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Introduction

Multistage stochastic programming is a powerful framework with multiple applications [START_REF] Gassmann | Stochastic Programming: applications in finance, energy, planning and logistics[END_REF], e.g. in the finance, energy and supply chain sectors. If the uncertainty is finitely supported, those problems can be seen as large-scale deterministic problems. When there is more than 4 or 5 stages, the deterministic equivalent is usually too large to be solved directly. One of the most successful paradigms in this setting consists in leveraging time-independance assumptions to derive Bellman equations [START_REF] Bertsekas | Dynamic programming and optimal control[END_REF]. The Stochastic Dual Dynamic Programming (SDDP) algorithm, and its numerous variants ( [START_REF] Mario | Multistage stochastic optimization applied to energy planning[END_REF][START_REF] Baucke | A deterministic algorithm for solving multistage stochastic programming problems[END_REF][START_REF] Zou | Stochastic dual dynamic integer programming[END_REF][START_REF] Ahmed | Stochastic lipschitz dynamic programming[END_REF]), consists in using those equations to derive approximations of the cost-to-go functions. It has been successfully used on a number of real-world problems, especially in the field of energy.

While the classical formulation of a multistage program is risk-neutral, meaning that we minimize an expected cost, a large part of the recent litterature sparked by [START_REF] Shapiro | Minimax and risk averse multistage stochastic programming[END_REF][START_REF] Philpott | On solving multistage stochastic programs with coherent risk measures[END_REF][START_REF] Shapiro | Risk neutral and risk averse stochastic dual dynamic programming method[END_REF] has been devoted to efficiently introduce risk aversion in this framework, in particular inside the SDDP algorithm. Coherent risk measures [START_REF] Artzner | Coherent measures of risk[END_REF] have become a usual tool to represent risk aversion in stochastic optimization problems. In multistage stochastic programming, minimizing a risk measure of the sum of costs leads to time-inconsistency. The easiest way to come up with a time-consistent risk-averse problem is to use composed Markovian risk measures [START_REF] Ruszczyński | Risk-averse dynamic programming for markov decision processes[END_REF], which, roughly speaking, means replacing the expectation by a risk measure inside the dynamic programming equation.

More precisely, let (Ω, F, P) be a probability space, and {ω t } t∈[T ] be a sequence of finitely supported, independent random variables (by convention, boldscript refers to random variables, normal script to an element of their support, and equalities between random variables hold almost surely.) We consider the following risk-averse multistage linear program (RA-MSLP)

min xt,y t ρ 1 c ⊤ 1 y 1 + ρ 2|ω1 • • • + ρ T |ω [T -1] (c ⊤ T y T ) (1a) s.t. A t x t + B t x t-1 + T t y t = d t ∀t ∈ [T ] (1b) 0 ≤ x t ≤ xt , 0 ≤ y t ≤ ȳt ∀t ∈ [T ] (1c) x t , y t ⪯ ω [t] ∀t ∈ [T ] (1d)
where ρ t|ω 

V T +1 (x T ) = 0, (2) 
V t (x) = min xt,y t ρ t c ⊤ t y t + V t+1 (x t ) s.t. A t x t + B t x + T t y t = d t 0 ≤ x t ≤ xt , 0 ≤ y t ≤ ȳt (3) 
where the value of Problem ( 1) is given by V 1 (x 0 ). The classical SDDP algorithm builds outer approximations of the cost-to-go functions V t , leading to exact lower bounds on the problem. In a risk-neutral framework, upper bounds can be estimated via Monte Carlo sampling. Unfortunately, it is unclear how to extend such statistical methods to the risk-averse setting [START_REF] Shapiro | Risk neutral and risk averse stochastic dual dynamic programming method[END_REF]. Instead of statistical upper bounds, one can use exact upper bounds: Through backward recursion ( [START_REF] Philpott | On solving multistage stochastic programs with coherent risk measures[END_REF]); by maintaining upper and lower bounds for all value functions ( [START_REF] Baucke | A deterministic algorithm for solving multistage stochastic programming problems[END_REF][START_REF] Downward | Stochastic dual dynamic programming with stagewise-dependent objective uncertainty[END_REF]); or using Fenchel duality ( [START_REF] Vincent Leclère | Exact converging bounds for stochastic dual dynamic programming via fenchel duality[END_REF][START_REF] Guigues | Duality and sensitivity analysis of multistage linear stochastic programs[END_REF]). Up to now, the first approach has not been used to compute improving upper bounds along SDDP iterations, while the second approach relies on a problem-child node selection method. Finally, the last approach was developed only in a risk-neutral setting. The aim of this work is to adapt the latter approach to a riskaverse setting. By dualizing the extensive formulation of the risk-averse MLSP problem, and recognizing a time-decomposition, we obtain a Bellman recursion on which SDDP can be applied, yielding converging exact upper bounds.

