̂ i
α u

i
)
= 0(2)

∂tF̂
i
α + σijkσαβγ∂β

(
F j
γ u

k
)
= 0(3)

are established using classical derivatives on R×Rd ∋ t,a and Piola’s identities [46]

(4) σαβγ∂βF
i
γ = 0 = ∂αF̂

i
α ∀i .

Equivalent identities also hold in Eulerian description i.e. using spatial coordinates:

∂t
(
ρF i

α

)
+ ∂j

(
ρF i

αu
j − ρuiF j

α

)
= 0(5)

∂tρ+ ∂j
(
ρuj

)
= 0(6)

∂tG
i
α + ∂i

(
Gj

αu
j
)
= 0(7)

having defined ρ := |F |−1ρ̂, G = F−T (the transpose of the matrix inverse F−1),
denoting similarly functions of x or a depending on the context, and rewriting
Piola’s identities in spatial coordinates

(8) ∂j(ρF
j
α) = 0 = σijk∂j(ρ̂G

k
α) ∀α .
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In tensor notation one could write, in spatial coordinates

∂t

(
ρF T

)
−∇×

(
ρF T × u

)
= 0(9)

∂tρ+ div (ρu) = 0(10)

∂t

(
GT

)
+∇

(
GT · u

)
= 0(11)

where GT is the dual (matrix transpose) of G, using Piola’s identities (8)

(12) div(ρF T ) = 0 = ∇× (ρ̂GT ) ,

or in material coordinates, for the so-called Lagrangian description

∂tF
T = ∇au(13)

∂t|F | = diva

(
F̂

T
· u

)
(14)

∂tF̂
T
+∇a ×

(
F T × u

)
= 0(15)

which makes use of the Piola’s identities (4)

(16) diva F̂
T
= 0 = ∇a × F T .

Note that when d = 2, (15) are redundant with (13) and (11) with (9).
Now, to unequivocally define motions, i.e. u(x, t) for all x and small times

t ∈ [0, T ) at least, continuum mechanics complements the above “kinematical”
PDEs with physics principles like energy conservation and Galilean invariance.

3. Isentropic motions of hyperelastic materials

In Lagrangian description, the general balance of energy

(17) ρ̂∂t

(
|u|2

2
+ e

)
= ∂α

(
Siαui −Qα

)
+ ρ̂(uif i + r)

(thermodynamics’first principle) is required for a body with entropy η, temperature

(18) θ = ∂ηe

supposedly non-negative, given force and heat sources f , r. The strain or stored
energy e(F , η,p) determines the first Piola-Kirchoff stress tensor S in (17) through

(19) Siα = ρ̂∂F i
α
e

as well as the heat flux Q ≡ Qαeα when e actually depend on a state variable p
to account for heat transfer by conduction – see Section 7.1. But to start with, as
already said, we consider only isentropic motions

(20) ∂tη = 0

where r = 0 = Qα and the balance of energy (17) reduces to

(21) ρ̂∂t

(
|u|2

2
+ e

)
= ∂α

(
Siαui

)
+ ρ̂uif i

or in spatial coordinates and tensor notation

(22) ∂t

(ρ
2
|u|2 + ρe

)
+ div

((ρ
2
|u|2 + ρe

)
u− σ · u

)
= ρf · u

where σij := |F |−1SiαF j
α is Cauchy stress.

Requiring (21) and Galilean invariance leads to the linear momentum balance

(23) ρ̂∂tu
i = ∂αS

iα + ρ̂f i

in material coordinates, or equiv. in spatial coordinates

(24) ∂t
(
ρui

)
+ ∂j

(
ρuiuj − σij

)
= ρf i



A CLASS OF SYMMETRIC-HYPERBOLIC PDESMODELLING FLUID AND SOLID CONTINUA5

see e.g. [45]. In tensor notation, (23) rewrites

(25) ρ̂∂tu = diva S + ρ̂f

and the equivalent Eulerian balance (24) rewrites

(26) ∂t (ρu) + div (ρu⊗ u− σ) = ρf .

So, at this stage, one can expect isentropic motions to be computable, well-
defined solutions u(t,x) for (t,x) ∈ [0, T )×R3 to (25) or (26) complemented by i)
kinematic PDEs established in Section 2, ii) initial conditions (for u, F . . . ) and
iii) a functional e(F ) that actually allows one to formulate a well-posed Cauchy
(initial-value) problem either with the Lagrangian description or with the Eulerian
description.

But various isentropic motions should be computable if the models have to cover
various real materials. To precisely compute the motions of one particular mate-
rials, modelers would choose only one particular functional e(F ) (one constitutive
law) among mathematical expressions that yield a well-posed BVP, so that the func-
tional embodies physical specificities characterizing the motions of that particular
materials.

The purpose of constitutive assumptions for isentropic motions is exactly to guide
the choice of a functional e(F ), so that it is not only mathematically reasonable (in
the sense: unequivocal solutions to Cauchy problems can be defined on small times
at least), but also physically admissible in the sense: the mathematically-defined
motions actually allow modellers to understand real motions.

In Section 6, we propose new constitutive assumptions (H3) and (H4) for non-
isentropic motions, to cover both fluids and solids. To encompass standard assump-
tions for fluids, see Section 5, our new constitutive assumptions (H3) and (H4)
contain visco-elastic fluid models, as well as isentropic motions of solids which are
usually covered by more restrictive constitutive assumptions like (H1) and (H2)
recalled below in Section 4. Note that in this work, the classical constitutive as-
sumptions (H1), which characterize stored energy functionals e(F ) for isentropic
motions of solids, is precised as (H2) to define unequivocally the motions.

4. An admissible & reasonable class of solid materials

For physical admissibility, it is usual to require material frame indifference thus:
(H1) a reduced stored energy function ê exists such that e(F ) ≡ ê(C) depends on

F through the right Cauchy-Green strain C := F T · F , see [29, Th. 2.10 of CH.3]

or [43, (2.19)]. It implies that Cauchy stress tensor reads σ ≡ 2ρF · ∂C ê · F T

(27) σij ≡ 2ρ̂|F |−1F i
α F

j
β ∂Cαβ ê .

