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A CLASS OF SYMMETRIC-HYPERBOLIC PDES MODELLING FLUID AND SOLID CONTINUA

We generalize a new symmetric-hyperbolic system of PDEs proposed in [ESAIM:M2AN 55 (2021) 807-831] for Maxwell fluids to a class of systems that define unequivocally multi-dimensional visco-elastic flows.

Precisely, within a general setting for continuum mechanics, we specify constitutive assumptions i) that ensure the unequivocal definition of motions satisfying widely-admitted physical principles, and ii) that contain [ESAIM:M2AN 55 (2021) 807-831] as one particular realization of those assumptions.

The new class can capture the mechanics of various materials, from solids to viscous fluids, possibly with temperature dependence and heat conduction.

Introduction

Continuum mechanics has kept evolving since pioneering works of Bernoullis, D'Alembert, Euler, Cauchy etc., in particular with a view to describing motions of various materials more and more realistically. A tenet of continuum mechanics is the description of the motions of infinitely-many "glued" particles usually termed bodies through functions continuous in time and space, with directional derivatives (like ϕ -1 t defined in Section 2). The functions are defined as solutions to Boundary Value Problems (BVPs) using Partial Differential Equations (PDEs). To define motions of various materials, the PDEs vary: two bodies with identical initial positions move differently depending on the modelled materials.

The variety of PDEs considered by continuum mechanics reflects the variety of constitutive assumptions that can be postulated to complement the general continuum mechanics theory and specify one model for the motions of some particular materials (the motion of a body is unequivocally defined as a PDE solution). Despite many efforts toward systematization, choosing constitutive assumptions for one particular materials remains an art despite some guiding principles and a number of existing constitutive assumptions [START_REF] Truesdell | The non-linear field theories of mechanics[END_REF].

In the present work, we discuss constitutive assumptions that lead to a large class of (symmetric-hyperbolic) PDEs covering many materials between elastic solids and viscous fluids. What is exactly meant by those material behaviours needs precising, of course: this belongs to our discussion below. We also show particular examples of constitutive laws that realize our proposed constitutive assumptions.

So far, continuum mechanics and its PDEs mainly split into solid mechanics on the one hand, and fluid mechanics on the other hand. Solid mechanics usually postulates a time-independent "stress-free" reference state. The stress-free state is then mapped to all current states through a time-parametrized diffeomorphismthe inverse of the so-called deformation field -supposedly continuous in time. On the contrary, fluid mechanics take vortices into account, as well as viscous friction. Such energy-dissipative phenomenas generally hinder the use of a single reference state. But solid mechanics can also consider energy-dissipative phenomenas on the one hand such as plasticity, see e.g. [START_REF] Gurtin | The mechanics and thermodynamics of continua[END_REF][START_REF] Steigmann | Finite elasticity theory[END_REF]. And fluid mechanics can also consider 2010 Mathematics Subject Classification. 76A10; 35L45; 74D10. 1 non-Newtonian elastic fluids "with memory" [START_REF] Beris | Thermodynamics of Flowing Systems: with Internal Microstructure[END_REF]. So the main difference between what is usually meant by "solid" and "fluid" behaviours is in fact different dynamics in e.g. relaxation to an equilibrium after external forcing. Solids tend to remember their past i.e. a stress-free configuration, while fluids tend to forget and adapt to current configuration. Now, a number of materials behave sometimes as solids and sometimes as fluids [START_REF] Dealy | Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again[END_REF]. Constitutive assumptions that encompass standard solid and fluid materials behaviours are therefore useful in continuum mechanics. . . and existing propositions still need consolidating.

Maxwell proposed in 1867 a seminal 1D visco-elastic fluid model with a relaxation time, which formally describes elastic solids when the relaxation time is infinite and Newtonian fluids when the relaxation time is zero [START_REF] Clerk | On the dynamical theory of gases[END_REF]. Inspiring to many rheologists, numerous extensions of the model have been proposed for various visco-elastic materials and geometries, see e.g. [START_REF] Dealy | Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again[END_REF]. But the model has proved difficult to extend soundfully to multi-dimensional flows, unless diffusion that prevents waves is added to the model. The extension of Maxwell ideas for application to realistic flows remains an active research topics [START_REF] Beris | Thermodynamics of Flowing Systems: with Internal Microstructure[END_REF][START_REF] Godunov | A thermodynamically consistent nonlinear model of an elastoplastic Maxwell medium[END_REF].

In [ESAIM:M2AN 55 (2021) 807-831] i.e. [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF], we proposed a mathematicallysound multi-dimensional formulation for flows of Maxwell fluids that captures finitespeed waves. That proposition consists in a symmetric-hyperbolic system of balance laws compatible with elastodynamics for hyperelastic materials in the infinite relaxation-time asymptotics λ → ∞. (Recall a symmetric-hyperbolic formulation is essential for well-posed Cauchy problems with quasilinear systems, and typically provided by a strictly convex mathematical entropy.) In comparison with standard formulations of the Maxwell's model for compressible fluids it essentially uses additional variables to model time-evolving material properties. The proposition copes well with established extensions of Maxwell's model; we believe it offers a sound framework for physical extensions that aim at unifying solids with various (complex, non-Newtonian) fluids, using additional variables to model various "imperfections".

Here, in this work, we extend the proposition we made in [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF] to general constitutive assumptions. In Section 6, we precisely state those general constitutive assumptions. Our general constitutive assumptions are new in the sense that they complement usual constitutive assumptions (ensuring widely-admitted physical principles like thermodynamics, frame-indifference) to cover a large class of models rigorously unifying unequivocal solid and fluid motions at finite-wave speed i.e. in a hyperbolic (PDE) framework. The assumptions cover, in particular, standard motions that have long been proposed for elastic solids, our formulation of visco-elastic motions for fluids of Maxwell-type [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF] possibly non-isothermal [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF],as well as motions that are new to our knowledge (see Section 6). We believe such new general constitutive assumptions are needed to model well a number of real motions, geophysical flows like ladnslide in particular. The article is organized as follows.

In Section 2, we give a short introduction to continuum mechanics, see e.g. [START_REF] Marsden | Mathematical Foundations of Elasticity[END_REF][START_REF] Gurtin | The mechanics and thermodynamics of continua[END_REF][START_REF] Steigmann | Finite elasticity theory[END_REF][START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] for more. In Section 3, we recall how one defines some classical isentropic motions of hyperelastic solid materials, given a stored energy functional. In Section 4, we propose a class of stored energy functionals that allow one to define many isentropic motions of hyperelastic solid materials with good mathematical and physical properties on following the classical approach above. In Section 5, we recall how one standardly defines fluid motions, not isentropic. In Section 6, we propose our new class of visco-hyperelastic fluids, which bases on the admissible and reasonable constitutive assumptions of Section 4 and which takes full advantage of our previous ideas in [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF] for extension to fluids. The new class of materials can depend on temperature; it covers standard and new motions.

In Section 7, we conclude about the new class and its perspectives. We also state one possible set of constitutive assumptions for a class of rigid heat-conductors (following seminal ideas of Cattaneo) that naturally couples with our constitutive assumptions of Section 6 for solid/fluid thermo-mechanics without heat conduction.

Note that the stored energy functionals that allow one to define isentropic motions of hyperelastic solid in Section 4 can be found in most textbooks [START_REF] Marsden | Mathematical Foundations of Elasticity[END_REF][START_REF] Gurtin | The mechanics and thermodynamics of continua[END_REF][START_REF] Steigmann | Finite elasticity theory[END_REF][START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]. But we are not aware of a similar study, that carefully constructs stored energy functionals achieving the (standard) constitutive assumptions for isentropic motions of hyperelastic solids, as from our proposed class. In particular, to satisfy constitutive assumptions, we propose to require stored energy functionals satisfying (H2), and show in Proposition 1 that this is actually achievable, see Section 4.