Contributions. In this paper we i) derive a dual formulation of RA-MLSP with polyhedral risk measure; ii) show that it is time-decomposable and solvable through SDDP, yielding exact upper bounds of the original problem; iii) link the value function of the dual formulation with the co-perspective of the primal value function; and iv) illustrate the approach with numerical results.

Time decomposition of the dual of a risk averse MSLP

2.1. Risk-averse duals with AV@R We start by showing how to build the dual problem in a very specific setting: for a single step of the recursion, with no upper bounds on x t and y t , and when the risk measure ρ is a convex combination of the mean and the α-AV@R, given by, for α ∈ (0, 1) and β ∈ [0, 1],

ρ [θ] := βE[θ] + (1 -β) AV@R α [θ] . (4) 
This risk measure assumes an underlying probability for the scenarios, with respect to which one calculates the expectation and the AV@R. The risk measures we employ in the example in section 4.2 will be of this class. We rewrite equation (3) using the Rockafellar-Uryasev representation of AV@R, with θ as epigraphical variables for the scenario costs. For simplicity, we represent a random variable as a vector in R J , denoted with bold letters such as x = (x 1 , . . . x J ), and the expectation E[x] is the sum p j x j . So, the value of V t (x t-1 ) is given by: inf

x,y;q,θ,u

βE[θ] + (1 -β) q + 1 α E[u] s.t. q + u j ≥ θ j ∀j ∈ [J] θ j ≥ c ⊤ j y j + V t (x j ) ∀j ∈ [J] A j x j + B j x t-1 + T j y j = d j ∀j ∈ [J] x j , y j , u j ≥ 0 ∀j ∈ [J] (5) 
We define dual multipliers for every constraint: in order, δ, γ, λ, µ, ν, and η. With the expectation inner product, this yields the Lagrangian:

(1 -β)q + βE[θ] + (1 -β)/α • E[u] E[γ(c ⊤ y + V (x) -θ) + δ(θ -q -u)] + E[λ ⊤ (Ax + Bx t-1 + T y -d)] -E[µ ⊤ x + ν ⊤ y + ηu]
Eliminating the multipliers ν and η, we obtain the dual problem

sup λ,γ,δ,µ E λ ⊤ (Bx t-1 -d) + inf x (A ⊤ λ -µ) ⊤ x + γV t (x) s.t. E[δ] = (1 -β) 0 ≤ δ j ≤ 1-β α ∀j ∈ [J] γ j = β + δ j ∀j ∈ [J] γ j c j + T ⊤ j λ j ≥ 0 ∀j ∈ [J] µ j ≥ 0 ∀j ∈ [J] (6) 
Observe that the variable γ represents the "change-of-measure" implied by the mean-AV@R combination [START_REF] Shapiro | Lectures on stochastic programming: modeling and theory[END_REF]. Indeed, γ is at least β ≤ 1, and some events will have an increased contribution, up to 1-β α , so that E[γ] = 1.

Polyhedral risk measures and duality

To extend the previous approach to more general risk measures, we adopt a distributionally robust point of view. We consider a polyhedral risk measure ρ, that is, a coherent risk measure of the form

ρ : t → sup Q∈Q E Q [t] = max k∈[K] {E Q k [t]}, (7) 
where

Q = conv({Q k } k∈[K]
). Polyhedral risk measures can be either chosen as interpretable riskmeasures (e.g. AV@R in a finite setting) or as the worst case among a set of probabilities estimated by various experts. Since we don't assume a reference probability, we resort to describing the extremal risk measures, which may be very numerous. This also changes the interpretation of the dual variables γ: now they correspond to supporting probabilities, instead of a change-of-measure.