Next, following seminal ideas by Noll [31, 32], it is usual to classify functionals
e(F ) ≡ ê(C) depending on their material symmetry group see e.g. [43]

G := {R | ê(RT ·C ·R) = ê(C) ,∀C = F T · F }
a subset of the unimodular group U := {R ∈ Rd×d , |R| = 1}. Much freedom
apparently remains for an expression e(F ) at that stage. In fact, few physically-
motivated expressions e(F ) are mathematically reasonable (i.e. yield a well-posed
BVP and unequivocal motions) with the PDE model (1–2–3–4–19–23). For in-
stance, if e(F ) is strictly convex in F and reads e.g. using a constant c21 > 0

(28)
c21
2
tr(C − I) ≡ c21

2
(F k

αF
k
α − d) ,

with the special orthogonal group as the material symmetry group (usually classi-
fied as suitable for “isotropic solids”), then the model is mathematically reasonable:
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isentropic motions are well-defined by unequivocal solutions to the Lagrangian sys-
tem (1–19–23). Indeed, (1–19–23) has a symmetric-hyperbolic formulation thanks
to (21) and Godunov-Mock theorem [22], so one can define unique time-continuous
solutions, see Prop. 2 below1. But requiring the (strict) convexity of e(F ) in F
seems contradictory with many observed motions [1, Section 2.7], especially with
a view to unifying solids with fluids (“ultimately” in some asymptotics, see Sec-
tion 5) hence to capturing deformations that are mostly determined by a spheric
contribution −pI to Cauchy stress, with a pressure p := −ρ̂∂|F |e0 resulting from
a (major contribution to the) strain energy e ≈ e0(|F |) that only depends on the
determinant. Recall fluids are usually modelled from the “perfect” case with max-
imal material symmetry e(F ) = e(FR) for the whole unimodular group U ∋ R
[43], and the determinant |F | is not convex in F !

Requiring e(F ) polyconvex in F can ensure the well-posedness of Cauchy prob-
lems and allow dependence of e on |F |. Indeed, assuming e(F ) polyconvex, an
additional conservation law can hold for a function strictly convex in the conserved
variables, which ensures that a system of conservation laws like (1–2–3–4–19 –23)
has i) a symmetric-hyperbolic formulation by Godunov-Mock theorem [22], hence
ii) unequivocal small-time solutions to Cauchy problems [15]. Therefore, in this
work, we require (strict) polyconvexity in constitutive assumptions:
(H2) There exists ē(A,B, c) defined for symmetric positive matrices (A,B) ∈
Sd

+ × Sd
+ and c ∈ R such that the function (F , F̂ , |F |) → ē(F T · F , F̂

T
· F̂ , |F |)

is stricly convex on Rd×d × Rd×d × R and defines a stored energy function by

e(F ) ≡ ē(F T · F , F̂
T
· F̂ , |F |).

Note that well-studied functions yield (H2) – thus (H1) –, see e.g. [41]:

Proposition 1. (H2) is fulfilled as soon as ē is matrix-monotone i.e.

A1 ≥ A2 & B1 ≥ B2 ⇒ e(A1, B1, c) ≥ e(A2, B2, c) ∀A1, A2, B1, B2 ∈ Sd
+ ,

and convex in each argument, strictly convex in c.

Proof. Recall for any F 1,F 2 ∈ Rd×d, θ ∈ (0, 1)

(29) θF 1F
T
1 + (1− θ)F 2F

T
2 − (θF 1 + (1− θ)F 2)

T
(θF 1 + (1− θ)F 2)

= θ(1− θ)(F 1 − F 2)(F 1 − F 2)
T ∈ Sd

+ .

Then one can show that (H2) holds on composing the result above i.e.

θF 1F
T
1 + (1− θ)F 2F

T
2 ≥ (θF 1 + (1− θ)F 2)

T
(θF 1 + (1− θ)F 2)

with the matrix-monotonicity and convexity of ē, similarly to [38, Th 5.1] for mono-
tone convex functions on R. Recall the determinant is matrix-monotone [41]. Then,
for all θ ∈ [0, 1], it first holds

(30) e(θF 1 + (1− θ)F 2) ≡ ē
(
(θF 1 + (1− θ)F 2)

T (θF 1 + (1− θ)F 2), . . .

. . . (θF̂ 1 + (1− θ)F̂ 2)
T (θF̂ 1 + (1− θ)F̂ 2), |θF 1 + (1− θ)F 2|

)
≤ ē

(
θF T

1 F 1 + (1− θ)F T
2 F 2, θF̂

T

1 F̂ 1 + (1− θ)F̂
T

2 F̂ 2, θ|F 1|+ (1− θ)|F 2|
)

by matrix-monotonicity of ē and one concludes

e(θF 1 + (1− θ)F 2) ≤ θe(F 1) + (1− θ)e(F 2)

by (standard) convexity in each argument. □

1This is a particular case of Prop. 2 where the PDE system (1–19–23) is linear so smooth
solutions can in fact be defined globally in time ∀t ≥ 0 c.f. e.g. [15].
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Using (H2), (21), Godunov-Mock theorem [22] and the available theory for
symmetric-hyperbolic quasilinear systems of PDEs [15], the following holds:

Proposition 2. The system (1–2–3–4–19–23) has a symmetric-hyperbolic formu-
lation. As a consequence, when complemented by smooth initial conditions compat-
ible with (4), it unequivocally defines smooth motions through solutions

(ui, F i
α) ∈ C0

t

(
[0, T ), Hs(Rd)d ×Hs(Rd)d×d

)
i.e. time-continuous solutions with values in Sobolev spaces Hs(Rd), s > d

2 .

