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Extremal inclusions in nonlinear conductivity

Michaël Peigney

Lab Navier, Univ Gustave Eiffel, ENPC, CNRS, F-77447 Marne la Vallée, France

Abstract

We consider two-phase composites whose microstructures are two-dimensional and

generated by the periodic replication of a convex polygonal cell containing a single

inclusion embedded in a matrix. Adopting the framework of nonlinear conductivity,

we address the problem of finding the inclusion shape that optimizes the effective en-

ergy. A conceptually simple but numerically effective approach is presented, in which

the inclusion shape is parameterized by the Fourier coefficients of a scalar periodic

function f that defines its polar representation. Truncating the Fourier expansion

to a finite order turns the shape optimization problem into a finite-dimensional con-

strained optimization problem that can be solved using a numerical algorithm of

choice. Explicit expressions of the function to optimize and its gradient are provided

and can easily be evaluated from a finite-element model. The proposed approach

is applied to perfectly conducting inclusions in a power law matrix. Results for the

three types of regular tessellations (square, hexagonal and triangular) are presented

and compared with the Vigdergauz (1994, 1999) microstructures giving the extremal

inclusions in the linear case. The proposed method gives very simple representations

of the extremal inclusions, which could useful for manufacturing the microstructures

considered. The obtained nonlinear effective conductivities are compared with known
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Hashin-Shtrikman type nonlinear bounds, which contributes to shed some light on

the optimality of those bounds.

Keywords: inclusion problem, periodic homogenization, shape optimization,

nonlinear conductivity, bounds

1. Introduction

Consider a two-phase composite conductor in which the constitutive materials

are isotropic with given energy density functions. The effective energy function of

the composite depends on the microstructure, i.e. on the geometrical arrangement

of the phases. For linear conductors with statistically isotropic microstructures,

Hashin and Shtrikman (1962) derived both upper and lower bounds on the effective

energy. Those bounds are optimal in the sense that there exist some microstructures

that saturate the bounds. Various examples of such extremal microstructures are

known. The earliest one is the coated sphere assemblage of Hashin and Shtrikman

(1962). An other possible construction is obtained by sequential lamination (Lurie

and Cherkaev, 1984; Murat and Tartar, 1985). Both those types of microstructures

are relatively difficult to manufacture, even in two dimensions. In that regard, sim-

pler microstructures have been proposed by Vigdergauz (1994, 1999) by considering

periodic arrangements of identical inclusions. Those microstructures are generated

by the periodic replication of a regular polygonal cell made of an inclusion embedded

in a matrix. Square tessellations were first considered in Vigdergauz (1994). Hexag-

onal and triangular tessellations were later considered in Vigdergauz (1999). For all

those three types of tessellations, Vigdergauz (1994, 1999) showed that is is possible

to choose the shape of the inclusion in such fashion that the effective energy of the
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periodic microstructure coincide with the Hashin-Shtrikman bounds1. Vigdergauz

(1994, 1999) used analytical techniques such as holomorphic functions and confor-

mal mapping. The obtained expressions for the inclusion shapes are not explicit and

relatively complex. For square tessellations, Grabovsky and Kohn (1995) obtained

an explicit expression for the shape of the inclusion in terms of elliptic functions.

Numerical approaches have also been studied to find optimal inclusion in linear

problems. Vigdergauz (2001) notably used a genetic algorithm for finding the inclu-

sion shapes that maximize the effective shear moduli in a perforated elastic plate.

The optimal shape was parameterized using a number M of control points on the

boundary of the inclusion (with M in the range 60–90 depending on the tessellation).

Later Vigdergauz (2010) used a genetic algorithm in combination with a truncated

Laurent series for the conformal mapping of the unit circle to the inclusion shape,

which reduced the number of parameters needed for describing the optimal inclusion

to a good approximation (truncated series of order 7 were typically used). Topology

optimization methods have also been used to generate Vidgergauz-like inclusions for

square tessellations in linear elasticity (see e.g. the books by Allaire (2012); Bendsøe

and Sigmund (2013) for a detailed introduction to topology optimization).