We denote the elements of the support of ω by ω 1 , . . . , ω J , and let

q k j := Q k [ω = ω j ]. Now, V t (x t-1 ) is given by: inf x,y;z,θ z (8) s.t. z ≥ j∈[J] q k j θ j ∀k [ϕ k ] θ j ≥ c ⊤ j y j + V t+1 (x j ) ∀j [γ j ] A j x j + B j x t-1 + T j y j = d j ∀j [λ j ] 0 ≤ x j ≤ xt ∀j [µ j , ζ j ] 0 ≤ y j ≤ ȳt ∀j [ν j , ξ j ]
Proceeding analogously to the AV@R case above, we introduce dual multipliers as indicated in the brackets, and obtain the following dual problem sup

ϕ k ,γj ,λj , µj ,ζj ,ξj j∈[J] λ ⊤ j (B j x t-1 -d j ) -xt ζ j -ȳt ξ j (9) + inf xj (A ⊤ j λ j -µ j + ζ j ) ⊤ x j + γ j V t+1 (x j ) s.t. k ϕ k = 1, ϕ k ≥ 0, k ϕ k q k j = γ j ≥ 0 ∀j γ j c j + T ⊤ j λ j + ξ j ≥ 0 ∀j µ j , ζ j , ξ j ≥ 0 ∀j.
The constraints on ϕ k are equivalent to describing the vector of γ j 's as a convex combination of the extreme probabilities Q k . Therefore, one can rewrite problem [START_REF] Vincent Leclère | Exact converging bounds for stochastic dual dynamic programming via fenchel duality[END_REF] to include the constraint {γ j } j∈[J] ∈ Q instead of the first two lines. This shows that the variables γ j correspond to one supporting probability of the risk measure ρ. In particular, if a given scenario is effective, in the sense of [START_REF] Hamed Rahimian | Identifying effective scenarios in distributionally robust stochastic programs with total variation distance[END_REF], then there exists an optimal γ which charges this scenario.

Moreover, the last two constraints here correspond exactly to the last two in problem [START_REF] Downward | Stochastic dual dynamic programming with stagewise-dependent objective uncertainty[END_REF], which emphasizes the similarity between ( 9) and (6).

Multistage risk averse problem duality

We now extend the duality to the full multistage problem. In the stagewise independent setting, we let Ω t be the set of all possible realizations of ω t , and the risk measure ρ t is defined by

ρ t = sup Q∈Qt E Q [•]
, for a polyhedral subset Q t of probability measures on Ω t . The tree T describing the stochastic process is such that each node n of depth t is associated with a possible value of ω [t] = (ω 1 , . . . ω t ). For any node n, the set of its children is denoted by C n , and L is the set of leaves of T .

In the spirit of the previous section, we introduce variables z n to stand for the risk-adjusted value of our problem starting from node n, and θ m represents the cost-to-go following the branch of node m ∈ C n . To reduce notational burden, we assume that, for all t, ρ t = ρ. Then, the risk averse problem (1), with value V n0 (x n0 ), can be written as the following linear program:

min z 0 (10) s.t. m∈Cn q k m θ m ≤ z n ∀n, ∀k ∈ [K] [Φ k n ] c ⊤ m y m + z m ≤ θ m ∀m ∈ T \{n 0 } [γ m ] A m x m + B m xn + T m y m = d m ∀n, ∀m ∈ C n [λ m ] z ℓ = 0 ∀ℓ ∈ L [η ℓ ] x m = xm ∀m ∈ T \{n 0 } [π m ] 0 ≤ xm ≤ xm ∀m ∈ T \{n 0 } [µ m , ζ m ] 0 ≤ y m ≤ ȳm ∀m ∈ T \{n 0 } [µ m , ξ m ]
where, when unspecified, ∀n stands for ∀n ∈ T \L, xn0 is a parameter and not a variable, and we add the equalities x m = xm to highlight the time dynamics.

