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A micromechanically consistent energy estimate for polycrystalline shape-memory alloys. I -General formulation
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We present an estimate for the effective energy of polycrystalline shape memory alloys that takes both intra-grain compatibility conditions and inter-grain constraints into account. That estimate is constructed using ideas and results from homogenization theory and from the translation method. The proposed estimate depends on the texture through 2-point statistics and is proved to satisfy known rigorous bounds that depend on the same microstructural information. Several examples are provided to give some insight on the proposed estimate and illustrate how it behaves relative to the bounds. The presented examples range from strain-driven uniaxial tension in the superelastic regime (high temperature) to the estimation of recoverable strains in the shape memory regime (low temperature).

Introduction

The peculiar properties of Shape Memory Alloys (SMAs) result from a temperatureinduced or stress-induced solid/solid phase transformation between austenite and martensite. Martensite has a crystallographic structure with less symmetry than the austenite, which implies that several martensitic variants need to be distinguished depending on the orientation of the martensitic lattice with respect to the austenitic lattice. Applying a mechanical or thermal loading gives rise to the spontaneous formation of austenite-martensite microstructures at a very fine scale. In a polycrystalline SMAs, three length scales typically coexist: the microscopic scale of the martensitic microstructures, the mesoscopic scale of the individual grains (usually much larger than the microscopic scale) and the macroscopic scale of a representative volume element of the polycrystal, consisting in numerous grains. The modeling of martensitic phase transformation has received a lot of attention and can be achieved using phenomenological and/or micromechanical considerations (see e.g. [START_REF] Cisse | A review of constitutive models and modeling techniques for shape memory alloys[END_REF] for a review of constitutive models and modeling techniques). A possible approach, pioneered by [START_REF] Kohn | The relaxation of a double-well energy[END_REF]; [START_REF] Ball | Proposed experimental tests of a theory of fine microstructure and the two-well problem[END_REF], is to resort to elastic energy minimization across the scales. The guiding idea is to start from given constitutive relations at the microscopic level and to use upscaling strategies for obtaining the macroscopic energy. More specifically, each individual phase is modeled as a linear elastic material, resulting in a microscopic energy that is piecewise quadratic (and non convex). The mesoscopic energy of a single crystal is obtained by optimizing the arrangements of the phases in space so as to minimize the total energy. This so-called relaxation problem is difficult and exact solutions are known only in few special cases. Considering the macroscopic scale of a polycrystal adds a level of complexity as the interaction between the grains need to be taken into account. Viewing group of grains having the same orientation as homogeneous materials governed by mesoscopic energies, a polycrystalline SMAs can be seen as a composite material and its macroscopic (or effective) energy is obtained by homogenization. The exact expression of the effective energy remains elusive but rigorous bounds can be obtained. Making the assumption of constant strain or constant stress leads to convex bounds of the Taylor-and Sachs-type. That approach has notably been used by Hackl et al. (2008) for bounding the effective energy and by [START_REF] Bhattacharya | Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials[END_REF] for the related problem of estimating the recoverable strains. We note that in general neither the effective energy nor the set of recoverable strains is convex. Several bounds which account for the possible nonconvexity of the effective energy -improving on the convex bounds in the process -have been proposed [START_REF] Smyshlyaev | A 'non-local' variational approach to the elastic energy minimalization of martensitic polycrystals[END_REF]Hackl and Heinen, 2008;[START_REF] Peigney | A non-convex lower bound on the effective free energy of polycrystalline shape memory alloys[END_REF]. Drawing ideas from the derivation of bounds, we present in this paper a nonconvex estimate for the effective energy of SMA polycrystals. The proposed estimate depends on the same information as the nonconvex bounds but has a simpler mathematical structure and is therefore easier to use. As will be discussed, that estimate avoids some shortcomings of available bounds and is tentatively closer to the true energy. The proposed estimate relies crucially on the lower bound formerly obtained in [START_REF] Peigney | A non-convex lower bound on the effective free energy of polycrystalline shape memory alloys[END_REF] for the relaxed energy of single crystals. That lower bound is presented in Sect. 2 and illustrated on the two-and three-phase problems. Exact expressions of the relaxed energy are available in those cases [START_REF] Pipkin | Elastic materials with two preferred states[END_REF][START_REF] Kohn | The relaxation of a double-well energy[END_REF][START_REF] Smyshlyaev | On the relation of a three-well energy[END_REF] and recovered from the presented lower bound. In particular, use of the proposed lower bound shows that (under mild conditions) the solution of the 2-phase problem actually admits a very simple expression, which does not seem to have been observed before. For the 3-phase problem corresponding to the tetragonal to orthorhombic transformation, we obtain similarly an explicit expression for the lower bound which coincides with the exact expression of [START_REF] Smyshlyaev | On the relation of a three-well energy[END_REF]. Building on the presented lower bound for single crystals and drawing ideas from the construction of nonconvex bounds for polycrystals, a general estimate for the effective energy of polycrystalline SMAs is constructed in Sect. 3. The obtained estimate depends on the polycrystalline texture through the 2-point statistics. The validity of such an estimate can be assessed by comparison with rigorous bounds that depend on the same microstructural information. In that regard, we give a general proof that the proposed estimate satisfies the upper bound of Hackl and Heinen (2008) and the lower bound of [START_REF] Peigney | A non-convex lower bound on the effective free energy of polycrystalline shape memory alloys[END_REF] on the effective energy. In Sects. 4 to Sect. 7 we consider several examples of increasing complexity corresponding to 2, 3, 7 and 13 phases per grain. Those example provide some insight on the proposed estimate and illustrate how it behaves compared to the bounds. In Sects. 4 and 2.2 we first consider relatively simple examples for which all (or most of) the calculations can be performed in closed form. In Sect. 6 and 7 we consider more complex examples related to the cubic to orthorhombic transformation and the cubic to monoclinic transformation. Concluding remarks follow in Sect. 8.

Relaxed energy of a single crystal

The microscopic energy in a single crystal is defined in terms of the energies of the individual phases. Adopting the geometrically linear setting, the free energy of the austenite is Ψ 0 (ε) = 1 2 ε : L 0 : ε where ε is the linearized strain and L 0 ≻ 0 is the symmetric fourth-order elasticity tensor. Here and in the following, the notation L ≻ 0 is used to indicate that a fourth-order tensor L is positive definite, i.e. satisfies u : L : u > 0 for all symmetric second-order tensors u. For a given second-order tensor a, we will use the similar notation a ⪰ 0 to indicate that u • a • u ≥ 0 for all vectors u. The free energy of martensitic variant r (r = 1,

• • • , n) is Ψ i (ε) = 1 2 (ε -τ i ) : L i : (ε -τ i ) + w i (1)
where τ i is the transformation strain and L i ≻ 0 is the fourth-order elasticity tensor of the variant. The number n of variants and the values of the transformation strains τ i are obtained from the crystallographic structure of the alloy (see [START_REF] Bhattacharya | Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect[END_REF] for details and examples). In (1), w i is the minimum energy of martensite. A common expression for w i is

w i = λ 0 T -T 0 T 0 (2)
where λ 0 is the latent heat, T is the temperature and T 0 is the transformation temperature. It is convenient to set τ 0 = 0 and w 0 = 0 so that expression (1) remains valid for i = 0.

In the energy minimization approach of martensitic phase transformation [START_REF] Kohn | The relaxation of a double-well energy[END_REF][START_REF] Ball | Proposed experimental tests of a theory of fine microstructure and the two-well problem[END_REF], the microscopic free energy is taken as

Ψ(ε) = min 0≤i≤n Ψ i (ε) (3)
and the mesoscopic free energy is the relaxation of Ψ, defined as

QΨ(ε) = inf ε∈K(ε) 1 |Ω| Ω Ψ(ε) dx (4)
where

K(ε) = ε|∃u(x) such that ε = (∇u + ∇ T u) 2 in Ω; u(x) = ε • x on ∂Ω . (5) 
The superscript T in (5) denotes the transpose operator. The result of (4) does not depend on the domain Ω [START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF]. In informal terms, Eq. ( 3) expresses the idea that the material locally transforms to the phase of minimum energy for a given microscopic strain ε. The resulting energy function Ψ has a multiwell structure and therefore is not convex. As a consequence, minimizing sequences in (4) display oscillations at a finer and finer scale, preventing them to converge in the usual sense. This physically corresponds to the formation of austenite-martensite microstructures. Some information on those energy minimizing microstructures can obtained by introducing the relaxation at fixed martensitic volume fractions θ, defined by

QΨ(ε, θ) = inf {χ i } inf ε∈K(ε) 1 |Ω| Ω n i=0 χ i (x)Ψ i (ε) dx (6) for any θ ∈ T n = {(θ 1 • • • , θ n ) ∈ R n + : n i=1 θ i ≤ 1}.
For any given θ ∈ T n , the volume fraction of the austenite is denoted by θ 0 and given by θ 0 = 1 -n i=1 θ i . The first infimum in ( 6) is taken over characteristic functions χ 0 , • • • , χ n compatible with volume fractions θ. Such functions satisfy

χ i (x) ∈ {0, 1}; 1 = n i=0 χ i (x); θ i = 1 |Ω| Ω χ i (x) dx for i = 0, • • • , n.
We have the relation [START_REF] Kohn | The relaxation of a double-well energy[END_REF])

QΨ(ε) = inf θ∈T n QΨ(ε, θ). (7) 
Under mild conditions, the finite-dimensional minimization problem in (7) has minimizers θ. The latter correspond to the martensitic volume fractions in the microstructures that are expected to appear for a given mesoscopic strain ε. Finding the expression of the relaxation QΨ(ε, θ) is key to obtain the mesoscopic energy but this remains a largely unsolved problem in the general case. Some progress can be made if all the phases have the same elasticity tensor L, which we assume from now on. In that case, QΨ(ε, θ) is known to have the structure

QΨ(ε, θ) = n i=0 θ i Ψ i (ε) + Ψ mix (θ) (8) 
where the mixing energy Ψ mix does not depend on ε [START_REF] Govindjee | The free energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis[END_REF]. The exact expression of Ψ mix is generally not available but rigorous bounds can be obtained. In that regard, a useful lower bound on Ψ mix is the Reuss bound Ψ Reuss [START_REF] Govindjee | The free energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis[END_REF], given by

Ψ Reuss (θ) = - 1 2 n i=1 θ i τ i : L : τ i + 1 2 n i,j=1 θ i θ j τ i : L : τ j . (9) 
Replacing Ψ mix with Ψ Reuss in (8) leads to a lower bound on QΨ(ε, θ), denoted by Ψ C (ε, θ) and equal to