This paper aims at pushing the constructions of Vigdergauz (1994, 1999) to non-

linear conductivity. In more detail, we consider the shape optimization problem of

finding the inclusion shape that optimizes the effective energy of a periodic two-phase

1It should be noted that Vigdergauz (1994, 1999) dealt with elasticity problems rather than

conductivity problems, more specifically considering the problem of finding microstructures of ex-

tremal bulk modulus. Those microstructures can be shown to be also extremal for the conductivity

problem. This results from the cross-properties of Gibiansky and Torquato (1995), as detailed in

Appendix B
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composite when the constitutive materials are nonlinear and the volume fractions are

prescribed. As detailed in Sect. 2, we parameterize the shape of the inclusion using

a scalar 2π−periodic function f that gives the polar representation of the boundary

of the inclusion. Imposing the volume fractions sets an integral constraint on f . In

mathematical terms, the problem to be solved becomes a constrained optimization

problem in the functional space of 2π-periodic functions. Local optimality conditions

are derived in Sect. 3 using techniques from calculus of variations. In the nonlin-

ear case there is little hope to obtain exact solutions using analytical techniques so

we resort to approximation methods instead. In Sect. 4 is proposed a relatively

simple method for constructing approximate solutions in the general case. That

method is based on the idea of approximating 2π−periodic function f by consid-

ering finite partial sums of Fourier series. The optimization is thus restricted to a

finite-dimensional set of functions that satisfy the required constraints, in the spirit

of Galerkin methods. In practice that finite-dimensional optimization problem can

be solved by combining finite-element techniques and a descent algorithm. The gra-

dient of the function to be optimized is obtained from the results of Sect. 3 and can

easily be evaluated from finite-element simulations.

The proposed method has been applied to composites made of perfectly conduct-

ing inclusions in a power law matrix. Results from square, hexagonal and triangular

tessellations are presented in Sects. 5, 6 and 7, respectively. In the linear case,

the microstructures of Vigdergauz (1994, 1999) are recovered. The influence of the

nonlinearity on the obtained inclusions is discussed in detail. The proposed method

gives very simple representations of the extremal inclusions, with very few param-

eters (3 to 7, depending on the tessellation), which could useful for manufacturing

the microstructures considered. The effective conductivities of the optimized mi-

crostructures are compared with relevant bounds from the literature, most notably
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the Hashin-Shtrikman type bounds of Talbot and Willis (1985); Ponte Castañeda

et al. (1992); Peigney and Peigney (2017). This allows one to get some partial in-

formation on the optimality of those bounds. Concluding remarks follow in Sect.

8.

2. Formulation of the problem

We consider the class of two-dimensional microstructures that are generated by

regular tessellations of convex polygonal cells where all the cells are identical and

consist of a single inclusion of material 1 embedded in a material 2. It is known that

there exists only three regular tessellations, corresponding to square, triangular and

hexagonal cells as represented in Fig. 1 (Singer, 1998). Those three tessellations

differ by the order n of rotational symmetry of the basic cell Ω: n is equal to 3 for

triangular tessellations, 4 for square tessellations and 6 for hexagonal tessellations.

We require the inclusion to have the same n−fold rotational symmetry as the basic

cell, which is a sufficient (but not necessary) condition for the effective behavior to

have n−fold symmetry. In such case, rigorous bounds on the effective properties are

available as will be detailed later on.

We are interested in finding the inclusion shape that optimizes the effective energy

for prescribed volume fractions of materials 1 and 2. Let us formulate the problem

in more detail, focusing first on square and hexagonal tessellations. In those cases,

the tessellation is periodic and the periodic cell can be chosen as equal to Ω. The

effective energy weff is given by

weff (ē) = inf
u periodic

1

|Ω|

∫
Ω

2∑
i=1

χi(x)wi(ē+∇u)dω (1)

where wi is the energy density function of material i and χi is the characteristic

function of the domain Ωi occupied by material i (χi(x) = 1 if x ∈ Ωi, χi(x) = 0
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otherwise). Determining weff (ē) formally amounts to solve the local equations

div j = 0, j =
2∑
i=1

χi(x)w′i(ē+∇u), u periodic, j · n anti-periodic. (2)

Adopting the terminology of electrical conductivity, the field j in (2) is the current

density and and e = ē +∇u is the electric field. In (1), ē is the effective (or aver-

age) electric field. One could alternatively consider thermal conductivity, magnetic

permeability or diffusion as all those problems are governed by the same equations.

The elasticity problem of torsion in a cylinder also falls under the umbrella of the

framework considered.

Figure 1: The three classes of regular tessellations as considered in the paper (from left to right:

square, hexagonal, triangular). The basic cell contains a single inclusion that has the same order

of rotational symmetry as the cell itself.

If the energy density functions wi (i = 1, 2) are known and ē is prescribed, then

weff (ē) can be viewed as a function of the domain Ω1. We denote by J(Ω1) the

effective energy corresponding to a given inclusion shape Ω1, i.e.