Defining γ n0 = 1, the linear programming dual of problem [START_REF] Mario | Multistage stochastic optimization applied to energy planning[END_REF] 

is sup Φ,γ,π,λ π ⊤ n0 xn0 - m λ ⊤ m d m + x⊤ m ζ m + ȳ⊤ m ξ m s.t. k∈[K] Φ k n = γ n ∀n [z n ] k∈[K] Φ k n q k m = γ m ≥ 0 ∀n, ∀m ∈ C n [θ m ] π n0 = m∈Cn 0 B ⊤ m λ m π n ≤ ζ n + m∈Cn B ⊤ m λ m ∀n ∈ T \{n 0 } [x m ] π m + A ⊤ m λ m = 0 ∀m [x m ] γ m c m + T ⊤ m λ m + ξ m ≥ 0 ∀m [y m ] Φ k n ≥ 0 ∀n, ∀k ∈ [K] ζ m ≥ 0, ξ m ≥ 0 ∀m
where we keep ∀n to imply n ∈ T \L as above, and unspecified ∀m, m range over m ∈ T \{n 0 }.

Note that Φ k n can be seen as barycentric coordinates of the extreme points of Q. Thus, the first two constraints can be more compactly written as (γ m ) m∈Cn ∈ γ n Q.

By backward recursion, this problem can be solved through the following recursive equations, where, for all leaves ℓ ∈ L, D ℓ (π ℓ , γ ℓ ) = -x ⊤ ℓ max{π ℓ , 0}, and for all nodes n ∈ T \L, D n (π n , γ n ) is given as the value of sup πm,γm,λm ζn,ξm≥0

1 {n=n0} π ⊤ n0 xn0 -x⊤ n ζ n + (11) m∈Cn -λ ⊤ m d m -ȳ⊤ m ξ m + D m (π m , γ m ) s.t. (γ m ) m∈Cn ∈ γ n Q ζ n + m∈Cn B ⊤ m λ m ≥ π n π m + A ⊤ m λ m = 0, ∀m ∈ C n γ m c m + T ⊤ m λ m + ξ m ≥ 0, ∀m ∈ C n
By the independence assumption, a backward induction shows that D n = D n ′ for all nodes n and n ′ of the same depth. Thus, defining D T (π T , γ T ) = -x ⊤ T max{π T , 0}, we obtain the following recursion for the dual value functions:

D t (π t , γ t ) = (12) sup ζ,γj , λj ,πj ,ξj -x⊤ t ζ + j∈[Jt] -d ⊤ j λ j -ȳ⊤ t+1 ξ j + D t+1 (π j , γ j ) s.t. (γ j ) j∈[Jt] ∈ γ t Q ζ + j∈[Jt] B ⊤ j λ j ≥ π t π j + A ⊤ j λ j = 0 ∀j ∈ [J t ] γ j c j + T ⊤ j λ j + ξ j ≥ 0 ∀j ∈ [J t ] ξ j ≥ 0, ζ ≥ 0
This decomposition satisfies the RCR conditions. Indeed, for every π t and every γ t ≥ 0, any γ ∈ γ t Q and λ = 0 are admissible, using slack variable ζ as needed. Then, π j are given by the π j + A ⊤ j λ j = 0, and the remaining constraints can be adjusted using ξ j .

Remark 1. Relatively complete recourse in a dual formulation is not guaranteed (see for example [START_REF] Guigues | Duality and sensitivity analysis of multistage linear stochastic programs[END_REF]). In our setting, the explicit upper bounds of (1c) ensure RCR. The existence of such upper bounds is equivalent to the existence of exact penalization coefficients in the dual, which is the tool used in [START_REF] Guigues | Duality and sensitivity analysis of multistage linear stochastic programs[END_REF] to deal with this difficulty. Alternatively, we could incorporate feasibility cuts in the algorithm.

Bounding the dual state

With our boundedness assumption, we have relatively complete recourse in the dual. To prove convergence, we still need to ensure that the dual state remains bounded.

By assumption, we know that there exists an optimal primal solution. Further, by linear programming duality, we know that there exists an optimal dual solution. The marginal interpretation of the Lagrange multiplier π (see Problem [START_REF] Mario | Multistage stochastic optimization applied to energy planning[END_REF]) states that, for each node, the optimal dual π n is a subgradient of the primal value function for γ n = 1. In particular, π n /γ n can be bounded by the Lipschitz constant of the primal value function V n . In the independent setting, assuming that V t is L t -Lipschitz continuous on its domain, we can add the constraint |π j | ≤ γ j L t+1 to (12) for each j, without changing its value. This method is similar to the compactification process through Lipschitzregularization used in [START_REF] Vincent Leclère | Exact converging bounds for stochastic dual dynamic programming via fenchel duality[END_REF]. Therefore, we use the compactified recursion presented in [START_REF] Ruszczyński | Risk-averse dynamic programming for markov decision processes[END_REF]. Since it has RCR and bounded states, the SDDP algorithm on this recursion converges. This is illustrated in section 4.

