
HAL Id: hal-04220091
https://enpc.hal.science/hal-04220091v1

Submitted on 27 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A micromechanically consistent energy estimate for
polycrystalline shape-memory alloys. I - General

formulation
Michaël Peigney

To cite this version:
Michaël Peigney. A micromechanically consistent energy estimate for polycrystalline shape-memory
alloys. I - General formulation. Journal of the Mechanics and Physics of Solids, 2023, 172, pp.105165.
�10.1016/j.jmps.2022.105165�. �hal-04220091�

https://enpc.hal.science/hal-04220091v1
https://hal.archives-ouvertes.fr


A micromechanically consistent energy estimate for

polycrystalline shape-memory alloys.

I - General formulation.

Michaël Peigney

Lab Navier, Univ Gustave Eiffel, ENPC, CNRS, F-77447 Marne la Vallée, France

Abstract

We present an estimate for the effective energy of polycrystalline shape memory alloys
that takes both intra-grain compatibility conditions and inter-grain constraints into
account. That estimate is constructed using ideas and results from homogenization
theory and from the translation method. The proposed estimate depends on the
texture through 2-point statistics and is proved to satisfy known rigorous bounds
that depend on the same microstructural information. Several examples are provided
to give some insight on the proposed estimate and illustrate how it behaves relative
to the bounds. The presented examples range from strain-driven uniaxial tension in
the superelastic regime (high temperature) to the estimation of recoverable strains
in the shape memory regime (low temperature).

Keywords: Shape Memory Alloys, Polycrystals, Micromechanics, Relaxation,
Martensitic phase transformation

1. Introduction

The peculiar properties of Shape Memory Alloys (SMAs) result from a temperature-
induced or stress-induced solid/solid phase transformation between austenite and
martensite. Martensite has a crystallographic structure with less symmetry than the
austenite, which implies that several martensitic variants need to be distinguished
depending on the orientation of the martensitic lattice with respect to the austenitic
lattice. Applying a mechanical or thermal loading gives rise to the spontaneous
formation of austenite-martensite microstructures at a very fine scale. In a poly-
crystalline SMAs, three length scales typically coexist: the microscopic scale of the
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martensitic microstructures, the mesoscopic scale of the individual grains (usually
much larger than the microscopic scale) and the macroscopic scale of a representative
volume element of the polycrystal, consisting in numerous grains. The modeling of
martensitic phase transformation has received a lot of attention and can be achieved
using phenomenological and/or micromechanical considerations (see e.g. Cisse et al.
(2016) for a review of constitutive models and modeling techniques). A possible
approach, pioneered by Kohn (1991); Ball and James (1992), is to resort to elastic
energy minimization across the scales. The guiding idea is to start from given consti-
tutive relations at the microscopic level and to use upscaling strategies for obtaining
the macroscopic energy. More specifically, each individual phase is modeled as a
linear elastic material, resulting in a microscopic energy that is piecewise quadratic
(and non convex). The mesoscopic energy of a single crystal is obtained by opti-
mizing the arrangements of the phases in space so as to minimize the total energy.
This so-called relaxation problem is difficult and exact solutions are known only in
few special cases. Considering the macroscopic scale of a polycrystal adds a level
of complexity as the interaction between the grains need to be taken into account.
Viewing group of grains having the same orientation as homogeneous materials gov-
erned by mesoscopic energies, a polycrystalline SMAs can be seen as a composite
material and its macroscopic (or effective) energy is obtained by homogenization.
The exact expression of the effective energy remains elusive but rigorous bounds
can be obtained. Making the assumption of constant strain or constant stress leads
to convex bounds of the Taylor- and Sachs-type. That approach has notably been
used by Hackl et al. (2008) for bounding the effective energy and by Bhattacharya
and Kohn (1997) for the related problem of estimating the recoverable strains. We
note that in general neither the effective energy nor the set of recoverable strains
is convex. Several bounds which account for the possible nonconvexity of the effec-
tive energy – improving on the convex bounds in the process – have been proposed
(Smyshlyaev and Willis, 1998; Hackl and Heinen, 2008; Peigney, 2009). Drawing
ideas from the derivation of bounds, we present in this paper a nonconvex estimate
for the effective energy of SMA polycrystals. The proposed estimate depends on the
same information as the nonconvex bounds but has a simpler mathematical struc-
ture and is therefore easier to use. As will be discussed, that estimate avoids some
shortcomings of available bounds and is tentatively closer to the true energy. The
proposed estimate relies crucially on the lower bound formerly obtained in Peigney
(2009) for the relaxed energy of single crystals. That lower bound is presented in
Sect. 2 and illustrated on the two- and three-phase problems. Exact expressions of
the relaxed energy are available in those cases (Pipkin, 1991; Kohn, 1991; Smyshlyaev
and Willis, 1999) and recovered from the presented lower bound. In particular, use
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of the proposed lower bound shows that (under mild conditions) the solution of the
2-phase problem actually admits a very simple expression, which does not seem to
have been observed before. For the 3-phase problem corresponding to the tetragonal
to orthorhombic transformation, we obtain similarly an explicit expression for the
lower bound which coincides with the exact expression of Smyshlyaev and Willis
(1999). Building on the presented lower bound for single crystals and drawing ideas
from the construction of nonconvex bounds for polycrystals, a general estimate for
the effective energy of polycrystalline SMAs is constructed in Sect. 3. The obtained
estimate depends on the polycrystalline texture through the 2-point statistics. The
validity of such an estimate can be assessed by comparison with rigorous bounds
that depend on the same microstructural information. In that regard, we give a gen-
eral proof that the proposed estimate satisfies the upper bound of Hackl and Heinen
(2008) and the lower bound of Peigney (2009) on the effective energy. In Sects. 4
to Sect. 7 we consider several examples of increasing complexity corresponding to
2, 3, 7 and 13 phases per grain. Those example provide some insight on the pro-
posed estimate and illustrate how it behaves compared to the bounds. In Sects. 4
and 2.2 we first consider relatively simple examples for which all (or most of) the
calculations can be performed in closed form. In Sect. 6 and 7 we consider more
complex examples related to the cubic to orthorhombic transformation and the cubic
to monoclinic transformation. Concluding remarks follow in Sect. 8.

2. Relaxed energy of a single crystal

The microscopic energy in a single crystal is defined in terms of the energies of
the individual phases. Adopting the geometrically linear setting, the free energy of
the austenite is

Ψ0(ε) =
1

2
ε : L0 : ε

where ε is the linearized strain and L0 ≻ 0 is the symmetric fourth-order elasticity
tensor. Here and in the following, the notation L ≻ 0 is used to indicate that a
fourth-order tensor L is positive definite, i.e. satisfies u : L : u > 0 for all symmetric
second-order tensors u. For a given second-order tensor a, we will use the similar
notation a ⪰ 0 to indicate that u · a · u ≥ 0 for all vectors u. The free energy of
martensitic variant r (r = 1, · · · , n) is

Ψi(ε) =
1

2
(ε− τ i) : Li : (ε− τ i) + wi (1)

where τ i is the transformation strain and Li ≻ 0 is the fourth-order elasticity tensor
of the variant. The number n of variants and the values of the transformation strains
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τ i are obtained from the crystallographic structure of the alloy (see Bhattacharya
(2003) for details and examples). In (1), wi is the minimum energy of martensite. A
common expression for wi is

wi = λ0
T − T0

T0

(2)

where λ0 is the latent heat, T is the temperature and T0 is the transformation
temperature. It is convenient to set τ 0 = 0 and w0 = 0 so that expression (1)
remains valid for i = 0.

In the energy minimization approach of martensitic phase transformation (Kohn,
1991; Ball and James, 1992), the microscopic free energy is taken as

Ψ(ε) = min
0≤i≤n

Ψi(ε) (3)

and the mesoscopic free energy is the relaxation of Ψ, defined as

QΨ(ε̄) = inf
ε∈K(ε̄)

1

|Ω|

∫
Ω

Ψ(ε) dx (4)

where

K(ε̄) =

{
ε|∃u(x) such that ε =

(∇u+∇Tu)

2
in Ω;u(x) = ε̄ · x on ∂Ω

}
. (5)

The superscript T in (5) denotes the transpose operator. The result of (4) does not
depend on the domain Ω (Dacorogna, 2007). In informal terms, Eq. (3) expresses
the idea that the material locally transforms to the phase of minimum energy for a
given microscopic strain ε. The resulting energy function Ψ has a multiwell struc-
ture and therefore is not convex. As a consequence, minimizing sequences in (4)
display oscillations at a finer and finer scale, preventing them to converge in the
usual sense. This physically corresponds to the formation of austenite-martensite
microstructures. Some information on those energy minimizing microstructures can
obtained by introducing the relaxation at fixed martensitic volume fractions θ, de-
fined by

QΨ(ε̄,θ) = inf
{χi}

inf
ε∈K(ε̄)

1

|Ω|

∫
Ω

n∑
i=0

χi(x)Ψi(ε) dx (6)

for any θ ∈ Tn = {(θ1 · · · , θn) ∈ Rn
+ :

∑n
i=1 θi ≤ 1}. For any given θ ∈ Tn, the

volume fraction of the austenite is denoted by θ0 and given by θ0 = 1−
∑n

i=1 θi. The
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first infimum in (6) is taken over characteristic functions χ0, · · · , χn compatible with
volume fractions θ. Such functions satisfy

χi(x) ∈ {0, 1}; 1 =
n∑

i=0

χi(x); θi =
1

|Ω|

∫
Ω

χi(x) dx

for i = 0, · · · , n. We have the relation (Kohn, 1991)

QΨ(ε̄) = inf
θ∈Tn

QΨ(ε̄,θ). (7)

Under mild conditions, the finite-dimensional minimization problem in (7) has min-
imizers θ. The latter correspond to the martensitic volume fractions in the mi-
crostructures that are expected to appear for a given mesoscopic strain ε̄. Finding
the expression of the relaxation QΨ(ε̄,θ) is key to obtain the mesoscopic energy but
this remains a largely unsolved problem in the general case. Some progress can be
made if all the phases have the same elasticity tensor L, which we assume from now
on. In that case, QΨ(ε̄,θ) is known to have the structure

QΨ(ε̄,θ) =
n∑

i=0

θiΨi(ε̄) + Ψmix(θ) (8)

where the mixing energy Ψmix does not depend on ε̄ (Govindjee et al., 2003). The
exact expression of Ψmix is generally not available but rigorous bounds can be ob-
tained. In that regard, a useful lower bound on Ψmix is the Reuss bound ΨReuss

(Govindjee et al., 2003), given by

ΨReuss(θ) = −1

2

n∑
i=1

θiτ i : L : τ i +
1

2

n∑
i,j=1

θiθjτ i : L : τ j. (9)

Replacing Ψmix with ΨReuss in (8) leads to a lower bound on QΨ(ε̄,θ), denoted by
ΨC(ε̄,θ) and equal to

ΨC(ε̄,θ) =
1

2
(ε̄−

n∑
i=1

θiτ i) : L : (ε̄−
n∑

i=1

θiτ i) +
n∑

i=1

wiθi. (10)

The resulting lower bound on QΨ, obtained by replacing QΨ(ε̄, θ) with ΨC(ε̄,θ) in
(7), is the convexification (or convex envelope) of Ψ, i.e. the largest convex function
F verifying F ≤ Ψ. The convex envelope of Ψ, henceforth denoted by ΨC , gives
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the exact expression of the mesoscopic energy QΨ if all the phases are pairwise
compatible, i.e. for any 0 ≤ i, j ≤ n there exists some vectors (a,n) such that

τ i − τ j = a⊗ n+ n⊗ a. (11)