J(Ω1) =
1

|Ω|

∫
Ω

2∑
i=1

χi(x)wi(ē+∇u)dω (3)

where u attains the minimum in (1). We consider the problem of optimizing J with

respect to domains Ω1 such that
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(i) Ω1 has n−fold rotational symmetry

(ii) The volume fraction |Ω1|/|Ω| is prescribed

(iii) Ω1 is a star-shaped set around the center O of the cell Ω.

Requirement (iii) is a sufficient (but not necessary) condition for the domain Ω1

to be of the inclusion type, i.e. to be a simply, connected set. The motivation

for introducing requirement (iii) is that it makes for a simple representation of the

geometry Ω1. Using coordinates centered at O, any domain fulfilling (iii) can indeed

be written as

Ω1(f) = {x = r cos θux + r sin θuy : 0 ≤ r ≤ f(θ)} (4)

where f : R 7→ R is a 2π−periodic function (Fig. 2). Note that requirement

(i) implies that f is actually 2π
n
−periodic. Denoting by c1 the volume fraction of

material 1, requirement (ii) translates as

c1|Ω| =
∫ 2π

0

1

2
f 2(θ)dθ. (5)

We focus on minimizing J in the rest of the paper (the issue of maximizing J could

be handled similarly). The problem to be solved becomes

min
f∈K(c1)

J(Ω1(f)) (6)

where

K(c1) =

{
f : f 2π

n
-periodic,

∫ 2π

0

1

2
f 2(θ)dθ = c1|Ω|

}
. (7)

As common in shape optimization problems, the difficulty in solving (6) lies in the

fact that the function J is not expressed explicitly in terms of f : For a given f ,

evaluating J(Ω1(f)) requires solving the nonlinear boundary value problem (2) which

is parametrized by f . In the next Section, we derive the expression of the gradient

of J with respect to f and study optimality conditions in problem (6).
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• ux

uy

θr =
f(
θ)
•

Ω1

ur

Ω2

Figure 2: Parameterization for the shape of the inclusion in a square periodic cell. The inclusion

is required to have 4−fold symmetry so that degrees of freedom correspond to one quarter (shown

in white) of the inclusion. The dashed line represents the boundary of the inclusion for a variation

∂Ω1.

3. Optimality conditions

Let Ω1 be a given arbitrary inclusion (not necessarily star-shaped or n-fold sym-

metric). Considering a variation δΩ1 of the shape of the inclusion, we calculate

the corresponding variation δJ of the functional J in (3). A variation δΩ1 can be

represented by a infinitesimal displacement δξ(x) of the boundary ∂Ω1. The corre-

sponding variation δJ is

δJ =
1

|Ω|

∫
∂Ω1

JwK(δξ · n)ds+
1

|Ω|

∫
Ω

2∑
i=1

χi(x)w′i(ē+∇u) · (∇δu)dω (8)

where JwK = w2(ē+∇u)−w1(ē+∇u), n is the normal to Ω1 and δu is the variation

of the solution to (1). Since u satisfies (2), the second integral on the right hand of
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(8) vanishes2. Thus we have

δJ =
1

|Ω|

∫
∂Ω1

JwK(δξ · n)ds. (9)

Expressing the volume |Ω1| of the inclusion as the integral |Ω1| =
∫

Ω
χ1(x)dx, we

obtain in a similar fashion that the variation δ|Ω1| of the volume of the inclusion is

given by

δ|Ω1| =
∫
∂Ω1

(δξ · n)ds. (10)

Let ∂Ωk
1 be the intersection of ∂Ω1 with the angular sector 2πk/n ≤ θ ≤ 2π(k+ 1)/n

where n is the order of rotational symmetry of the basic cell Ω. Eq. (10) can be

rewritten as

δ|Ω1| =
n−1∑
k=0

∫
∂Ωk

1

(δξ · n)ds. (11)

Eqs. (9), (10) and (11) hold for any domain Ω1 and variation δΩ1. We now

specialize those relations to the case where both Ω1 and δΩ1 have n−fold symmetry.

In that case, all the n integrals on the right hand side of (11) take the same value so

that

δ|Ω1| = n

∫
∂Ω0

1

(δξ · n)ds. (12)

Expression (9) can be rewritten similarly as

δJ =
1

|Ω|

n−1∑
k=0

∫
∂Ωk

1

JwK(δξ · n)ds (13)

In contrast with (12), there is no reason for the integrals on the right-hand side of (13)

to be equal because the solution u to (1) – and consequently the term JwK in (13) –

2Using (2), that integral can be indeed be rewritten as 1
|Ω|
∫

Ω
j · (∇δu)dω and we have

∫
Ω
j ·

(∇δu)dω = −
∫

Ω
δudiv jdω +

∫
∂Ω

(j · n)δuds. Now div j = 0 from (2) and
∫
∂Ω

(j · n)δuds = 0

because δu is periodic and j · n is anti-periodic.
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depend on the loading ē and are not expected to have n−fold rotational symmetry.