The constitutive assumption (H2) has often been used with (1–2–3–4–19–23) to
compute realistic isentropic motions of purely elastic solids. Many computations
use a stored energy e(F ) of type

(31) e0(|F |) + ê1(C) + ê2(Ĉ)

where F̂ is the transpose adjugate of F so F̂
T
· F̂ ≡ |C|C−1 ≡ Ĉ, and e0, ê1,

ê2 are three monotone convex functions (of order 1, d, d respectively), like the
constitutive law of Ogden [33] famous for isotropic elastic solids referred to as
rubbery materials (with only three scalar parameters to calibrate, see [12, Th. 4.9-
2.] for a mathematical exposition and [19, 14] for physical justifications).

In [5], we explicited the symmetric-hyperbolic formulation for a particular 2D
choice of type (31) without the last term ê2: when d = 2, the components of F and

F̂ only differ by sign so the argument F̂
T
· F̂ is superfluous then.

Now many applications need consider non-isentropic motions. Moreover, a full
(dynamical) thermo-mechanics accounting for non-isentropic motions can rarely
neglect heat conduction – with additional PDEs of “Cattaneo-type” [8] (equiv. a
thermo-elastic theory “with second-sound” [37]) to preserve a hyperbolic viewpoint
and ensure information travels at finite speed, then. But few works have tackled
that direction [40, 27, 6]. To begin with, as in e.g. [9], let us consider mechanical
waves where e(F ) additionally depends on entropy η (or on temperature θ) under
the second thermodynamics principle but without heat conduction though, then we
shall come back to heat conduction in Section 7.1.

Non-isentropic motions imply a production of entropy associated with the ap-
parition of structural “defects” in the dynamics (i.e. microscopic phenomenas) as
regards mechanics. In real solids, such defects lead to fluid-like behaviours: viscos-
ity, plasticity. Recalling that one goal of the present work is to unify the isentropic
elastic solid motions of hyperelastic materials with non-isentropic fluid motions (e.g.
Newtonian like below), the next step is now to enlarge the setting of continuum me-
chanics for hyperelastic materials (variables and PDEs) to cover fluid-like motions.
We propose to tackle the issue by following existing extensions of solid mechanics
beyond pure elasticity (hyperelastic materials). We shall add structural variables
to dynamically describe defects like e.g. [42, 39] or [43, Chap. 13] as regards elasto-
plastic solids, in the Eulerian description of elastic solids (heat-insulators to begin
with). The new variable shall be useful to define visco-hyperelastic fluids and con-
stitutive assumptions in Section 6, recalling from [46]:

Proposition 3. The Lagrangian description (1–2–3–4–19–23) has a symmetric-
hyperbolic formulation by virtue of Godunov-Mock theorem if, and only if, the Euler-
ian description (5–6–7–8–19–24) has a symmetric-hyperbolic formulation by virtue
of Godunov-Mock theorem. Consequently, motions described by smooth solutions

(ui, F i
α) ∈ C0

t

(
[0, T ), Hs(Rd)d ×Hs(Rd)d×d

)
, s >

d

2

to the quasilinear system (1–2–3–4–19–23) in material coordinates are equivalently
described in spatial coordinates by smooth solutions to (5–6–7–8–19–24).
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But before let us first recall how one standardly treats fluid motions in the
present continuum setting.

5. Some standard fluid motions

Some fluid motions are routinely described after introducing additional ingredi-
ents in the isentropic motions of hyperelastic materials, which can be viewed as a
modelling of “defects” that necessarily occur in fluids, generally non-isentropic.

Let us recall that perfect isentropic fluid motions are unequivocally defined after
reducing the Eulerian description (5–6–7–8–19–24) to the gas dynamics system:

(32)
∂tρ+ ∂i(u

iρ) = 0

ρ
(
∂tu

i + uj∂ju
i
)
+ ∂i p = ρf i

with a spheric stress σ = −pδ of pressure p := −∂ρ−1 ê0 ≡ C0ρ
γ , C0 > 0, assuming

the stored energy invariant by the material symmetry group U therefore of type

(33) ê0(ρ) ≡
C0

γ − 1
ργ−1 .

The Eulerian system (32) is symmetric-hyperbolic when γ > 1, but it has not one
unequivocal Lagrangian description [17]. Non-spheric “viscous” stress induced by
defects are usually introduced in (32) on adding extra-stress τ in Cauchy stress

(34) σ = −pδ + τ

such that it is frame indifferent, symmetric (to preserve angular momentum) and
“dissipative” for the sake of the thermodynamics principles [13]. For instance, the
second thermodynamics principle (35) is satisfied with dissipation D ≡ τ ij∂ju

i ≥ 0

(35) ∂tη + (uj∂j)η = D/θ

in the case of a Newtonian extra-stress with two parameters ℓ, µ̇ > 0

(36) τ ij = 2µ̇D(u)ij + ℓ D(u)kk δij

where D(u)ij := 1
2

(
∂iu

j + ∂ju
i
)
. The compatibility of (35) with (22) can be

achieved on choosing e as the sum of (33) and another independant contribution
(function of η,Q. . . ) that handles D as heat, but such a compressible Newtonian
model does not cope with our framework: (6–24–34–36) is not a hyperbolic system.

To model viscous fluid motions in a hyperbolic framework common with purely
elastic solids, we propose to extend the hyperelastic framework of Section 3 and
introduce structural defects to develop Maxwell’s seminal concept of visco-elastic
fluids [30]. First, we add time-dependent “structure tensors” to the Eulerian de-
scription of motions. Next, a time-evolution of those tensors can be postulated
so that it implies a specific non-Newtonian fluid constitutive law for the Cauchy
stress. For some constitutive laws, the compressible ideal Newtonian fluid motions
can be recovered as asymptotic limits when the Cauchy stress converges to a New-
tonian viscous stress, with a non-spheric contribution of the form (36). The idea
was shown successful in previous contributions of ours [4, 6, 5].