Ψ C (ε, θ) = 1 2 (ε - n i=1 θ i τ i ) : L : (ε - n i=1 θ i τ i ) + n i=1 w i θ i . ( 10 
)
The resulting lower bound on QΨ, obtained by replacing QΨ(ε, θ) with Ψ C (ε, θ) in (7), is the convexification (or convex envelope) of Ψ, i.e. the largest convex function F verifying F ≤ Ψ. The convex envelope of Ψ, henceforth denoted by Ψ C , gives the exact expression of the mesoscopic energy QΨ if all the phases are pairwise compatible, i.e. for any 0 ≤ i, j ≤ n there exists some vectors (a, n) such that

τ i -τ j = a ⊗ n + n ⊗ a. (11) 
Relation ( 11) is known as the Hadamard compatibility condition between strains τ i and τ j . Denoting by λ 1 ≤ λ 2 ≤ λ 3 the ordered eigenvalues of τ i -τ j , it is known that τ i -τ j can be written in the form (11) iff λ 2 = 0. In common shape memory alloys, condition (11) is not satisfied for all pair of phases so that the convex envelope is not equal to QΨ. A lower bound that improves on (10) in such cases has been proposed in [START_REF] Peigney | A non-convex lower bound on the effective free energy of polycrystalline shape memory alloys[END_REF] using ideas from the translation method [START_REF] Lurie | Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion[END_REF][START_REF] Murat | Calcul des variations et homogénéisation[END_REF][START_REF] Milton | The theory of composites[END_REF]. Let ε * be the adjugate of ε, i.e the tensors with components

ε * ii = ε jj ε kk -ε 2 jk , ε * jk = ε ji ε ki -ε jk ε ii .
for any (i, j, k) permutation of (1, 2, 3). For any given symmetric second-order tensor a, -a : ε * is quadratic in ε and thus can be written as

1 2 ε : K(a) : ε = -a : ε * (12)
for some symmetric fourth-order tensor K(a). In indicial notation, we have ε : K(a) :

ε = i,j,k,l ε ij K ijkl ε kl with K iijj = -a kk , K iijk = K jkii = a jk 2 , K ijij = K jiij = a kk 2 , K ijik = K jiik = K ijki = K jiki = - a jk 4
for any (i, j, k) permutation of (1, 2, 3). It is proved in [START_REF] Peigney | A non-convex lower bound on the effective free energy of polycrystalline shape memory alloys[END_REF] that

QΨ(ε, θ) ≥ Ψ C (ε, θ) + f (θ) (13) 
where

f (θ) = sup a∈C 1 4 n i,j=0 θ i θ j (τ i -τ j ) : M(a) : (τ i -τ j ) (14) with M(a) = L -L : (L -K(a)) -1 : L (15) and C = {a ⪰ 0 : L -K(a) ≻ 0}. ( 16 
)
The bound (13) relies crucially on the fact that the function 1 2 ε : K(a) : ε is (symmetric) quasiconvex (see [START_REF] Boussaid | Characterizations of symmetric polyconvexity[END_REF] for recent advances on the characterization of symmetric quasiconvex functions). For later reference, we note that Eq. ( 13) can be rewritten equivalently as

Ψ mix (θ) ≥ Ψ Reuss (θ) + f (θ) (17) 
showing that Ψ Reuss + f is a lower bound on Ψ mix . Observing that 0 ∈ C and M (0) = 0, we further note that f (θ) ≥ 0 for all θ. The term Ψ Reuss + f is thus potentially a tighter lower bound on Ψ mix than Ψ Reuss .

A special role is played by the set S of energy-minimizing strains, defined as

S = {ε : QΨ(ε) = min(0, w 1 )}. ( 18 
)
Adopting expression (2) for w i (i ≥ 1), the set S at T < T 0 is indeed the set of stress-free strains that can be recovered by the shape memory effect [START_REF] Bhattacharya | Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials[END_REF]. Energy bounds translate as bounds (in the sense of inclusion) on S. In particular, the convex bound (10) implies that

S ⊂ n i=1 θ i τ i : θ i ≥ 0; n i=1 θ i = 1 , (19) 
i.e. S is included in the convex hull of τ 1 , • • • , τ n . The energy bound (13) gives the tighter bound S ⊂ S + with

S + = n i=1 θ i τ i : θ i ≥ 0; n i=1 θ i = 1; f (θ) = 0 . ( 20 
)
The set S + in (20) does not depend on the elasticity tensor L. It is shown indeed in [START_REF] Peigney | On the energy-minimizing strains in martensitic microstructurespart 2: Geometrically linear theory[END_REF] that

S + = n i=1 θ i τ i : θ i ≥ 0; n i=1 θ i = 1; n i,j=1 θ i θ i (τ i -τ j ) * ≤ 0 . (21) 
Eqs. ( 19), ( 20) and ( 21) hold for T < T 0 . Corresponding expressions for T = T 0 are obtained by starting the sums over indices i and j from 0 instead of 1. Emphasis has been put on lower bounds on the relaxed energy because they play a pivotal role in the polycrystalline estimate to be detailed later on. Upper bounds on the relaxed energy QΨ and lower bounds on the set S can be constructed using lamination techniques [START_REF] Kohn | The relaxation of a double-well energy[END_REF][START_REF] Govindjee | The free energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis[END_REF][START_REF] Govindjee | An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations[END_REF]. Let us briefly elaborate on those techniques for later reference, focusing on bounding the set S of energy minimizing strains at T = T 0 . The fundamental argument is that S is (symmetrized) rank-1 convex, i.e. that θε + (1 -θ)ε ′ ∈ S for any θ ∈ [0, 1] and any strains (ε, ε ′ ) ∈ S 2 that are compatible in the sense of (11) [START_REF] Kohn | The relaxation of a double-well energy[END_REF]. Using the (symmetrized) rank-1 convexity of S and the fact that {τ 0 , • • • , τ n } ⊂ S, we can see that

R 1 = {θτ i + (1 -θ)τ j : θ ∈ [0, 1]; (τ i , τ j ) satisfying (11)}
is a lower bound on S. Repeating the argument in a iterative fashion leads to an increasing sequence {R k } of lower bounds, defined by the recurrence relation

R k+1 = {θε + (1 -θ)ε ′ : θ ∈ [0, 1]; (ε, ε ′ ) ∈ R 2 k satisfying (11)}.
The best lower bound is achieved by taking k are large as allowed by the complexity of the calculations. The computational complexity of R k increases exponentially with k so that it is actually difficult to go beyond k = 2. A similar (and even more accute) difficulty holds for lamination upper bounds on the energy.

In the rest of this Section, we illustrate the lower bound (13) on two examples for which the exact expression of QΨ is known from other arguments than those used in the derivation of (13). For those two cases, we show that (13) agrees with the exact expression. Moreover, it turns out that the use of lower bound leads to simple explicit expressions of Ψ mix , as will be detailed.

The two-well problem

The two-well problem corresponds to n = 1, i.e. to a single variant of martensite (in addition to the austenite). The left-hand of ( 13) is a lower bound on QΨ(ε, θ) and takes the form

QΨ -(ε, θ) = Ψ C (ε, θ) + 1 2 θ 1 (1 -θ 1 )m - (22) 
where

m -= sup a∈C τ 1 : M(a) : τ 1 . ( 23 
)
It is known [START_REF] Kohn | The relaxation of a double-well energy[END_REF] that the exact expression of QΨ(ε, θ) has a structure similar to (22), i.e.

QΨ(ε, θ) = Ψ C (ε, θ) + 1 2 θ 1 (1 -θ 1 )m ( 24 
)
where m only depends on τ 1 and L. Explicit but intricate expressions of m have been proposed if L is isotropic [START_REF] Kohn | The relaxation of a double-well energy[END_REF]. In the following we use (23) to show that m actually admits a very simple expression if the Poisson's ratio ν is positive and the ordered eigenvalues

λ 1 ≤ λ 2 ≤ λ 3 of τ 1 satisfy λ 1 ≤ -νλ 2 ≤ λ 3 . ( 25 
)
It can easily be verified that (25) implies that λ 1 ≤ 0 ≤ λ 3 and we can assume (without loss of generality 1 ) that λ 2 ≤ 0. Since the Poisson's ratio can not exceed 1/2, the most severe restriction that can arise from ( 25) is

λ 1 ≤ - 1 2 λ 2 ≤ λ 3 . (26) 
Conditions ( 26) are found to hold for common of shape-memory alloys. As an example, for NiTiCu (Appendix A) we have (λ 1 , λ 2 , λ 3 ) = (-0.0633, -0.0300, 0.0987) so that ( 26) is satisfied.

The point of condition ( 25) is to allow the maximization problem in (23) to be solved in closed form. Let us first explain how a good candidate for the optimal value of a can be guessed. Consider a second-order tensor a 0 ⪰ 0 such that ∥a 0 ∥ = 1. We have ta 0 ∈ C for any t positive small enough and Eq. ( 15) shows that M(a) = -t K(a 0 ) at the first order in t. Using (12) we obtain τ 1 : M(a) : τ 1 = 2ta 0 : τ * 1 at the first order in t. Let (u 1 , u 2 , u 3 ) be eigenvectors of τ 1 , so that τ 1 = i λ i u i ⊗u i and τ

* 1 = i µ i u i ⊗ u i with µ 1 = λ 2 λ 3 ≤ 0, µ 2 = λ 1 λ 3 ≤ 0, µ 3 = λ 1 λ 2 ≥ 0. ( 27 
)
Writing a 0 as a 0 = i α i v i ⊗ v i where {α i } ∈ R 3 + and {v i } are the eigenvalues and eigenvectors of a 0 , we obtain

a 0 : τ * 1 = 3 i,j=1 α i µ j (u i • v j ) 2 .
In view of ( 27), the maximum value taken by 3 i,j=1 α i µ j (u i • v j ) 2 over tensors a 0 verifying a 0 ⪰ 0 and ∥a 0 ∥ = 1 can easily be seen 2 to be reached for v 3 = u 3 , 1 i.e. possibly replacing τ 1 par -τ 1 . The value m -in ( 23) is indeed invariant by the substitution τ 1 → -τ 1 . Moreover, if τ 1 satisfies conditions (25), so does -τ 1 .