In order to reduce δJ to an integral over ∂Ω0
1, it is convenient to introduce the

operator ·sym that maps any given field v to the n−fold symmetric field vsym defined

by

vsym(x) =
1

n

n−1∑
k=0

v(Rk · x)

whereRk is the rotation with center O and angle 2πk/n. Using the change of variable

x = Rk · y and recalling that Ω1 and δξ have n−fold symmetry, we have∫
∂Ωk

1

JwK(x)(δξ(x) · n(x))ds =

∫
∂Ω0

1

JwK(Rk · y)(δξ(y) · n(y))ds

hence

δJ =
1

|Ω|

∫
∂Ω0

1

(
n−1∑
k=0

JwK(Rk · y)

)
(δξ(y) · n(y))ds

i.e.

δJ =
n

|Ω|

∫
∂Ω0

1

JwKsym(δξ · n)ds. (14)

Consider an inclusion shape Ω1 that minimizes J with respect to all n−fold

symmetric inclusions of given volume. From (12) and (14), the first order optimality

condition reads as ∫
∂Ω0

1

JwKsym(δξ · n)ds = 0 (15)

for any n−fold symmetric displacement δξ such that
∫
∂Ω0

1
δξ · n ds = 0. Condition

(15) can be seen to impose that

JwKsym constant on ∂Ω1. (16)

Let indeed x0 and x1 be two given distinct points on ∂Ω0
1 and consider the n−fold

symmetric displacement

ξ∗ = η(δx0n(x0)− δx1n(x1))sym
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where η > 0 is an infinitesimally small parameter, δxi
is the Dirac distribution defined

on ∂Ω0
1 and concentrated at xi, and n(xi) is the normal to ∂Ω1 at xi. Since

∫
∂Ω0

1
ξ∗ ·

nds = 0, Eq. (15) implies that n
η

∫
∂Ω0

1
JwKsymξ∗ ·n ds = JwKsym(x0)−JwKsym(x1) = 0,

hence JwKsym(x0) = JwKsym(x1). Property (16) follows.

Consider now problem (6) in which the optimization of J is restricted to domains

Ω1(f) that admit a representation of the form (4). Any point x on the boundary

∂Ω1(f) can written as x = f(θ)ur for some θ ∈ [0, 2π], where ur is the unit radial

vector (Fig. 2). In accordance with (4), variations δΩ1 are restricted to displacements

δξ of the form

δξ = δf(θ)ur (17)

where δf is a 2π/n−periodic function. Further noting that ds =
√

(f ′)2 + f 2dθ and

n = (fur − f ′uθ)/(
√

(f ′)2 + f 2), expressions (12) and (14) yield

δ|Ω1| = n

∫ 2π/n

0

δf(θ)f(θ)dθ (18)

δJ =
n

|Ω|

∫ 2π/n

0

JwKsymδf(θ)f(θ)dθ. (19)

The optimality condition now gives∫ 2π/n

0

JwKsymδf(θ)f(θ)dθ = 0

for any 2π/n−periodic function δf such that
∫ 2π/n

0
δf(θ)f(θ)dθ = 0. Reproducing

a similar argument as used earlier shows that the function f describing the optimal

inclusion Ω1(f) in (6) is such that (16) holds. Hence, if the inclusion Ω1(f) is a

local extremum of J with respect to all variation δΩ1 satisfying (17), then it is also a

local extremum with respect to any n− fold symmetric variation δΩ1 (not necessarily

star-shaped).
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4. Fourier expansion

We now describe an approximation method for solving problem (6). Any given

function f in K(c1) is 2π
n

-periodic and can thus be expanded as a Fourier series

f(θ) = a0 +
∞∑
k=1

{ak cos(knθ) + bk sin(knθ)}. (20)

The main idea of the proposed method is to approximate K(c1) by considering partial

sum of a given finite rank M in (20). In other words we approximate (6) by the finite

dimensional minimization problem

min
f ∈ K(c1,M)

J(Ω1(f)) (21)

where K(c1,M) ⊂ K(c1) is the set constituted by functions of the form

f(θ) = a0 +
M∑
k=1

ak cos(knθ) + bk sin(knθ) (22)

that satisfy the constraint (5). Parseval’s identity shows that the function f in (22)

verifies
1

2π

∫ 2π

0

f 2(θ)dθ = a2
0 +

1

2

(
M∑
k=1

a2
k + b2

k

)
.