D t (π t , γ t ) = sup ζ,γj ,λj ,πj ,ξj -x ⊤ t ζ + j∈[J] -d ⊤ j λ j -ȳ⊤ t+1 ξ j + D t+1 (π j , γ j ) s.t. γ ∈ γ t Q ζ + j B ⊤ j λ j ≥ π t π j + A ⊤ j λ j = 0 ∀j ∈ [J t ] γ j c j + T ⊤ j λ j + ξ j ≥ 0 ∀j ∈ [J t ] |π j | ≤ γ j L t+1 ∀j ∈ [J t ] ζ ≥ 0, ξ j ≥ 0 (13)

Dual risk averse Bellman operator

We introduce convex analysis tools that shed new light on the link between the primal and dual value functions given in Section 2.

Homogeneous Fenchel duality

Let f : R n → (-∞, ∞] be a proper lower semicontinuous convex function. Recall (see [START_REF] Patrick | Perspective functions: Properties, constructions, and examples[END_REF] for more details) that the perspective function of f , denoted f , is a convex, lower-semicontinuous function of R n+1 , such that f (x, γ) = γf (x/γ) for any positive number γ.

Recall that the Fenchel conjugate of f is

f ⋆ : R n → R : ψ → sup x∈R n ψ ⊤ x -f (x). ( 14 
)
Inspired by the recurrences in ( 6) and ( 9), we introduce the coperspective function: Definition 2. Let f : R n → R. The coperspective of f is the perspective of the Fenchel conjugate, that is (f ⋆ ) ∼ , that we denote f ⊠ . In particular, for ψ ∈ R n and γ ∈ R ++ , we have

f ⊠ (ψ, γ) := sup x∈R n ψ ⊤ x -γf (x). ( 15 
)
Remark 3. The coperspective is jointly convex in (ψ, γ), lower semicontinuous, and a positively homogeneous function of degree 1: for all t > 0,

f ⊠ (t • ψ, t • γ) = t • f ⊠ (ψ, γ).
Remark 4. Cuts for a convex function and its perspective are essentially equivalent.

If f (x) ≥ f (x 0 ) + g ⊤ (x -x 0 ) = θ + g ⊤ x, then f (x, γ) = γ • f (x/γ) ≥ γf (x 0 ) + γg ⊤ (x/γ -x 0 ) ≥ γf (x 0 ) + g ⊤ (x -γ • x 0 ) ≥ θ • γ + g ⊤ x Similarly, if f (x, γ) ≥ θ • γ + g ⊤ x + β, then f (x) ≥ g ⊤ x + θ + β.
Note that if the cut for f is exact we can assume β = 0.

Duality and conjugate value functions

Consider a polyhedral risk measure ρ and the associated risk-averse Bellman operator B that, to any cost-to-go function V and initial state x t-1 associates the value of Problem [START_REF] Guigues | Duality and sensitivity analysis of multistage linear stochastic programs[END_REF].

The coperspective of B(V ) can be calculated using [START_REF] Vincent Leclère | Exact converging bounds for stochastic dual dynamic programming via fenchel duality[END_REF]. Leveraging positive homogeneity, for ψ 0 ∈ R n and γ 0 > 0, we get that B(V ) ⊠ (ψ 0 , γ 0 ) is given by

sup x0 ψ ⊤ 0 x 0 (16) + inf γ,λ,µ ζ,ξ j∈[J] λ ⊤ j (d j -B j x 0 ) + ξ ⊤ j ȳt+1 + ζ ⊤ j xt+1 + V ⊠ (µ j -A ⊤ j λ j -ζ j , γ j ) s.t. γ ∈ γ 0 Q γ j c j + ξ j + T ⊤ j λ j ≥ 0 ∀j µ j , ζ j , ξ j ≥ 0 ∀j.
Note that, if V is polyhedral, so are its Fenchel dual and its perspective. Thus, by linear programming duality, we can interchange sup and inf to obtain

