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Abstract: The swelling behaviour of expansive clays is strongly related to the interaction 

between clay particles. In this paper, a series of constant-volume swelling pressure and mercury 

intrusion porosimetry (MIP) tests were carried out on MX80 bentonite/Callovo-Oxfordian (COx) 

claystone mixtures with different bentonite fractions and dry densities. Results show that the 

swelling pressure increased linearly with the increase of dry density. Additionally, at a given dry 

density, the larger the bentonite fraction, the larger the swelling pressure.  From the MIP results, 

the inter-particle pore volume decreased with the increases of bentonite fraction and dry density. 

To link the macroscopic swelling behaviour with the microstructure features, a new method was 

proposed, allowing the determination of the average inter-particle distance from the pore size 

distribution. Moreover, a linear relationship was identified between the swelling pressure and the 

average inter-particle distance in a semi-logarithmic plane, regardless of the bentonite fraction and 

montmorillonite content. 

 

Keywords: bentonite/claystone mixture; bentonite fraction; swelling pressure; pore size distribution; 

inter-particle distance  
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1 Introduction 

Expansive clays are composed of large amount of clay minerals, in particular smectite. Upon contact 

with water, they develop significant swell or swelling pressure. This swelling behaviour of expansive 

clays can cause severe distress to civil infrastructures, such as building and roads [5, 15-17, 31, 33]. 

In some applications, such clays can be greatly beneficial in the case of geological radioactive waste 

disposal where expansive clays (e.g. bentonite-based materials) are commonly used as sealing 

material. They are expected to fill up the technological voids and excavation fractures and to generate 

desired swelling pressure to limit the convergence of the excavation damaged zone [14, 20]. 

Over the past decades, the swelling behaviour of expansive clays has been extensively studied. 

It has been well admitted that the swelling behaviour of expansive clays could be influenced by many 

factors, including mineralogical composition, index properties, dry density, water content, suction, 

salinity of pore water, etc. [3, 4, 10, 26, 27, 30]. This allowed many empirical and semi-empirical 

relationships to be proposed according to the relationships between the swelling pressure/swell and 

influencing factors. Zeng et al. [34, 38, 39] clarify the contribution of claystone to the global swelling 

pressure of bentonite/claystone mixtures by considering the interaction between bentonite and 

claystone in the development of swelling pressure. Xu et al. [28, 29] incorporated the osmotic suction 

into effective stress for compacted bentonites hydrated with saline solutions, and then developed the 

correlation between montmorillonite void ratio and effective stress using a fractal model. The 

fundamental swelling mechanism of expansive clays were also investigated at microscopic scales. 

Saiyouri et al. [19] suggested that the swelling of clay minerals comprised two main processes: 

crystalline and osmotic swelling. The crystalline swelling was a process whereby 0-4 discrete layers 
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of water molecules were placed along the clay monolayers inside particles with a subdivision of the 

particles into thinner ones that are composed of less stacked clay layers [2, 9, 19]. The cations are 

attracted to the negatively charged clay particles due to the isomorphous substitution in the crystal 

lattice (Fig. 1) and the concentration of adsorbed cations near the surface of clay particles is much 

higher than that far from the surface [24]. This allows the diffuse double layers to be developed on a 

parallel assembly of clay particles. In that case, the osmotic swelling represented by the interaction 

of clay particles become dominant. It includes the attractive (van der Waals) and repulsive (diffuse 

double layer) forces between the clay particles, both of which are highly dependent on the inter-

particle distance. To further clarify the swelling behaviour, the inter-particle distance was commonly 

estimated from the total clay void ratio (or the inter-particle water volume) and the specific surface 

area [8, 19, 21]. However, the used specific surface area was in general a total value, which included 

the interlayer zones apart from the inter-particle zones [12]. Moreover, it was assumed that the 

specific surface could decrease owing to the reduction of unit layer number inside the clay particles 

during the crystalline swelling process [19, 21]. To address these issues, Liu [9] introduced an 

empirical parameter related to the average number of the unit layers per clay particle and empirically 

determined the inter-particle distance from the total void ratio, the thickness of unit layers and the 

distance between the unit layers. Although reasonable prediction results have been obtained on some 

specific expansive clays, the applicability of relevant theories to other types of expansive clays is 

quite limited. 