Hence the constraint (5) is satisfied provided that

c1
|Ω|
π

= a2
0 +

1

2

(
M∑
k=1

a2
k + b2

k

)
. (23)

We denote by E(c1,M) the ellipsoid in R2M+1 that is defined by Eq. (23). Relation

(22) defines a one-to-one mapping between functions f in K(c1,M) and vectors

(a0, · · · , aM , b1, · · · , bM) in E(c1,M). Identifying a function f in K(c1,M) with the

vector X formed by its Fourier coefficients (a0, · · · , aM , b1, · · · , bM), problem (21)

can be rewritten as

min
X∈ E(c1,M)

J(Ω1(X)). (24)

12



The constrained optimization problem (24) is amenable to numerical techniques and

can notably be solved using a projected gradient algorithm. The implementation of

such an algorithm requires the expression of : (i) the gradient of J with respect to

X = (a0, · · · , aM , b1, · · · , bM), (ii) the projection operator P on the set E(c1,M).

The expression of the gradient of J with respect to (ak, bk) follows from (19). Using

the relation δf = δa0 +
∑

k≥1 δak cos(knθ) + δbk sin(knθ), we obtain

∂J

∂ak
=

n

|Ω|

∫ 2π/n

0

JwKsymf(θ) cosnkθdθ =
1

|Ω|

∫ 2π

0

JwKf(θ) cosnkθdθ,

∂J

∂bk
=

n

|Ω|

∫ 2π/n

0

JwKsymf(θ) sinnkθdθ =
1

|Ω|

∫ 2π

0

JwKf(θ) sinnkθdθ.

For any given X0 ∈ R2M+1, the projection P(X0) is defined by

P(X0) = arg min
X∈E(c1,M)

‖X −X0‖2 (25)

where ‖ · ‖ is the Euclidean norm. Even though E(c1,M) is not convex, it can be

shown that (25) admits a unique solution if X0
0 6= 0 (see Appendix A). Moreover,

whatever M , it is shown in Appendix A that solving (25) reduces to solving a quartic

equation on an interval [λ−(X0), λ+(X0)] where λ− and λ+ are explicit functions of

X0.

The shape optimization procedure for finding the inclusion of minimum energy

is summarized in Algorithm 1 which is essentially a projected gradient algorithm

with variable step size. The inputs are parameters X0 = (a0
0, · · · , a0

M , b
0
1, · · · , b0

M)

defining a starting shape of the inclusion and an initial step size α0. At each itera-

tion, solving the boundary value problem (2) is needed for evaluating the function

J in (3). This can be achieved using a finite element code. Note that extracting the

values of JwK from the numerical solution of (2) allows one to evaluate the integrals∫ 2π

0
JwKf(θ) cosnkθdθ and

∫ 2π

0
JwKf(θ) sinnkθdθ that define the descent direction in
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the algorithm. The algorithm stops when either a maximum number Niter of iter-

ations is reached or the step size reaches a prescribed minimum value αmin. The

output of Algorithm 1 are the parameters X = (a0, · · · , aM , b1, · · · , bM) defining the

shape of the optimized inclusion. We note that the condition f > 0 of a positive

radius is not enforced in the algorithm. In practice, Algorithm 1 was started from

an initial inclusion shape satisfying f > 0 (a circular shape was often used) and

the radius of the inclusion was found to remain strictly positive along the iterations.
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Input : X0 = (a0
0, · · · , a0

M , b
0
1, · · · , b0

M), α0

Output: X = (a0, · · · , aM , b1, · · · , bM)

α← α0;

X ←X0 ;

N ← 1 ;

repeat

u← solution of (2) for Ω1(X);

J ←
∫

Ω

∑2
i=1 χi(x)wi(ē+∇u);

U ← (
∫ 2π

0
JwKf(θ) cosnkθdθ)0≤k≤M ;

V ← (
∫ 2π

0
JwKf(θ) sinnkθdθ)1≤k≤M ;

Y ← (U ,V );

repeat

X̃ ← P(X − αY );

ũ← solution of (2) for Ω1(X̃);

J̃ ←
∫

Ω

∑2
i=1 χi(x)wi(ē+∇ũ);

α← α/2;

until J̃ < J ;

α← 2α ;

N ← N + 1;

X ← X̃ ;

until α < αmin or N > Niter;

Algorithm 1: Shape optimization algorithm.