In [4], introducing A := Y −2 ∈ Sd
+,∗ positive definite in the stored energy as

(37)
C0

γ − 1
ργ−1 +

c21
2

(
F ·A : F − log |F ·A · F T |

)
was indeed shown compatible with the following constitutive law

(38) λ
▼
τ +τ = 2µ̇D(u)
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satisfied by the non-spheric contribution τ ≡ ρc21(F · A · F T − I) to the Cauchy
stress (34), on denoting the pressure p ≡ C0ρ

γ and the extra-stress time-rate

(39)
▼
τ := ∂tτ + (u ·∇)τ −∇u · τ − τ ·∇uT + (divu) τ

which is frame indifferent i.e. “objective” so (38) is a physically admissible version of
Maxwell’s visco-elastic constitutive law. To that aim, it suffices to require µ̇ = ρλc21
and the following relaxation for the tensor A that makes e anisotropic

(40) λ(∂t + u ·∇)A+A = F−1 · F−T .

The constitutive law (38) is not only a physically admissible Upper-Convected ver-
sion of Maxwell’s 1D law [30] for compressible fluids [3]. It is also mathematically
reasonable: (5–6–8–19–24) is a symmetric-hyperbolic system of quasilinear PDEs.
Then, the ideal elastodynamics of elastic compressible neo-Hookean solids with
shear modulus (equiv. Lamé second coefficient) c21 is satisfied asymptotically by
solutions when λ ∼ µ̇ → ∞ [7], and (formally) unified with compressible New-
tonian fluids of viscosity µ̇ = c21λ by solutions in the (formal) asymptotic limit

τ
λ→0−−−→ 2µ̇D(u). Note that the second principle of thermodynamics reads (35)

with ρD ≡ ρ
c21
2λ (I − c−1) : (c − I) > 0 where we denoted c = F ·A · F T ∈ Sd

+,∗.
The idea was extended in [6] to include heat-conduction and various rheologies i.e.
various constitutive laws for a non-spheric contribution τ to Cauchy stress.

In the present work, we strive to delineate the full scope of the ideas from [4]:
we state new constitutive assumptions, physically admissible and mathematically
reasonable, that allow to cover standard fluid and solid motions, on extending the
set of variables and of PDEs as in [4]. We term those fluids visco-hyperelastic.

6. Visco-hyperelastic fluids

Let us now consider the non-isentropic motions of continuum materials with a
stored energy that not only satisfies (H2) but also depends on symmetric positive-

definite structural tensor variables Y i ∈ Sd
+,∗, i = 1, 2 with a view to expressing

defects in fluid-like materials. We assume that the structural tensors Y i satisfy

(41) λi(∂t + u ·∇)Y i = fi(q)

in Eulerian description, with λi ≥ 0 and fi(q) ∈ Sd
+ smooth algebraic functions

with symmetric-positive matrix values of the state variables q = (u,F ,Y i).

First, let us neglect thermal influences on mechanics. We propose the following
constitutive assumptions for a physically admissible and mathematically reasonable
Eulerian description of fluids that could be termed “visco-hyperelastic” (to precise
the usual terminology “visco-elastic” that unifies viscous fluids and elastic solids):

(H3) There exists ē(Y i,A,B, c) defined for Y i,A,B ∈ Sd
+, c ∈ R such that the

function (Y i,F , F̂ , |F |) → ē(Y i,F
T ·F , F̂

T
· F̂ , |F |) is stricly convex in Y i ∈ Sd

+,

F ∈ Rd×d, F̂ ∈ Rd×d, |F | ∈ R jointly. There also exists eY i
(Y i) such that for any

eη(η) convex the stored energy e(F ) ≡ ē(Y i,F
T ·F , F̂

T
· F̂ , |F |)+eY i

(Y i)+eη(η)
is compatible with all thermodynamics principles: (21) (energy balance in absence
of heat transfer) and (35) (entropy increase). A non-spheric contribution to Cauchy
stress σ models viscous stresses in fluids.

Requiring (H3) ensures a physically-admissible and mathematically-reasonable
model, that satisfies (H2) when λi → ∞ and the structural tensores Y i assume
constant values. Indeed, (smooth) motions are unequivocally defined on small times
as solutions to (5–6–8–19–24–41), which is symmetric-hyperbolic insofar as without
source terms (i.e. when f = 0 in (24) and fi = 0 in (41)) a conservation law holds for
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the functional ē(Y i,F
T ·F , F̂

T
· F̂ , |F |)+tr(Y 2

i ) jointly convex in all the unknown
variables of the PDE system (5–6–8–19–24–41).

In the sequel, we propose analytical expressions for ē and fi that satisfy (H3)
and cover the useful multi-dimensional motions of Maxwell-type fluids which we
proposed in [4]. In addition, the analytical expressions also provide one with many
multi-dimensional motions for visco-elastic fluids of “rate-type”, see Prop. 4. To

that aim, recalling C ≡ F T · F , Ĉ ≡ F̂
T
· F̂ , we construct stored energies like2

(42) ê0(ρ
−1,Y 1,Y 2) + ê1(C,Y 1) + ê2(Ĉ,Y 2) + eY i

(Y i) + eη(η)

see Section 6.1. Next, we investigate source terms fi(q) in (41) that provide one with
a second principle of thermodynamics i.e. dissipation in (35), and capture viscous
fluid behaviour, see Section 6.2. Note that under (H3), the entropy production
D in (35) is a by-product of mechanics (thermal influences on mechanics were
neglected); it is easily calculated (and the convexity of eη is not necessary, in passing:
monotonicity is enough, for the definition of temperature).

Last, to consider mechanics with heat transfers (i.e. thermo-mechanics, with
entropy or temperature), we propose in Section 6.3 the improved assumptions:

(H4) There exists ē(Y i,A,B, c, η) defined for Y i,A,B ∈ Sd
+, c, η ∈ R such that

the function (Y i,F , F̂ , |F |, η) → ē(Y i,F
T · F , F̂

T
· F̂ , |F |, η) is stricly convex in

Y i ∈ Sd
+, F ∈ Rd×d, F̂ ∈ Rd×d, |F | ∈ R, η ∈ R (jointly), monotone increasing

in η. There also exists eY i(Y i) such that the stored energy e(F ) ≡ ē(Y i,F
T ·

F , F̂
T
· F̂ , |F |, η)+eY i(Y i) is compatible with all thermodynamics principles: (21)

(energy balance in absence of heat transfer) and (35) (entropy increase). A non-
spheric contribution to Cauchy stress σ models viscous stresses in fluids.