2 We have the inequalities α i µ 1 ≤ 0, α i µ 2 ≤ 0, α i µ 3 ≥ 0 and the relation ∥a 0 ∥ = 1 implies that α i ≤ 1 (i = 1, 2, 3). It follows that α 1 = α 2 = 0, α 3 = 1. This shows that u 3 ⊗ u 3 is the best search direction for maximizing τ 1 : M(a) : τ 1 with respect to a. Let us now proceed to maximize τ 1 : M(a) : τ 1 over tensors a ∈ C of the form Eau 3 ⊗ u 3 where E is the Young's modulus. Noting that the largest eigenvalue of K(a) in ( 12) is E∥a∥ and that the smallest eigenvalue of L is E/(1 + ν), we have Eau 3 ⊗ u 3 ∈ C for 0 ≤ a < 1/(1 + ν). Now consider the (3-dimensional) space D of second-order tensors which are diagonal in the basis (u 1 , u 2 , u 3 ). For a = Eau 3 ⊗ u 3 , both L and K(a) can be observed to map D to itself. Thus the calculation of τ 1 : M(a) : τ 1 only involves the restrictions of L and K(a) on D, which are given by the matrix representations (in the basis

{u i ⊗ u i } 1≤i≤3 of D) L = E 1 -ν -2ν 2   1 -ν ν ν ν 1 -ν ν ν ν 1 -ν   , K(a) = E   0 -a 0 -a 0 0 0 0 0   .
A straightforward calculation shows that restriction of M(a) on D is defined by the matrix

M(a) = Ea (1 -νa) 2 -a 2   -a 1 -νa 0 1 -ν -a 0 0 0 0   so that τ 1 : M(a) : τ 1 = Ea (1 -νa) 2 -a 2 2λ 1 λ 2 -a(λ 2 1 + 2νλ 1 λ 2 + λ 2 2 ) . ( 28 
)
Differentiating with respect to a shows that (28) has a stationary point at

a = λ 2 λ 1 + νλ 2 ∈ [0, 1 1 + ν ]. (29) 
The corresponding value of τ 1 : M(a) : τ 1 is Eλ 2 2 . Hence we can state that

m -≥ Eλ 2 2 . ( 30 
)
Although it is not obvious at first sight, comparing with the expressions of [START_REF] Kohn | The relaxation of a double-well energy[END_REF] shows that (30) actually holds as an equality. Eq. (4.11) in [START_REF] Kohn | The relaxation of a double-well energy[END_REF] gives indeed

m E = ν 1 -ν -2ν 2 (tr τ 1 ) 2 + λ 2 1 + λ 2 2 + λ 2 3 1 + ν - X 2(1 + ν) (31)
where X is obtained by taking the maximum among several branches. Under Condition (25), Eqs (4.16) and (4.17) in [START_REF] Kohn | The relaxation of a double-well energy[END_REF] show that X ≥ X -with

X -= 2 1 -2ν λ 2 1 + λ 2 3 + 2ν 2 λ 2 2 + ν(2λ 2 (λ 1 + λ 3 ) -(λ 1 -λ 3 ) 2 ) (32)
For X = X -, the right-hand of ( 31) is found to be equal to Eλ 2 2 , hence m ≥ Eλ 2 2 . Comparing with (30) and noting that m -≤ m, we can conclude that

m -= m = Eλ 2 2 (33)
and that

E λ 2 λ 1 + νλ 2 u 3 ⊗ u 3
reaches the maximum in (23). Expression (33) will be used later in the paper and will also play an important role in the companion paper devoted to localization in polycrystals.

Remark: As detailed by [START_REF] Kohn | The relaxation of a double-well energy[END_REF], the double-well structure of the relaxed energy gives rise to different transition temperatures while heating (T + 0 ) and cooling (T - 0 ). It can be calculated from ( 24) that the thermal hysteresis ∆T = T + 0 -T - 0 is equal to m/λ 0 where λ 0 is the latent heat parameter in (2). Assuming conditions (25) to be satisfied, Eq. ( 33) shows that ∆T is driven by the middle eigenvalue λ 2 of the transformation strain. In particular, ∆T vanishes when λ 2 = 0 i.e. when austenite and martensite are compatible in the sense of (11). There is a formal analogy with the experimental and theoretical results of [START_REF] Zhang | Energy barriers and hysteresis in martensitic phase transformations[END_REF], who showed that the thermal hysteresis in various CuAlNi alloys is governed by the middle eigenvalue of the transformation strain and minimized when austenite and martensite are compatible.

Tetragonal to orthorhombic transformation

We consider the three-well problem corresponding to the tetragonal to orthorhombic transformation, for which there are two martensitic variants with transformation strains

τ 1 =   α 0 0 0 β 0 0 0 γ   , τ 2 =   β 0 0 0 α 0 0 0 γ   ( 34 
)
in an orthonormal basis (u 1 , u 2 , u 3 ). The martensitic variants can always be numbered in such a way that α < β. YBa 2 Cu 3 O 6+x is an example of material obeying that transformation [START_REF] Andersen | The structural phase diagram and oxygen equilibrium partial pressure of YBa 2 Cu 3 O 6+x studied by neutron powder diffraction and gas volumetry[END_REF]. As can be seen on ( 34), the two martensitic variants are compatible with each other in the sense of (11) but they are not compatible with the austenite (unless very special values of the lattice parameters).

It turns out that closed-form expressions of the lower bound f can obtained in some situations depending on the lattice parameters (α, β, γ). One such situation, that we detail in the following, is

γ < 0, α < 0 < β with |α| < β. ( 35 
)
Proceeding as for the two-well problem, we first use linearization to guess a good candidate for the optimal value of a in ( 14). For the transformation strains in (34), we have (at the first order in a)

n i,j=0 θ i θ j (τ i -τ j ) : M(a) : (τ i -τ j ) = 1 2 n i,j=0 θ i θ j (τ i -τ j ) * : a = 3 i=1 µ i u i ⊗ u i with µ 1 = θ 0 γ(θ 1 β + θ 2 α) µ 2 = θ 0 γ(θ 1 α + θ 2 β) µ 3 = θ 0 (1 -θ 0 )αβ -θ 1 θ 2 (α -β) 2 . ( 36 
)
Let us first consider values of θ such that αθ 1 + βθ 2 ≤ 0. In that case, it can easily be verified from ( 36) that µ 1 ≤ 0, µ 2 ≥ 0, µ 3 ≤ 0. This indicates that u 2 ⊗ u 2 is a good search direction for solving ( 14), in a way similar to the two-well problem considered in Sect. 2.1. Choosing a in the form Eau 2 ⊗ u 2 , the stationarity condition of ( 14) with respect to a yields a second degree polynomial equation with roots

a ± = ν(X + -X -) + ( √ X + ± √ X -) 2 (1 + ν) 2 X + -(1 + ν) 2 X - where X ± = θ 0 θ 1 (α ± γ) 2 + θ 0 θ 2 (β ± γ) 2 + θ 1 θ 2 (α -β) 2 . It can be verified that a + > 1/(1 + ν) > a -≥ 0, which shows the tensor a -= Ea -u 2 ⊗ u 2 is in C. Somewhat lengthy manipulations lead to 1 4 n i,j=0 θ i θ j (τ i -τ j ) : M(a -) : (τ i -τ j ) = E 8 ν(X + -X -) + ( √ X + - √ X -) 2 (1 + ν) √ X + -(1 -ν) √ X - 2 .
(37) Definition ( 14) implies that f (θ) is larger than or equal to the value in (37). A numerical optimization with respect to all tensors in C (not necessarily rank-1 or diagonal) suggests that a -indeed reaches the optimum in ( 14) for αθ 1 + βθ 2 ≤ 0, so that Results for αθ 2 + βθ 1 ≤ 0 are obtained by swapping θ 1 and θ 2 in the previous developments, i.e.

f (θ) = E 8 ν(X ′ + -X ′ -) + ( X ′ + -X ′ -) 2 (1 + ν) X ′ + -(1 -ν) X ′ - 2 if αθ 2 + βθ 1 ≤ 0 (39) with X ′ ± = θ 0 θ 2 (α ± γ) 2 + θ 0 θ 1 (β ± γ) 2 + θ 1 θ 2 (α -β) 2 .
When αθ 1 + βθ 2 ≥ 0 and αθ 2 + βθ 1 ≥ 0, all the three eigenvalues µ i in (36) are negative so that, at the first order in a, we have i,j θ i θ j (τ i -τ j ) : M(a) : (τ i -τ j ) ≥ 0 for all a ∈ C. In that case no direction leading to non negative value of i,j θ i θ j (τ i -τ j ) : M(a) : (τ i -τ j ) can be found. As will be justified shortly, it can actually be shown that

f (θ) = Ψ mix (θ) -Ψ Reuss (θ) = 0 if αθ 2 + βθ 1 ≥ 0 and αθ 1 + βθ 2 ≥ 0. ( 40 
)
Together Eqs ( 38), ( 39) and ( 40) define the values taken by the function f on the whole triangle

T 2 = {(θ 1 , θ 2 ) : θ 1 ≥ 0, θ 2 ≥ 0, θ 1 + θ 2 ≤ 1} (41) 
of admissible values for the martensitic volume fractions (θ 1 , θ 2 ). In Fig. 1 is shown the obtained function f in the case α = γ = -0.01, β = 0.02, ν = 0.3. As illustrated in Fig. 1, the volume fractions verifying

θ 1 α + θ 2 β ≥ 0 and θ 2 α + θ 1 β ≥ 0 define a triangle OAB with vertices O = (0, 0), A = (-α β-α , β β-α ) and B = ( β β-α , -α β-α
). Let us prove that Ψ mix -Ψ Reuss = 0 on that triangle. We first observe that proving that Ψ mix (θ) -Ψ Reuss (θ) = 0 amounts to show that ε(θ) = i θ i τ i is in the set of energy-minimizing strains S at T = T 0 . Proving that ε(θ) ∈ S can be achieved using sequential lamination techniques as discussed previously in Sect.2. Since τ 1 and τ 2 are compatible in the sense of (11), we have θ 1 τ 1 + θ 2 τ 2 ∈ S for any θ = (θ 1 , θ 2 ) ∈ T 2 such that θ 1 + θ 2 = 1. Taking in particular θ = A and θ = B shows that ε(A) = diag(α + β, 0, γ) and ε(B) = diag(0, α + β, γ) are in S. Observing that ε(A), ε(B) and τ 0 = 0 are pairwise compatible, we obtain that ε(θ) ∈ S and consequently that Ψ mix (θ) -Ψ Reuss (θ) = 0 for any θ in the triangle OAB. Since 0 ≤ f ≤ Ψ mix -Ψ Reuss , we also have f = 0 in the triangle OAB, justifying the statement (40).

Those arguments show in particular that f gives the exact value of Ψ mix -Ψ Reuss on the triangle OAB. Outside of that triangle, f a priori gives only a lower bound on Ψ mix -Ψ Reuss . For the three-well problem, [START_REF] Smyshlyaev | On the relation of a three-well energy[END_REF] reduced the evaluation of Ψ mix to a finite-dimensional optimization problem. Solving the optimization problem formulated by [START_REF] Smyshlyaev | On the relation of a three-well energy[END_REF] seems difficult to perform analytically but is tractable numerically. We have implemented the formula of [START_REF] Smyshlyaev | On the relation of a three-well energy[END_REF] to evaluate Ψ mix for various choices of (ν, α, β, γ) and compare the results with the function f given by the explicit expressions (38), ( 39) and ( 40). Up to the accuracy of the numerical calculations, Ψ mix and Ψ Reuss -f were found to be equal. This suggests that the explicit expressions (38), ( 39) and (40) give the exact value of Ψ mix -not just a lower bound.