Continuum Mechanics setting

In this work, we use Einstein convention for repeated indices. We denote t the time, and x i , i = 1 . . . d the coordinates in a Cartesian basis e i of the Euclidean space R d = {x = x i e i , x i ∈ R} for d = 2 or 3.

We consider (continuous) bodies that fill R d for t ∈ [0, T ), such that there exists a diffeomorphism ϕ -1 t (x) = a ∈ R d onto a stress-free configuration also equipped with another Cartesian coordinate system {a α , α = 1 . . . 3}. (The terminology "stress-free" will be clarified in Section 3 below.)

We identify ϕ -1 t (x) = a with a particle of mass density ρ given any x ∈ R d , and we assume ρ constant i.e. considered materials are homogeneous in mass density.

We assume the back-to-label map ϕ -1 t smooth with respect to x ∈ R d and t, so one can first establish isentropic (i.e. time-reversible) deformations ϕ t of one time-independent stress-free configuration diffeomorphic to R d such as "purely elastic solid" motions of hyperelastic materials, see Sections 3 and 4. Non-isentropic motions with dissipation (viscous vortices e.g. in fluids) are standardly considered next only. The essence of the present work is to propose in Section 6 a new class of fluids that are characterized by a relaxation time like in [START_REF] Clerk | On the dynamical theory of gases[END_REF], and that allow one to define unequivocally multi-dimensional non-isentropic motions like in [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF].

Denoting σ ijk Levi-Civita's symbol for i, j, k ∈ {1, 2, 3}, u := ∂ t ϕ t the velocity, F = F i α e i ⊗ e α the deformation gradient where F i α := ∂ α ϕ i , |F | its determinant and F its cofactor (equiv. transpose adjugate), the following conservation laws

∂ t F i α -∂ α u i = 0 (1) ∂ t |F | -∂ α F i α u i = 0 (2) ∂ t F i α + σ ijk σ αβγ ∂ β F j γ u k = 0 (3)
are established using classical derivatives on R × R d ∋ t, a and Piola's identities [START_REF] David | Symmetric-hyperbolic equations of motion for a hyperelastic material[END_REF] (4)

σ αβγ ∂ β F i γ = 0 = ∂ α F i α ∀i .
Equivalent identities also hold in Eulerian description i.e. using spatial coordinates:

∂ t ρF i α + ∂ j ρF i α u j -ρu i F j α = 0 (5) ∂ t ρ + ∂ j ρu j = 0 (6) ∂ t G i α + ∂ i G j α u j = 0 (7)
having defined ρ := |F | -1 ρ, G = F -T (the transpose of the matrix inverse F -1 ), denoting similarly functions of x or a depending on the context, and rewriting Piola's identities in spatial coordinates [START_REF] Cattaneo | Sulla conduzione del calore[END_REF] ∂ j (ρF j α ) = 0 = σ ijk ∂ j (ρG k α ) ∀α .

In tensor notation one could write, in spatial coordinates

∂ t ρF T -∇ × ρF T × u = 0 (9) ∂ t ρ + div (ρu) = 0 (10) ∂ t G T + ∇ G T • u = 0 (11)
where G T is the dual (matrix transpose) of G, using Piola's identities (8) (12) div(ρF

T ) = 0 = ∇ × (ρG T ) ,
or in material coordinates, for the so-called Lagrangian description

∂ t F T = ∇ a u (13) ∂ t |F | = div a F T • u (14) ∂ t F T + ∇ a × F T × u = 0 (15)
which makes use of the Piola's identities (4) [START_REF] Dealy | Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again[END_REF] div a

F T = 0 = ∇ a × F T .
Note that when d = 2, (15) are redundant with ( 13) and ( 11) with [START_REF] Chadwick | Modified entropic elasticity of rubberlike materials[END_REF]. Now, to unequivocally define motions, i.e. u(x, t) for all x and small times t ∈ [0, T ) at least, continuum mechanics complements the above "kinematical" PDEs with physics principles like energy conservation and Galilean invariance.

Isentropic motions of hyperelastic materials

In Lagrangian description, the general balance of energy [START_REF] Després | Lagrangian gas dynamics in two dimensions and lagrangian systems[END_REF] ρ∂ 

t |u| 2 2 + e = ∂ α S iα u i -Q α + ρ(u i f i + r) (thermodynamics
∂ t (ρu) + div (ρu ⊗ u -σ) = ρf .
So, at this stage, one can expect isentropic motions to be computable, welldefined solutions u(t, x) for (t, x) ∈ [0, T ) × R 3 to (25) or [START_REF] Elliott | Convex trace functions and the Wigner-Yanase-Dyson conjecture[END_REF] complemented by i) kinematic PDEs established in Section 2, ii) initial conditions (for u, F . . . ) and iii) a functional e(F ) that actually allows one to formulate a well-posed Cauchy (initial-value) problem either with the Lagrangian description or with the Eulerian description.

But various isentropic motions should be computable if the models have to cover various real materials. To precisely compute the motions of one particular materials, modelers would choose only one particular functional e(F ) (one constitutive law ) among mathematical expressions that yield a well-posed BVP, so that the functional embodies physical specificities characterizing the motions of that particular materials.

The purpose of constitutive assumptions for isentropic motions is exactly to guide the choice of a functional e(F ), so that it is not only mathematically reasonable (in the sense: unequivocal solutions to Cauchy problems can be defined on small times at least), but also physically admissible in the sense: the mathematically-defined motions actually allow modellers to understand real motions.

In Section 6, we propose new constitutive assumptions (H3) and (H4) for nonisentropic motions, to cover both fluids and solids. To encompass standard assumptions for fluids, see Section 5, our new constitutive assumptions (H3) and (H4) contain visco-elastic fluid models, as well as isentropic motions of solids which are usually covered by more restrictive constitutive assumptions like (H1) and (H2) recalled below in Section 4. Note that in this work, the classical constitutive assumptions (H1), which characterize stored energy functionals e(F ) for isentropic motions of solids, is precised as (H2) to define unequivocally the motions.

An admissible & reasonable class of solid materials

For physical admissibility, it is usual to require material frame indifference thus: (H1) a reduced stored energy function ê exists such that e(F ) ≡ ê(C) depends on F through the right Cauchy-Green strain C := F T • F , see [29, Th. 2.10 of CH.3] or [43, (2.19)]. It implies that Cauchy stress tensor reads σ ≡ 2ρF

• ∂ C ê • F T (27) σ ij ≡ 2ρ|F | -1 F i α F j β ∂ C αβ ê .
Next, following seminal ideas by Noll [START_REF] Noll | A mathematical theory of the mechanical behavior of continuous media[END_REF][START_REF] Noll | A new mathematical theory of simple materials[END_REF], it is usual to classify functionals e(F ) ≡ ê(C) depending on their material symmetry group see e.g. [START_REF] Steigmann | Finite elasticity theory[END_REF] 

G := {R | ê(R T • C • R) = ê(C) , ∀C = F T • F }
a subset of the unimodular group U := {R ∈ R d×d , |R| = 1}. Much freedom apparently remains for an expression e(F ) at that stage. In fact, few physicallymotivated expressions e(F ) are mathematically reasonable (i.e. yield a well-posed BVP and unequivocal motions) with the PDE model (1-2-3-4-19-23). For instance, if e(F ) is strictly convex in F and reads e.g. using a constant c 2 1 > 0