 



 

5 

 

 

Fig. 1 Fabric units and pore spaces of compacted clay (modified after Liu [9] and Mašín and Khalili 

[12]) 

To this end, this study experimentally determined the inter-particle distance and its relationship 

with the swelling pressure. Firstly, constant-volume swelling pressure tests were performed on 

compacted MX80 bentonite/Callovo-Oxfordian (COx) claystone mixtures which has been proposed 

as possible sealing/backfilling materials in the French deep geological disposal for high-level 

radioactive waste [34]. The swelling pressures of the mixtures with different bentonite fractions (B) 

and dry densities ( ρ
d
 ) were experimentally determined. After the swelling tests, the pore size 

distributions were investigated using mercury intrusion porosimetry (MIP) and the inter-particle 

distance was estimated, enabling interpretation of the swelling pressure at a microscopic scale. 

2 Materials and methods 

The studied soils were the mixtures of MX80 bentonite and COx claystone. The MX80 bentonite was 

collected from Wyoming in the USA, while the COx claystone was sampled from the Underground 

Research Laboratory (URL) at around 490 m depth in Bure, France. The bentonite and claystone were 

then crushed to particles passing through the 2 mm sieve. The physical properties and mineralogical 

compositions of the bentonite and claystone are listed in Table 1. To simulate the working 

environment of the sealing/backfilling materials, synthetic site water, which has the same chemical 
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composition as the site water in the URL, was used as saturation water in the swelling pressure tests. 

The details about the preparation of the synthetic water can be found in Zeng et al. [35]. 

The bentonite and claystone powders at their respective initial water contents were well mixed 

with different proportions of 0/100, 10/90, 20/80, 30/70, 50/50 and 70/30 in dry mass. The 

corresponding bentonite fractions of the mixtures are 0, 10, 20, 30, 50 and 70%. The specimens of 50 

mm diameter and 10 mm height were prepared by static compaction in a rigid steel ring using an axial 

press at a controlled rate of 0.05 mm/min. The target dry densities of the specimens are shown in 

Table 2. 

Table 1 Physical properties and mineralogical compositions of MX80 bentonite and COx claystone 

Soil property MX80 bentonite COx claystone 

Water content (%) 11.4 6.1 

Specific gravity 2.76 2.70 

Liquid limit (%) 494 41 

Plastic limit (%) 46 24 

Plasticity index (%) 448 17 

Main minerals Smectite (86%) 

Quartz (7%) 

Carbonate and feldspar (7%) 

Interstratified illite-smectite (40-45%)a 

Carbonate (30%)a 

Quartz and feldspar (25-30%)a 

         a After Fouché et al. [6] 

After compaction, the specimens were transferred to the testing cell (50 mm in inner diameter), 

as shown in Fig. 2. The compacted specimens were placed between two metallic porous disks and 

filter papers. These metallic porous disks were specially designed to minimize the deformation of the 

apparatus. On the top, a piston blocked with a screw was used to restrain the axial deformation during 

the hydration and a force transducer was installed under the cell to monitor the axial swelling force. 

The specimens were hydrated by synthetic water from the bottom of the cell at a water head of about 

1.0 m and the swelling force during the hydration was recorded by a data logger. All tests were 
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performed in a temperature controlled room (20±1 °C). 

Table 2 Test program and main results 

Test 

No. 

Bentonite 

fraction B (%) 

Dry density of 

specimen ρdm (Mg/m3) 

Initial water 

content wm (%) 

Final swelling 

pressure Ps (MPa) 

S01 70 1.38 9.8 0.43 

S02 70 1.50 9.8 1.11 

S03 70 1.63 9.8 2.53 

S04 70 1.71 9.8 3.94 

S05 50 1.27 8.8 0.13 

S06 50 1.56 8.8 0.85 

S07 50 1.73 8.8 2.10 

S08 50 1.76 8.8 2.91 

S09 30 1.50 7.7 0.22 

S10 30 1.60 7.7 0.46 

S11 30 1.68 7.7 0.78 

S12 30 1.79 7.7 1.59 

S13 30 1.89 7.7 2.72 

S14 30 1.99 7.7 5.23 

S15 20 1.60 7.2 0.26 

S16 20 1.69 7.2 0.44 

S17 20 1.77 7.2 0.70 

S18 20 1.88 7.2 1.93 

S19 10 1.61 6.6 0.14 

S20 10 1.68 6.6 0.23 

S21 10 1.78 6.6 0.39 

S22 10 1.90 6.6 1.07 

S23 0 1.80 6.1 0.15 

S24 0 1.90 6.1 0.47 

S25 0 1.99 6.1 0.79 

 