[B(V )] ⊠ (ψ 0 , γ 0 ) = (17) inf γ,λ µ,ζ,ξ j∈[J] λ ⊤ j d j + ξ ⊤ j ȳt+1 + ζ ⊤ j xt+1 + V ⊠ (ψ j , γ j ) s.t. j B ⊤ j λ j = ψ 0 γ ∈ γ 0 Q γ j c j + ξ j + T ⊤ j λ j ≥ 0 ∀j ψ j = µ j -A ⊤ j λ j -ζ j ∀j.
This equation defines a risk-neutral LBO B ⊠ that takes a homogeneous recourse function V ⊠ and returns another homogeneous convex function of the same dimension. We call this operator the projective dual Bellman operator associated to B.

Comparing ( 12) and ( 17), we notice the decomposition is not done at the same time-step for all variables: in the first one, ζ is a single variable, relaxing the incoming dual state constraint; whereas in the second, it relaxes the outgoing dual state constraint. Substituting π j = ψ j + ζ j -µ j , we obtain the following proposition, linking the coperspectives of the primal value functions with the value functions of the dual problem. Proposition 5. For t ∈ [T ], if the dual value function D t is defined by [START_REF] Hamed Rahimian | Identifying effective scenarios in distributionally robust stochastic programs with total variation distance[END_REF], and V t is the primal value function defined by (3) then

D t (π t , γ t ) = -inf ζt+ψt≥πt ζt≥0 xt ⊤ ζ t + V ⊠ t (ψ t , γ t ).
In particular, D t is a concave, positively homogeneous, one-sided Lipschitz regularization of V ⊠ t . Further, the value of primal Problem (1) is sup π0 π ⊤ 0 x 0 + D 0 (π 0 , 1).

This proposition paves the way to a dual SDDP algorithm. Indeed, it was shown in [START_REF] Vincent Leclère | Exact converging bounds for stochastic dual dynamic programming via fenchel duality[END_REF] that SDDP can be applied to any sequence of functions linked through linear Bellman operators (LBO) like B ⊠ .

Examples

In this section, we provide an algorithm, in the lineage of SDDP, for the risk-averse dual problem given by the recursion [START_REF] Ruszczyński | Risk-averse dynamic programming for markov decision processes[END_REF]. Then, we close with one numerical example from a real-world problem. A more comprehensive discussion on the algorithm, including implementation details, can be found at the companion. There, one will also find further results on the application of our algorithm.

A dual risk-averse algorithm

The recursion of (perspective) value functions D t given by ( 13) can be solved by recursively constructing piecewise linear (upper) approximations, which we call D t . As usual, one needs to ensure that the domain of the state variables π t and γ t remains bounded. Since all γ t remain in [0, 1], we only need bounds for π t , which we assume are given by the user as the Lipschitz constants L t for the primal value functions V t . In our experiments, the Lipschitz constant estimation was not critical: Increasing L t by a factor 10 or 100 had a negligible impact after 50 iterations, as can be seen in section C of the companion. Moreover, one needs a starting upper bound for D t . These can be obtained, for example, choosing π t = 0 and γ t = 1, and constructing cuts from t = T -1 back to t = t 0 .

The first stage problem, corresponding to t = t 0 , is slightly different. It is obtained as the fusion of the "zero-th stage" containing π n0 as a decision variable, and the first stage in [START_REF] Ruszczyński | Risk-averse dynamic programming for markov decision processes[END_REF]. Furthermore, since x n0 is fixed, there's no corresponding slack variables µ n0 and ζ n0 , so it must satisfy

j∈[J0] B ⊤ j λ j = π 0 . (18) 
With this, we can now present how one can perform Bellman iterations on the recursion defined by [START_REF] Ruszczyński | Risk-averse dynamic programming for markov decision processes[END_REF] to obtain convergence. We highlight the following differences with the primal SDDP:

• Computing D t (π, γ) cannot be decomposed by realization of ω t due to the coupling constraint ζ + j∈[Jt] B ⊤ j λ j ≥ π t . In particular, the forward pass is as demanding as the backward pass, and yields cuts. Furthermore, we have one next-state variable per possible realization of ω t , which means that, when adding a single cut to the approximation of D t+1 , we are adding J t constraints.