(28) c 2 1 2 tr(C -I) ≡ c 2 1 2 (F k α F k α -d) ,
with the special orthogonal group as the material symmetry group (usually classified as suitable for "isotropic solids"), then the model is mathematically reasonable: isentropic motions are well-defined by unequivocal solutions to the Lagrangian system (1-19-23). Indeed, (1-19-23) has a symmetric-hyperbolic formulation thanks to [START_REF] Gent | A new constitutive relation for rubber[END_REF] and Godunov-Mock theorem [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF], so one can define unique time-continuous solutions, see Prop. 2 below 1 . But requiring the (strict) convexity of e(F ) in F seems contradictory with many observed motions [1, Section 2.7], especially with a view to unifying solids with fluids ("ultimately" in some asymptotics, see Section 5) hence to capturing deformations that are mostly determined by a spheric contribution -pI to Cauchy stress, with a pressure p := -ρ∂ |F | e 0 resulting from a (major contribution to the) strain energy e ≈ e 0 (|F |) that only depends on the determinant. Recall fluids are usually modelled from the "perfect" case with maximal material symmetry e(F ) = e(F R) for the whole unimodular group U ∋ R [START_REF] Steigmann | Finite elasticity theory[END_REF], and the determinant |F | is not convex in F ! Requiring e(F ) polyconvex in F can ensure the well-posedness of Cauchy problems and allow dependence of e on |F |. Indeed, assuming e(F ) polyconvex, an additional conservation law can hold for a function strictly convex in the conserved variables, which ensures that a system of conservation laws like (1-2-3-4-19 -23) has i) a symmetric-hyperbolic formulation by Godunov-Mock theorem [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF], hence ii) unequivocal small-time solutions to Cauchy problems [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]. Therefore, in this work, we require (strict) polyconvexity in constitutive assumptions: (H2) There exists ē(A, B, c) defined for symmetric positive matrices (A, B) ∈

S d + × S d + and c ∈ R such that the function (F , F , |F |) → ē(F T • F , F T • F , |F |) is stricly convex on R d×d × R d×d × R and defines a stored energy function by e(F ) ≡ ē(F T • F , F T • F , |F |).
Note that well-studied functions yield (H2) -thus (H1) -, see e.g. [START_REF] Simon | Loewner's theorem on monotone matrix functions[END_REF]: H2) is fulfilled as soon as ē is matrix-monotone i.e.

Proposition 1. (
A 1 ≥ A 2 & B 1 ≥ B 2 ⇒ e(A 1 , B 1 , c) ≥ e(A 2 , B 2 , c) ∀A 1 , A 2 , B 1 , B 2 ∈ S d
+ , and convex in each argument, strictly convex in c.

Proof. Recall for any

F 1 , F 2 ∈ R d×d , θ ∈ (0, 1) (29) θF 1 F T 1 + (1 -θ)F 2 F T 2 -(θF 1 + (1 -θ)F 2 ) T (θF 1 + (1 -θ)F 2 ) = θ(1 -θ)(F 1 -F 2 )(F 1 -F 2 ) T ∈ S d + .
Then one can show that (H2) holds on composing the result above i.e.

θF 1 F T 1 + (1 -θ)F 2 F T 2 ≥ (θF 1 + (1 -θ)F 2 ) T (θF 1 + (1 -θ)F 2 )
with the matrix-monotonicity and convexity of ē, similarly to [38, Th 5.1] for monotone convex functions on R. Recall the determinant is matrix-monotone [START_REF] Simon | Loewner's theorem on monotone matrix functions[END_REF]. Then, for all θ ∈ [0, 1], it first holds

(30) e(θF 1 + (1 -θ)F 2 ) ≡ ē (θF 1 + (1 -θ)F 2 ) T (θF 1 + (1 -θ)F 2 ), . . . . . . (θ F 1 + (1 -θ) F 2 ) T (θ F 1 + (1 -θ) F 2 ), |θF 1 + (1 -θ)F 2 | ≤ ē θF T 1 F 1 + (1 -θ)F T 2 F 2 , θ F T 1 F 1 + (1 -θ) F T 2 F 2 , θ|F 1 | + (1 -θ)|F 2 |
by matrix-monotonicity of ē and one concludes

e(θF 1 + (1 -θ)F 2 ) ≤ θe(F 1 ) + (1 -θ)e(F 2 )
by (standard) convexity in each argument. □

1 This is a particular case of Prop. 2 where the PDE system (1-19-23) is linear so smooth solutions can in fact be defined globally in time ∀t ≥ 0 c.f. e.g. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF].

Using (H2), (21), Godunov-Mock theorem [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF] and the available theory for symmetric-hyperbolic quasilinear systems of PDEs [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF], the following holds: Proposition 2. The system (1-2-3-4-19-23) has a symmetric-hyperbolic formulation. As a consequence, when complemented by smooth initial conditions compatible with (4), it unequivocally defines smooth motions through solutions

(u i , F i α ) ∈ C 0 t [0, T ), H s (R d ) d × H s (R d ) d×d i.e. time-continuous solutions with values in Sobolev spaces H s (R d ), s > d 2 .
The constitutive assumption (H2) has often been used with (1-2-3-4-19-23) to compute realistic isentropic motions of purely elastic solids. Many computations use a stored energy e(F ) of type [START_REF] Noll | A mathematical theory of the mechanical behavior of continuous media[END_REF] e 0 (|F

|) + ê1 (C) + ê2 ( Ĉ)
where F is the transpose adjugate of F so F T • F ≡ |C|C -1 ≡ Ĉ, and e 0 , ê1 , ê2 are three monotone convex functions (of order 1, d, d respectively), like the constitutive law of Ogden [START_REF] Ogden | Large deformation isotropic elasticity -on the correlation of theory and experiment for incompressible rubberlike solids[END_REF] famous for isotropic elastic solids referred to as rubbery materials (with only three scalar parameters to calibrate, see [12, Th. 4.9-2.] for a mathematical exposition and [START_REF] Flory | Thermodynamic relations for high elastic materials[END_REF][START_REF] Creasy | Derivation of Flory's thermodynamic relations from a phenomenological theory of rubber elasticity[END_REF] for physical justifications).

In [START_REF] Boyaval | A viscoelastic flow model of Maxwell-type with a symmetric-hyperbolic formulation[END_REF], we explicited the symmetric-hyperbolic formulation for a particular 2D choice of type [START_REF] Noll | A mathematical theory of the mechanical behavior of continuous media[END_REF] without the last term ê2 : when d = 2, the components of F and F only differ by sign so the argument F T • F is superfluous then. Now many applications need consider non-isentropic motions. Moreover, a full (dynamical) thermo-mechanics accounting for non-isentropic motions can rarely neglect heat conduction -with additional PDEs of "Cattaneo-type" [START_REF] Cattaneo | Sulla conduzione del calore[END_REF] (equiv. a thermo-elastic theory "with second-sound" [START_REF] Racke | Thermoelasticity[END_REF]) to preserve a hyperbolic viewpoint and ensure information travels at finite speed, then. But few works have tackled that direction [START_REF] Ruggeri | Generators of hyperbolic heat equation in nonlinear thermoelasticity[END_REF][START_REF] Lurie | On the nature of the relaxation time, the Maxwell-Cattaneo and Fourier law in the thermodynamics of a continuous medium, and the scale effects in thermal conductivity[END_REF][START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF]. To begin with, as in e.g. [START_REF] Chadwick | Modified entropic elasticity of rubberlike materials[END_REF], let us consider mechanical waves where e(F ) additionally depends on entropy η (or on temperature θ) under the second thermodynamics principle but without heat conduction though, then we shall come back to heat conduction in Section 7.1.

Non-isentropic motions imply a production of entropy associated with the apparition of structural "defects" in the dynamics (i.e. microscopic phenomenas) as regards mechanics. In real solids, such defects lead to fluid-like behaviours: viscosity, plasticity. Recalling that one goal of the present work is to unify the isentropic elastic solid motions of hyperelastic materials with non-isentropic fluid motions (e.g. Newtonian like below), the next step is now to enlarge the setting of continuum mechanics for hyperelastic materials (variables and PDEs) to cover fluid-like motions. We propose to tackle the issue by following existing extensions of solid mechanics beyond pure elasticity (hyperelastic materials). We shall add structural variables to dynamically describe defects like e.g. [START_REF] Sozio | Riemannian and Euclidean material structures in anelasticity[END_REF][START_REF] Rubin | An Eulerian thermodynamical formulation of sizedependent plasticity[END_REF] or [START_REF] Steigmann | Finite elasticity theory[END_REF]Chap. 13] as regards elastoplastic solids, in the Eulerian description of elastic solids (heat-insulators to begin with). The new variable shall be useful to define visco-hyperelastic fluids and constitutive assumptions in Section 6, recalling from [START_REF] David | Symmetric-hyperbolic equations of motion for a hyperelastic material[END_REF]: But before let us first recall how one standardly treats fluid motions in the present continuum setting.