Fig. 2 Layout of the experimental setup for swelling pressure tests 
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After the swelling pressures tests, the specimens were extracted from the cell and rapidly cut 

into several cubes (maximum volume of 1 cm3). The entire operations (removal and cutting) were 

completed in less than 5 min to minimise the influences of stress release and water evaporation. Prior 

to the MIP tests, the specimens were freeze-dried following the procedure proposed by Delage and 

Lefebvre [1] to minimise the microstructure disturbance during dehydration. Autopore IV 9500 

mercury intrusion porosimeter was used to explore the pore structure of specimens. The exploration 

was performed in two stages: a low-pressure phase with a working pressure from 3.6 to 200 kPa; a 

high-pressure phase with a working pressure from 0.2 to 228 MPa. Note that the influence of mercury 

pressure on the pore structure was believed to be limited. The pore entrance diameter D (μm) at a 

mercury pressure p (MPa) could be calculated according to the Washburn equation: 

D=
4Tscosα

p
                                                              (1) 

where Ts is the interfacial tension (taken as 0.485 N/m); α is the contact angle between the mercury-

air interface and soil (taken as 130°). According to Eq. (1), the applied working pressures correspond 

to a maximum entrance pore diameter of 350 μm and a minimum entrance diameter of 5.5 nm. 

3 Experimental results and discussions 

3.1 Swelling pressure 

When water infiltrated into the specimens, the swelling pressure increased and then tended to 

stabilization after 2.5-102 h [34]. The variations of stabilized swelling pressure with dry density for 

the specimens with different bentonite fractions are shown in Table 2 and Fig. 3. For comparison, 

also presented in the same figure are the results collected from other studies on pure MX80 bentonite 

[7] and on pure COx claystone [23]. It clearly shows that the swelling pressure increased with the 
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increase of dry density. There was a linear relationship between the logarithm of swelling pressure 

and dry density for the specimens with various bentonite fractions. Additionally, the slopes of the 

fitted lines were almost the same while the intercept of the fitted lines increased with the increasing 

bentonite fraction. This suggests that the increase of the bentonite fraction enhanced the swelling 

capacity of the mixtures. 

 

Fig. 3 Variation of the stabilized swelling pressure with specimen dry density 

3.2 Pore size distribution 

Figs. 4 and 5 presents the typical pore size distribution of the as-compacted specimens with 30% 

bentonite and those of specimens with different dry densities and bentonite fractions after hydration, 

respectively. The curves are illustrated in terms of cumulative and density functions in a semi-

logarithmic plot. The cumulative curves were well ordered with respect to the dry density: the curve 

for a lower dry density lied above the curve for a higher dry density. From the density curves, a typical 

bimodal porosity was observed on the specimens in the as-compacted state, with intra-aggregate pores 

(inter-particle pores) and inter-aggregate pores [36] (Fig. 4). By contrast, a trimodal porosity was 
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identified for specimens after swelling, especially for those with low dry densities and low bentonite 

fractions (Fig. 5). The three main pore populations were at a mean pore diameter of 10-22 μm for 

large pores, 0.17-0.52 μm for medium pores and around 0.025 μm for small pores. When the as-

compacted specimen was hydrated with water, water molecules would infiltrate into the interlayer 

space and intercalate stepwise between the clay sheets, layer after layer up to 4 layers. In this process, 

the aggregates swelled and progressively invaded the initial inter-aggregate space. Consequently, an 

increase in inter-particle pore volume and a decrease in the inter-aggregate pore volume were 

expected, and a new population (medium pores) appeared with the transformation of some initial 

inter-particle and inter-aggregate pores into medium-pore size. In case of confined conditions, the 

swelling of clay minerals would be related to the dry density of clay minerals in the specimens. For 

the specimens with a larger bentonite fraction and dry density, a higher dry density of clay minerals 

could be expected and the swelling of aggregate was not allowed to be fully developed; for the 

specimens with a lower bentonite fraction and dry density, a lower dry density of clay minerals would 

lead to more significant development of inter-particle space. This explained why a lower small-pore 

peak value and a larger medium-pore volume were observed for the specimens with a lower bentonite 

fraction and dry density after saturation (Fig. 5). 
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Fig. 4 Pore size distributions of specimens with 30% bentonite. 