Relation (11) is known as the Hadamard compatibility condition between strains
τ i and τ j. Denoting by λ1 ≤ λ2 ≤ λ3 the ordered eigenvalues of τ i − τ j, it is
known that τ i − τ j can be written in the form (11) iff λ2 = 0. In common shape
memory alloys, condition (11) is not satisfied for all pair of phases so that the convex
envelope is not equal to QΨ. A lower bound that improves on (10) in such cases
has been proposed in Peigney (2009) using ideas from the translation method (Lurie
and Cherkaev, 1984; Murat, 1985; Milton, 2002). Let ε∗ be the adjugate of ε, i.e the
tensors with components

ε∗ii = εjjεkk − ε2jk , ε∗jk = εjiεki − εjkεii.

for any (i, j, k) permutation of (1, 2, 3). For any given symmetric second-order tensor
a, −a : ε∗ is quadratic in ε and thus can be written as

1

2
ε : K(a) : ε = −a : ε∗ (12)

for some symmetric fourth-order tensor K(a). In indicial notation, we have ε : K(a) :
ε =

∑
i,j,k,l εijKijklεkl with

Kiijj = −akk, Kiijk = Kjkii =
ajk
2
, Kijij = Kjiij =

akk
2

,

Kijik = Kjiik = Kijki = Kjiki = −ajk
4

for any (i, j, k) permutation of (1, 2, 3). It is proved in Peigney (2009) that

QΨ(ε̄,θ) ≥ ΨC(ε̄,θ) + f(θ) (13)

where

f(θ) = sup
a∈C

1

4

n∑
i,j=0

θiθj(τ i − τ j) : M(a) : (τ i − τ j) (14)

with
M(a) = L− L : (L−K(a))−1 : L (15)

and
C = {a ⪰ 0 : L−K(a) ≻ 0}. (16)
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The bound (13) relies crucially on the fact that the function 1
2
ε : K(a) : ε is (sym-

metric) quasiconvex (see Boussaid et al. (2019) for recent advances on the character-
ization of symmetric quasiconvex functions). For later reference, we note that Eq.
(13) can be rewritten equivalently as

Ψmix(θ) ≥ ΨReuss(θ) + f(θ) (17)

showing that ΨReuss + f is a lower bound on Ψmix. Observing that 0 ∈ C and
M(0) = 0, we further note that f(θ) ≥ 0 for all θ. The term ΨReuss + f is thus
potentially a tighter lower bound on Ψmix than ΨReuss.

A special role is played by the set S of energy-minimizing strains, defined as

S = {ε̄ : QΨ(ε̄) = min(0, w1)}. (18)

Adopting expression (2) for wi (i ≥ 1), the set S at T < T0 is indeed the set of
stress-free strains that can be recovered by the shape memory effect (Bhattacharya
and Kohn, 1997). Energy bounds translate as bounds (in the sense of inclusion) on
S. In particular, the convex bound (10) implies that

S ⊂
{ n∑

i=1

θiτ i : θi ≥ 0;
n∑

i=1

θi = 1
}
, (19)

i.e. S is included in the convex hull of τ 1, · · · , τ n. The energy bound (13) gives the
tighter bound S ⊂ S+ with

S+ =
{ n∑

i=1

θiτ i : θi ≥ 0;
n∑

i=1

θi = 1; f(θ) = 0
}
. (20)

The set S+ in (20) does not depend on the elasticity tensor L. It is shown indeed in
Peigney (2013) that

S+ =
{ n∑

i=1

θiτ i : θi ≥ 0;
n∑

i=1

θi = 1;
n∑

i,j=1

θiθi(τ i − τ j)
∗ ≤ 0

}
. (21)

Eqs. (19), (20) and (21) hold for T < T0. Corresponding expressions for T = T0 are
obtained by starting the sums over indices i and j from 0 instead of 1.

Emphasis has been put on lower bounds on the relaxed energy because they play
a pivotal role in the polycrystalline estimate to be detailed later on. Upper bounds
on the relaxed energy QΨ and lower bounds on the set S can be constructed using
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lamination techniques (Kohn, 1991; Govindjee et al., 2003, 2007). Let us briefly
elaborate on those techniques for later reference, focusing on bounding the set S
of energy minimizing strains at T = T0. The fundamental argument is that S is
(symmetrized) rank-1 convex, i.e. that θε+ (1− θ)ε′ ∈ S for any θ ∈ [0, 1] and any
strains (ε, ε′) ∈ S2 that are compatible in the sense of (11) (Kohn, 1991). Using the
(symmetrized) rank-1 convexity of S and the fact that {τ 0, · · · , τ n} ⊂ S, we can see
that

R1 = {θτ i + (1− θ)τ j : θ ∈ [0, 1]; (τ i, τ j) satisfying (11)}

is a lower bound on S. Repeating the argument in a iterative fashion leads to an
increasing sequence {Rk} of lower bounds, defined by the recurrence relation

Rk+1 = {θε+ (1− θ)ε′ : θ ∈ [0, 1]; (ε, ε′) ∈ R2
k satisfying (11)}.

The best lower bound is achieved by taking k are large as allowed by the complexity
of the calculations. The computational complexity of Rk increases exponentially
with k so that it is actually difficult to go beyond k = 2. A similar (and even more
accute) difficulty holds for lamination upper bounds on the energy.

In the rest of this Section, we illustrate the lower bound (13) on two examples for
which the exact expression of QΨ is known from other arguments than those used
in the derivation of (13). For those two cases, we show that (13) agrees with the
exact expression. Moreover, it turns out that the use of lower bound leads to simple
explicit expressions of Ψmix, as will be detailed.

2.1. The two-well problem

The two-well problem corresponds to n = 1, i.e. to a single variant of martensite
(in addition to the austenite). The left-hand of (13) is a lower bound on QΨ(ε̄,θ)
and takes the form

QΨ−(ε̄,θ) = ΨC(ε̄,θ) +
1

2
θ1(1− θ1)m− (22)

where
m− = sup

a∈C
τ 1 : M(a) : τ 1. (23)

It is known (Kohn, 1991) that the exact expression of QΨ(ε̄,θ) has a structure
similar to (22), i.e.

QΨ(ε̄,θ) = ΨC(ε̄,θ) +
1

2
θ1(1− θ1)m (24)
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where m only depends on τ 1 and L. Explicit but intricate expressions of m have
been proposed if L is isotropic (Kohn, 1991). In the following we use (23) to show
that m actually admits a very simple expression if the Poisson’s ratio ν is positive
and the ordered eigenvalues λ1 ≤ λ2 ≤ λ3 of τ 1 satisfy

λ1 ≤ −νλ2 ≤ λ3. (25)

It can easily be verified that (25) implies that λ1 ≤ 0 ≤ λ3 and we can assume
(without loss of generality1) that λ2 ≤ 0. Since the Poisson’s ratio can not exceed
1/2, the most severe restriction that can arise from (25) is

λ1 ≤ −1

2
λ2 ≤ λ3. (26)

Conditions (26) are found to hold for common of shape-memory alloys. As an ex-
ample, for NiTiCu (Appendix A) we have (λ1, λ2, λ3) = (−0.0633,−0.0300, 0.0987)
so that (26) is satisfied.

The point of condition (25) is to allow the maximization problem in (23) to be
solved in closed form. Let us first explain how a good candidate for the optimal value
of a can be guessed. Consider a second-order tensor a0 ⪰ 0 such that ∥a0∥ = 1.
We have ta0 ∈ C for any t positive small enough and Eq. (15) shows that M(a) =
−tK(a0) at the first order in t. Using (12) we obtain

τ 1 : M(a) : τ 1 = 2ta0 : τ
∗
1

at the first order in t. Let (u1,u2,u3) be eigenvectors of τ 1, so that τ 1 =
∑

i λiui⊗ui

and τ ∗
1 =

∑
i µiui ⊗ ui with

µ1 = λ2λ3 ≤ 0, µ2 = λ1λ3 ≤ 0, µ3 = λ1λ2 ≥ 0. (27)

Writing a0 as a0 =
∑

i αivi ⊗ vi where {αi} ∈ R3
+ and {vi} are the eigenvalues and

eigenvectors of a0, we obtain

a0 : τ
∗
1 =

3∑
i,j=1

αiµj(ui · vj)
2.

In view of (27), the maximum value taken by
∑3

i,j=1 αiµj(ui · vj)
2 over tensors a0

verifying a0 ⪰ 0 and ∥a0∥ = 1 can easily be seen2 to be reached for v3 = u3,

1i.e. possibly replacing τ 1 par −τ 1. The value m− in (23) is indeed invariant by the substitution
τ 1 7→ −τ 1. Moreover, if τ 1 satisfies conditions (25), so does −τ 1.

2We have the inequalities αiµ1 ≤ 0, αiµ2 ≤ 0, αiµ3 ≥ 0 and the relation ∥a0∥ = 1 implies that

αi ≤ 1 (i = 1, 2, 3). It follows that
∑3

i,j=1 αiµj(ui · vj)
2 ≤ µ3

∑
i αi(ui · v3)

2 ≤ µ3 with equality if
α3 = 1, α1 = α2 = 0 and v3 = u3.
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α1 = α2 = 0, α3 = 1. This shows that u3 ⊗ u3 is the best search direction for
maximizing τ 1 : M(a) : τ 1 with respect to a. Let us now proceed to maximize
τ 1 : M(a) : τ 1 over tensors a ∈ C of the form Eau3 ⊗ u3 where E is the Young’s
modulus. Noting that the largest eigenvalue of K(a) in (12) is E∥a∥ and that the
smallest eigenvalue of L is E/(1+ ν), we have Eau3 ⊗u3 ∈ C for 0 ≤ a < 1/(1+ ν).
Now consider the (3-dimensional) space D of second-order tensors which are diagonal
in the basis (u1,u2,u3). For a = Eau3 ⊗ u3, both L and K(a) can be observed to
map D to itself. Thus the calculation of τ 1 : M(a) : τ 1 only involves the restrictions
of L and K(a) on D, which are given by the matrix representations (in the basis
{ui ⊗ ui}1≤i≤3 of D)

L =
E

1− ν − 2ν2

 1− ν ν ν
ν 1− ν ν
ν ν 1− ν

 , K(a) = E

 0 −a 0
−a 0 0
0 0 0

 .

A straightforward calculation shows that restriction of M(a) on D is defined by the
matrix

M(a) =
Ea

(1− νa)2 − a2

 −a 1− νa 0
1− ν −a 0
0 0 0


so that

τ 1 : M(a) : τ 1 =
Ea

(1− νa)2 − a2
(
2λ1λ2 − a(λ2

1 + 2νλ1λ2 + λ2
2)
)
. (28)

Differentiating with respect to a shows that (28) has a stationary point at

a =
λ2

λ1 + νλ2

∈ [0,
1

1 + ν
]. (29)

The corresponding value of τ 1 : M(a) : τ 1 is Eλ2
2. Hence we can state that

m− ≥ Eλ2
2. (30)

Although it is not obvious at first sight, comparing with the expressions of Kohn
(1991) shows that (30) actually holds as an equality. Eq. (4.11) in Kohn (1991)
gives indeed

m

E
=

ν

1− ν − 2ν2
(tr τ 1)

2 +
λ2
1 + λ2

2 + λ2
3

1 + ν
− X

2(1 + ν)
(31)
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where X is obtained by taking the maximum among several branches. Under Con-
dition (25), Eqs (4.16) and (4.17) in Kohn (1991) show that X ≥ X− with

X− =
2

1− 2ν

(
λ2
1 + λ2

3 + 2ν2λ2
2 + ν(2λ2(λ1 + λ3)− (λ1 − λ3)

2)
)

(32)

For X = X−, the right-hand of (31) is found to be equal to Eλ2
2, hence m ≥ Eλ2

2.
Comparing with (30) and noting that m− ≤ m, we can conclude that

m− = m = Eλ2
2 (33)

and that

E
λ2

λ1 + νλ2

u3 ⊗ u3

reaches the maximum in (23). Expression (33) will be used later in the paper and
will also play an important role in the companion paper devoted to localization in
polycrystals.