(u i , F i α ) ∈ C 0 t [0, T ), H s (R d ) d × H s (R d ) d×d

Some standard fluid motions

Some fluid motions are routinely described after introducing additional ingredients in the isentropic motions of hyperelastic materials, which can be viewed as a modelling of "defects" that necessarily occur in fluids, generally non-isentropic.

Let us recall that perfect isentropic fluid motions are unequivocally defined after reducing the Eulerian description (5-6-7-8-19-24) to the gas dynamics system:

(32) ∂ t ρ + ∂ i (u i ρ) = 0 ρ ∂ t u i + u j ∂ j u i + ∂ i p = ρf i
with a spheric stress σ = -pδ of pressure p := -∂ ρ -1 ê0 ≡ C 0 ρ γ , C 0 > 0, assuming the stored energy invariant by the material symmetry group U therefore of type

(33) ê0 (ρ) ≡ C 0 γ -1 ρ γ-1 .
The Eulerian system (32) is symmetric-hyperbolic when γ > 1, but it has not one unequivocal Lagrangian description [START_REF] Després | Lagrangian gas dynamics in two dimensions and lagrangian systems[END_REF]. Non-spheric "viscous" stress induced by defects are usually introduced in (32) on adding extra-stress τ in Cauchy stress

(34) σ = -pδ + τ
such that it is frame indifferent, symmetric (to preserve angular momentum) and "dissipative" for the sake of the thermodynamics principles [START_REF] Coleman | The thermodynamics of elastic materials with heat conduction and viscosity[END_REF]. For instance, the second thermodynamics principle ( 35) is satisfied with

dissipation D ≡ τ ij ∂ j u i ≥ 0 (35) ∂ t η + (u j ∂ j )η = D/θ
in the case of a Newtonian extra-stress with two parameters ℓ, μ > 0 (36)

τ ij = 2 μD(u) ij + ℓ D(u) kk δ ij
where D(u) ij := 1 2 ∂ i u j + ∂ j u i . The compatibility of ( 35) with ( 22) can be achieved on choosing e as the sum of (33) and another independant contribution (function of η, Q. . . ) that handles D as heat, but such a compressible Newtonian model does not cope with our framework: (6-24-34-36) is not a hyperbolic system.

To model viscous fluid motions in a hyperbolic framework common with purely elastic solids, we propose to extend the hyperelastic framework of Section 3 and introduce structural defects to develop Maxwell's seminal concept of visco-elastic fluids [START_REF] Clerk | On the dynamical theory of gases[END_REF]. First, we add time-dependent "structure tensors" to the Eulerian description of motions. Next, a time-evolution of those tensors can be postulated so that it implies a specific non-Newtonian fluid constitutive law for the Cauchy stress. For some constitutive laws, the compressible ideal Newtonian fluid motions can be recovered as asymptotic limits when the Cauchy stress converges to a Newtonian viscous stress, with a non-spheric contribution of the form [START_REF] Peterlin | Hydrodynamics of macromolecules in a velocity field with longitudinal gradient[END_REF]. The idea was shown successful in previous contributions of ours [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF][START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF][START_REF] Boyaval | A viscoelastic flow model of Maxwell-type with a symmetric-hyperbolic formulation[END_REF].

In [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF], introducing A := Y -2 ∈ S d +, * positive definite in the stored energy as

(37) C 0 γ -1 ρ γ-1 + c 2 1 2 F • A : F -log |F • A • F T |
was indeed shown compatible with the following constitutive law 

τ := ∂ t τ + (u • ∇)τ -∇u • τ -τ • ∇u T + (div u) τ
which is frame indifferent i.e. "objective" so ( 38) is a physically admissible version of Maxwell's visco-elastic constitutive law. To that aim, it suffices to require μ = ρλc 2 1 and the following relaxation for the tensor A that makes e anisotropic [START_REF] Ruggeri | Generators of hyperbolic heat equation in nonlinear thermoelasticity[END_REF] λ

(∂ t + u • ∇)A + A = F -1 • F -T .
The constitutive law [START_REF] Rockafellar | Convex analysis[END_REF] is not only a physically admissible Upper-Convected version of Maxwell's 1D law [START_REF] Clerk | On the dynamical theory of gases[END_REF] for compressible fluids [START_REF] Bollada | On the mathematical modelling of a compressible viscoelastic fluid[END_REF]. It is also mathematically reasonable: (5-6-8-19-24) is a symmetric-hyperbolic system of quasilinear PDEs. Then, the ideal elastodynamics of elastic compressible neo-Hookean solids with shear modulus (equiv. Lamé second coefficient) c 2 1 is satisfied asymptotically by solutions when λ ∼ μ → ∞ [START_REF] Boyaval | About the structural stability of maxwell fluids: convergence toward elastodynamics[END_REF], and (formally) unified with compressible Newtonian fluids of viscosity μ = c 2 1 λ by solutions in the (formal) asymptotic limit τ λ→0 ---→ 2 μD(u). Note that the second principle of thermodynamics reads [START_REF] Sabri Öncü | On the constitutive relations for second sound in elastic solids[END_REF] with ρD ≡ ρ 

c = F • A • F T ∈ S d
+, * . The idea was extended in [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF] to include heat-conduction and various rheologies i.e. various constitutive laws for a non-spheric contribution τ to Cauchy stress.

In the present work, we strive to delineate the full scope of the ideas from [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF]: we state new constitutive assumptions, physically admissible and mathematically reasonable, that allow to cover standard fluid and solid motions, on extending the set of variables and of PDEs as in [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF]. We term those fluids visco-hyperelastic.

Visco-hyperelastic fluids

Let us now consider the non-isentropic motions of continuum materials with a stored energy that not only satisfies (H2) but also depends on symmetric positivedefinite structural tensor variables Y i ∈ S d +, * , i = 1, 2 with a view to expressing defects in fluid-like materials. We assume that the structural tensors Y i satisfy [START_REF] Simon | Loewner's theorem on monotone matrix functions[END_REF] λ

i (∂ t + u • ∇)Y i = f i (q)
in Eulerian description, with λ i ≥ 0 and f i (q) ∈ S d + smooth algebraic functions with symmetric-positive matrix values of the state variables q = (u, F , Y i ).

First, let us neglect thermal influences on mechanics. We propose the following constitutive assumptions for a physically admissible and mathematically reasonable Eulerian description of fluids that could be termed "visco-hyperelastic" (to precise the usual terminology "visco-elastic" that unifies viscous fluids and elastic solids):

(H3) There exists ē(Y i , A, B, c) defined for Y i , A, B ∈ S d + , c ∈ R such that the function (Y i , F , F , |F |) → ē(Y i , F T • F , F T • F , |F |) is stricly convex in Y i ∈ S d + , F ∈ R d×d , F ∈ R d×d , |F | ∈ R jointly. There also exists e Y i (Y i ) such that for any e η (η) convex the stored energy e(F ) ≡ ē(Y i , F T • F , F T • F , |F |) + e Y i (Y i ) + e η (η
) is compatible with all thermodynamics principles: (21) (energy balance in absence of heat transfer) and (35) (entropy increase). A non-spheric contribution to Cauchy stress σ models viscous stresses in fluids.