3.3 Inter-particle distance and its relationship to swelling pressure 

As discussed earlier, the inter-particle interactions are directly related to the swelling behaviour. For 

the bentonite/claystone mixtures, some inter-particle and inter-aggregate pores would merge into 

medium pores upon hydration, which added a degree of complexity while separating the inter-particle 

and inter-aggregate pores. Romero et al. [18] and Yuan et al. [32] suggested that the boundary between 

inter-particle and inter-aggregate pores would be taken at the merged peak when they studied the 

microstructural behaviour of expansive clays hydrated under free-swell and confined conditions. 

Following their suggestions, the delimiting diameters between inter-particle and inter-aggregate pores 

are marked by dash dot lines in Fig. 5. The delimiting diameter ranged from 78.7 to 582.8 nm for the 

bentonite/claystone mixtures, and the larger the dry density and the bentonite fraction the lower the 

delimiting value. As the interlayer distance of clay minerals is approximately equal to 2.16 nm with 

4 layers of water molecules, the inter-particle distance should be larger than 2.16 nm [19]. Imperfectly, 

the inter-particle pores with a dimeter ranging from 2.16 to 5.5 nm could not be covered by the used 
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mercury intrusion porosimetry. In further analysis, the dV/dlogD in the range of 2.16-5.5 nm was 

estimated using linear extrapolation according to the density function curves. Then, multiplying the 

dV/dlogD by the pore dimeter yielded the inter-particle pore volume increment in the range of 2.16-

5.5 nm. In Fig. 5, the estimated pore size distributions in the range of 2.16-5.5 nm is presented by 

dash lines. According to the cumulative curves and the delimiting values, the total inter-particle pore 

volume in 1 g dry soils (Vinter-particle in cm3/g) for the specimens with different bentonite fractions and 

dry densities were determined and the obtained results are shown in Fig. 6a. On the whole, the inter-

particle pore volume decreased as the dry density and bentonite fraction increased because of the 

inhibition effect of increasing clay mineral density on the swelling of aggregates. In Fig. 6b, the 

swelling pressure is plotted versus the inter-particle pore volume. It appears that the swelling pressure 

increased with the increase of Vinter-particle. The relationship between the swelling pressure and Vinter-

particle was dependent on the bentonite fraction. At the same Vinter-particle, the higher the bentonite fraction, 

the larger the swelling pressure. Upon the saturation of bentonite/claystone mixtures, clay minerals 

would form a matrix, the property of which governed the macroscopic swelling behaviour. By 

contrast, the inert quartz, carbonate or feldspar grains (mainly from the COx claystone) were 

embedded into the clay matrix [13]. Generally, the small intra-grain pore volume in inert minerals 

could be ignored [22] and the abovementioned inter-particle pores were resident in the clay matrix. 

Therefore, to achieve a given swelling pressure, a smaller Vinter-particle was needed for the specimens 

with larger contents of inert minerals. 

 

 



 

13 

 

  

 

(a) (b) 

(c) (d) 
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Fig. 5 Pore size distributions of specimens with (a) 70%, (b) 50%, (c) 30%, (d) 20%, (e) 10% and 

(f) 0% bentonite. Note: the dash dot lines represent the delimiting diameters between inter-particle 

and inter-aggregate pores 

 

Fig. 6 Variation of the inter-particle pore volume with specimen dry density (a) and variation of the 

swelling pressure with inter-particle volume (b) 

To exclude the influence of inert minerals, the inter-particle distance of clay matrix was 

determined. For the inter-particle pores with a diameter of Di (μm) in 1 g dry soil, the total length Li 

(μm) could be determined by Eq (2) assuming that the pores were cylindrical [15]: 

(a) (b) 

(e) (f) 

javascript:;
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 Li=
10

12
Vi

Si

=
4×10

12
Vi

πDi
2

                                                             (2) 

where Si (μm2) is the cross-section area of inter-particle pores with a diameter of Di and Vi (cm3) is 

the volume of inter-particle pores with a diameter of Di in 1 g dry soils, which could be determined 

according to the cumulative curves (Fig. 5). Then, the surface area Ai (m
2) was calculated using Eq. 