Remark: As detailed by Kohn (1991), the double-well structure of the relaxed
energy gives rise to different transition temperatures while heating (T+

0 ) and cooling
(T−

0 ). It can be calculated from (24) that the thermal hysteresis ∆T = T+
0 − T−

0 is
equal to m/λ0 where λ0 is the latent heat parameter in (2). Assuming conditions
(25) to be satisfied, Eq. (33) shows that ∆T is driven by the middle eigenvalue λ2

of the transformation strain. In particular, ∆T vanishes when λ2 = 0 i.e. when
austenite and martensite are compatible in the sense of (11). There is a formal
analogy with the experimental and theoretical results of Zhang et al. (2009), who
showed that the thermal hysteresis in various CuAlNi alloys is governed by the middle
eigenvalue of the transformation strain and minimized when austenite and martensite
are compatible.

2.2. Tetragonal to orthorhombic transformation

We consider the three-well problem corresponding to the tetragonal to orthorhom-
bic transformation, for which there are two martensitic variants with transformation
strains

τ 1 =

 α 0 0
0 β 0
0 0 γ

 , τ 2 =

 β 0 0
0 α 0
0 0 γ

 (34)

in an orthonormal basis (u1,u2,u3). The martensitic variants can always be num-
bered in such a way that α < β. YBa2Cu3O6+x is an example of material obeying
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that transformation (Andersen et al., 1990). As can be seen on (34), the two marten-
sitic variants are compatible with each other in the sense of (11) but they are not
compatible with the austenite (unless very special values of the lattice parameters).
It turns out that closed-form expressions of the lower bound f can obtained in some
situations depending on the lattice parameters (α, β, γ). One such situation, that we
detail in the following, is

γ < 0, α < 0 < β with |α| < β. (35)

Proceeding as for the two-well problem, we first use linearization to guess a good
candidate for the optimal value of a in (14). For the transformation strains in (34),
we have (at the first order in a)

n∑
i,j=0

θiθj(τ i − τ j) : M(a) : (τ i − τ j) =
1

2

n∑
i,j=0

θiθj(τ i − τ j)
∗ : a =

3∑
i=1

µiui ⊗ ui

with

µ1 = θ0γ(θ1β + θ2α) µ2 = θ0γ(θ1α + θ2β) µ3 = θ0(1− θ0)αβ − θ1θ2(α− β)2. (36)

Let us first consider values of θ such that αθ1+βθ2 ≤ 0. In that case, it can easily be
verified from (36) that µ1 ≤ 0, µ2 ≥ 0, µ3 ≤ 0. This indicates that u2 ⊗ u2 is a good
search direction for solving (14), in a way similar to the two-well problem considered
in Sect. 2.1. Choosing a in the form Eau2 ⊗ u2, the stationarity condition of (14)
with respect to a yields a second degree polynomial equation with roots

a± =
ν(X+ −X−) + (

√
X+ ±

√
X−)

2

(1 + ν)2X+ − (1 + ν)2X−

where X± = θ0θ1(α ± γ)2 + θ0θ2(β ± γ)2 + θ1θ2(α − β)2. It can be verified that
a+ > 1/(1 + ν) > a− ≥ 0, which shows the tensor a− = Ea−u2 ⊗ u2 is in C.
Somewhat lengthy manipulations lead to

1

4

n∑
i,j=0

θiθj(τ i − τ j) : M(a−) : (τ i − τ j) =
E

8

(
ν(X+ −X−) + (

√
X+ −

√
X−)

2

(1 + ν)
√
X+ − (1− ν)

√
X−

)2

.

(37)
Definition (14) implies that f(θ) is larger than or equal to the value in (37). A
numerical optimization with respect to all tensors in C (not necessarily rank-1 or
diagonal) suggests that a− indeed reaches the optimum in (14) for αθ1+βθ2 ≤ 0, so
that

f(θ) =
E

8

(
ν(X+ −X−) + (

√
X+ −

√
X−)

2

(1 + ν)
√
X+ − (1− ν)

√
X−

)2

if αθ1 + βθ2 ≤ 0. (38)
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Results for αθ2 + βθ1 ≤ 0 are obtained by swapping θ1 and θ2 in the previous
developments, i.e.

f(θ) =
E

8

(
ν(X ′

+ −X ′
−) + (

√
X ′

+ −
√

X ′
−)

2

(1 + ν)
√

X ′
+ − (1− ν)

√
X ′

−

)2

if αθ2 + βθ1 ≤ 0 (39)

with X ′
± = θ0θ2(α± γ)2 + θ0θ1(β ± γ)2 + θ1θ2(α− β)2.

When αθ1 + βθ2 ≥ 0 and αθ2 + βθ1 ≥ 0, all the three eigenvalues µi in (36)
are negative so that, at the first order in a, we have

∑
i,j θiθj(τ i − τ j) : M(a) :

(τ i − τ j) ≥ 0 for all a ∈ C. In that case no direction leading to non negative value
of
∑

i,j θiθj(τ i − τ j) : M(a) : (τ i − τ j) can be found. As will be justified shortly, it
can actually be shown that

f(θ) = Ψmix(θ)−ΨReuss(θ) = 0 if αθ2 + βθ1 ≥ 0 and αθ1 + βθ2 ≥ 0. (40)

Together Eqs (38), (39) and (40) define the values taken by the function f on the
whole triangle

T2 = {(θ1, θ2) : θ1 ≥ 0, θ2 ≥ 0, θ1 + θ2 ≤ 1} (41)

of admissible values for the martensitic volume fractions (θ1, θ2). In Fig. 1 is shown
the obtained function f in the case α = γ = −0.01, β = 0.02, ν = 0.3. As illustrated
in Fig. 1, the volume fractions verifying θ1α + θ2β ≥ 0 and θ2α + θ1β ≥ 0 define a
triangle OAB with vertices O = (0, 0), A = (− α

β−α
, β
β−α

) and B = ( β
β−α

,− α
β−α

).
Let us prove that Ψmix −ΨReuss = 0 on that triangle. We first observe that proving
that Ψmix(θ) − ΨReuss(θ) = 0 amounts to show that ε(θ) =

∑
i θiτ i is in the set

of energy-minimizing strains S at T = T0. Proving that ε(θ) ∈ S can be achieved
using sequential lamination techniques as discussed previously in Sect.2. Since τ 1

and τ 2 are compatible in the sense of (11), we have θ1τ 1 + θ2τ 2 ∈ S for any θ =
(θ1, θ2) ∈ T2 such that θ1 + θ2 = 1. Taking in particular θ = A and θ = B shows
that ε(A) = diag(α + β, 0, γ) and ε(B) = diag(0, α + β, γ) are in S. Observing
that ε(A), ε(B) and τ 0 = 0 are pairwise compatible, we obtain that ε(θ) ∈ S and
consequently that Ψmix(θ) − ΨReuss(θ) = 0 for any θ in the triangle OAB. Since
0 ≤ f ≤ Ψmix − ΨReuss, we also have f = 0 in the triangle OAB, justifying the
statement (40).

Those arguments show in particular that f gives the exact value of Ψmix−ΨReuss

on the triangle OAB. Outside of that triangle, f a priori gives only a lower bound
on Ψmix−ΨReuss. For the three-well problem, Smyshlyaev and Willis (1999) reduced
the evaluation of Ψmix to a finite-dimensional optimization problem. Solving the
optimization problem formulated by Smyshlyaev and Willis (1999) seems difficult to

13



Figure 1: Values taken by f/E for the tetragonal to orthorhombic transformation. Case α = γ =
−0.01, β = 0.02, ν = 0.3. The function f vanishes on the triangle 0AB.

perform analytically but is tractable numerically. We have implemented the formula
of Smyshlyaev and Willis (1999) to evaluate Ψmix for various choices of (ν, α, β, γ)
and compare the results with the function f given by the explicit expressions (38),
(39) and (40). Up to the accuracy of the numerical calculations, Ψmix and ΨReuss−f
were found to be equal. This suggests that the explicit expressions (38), (39) and
(40) give the exact value of Ψmix – not just a lower bound.

Remark: In the analysis presented, the role of condition (35) is to ensure that∑
θiθj(τ i − τ j) : M(a) : (τ i − τ j) has at most one non-negative eigenvalue. In that

case, a simple search direction for a can easily be found and turns out to yield the
optimal value for a. Other conditions than (35) lead to a similar situation. Assuming
without loss of generality that α < β, it can be verified that if either

γ > 0, α < 0 < β < |α| (42)

or
αβ > 0, αγ < 0 (43)
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then problem (14) can be solved in closed-form and the optimal value of a is a rank-1
tensor of the form aui⊗ui. Unfortunately, conditions (35), (42) and (43) do not cover
all possible values of the lattice parameters (α, β, γ). If for instance γ < 0, α < 0 < β
but |α| > β, then for some values of θ the tensor

∑
θiθj(τ i − τ j) : M(a) : (τ i − τ j)

has two non-negative eigenvalues and the optimal value of a is a rank-2 tensor of the
form aui⊗ui+a′uj ⊗uj (i ̸= j). The calculations become much more intricate and
do not seem tractable analytically.

3. Effective energy of a polycrystal

We now consider a polycrystal, consisting of multiple grains with distinct orien-
tations. The domain Ω occupied by the polycrystal is divided into N subdomains
Ω1 · · · ,ΩN such that grains in Ωr have the same orientation (defined by a rota-
tion Rr) relative to a reference crystal with microscopic energy Ψ. The microscopic
free energy Ψr(ε) and the mesoscopic free energy QΨr(ε) in Ωr are thus equal to
Ψ(Rr,T ε̄Rr) and QΨ(Rr,T ε̄Rr), respectively. Set τ r

i = Rrτ iR
r,T and let Lr be the

rotated elasticity tensor, verifying ε : Lr : ε = (Rr,TεRr) : L : (RrεRr,T ) for all ε.
Eq. (3) shows that we can write Ψr as

Ψr(ε) = min
0≤i≤n

Ψr
i (ε)

where

Ψr
i (ε) =

1

2
(ε− τ r

i ) : L
r : (ε− τ r

i ) + wi.

Eqs (7) and (8) give
QΨr(ε) = inf

θ∈Tn

QΨr(ε,θ) (44)

with

QΨr(ε,θ) =
n∑

i=0

θiΨ
r
i (ε) + Ψmix(θ). (45)

We note that the function Ψmix is the same for all grains, i.e. is independent of the
crystalline orientation. The effective energy Ψeff of the polycrystal is obtained by
homogenization, i.e.

Ψeff (ε̄) = inf
ε∈K(ε̄)

1

|Ω|

∫
Ω

N∑
r=1

χr(x)QΨr(ε) dx (46)
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where χr is the characteristic function of Ωr (i.e. χr(x) = 1 if x ∈ Ωr and χr(x) = 0
otherwise). We now derive an estimate for Ψeff (ε̄) in (46). For any θ(x) ∈ Tn, Eq.