Requiring (H3) ensures a physically-admissible and mathematically-reasonable model, that satisfies (H2) when λ i → ∞ and the structural tensores Y i assume constant values. Indeed, (smooth) motions are unequivocally defined on small times as solutions to (5-6-8-19-24-41), which is symmetric-hyperbolic insofar as without source terms (i.e. when f = 0 in [START_REF] Gurtin | The mechanics and thermodynamics of continua[END_REF] and f i = 0 in (41)) a conservation law holds for

the functional ē(Y i , F T • F , F T • F , |F |) + tr(Y 2 i )
jointly convex in all the unknown variables of the PDE system (5-6-8-19-24-41).

In the sequel, we propose analytical expressions for ē and f i that satisfy (H3) and cover the useful multi-dimensional motions of Maxwell-type fluids which we proposed in [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF]. In addition, the analytical expressions also provide one with many multi-dimensional motions for visco-elastic fluids of "rate-type", see Prop. 4. To that aim, recalling

C ≡ F T • F , Ĉ ≡ F T • F , we construct stored energies like 2 (42) ê0 (ρ -1 , Y 1 , Y 2 ) + ê1 (C, Y 1 ) + ê2 ( Ĉ, Y 2 ) + e Y i (Y i ) + e η (η)
see Section 6.1. Next, we investigate source terms f i (q) in ( 41) that provide one with a second principle of thermodynamics i.e. dissipation in [START_REF] Sabri Öncü | On the constitutive relations for second sound in elastic solids[END_REF], and capture viscous fluid behaviour, see Section 6.2. Note that under (H3), the entropy production D in ( 35) is a by-product of mechanics (thermal influences on mechanics were neglected); it is easily calculated (and the convexity of e η is not necessary, in passing: monotonicity is enough, for the definition of temperature). Last, to consider mechanics with heat transfers (i.e. thermo-mechanics, with entropy or temperature), we propose in Section 6.3 the improved assumptions:

(H4) There exists ē(Y i , A, B, c, η) defined for Y i , A, B ∈ S d + , c, η ∈ R such that the function (Y i , F , F , |F |, η) → ē(Y i , F T • F , F T • F , |F |, η) is stricly convex in Y i ∈ S d + , F ∈ R d×d , F ∈ R d×d , |F | ∈ R, η ∈ R (jointly), monotone increasing in η. There also exists e Y i (Y i ) such that the stored energy e(F ) ≡ ē(Y i , F T • F , F T • F , |F |, η) + e Y i (Y i
) is compatible with all thermodynamics principles: (21) (energy balance in absence of heat transfer) and ( 35) (entropy increase). A nonspheric contribution to Cauchy stress σ models viscous stresses in fluids.

The constitutive assumptions (H4) are more general than (H3) insofar as they allow more general motions with heat transfers. They can be easily complemented further to incorporate heat conduction in our hyperbolic framework (i.e. Q ̸ = 0 in [START_REF] Després | Lagrangian gas dynamics in two dimensions and lagrangian systems[END_REF] and thermal waves), as we explain in the final Section 7.1.

6.1. Stored energy functions using structural tensors. Analytical expressions for ê1 and ê2 in [START_REF] Sozio | Riemannian and Euclidean material structures in anelasticity[END_REF] that satisfy (H3) are suggested by [26, Corollary 2.1]:

(43) ê1 = 1 2 h 1 ((tr (A 1 • C)) q1 ) and ê2 = 1 2 h 2 tr A 2 • Ĉ q2
where h 1 , h 2 are monotone increasing convex functions, while r 1 ∈ (0, 1] is as small as necessary for

q 1 ≥ (2 -r 1 ) -1 > 1 2 , A 1 = Y -r1
1 , and r 2 ∈ (0, 1] is as small as necessary for

q 2 ≥ (2 -r 2 ) -1 > 1 2 , A 2 = Y -r2 2 .
Note that the various expressions that we have proposed so far in previous works [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF][START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF] are all covered [26, Corollary 2.1], which reads:

Theorem 1. For all r ∈ (0, 1], q ≥ (2 -r) -1 the following function (44) (F , Y ) ∈ R d×d × S d +, * → tr Y -r • F T • F q is convex
jointly in all its arguments.

Using Th. 1 as a building block to functional operations (like sums of convex functions and composition by monotone increasing convex, see e.g. [START_REF] Rockafellar | Convex analysis[END_REF]Chap. 3]) one could generate much more analytical expression convex in |F |, F , F and the metric contributions to stress and other "distortional" contributions as in [START_REF] Charrier | An existence theorem for slightly compressible materials in nonlinear elasticity[END_REF]. However, ( 31) is one standard expression, and it guarantees unequivocal isentropic motions (see Prop. 2). The PDE system (5-6-8-19-24) with [START_REF] Sozio | Riemannian and Euclidean material structures in anelasticity[END_REF] and constant Y i ∈ S d +, * , which is obtained formally when λ i → ∞, has already been used for anisotropic solids [START_REF] Steigmann | Finite elasticity theory[END_REF].

(symmetric positive definite) structural tensors Y i than ( 42), although we are not aware of a general expression resulting from such operations. For instance, inspired by [START_REF] Fung | Biomechanics, Mechanical properties of living tissues[END_REF][START_REF] Gent | A new constitutive relation for rubber[END_REF], one could choose x → e b 2 x -1 [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF]Sec. 4.2]. (Note that solutions a priori preserve the bound 0 ≥ (tr (A i • C))

2b 2 , b 2 > 0 for h i , or [0, b 2 ) ∋ x → -b 2 log 1 -x/b 2 see also
qi < b 2 on small times only, just like the orientationpreserving constraint ρ ≥ 0 and the hyperbolicity domain

Y 1 , Y 2 ∈ S d +, * × S d +, * , see e.g. [4, Corollary 2]).
Next, any volumetric term ê0 in (42) that does not depend on Y 1 , Y 2 and that is strictly convex in ρ -1 can also be chosen, independently of ê1 and ê2 . In [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF][START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF], we used various expressions from the literature for ê0 see e.g. [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF]Sec. 4.3].

Finally, given a stored energy like ( 42) using ( 43), the Cauchy stress reads

(45) σ = -p 0 I + τ 1 + τ 2 where, on denoting for i = 1, 2 (46) 
µ i (s) = q i s qi-1 h ′ i (s qi ) > 0 , the spheric contribution p 0 := -∂ ρ -1 ê0 is complemented by τ 1 := µ 1 tr A 1 • F T • F ρF • A 1 • F T , (47) 
τ 2 := µ 2 tr A 2 • F T • F ρ -F • A 2 • F T + ( Ĉ : A 2 )I . (48) 
Choosing one specific expression for the stored energy fully characterizes the mechanics (i.e. stress and waves speed) in the solid-motions limit λ i → ∞.

But when λ i > 0 is finite, the stress σ(t) at time t > 0 is a priori not yet fully determined as a function of F (t) at the same time; it also depends on Y i (t) which accounts for the past states F (s), s ≤ t through f i in (41).

Structural tensors dynamics.

From the mathematical viewpoint, possible expressions for f i in (41) can be any smooth functions in the variable q := (u, F , Y 1 , Y 2 ). But from the physical viewpoint, the second-principle of thermodynamics should be satisfied, which means here that the source terms in the defects evolutions have to be chosen to induce dissipation D ≥ 0 in [START_REF] Sabri Öncü | On the constitutive relations for second sound in elastic solids[END_REF] with

(49) D ≡ - 1 λ i ∂ Y i e : f i ,
to produce entropy η. In particular, e and f i cannot be chosen independently ! Now, recall

A i := Y -ri i is uniquely defined by Y i ∈ S d +, * , r i ∈ (0, 1], so one can equivalently fix f i (q) in (41) or choose g i (q) ∈ S d in (50) (∂ t + u • ∇)A i = g i (q)
which yields practical rate-type differential constitutive relations for stress.