The constitutive assumptions (H4) are more general than (H3) insofar as they
allow more general motions with heat transfers. They can be easily complemented
further to incorporate heat conduction in our hyperbolic framework (i.e. Q ̸= 0 in
(17) and thermal waves), as we explain in the final Section 7.1.

6.1. Stored energy functions using structural tensors. Analytical expres-
sions for ê1 and ê2 in (42) that satisfy (H3) are suggested by [26, Corollary 2.1]:

(43) ê1 =
1

2
h1 ((tr (A1 ·C))

q1) and ê2 =
1

2
h2

((
tr
(
A2 · Ĉ

))q2)
where h1, h2 are monotone increasing convex functions, while r1 ∈ (0, 1] is as small
as necessary for q1 ≥ (2 − r1)

−1 > 1
2 , A1 = Y −r1

1 , and r2 ∈ (0, 1] is as small as

necessary for q2 ≥ (2− r2)
−1 > 1

2 , A2 = Y −r2
2 .

Note that the various expressions that we have proposed so far in previous works
[4, 6] are all covered [26, Corollary 2.1], which reads:

Theorem 1. For all r ∈ (0, 1], q ≥ (2− r)−1 the following function

(44) (F ,Y ) ∈ Rd×d × Sd
+,∗ →

(
tr
(
Y −r · F T · F

))q

is convex jointly in all its arguments.

Using Th. 1 as a building block to functional operations (like sums of convex
functions and composition by monotone increasing convex, see e.g. [38, Chap. 3])

one could generate much more analytical expression convex in |F |, F , F̂ and the

2Note that the expression (31) does not coincide with other expressions that separate volu-
metric contributions to stress and other “distortional” contributions as in [11]. However, (31) is

one standard expression, and it guarantees unequivocal isentropic motions (see Prop. 2). The

PDE system (5–6–8–19–24) with (42) and constant Y i ∈ Sd
+,∗, which is obtained formally when

λi → ∞, has already been used for anisotropic solids [43].
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(symmetric positive definite) structural tensors Y i than (42), although we are not
aware of a general expression resulting from such operations. For instance, in-

spired by [20, 21], one could choose x → eb
2x−1
2b2 , b2 > 0 for hi, or [0, b2) ∋ x →

−b2 log
(
1− x/b2

)
see also [6, Sec. 4.2]. (Note that solutions a priori preserve

the bound 0 ≥ (tr (Ai ·C))
qi < b2 on small times only, just like the orientation-

preserving constraint ρ ≥ 0 and the hyperbolicity domain Y 1,Y 2 ∈ Sd
+,∗ × Sd

+,∗,
see e.g. [4, Corollary 2]).

Next, any volumetric term ê0 in (42) that does not depend on Y 1,Y 2 and that
is strictly convex in ρ−1 can also be chosen, independently of ê1 and ê2. In [4, 6],
we used various expressions from the literature for ê0 see e.g. [6, Sec. 4.3].

Finally, given a stored energy like (42) using (43), the Cauchy stress reads

(45) σ = −p0I + τ 1 + τ 2

where, on denoting for i = 1, 2

(46) µi(s) = qis
qi−1h′i (s

qi) > 0 ,

the spheric contribution p0 := −∂ρ−1 ê0 is complemented by

τ 1 := µ1

(
tr
(
A1 · F T · F

))
ρF ·A1 · F T ,(47)

τ 2 := µ2

(
tr
(
A2 · F̂

T
· F̂

))
ρ
(
−F̂ ·A2 · F̂

T
+ (Ĉ : A2)I

)
.(48)

Choosing one specific expression for the stored energy fully characterizes the me-
chanics (i.e. stress and waves speed) in the solid-motions limit λi → ∞.

But when λi > 0 is finite, the stress σ(t) at time t > 0 is a priori not yet fully
determined as a function of F (t) at the same time; it also depends on Y i(t) which
accounts for the past states F (s), s ≤ t through fi in (41).

6.2. Structural tensors dynamics. From the mathematical viewpoint, possi-
ble expressions for fi in (41) can be any smooth functions in the variable q :=
(u,F ,Y 1,Y 2). But from the physical viewpoint, the second-principle of thermo-
dynamics should be satisfied, which means here that the source terms in the defects
evolutions have to be chosen to induce dissipation D ≥ 0 in (35) with

(49) D ≡ − 1

λi
∂Y ie : fi ,

to produce entropy η. In particular, e and fi cannot be chosen independently !
Now, recall Ai := Y −ri

i is uniquely defined by Y i ∈ Sd
+,∗, ri ∈ (0, 1], so one can

equivalently fix fi(q) in (41) or choose gi(q) ∈ Sd in

(50) (∂t + u ·∇)Ai = gi(q)

which yields practical rate-type differential constitutive relations for stress.

Proposition 4. Given a stored energy like (42) using (43), the two contributions
τ 1 and τ 2 in (45) satisfy

▼
τ 1= µ1ρF · g1 · F T +

(
2τ1:∇u

ρµ1
+ g1 : C

)
µ′
1

µ1
τ 1(51)

▲
τ 2= −µ2ρF̂ · g2 · F̂

T
+
(
2τ2:D̄

ρµ2
+ g2 : Ĉ

)(
µ′
2

µ2
τ 2 + µ2ρI

)
+ 2 tr τ2

d−1 D̄(52)

denoting D̄(u) := D(u)− (divu)I, using the frame-indifferent time-rates (39) and

(53)
▲
τ := ∂tτ + (u ·∇)τ + τ ·∇u+∇uT · τ − (divu) τ .
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If gi are as in (59) using any αi, βi, µi then (51) and (52) respectively precise as

▼
τ 1=

((
2
τ1:∇u

ρ + α1 tr τ1

ρ +dβ1

)
µ′
1

µ2
1
+α1

)
τ 1 + (β1ρ)I(54)