• In the forward step, we choose the realization j according to a (smoothed) "importance sampling" procedure, with weight γ j + ε.

• By homogeneity, we normalize the state variables (π j , γ j ) that will be used in the next step of the forward pass to have γ t+1 = 1, unless we are in a branch where γ t = 0. This has had a positive impact in the numerical stability of the algorithm.

• Finally, by remark 4, we ensure that, for every cut, its parameter β is always zero. Naturally, one can couple this algorithm with (say) SDDP running on the primal. This keeps track of both upper and lower bounds, therefore allowing to stop based on a prescribed tolerance, instead of just a maximum number of iterations as described above.

Let us close this section with two remarks. First, even if this algorithm uses only forward passes, one could use backward passes for computing cuts, as in the classical SDDP algorithm. This would require solving approximately twice the number of optimization problems, but would include in the backward pass the updated value function, which could potentially speed up the convergence of the algorithm. Furthermore, this algorithm is easily amenable to standard cut-selection techniques, which can be useful to reduce the computational burden of each iteration.

Numerical experiments

We present here a numerical example. Further details and other results are given in the companion, and the implementation in julia, along with other examples, can be found at https://github.com/ bfpc/DualSDDP.jl. This example comes from the Brazilian Hydrothermal Energy planning problem, where the reservoirs and hydro dams are aggregated into 4 subsystems, and there is a 5th node in the network, as an interconnection. Therefore, it contains 4 state variables (the stored energy in each reservoir), 9 equality constraints for the dynamics (4 for the states, and 5 for demand in each node), and a total of 164 control variables, accounting for hydro and thermal energy produced, and energy exchange among the nodes in the system. The uncertainty at each time step is the inflow for each aggregated reservoir, and is different for each time step, corresponding to different months of the year.

For this example, we take 12 stages and 82 inflow realizations per stage (thus 82 12 scenarios). We have natural bounds for every state variable, given by the reservoirs' limits, and control variables (power output, line capacities, . . . ). The risk measure considered was a combination of expectation and AV@R, given by βE + (1 -β)AV@R α . In this problem, the highest marginal cost is given by load shedding, which yields estimates for the Lipschitz constants we use.

In Figure 1, we present the evolution of the bounds obtained by the primal SDDP, our dual SDDP algorithm, as well the one shot backward bounds of [START_REF] Philpott | On solving multistage stochastic programs with coherent risk measures[END_REF] (Philpott UB), computed every 50 iterations based on the trajectories from primal SDDP, and the upper and lower bounds provided by the problem-child method of [START_REF] Baucke | A deterministic algorithm for solving multistage stochastic programming problems[END_REF] (Baucke UB / LB). This is done for various level of risk aversion. Note that, on this problem, the dual upper bound always outperform the problem-child method. It also slightly beat the primal one-shot upper bound in the most risk-averse case. This is also observed on the other numerical experiments available at https://github.com/bfpc/DualSDDP.jl.

Finally, we noticed that each iteration of the dual is between 30 and 15 times slower than primal iteration, being larger for higher branching sizes. This is expected, since each problem in the dual formulation includes all inflow realizations and a linking constraint among all of them, whereas the primal problem also allows decomposing each time step in separate problems for each branch. 
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 1 Figure 1: Bounds evolution for hydrothermal problem.

  Algorithm 1: Dual Risk-Averse SDDP Data: upper bounds D 0 t ≥ D t and bounds L t for |π t | Result: upper bound on the value of (13) for k = 0 to N do Solve the first stage problem to obtain π 0 , and set γ 0 = 1 if k == N then Return upper bound for t = 0 to T -1 do // forward pass Solve problem (13) with D k t+1 instead of D t+1 Compute a cut for D t using the optimal multipliers for π t and γ t Choose a branch ȷ according to probabilities γ j + ε if γ ȷ > 0 then Set π t+1 ← π ȷ/γ ȷ, and γ t+1 ← 1 else Set π t+1 ← π ȷ, and γ t+1 ← 0

Table 1 :

 1 Single iteration time in sec (around it = 100)

	# branches P-SDDP D-SDDP Problem Child
	10	0.023	0.166	0.109
	20	0.054	0.523	0.224
	40	0.113	2.366	0.402
	80	0.274	5.739	0.813
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