5. Square tessellation

The proposed procedure has been applied to composites made of perfectly con-

ducting inclusions in a power law matrix, i.e. the energy density functions w1 and
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w2 are taken as

w1(e) =

 0 if e = 0

+∞ otherwise
(26)

w2(e) =
σ2

m+ 1
|e|m+1 (27)

where m is the nonlinearity index and σ2 is the conductivity parameter of the ma-

trix. The energy density function in (26) is the limit case of a power law function

σ1

m+1
|e|m+1 as the conductivity σ1 becomes infinite. The composites considered here

can thus be viewed as two-phase power law composites with an infinite contrast

σ1/σ2. This is the most interesting situation where the effective properties show

the largest variations with the microstructure. For the case considered, a standard

argument of homogeneity shows that effective energy weff in (1) is positively homo-

geneous of degree m+ 1 and can thus be written as

weff (ē) =
σeff (θ̄)

m+ 1
|ē|m+1 (28)

where σeff is a function of the angle θ̄ between ux and ē. The ratio σeff (θ̄)/σ2 only

depends on the geometries of Ω1 and Ω.

In this section we first present results for square tessellations, i.e. when the do-

main Ω is the unit square. Those results have been obtained using an implementation

of Algorithm 1 in the finite element software Freefem (Hecht, 2012). With the ex-

pressions (26) and (27) for the constitutive energy-density functions, the boundary

value problem (2) becomes

div j = 0 in Ω2, j = σ2|ē+∇u|m−1(ē+∇u) in Ω2,

u+ ē · x = c0 on ∂Ω1, u periodic, j · n anti-periodic
(29)

where c0 is a constant that can be set to 0 without loss of generality. Regarding

the finite element computations, only the domain Ω2 occupied by material 2 needs
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to be meshed. We used a simple implementation of Algorithm 1 in which a new

finite-element mesh is created from scratch at each update of the geometry. Some

computational time could be saved by using nodes relocation strategies. For m 6= 1,

the boundary value problem (29) is nonlinear and was solved iteratively using a

Newton method. As detailed in Sect. 4, solving (29) allows one to evaluate J

and its gradient J ′. The projection operator P was calculated following the results

presented in Appendix A. The quartic equation (A.7) characterizing the projection

was solved using a bisection method. Typical values for the algorithm parameters

were Niter = 100 and αmin = 10−10.

5.1. The linear case

Let us first consider the linear case m = 1. In that case, the effective conductive

behavior of square symmetric material is necessarily isotropic, i.e. σeff does not

depend on the loading direction θ̄ and therefore σeff /σ2 is entirely determined by

the inclusion shape Ω1. In Fig. 3 are shown the inclusion shapes obtained by applying

the presented procedure with M = 7 and θ̄ = 0. The average running time for solving

problem (24) was about 10 s (on a workstation equipped with an Intel i7-8700@3.2

GHz CPU). Meshes with about 10000 linear triangular elements were used in the

finite-element computations reported in the following. Using such a relatively high

mesh density ensures that the error between the obtained effective conductivities and

theoretical bounds is only limited by the parameters (M,Niter, αmin) of the shape

minimization algorithm and not by the mesh used for the finite element calculations.

From (16), optimal inclusions are characterized by the constancy of JwKsym on

∂Ω1. In Fig. 4 is shown the computed distribution of JwKsym on ∂Ω, as obtained

from the shape optimization algorithm in the case c1 = 0.5. The plots in Fig. 4

shows the value of JwKsym (normalized with respect to σ2‖ē‖2) as a function of the
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Figure 3: Optimal microstructures for m = 1 and c1 = i/10 with i = 1, · · · , 9. Square tessellation.

angular position θ on ∂Ω1. Because of periodicity, only the values for 0 ≤ θ ≤ π/2 are

represented. The computed distribution of JwKsym satisfies the constancy condition

(16) to a good approximation, varying between 3.88 and 4.04 with a mean value of

3.97 and a standard deviation of 0.05. As a comparison, the distribution of JwKsym

for a circular inclusion varies between 2.45 and 7.14 with a mean value of 4.51 and

a standard deviation of 1.66.