▲
τ 2=

((
2
τ2:D̄

ρ +α2
tr τ2

ρ(d−1)
+dβ2

)
µ′
2

µ2
2
+α2

)
τ 2 + (β2ρ(d−1)+2τ2:D̄) I + 2

tr τ2

d−1 D̄ .(55)

Proof. It holds (46) on recalling hi are assumed increasing. Formulas (47) and (48)
in (45) result from lengthy but straightforward computations on recalling (27) and

∂F j
β
F̂ i
α = σijkσαβγF

k
γ . Then, recalling from (5–8)

∂tF
i
α + (uj∂j)F

i
α = ∂ju

iF j
α(56)

∂tF̂
i
α + (uj∂j)F̂

i
α = −F̂ j

α∂iu
j + F̂ i

α∂ku
k(57)

(51) and (52) also follow straightforwardly. Last, assumptions (59) on gi imply

F · g1 · F T = α1F ·A1 · F T +
β1
µ1

I = α1
τ 1

µ1ρ
+
β1
µ1

I

F̂ · g2 · F̂
T
= α2F̂ ·A2 · F̂

T
+
β2
µ2

I = −α2
τ 2

µ2ρ
+ (

β2
µ2

+ α2 tr(F̂ ·A2 · F̂
T
))I

hence tr F̂ · g2 · F̂
T
= α2

tr τ2

µ2ρ(d−1) + d β2

µ2
on noting (48) implies tr(F̂ ·A2 · F̂

T
) =

tr τ2

µ2ρ(d−1) , and (54) (55) after lengthy but straightforward computations. □

Some particular choices gi can guarantee the second thermodynamics principle.

Proposition 5. Assume (H3) with a stored energy e of type (42), with êi as in

(43) i.e. independent of Y i ≡ A
1
ri
i as well as ê0. If one chooses, in e of type (42),

(58) eY i
=

1

2

βi
αi

log |Ai| ≡ −ri
1

2

βi
αi

log |Y i|

with βi > 0 and constant βi

αi
< 0, then the source terms

(59) g1 = α1A1 +
β1
µ1

F−1 · F−T , g2 = α2A2 +
β2
µ2

F̂
−1

· F̂
−T

in (50) are dissipative i.e. they induce dissipation following (49).

Proof. The dissipation condition (49) reads ∂Y ie : gi ≤ 0, i.e. with our hypotheses

(60)

(
β1
α1

A−1
1 + µ1C

)
:
(
α1A1 + β1µ

−1
1 C−1

)
+

(
β2
α2

A−1
2 + µ2Ĉ

)
:
(
α2A2 + β2µ

−1
2 Ĉ

−1
)
= β1

(
µ1
α1

β1
(A1 : C)− 2d+

1

µ1

β1
α1

(C−1 : A−1
1 )

)
+ β2

(
µ2
α2

β2
(A2 : Ĉ)− 2d+

1

µ2

β2
α2

(Ĉ
−1

: A−1
2 )

)
≤ 0

which is satisfied on recalling x − 2 + 1
x ≥ 0 holds for all x > 0 as well as in trace

sense for all symmetric positive definite matrices like F ·A1 · F T and F̂ ·A2 · F̂
T

in (60) – recall A1 : C = tr(F ·A1 · F T ), A2 : Ĉ = tr(F̂ ·A2 · F̂
T
) etc. – □

The symmetric source terms gi in (59) have no sign though. To ensureAi ∈ Sd
+,∗,

it is thus convenient to choose eY i
as (58) and gi as in (59) with constants βi > 0,
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αi < 0, µi > 0 (i.e. qi = 1 and constants h′i > 0) so the solution to (50) reads

(61) A1(t) = A1(0)e
α1t +

∫ t

0

(
β1
µ1

C−1(s)eα1(t−s)

)
ds ,

A2(t) = A2(0)e
α2t +

∫ t

0

(
β2
µ2

Ĉ
−1

(s)eα2(t−s)

)
ds , ∀s < t ,

in Lagrangian coordinates, which guarantees Ai ∈ Sd
+,∗ as long as the Lagrangian

description holds. Another benefit of the latter integral formula for the stress as
a function of F , well known in rheology as K-BKZ formula (assuming that Ai

remain bounded as t→ −∞, see [4] for more explanations), is to show how (visco-
hyperelastic) fluid motions “have memory”, with σ(t) a function of {F (s), s < t}.

Choosing eY i as (58) and gi as in (59) with constants µi > 0, βi = µi

λi
> 0,

αi = − 1
λi

< 0 precisely yields the motions we proposed for the first time in [4]

for Maxwell fluids, see Proposition 4. Then, when µ′
i = 0 i.e. qi = 1 and h′i is

constant, the differential “rate-type” constitutive relations (54) and (55) simplify
to

▼
τ 1 = α1τ 1 + β1ρI(62)

■
τ 2 = α2τ 2 + β2ρ(d− 1)I(63)

where we have introduced a new objective derivative using D̄(u) := D(u)−(divu)I

■
τ 2:=

▲
τ 2 −2(τ 2 : D̄)I − 2 tr τ2

d−1 D̄ .

With βi

αi
constant, (54)–(55) rewrite using T 1 := τ 1+

β1

α1
ρI, T 2 := τ 2− β2

α2
ρ(d−1)I

▼
T 1 = α1T 1 − 2 β1

α1
ρD(u)(64)

■
T 2 = α2T 2 − β2

α2
ρ(d− 1)

(
2

d−1D(u) + (3− 2
d−1 )(divu)I

)
.(65)

So one can expect our framework to capture Newtonian fluid behaviours through

T 1 ≈ 2ν1ρD(u) as α1 → ∞ , ν1 := − β1

α2
1
> 0 constant

T 2 ≈ ν2ρ
(

2
d−1D(u) + (3− 2

d−1 )(divu)I
)

as α2 → ∞ , ν2 := − β2

α2
2
> 0 constant

The constitutive laws (62) (for τ 1) and (64) (for T 1) exactly coincide with the
reformulation of Upper-Convected Maxwell (UCM) fluids that we proposed in [4].
The law (63) (for τ 2) and (65) (for T 2) is exactly the extension to Lower-Convected
Maxwell (LCM) fluids that we proposed in [6]. Note that (64), (65) hold when

αi, βi are functions provided βi

αi
remain constant, which bears the possibility of

physically-motivated thermo-mechanical extensions, as already mentioned in [6]
(see also Section 7.1 below to introduce heat transfer).