Proposition 4. Given a stored energy like (42) using (43), the two contributions τ 1 and τ 2 in (45) satisfy

▼ τ 1 = µ 1 ρF • g 1 • F T + 2 τ 1:∇u ρµ1 + g 1 : C µ ′ 1 µ1 τ 1 (51) ▲ τ 2 = -µ 2 ρ F • g 2 • F T + 2 τ 2 : D ρµ2 + g 2 : Ĉ µ ′ 2 µ2 τ 2 + µ 2 ρI + 2 tr τ 2 d-1 D (52)
denoting D(u) := D(u) -(div u)I, using the frame-indifferent time-rates [START_REF] Rubin | An Eulerian thermodynamical formulation of sizedependent plasticity[END_REF] and

(53) ▲ τ := ∂ t τ + (u • ∇)τ + τ • ∇u + ∇u T • τ -(div u) τ .
If g i are as in (59) using any α i , β i , µ i then (51) and (52) respectively precise as

▼ τ 1 = 2 τ 1:∇u ρ + α1 tr τ 1 ρ +dβ1 µ ′ 1 µ 2 1 +α1 τ 1 + (β1ρ)I (54) ▲ τ 2 = 2 τ 2: D ρ +α2 tr τ 2 ρ(d-1) +dβ2 µ ′ 2 µ 2 2 +α2 τ 2 + (β2ρ(d-1)+2τ2: D) I + 2 tr τ 2 d-1 D . (55) 
Proof. It holds [START_REF] David | Symmetric-hyperbolic equations of motion for a hyperelastic material[END_REF] on recalling h i are assumed increasing. Formulas (47) and ( 48) in ( 45) result from lengthy but straightforward computations on recalling [START_REF] Lurie | On the nature of the relaxation time, the Maxwell-Cattaneo and Fourier law in the thermodynamics of a continuous medium, and the scale effects in thermal conductivity[END_REF] and

∂ F j β F i α = σ ijk σ αβγ F k γ .
Then, recalling from (5-8)

∂ t F i α + (u j ∂ j )F i α = ∂ j u i F j α ( 56 
)
∂ t F i α + (u j ∂ j ) F i α = -F j α ∂ i u j + F i α ∂ k u k (57) 
(51) and (52) also follow straightforwardly. Last, assumptions (59) on g i imply

F • g 1 • F T = α 1 F • A 1 • F T + β 1 µ 1 I = α 1 τ 1 µ 1 ρ + β 1 µ 1 I F • g 2 • F T = α 2 F • A 2 • F T + β 2 µ 2 I = -α 2 τ 2 µ 2 ρ + ( β 2 µ 2 + α 2 tr( F • A 2 • F T ))I hence tr F • g 2 • F T = α 2 tr τ 2 µ2ρ(d-1) + d β2 µ2 on noting (48) implies tr( F • A 2 • F T ) = tr τ 2 µ2ρ(d-1)
, and (54) (55) after lengthy but straightforward computations. □ Some particular choices g i can guarantee the second thermodynamics principle. 

Y i = 1 (58) e 
β i α i log |A i | ≡ -r i 1 2 
β i α i log |Y i | 2 
with β i > 0 and constant βi αi < 0, then the source terms

(59) g 1 = α 1 A 1 + β 1 µ 1 F -1 • F -T , g 2 = α 2 A 2 + β 2 µ 2 F -1 • F -T
in (50) are dissipative i.e. they induce dissipation following (49).

Proof. The dissipation condition (49) reads ∂ Y i e : g i ≤ 0, i.e. with our hypotheses (60)

β 1 α 1 A -1 1 + µ 1 C : α 1 A 1 + β 1 µ -1 1 C -1 + β 2 α 2 A -1 2 + µ 2 Ĉ : α 2 A 2 + β 2 µ -1 2 Ĉ-1 = β 1 µ 1 α 1 β 1 (A 1 : C) -2d + 1 µ 1 β 1 α 1 (C -1 : A -1 1 ) + β 2 µ 2 α 2 β 2 (A 2 : Ĉ) -2d + 1 µ 2 β 2 α 2 ( Ĉ-1 : A -1 2 ) ≤ 0
which is satisfied on recalling x -2 + 1 x ≥ 0 holds for all x > 0 as well as in trace sense for all symmetric positive definite matrices like

F • A 1 • F T and F • A 2 • F T in (60) -recall A 1 : C = tr(F • A 1 • F T ), A 2 : Ĉ = tr( F • A 2 • F T ) etc. - □
The symmetric source terms g i in (59) have no sign though. To ensure A i ∈ S d +, * , it is thus convenient to choose e Y i as (58) and g i as in (59) with constants β i > 0, α i < 0, µ i > 0 (i.e. q i = 1 and constants h ′ i > 0) so the solution to (50) reads

(61) A 1 (t) = A 1 (0)e α1t + t 0 β 1 µ 1 C -1 (s)e α1(t-s) ds , A 2 (t) = A 2 (0)e α2t + t 0 β 2 µ 2
Ĉ-1 (s)e α2(t-s) ds , ∀s < t , in Lagrangian coordinates, which guarantees A i ∈ S d +, * as long as the Lagrangian description holds. Another benefit of the latter integral formula for the stress as a function of F , well known in rheology as K-BKZ formula (assuming that A i remain bounded as t → -∞, see [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF] for more explanations), is to show how (viscohyperelastic) fluid motions "have memory", with σ(t) a function of {F (s), s < t}.

Choosing e Y i as (58) and g i as in (59) with constants µ i > 0,

β i = µi λi > 0, α i = -1
λi < 0 precisely yields the motions we proposed for the first time in [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF] for Maxwell fluids, see Proposition 4. Then, when µ ′ i = 0 i.e. q i = 1 and h ′ i is constant, the differential "rate-type" constitutive relations (54) and (55) simplify to

▼ τ 1 = α 1 τ 1 + β 1 ρI (62) ■ τ 2 = α 2 τ 2 + β 2 ρ(d -1)I (63)
where we have introduced a new objective derivative using D(u

) := D(u)-(div u)I ■ τ 2 := ▲ τ 2 -2(τ 2 : D)I -2 tr τ 2 d-1 D . With βi αi constant, (54)-(55) rewrite using T 1 := τ 1 + β1 α1 ρI, T 2 := τ 2 -β2 α2 ρ(d-1)I ▼ T 1 = α 1 T 1 -2 β1 α1 ρD(u) (64) ■ T 2 = α 2 T 2 -β2 α2 ρ(d -1) 2 d-1 D(u) + (3 -2 d-1 )(div u)I . ( 65 
)
So one can expect our framework to capture Newtonian fluid behaviours through

T 1 ≈ 2ν1ρD(u) as α 1 → ∞ , ν 1 := -β1 α 2 1 > 0 constant T 2 ≈ ν 2 ρ 2 d-1 D(u) + (3 -2 d-1 )(div u)I as α 2 → ∞ , ν 2 := -β2 α 2 2 > 0 constant
The constitutive laws (62) (for τ 1 ) and (64) (for T 1 ) exactly coincide with the reformulation of Upper-Convected Maxwell (UCM) fluids that we proposed in [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF].

The law (63) (for τ 2 ) and (65) (for T 2 ) is exactly the extension to Lower-Convected Maxwell (LCM) fluids that we proposed in [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF]. Note that (64), (65) hold when α i , β i are functions provided βi αi remain constant, which bears the possibility of physically-motivated thermo-mechanical extensions, as already mentioned in [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF] (see also Section 7.1 below to introduce heat transfer).

Many other (new) models can also easily be formulated from our constitutive assumptions, Prop. 5 and (59) with non-constant h ′ i ≡ µ i > 0 in (43) (though they are possibly stable on very short times only, to ensure A i ∈ S d +, * ). For instance, we already mentionned the choice h

i (s) = -b i log 1 -s bi , b i > 0, h ′ i (s) = 1 1-s b i
for solids [START_REF] Gent | A new constitutive relation for rubber[END_REF], which makes sense as long as the "conformation tensors"

s 1 := F A 1 F T s 2 := F A 2 F T
remain symmetric positive definite with eigenvalues in (0, b i ) ∋ s, recall (47-48), thus which relates to closures of so-called FENE (Finitely Extensible Nonlinear Elastic) fluids [START_REF] Herrchen | A detailed comparison of various fene dumbbell models[END_REF] already suggested in [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF]. In Prop. 6, we precise the differential form of the latter model, which is a new closure of FENE-type to our knowledge.