Remark: In the analysis presented, the role of condition ( 35) is to ensure that θ i θ j (τ i -τ j ) : M(a) : (τ i -τ j ) has at most one non-negative eigenvalue. In that case, a simple search direction for a can easily be found and turns out to yield the optimal value for a. Other conditions than (35) lead to a similar situation. Assuming without loss of generality that α < β, it can be verified that if either

γ > 0, α < 0 < β < |α| (42) or αβ > 0, αγ < 0 (43)
then problem ( 14) can be solved in closed-form and the optimal value of a is a rank-1 tensor of the form au i ⊗u i . Unfortunately, conditions ( 35), ( 42) and (43) do not cover all possible values of the lattice parameters (α, β, γ). If for instance γ < 0, α < 0 < β but |α| > β, then for some values of θ the tensor θ i θ j (τ i -τ j ) : M(a) : (τ i -τ j ) has two non-negative eigenvalues and the optimal value of a is a rank-2 tensor of the form au i ⊗ u i + a ′ u j ⊗ u j (i ̸ = j). The calculations become much more intricate and do not seem tractable analytically.

Effective energy of a polycrystal

We now consider a polycrystal, consisting of multiple grains with distinct orientations. The domain Ω occupied by the polycrystal is divided into N subdomains Ω 1 • • • , Ω N such that grains in Ω r have the same orientation (defined by a rotation R r ) relative to a reference crystal with microscopic energy Ψ. The microscopic free energy Ψ r (ε) and the mesoscopic free energy QΨ r (ε) in Ω r are thus equal to Ψ(R r,T εR r ) and QΨ(R r,T εR r ), respectively. Set τ r i = R r τ i R r,T and let L r be the rotated elasticity tensor, verifying ε : L r : ε = (R r,T εR r ) : L : (R r εR r,T ) for all ε. Eq. ( 3) shows that we can write Ψ r as

Ψ r (ε) = min 0≤i≤n Ψ r i (ε) where Ψ r i (ε) = 1 2 (ε -τ r i ) : L r : (ε -τ r i ) + w i .
Eqs ( 7) and ( 8) give

QΨ r (ε) = inf θ∈T n QΨ r (ε, θ) (44) with QΨ r (ε, θ) = n i=0 θ i Ψ r i (ε) + Ψ mix (θ). ( 45 
)
We note that the function Ψ mix is the same for all grains, i.e. is independent of the crystalline orientation. The effective energy Ψ eff of the polycrystal is obtained by homogenization, i.e.

Ψ eff (ε) = inf ε∈K(ε) 1 |Ω| Ω N r=1 χ r (x)QΨ r (ε) dx (46)
where χ r is the characteristic function of Ω r (i.e. χ r (x) = 1 if x ∈ Ω r and χ r (x) = 0 otherwise). We now derive an estimate for Ψ eff (ε) in ( 46). For any θ(x) ∈ T n , Eq. ( 44) implies that QΨ r (ε) ≤ QΨ r (ε, θ(x)). Considering a piecewise constant field

θ(x) = n r=1 χ r (x)θ r (47) in which θ(x) takes a uniform value θ r = (θ r 1 , • • • , θ r n ) in Ω r , we find Ψ eff (ε) ≤ inf ε∈K(ε) 1 |Ω| Ω N r=1 χ r (x)QΨ r (ε, θ r ) dx. (48) 
Using ( 45), Eq. ( 48) becomes

Ψ eff (ε) ≤ W (ε) + N r=1 c r Ψ mix (θ r ) + n i=0 θ r i ( 1 2 τ r i : L r : τ r i + w i ) (49) 
with

W (ε) = inf ε∈K(ε) 1 |Ω| Ω N r=1 χ r (x)( 1 2 ε : L r : ε + η r : ε)dx (50) 
and η r = -L r : i θ r i ε r i . In (49), c r = |Ω r |/|Ω| is the volume fraction of Ω r . Solving the infimum problem in (50) amounts to solve the elasticity problem

div σ = 0, σ(x) = r χ r (x)(L r : ε(x) + η r ), ε ∈ K(ε). The expression of W (ε) simplifies if L 1 = • • • = L r , which notably occurs if L is isotropic.
In that case, the solution of (50) takes the form ε = ε -Γτ where Γ is a singular integral operator related to Green's functions, and we have [START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF])

W (ε) = 1 2 ε : L : ε + r c r η r : ε - 1 2 r,s η r : A rs : η s (51) 
where

A rs = 1 |Ω| Ω χ r (x)(Γχ s )(x)dx. ( 52 
)
Using (51), Eq. ( 49) can be rewritten as

Ψ eff (ε) ≤ Ψ C eff (ε, Θ) + r c r Ψ mix (θ r ) + 1 2 r,i c r θ r i τ r i : L : τ r i - 1 2 r,s c r c s η r : L -1 : η s - 1 2 r,s η r : A rs : η s (53) with Θ = (θ 1 , • • • , θ r ) ∈ T N n and Ψ C eff (ε, Θ) = 1 2 ε - r,i c r θ r i τ r i : L : ε - r,i c r θ r i τ r i + r,i c r θ r i w i . ( 54 
)
The tensors A rs in (52) take a simpler form if the texture has ellipsoidal symmetry, i.e. if the probability of finding orientation r at point x and orientation s at point

x ′ is a function of ∥Z • (x ′ -x)∥
where Z ≻ 0 is a symmetric fourth-order tensor. In that case, we have [START_REF] Willis | Bounds and self-consistent estimates for the overall properties of anisotropic composites[END_REF][START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF])

A rs = c r (δ rs -c s )P ( 55 
)
where

P = 1 4π det Z ∥ξ∥=1 H(ξ)∥Z -1 • ξ∥ -3 dξ. ( 56 
)
In this last expression, H(ξ) is the fourth-order tensor with components H(ξ) ijpq = ξ j [L(ξ)] -1 ip ξ q and L(ξ) is the second-order tensor with components L(ξ) ip = jq L ijpq ξ j ξ q . Explicit expression of the P tensor are available for some useful cases [START_REF] Castaneda | Nonlinear composites[END_REF]. Replacing A rs with c r (δ rs -c s )P in (53) and taking the infimum over Θ ∈ T N n , we obtain

Ψ eff (ε) ≤ inf Θ Ψ C eff (ε, θ) + r c r Ψ mix (θ r ) + 1 2 r,i c r θ i τ r i : L : τ r i - 1 2 r c r η r : P : η r - 1 2 r,s c r c s η r : (L -1 -P) : η s . ( 57 
)
The choice (47) of a piecewise constant field θ(x) is the only assumption preventing (57) to hold as an equality. A difficulty for progressing any further with (57) lies in the fact that Ψ mix is unknown. A possible approach, explored by Smyshlyaev and Willis (1998); Hackl and Heinen (2008) is to replace Ψ mix in (57) with an upper bound obtained from lamination. This results in an upper bound

Ψ + eff on Ψ eff of the form Ψ + eff (ε) = inf Θ Ψ C eff (ε, Θ) + l(Θ). ( 58 
)
The function l considered by Hackl and Heinen (2008) accounts for energy minimization over twin-compatible second-rank laminates [START_REF] Govindjee | An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations[END_REF]. An other possible approach, that we explore in the following, consists in replacing Ψ mix with the lower bound Ψ Reuss + f in (17). In that case we get an estimate of Ψ eff , given by Ψ

* eff (ε) = inf Θ Ψ C eff (ε, Θ) + h(Θ) (59) 
with

h(θ) = r c r f (θ r ) + 1 2 r c r η r : (L -1 -P) : η r - 1 2 η : (L -1 -P) : η ( 60 
)
and η = r c r η r . Expression (60) of h can be rewritten in the more compact fashion

h(θ) = r c r f (θ r ) + 1 2 r c r h r : (L -1 -P) : h r (61) by setting h r = η r -η. ( 62 
)
The overall structure (59) of the estimate Ψ * eff is similar to that of the upper bound Ψ + eff in (58). However, the proposed estimate does not rely on any assumption on the type of austenite-martensite microstructures that develop in each grain. There are also differences in the computational complexity of the mixing energies l and h appearing in ( 58) and ( 59), respectively. The computational complexity of l grows rapidly with the number of variants n because l is defined by a combinatorial optimization problem that requires to keep track of all possible twin laminates. By contrast, the dimensionality of the optimization problem (14) defining f is equal to 6, independently of the number of variants.

The validity of the estimate Ψ * eff in (59) can be assessed by checking if it satisfies known bounds on the effective energy Ψ eff . By construction, Ψ * eff satisfies the upper bounds of [START_REF] Smyshlyaev | A 'non-local' variational approach to the elastic energy minimalization of martensitic polycrystals[END_REF]; Hackl and Heinen (2008). The comparison with lower bounds is not as direct. It is known that the convex function

Ψ C eff (ε) = inf Θ Ψ C eff (ε, Θ) (63) 
is a lower bound on Ψ eff (Hackl and Heinen, 2008). Definition ( 14) shows that f ≥ 0 and it can be verified that L -1 -P ≻ 0 (Appendix B). The function h in (61) is thus positive, which ensures that Ψ * eff (ε) ≥ Ψ C eff (ε) for all ε. A lower bound that potentially improves on Ψ C eff has been proposed by [START_REF] Peigney | A non-convex lower bound on the effective free energy of polycrystalline shape memory alloys[END_REF]. That bound, henceforth denoted by Ψ - eff , is defined as

Ψ - eff (ε) = inf Θ Ψ C eff (ε, Θ) + g(Θ) (64) 
with

g(Θ) = sup (a, L) 1 4 r,s,i,j c r c s θ r i θ s j (τ r i -τ s j ) : (L -L : (L -K) -1 : L) : (τ r i -τ s j ) + 1 2 r c r h r : L -K + (L -K) : P : (L -K) -1 : h r (65) 
where K = K(a) + L and P is the polarization tensor associated to L, defined as in ( 56) but replacing L with L. In ( 65), the supremum is taken over symmetric second-order tensors a and symmetric fourth-order tensors L satisfying

a ⪰ 0, L ≻ 0, L ≻ L + K(a). ( 66 
)
The calculation of g is relatively difficult and it is not obvious from the definitions above that Ψ * eff ≥ Ψ - eff . It can actually be shown that

h(Θ) ≥ g(Θ) (67) 
for all Θ ∈ T N n , which from ( 59) and ( 64) ensures that Ψ * eff respects the lower bound Ψ - eff . The proof of the inequality ( 67) is relatively technical and therefore reported in Appendix C not to obscure the presentation. We only mention here that (67) crucially relies on some properties of the P tensor in relation with tensors (a, L) satisfying (66). Those properties are proved as preliminaries in Appendix B. In summary we have

Ψ - eff ≤ Ψ * eff ≤ Ψ + eff (68) 
i.e the proposed estimate satisfies known lower and upper bounds that depend on the same microstructural information. Inequality (67) plays an essential role in (68). In the following, properties (67) and ( 68) are illustrated on several examples of increasing complexity. Those examples also provide some insight on the behavior of the energy estimate Ψ * eff and its mechanicals implications.