(44) implies that QΨr(ε) ≤ QΨr(ε,θ(x)). Considering a piecewise constant field

θ(x) =
n∑

r=1

χr(x)θr (47)

in which θ(x) takes a uniform value θr = (θr1, · · · , θrn) in Ωr, we find

Ψeff (ε̄) ≤ inf
ε∈K(ε̄)

1

|Ω|

∫
Ω

N∑
r=1

χr(x)QΨr(ε,θr) dx. (48)

Using (45), Eq. (48) becomes

Ψeff (ε̄) ≤ W (ε̄) +
N∑
r=1

cr

(
Ψmix(θ

r) +
n∑

i=0

θri (
1

2
τ r
i : L

r : τ r
i + wi)

)
(49)

with

W (ε̄) = inf
ε∈K(ε̄)

1

|Ω|

∫
Ω

N∑
r=1

χr(x)(
1

2
ε : Lr : ε+ ηr : ε)dx (50)

and ηr = −Lr :
∑

i θ
r
i ε

r
i . In (49), cr = |Ωr|/|Ω| is the volume fraction of Ωr. Solving

the infimum problem in (50) amounts to solve the elasticity problem

divσ = 0, σ(x) =
∑
r

χr(x)(Lr : ε(x) + ηr), ε ∈ K(ε̄).

The expression of W (ε̄) simplifies if L1 = · · · = Lr, which notably occurs if L is
isotropic. In that case, the solution of (50) takes the form ε = ε̄− Γτ where Γ is a
singular integral operator related to Green’s functions, and we have (Willis, 1981)

W (ε̄) =
1

2
ε̄ : L : ε̄+

∑
r

crη
r : ε̄− 1

2

∑
r,s

ηr : Ars : η
s (51)

where

Ars =
1

|Ω|

∫
Ω

χr(x)(Γχs)(x)dx. (52)

Using (51), Eq. (49) can be rewritten as

Ψeff (ε̄) ≤ ΨC
eff (ε̄,Θ) +

∑
r

crΨmix(θ
r) +

1

2

∑
r,i

crθ
r
i τ

r
i : L : τ r

i

−1

2

∑
r,s

crcsη
r : L−1 : ηs − 1

2

∑
r,s

ηr : Ars : η
s

(53)
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with Θ = (θ1, · · · ,θr) ∈ T N
n and

ΨC
eff (ε̄,Θ) =

1

2

(
ε̄−

∑
r,i

crθ
r
i τ

r
i

)
: L :

(
ε̄−

∑
r,i

crθ
r
i τ

r
i

)
+
∑
r,i

crθ
r
iwi. (54)

The tensors Ars in (52) take a simpler form if the texture has ellipsoidal symmetry,
i.e. if the probability of finding orientation r at point x and orientation s at point
x′ is a function of ∥Z · (x′ −x)∥ where Z ≻ 0 is a symmetric fourth-order tensor. In
that case, we have (Willis, 1977, 1981)

Ars = cr(δrs − cs)P (55)

where

P =
1

4π detZ

∫
∥ξ∥=1

H(ξ)∥Z−1 · ξ∥−3dξ. (56)

In this last expression, H(ξ) is the fourth-order tensor with components H(ξ)ijpq =
ξj[L(ξ)]−1

ip ξq and L(ξ) is the second-order tensor with components L(ξ)ip =
∑

jq Lijpqξjξq.
Explicit expression of the P tensor are available for some useful cases (Castaneda and
Suquet, 1997). Replacing Ars with cr(δrs − cs)P in (53) and taking the infimum over
Θ ∈ T N

n , we obtain

Ψeff (ε̄) ≤ inf
Θ

ΨC
eff (ε̄,θ) +

∑
r

crΨmix(θ
r) +

1

2

∑
r,i

crθiτ
r
i : L : τ r

i

−1

2

∑
r

crη
r : P : ηr − 1

2

∑
r,s

crcsη
r : (L−1 − P) : ηs.

(57)

The choice (47) of a piecewise constant field θ(x) is the only assumption preventing
(57) to hold as an equality. A difficulty for progressing any further with (57) lies
in the fact that Ψmix is unknown. A possible approach, explored by Smyshlyaev
and Willis (1998); Hackl and Heinen (2008) is to replace Ψmix in (57) with an upper
bound obtained from lamination. This results in an upper bound Ψ+

eff on Ψeff of the

form
Ψ+

eff (ε̄) = inf
Θ

ΨC
eff (ε̄,Θ) + l(Θ). (58)

The function l considered by Hackl and Heinen (2008) accounts for energy minimiza-
tion over twin-compatible second-rank laminates (Govindjee et al., 2007). An other
possible approach, that we explore in the following, consists in replacing Ψmix with
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the lower bound ΨReuss + f in (17). In that case we get an estimate of Ψeff , given
by

Ψ∗
eff (ε̄) = inf

Θ
ΨC
eff (ε̄,Θ) + h(Θ) (59)

with

h(θ) =
∑
r

crf(θ
r) +

1

2

∑
r

crη
r : (L−1 − P) : ηr − 1

2
η̄ : (L−1 − P) : η̄ (60)

and η̄ =
∑

r crη
r. Expression (60) of h can be rewritten in the more compact fashion

h(θ) =
∑
r

crf(θ
r) +

1

2

∑
r

crhr : (L−1 − P) : hr (61)

by setting
hr = ηr − η̄. (62)

The overall structure (59) of the estimate Ψ∗
eff is similar to that of the upper bound

Ψ+

eff in (58). However, the proposed estimate does not rely on any assumption on

the type of austenite-martensite microstructures that develop in each grain. There
are also differences in the computational complexity of the mixing energies l and h
appearing in (58) and (59), respectively. The computational complexity of l grows
rapidly with the number of variants n because l is defined by a combinatorial op-
timization problem that requires to keep track of all possible twin laminates. By
contrast, the dimensionality of the optimization problem (14) defining f is equal to
6, independently of the number of variants.

The validity of the estimate Ψ∗
eff in (59) can be assessed by checking if it satisfies

known bounds on the effective energy Ψeff . By construction, Ψ∗
eff satisfies the upper

bounds of Smyshlyaev and Willis (1998); Hackl and Heinen (2008). The comparison
with lower bounds is not as direct. It is known that the convex function

ΨC
eff (ε̄) = inf

Θ
ΨC
eff (ε̄,Θ) (63)

is a lower bound on Ψeff (Hackl and Heinen, 2008). Definition (14) shows that f ≥ 0

and it can be verified that L−1 − P ≻ 0 (Appendix B). The function h in (61) is
thus positive, which ensures that Ψ∗

eff (ε̄) ≥ ΨC
eff (ε̄) for all ε̄. A lower bound that

potentially improves on ΨC
eff has been proposed by Peigney (2009). That bound,

henceforth denoted by Ψ−
eff , is defined as

Ψ−
eff (ε̄) = inf

Θ
ΨC
eff (ε̄,Θ) + g(Θ) (64)
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with

g(Θ) = sup

(a,L̃)

1

4

∑
r,s,i,j

crcsθ
r
i θ

s
j(τ

r
i − τ s

j) : (L− L : (L− K̃)−1 : L) : (τ r
i − τ s

j)

+
1

2

∑
r

crh
r :
(
L− K̃+ (L− K̃) : P̃ : (L− K̃)

)−1

: hr
(65)

where K̃ = K(a) + L̃ and P̃ is the polarization tensor associated to L̃, defined as
in (56) but replacing L with L̃. In (65), the supremum is taken over symmetric
second-order tensors a and symmetric fourth-order tensors L̃ satisfying

a ⪰ 0, L̃ ≻ 0, L ≻ L̃+K(a). (66)

The calculation of g is relatively difficult and it is not obvious from the definitions
above that Ψ∗

eff ≥ Ψ−
eff . It can actually be shown that

h(Θ) ≥ g(Θ) (67)

for all Θ ∈ T N
n , which from (59) and (64) ensures that Ψ∗

eff respects the lower bound

Ψ−
eff . The proof of the inequality (67) is relatively technical and therefore reported

in Appendix C not to obscure the presentation. We only mention here that (67)
crucially relies on some properties of the P tensor in relation with tensors (a,L)
satisfying (66). Those properties are proved as preliminaries in Appendix B. In
summary we have

Ψ−
eff ≤ Ψ∗

eff ≤ Ψ+

eff (68)

i.e the proposed estimate satisfies known lower and upper bounds that depend on
the same microstructural information. Inequality (67) plays an essential role in
(68). In the following, properties (67) and (68) are illustrated on several examples
of increasing complexity. Those examples also provide some insight on the behavior
of the energy estimate Ψ∗

eff and its mechanicals implications.

Remark: The obtained energy estimate (59) only depends on the texture through
the volume fractions of the crystalline orientations and can thus be expressed in terms
of the Orientation Distribution Function (ODF) p of the texture as

Ψ∗
eff (ε) = min

θ:SO(3)7→Tn

ΨC
eff (ε,θ) + h(θ) (69)
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where

ΨC
eff (ε,θ) =

1

2
(ε− τ̄ (θ)) : L : (ε− τ̄ (θ)) +

∫
r∈SO(3)

n∑
i=1

θi(r)wi p(r)dµ (70)

and

h(θ) =

∫
r∈SO(3)

f(θ(r))p(r)dµ

+
1

2

∫
r∈SO(3)

τ (r) : L : (L−1 − P) : L : τ (r) p(r)dµ

−1

2
τ̄ (θ) : L : (L−1 − P) : L : τ̄ (θ).

(71)

The term dµ in (70) and (71) is the Haar measure (Bunge, 2013). The strains
τ̄ (θ) in (70) and τ (r) in (71) are defined as τ (r) =

∑n
i=1 θi(r)rτ ir

T and τ̄ (θ) =∫
r∈SO(3) τ (r)p(r)dµ. Expression (69) is the starting point of the companion paper

devoted to strain localization in SMAs.

4. Analytical example

We first consider a polycrystal with 2 orientations. We assume that only one
martensitic variant (variant 1) is active in orientation 1 and that orientation 2 remains
purely austenitic. The rotation R1 defining orientation 1 is equal to the identity. Let
θ be the volume fraction of the active martensitic variant in orientation 1. The energy
estimate (59) specializes as

Ψ∗
eff (ε) = inf

0≤θ≤1

1

2
(ε− c1θτ 1) : L : (ε− c1θτ 1) + c1θw1 + h(θ) (72)

where

h(θ) =
1

2
c1θ(1− θ)m− +

1

2
c1(1− c1)θ

2(τ 1 : L : τ 1 − κ) (73)

with κ = τ 1 : L : P : L : τ 1 and m− defined as in (23). The function h in (73) being
quadratic in θ, there is no difficulty in solving the minimization problem defining
Ψ∗
eff (ε) in (72). For values of ε such that ε : L : τ 1 falls between w1 +

1
2
m− and

w1 + τ 1 : L : τ 1 − 1
2
m− − (1− c1)κ, we obtain

Ψ∗
eff (ε) =

1

2
ε : L : ε− 1

2
c1

(ε : L : τ 1 − m−
2

− w1)
2

τ 1 : L : τ 1 −m− − (1− c1)κ
. (74)

Expression (74) corresponds to the situation where the minimizing volume fraction
θ in (72) is strictly between 0 and 1, i.e. phase transformation in orientation 1 is not
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complete. To simplify the discussion, we assume from now on that τ 1 is deviatoric
and the texture is isotropic, in which case

m−

E
= λ2

2,
κ

E
=

2(5ν − 4)

15(ν2 − 1)
∥τ 1∥2. (75)

Deviatoric tensors indeed verify condition (25), so that expression (33) of m− ap-
plies. Denoting the second-order and the fourth-order identity tensors by I and I
respectively, the P tensor for an isotropic texture is given by (Castaneda and Suquet,
1997)

P =
1

15E

ν + 1

ν − 1
(I ⊗ I + 2(5ν − 4)I)

from which the expression of κ in (75) follows.
For the example at hand, the energy estimate Ψ∗

eff coincide with the upper bound

Ψ+

eff in (58). It is known indeed that the relaxed energy for the two-well problem is

attained by rank-1 laminates (Kohn, 1991). The lower bound (64) takes the form

Ψ−
eff (ε̄) = inf

0≤θ≤1

1

2
(ε̄− c1θτ 1) : L : (ε̄− c1θτ 1) + c1θw1 + g(θ) (76)

with

g(θ) = sup

(a,L̃)