Many other (new) models can also easily be formulated from our constitutive
assumptions, Prop. 5 and (59) with non-constant h′i ≡ µi > 0 in (43) (though they

are possibly stable on very short times only, to ensure Ai ∈ Sd
+,∗). For instance,

we already mentionned the choice hi(s) = −bi log
(
1− s

bi

)
, bi > 0, h′i(s) = 1

1− s
bi

for solids [21], which makes sense as long as the “conformation tensors”

s1 := FA1F
T s2 := F̂A2F̂

T

remain symmetric positive definite with eigenvalues in (0, bi) ∋ s, recall (47–48),
thus which relates to closures of so-called FENE (Finitely Extensible Nonlinear
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Elastic) fluids [25] already suggested in [6]. In Prop. 6, we precise the differential
form of the latter model, which is a new closure of FENE-type to our knowledge.

Proposition 6. Assume qi = 1, hi(s) = −bi log
(
1− s

bi

)
, bi > 0 so it holds

(66) µi(s) =
1

1− s
bi

.

Then, provided βi > 0, one can choose any constants αi

βi
< 0 to fulfill (H3) such

that the true stress components in (45) read τ 1 ≡ µ1ρs1, τ 2 ≡ µ2ρ(s2 − I tr s2)
where, recalling (47–48), µi (i = 1, 2) depend on the tensors si that satisfy

(67)
▽
s1=

β1
µ1

(
I +

α1

β1
µ1s1

)

(68)
△
s2=

β2
µ2

(
I +

α2

β2
µ2s2

)
while we have used the standard Upper-Convected time-rate i.e.

(69)
▽
τ := ∂tτ + (u ·∇)τ −∇u · τ − τ ·∇uT

in (67), and the following Lower-Convected time-rate in (68):

(70)
△
τ := ∂tτ + (u ·∇)τ + τ ·∇u+∇uT · τ − 2(divu)τ .

Proof. Proceed similarly to the proof of Prop. 4 using the known dynamics of F ,
Ai, F̂ in si. □

The dynamics (67) of s1 coincides with the so-called FENE-P equation [36] when

λi =
βi

µi
, i = 1. However, the initial FENE-P model was proposed for incompressible

fluids. The dynamics (68) of s2 is a new FENE-type model, to our knowledge.

6.3. Thermal influences on mechanics. To explicitly use (H4) with some func-
tional expression for ē , we follow an approach that has been used extensively to
incorporate thermal influences into stored energies of hyperelastic materials, e.g.
for the thermoelasticity of rubberlike materials [10, 14, 9, 34].

Assuming e convex in η, we start with an “empirical” expression (i.e. compatible
with observations) for the Legendre transform (i.e. the convex conjugate)

e⋆(F ,Y i, θ) := sup
η≥0

(e(F ,Y i, η)− θη)

which is usually termed the Helmholtz free energy and denoted ψ(F ,Y i, θ):

(71) ψ̂0(ρ
−1, θ) +K1(θ)ê1(C,Y 1) +K2(θ)ê2(Ĉ,Y 2) + ki(θ)eY i

(Y i) .

Assuming ψ̂0 convex in (ρ−1, θ) ∈ R+ × R+ and denoting its Legendre transform

ê0(ρ
−1, η) := supθ≥0

(
ψ̂0(ρ

−1, θ)− θη
)
, one obtains an expression for a stored en-

ergy e(F ,Y i, η) Legendre transform of (71) provided Ki(θ), ki(θ) are affine in θ:

(72) ê0

(
ρ−1, η + (∂θK1)ê1(C,Y 1) + (∂θK2)ê2(Ĉ,Y 2) + (∂θki)eY i

(Y i)
)

+ (K1 − θ∂θK1)ê1(C,Y 1) + (K2 − θ∂θK2)ê2(Ĉ,Y 2) + (ki − θ∂θki)eY i
(Y i)

where ∂θKi, ∂θki, Ki − θ∂θKi, ki − θ∂θki ∈ R+ are constant.

Proposition 7. The stored energy (72) using matrix-monotone and convex func-
tions ê1, ê2 like in (43), ê0(ρ

−1, η) strictly convex in (ρ−1, η) ∈ R+×R+, monotone
increasing in η, and ∂θKi, ∂θki, Ki − θ∂θKi, ki − θ∂θki ∈ R+ fulfills (H4).
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Then, the Cauchy stress reads σ = −p0I + τ 1 + τ 2 as in (45) with the spheric
contribution p0 := −∂ρ−1 ê0 as in Prop. 4, and extra-stresses τ i = Ki(θ)ρ(∂F êi ·F )
(i = 1, 2) where ρ(∂F êi · F ) reads as in (47)–(48).

Proof. Proving (H4) is immediate on noting η+(∂θK1)ê1(C,Y 1)+(∂θK2)ê2(Ĉ,Y 2)+

(∂θki)eY i
(Y i) is convex in (Y i,C, Ĉ, η). Formulas follow by computations. □

An expression (72) using ê1, ê2 as in (43) was already proposed in our former
extension [6] of [4]. Various expressions for ê0(ρ

−1, η) strictly convex in (ρ−1, θ) ∈
R+ × R+, monotone increasing in η, were also proposed in [6], inspired by typical
examples from the fluid literature. Note that such expressions for the Helmholtz
free energy can be justified by an underlying statistical physics theory as in [18].
In any case, Prop. 7 captures only an affine dependence on temperature of the
non-spheric contribution to Cauchy stress. So, although the total stress satisfies a
non-trivial PDE on account of the time-dependency of

θ = ∂η ê0

(
ρ−1, η + (∂θK1)ê1(C,Y 1) + (∂θK2)ê2(Ĉ,Y 2) + (∂θki)eY i

(Y i)
)

the conformation tensors in ρ(∂F êi ·F ) given by (47)–(48) are unchanged and follow
the same differential rate-type constitutive relations as in the case where mechanics
is temperature-independent.