Proposition 6. Assume q i = 1, h i (s) = -b i log 1 -s bi , b i > 0 so it holds (66) µ i (s) = 1 1 -s bi .
Then, provided β i > 0, one can choose any constants αi βi < 0 to fulfill (H3) such that the true stress components in [START_REF] Šilhavý | Mass, internal energy, and Cauchy's equations in frame-indifferent thermodynamics[END_REF] 

read τ 1 ≡ µ 1 ρs 1 , τ 2 ≡ µ 2 ρ(s 2 -I tr s 2 )
where, recalling (47-48), µ i (i = 1, 2) depend on the tensors s i that satisfy

(67) ▽ s 1 = β 1 µ 1 I + α 1 β 1 µ 1 s 1 (68) △ s 2 = β 2 µ 2 I + α 2 β 2 µ 2 s 2
while we have used the standard Upper-Convected time-rate i.e.

(

) ▽ τ := ∂ t τ + (u • ∇)τ -∇u • τ -τ • ∇u T 69 
in (67), and the following Lower-Convected time-rate in (68):

(70)

△ τ := ∂ t τ + (u • ∇)τ + τ • ∇u + ∇u T • τ -2(div u)τ .
Proof. Proceed similarly to the proof of Prop. 4 using the known dynamics of F , A i , F in s i . □

The dynamics (67) of s 1 coincides with the so-called FENE-P equation [START_REF] Peterlin | Hydrodynamics of macromolecules in a velocity field with longitudinal gradient[END_REF] when λ i = βi µi , i = 1. However, the initial FENE-P model was proposed for incompressible fluids. The dynamics (68) of s 2 is a new FENE-type model, to our knowledge. 6.3. Thermal influences on mechanics. To explicitly use (H4) with some functional expression for ē , we follow an approach that has been used extensively to incorporate thermal influences into stored energies of hyperelastic materials, e.g. for the thermoelasticity of rubberlike materials [START_REF] Chadwick | Thermo-mechanics of rubberlike materials[END_REF][START_REF] Creasy | Derivation of Flory's thermodynamic relations from a phenomenological theory of rubber elasticity[END_REF][START_REF] Chadwick | Modified entropic elasticity of rubberlike materials[END_REF][START_REF] Ogden | On the thermoelastic modeling of rubberlike solids[END_REF].

Assuming e convex in η, we start with an "empirical" expression (i.e. compatible with observations) for the Legendre transform (i.e. the convex conjugate)

e ⋆ (F , Y i , θ) := sup η≥0 (e(F , Y i , η) -θη)
which is usually termed the Helmholtz free energy and denoted ψ(F , Y i , θ):

(71) ψ0 (ρ -1 , θ) + K 1 (θ)ê 1 (C, Y 1 ) + K 2 (θ)ê 2 ( Ĉ, Y 2 ) + k i (θ)e Y i (Y i ) .
Assuming ψ0 convex in (ρ -1 , θ) ∈ R + × R + and denoting its Legendre transform ê0 (ρ -1 , η) := sup θ≥0 ψ0 (ρ -1 , θ) -θη , one obtains an expression for a stored energy e(F , Y i , η) Legendre transform of (71) provided K i (θ), k i (θ) are affine in θ:

(72) ê0 ρ -1 , η + (∂ θ K 1 )ê 1 (C, Y 1 ) + (∂ θ K 2 )ê 2 ( Ĉ, Y 2 ) + (∂ θ k i )e Y i (Y i ) + (K 1 -θ∂ θ K 1 )ê 1 (C, Y 1 ) + (K 2 -θ∂ θ K 2 )ê 2 ( Ĉ, Y 2 ) + (k i -θ∂ θ k i )e Y i (Y i )
where

∂ θ K i , ∂ θ k i , K i -θ∂ θ K i , k i -θ∂ θ k i ∈ R + are constant.
Proposition 7. The stored energy (72) using matrix-monotone and convex functions ê1 , ê2 like in (43), ê0 (ρ -1 , η) strictly convex in (ρ -1 , η) ∈ R + ×R + , monotone increasing in η, and

∂ θ K i , ∂ θ k i , K i -θ∂ θ K i , k i -θ∂ θ k i ∈ R + fulfills (H4).
Then, the Cauchy stress reads σ = -p 0 I + τ 1 + τ 2 as in [START_REF] Šilhavý | Mass, internal energy, and Cauchy's equations in frame-indifferent thermodynamics[END_REF] with the spheric contribution p 0 := -∂ ρ -1 ê0 as in Prop. 4, and extra-stresses

τ i = K i (θ)ρ(∂ F êi • F ) (i = 1, 2) where ρ(∂ F êi • F ) reads as in (47)-(48). Proof. Proving (H4) is immediate on noting η+(∂ θ K 1 )ê 1 (C, Y 1 )+(∂ θ K 2 )ê 2 ( Ĉ, Y 2 )+ (∂ θ k i )e Y i (Y i ) is convex in (Y i , C, Ĉ, η).
Formulas follow by computations. □

An expression (72) using ê1 , ê2 as in [START_REF] Steigmann | Finite elasticity theory[END_REF] was already proposed in our former extension [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF] of [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF]. Various expressions for ê0 (ρ -1 , η) strictly convex in (ρ -1 , θ) ∈ R + × R + , monotone increasing in η, were also proposed in [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF], inspired by typical examples from the fluid literature. Note that such expressions for the Helmholtz free energy can be justified by an underlying statistical physics theory as in [START_REF] Dressler | Macroscopic thermodynamics of flowing polymeric liquids[END_REF]. In any case, Prop. 7 captures only an affine dependence on temperature of the non-spheric contribution to Cauchy stress. So, although the total stress satisfies a non-trivial PDE on account of the time-dependency of

θ = ∂ η ê0 ρ -1 , η + (∂ θ K 1 )ê 1 (C, Y 1 ) + (∂ θ K 2 )ê 2 ( Ĉ, Y 2 ) + (∂ θ k i )e Y i (Y i )
the conformation tensors in ρ(∂ F êi •F ) given by ( 47)-( 48) are unchanged and follow the same differential rate-type constitutive relations as in the case where mechanics is temperature-independent.

Conclusion and Perpsectives

We proposed new constitutive assumptions to unequivocally define physicallysensible non-isentropic motions through symmetric-hyperbolic PDEs, covering both solids and viscous fluids. The new constitutive assumptions (H3), in absence of thermal influences, generalize our symmetric-hyperbolic formulation of flows of Maxwell type [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF] and allow one to propose new visco-elastic motions. The new constitutive assumptions (H4), which take into account thermal influences on Cauchy stress (at most affine as regards non-spheric contributions), generalize our extension [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF] of [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF] and also allow one to propose new visco-elastic motions. For instance, a new FENE-type model has been easily constructed in Prop. 6 simply by working around standard choices through our constitutive assumptions. Questions remain.

On the mathematical side, one may want to rigorously investigate the structural stability of the model in the viscous fluid limit, as in the solid limit case [START_REF] Boyaval | About the structural stability of maxwell fluids: convergence toward elastodynamics[END_REF].

On the physical side, one may want to help identify specific choices within constitutive assumptions from observations like chemical structure of the materials, and to incorporate more phenomenas like heat conduction.