1

2
c1θ(1− c1θ)τ 1 : (L− L : (L− K̃)−1 : L) : τ 1

+1
2
c1(1− c1)θ

2 : τ 1 : L : (L− K̃+ (L− K̃) : P̃ : (L− K̃))−1 : L : τ 1.
(77)

The function g in (77) is clearly more difficult to evaluate than the function h. Closed-
form expression can be obtained by restricting the minimization in (77) to isotropic
tensors L̃ and tensors a of the form au3 ⊗ u3 where u3 is an eigenvector of τ 1 for
its maximum eigenvalue λ3. This special choice of a is motivated by the fact that
it corresponds to the solution of the two-well problem recovered by setting c1 = 1
in (77), as discussed in Sect. 2.1. To further simplify the calculations, we consider
the case of incompressible elasticity (ν = 1/2) and choose accordingly incompressible
tensors L̃. The corresponding tensors (a, L̃) are thus parameterized by the 2 scalars
(Ẽ, a) where Ẽ is the Young’s modulus of L̃. The restrictions (66) can be verified to
reduce to

0 < Ẽ < E, 0 ≤ a <
2

3
(E − Ẽ). (78)

Setting

r =
Ẽ

E
, s = 3

a

E
,
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we obtain

g(θ) = sup
(r,s)

E

3
c1θ
(
(1− c1θ)(∥τ 1∥2 − p(r, s)) + c1(1− c1)θq(r, s)

)
(79)

where

p(r, s) = 4
3(r − 1)∥τ 1∥2 + s(∥τ 1∥2 + 3λ1λ2)

(s+ 2r − 2)(s+ 6− 6r)
,

q(r, s) = 20r
(9(1− r)(2 + 3r)− 3s(4 + r) + 7/2s2)∥τ 1∥2 + 3sλ1λ2(2s− 3(4 + r))

(s− 3r − 2)(s+ 2r − 2)(18(1− r)(2 + 3r) + 3s(r + 4) + s2)
.

The supremum in (79) is taken over values (r, s) satisfying 0 < r < 1 and 0 ≤ s <
2(r − 1). Observe that the function g in (79) is an isotropic function of τ 1 as it
only depends on τ 1 through its eigenvalues (λ1, λ2, λ3). Moreover, the function g is
homogeneous of degree 2 in τ 1, i.e. changing τ 1 to xτ 1 has the effect of changing g(θ)
to x2g(θ). Similar remarks apply to the function h in (73). Due to those invariance
properties, we can assume without loss of generality that ∥τ 1∥2 = 3/2. This allows
one to write the eigenvalues (λ1, λ2, λ3) of the deviatoric tensor τ 1 as

(λ1, λ2, λ3) = (cos(α +
2π

3
), cos(α +

4π

3
), cosα) (80)

where α ∈ [0, π/6] is the angle introduced by Kachanov (2004). In the following
we examine the two limiting situations α = π/6 and α = 0. The case α = π/6
corresponds to λ2 = 0, i.e. to the situation where austenite and martensite are
geometrically compatible. By contrast, the case α = 0 corresponds to the situation
where λ2

2 is maximized, i.e the incompatibility between austenite and martensite is
maximized.

4.1. Case α = π/6

The case α = π/6 corresponds to (λ1, λ2, λ3) = (−
√
3
2
, 0,

√
3
2
). Carrying out the

optimization with respect to (r, s) in (79), the final expression for g is

g(θ)

E
=


0 for θ ≤ 2

5− 3c1
,

c1
θ

60

(5∆− 6(1− c1θ))
2

3− 2c1θ − θ − 2∆
for θ ≥ 2

5− 3c1
.

(81)

where ∆ =
√

6c2(1− θ)θ. The functions g in (81) and h in (73) are plotted in Fig.
2 for the case c1 = 0.6. We can observe that g(θ) ≤ h(θ) for all θ, which implies that
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Figure 2: Functions h and g in the case α = π/6, c1 = 0.6.

the estimate (72) of the free energy satisfies the lower bound (76) for all values of
the strain ε.

In Fig. 3(left, red curve) are shown the values taken the estimate Ψ∗
eff (ε) in

the direction τ 1, i.e. for ε of the form tτ 1. We have set w1 = 0 and c1 = 0.6.
The values taken by the convex bound ΨC

eff and the lower bound Ψ−
eff are shown in

green and blue, respectively. In Fig. 3(right, red curve) is shown the volume fraction
θ∗ reaching the minimum in (72) for ε = tτ 1. The minimizing volume fractions
for the optimization problems (63) and (76) defining ΨC

eff (tτ 1) and Ψ−
eff (tτ 1) are

denoted by θC and θ−, respectively. They are shown as green and blue curves in
Fig. 3(right). The convex bound ΨC

eff is piecewise quadratic and the corresponding

volume fraction θC grows with t in a piecewise linear fashion as can be observed in
Fig. 3. For t ≥ 2c1/(5 − 3c1), we have θ− ≤ θC i.e. Ψ−

eff requires a larger strain

than ΨC
eff for reaching the same level of phase transformation. This hardening effect

results from the elastic interaction between grains in orientation 1 and orientation 2
which is captured in Ψ−

eff (and Ψ∗
eff ) but not taken into account in ΨC

eff . As can be

observed in Fig. 3(right), the hardening effect in Ψ−
eff is such that full transformation

into martensite is achieved only in the limit t → +∞. We can also observe that the
hardening vanishes (i.e. θ− = θC) for 0 < t ≤ 2c1/(5− 3c1). In that range of values
for t, the lower bound Ψ−

eff surely underestimates the true effective energy Ψeff as

the elastic interaction between orientation 1 and 2 is still present and contributes
to increase the energy compared to the convex envelope ΨC

eff . The proposed energy
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Figure 3: (left) Values of the energy functions for a strain of the form tτ 1. Case α = π/6, c1 = 0.6

estimate Ψ∗
eff is free from such shortcoming: We have indeed Ψ∗

eff > ΨC
eff and

θ∗ < θC even for low values of t, as can be observed in Fig. 3. The behaviors of
Ψ−
eff and Ψ∗

eff also differ for high values of t: In contrast with the lower bound Ψ−
eff ,

the estimate Ψ∗
eff allows for full transformation into martensite to be achieved for a

finite value of the strain, see Fig. 3(right).

4.2. Case α = 0

The case α = 0 corresponds to (λ1, λ2, λ3) = (−1
2
,−1

2
, 1). Carrying the optimiza-

tion with respect to (r, s) in (79) gives

g(θ)

E
=


1

8
(1− c1θ)c1θ for θ ≤ 8

15− 7c1

c1θ
96c22θ

2 + 412c2θ(1− θ) + 91(1− θ)2 − 80D(1− c1θ)

40(7− 4D + (1− 8c1)θ)
for θ ≥ 8

15− 7c1
(82)

with D =
√
14c2(1− θ)θ. The function g given by (82) is plotted in Fig. 4 (blue

curve) for the cases c1 = 0.25 and c1 = 0.75. The function h given by (73) is shown
in red. We can observe that g ≤ h in accordance with (67). As illustrated in Fig.
4 , the function h is convex in θ for low values of c1 and concave for high values of
c1

3. Whereas h is always monotonically increasing, the function g corresponding to

3it can be calculated that the transition from convexity to concavity occurs at c1 = 7/12 ≃ 0.58
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Figure 4: Functions h and g in the case α = 0 with c1 = 0.25 (left), c1 = 0.75 (right).

the lower bound has a up-down-up behavior for c1 ≥ 15/23 ≃ 0.65, as illustrated
in Fig. 4 (right). It can further be noted that h and g are equal at θ = 1 (their
common value is 3Ec1c2/10) and coincide at the first order at θ = 0 (their common
first-order expansion is Ec1θ/8). That last property implies that h actually gives
the exact value of Ψmix −ΨReuss at the first order in θ. We have indeed the general
property g ≤ Ψmix − ΨReuss ≤ l with h = l for the example at hand. Consequently
we can state that Ψmix − ΨReuss = 3Ec1c2θ/10 at the first order in θ. A similar
remark actually applies in the case α = 0, giving Ψmix−ΨReuss = 0 at the first order
in θ.

In Fig. 5(left) are shown the values taken by the energy functions in the direction
τ 1. The minimizing volume fractions are shown in Fig. 5(right). The results in Fig.
5 have been obtained using the values c1 = 0.75 and w1 = 0. Compared to the case
α = π/6 studied previously, a first observation is that Ψ−

eff (tτ 1) > 0 for low values

of t. This results from the incompatibility between austenite and martensite: In the
case α = 0, austenite and martensite do not satisfy the Hadamard conditions (11) so
that the formation of a microstructures entails some elastic energy cost. The impact
of compatibility is also reflected in Fig. 5(right): For θ∗ to be strictly positive, t
needs to be larger than some threshold value t∗, equal to 1/8 and independent of
c1. The corresponding energy is the energy barrier that needs to be overcome for
martensite to appear. For large values of t, the behavior of θ− and θ∗ is similar to
the case α = π/6 depicted in Fig. 3: Whereas θ− only reaches the value 1 in the
limit t → ∞, θ∗ is equal to 1 as soon as t reaches a finite threshold.

We close the study of this example with some comments on the tangent stifness
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Figure 5: (left) Values of energy functions in the direction τ 1. Case α = 0, c1 = 0.75.

L∗ = d2Ψ∗
eff /dε2 of the energy estimate Ψ∗

eff . Expression (74) yields

L∗ = L− c1
(L : τ 1)⊗ (L : τ 1)

τ 1 : L : τ 1 −m− − (1− c1)κ
. (83)

It can be verified from (83) that the minimum value taken by n : L∗ : n over unit
second-order tensors n is attained for n parallel to τ 1. We have

τ 1 : L∗ : τ 1 =
−m− + (1− c1)(τ 1 : L : τ 1 − n)

τ 1 : L : τ 1 −m− − (1− c1)κ
τ 1 : L : τ 1. (84)

For the case α = π/6 (i.e. when austenite and martensite are compatible), Eq. (84)
gives τ 1 : L∗ : τ 1 > 0 and therefore L∗ is positive definite. Now for α = 0, Eq (84)
yields

τ 1 : L∗ : τ 1 = 3E
9− 10ν + 5ν2 − 2c1(7− 5ν)

2(1 + ν)(9− 10ν + 5ν2 + 4c1(4− 5ν))
.