Remark:

The obtained energy estimate (59) only depends on the texture through the volume fractions of the crystalline orientations and can thus be expressed in terms of the Orientation Distribution Function (ODF) p of the texture as

Ψ * eff (ε) = min θ:SO(3) →T n Ψ C eff (ε, θ) + h(θ) (69) 
where

Ψ C eff (ε, θ) = 1 2 (ε -τ (θ)) : L : (ε -τ (θ)) + r∈SO(3) n i=1 θ i (r)w i p(r)dµ (70) and h(θ) = r∈SO(3) f (θ(r))p(r)dµ + 1 2 r∈SO(3) τ (r) : L : (L -1 -P) : L : τ (r) p(r)dµ - 1 2 τ (θ) : L : (L -1 -P) : L : τ (θ). ( 71 
)
The term dµ in ( 70) and ( 71) is the Haar measure [START_REF] Bunge | Texture analysis in materials science: mathematical methods[END_REF]. The strains τ (θ) in ( 70) and τ (r) in ( 71) are defined as τ (r) = n i=1 θ i (r)rτ i r T and τ (θ) = r∈SO(3) τ (r)p(r)dµ. Expression ( 69) is the starting point of the companion paper devoted to strain localization in SMAs.

Analytical example

We first consider a polycrystal with 2 orientations. We assume that only one martensitic variant (variant 1) is active in orientation 1 and that orientation 2 remains purely austenitic. The rotation R 1 defining orientation 1 is equal to the identity. Let θ be the volume fraction of the active martensitic variant in orientation 1. The energy estimate (59) specializes as

Ψ * eff (ε) = inf 0≤θ≤1 1 2 (ε -c 1 θτ 1 ) : L : (ε -c 1 θτ 1 ) + c 1 θw 1 + h(θ) (72) 
where

h(θ) = 1 2 c 1 θ(1 -θ)m -+ 1 2 c 1 (1 -c 1 )θ 2 (τ 1 : L : τ 1 -κ) (73) 
with κ = τ 1 : L : P : L : τ 1 and m -defined as in ( 23). The function h in (73) being quadratic in θ, there is no difficulty in solving the minimization problem defining Ψ * eff (ε) in ( 72). For values of ε such that ε : L : τ 1 falls between w 1 + 1 2 m -and

w 1 + τ 1 : L : τ 1 -1 2 m --(1 -c 1 )κ, we obtain Ψ * eff (ε) = 1 2 ε : L : ε - 1 2 c 1 (ε : L : τ 1 - m - 2 -w 1 ) 2 τ 1 : L : τ 1 -m --(1 -c 1 )κ . ( 74 
)
Expression (74) corresponds to the situation where the minimizing volume fraction θ in ( 72) is strictly between 0 and 1, i.e. phase transformation in orientation 1 is not 20 complete. To simplify the discussion, we assume from now on that τ 1 is deviatoric and the texture is isotropic, in which case

m - E = λ 2 2 , κ E = 2(5ν -4) 15(ν 2 -1) ∥τ 1 ∥ 2 . ( 75 
)
Deviatoric tensors indeed verify condition (25), so that expression (33) of m -applies. Denoting the second-order and the fourth-order identity tensors by I and I respectively, the P tensor for an isotropic texture is given by [START_REF] Castaneda | Nonlinear composites[END_REF])

P = 1 15E ν + 1 ν -1 (I ⊗ I + 2(5ν -4)I)
from which the expression of κ in (75) follows.

For the example at hand, the energy estimate Ψ * eff coincide with the upper bound Ψ + eff in (58). It is known indeed that the relaxed energy for the two-well problem is attained by rank-1 laminates [START_REF] Kohn | The relaxation of a double-well energy[END_REF]. The lower bound (64) takes the form

Ψ - eff (ε) = inf 0≤θ≤1 1 2 (ε -c 1 θτ 1 ) : L : (ε -c 1 θτ 1 ) + c 1 θw 1 + g(θ) (76) 
with

g(θ) = sup (a, L) 1 2 c 1 θ(1 -c 1 θ)τ 1 : (L -L : (L -K) -1 : L) : τ 1 + 1 2 c 1 (1 -c 1 )θ 2 : τ 1 : L : (L -K + (L -K) : P : (L -K)) -1 : L : τ 1 .
(77) The function g in ( 77) is clearly more difficult to evaluate than the function h. Closedform expression can be obtained by restricting the minimization in (77) to isotropic tensors L and tensors a of the form au 3 ⊗ u 3 where u 3 is an eigenvector of τ 1 for its maximum eigenvalue λ 3 . This special choice of a is motivated by the fact that it corresponds to the solution of the two-well problem recovered by setting c 1 = 1 in (77), as discussed in Sect. 2.1. To further simplify the calculations, we consider the case of incompressible elasticity (ν = 1/2) and choose accordingly incompressible tensors L. The corresponding tensors (a, L) are thus parameterized by the 2 scalars ( Ẽ, a) where Ẽ is the Young's modulus of L. The restrictions (66) can be verified to reduce to 0

< Ẽ < E, 0 ≤ a < 2 3 (E -Ẽ). ( 78 
) Setting r = Ẽ E , s = 3 a E ,
we obtain

g(θ) = sup (r,s) E 3 c 1 θ (1 -c 1 θ)(∥τ 1 ∥ 2 -p(r, s)) + c 1 (1 -c 1 )θq(r, s) (79) 
where

p(r, s) = 4 3(r -1)∥τ 1 ∥ 2 + s(∥τ 1 ∥ 2 + 3λ 1 λ 2 ) (s + 2r -2)(s + 6 -6r) , q(r, s) = 20r (9(1 -r)(2 + 3r) -3s(4 + r) + 7/2s 2 )∥τ 1 ∥ 2 + 3sλ 1 λ 2 (2s -3(4 + r)) (s -3r -2)(s + 2r -2)(18(1 -r)(2 + 3r) + 3s(r + 4) + s 2 ) .
The supremum in ( 79) is taken over values (r, s) satisfying 0 < r < 1 and 0 ≤ s < 2(r -1). Observe that the function g in ( 79) is an isotropic function of τ 1 as it only depends on τ 1 through its eigenvalues (λ 1 , λ 2 , λ 3 ). Moreover, the function g is homogeneous of degree 2 in τ 1 , i.e. changing τ 1 to xτ 1 has the effect of changing g(θ) to x 2 g(θ). Similar remarks apply to the function h in (73). Due to those invariance properties, we can assume without loss of generality that ∥τ 1 ∥ 2 = 3/2. This allows one to write the eigenvalues (λ 1 , λ 2 , λ 3 ) of the deviatoric tensor τ 1 as

(λ 1 , λ 2 , λ 3 ) = (cos(α + 2π 3 ), cos(α + 4π 3 ), cos α) (80) 
where α ∈ [0, π/6] is the angle introduced by [START_REF] Kachanov | Fundamentals of the Theory of Plasticity[END_REF]. In the following we examine the two limiting situations α = π/6 and α = 0. The case α = π/6 corresponds to λ 2 = 0, i.e. to the situation where austenite and martensite are geometrically compatible. By contrast, the case α = 0 corresponds to the situation where λ 2 2 is maximized, i.e the incompatibility between austenite and martensite is maximized.

Case α = π/6

The case α = π/6 corresponds to (λ 1 , λ 2 , λ 3 ) = (-

√ 3 2 , 0, √ 3 
2 ). Carrying out the optimization with respect to (r, s) in ( 79), the final expression for g is

g(θ) E =      0 for θ ≤ 2 5 -3c 1 , c 1 θ 60 (5∆ -6(1 -c 1 θ)) 2 3 -2c 1 θ -θ -2∆ for θ ≥ 2 5 -3c 1 . ( 81 
)
where ∆ = 6c 2 (1 -θ)θ. The functions g in ( 81) and h in (73) are plotted in Fig. 2 for the case c 1 = 0.6. We can observe that g(θ) ≤ h(θ) for all θ, which implies that 22 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
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Figure 2: Functions h and g in the case α = π/6, c 1 = 0.6.

the estimate (72) of the free energy satisfies the lower bound ( 76) for all values of the strain ε.

In Fig. 3(left, red curve) are shown the values taken the estimate Ψ * eff (ε) in the direction τ 1 , i.e. for ε of the form tτ 1 . We have set w 1 = 0 and c 1 = 0.6. The values taken by the convex bound Ψ C eff and the lower bound Ψ - eff are shown in green and blue, respectively. In Fig. 3(right, red curve) is shown the volume fraction θ * reaching the minimum in (72) for ε = tτ 1 . The minimizing volume fractions for the optimization problems ( 63) and (76) defining Ψ C eff (tτ 1 ) and Ψ - eff (tτ 1 ) are denoted by θ C and θ -, respectively. They are shown as green and blue curves in Fig. 3

(right). The convex bound Ψ C

eff is piecewise quadratic and the corresponding volume fraction θ C grows with t in a piecewise linear fashion as can be observed in Fig. 3. For t ≥ 2c 1 /(5 -3c 1 ), we have θ -≤ θ C i.e. Ψ - eff requires a larger strain than Ψ C eff for reaching the same level of phase transformation. This hardening effect results from the elastic interaction between grains in orientation 1 and orientation 2 which is captured in Ψ - eff (and Ψ * eff ) but not taken into account in Ψ C eff . As can be observed in Fig. 3(right), the hardening effect in Ψ - eff is such that full transformation into martensite is achieved only in the limit t → +∞. We can also observe that the hardening vanishes (i.e. θ -= θ C ) for 0 < t ≤ 2c 1 /(5 -3c 1 ). In that range of values for t, the lower bound Ψ - eff surely underestimates the true effective energy Ψ eff as the elastic interaction between orientation 1 and 2 is still present and contributes to increase the energy compared to the convex envelope Ψ C eff . The proposed energy eff is free from such shortcoming: We have indeed Ψ * eff > Ψ C eff and θ * < θ C even for low values of t, as can be observed in Fig. 3. The behaviors of Ψ - eff and Ψ * eff also differ for high values of t: In contrast with the lower bound Ψ - eff , the estimate Ψ * eff allows for full transformation into martensite to be achieved for a finite value of the strain, see Fig. 3(right).