(3): 

Ai=10
-12

πDiLi=
4Vi

Di

                                                           (3) 

Correspondingly, the total surface area of inter-particle pores Ainter-particle (m
2/g) could be computed: 

Ainter-particle= ∑
4Vi

Di

N

i=1

                                                          (4) 

where N is the number of pore intervals; i is the counter from 1 to N. According to the inter-particle 

pore volume and total surface area, the average inter-particle distance D̅ (nm) could be estimated by 

assuming that the clay particles are parallel [11]: 

D̅=
2×103Vinter-particle

Ainter-particle

                                                        (5) 

The average inter-particle distances for the specimens with various bentonite fractions and dry 

densities are summarized in Fig. 7a. During the hydration, the clay minerals in the bentonite/claystone 

mixtures, such as smectite, swelled and formed a matrix, while the inert minerals, such as quartz and 

feldspar, constituted the inclusion and were dispersed in the matrix [37]. Since the quartz and feldspar 

were generally nonporous, the inter-particle pores existed in the matrix and the obtained inter-particle 

distance represented the property of the matrix. It appears that the average inter-particle distance 

decreased with the increase of specimen dry density. For the specimens at the same dry density, the 

larger the bentonite fraction, the lower the average inter-particle distance. This phenomenon could be 
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related to the high sensitivity of surface area to the small pores. For the specimens with a larger 

bentonite fraction, the larger clay mineral density would restrain the swelling of clay particles upon 

hydration and a larger small-pore volume was expected, compared to those with a lower bentonite 

fraction. Thereby, a large surface area and a lower average distance were obtained according to Eqs. 

(3), (4) and (5). 

Fig. 7b depicts the relationship between the swelling pressure and the average inter-particle 

distance. For all specimens, the swelling pressure decreased with the increase of average inter-particle 

distance, whatever the bentonite fraction. A good correlation can be obtained between the swelling 

pressure Ps (MPa) and the average inter-particle distance in a semi-logarithmic plot: 

Ps=29.393exp
-0.250D̅

                                                            (6) 

This indicated that the swelling pressure of bentonite/claystone mixtures could be well described by 

the average inter-particle distance upon hydration. Note however that the bentonite/claystone 

mixtures reported in this study were hydrated with synthetic water, which had a negligible effect on 

the swelling behaviour [25]. The influence of chemistry pore solution on relationship between the 

swelling pressure and inter-particle distance needs to be investigated in-depth in further studies. 
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Fig. 7 Variation of the average inter-particle distance with specimen dry density (a) and variation of 

the swelling pressure with average inter-particle distance (b) 

4 Conclusions 

In this study, the swelling pressures and microstructure features of MX80 bentonite/COx claystone 

mixtures with different bentonite fractions and dry densities were experimentally determined, 

allowing the swelling pressure to be interpreted at a microscopic scale. According to the obtained 

results, the following conclusions were drawn. 

The swelling pressure increased linearly with the specimen dry density. As a given dry density, 

the swelling pressure increased as the bentonite fraction increased, confirming that the addition of 

bentonite enhanced the swelling pressure of the mixtures. 

The bentonite/claystone mixtures after hydration exhibited a trimodal porosity, with a large pore 

population with a mean pore diameter of 10-22 μm, a medium pore population with a mean diameter 

of 0.17-0.52 μm and a small pore population with a mean diameter of 0.025 μm. As the bentonite 

fraction and dry density increased, the inter-particle pore volume decreased because of the inhibition 

effect of increasing clay mineral density on the swelling of aggregates. 

(a) (b) 
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According to the pore size distribution, the total surface area of inter-particle pores was 

calculated assuming parallel and cylindrical pores, and the average the inter-particle distance was 

defined as the ratio of the total volume to the total surface area of inter-particle pores. For the 

bentonite/claystone mixtures with various bentonite fractions, a linear relationship between the 

logarithm of swelling pressure and inter-particle distance was identified, showing that the swelling 

behaviour was mainly dependent on the inter-particle distance after hydration. 

Notably, the inter-aggregate pores could also change during the hydration under constant-

volume conditions. The global swelling pressure was supported by the structure of aggregates and its 

stiffness could be related to the pores between aggregates. The relationships between the inter-

aggregate pores, aggregate structure stiffness and the global swelling pressure will be investigated in 

further studies. 
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