The denominator of the expression above is positive, hence τ 1 : L∗ : τ 1 < 0 for
c1 > (9−10ν+5ν2)/2(7−5ν) (≃ 0.58 for ν = 0.3). It follows that the tangent stiffness
L∗ is not positive definite for high values of c1. In that case, the energy estimate may
give rise to material instabilities, which are observed indeed in SMAs. The formation
of Lüders-type bands in NiTi specimen under tension is a well documented example
of such instabilities (Shaw and Kyriakides, 1997; Daly et al., 2007; Churchill et al.,
2009). In the framework of the present estimate, material instability is strongly
conditioned to the austenite-martensite compatibility.
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5. Tetragonal to orthorombic transformation in a polycrystal

We consider the tetragonal to orthorhombic transformation in a polycrystal with
two isotropically distributed orientations. The rotation R1 in orientation 1 is set
to identity. As in Sect. 4 we assume that grains in orientation 2 remain purely
austenitic. In that case, the function h in (60) only depends of the martensitic
volume fractions θ = (θ1, θ2) in orientation 1 and we have

h = c1fT-O(θ) + c1c2(θ1τ 1 + θ2τ 2) : (L− L : P : L) : (θ1τ 1 + θ2τ 2) (85)

where fT-O(θ) corresponds to the solution of the three-well relaxation problem for
the tetragonal to orthorhombic transformation, as studied in Sect. 2.2. To fix ideas,
we consider the case

ν =
1

2
, τ 1 = η diag(−1, 2,−1), τ 2 = η diag(2,−1,−1)

for some η, so that

h = c1fT-O(θ) +
6

5
Eη2c1c2(θ

2
1 + θ22 − θ1θ2). (86)

The term fT-O(θ) in (86) is known explicitly as a special case of the expressions
obtained in Sect. 2.2. The function h is plotted in Fig. 6 for η = 1 along with the
functions g and l defining the lower and the upper bounds on the effective energy in
(58) and (64). The function l can be calculated explicitly from the expressions given
by Hackl and Heinen (2008) and is given by

l

Eη2
= c1

(
2(θ1(1− θ1) + θ2(1− θ2) + 2θ1θ2)− 6 θ1θ2

θ1+θ2
− 3

2
θ0(1− θ0)

(
| θ1
θ1+θ2

− 1
2
|+ 1

2

)2)
+
6

5
c1c2(θ

2
1 + θ22 − θ1θ2).

(87)
The function g is obtained by solving the optimization problem (65) numerically.
Each subfigure in Fig. 6 shows the values taken by the energy functions as a function
of θ1 for prescribed values of the austenitic volume fraction θ0 and volume fraction
c1 of orientation 1. The subfigures on the left correspond to c1 = 0.2 and those on
the right correspond to c1 = 0.8. The value of θ0 decreases from 0.9 to 0.3 from
top to bottom. For a given value of c1, the plots in Fig. 6 show that h behaves
as g for high values of θ0 and as l for low values of θ0. For a given value of θ0,
h becomes increasingly closer to g as c1 increases. In the limit c1 → 1, it can
observed from (86) that h recovers the exact expression fT-O of the relaxed energy.

27



This not the case for the function l corresponding to the upper bound. We have
for instance l(θ, θ) → θ(1 − 2θ)/4 as c1 → 1, whereas we know from Sect. 2.2 that
(Ψmix−ΨReuss)(θ, θ) = 0. The reason is that second-rank lamination – as considered
implicitly in the function l – is not sufficient to achieve the relaxed energy.

In Fig. 7(left) are shown the values taken by Ψ∗
eff (ε) (red curve) and Ψ−

eff (ε) (blue

curve) in the direction ε = t(0.6τ 1 +0.4τ 2), t ≥ 0. The convex bound ΨC
eff is shown

in green. The volume fraction c1 and the ratio wi/E (i ≥ 1) have been set to 0.2 and
4/45000 respectively. Some insight on the behavior of the energy estimate Ψ∗

eff can be

gained by looking at the minimizing volume fractions of martensite, see Fig. 7(right).
Since a strictly positive value of w1 has been used, martensite becomes energetically
favorable only when t exceeds a certain transformation threshold tM . For the convex
envelope, that threshold is equal to w1/(2µτ 1 : (0.8τ 1 + 0.2τ 2)) ≃ 0.55. Beyond
that transformation threshold, the minimizing volume fractions θC for the convex
bound only involve variant 1 which is the most favorably oriented with respect to
the applied strain ε̄. By contrast, the minimizing volume fractions θ∗ = (θ∗1, θ

∗
2)

corresponding to the energy estimate Ψ∗
eff involve both variants. In a first stage, θ∗1

and θ∗2 grow linearly with t until θ∗1 + θ∗2 reaches the limit value 1, indicating that
austenite is fully transformed into martensite. For larger values of t, θ∗1 continues
to grow while θ∗2 decreases, the sum θ∗1 + θ∗2 being equal to 1. This corresponds to
the reorientation of variant 2 into variant 1. The minimizing volume fractions θ−

corresponding to the lower bound Ψ−
eff show a similar behavior, with the difference

that full transformation into martensite is reached sooner. The behavior of θ∗ for
small values of t above tM is explained by the fact that austenite and martensite are
not compatible in the example considered. Thus, microstructures mixing austenite
and a single variant of martensite – as predicted by the convex bound – have a high
energy cost f(θ). Since the two martensitic variants are compatible in the example
at hand, low values of f(θ) can be achieved by mixing the three phases as discussed
in Sect. 2.2. For low values of t above tM , the minimizing volume fractions θ∗

result from a trade off between the microstructural energy f(θ) – which favors the
presence of both variants – and the convex term ΨC

eff (ε,θ) – which favors variant

1. The situation changes when θ∗1 + θ∗2 reaches the value 1, which occurs for large
values of t. In that case, the compatibility of the variants implies that f(θ) = 0 for
any value of θ = (θ1, θ2) such that θ1 + θ2 = 1. Hence the energy term f does not
play a role anymore. For high values of t, the value of θ∗ strikes a balance between
the inter-grain interaction energy and the convex term ΨC

eff (ε,θ), in a way similar

to the example considered in Sect. 4.1. As in Sect. 4.1, θ∗1 reaches the limit value 1
for a finite value of t whereas θ−1 only reaches 1 in the limit t → +∞. For the case
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Figure 6: Bounds and estimate on the mixing energy for a three-well/two-orientation problem.
Values of the energy are normalized with respect to the Young’s modulus E.
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Figure 7: (left) Energy functions in the direction 0.6τ 1+0.4τ 2, (right) Minimizing volume fractions.
Case wi/E = 4/45000.

depicted in Fig. 7, the energy estimate Ψ∗
eff is found to be really close to the upper

bound Ψ+

eff . In Fig. 8 is shown a situation where differences between Ψ∗
eff and Ψ+

eff
are noticeable. The plots in Fig. 8 correspond to c1 = 0.8 and w1 = w2 = 0, i.e. to
a temperature T close to the transformation temperature T0.

We close this Section by comparing the stress component σ11 = u1 ·σ ·u1 calcu-
lated from the different energy functions considered (Fig. 9). The stress calculated
from the energy estimate Ψ∗

eff is

dΨ∗
eff

dε
(ε) = L : (ε− c1θ

∗
1τ 1 − c1θ

∗
2τ 2). (88)

The stress dΨ−
eff /dε calculated from the lower bound Ψ−

eff is obtained by replacing

(θ∗1, θ
∗
2) with (θ−1 , θ

−
2 ) in (88). The stress calculated from the convex bound ΨC

eff
is obtained similarly by replacing (θ∗1, θ

∗
2) with (θC1 , θ

C
2 ). Even though the values of

the energy functions shown in Fig. 7(left) are close to one another, the calculated
stresses show significant differences as illustrated in Fig. 9(left). This boils down to
the fact that a small distance between two functions F and G does not warrant a
small distance between their derivatives F ′ and G′. In the same spirit, the inequality
F ≤ G does not imply that F ′ ≤ G′ and the stress calculated from the convex
envelope is not a lower bound on the stress calculated from Ψ∗

eff as can be seen in

Fig. 9. Similarly, for the case depicted in Fig. 8, there is a large gap between the
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Figure 8: (left) Energy functions in the direction 0.55τ 1 + 0.45τ 2, (right) Minimizing volume
fractions. Case wi = 0.

stresses calculated from the energy estimate and the upper bound as shown in Fig.
9(right).

6. Uniaxial tension in γ′
1CuAlNi

We now consider an example related to γ′
1CuAlNi, for which there are 6 marten-

sitic variants with transformations strains listed in Table A.2. That example is used
to illustrate the selection of variants operated by the energy estimate. We consider
a polycrystal with 2 orientations defined by

R1 =

 1 0 0
0 1 0
0 0 1

 ,R2 =
1√
2

 1 −1 0
1 1 0

0 0
√
2

 . (89)

The orientations in (89) correspond to the Eucken-Hirsh texture observed in rolled
SMA ribbons (Eucken and Hirsch, 1990): the normal u3 to the ribbon is along the
⟨001⟩ crystallographic direction of the austenitic cubic lattice and the rolling direction
u1 is parallel either to ⟨100⟩ or ⟨110⟩. We consider strain-driven uniaxial tension in
the direction u1. For such a loading, the strain tensor is obtained by solving

inf
ε:u1·ε·u1=ϵ

Ψeff (ε) (90)

31



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5
·10−7

t

σ
1
1
/E

ΨC
eff

Ψ−
eff

Ψ∗
eff

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
·10−7

t

|σ
1
1
|/
E

Ψ∗
eff

Ψ+

eff

Figure 9: Stress for an applied strain t(0.6τ 1+0.4τ 2) with wi/E = 4/45000 (left) and for an applied
strain t(0.55τ 1 + 0.45τ 2) with wi/E = 0 (right) as calculated from several energy functions.

where ϵ is the applied uniaxial strain. In Fig. 10(left) are shown the curves ϵ 7→
Ψ̃∗
eff(ϵ) and ϵ 7→ Ψ̃−

eff(ϵ) where

Ψ̃∗
eff(ϵ) = inf

ε:u1·ε·u1=ϵ
Ψ∗
eff (ε), Ψ̃−

eff(ϵ) = inf
ε:u1·ε·u1=ϵ

Ψ−
eff (ε) (91)

The volume fraction c1 of orientation 1 has been set to 0.6 and the values E = 45
GPa, ν = 0.3, w1 = 4 MPa, α = 0.0425, β = −0.0822, δ = 0.0194 have been used
(Otsuka and Shimizu, 1974). The property Ψeff ≥ Ψ−

eff implies that Ψ̃eff ≥ Ψ̃−
eff

i.e. Ψ̃−
eff is a lower bound on Ψ̃eff. We can observe in Fig.10 that Ψ̃∗

eff satisfies

that lower bound. In Fig. 10(right) are shown the minimizing volume fractions Θ
obtained from the energy estimate Ψeff , i.e. such that Ψ̃∗

eff(ϵ) = Ψ∗
eff (ε̃,Θ) where

ε̃ reaches the minimum in (91). Among the 6 possible variants in each orientation,
the calculations shows that only three variants appear, namely variants 1,2,4 in
orientation 1 and variants 4,5,6 in orientation 2. The three variants that appear in
orientation 1 are the most favorable with respect to the loading direction as can be
observed from Table 1 showing the values taken by u1 ·τ j

i ·u1. Regarding orientation
2, it is interesting to observe that the second best favorable variant (variant 3) is
not part of the three variants that appear. Let us compare those predictions with
those resulting from the consideration of twin laminates. The 6 martensitic variants
in γ′

1CuAlNi are pairwise compatible and it is known that there exists 24 martensitic
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Table 1: Values of u1 · τ j
i · u1 for variant i in orientation j.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
orientation 1 0.0416 0.0415 0.0391 0.0459 −0.0813 −0.0813
orientation 2 −0.0305 −0.0308 0.0234 0.0616 −0.0092 −0.0089

twin laminates that are compatible with the austenite. Those twin laminates are
obtained by solving the equation

det(θτ i + (1− θ)τ j) = 0 (92)

with θ ∈ [0, 1] and i ̸= j. For any (i, j, θ) solving (92), the effective transformation
strain of the twin laminate is θτ i+(1−θ)τ j. Calculating the effective transformation
strain of all possible twin laminates shows that the most favorably oriented twin
laminates in orientation 1 are (4, 1, θ̃) and (4, 2, θ̃) with θ̃ ≃ 0.6926. The values of
u1 · (θ̃τ i + (1− θ̃)τ j) ·u1 are the same for both twins. For a mix of those two twins
(in any proportion), the volume fractions of variants 1,2 and 4 therefore satisfy

θ4
θ1 + θ2

=
θ̃

1− θ̃
≃ 2.25.