Case α = 0

The case α = 0 corresponds to (λ 1 , λ 2 , λ 3 ) = (-1 2 , -1 2 , 1). Carrying the optimization with respect to (r, s) in (79) gives

g(θ) E =      1 8 (1 -c 1 θ)c 1 θ for θ ≤ 8 15 -7c 1 c 1 θ 96c 2 2 θ 2 + 412c 2 θ(1 -θ) + 91(1 -θ) 2 -80D(1 -c 1 θ) 40(7 -4D + (1 -8c 1 )θ) for θ ≥ 8 15 -7c 1 (82) with D = 14c 2 (1 -θ)θ.
The function g given by ( 82) is plotted in Fig. 4 (blue curve) for the cases c 1 = 0.25 and c 1 = 0.75. The function h given by ( 73) is shown in red. We can observe that g ≤ h in accordance with (67). As illustrated in Fig. 4 , the function h is convex in θ for low values of c 1 and concave for high values of c 13 . Whereas h is always monotonically increasing, the function g corresponding to the lower bound has a up-down-up behavior for c 1 ≥ 15/23 ≃ 0.65, as illustrated in Fig. 4 (right). It can further be noted that h and g are equal at θ = 1 (their common value is 3Ec 1 c 2 /10) and coincide at the first order at θ = 0 (their common first-order expansion is Ec 1 θ/8). That last property implies that h actually gives the exact value of Ψ mix -Ψ Reuss at the first order in θ. We have indeed the general property g ≤ Ψ mix -Ψ Reuss ≤ l with h = l for the example at hand. Consequently we can state that Ψ mix -Ψ Reuss = 3Ec 1 c 2 θ/10 at the first order in θ. A similar remark actually applies in the case α = 0, giving Ψ mix -Ψ Reuss = 0 at the first order in θ.

In Fig. 5(left) are shown the values taken by the energy functions in the direction τ 1 . The minimizing volume fractions are shown in Fig. 5(right). The results in Fig. 5 have been obtained using the values c 1 = 0.75 and w 1 = 0. Compared to the case α = π/6 studied previously, a first observation is that Ψ - eff (tτ 1 ) > 0 for low values of t. This results from the incompatibility between austenite and martensite: In the case α = 0, austenite and martensite do not satisfy the Hadamard conditions (11) so that the formation of a microstructures entails some elastic energy cost. The impact of compatibility is also reflected in Fig. 5(right): For θ * to be strictly positive, t needs to be larger than some threshold value t * , equal to 1/8 and independent of c 1 . The corresponding energy is the energy barrier that needs to be overcome for martensite to appear. For large values of t, the behavior of θ -and θ * is similar to the case α = π/6 depicted in Fig. 3: Whereas θ -only reaches the value 1 in the limit t → ∞, θ * is equal to 1 as soon as t reaches a finite threshold.

We close the study of this example with some comments on the tangent stifness 

L * = d 2 Ψ *
eff /dε 2 of the energy estimate Ψ * eff . Expression (74) yields

L * = L -c 1 (L : τ 1 ) ⊗ (L : τ 1 ) τ 1 : L : τ 1 -m --(1 -c 1 )κ . ( 83 
)
It can be verified from ( 83) that the minimum value taken by n : L * : n over unit second-order tensors n is attained for n parallel to τ 1 . We have

τ 1 : L * : τ 1 = -m -+ (1 -c 1 )(τ 1 : L : τ 1 -n) τ 1 : L : τ 1 -m --(1 -c 1 )κ τ 1 : L : τ 1 . ( 84 
)
For the case α = π/6 (i.e. when austenite and martensite are compatible), Eq. ( 84) gives τ 1 : L * : τ 1 > 0 and therefore L * is positive definite. Now for α = 0, Eq (84) yields

τ 1 : L * : τ 1 = 3E 9 -10ν + 5ν 2 -2c 1 (7 -5ν) 2(1 + ν)(9 -10ν + 5ν 2 + 4c 1 (4 -5ν))
.

The denominator of the expression above is positive, hence τ 1 : L * : τ 1 < 0 for c 1 > (9-10ν+5ν 2 )/2(7-5ν) (≃ 0.58 for ν = 0.3). It follows that the tangent stiffness L * is not positive definite for high values of c 1 . In that case, the energy estimate may give rise to material instabilities, which are observed indeed in SMAs. The formation of Lüders-type bands in NiTi specimen under tension is a well documented example of such instabilities [START_REF] Shaw | On the nucleation and propagation of phase transformation fronts in a niti alloy[END_REF][START_REF] Daly | Stress-induced martensitic phase transformation in thin sheets of nitinol[END_REF][START_REF] Churchill | Tips and tricks for characterizing shape memory alloy wire: part 3-localization and propagation phenomena[END_REF]. In the framework of the present estimate, material instability is strongly conditioned to the austenite-martensite compatibility.

Tetragonal to orthorombic transformation in a polycrystal

We consider the tetragonal to orthorhombic transformation in a polycrystal with two isotropically distributed orientations. The rotation R 1 in orientation 1 is set to identity. As in Sect. 4 we assume that grains in orientation 2 remain purely austenitic. In that case, the function h in (60) only depends of the martensitic volume fractions θ = (θ 1 , θ 2 ) in orientation 1 and we have

h = c 1 f T-O (θ) + c 1 c 2 (θ 1 τ 1 + θ 2 τ 2 ) : (L -L : P : L) : (θ 1 τ 1 + θ 2 τ 2 ) ( 85 
)
where f T-O (θ) corresponds to the solution of the three-well relaxation problem for the tetragonal to orthorhombic transformation, as studied in Sect. 2.2. To fix ideas, we consider the case

ν = 1 2 , τ 1 = η diag(-1, 2, -1), τ 2 = η diag(2, -1, -1)
for some η, so that

h = c 1 f T-O (θ) + 6 5 Eη 2 c 1 c 2 (θ 2 1 + θ 2 2 -θ 1 θ 2 ). (86) 
The term f T-O (θ) in ( 86) is known explicitly as a special case of the expressions obtained in Sect. 2.2. The function h is plotted in Fig. 6 for η = 1 along with the functions g and l defining the lower and the upper bounds on the effective energy in (58) and ( 64). The function l can be calculated explicitly from the expressions given by Hackl and Heinen (2008) and is given by

l Eη 2 = c 1 2(θ 1 (1 -θ 1 ) + θ 2 (1 -θ 2 ) + 2θ 1 θ 2 ) -6 θ 1 θ 2 θ 1 +θ 2 -3 2 θ 0 (1 -θ 0 ) | θ 1 θ 1 +θ 2 -1 2 | + 1 2 2 + 6 5 c 1 c 2 (θ 2 1 + θ 2 2 -θ 1 θ 2 ).
(87) The function g is obtained by solving the optimization problem (65) numerically. Each subfigure in Fig. 6 shows the values taken by the energy functions as a function of θ 1 for prescribed values of the austenitic volume fraction θ 0 and volume fraction c 1 of orientation 1. The subfigures on the left correspond to c 1 = 0.2 and those on the right correspond to c 1 = 0.8. The value of θ 0 decreases from 0.9 to 0.3 from top to bottom. For a given value of c 1 , the plots in Fig. 6 show that h behaves as g for high values of θ 0 and as l for low values of θ 0 . For a given value of θ 0 , h becomes increasingly closer to g as c 1 increases. In the limit c 1 → 1, it can observed from (86) that h recovers the exact expression f T-O of the relaxed energy.

This not the case for the function l corresponding to the upper bound. We have for instance l(θ, θ) → θ(1 -2θ)/4 as c 1 → 1, whereas we know from Sect. 2.2 that (Ψ mix -Ψ Reuss )(θ, θ) = 0. The reason is that second-rank lamination -as considered implicitly in the function l -is not sufficient to achieve the relaxed energy.

In Fig. 7(left) are shown the values taken by Ψ * eff (ε) (red curve) and Ψ - eff (ε) (blue curve) in the direction ε = t(0.6τ 1 + 0.4τ 2 ), t ≥ 0. The convex bound Ψ C eff is shown in green. The volume fraction c 1 and the ratio w i /E (i ≥ 1) have been set to 0.2 and 4/45000 respectively. Some insight on the behavior of the energy estimate Ψ * eff can be gained by looking at the minimizing volume fractions of martensite, see Fig. 7(right). Since a strictly positive value of w 1 has been used, martensite becomes energetically favorable only when t exceeds a certain transformation threshold t M . For the convex envelope, that threshold is equal to w 1 /(2µτ 1 : (0.8τ 1 + 0.2τ 2 )) ≃ 0.55. Beyond that transformation threshold, the minimizing volume fractions θ C for the convex bound only involve variant 1 which is the most favorably oriented with respect to the applied strain ε. By contrast, the minimizing volume fractions θ * = (θ * 1 , θ * 2 ) corresponding to the energy estimate Ψ * eff involve both variants. In a first stage, θ * 1 and θ * 2 grow linearly with t until θ * 1 + θ * 2 reaches the limit value 1, indicating that austenite is fully transformed into martensite. For larger values of t, θ * 1 continues to grow while θ * 2 decreases, the sum θ * 1 + θ * 2 being equal to 1. This corresponds to the reorientation of variant 2 into variant 1. The minimizing volume fractions θ - corresponding to the lower bound Ψ - eff show a similar behavior, with the difference that full transformation into martensite is reached sooner. The behavior of θ * for small values of t above t M is explained by the fact that austenite and martensite are not compatible in the example considered. Thus, microstructures mixing austenite and a single variant of martensite -as predicted by the convex bound -have a high energy cost f (θ). Since the two martensitic variants are compatible in the example at hand, low values of f (θ) can be achieved by mixing the three phases as discussed in Sect. 2.2. For low values of t above t M , the minimizing volume fractions θ * result from a trade off between the microstructural energy f (θ) -which favors the presence of both variants -and the convex term Ψ C eff (ε, θ) -which favors variant 1. The situation changes when θ * 1 + θ * 2 reaches the value 1, which occurs for large values of t. In that case, the compatibility of the variants implies that f (θ) = 0 for any value of θ = (θ 1 , θ 2 ) such that θ 1 + θ 2 = 1. Hence the energy term f does not play a role anymore. For high values of t, the value of θ * strikes a balance between the inter-grain interaction energy and the convex term Ψ C eff (ε, θ), in a way similar to the example considered in Sect. 4.1. As in Sect. 4.1, θ * 1 reaches the limit value 1 for a finite value of t whereas θ - 1 only reaches 1 in the limit t → +∞. For the case 28 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.2 0.4 0.6 0.8 1 1.2
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0.1 0.12 0.14 θ 1 /θ 0 c 1 = 0.8 θ 0 = 0.5 h g l 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 depicted in Fig. 7, the energy estimate Ψ * eff is found to be really close to the upper bound Ψ + eff . In Fig. 8 is shown a situation where differences between Ψ * eff and Ψ + eff are noticeable. The plots in Fig. 8 correspond to c 1 = 0.8 and w 1 = w 2 = 0, i.e. to a temperature T close to the transformation temperature T 0 . We close this Section by comparing the stress component σ 11 = u 1 • σ • u 1 calculated from the different energy functions considered (Fig. 9). The stress calculated from the energy estimate Ψ * eff is

2 • 10 -2 4 • 10 -2 6 • 10 -2 8 • 10 -2 0.1 0.12 0.14 θ 1 /θ 0 c 1 = 0.2 θ 0 = 0.
dΨ * eff dε (ε) = L : (ε -c 1 θ * 1 τ 1 -c 1 θ * 2 τ 2 ). ( 88 
)
The stress dΨ - eff /dε calculated from the lower bound Ψ - eff is obtained by replacing (θ * 1 , θ * 2 ) with (θ - 1 , θ - 2 ) in (88). The stress calculated from the convex bound Ψ C eff is obtained similarly by replacing (θ * 1 , θ * 2 ) with (θ C 1 , θ C 2 ). Even though the values of the energy functions shown in Fig. 7(left) are close to one another, the calculated stresses show significant differences as illustrated in Fig. 9(left). This boils down to the fact that a small distance between two functions F and G does not warrant a small distance between their derivatives F ′ and G ′ . In the same spirit, the inequality F ≤ G does not imply that F ′ ≤ G ′ and the stress calculated from the convex envelope is not a lower bound on the stress calculated from Ψ * eff as can be seen in Fig. 9. Similarly, for the case depicted in Fig. 8, there is a large gap between the 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 stresses calculated from the energy estimate and the upper bound as shown in Fig. 9(right).