The inclusion shapes in Fig. 3 actually correspond to some of the microstruc-

tures obtained by Vigdergauz (1994) for the related problem of finding the inclusions

that optimizes the elastic energy in grained elastic composites. The microstructures

found by Vigdergauz (1994) depend on the applied strain ε̄. For a purely hydro-

static strain ε̄, the Vidgergauz microstructure has square symmetry and its effective

bulk modulus Keff is equal to the Hashin-Shtrikman lower bound K−HS (Hashin and

Shtrikman, 1963). As detailed in Appendix B, the cross-properties bounds of Gibian-

sky and Torquato (1995) imply that the effective conductivity of that microstructure

is necessarily equal to the Hashin-Shtrikman lower bound σ−HS on the effective con-

ductivity, given by σ−HS = σ2(1 + c1)/(1− c1). Those results are recovered from the
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Figure 4: Distribution of JwKsym on the boundary of the inclusion. Square tessellation.

present calculations: the effective conductivity σopt of the optimized microstructures

shown in Fig. 3 is indeed very close to the Hashin-Shtrikman lower bound σ−HS, with

a relative error σopt /σ
−
HS − 1 that does not exceed 0.25% for c1 ≤ 0.9 and 0.03% for

c1 ≤ 0.8 (Fig. 5). That relative error is notably due to the truncation of the Fourier

expansions to a finite order M in (22). To investigate that point in more detail, the

optimization problem (24) has been solved for several values of M . The relative error

σopt /σ
−
HS − 1 is shown in Fig. 5 as a function of the volume fraction c1. For high

value of c1, the relative error tends to increase steeply because the optimal inclusion

become more square-like and requires more Fourier coefficients to be approximated

accurately. For any given volume fraction c1, the relative error decreases as M in-

creases and is expected to converge to 0 as M → ∞. Note that taking M = 5 is

enough for ensuring that the relative error remains below 1% for volume fractions

c1 up to 0.9 (and below 0.04% for c1 ≤ 0.8). We keep the value M = 5 for all the
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examples presented next in this Section. For c1 ≤ 0.6 we can observe on Fig. 5 that

the error does not get better with higher M . This is a numerical artefact due the

values (Niter, αmin) used for the convergence criterion in Algorithm 1. For c1 ≤ 0.6,

the differences between the effective conductivities obtained from different values of

M are actually very small and require more stringent values of (Niter, αmin) to be

captured.
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Figure 5: Influence on M on the relative error σopt /σ
−
HS − 1 between the effective conductivity

σopt corresponding to the optimized inclusion and the Hashin-Shtrikman lower bound σ−HS in the

linear case.

It can be observed that the inclusions in Fig. 3 are symmetric with respect

to the x axis, which follows from the symmetry of the problem with respect to

that axis. This implies that the coefficients bk in (22) vanish. The microstructures

shown in Fig. 3 are thus determined by the coefficients (ak) through the polar

equation r =
∑M

0=1 ak cos 4kθ. This makes for a very simple representation of those
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c1 a1 a2 a3 a4 a5

0.1 0 0 0 0 0

0.2 -0.0005 0 0 0 0

0.3 -0.0032 0 0 0 0

0.4 -0.0096 0.0002 0 0 0

0.5 -0.0220 0.0016 0 0 0

0.6 -0.0400 0.0062 -0.0012 0.0002 0

0.7 -0.0539 0.0118 -0.0034 0.0011 -0.0004

0.8 -0.0649 0.0176 -0.0067 0.0030 -0.0014

0.9 -0.0733 0.0228 -0.0106 0.0060 -0.0038

Table 1: Coefficients defining approximated Vidgergauz inclusions in square tessellations.

microstructures, which could useful notably for manufacturing them. In Table 1 are

reported the coefficients (ai)1≤5 calculated for M = 5. The coefficient a0 is given by

a0 =

√√√√c1

π
− 1

2

5∑
i=1

a2
i .

Similar tables are given in (Vigdergauz, 2006) for the truncated Laurent expansion

of the conformal map from the unit circle to the optimized inclusion in the context

of plane elasticity.

5.2. Influence of the loading direction

For m 6= 1, the effective conductivity σeff in (28) is expected to depend on the

loading direction θ̄. In the case of square tessellations, σeff is a π
2
−periodic function

of θ̄ as illustrated in Fig. 6(blue curve) for a circular inclusion with m = 2 and

c1 = 0.3. As a consequence, the extremal inclusion shape is also expected to depend
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Figure 6: Effective resistivity in the loading direction θ for circular perfectly conducting inclusions

in a power-law matrix with nonlinearity index m = 2. The volume fraction c1 of the inclusions is

set to 0.3. Three tessellations are considered: square, hexagonal, triangular.

on the loading direction θ̄. This point is illustrated in Fig. 7 showing the optimized

inclusion obtained for θ̄ = 0 and θ̄ = π/4. Those loading directions were found to

give respectively the highest and the lowest conductivity among all loading directions.