The numerical results in Fig. 10 give θ4
θ1+θ2

≃ 2.58 which is relatively close to the value

2.25. In orientation 2, the most favorably twin laminates are found to be (4, 5, θ̃)
and (4, 6, θ̃), so that θ4

θ5+θ6
≃ 2.25 in any mix of those twin laminates. The numerical

results obtained from the energy estimate Ψeff give indeed that only variants 4,5,6

appear in orientation 2, but the ratio θ4
θ5+θ6

is found to be approximatively equal to
3. The active variants predicted by the energy estimate thus coincide with those
expected from the consideration of twin-compatible laminates, but the proportions
of the variants are not the same. We note that the energy estimate does not assume
any type of microstructure. Twin-compatible second-rank laminates do not always
achieve the minimum energy and more complex microstructures can arise.

7. Recoverable strains and low-temperature states in NiTiCu

Our final example is related to recoverable strains and austenite-free mixtures of
martensite variants. The material we consider is NiTiCu, which obeys a cubic to
monoclinic-I transformation. There are 12 martensitic variants and the correspond-
ing transformations strains τ 1, · · · , τ 12 are listed in Table A.3. Zhao et al. (1998)
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Figure 10: Uniaxial tension in a γ′
1CuAlNi polycrystal: effective energy (left) and martensitic

volume fractions (right) as functions of the applied unaxial strain ϵ.

measured the texture and the (uniaxial) maxium recoverable strains in rolled NiTiCu
sheets. The experiments of Zhao et al. (1998) show that the texture has mainly 2
orientations in proportions (c1, c2) = (0.6, 0.4) and defined by the rotations

R1 =

 1/
√
2 0 −1/

√
2

1/
√
2 0 1/

√
2

0 −1 0

 , R2 =

 1/
√
2 1/

√
2 0

−1/
√
6 1/

√
6

√
2/3

1/
√
3 −1/

√
3 1/

√
3

 . (93)

The matrix representations in (93) are relative to a orthonormal basis (u1,u2,u3)
where u1 is the rolling direction, u2 is the transverse direction and u3 is the normal
to the sheet. Let u(z) = cos zu1+sin zu2 be the unit vector in the sheet that makes
an angle z with the rolling direction. In Fig. 11 (dotted line) is shown the maximum
recoverable strain s(z) measured by Zhao et al. (1998) for several values of the angle
z. The set Seff of recoverable strains for a polycrystal is the set of energy-minimizing

strains at low temperature (w1 = · · · = wN < 0), defined in a way similar to (18) by

Seff = {ε : Ψeff (ε) = w1}. (94)

As detailed by Shu and Bhattacharya (1998), the scalar s(z) is related to the set Seff
in (94) by

s(z) = max
ε∈Seff

u(z) · ε · u(z). (95)

The energy estimate Ψ∗
eff generates the estimate S∗

eff = {ε : Ψ∗
eff (ε) = w1} of the

set of recoverable strains and therefore an estimate of s(z) given by maxε∈S∗
eff

u(z) ·
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Figure 11: Recoverable strains in NiTiCu with the Zhao-Beyer texture.

ε · u(z). We are interested here in comparing S∗
eff with an other estimate of the

recoverable strains, proposed by Shu and Bhattacharya (1998) and defined as

SSB =
⋂
r

RrKcRr,T (96)

where Kc is the convex hull of the set K = {τ 1, · · · , τ 12}. In Fig. 11 (blue line) is
shown the estimate of s(z) obtained by replacing Seff with SSB in (95). The estimate

of s(z) obtained from the proposed approach is shown in red. The proposed estimate
is close to that of Shu and Bhattacharya (1998) but gives slightly smaller values which
are overall closer to the experimental results of Zhao et al. (1998). As a comparison,
the upper bound on s(z) obtained from the convex energy bound ΨC

eff in (63) is

shown in green in Fig. 11.
We note that the proposed estimate is not restricted to recoverable strains and

also gives some information on the energy of any martensite state. To illustrate that
point, we consider volume fractions Θ varying between two special states A and B.
The state A = {Ar

i}
1≤r≤2
1≤i≤12 is defined by Ar

i = 1/12 and can be interpreted as a self-
accommodated state, i.e. the state reached by the material when cooled down from
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a high temperature in stress-free conditions. The state B = {Br
i }

1≤r≤2
1≤i≤12 correspond

to the volume fractions realized the convex bound on s(z) (green curve in Fig. 11) at
z = 0. It is defined by B1

2 = B2
2 = 1, the other components Br

i being equal to zero.
In Fig. 12(red curve) is shown the values taken by the function h for martensitic
volume fractions Θ = (1 − r)A + rB for 0 ≤ r ≤ 1. The function g corresponding
to the lower energy bound Ψ−

eff is shown in blue. In green is shown the function l

corresponding to the upper energy bound Ψ+

eff of Hackl and Heinen (2008), see Eq.

(58). We can observe in Fig. 12 that g ≤ h ≤ l as expected from the general results
of Sect. 3. More specifically, the plots in Fig. 12 show that h ”interpolates” between
g and l, behaving as g for low values of r and behaving as l for high values or r.
For r = 0, it can proved the exact value of the energy is zero. This is captured by
the functions g and h but not by l because second-rank lamination is not sufficient
to obtain a zero-energy. For r = 1, the three functions g, h and l coincide. This
actually occurs whenever every crystalline orientation is in a pure phase, i.e. for
volume fractions Θ = {θri } of the form θri =

∑
s δrsδij(r). In that case, it is proved in

Peigney (2009) that

g(Θ) = l(Θ) =
1

4

∑
r,s

crcs(τ
r
j(r) − τ s

j(s)) : (L− L : P : L) : (τ r
j(r) − τ s

j(s))

That value is recovered from h as can be verified from (60).

8. Concluding remarks

The presented estimate takes both intra-grain compatibility conditions and inter-
grain constraints into account, without making any assumption on the type of
austenite-martensite microstructures in each grain. That estimate is guaranteed
to satisfy known lower and upper bounds on the effective energy. In that regard, a
pattern seems to emerge from the examples presented: the estimate behaves as the
upper bound of Hackl and Heinen (2008) for high strains (i.e. in situations where
known lower bounds are expected to underestimate the effective energy significantly)
and tends to behave as the lower bound of Peigney (2009) for low strains (i.e. in
situations where the expected microstructures are not necessarily second-rank twin-
compatible laminates). We close with a final remark related to hysteresis effects
and energy dissipation. Both thermal and mechanical hysteresis are frequently ob-
served in SMAs. In the framework of energy minimization, using a convex function
to estimate the effective energy (such as the lower bound ΨC

eff ) rules out any hys-

teresis. Then it is necessary to introduce an ad hoc dissipation ansatz to capture
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Table A.2: Transformation strains for the cubic to orthorhombic transformation.

τ 1 τ 2 τ 3 α 0 δ
0 β 0
δ 0 α

  α 0 −δ
0 β 0
−δ 0 α

  α δ 0
δ α 0
0 0 β


τ 4 τ 5 τ 6 α −δ 0

−δ α 0
0 0 β

  β 0 0
0 α δ
0 δ α

  β 0 0
0 α −δ
0 −δ α



hysteresis in the material model, see e.g. Govindjee and Miehe (2001); Hackl et al.
(2008); Peigney et al. (2011); Peigney and Seguin (2013) for examples of such an
approach. The situation is different when using the proposed estimate (or any non
convex estimate for that matter). Being non convex, that estimate may indeed give
rise to metastability and hysteresis effects, without introducing a dissipation ansatz.
In particular, mechanical hysteresis in the superelastic regime is investigated in the
companion paper in relation with Luders-type instabilities.

Appendix A. Transformation strains

Appendix A.1. Cubic to orthorhombic transformation

For the cubic to orthorhombic transformation, there are 6 martensitic variants
with transformation strains listed in Table A.2. Values of the lattice parameters for
γ′
1CuAlNi are α = 0.0425, β = −0.0822, δ = 0.0194 (Otsuka and Shimizu, 1974).

Appendix A.2. Cubic to monoclinic-I transformation

The transformation strains of the 12 martensitic variants in the cubic to monoclinic-
I transformation are listed in Table A.3. Values of the lattice parameters for TiNiCu
are α = 0.0232, β = −0.0410, δ = 0.0532, ϵ = 0.0395 (Nam et al., 1990).

Appendix B. Properties of the P tensor

In all that follows we use the notation A ⪰ B to indicate that two given fourth-
order tensors A and B satisfy ε : A : ε ≥ ε : B : ε for all non-zero symmetric second-
order tensor ε. Let L̃ and a satisfying the relations (66). Setting K̃ = L̃+K(a), we
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Table A.3: Transformation strains for the cubic to monoclinic-I transformation.

τ 1 τ 2 τ 3 β ϵ ϵ
ϵ α δ
ϵ δ α

  β −ϵ −ϵ
−ϵ α δ
−ϵ δ α

  β −ϵ ϵ
−ϵ α −δ
ϵ −δ α


τ 4 τ 5 τ 6 β ϵ −ϵ

ϵ α −δ
−ϵ −δ α

  α ϵ δ
ϵ β ϵ
δ ϵ α

  α −ϵ δ
−ϵ β −ϵ
δ −ϵ α


τ 7 τ 8 τ 9 α −ϵ −δ

−ϵ β ϵ
−δ ϵ α

  α ϵ −δ
ϵ β −ϵ
−δ −ϵ α

  α δ ϵ
δ α ϵ
ϵ ϵ β


τ 10 τ 11 τ 12 α δ −ϵ

δ α −ϵ
−ϵ −ϵ β

  α −δ ϵ
−δ α −ϵ
ϵ −ϵ β

  α −δ −ϵ
−δ α ϵ
−ϵ ϵ β
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prove in this Appendix that

(L− K̃)−1 − P ⪰ (L− K̃+ (L− K̃) : P̃ : (L− K̃))−1 (B.1)

where P and P̃ are the polarization tensors associated to L and L̃, as defined by (56).
Property (B.1) plays an important role in proving that the proposed estimate Ψeff
complies with the lower bound Ψ−

eff in (64). For later reference, we first note that

the quadratic function ε 7→ ε : K(a) : ε is quasiconvex for any a ⪰ 0, i.e. satisfies

1

|Ω|

∫
Ω

ε : K(a) : εdx ≥ ε̄ : K(a) : ε̄ (B.2)

for any ε ∈ K(ε̄) (Peigney, 2008). Taking ε̄ = 0, N = 2 and η2 = 0 in (50) and (51)
shows that

−1

2
c1(1− c1)η

1 : P : η1 = inf
ε∈K(0)

1

|Ω|

∫
Ω

2∑
r=1

χr(x)wr(ε)dx (B.3)

where w1(ε) =
1
2
ε : L : ε+ η1 : ε and w2(ε) =

1
2
ε : L : ε. For any given η̃1 we have

similarly

−1

2
c1(1− c1)η̃

1 : P̃ : η̃1 = inf
ε∈K(0)

1

|Ω|

∫
Ω

2∑
r=1

χr(x)w̃r(ε)dx (B.4)

where w̃1(ε) =
1
2
ε : L̃ : ε+ η̃1 : ε and w̃2(ε) =

1
2
ε : L̃ : ε. We introduce the functions

ŵr = w̃r +
1
2
ε : K(a) : ε and consider the Legendre transform

(wr − ŵr)
∗(σ) = sup

ε
σ : ε− wr(ε) + ŵr(ε). (B.5)

Definition (B.5) implies that wr(ε) ≥ σ : ε + ŵr(ε) − (wr − ŵr)
∗(σ) for any ε and

σ. It follows that∫
Ω

2∑
r=1

χr(x)wr(ε)dx ≥
∫
Ω

σ : εdx+

∫
Ω

1

2
ε : K(a) : εdx+

∫
Ω

2∑
r=1

χr(x)w̃r(ε)dx

−
∫
Ω

(wr − ŵr)
∗(σ)dx

(B.6)
for any ε ∈ K(0). Choosing σ as independent of the location x, the first integral
in the RHS of (B.6) is equal to 0 because the mean value of ε vanishes for any
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ε ∈ K(0). Moreover, Eq. (B.2) shows that the second integral on the RHS of (B.6)
is positive. Eq. (B.4) implies that the third integral in the RHS is bounded from
below by −1

2
c1(1− c1)η̃

1 : P̃ : η̃1|Ω|. We thus arrive at

1

Ω

∫
Ω

2∑
r=1

χr(x)wr(ε) ≥ −1

2
c1(1− c1)η̃

1 : P̃ : η̃1 −
2∑

r=1

cr(wr − ŵr)
∗(σ). (B.7)

Taking the infimum over ε ∈ K(0) yields, in view of (B.3),

−1

2
c1(1− c1)η

1 : P : η1 ≥ −1

2
c1(1− c1)η̃

1 : P̃ : η̃1 −
2∑

r=1

cr(wr − ŵr)
∗(σ). (B.8)

The terms (wr − ŵr)
∗(σ) can be calculated directly from (B.5). Substituting the

result in (B.8) gives

−1

2
c1(1− c1)η

1 : P : η1 ≥ −1

2
c1(1− c1)η̃

1 : P̃ : η̃1 − 1

2
σ : (L− K̃)−1 : σ

+c1σ : (L− K̃)−1 : (η1 − η̃1)−
c1
2
(η1 − η̃1) : (L− K̃)−1 : (η1 − η̃1).