7. Conclusion and Perpsectives

We proposed new constitutive assumptions to unequivocally define physically-
sensible non-isentropic motions through symmetric-hyperbolic PDEs, covering both
solids and viscous fluids. The new constitutive assumptions (H3), in absence
of thermal influences, generalize our symmetric-hyperbolic formulation of flows of
Maxwell type [4] and allow one to propose new visco-elastic motions. The new con-
stitutive assumptions (H4), which take into account thermal influences on Cauchy
stress (at most affine as regards non-spheric contributions), generalize our extension
[6] of [4] and also allow one to propose new visco-elastic motions. For instance, a
new FENE-type model has been easily constructed in Prop. 6 simply by working
around standard choices through our constitutive assumptions. Questions remain.

On the mathematical side, one may want to rigorously investigate the structural
stability of the model in the viscous fluid limit, as in the solid limit case [7].

On the physical side, one may want to help identify specific choices within con-
stitutive assumptions from observations like chemical structure of the materials,
and to incorporate more phenomenas like heat conduction.

We already proposed how to incorporate heat conduction in [4], see [6]. One can
similarly incorporate heat conduction into the general class of fluids defined herein
after [4]. The constitutive assumptions proposed above simply need complementing
as in Prop. 8 below (for rigid heat-conductors) to incorporate heat conduction. But
the effectivity of the diffusive regime expected as a consequence of those additional
assumptions is then another remaining question. . . to be elucidated in future works,
like the choice of specific constitutive relations from observations.

7.1. Heat transfer with conduction. Within real materials, heat is not only
transfered by convection but also by conduction (and radiation etc.). Capturing
accurately the full heat transfer dynamics can be key to describe the motions of
material whose mechanical properties depend on the heat (i.e. on the temperature)
[28]. Now, it is possible to introduce heat conduction in the hyperbolic modelling
framework proposed above to unify fluid and solid motions. For the sake of clarity,
let us simply explain how to model heat conduction in a hyperbolic framework
independently of the mechanics, i.e. for rigid heast conductors with a stored energy



16 SÉBASTIEN BOYAVAL

that only depends on entropy and additional variables p measuring temperature
variations. Precisely, when (23) holds with ∂F e ≡ 0 and S = 0, (17) reduces to

(73) ρ̂∂te+ ∂αQ
α = ρ̂r .

For compatibility of (73) with the second principle in case of heat conduction

(74) ∂tη + ∂αq
α = (r +D)/θ

one can assume e.g. e(η,p) = es(η) + ep(p), Q
α = ρ̂θqα, and

(75) (∂pαe)∂tp
α + qα∂αθ = D

with D ≥ 0, which remains to be chosen for (formal) compatibility with experimen-
tal observations. Precisely, when r = 0, (74) implies for θ := ∂ηe

(76) ρC1(∂t + ui∂i)θ + ∂i
(
θρF i

αq
α
)
= ρ

(
D + F i

αq
α∂iθ

)
on denoting C1(θ) := ∂θe

⋆
s, which one can expect asymptotically identical to

(77) ρC1(∂t + ui∂i)θ − ∂i (κij∂jθ) = 0

(i.e. heat diffusion) for some matrix κ ∈ Sd
+,∗ when

θρF i
αq

α → −κij∂jθ equiv. θρqα → −κ̂αβ∂βθ, κ̂ := F−1 · κ · F−T

hold simultaneously as (the so-called Fourier’s law)

F i
αq

α∂iθ +D ≡ qα∂αθ +D → 0 i.e. D → θρ(qα[κ̂−1]αβq
β) > 0.

Note that such a limit regime implies p stationary i.e. (∂pαe)∂tp
α → 0 by (75). Fol-

lowing previous propositions in the literature see e.g. [35, 6], we therefore propose
to assume ep(p) = τ |p|2/2 and a relaxation process for the state variable p = pαeα

(78) τ∂tp
α + ∂αζ(θ) = −ρθ|ζ ′(θ)|2[κ̂−1]αβp

β

so that (75) is a consequence when q := ζ ′(θ)p, ζ ′(θ) ≶ 0, D := θρ(qα[κ̂−1]αβq
β) >

0. Compatibility with experimental observations (heat diffusion with Fourier’s law)
can then be formally expected when τ → 0 and (78) yields ρFp → − (κ∇θ) /θζ ′(θ).

A conservation law like (78) with a view to defining the heat and entropy fluxes
Q, q in (73)–(74) seems to have first been postulated by Cattaneo [8]. It still often
bears his name despite many various “hyperbolic” formulations proposed since to
capture the “second-sound” phenomenon observed in experiments [35, 37, 6].

Proposition 8. Given e(η,p) = es(η) +
τ
2 |p|

2/2, τ > 0, a strictly convex func-

tion es ∈ C2, a C1 matrix-valued function κ̂(η, p) ∈ Sd
+,∗ and a stricly monotone

function ζ ∈ C1(R+), the quasilinear system (74)–(78) for (η,p), with θ = ∂ηe,
q = ζ ′(θ)p, D = θρ(qα[κ̂−1]αβq

β) and source terms ρ, r, is symmetric-hyperbolic.

Proof. This is a straightforward consequence of Godunov-Mock theorem insofar as
(74)–(78) has been constructed in order to satisfy the additional conservation law
(73) where Q = ρ̂θq and e is strictly (jointly) convex in (η,p). □

To complement the constitutive assumptions of the previous sections and in-
corporate heat conduction, note that one can simply add +τ |p|2/2 in the stored
energies and postulate (78) with some scalar function ζ ′(θ) ≶ 0.
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