We already proposed how to incorporate heat conduction in [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF], see [START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF]. One can similarly incorporate heat conduction into the general class of fluids defined herein after [START_REF] Boyaval | Viscoelastic flows of Maxwell fluids with conservation laws[END_REF]. The constitutive assumptions proposed above simply need complementing as in Prop. 8 below (for rigid heat-conductors) to incorporate heat conduction. But the effectivity of the diffusive regime expected as a consequence of those additional assumptions is then another remaining question. . . to be elucidated in future works, like the choice of specific constitutive relations from observations. 7.1. Heat transfer with conduction. Within real materials, heat is not only transfered by convection but also by conduction (and radiation etc.). Capturing accurately the full heat transfer dynamics can be key to describe the motions of material whose mechanical properties depend on the heat (i.e. on the temperature) [START_REF] Mackay | On the derivation of macroscopic models for compressible viscoelastic fluids using the generalized bracket framework[END_REF]. Now, it is possible to introduce heat conduction in the hyperbolic modelling framework proposed above to unify fluid and solid motions. For the sake of clarity, let us simply explain how to model heat conduction in a hyperbolic framework independently of the mechanics, i.e. for rigid heast conductors with a stored energy that only depends on entropy and additional variables p measuring temperature variations. Precisely, when [START_REF] Godunov | A thermodynamically consistent nonlinear model of an elastoplastic Maxwell medium[END_REF] holds with ∂ F e ≡ 0 and S = 0, (17) reduces to (73) ρ∂ t e + ∂ α Q α = ρr .

For compatibility of (73) with the second principle in case of heat conduction (74) ∂ t η + ∂ α q α = (r + D)/θ one can assume e.g. e(η, p) = e s (η) + e p (p), Q α = ρθq α , and

(75) (∂ p α e)∂ t p α + q α ∂ α θ = D with D ≥ 0, which remains to be chosen for (formal) compatibility with experimental observations. Precisely, when r = 0, (74) implies for θ := ∂ η e (76) ρC 1 (∂ t + u i ∂ i )θ + ∂ i θρF i α q α = ρ D + F i α q α ∂ i θ on denoting C 1 (θ) := ∂ θ e ⋆ s , which one can expect asymptotically identical to (77) ρC 1 (∂ t + u i ∂ i )θ -∂ i (κ ij ∂ j θ) = 0 (i.e. heat diffusion) for some matrix κ ∈ S d +, * when θρF i α q α → -κ ij ∂ j θ equiv. θρq α → -κ αβ ∂ β θ, κ := F -1 • κ • F -T hold simultaneously as (the so-called Fourier's law) F i α q α ∂ i θ + D ≡ q α ∂ α θ + D → 0 i.e. D → θρ(q α [κ -1 ] αβ q β ) > 0. Note that such a limit regime implies p stationary i.e. (∂ p α e)∂ t p α → 0 by (75). Following previous propositions in the literature see e.g. [START_REF] Sabri Öncü | On the constitutive relations for second sound in elastic solids[END_REF][START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF], we therefore propose to assume e p (p) = τ |p| 2 /2 and a relaxation process for the state variable p = p α e α so that (75) is a consequence when q := ζ ′ (θ)p, ζ ′ (θ) ≶ 0, D := θρ(q α [κ -1 ] αβ q β ) > 0. Compatibility with experimental observations (heat diffusion with Fourier's law) can then be formally expected when τ → 0 and (78) yields ρF p → -(κ∇θ) /θζ ′ (θ). A conservation law like (78) with a view to defining the heat and entropy fluxes Q, q in (73)-(74) seems to have first been postulated by Cattaneo [START_REF] Cattaneo | Sulla conduzione del calore[END_REF]. It still often bears his name despite many various "hyperbolic" formulations proposed since to capture the "second-sound" phenomenon observed in experiments [START_REF] Sabri Öncü | On the constitutive relations for second sound in elastic solids[END_REF][START_REF] Racke | Thermoelasticity[END_REF][START_REF] Boyaval | Non-isothermal viscoelastic flows with conservation laws and relaxation[END_REF]. Proposition 8. Given e(η, p) = e s (η) + τ 2 |p| 2 /2, τ > 0, a strictly convex function e s ∈ C 2 , a C 1 matrix-valued function κ(η, p) ∈ S d +, * and a stricly monotone function ζ ∈ C 1 (R + ), the quasilinear system (74)-( 78) for (η, p), with θ = ∂ η e, q = ζ ′ (θ)p, D = θρ(q α [κ -1 ] αβ q β ) and source terms ρ, r, is symmetric-hyperbolic.

Proof. This is a straightforward consequence of Godunov-Mock theorem insofar as (74)-(78) has been constructed in order to satisfy the additional conservation law (73) where Q = ρθq and e is strictly (jointly) convex in (η, p). □

To complement the constitutive assumptions of the previous sections and incorporate heat conduction, note that one can simply add +τ |p| 2 /2 in the stored energies and postulate (78) with some scalar function ζ ′ (θ) ≶ 0.

Proposition 3 .

 3 The Lagrangian description (1-2-3-4-19-23) has a symmetrichyperbolic formulation by virtue of Godunov-Mock theorem if, and only if, the Eulerian description (5-6-7-8-19-24) has a symmetric-hyperbolic formulation by virtue of Godunov-Mock theorem. Consequently, motions described by smooth solutions

, s > d 2

 2 to the quasilinear system (1-2-3-4-19-23) in material coordinates are equivalently described in spatial coordinates by smooth solutions to(5-6-7-8-19-24).

τ

  +τ = 2 μD(u) satisfied by the non-spheric contribution τ ≡ ρc 2 1 (F • A • F T -I) to the Cauchy stress[START_REF] Ogden | On the thermoelastic modeling of rubberlike solids[END_REF], on denoting the pressure p ≡ C 0 ρ γ and the extra-stress time-rate[START_REF] Rubin | An Eulerian thermodynamical formulation of sizedependent plasticity[END_REF] 

▼

  

c 2 1

 2 2λ (I -c -1 ) : (c -I) > 0 where we denoted

Proposition 5 .

 5 Assume (H3) with a stored energy e of type[START_REF] Sozio | Riemannian and Euclidean material structures in anelasticity[END_REF], with êi as in[START_REF] Steigmann | Finite elasticity theory[END_REF] i.e. independent of Y i ≡ A 1 r i i as well as ê0 . If one chooses, in e of type[START_REF] Sozio | Riemannian and Euclidean material structures in anelasticity[END_REF],

  p α + ∂ α ζ(θ) = -ρθ|ζ ′ (θ)| 2 [κ -1 ] αβ p β

  ∂ t ρu i + ∂ j ρu i u j -σ ij = ρf i

	see e.g. [45]. In tensor notation, (23) rewrites
	(25)				ρ∂ t u = div a S + ρf
	and the equivalent Eulerian balance (24) rewrites
	(26)					
			'first principle) is required for a body with entropy η, temperature
	(18)						θ = ∂ η e
	supposedly non-negative, given force and heat sources f , r. The strain or stored
	energy e(F , η, p) determines the first Piola-Kirchoff stress tensor S in (17) through
	(19)						S iα = ρ∂ F i α e
	as well as the heat flux Q ≡ Q α e α when e actually depend on a state variable p
	to account for heat transfer by conduction -see Section 7.1. But to start with, as
	already said, we consider only isentropic motions
	(20)						∂ t η = 0
	where r = 0 = Q α and the balance of energy (17) reduces to
	(21)			ρ∂ t	|u| 2 2	+ e = ∂ α S iα u i + ρu i f i
	or in spatial coordinates and tensor notation
	(22)	∂ t	ρ 2	|u| 2 + ρe + div	ρ 2	|u| 2 + ρe u -σ • u = ρf • u
	where σ ij := |F | -1 S iα F j α is Cauchy stress.
	Requiring (21) and Galilean invariance leads to the linear momentum balance
	(23)				ρ∂ t u i = ∂ α S iα + ρf i
	in material coordinates, or equiv. in spatial coordinates
	(24)					

Note that the expression[START_REF] Noll | A mathematical theory of the mechanical behavior of continuous media[END_REF] does not coincide with other expressions that separate volu-
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