The right-hand side of the inequality above is quadratic in σ. Maximizing with
respect to σ gives

−η1 : P : η1 ≥ −η̃1 : P̃ : η̃1 − (η1 − η̃1) : (L− K̃)−1 : (η1 − η̃1). (B.9)

Choosing in particular η̃1 = 0 in (B.9) shows that

(L− K̃)−1 ⪰ P (B.10)

which notably implies (by taking a = 0 and L̃ → 0) the property

L−1 ⪰ P (B.11)

as mentioned in Sect. 3.
Note that (B.9) is quadratic in η1 and can be rewritten as

η1 : ((L−K̃)−1−P) : η1−2η1 : (L−K̃)−1 : η̃1 ≥ −η̃1 : ((L−K̃)−1+ P̃) : η̃1. (B.12)

Eq. (B.10) ensures that the LHS of (B.12) remains bounded from below when η1

varies. Minimizing (B.12) with respect to η1 yields

−η̃1 : (L− K̃)−1 : ((L− K̃)−1 − P)−1 : (L− K̃)−1 : η̃1 ≥ −η̃1 : ((L− K̃)−1 + P̃) : η̃1.
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Setting η = (L− K̃)−1 : η̃1, we have

−η : ((L− K̃)−1 − P)−1 : η ≥ −η : ((L− K̃) + (L− K̃) : P̃ : (L− K̃)) : η

for all η, i.e.

(L− K̃) + (L− K̃) : P̃ : (L− K̃) ⪰ ((L− K̃)−1 − P)−1 (B.13)

Eq. (B.1) follows from taking the inverse in (B.13) (we recall that B ⪰ A ⪰ 0 =⇒
A−1 ⪰ B−1, see e.g. Zhan (2002)).

Remark: Some additional manipulations show that (B.13) can also be rewritten

in the more compact form P−1 − P̃−1 ⪰ L − K̃. However, formulation (B.1) will be
more convenient for our purpose.

Appendix C. Proof of the inequality h ≥ g

We show in this Appendix that

h(Θ) ≥ g(Θ) (C.1)

for any Θ ∈ T N
n . We first note that definition (65) can be rewritten as

g(Θ) = sup

a,L̃
H(Θ,a, L̃) (C.2)

where the supremum is taken over tensors (a, L̃) satisfying (66) and

H(Θ,a, L̃) =
1

4

∑
r,s,i,j

crcsθ
r
i θ

s
j(τ

r
i − τ s

j) : M̃ : (τ r
i − τ s

j) +
1

2

∑
r

crh
r : Q̃ : hr (C.3)

with

M̃ = L− L : (L− K̃)−1 : L, Q̃ =
(
L− K̃+ (L− K̃) : P̃ : (L− K̃)

)−1

.

For any given tensors (a, L̃) satisfying (16), we show that H(Θ,a, L̃) ≤ h(Θ), from
which (C.1) will follow directly. Recalling that

∑n
i=0 θ

r
i = 1 and

∑N
r=1 cr = 1, some

straightforward manipulations show that

1

4

∑
r,s,i,j

crcsθ
r
i θ

s
j(τ

r
i − τ s

j) : M̃ : (τ r
i − τ s

j) =
1

2

∑
r,i

crθ
r
i τ

r
i : M̃ : τ r

i −
1

2
τ̄ : M̃ : τ̄
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with τ̄ =
∑

r,i crθ
r
i τ

r
i . In a similar fashion, we have, for any given r,

1

4

∑
i,j

θri θ
r
j (τ

r
i − τ r

j) : M̃ : (τ r
i − τ r

j) =
1

2

∑
i

θri τ
r
i : M̃ : τ r

i −
1

2
τ r : M̃ : τ r

where τ r =
∑

i θ
r
i τ

r
i . It follows that

H(Θ,a, L̃) =
1

4

∑
r,i,j

crθ
r
i θ

r
j (τ

r
i − τ r

j) : M̃ : (τ r
i − τ r

j)

+
1

2

∑
r

crτ
r : M̃ : τ r − 1

2
τ̄ : M̃ : τ̄ +

1

2

∑
r

crh
r : Q̃ : hr.

(C.4)

Observing that
∑

r cr(τ
r − τ̄ ) : M̃ : (τ r − τ̄ ) =

∑
r crτ

r : M̃ : τ r − τ̄ : M̃ : τ̄ and
recalling from (62) that hr = −L : (τ r − τ̄ ), we obtain

H(Θ,a, L̃) =
1

4

∑
r,i,j

crθ
r
i θ

r
j (τ

r
i−τ r

j) : M̃ : (τ r
i−τ r

j)+
1

2

∑
r

crh
r : (L−1−(L−K̃)−1+Q̃) : hr.

(C.5)
We now proceed to bound the two sums in the RHS of (C.5). For any given r, we
have by definition (14)

1

4

n∑
i,j=0

θri θ
r
j (τ i − τ j) : M(a) : (τ i − τ j) ≤ f(θr) (C.6)

for any a ⪰ 0 such that L − K(a) ≻ 0. The elasticity tensor L being isotropic, an
important observation is that the function f in (14) is rotationally invariant with
respect to the transformation strains. This implies that we may as well replace τ i

with τ r
i = Rrτ iR

r,T in (C.6), so that

1

4

n∑
i,j=0

θri θ
r
j (τ

r
i − τ r

j) : M(a) : (τ r
i − τ r

j) ≤ f(θr) (C.7)

for any a ⪰ 0 such that L−K(a) ≻ 0. Consider given tensors (a, L̃) verifying (16).
We have L ≻ K̃ = L̃+K(a) ≻ K(a), hence L−K(a) ≻ 0. Eq. (C.7) is thus satisfied.
The relation K̃ ≻ K(a) also implies that L − K(a) ≻ L − K̃. Since L − K̃ ≻ 0, it
follows that (L− K̃)−1 ≻ (L−K(a))−1 and consequently that

M(a) ≻ L− L : (L− K̃)−1 : L = M̃ (C.8)
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where M(a) is defined as in (15). It follows that

1

4

∑
i,j

θri θ
r
j (τ

r
i − τ r

j) : M̃ : (τ r
i − τ r

j) ≤
1

4

∑
i,j

θri θ
r
j (τ

r
i − τ r

j) : M(a) : (τ r
i − τ r

j) ≤ f(θr)

and consequently that

H(Θ,a, L̃) ≤
∑
r

crf(θ
r) +

1

2

∑
r

crh
r : (L−1 − (L− K̃)−1 + Q̃) : hr.

Eq. (B.1) proved in Appendix B entails that L−1 − P ⪰ L−1 − (L − K̃)−1 + Q̃, so
that hr : (L−1 − (L− K̃)−1 + Q̃) : hr ≤ hr : (L−1 − P) : hr and

H(Θ,a, L̃) ≤
∑
r

crf(θ
r) +

1

2

∑
r

crh
r : (L−1 − P) : hr.

The right-hand of that inequality is equal to h(Θ), see. Eq (61). We thus have
H(Θ,a, L̃) ≤ h(Θ) for all (a, L̃) verifying (16). In view of (C.2), taking the supre-
mum over (a, L̃) gives g(Θ) ≤ h(Θ).
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Boussaid, O., Kreisbek, C., Schlömerkemper, A., 2019. Characterizations of sym-
metric polyconvexity. Archive for Rational Mechanics and Analysis 234, 417–451.

Bunge, H.J., 2013. Texture analysis in materials science: mathematical methods.
Elsevier.

44



Castaneda, P.P., Suquet, P., 1997. Nonlinear composites, in: Advances in applied
mechanics. Elsevier. volume 34, pp. 171–302.

Churchill, C., Shaw, J., Iadicola, M., 2009. Tips and tricks for characterizing shape
memory alloy wire: part 3-localization and propagation phenomena. Experimental
Techniques 33, 70–78.

Cisse, C., Zaki, W., Zineb, T.B., 2016. A review of constitutive models and modeling
techniques for shape memory alloys. International Journal of Plasticity 76, 244–
284.

Dacorogna, B., 2007. Direct methods in the calculus of variations. volume 78.
Springer Science & Business Media.

Daly, S., Ravichandran, G., Bhattacharya, K., 2007. Stress-induced martensitic
phase transformation in thin sheets of nitinol. Acta Materialia 55, 3593–3600.

Eucken, S., Hirsch, J., 1990. The effect of textures on shape memory behaviour, in:
Materials Science Forum, Trans Tech Publ. pp. 487–492.

Govindjee, S., Hackl, K., Heinen, R., 2007. An upper bound to the free energy of
mixing by twin-compatible lamination for n-variant martensitic phase transforma-
tions. Continuum Mechanics and Thermodynamics 18, 443–453.

Govindjee, S., Miehe, C., 2001. A multi-variant martensitic phase transformation
model: formulation and numerical implementation. Computer Methods in Applied
Mechanics and Engineering 191, 215–238.

Govindjee, S., Mielke, A., Hall, G., 2003. The free energy of mixing for n-variant
martensitic phase transformations using quasi-convex analysis. Journal of the
Mechanics and Physics of Solids 4, 763.

Hackl, K., Heinen, R., 2008. An upper bound to the free energy of n−variant
polycrystalline shape memory alloys. J.Mech.Phys.Solids 56, 2832–2843.

Hackl, K., Heinen, R., Schmahl, W.W., Hasan, M., 2008. Experimental verification
of a micromechanical model for polycrystalline shape memory alloys in dependence
of martensite orientation distributions. Materials Science and Engineering: A 481,
347–350.

Kachanov, L.M., 2004. Fundamentals of the Theory of Plasticity. Courier Corpora-
tion.

45



Kohn, R.V., 1991. The relaxation of a double-well energy. Continuum Mechanics
and Thermodynamics 3, 193–236.

Lurie, K.A., Cherkaev, A.V., 1984. Exact estimates of conductivity of composites
formed by two isotropically conducting media taken in prescribed proportion. Pro-
ceedings of the Royal Society of Edinburgh Section A: Mathematics 99, 71–87.

Milton, G., 2002. The theory of composites. Cambridge University Press.

Murat, F., 1985. Calcul des variations et homogénéisation, in: Les Méthodes de
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