Uniaxial tension in γ ′

1 CuAlNi We now consider an example related to γ ′ 1 CuAlNi, for which there are 6 martensitic variants with transformations strains listed in Table A.2. That example is used to illustrate the selection of variants operated by the energy estimate. We consider a polycrystal with 2 orientations defined by

R 1 =   1 0 0 0 1 0 0 0 1   , R 2 = 1 √ 2   1 -1 0 1 1 0 0 0 √ 2   . (89) 
The orientations in (89) correspond to the Eucken-Hirsh texture observed in rolled SMA ribbons [START_REF] Eucken | The effect of textures on shape memory behaviour[END_REF]: the normal u 3 to the ribbon is along the ⟨001⟩ crystallographic direction of the austenitic cubic lattice and the rolling direction u 1 is parallel either to ⟨100⟩ or ⟨110⟩. We consider strain-driven uniaxial tension in the direction u 1 . For such a loading, the strain tensor is obtained by solving : Stress for an applied strain t(0.6τ 1 +0.4τ 2 ) with w i /E = 4/45000 (left) and for an applied strain t(0.55τ 1 + 0.45τ 2 ) with w i /E = 0 (right) as calculated from several energy functions.

inf ε:u 1 •ε•u 1 =ϵ Ψ eff (ε) (90 
where ϵ is the applied uniaxial strain. In Fig. 10(left) are shown the curves ϵ → Ψ * eff (ϵ) and ϵ → Ψeff (ϵ) where

Ψ * eff (ϵ) = inf ε:u 1 •ε•u 1 =ϵ Ψ * eff (ε), Ψ- eff (ϵ) = inf ε:u 1 •ε•u 1 =ϵ Ψ - eff (ε) (91) 
The volume fraction c 1 of orientation 1 has been set to 0.6 and the values E = 45 GPa, ν = 0.3, w 1 = 4 MPa, α = 0.0425, β = -0.0822, δ = 0.0194 have been used [START_REF] Otsuka | Morphology and crystallography of thermoelastic cu-al-ni martensite analyzed by the phenomenological theory[END_REF]. The property Ψ eff ≥ Ψ - eff implies that Ψeff ≥ Ψeff i.e. Ψeff is a lower bound on Ψeff . We can observe in Fig. 10 that Ψ * eff satisfies that lower bound. In Fig. 10(right) are shown the minimizing volume fractions Θ obtained from the energy estimate Ψ eff , i.e. such that Ψ * eff (ϵ) = Ψ * eff (ε, Θ) where ε reaches the minimum in (91). Among the 6 possible variants in each orientation, the calculations shows that only three variants appear, namely variants 1,2,4 in orientation 1 and variants 4,5,6 in orientation 2. The three variants that appear in orientation 1 are the most favorable with respect to the loading direction as can be observed from Table 1 showing the values taken by u 1 • τ j i • u 1 . Regarding orientation 2, it is interesting to observe that the second best favorable variant (variant 3) is not part of the three variants that appear. Let us compare those predictions with those resulting from the consideration of twin laminates. The 6 martensitic variants in γ ′ 1 CuAlNi are pairwise compatible and it is known that there exists 24 martensitic with θ ∈ [0, 1] and i ̸ = j. For any (i, j, θ) solving ( 92), the effective transformation strain of the twin laminate is θτ i +(1-θ)τ j . Calculating the effective transformation strain of all possible twin laminates shows that the most favorably oriented twin laminates in orientation 1 are (4, 1, θ) and (4, 2, θ) with θ ≃ 0.6926. The values of u 1 • ( θτ i + (1 -θ)τ j ) • u 1 are the same for both twins. For a mix of those two twins (in any proportion), the volume fractions of variants 1,2 and 4 therefore satisfy

θ 4 θ 1 + θ 2 = θ 1 - θ ≃ 2.25.
The numerical results in Fig. 10 give θ 4 θ 1 +θ 2 ≃ 2.58 which is relatively close to the value 2.25. In orientation 2, the most favorably twin laminates are found to be (4, 5, θ) and (4, 6, θ), so that θ 4 θ 5 +θ 6 ≃ 2.25 in any mix of those twin laminates. The numerical results obtained from the energy estimate Ψ eff give indeed that only variants 4,5,6 appear in orientation 2, but the ratio θ 4 θ 5 +θ 6 is found to be approximatively equal to 3. The active variants predicted by the energy estimate thus coincide with those expected from the consideration of twin-compatible laminates, but the proportions of the variants are not the same. We note that the energy estimate does not assume any type of microstructure. Twin-compatible second-rank laminates do not always achieve the minimum energy and more complex microstructures can arise.

Recoverable strains and low-temperature states in NiTiCu

Our final example is related to recoverable strains and austenite-free mixtures of martensite variants. The material we consider is NiTiCu, which obeys a cubic to monoclinic-I transformation. There are 12 martensitic variants and the corresponding transformations strains τ 1 , • • • , τ 12 are listed in Table A.3 measured the texture and the (uniaxial) maxium recoverable strains in rolled NiTiCu sheets. The experiments of [START_REF] Zhao | Texture development and transformation strain of a cold-rolled ti50-ni45-cu5 alloy[END_REF] show that the texture has mainly 2 orientations in proportions (c 1 , c 2 ) = (0.6, 0.4) and defined by the rotations

R 1 =   1/ √ 2 0 -1/ √ 2 1/ √ 2 0 1/ √ 2 0 -1 0   , R 2 =   1/ √ 2 1/ √ 2 0 -1/ √ 6 1/ √ 6 2/3 1/ √ 3 -1/ √ 3 1/ √ 3   . (93) 
The matrix representations in (93) are relative to a orthonormal basis (u 1 , u 2 , u 3 ) where u 1 is the rolling direction, u 2 is the transverse direction and u 3 is the normal to the sheet. Let u(z) = cos zu 1 + sin zu 2 be the unit vector in the sheet that makes an angle z with the rolling direction. In Fig. 11 (dotted line) is shown the maximum recoverable strain s(z) measured by [START_REF] Zhao | Texture development and transformation strain of a cold-rolled ti50-ni45-cu5 alloy[END_REF] for several values of the angle z. The set S eff of recoverable strains for a polycrystal is the set of energy-minimizing strains at low temperature (w 1 = • • • = w N < 0), defined in a way similar to (18) by

S eff = {ε : Ψ eff (ε) = w 1 }. (94) 
As detailed by Shu and Bhattacharya (1998), the scalar s(z) is related to the set S eff in (94) by

s(z) = max ε∈S eff u(z) • ε • u(z). (95) 
The energy estimate Ψ * eff generates the estimate S * eff = {ε : Ψ * eff (ε) = w 1 } of the set of recoverable strains and therefore an estimate of s(z) given by max ε∈S * ε • u(z). We are interested here in comparing S * eff with an other estimate of the recoverable strains, proposed by [START_REF] Shu | The influence of texture on the shape-memory effect in polycrystals[END_REF] and defined as

S SB = r R r K c R r,T (96) 
where K c is the convex hull of the set K = {τ 1 , • 63) is shown in green in Fig. 11.

We note that the proposed estimate is not restricted to recoverable strains and also gives some information on the energy of any martensite state. To illustrate that point, we consider volume fractions Θ varying between two special states A and B. The state A = {A r i } 1≤r≤2 1≤i≤12 is defined by A r i = 1/12 and can be interpreted as a selfaccommodated state, i.e. the state reached by the material when cooled down from a high temperature in stress-free conditions. The state B = {B r i } 1≤r≤2 1≤i≤12 correspond to the volume fractions realized the convex bound on s(z) (green curve in Fig. 11) at z = 0. It is defined by B 1 2 = B 2 2 = 1, the other components B r i being equal to zero. In Fig. 12(red curve) is shown the values taken by the function h for martensitic volume fractions Θ = (1 -r)A + rB for 0 ≤ r ≤ 1. The function g corresponding to the lower energy bound Ψ - eff is shown in blue. In green is shown the function l corresponding to the upper energy bound Ψ + eff of Hackl and Heinen (2008), see Eq. ( 58). We can observe in Fig. 12 that g ≤ h ≤ l as expected from the general results of Sect. 3. More specifically, the plots in Fig. 12 show that h "interpolates" between g and l, behaving as g for low values of r and behaving as l for high values or r. For r = 0, it can proved the exact value of the energy is zero. This is captured by the functions g and h but not by l because second-rank lamination is not sufficient to obtain a zero-energy. For r = 1, the three functions g, h and l coincide. This actually occurs whenever every crystalline orientation is in a pure phase, i.e. for volume fractions Θ = {θ r i } of the form θ r i = s δ rs δ ij(r) . In that case, it is proved in [START_REF] Peigney | A non-convex lower bound on the effective free energy of polycrystalline shape memory alloys[END_REF] that

g(Θ) = l(Θ) = 1 4
r,s c r c s (τ r j(r) -τ s j(s) ) : (L -L : P : L) : (τ r j(r) -τ s j(s) )

That value is recovered from h as can be verified from (60).

Concluding remarks

The presented estimate takes both intra-grain compatibility conditions and intergrain constraints into account, without making any assumption on the type of austenite-martensite microstructures in each grain. That estimate is guaranteed to satisfy known lower and upper bounds on the effective energy. In that regard, a pattern seems to emerge from the examples presented: the estimate behaves as the upper bound of Hackl and Heinen (2008) for high strains (i.e. in situations where known lower bounds are expected to underestimate the effective energy significantly) and tends to behave as the lower bound of [START_REF] Peigney | A non-convex lower bound on the effective free energy of polycrystalline shape memory alloys[END_REF] for low strains (i.e. in situations where the expected microstructures are not necessarily second-rank twincompatible laminates). We close with a final remark related to hysteresis effects and energy dissipation. Both thermal and mechanical hysteresis are frequently observed in SMAs. In the framework of energy minimization, using a convex function to estimate the effective energy (such as the lower bound Ψ C eff ) rules out any hysteresis. Then it is necessary to introduce an ad hoc dissipation ansatz to capture 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 2011); [START_REF] Peigney | An incremental variational approach to coupled thermo-mechanical problems in anelastic solids. application to shape-memory alloys[END_REF] for examples of such an approach. The situation is different when using the proposed estimate (or any non convex estimate for that matter). Being non convex, that estimate may indeed give rise to metastability and hysteresis effects, without introducing a dissipation ansatz. In particular, mechanical hysteresis in the superelastic regime is investigated in the companion paper in relation with Luders-type instabilities. for any ε ∈ K(ε) [START_REF] Peigney | Recoverable strains in composite shape memory alloys[END_REF]. Taking ε = 0, N = 2 and η 2 = 0 in ( 50) and ( 51) shows that -1 2 c 1 (1 -c 1 )η 1 : P : η 1 = inf ε∈K(0)

1 |Ω| Ω 2 r=1 χ r (x)w r (ε)dx (B.3)
where w 1 (ε) = 1 2 ε : L : ε + η 1 : ε and w 2 (ε) = 1 2 ε : L : ε. For any given η1 we have similarly as mentioned in Sect. 3. Note that (B.9) is quadratic in η 1 and can be rewritten as η 1 : ((L -K) -1 -P) : η 1 -2η 1 : (L -K) -1 : η1 ≥ -η 1 : ((L -K) -1 + P) : η1 . (B.12)

Eq. (B.10) ensures that the LHS of (B.12) remains bounded from below when η 1 varies. Minimizing (B.12) with respect to η 1 yields -η 1 : (L -K) -1 : ((L -K) -1 -P) -1 : (L -K) -1 : η1 ≥ -η 1 : ((L -K) -1 + P) : η1 .
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 1 Figure 1: Values taken by f /E for the tetragonal to orthorhombic transformation. Case α = γ = -0.01, β = 0.02, ν = 0.3. The function f vanishes on the triangle 0AB.
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 3 Figure 3: (left) Values of the energy functions for a strain of the form tτ 1 . Case α = π/6, c 1 = 0.6
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 4 Figure 4: Functions h and g in the case α = 0 with c 1 = 0.25 (left), c 1 = 0.75 (right).
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 5 Figure 5: (left) Values of energy functions in the direction τ 1 . Case α = 0, c 1 = 0.75.
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 6 Figure6: Bounds and estimate on the mixing energy for a three-well/two-orientation problem. Values of the energy are normalized with respect to the Young's modulus E.
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 7 Figure 7: (left) Energy functions in the direction 0.6τ 1 +0.4τ 2 , (right) Minimizing volume fractions. Case w i /E = 4/45000.
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 8 Figure 8: (left) Energy functions in the direction 0.55τ 1 + 0.45τ 2 , (right) Minimizing volume fractions. Case w i = 0.

  Figure9: Stress for an applied strain t(0.6τ 1 +0.4τ 2 ) with w i /E = 4/45000 (left) and for an applied strain t(0.55τ 1 + 0.45τ 2 ) with w i /E = 0 (right) as calculated from several energy functions.

  0.0305 -0.0308 0.0234 0.0616 -0.0092 -0.0089 twin laminates that are compatible with the austenite. Those twin laminates are obtained by solving the equation det(θτ i + (1 -θ)τ j ) = 0 (92)
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 10 Figure 10: Uniaxial tension in a γ ′ 1 CuAlNi polycrystal: effective energy (left) and martensitic volume fractions (right) as functions of the applied unaxial strain ϵ.
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 11 Figure 11: Recoverable strains in NiTiCu with the Zhao-Beyer texture.
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 12 Figure 12: Bounds and estimate on the mixing energy in NiTiCu for martensitic states with volume fractions (1 -r)A + rB.

  material model, see e.g. Govindjee and Miehe (2001); Hackl et al. (2008); Peigney et al. (

  K) -1 -P ⪰ (L -K + (L -K) : P : (L -K)) -1 (B.1) where P and P are the polarization tensors associated to L and L, as defined by (56). Property (B.1) plays an important role in proving that the proposed estimate Ψ eff complies with the lower bound Ψ - eff in (64). For later reference, we first note that the quadratic function ε → ε : K(a) : ε is quasiconvex for any a ⪰ 0, i.e. satisfies 1 |Ω| Ω ε : K(a) : εdx ≥ ε : K(a) : ε (B.2)

  L : ε + η1 : ε and w2 (ε) = 1 2 ε : L : ε. We introduce the functions ŵr = wr + 1 2 ε : K(a) : ε and consider the Legendre transform(w r -ŵr ) * (σ) = sup ε σ : ε -w r (ε) + ŵr (ε). (B.5)Definition (B.5) implies that w r (ε) ≥ σ : ε + ŵr (ε) -(w r -ŵr ) * (σ) for any ε and σ. It follows that for any ε ∈ K(0). Choosing σ as independent of the location x, the first integral in the RHS of (B.6) is equal to 0 because the mean value of ε vanishes for any ε ∈ K(0). Moreover, Eq. (B.2) shows that the second integral on the RHS of (B.6) is positive. Eq. (B.4) implies that the third integral in the RHS is bounded from below by -1 2 c 1 (1 -c 1 )η 1 : P : η1 |Ω|. We thus arrive 1 -c 1 )η 1 : P :η 1 ≥ -1 2 c 1 (1 -c 1 )η 1 : P : η1 -2 r=1 c r (w r -ŵr ) * (σ). (B.8)The terms (w r -ŵr ) * (σ) can be calculated directly from (B.5). Substituting the result in (B.8) gives-1 2 c 1 (1 -c 1 )η 1 : P : η 1 ≥ -1 2 c 1 (1 -c 1 )η 1 : P : η1 -1 2 σ : (L -K) -1 : σ +c 1 σ : (L -K) -1 : (η 1 -η1 ) -c 1 2 (η 1 -η1 ) : (L -K) -1 : (η 1 -η1 ).The right-hand side of the inequality above is quadratic in σ. Maximizing with respect to σ gives -η 1 : P : η 1 ≥ -η 1 : P : η1 -(η 1 -η1 ) : (L -K) -1 : (η 1 -η1 ). (B.9)Choosing in particular η1 = 0 in (B.9) shows that (L -K) -1 ⪰ P (B.10) which notably implies (by taking a = 0 and L → 0) the propertyL -1 ⪰ P (B.11) 
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 1 Values of u 1 • τ j i • u 1 for variant i in orientation j.

  • • , τ 12 }. In Fig.11(blue line) is shown the estimate of s(z) obtained by replacing S eff with S SB in (95). The estimate of s(z) obtained from the proposed approach is shown in red. The proposed estimate is close to that of[START_REF] Shu | The influence of texture on the shape-memory effect in polycrystals[END_REF] but gives slightly smaller values which are overall closer to the experimental results of[START_REF] Zhao | Texture development and transformation strain of a cold-rolled ti50-ni45-cu5 alloy[END_REF]. As a comparison, the upper bound on s(z) obtained from the convex energy bound Ψ C eff in (

  Table A.2: Transformation strains for the cubic to orthorhombic transformation.

  Table A.3: Transformation strains for the cubic to monoclinic-I transformation.

i,j=1 α i µ j (u i • v j ) 2 ≤ µ 3 i α i (u i • v 3 ) 2 ≤ µ 3 with equality if α 3 = 1, α 1 = α 2 = 0 and v 3 = u 3 .

f (θ) = E 8 ν(X + -X -) + ( √ X + -√ X -) 2 (1 + ν) √ X + -(1 -ν) √ X - 2 if αθ 1 + βθ 2 ≤ 0.(38) 

it can be calculated that the transition from convexity to concavity occurs at c 1 = 7/12 ≃ 0.58

Appendix A.1. Cubic to orthorhombic transformation

For the cubic to orthorhombic transformation, there are 6 martensitic variants with transformation strains listed in Table A.2. Values of the lattice parameters for γ ′ 1 CuAlNi are α = 0.0425, β = -0.0822, δ = 0.0194 [START_REF] Otsuka | Morphology and crystallography of thermoelastic cu-al-ni martensite analyzed by the phenomenological theory[END_REF].

Appendix A.2. Cubic to monoclinic-I transformation The transformation strains of the 12 martensitic variants in the cubic to monoclinic-I transformation are listed in Table A.3. Values of the lattice parameters for TiNiCu are α = 0.0232, β = -0.0410, δ = 0.0532, ϵ = 0.0395 [START_REF] Nam | Cu-content dependence of shape memory characteristics in ti-ni-cu alloys[END_REF].

Appendix B. Properties of the P tensor

In all that follows we use the notation A ⪰ B to indicate that two given fourthorder tensors A and B satisfy ε : A : ε ≥ ε : B : ε for all non-zero symmetric secondorder tensor ε. Let L and a satisfying the relations (66). Setting K = L + K(a), we Setting η = (L -K) -1 : η1 , we have

Eq. (B.1) follows from taking the inverse in (B.13) (we recall that

, see e.g. [START_REF] Zhan | Matrix inequalities[END_REF]).

Remark: Some additional manipulations show that (B.13) can also be rewritten in the more compact form P -1 -P-1 ⪰ L -K. However, formulation (B.1) will be more convenient for our purpose.

Appendix C. Proof of the inequality h ≥ g

We show in this Appendix that

for any Θ ∈ T N n . We first note that definition (65) can be rewritten as

where the supremum is taken over tensors (a, L) satisfying (66) and

.

For any given tensors (a, L) satisfying ( 16), we show that H(Θ, a, L) ≤ h(Θ), from which (C.1) will follow directly. Recalling that n i=0 θ r i = 1 and N r=1 c r = 1, some straightforward manipulations show that

In a similar fashion, we have, for any given r,

Observing that r c r (τ rτ ) : M : (τ rτ ) = r c r τ r : M : τ rτ : M : τ and recalling from (62) that h r = -L : (τ rτ ), we obtain

(C.5) We now proceed to bound the two sums in the RHS of (C.5). For any given r, we have by definition ( 14)

for any a ⪰ 0 such that L -K(a) ≻ 0. The elasticity tensor L being isotropic, an important observation is that the function f in ( 14) is rotationally invariant with respect to the transformation strains. This implies that we may as well replace τ i with τ

for any a ⪰ 0 such that L -K(a) ≻ 0. Consider given tensors (a, L) verifying ( 16).

We