The inclusions in Fig. 7 correspond to c1 = 0.4 and m = 2. We can observe that

the inclusion optimized for θ̄ = π/4 is less elongated in the π/4 direction that the

inclusion optimized for θ̄ = 0. Conversely, the inclusion optimized for θ̄ = 0 is less

elongated in the ux direction that the inclusion optimized for θ̄ = π/4. The average

running time for finding the optimized inclusion in the nonlinear case is about 50 s,

about 5 times more than in the linear case. The increase in the computation time is

mainly due to the Newton iterations needed for solving the boundary value problem

(2) in the nonlinear case.
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Figure 7: Optimized microstructures for the loading directions θ̄ = 0 and θ̄ = π/4, with c1 = 0.4,

m = 2.

5.3. Influence of the nonlinearity index

In Fig. 8 are shown the optimized inclusions calculated for m ∈ {2, 5} and

θ̄ = π/4 with several values of the inclusion volume fraction c1. Taking θ̄ = π/4 was

found to give the minimum effective conductivity. The Vidgergauz microstructures

are shown as dotted green lines in Fig. 8. It can be observed that increasing the

nonlinearity index m tends to flatten the part −π/4 ≤ θ ≤ π/4 of ∂Ω1, making

the inclusion Ω1 closer to a rounded square. This is especially noticeable for volume

fractions c1 larger than 0.5. Figs. 9 and 10 provide some insight on that phenomenon

by showing maps of energy density w2 as obtained from finite-element simulations

with a circular inclusion. Fig. 9(left) corresponds to c1 = 0.03 and m = 2. For such

a low value of c1, the energy density map essentially corresponds to the solution of
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Figure 8: Optimized microstructures for m = 1, 2, 5 with c1 = i/10, 3 ≤ i ≤ 7.

a single inclusion in an infinite matrix of material 2. In particular, the maximum of

w2 on ∂Ω1 is reached at θ = ±π/4 (i.e. along the loading direction). As c1 increases,

the interaction between neighboring inclusions comes at play as can be observed in

Fig 9(right) showing the energy density map for c1 = 0.4. The energy density is

primarily concentrated in the directions θ = kπ/2 (k ∈ Z), i.e. around the shortest

paths connecting neighboring inclusions. For c1 = 0.4, the maximum of w2 in reached

at the points θ = kπ/2 on ∂Ω1. The optimality condition (16) is clearly not satisfied

in Fig.9 (right). In the present case we have indeed

JwKsym(θ) =
1

2

(
w2(θ) + w2(θ +

π

2
)
)

where w2(θ) and JwKsym(θ) are respectively the value of w2 and JwKsym at the point

of polar angle θ on ∂Ω1. For c1 = 0.4, the value of JwKsym(0) is about 24σ2‖ē‖m+1
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and largely exceeds the value JwKsym(π/4) (which is about 10σ2‖ē‖m+1 ). This is an

indication that the circular shape is far from optimal in the case c1 = 0.4. Optimizing

the shape of the inclusion requires decreasing JwKsym(0) and increasing JwKsym(π/4).

This is achieved by increasing the curvature of ∂Ω1 at θ = π/4 and increasing the

radius f(π/4) of the inclusion in the θ = π/4 direction. Increasing the curvature

at θ = π/4 indeed tends to promote a local energy concentration, in a way similar

to stress concentration around sharp corners. This effect is further magnified by

increasing f(π/4) i.e. reducing the distance between neighboring inclusions in the

π/4 direction. Simultaneously decreasing the curvature ∂Ω1 at θ = 0 and increasing

f(0) has the opposite effect of reducing JwKsym(0). Those considerations qualitatively

explain the optimized shapes that are found for c1 ≥ 0.4 as shown in Fig. 8. In

contrast, the variations of JwKsym on the boundary remain small in the case c1 = 0.04

depicted in Fig. 9(left), meaning that the circular inclusion is much closer to the

optimal shape in that case. When the nonlinearity index m increases, the effects

that have been discussed are amplified because the interaction between neighboring

inclusions gets stronger. Fig 10(left) illustrates that point by showing the energy

density map for a circular inclusion with m = 5 and c = 0.04. Notice how the energy

is less concentrated near the inclusion compared to the case m = 2 shown in Fig.

9(left). For c1 = 0.4, the interaction between inclusions is stronger than in the case

m = 2, resulting in a larger ratio JwKsym(0)/JwKsym(π/4) (which is about 4 in Fig.

10(right) instead of 2.4 in Fig. 9(right) ).

As mentioned earlier, the inclusions in Fig. 8 achieve the minimum effective con-

ductivity within the class of microstructures considered. It is interesting to compare

their corresponding conductivity σopt with known Hashin-Shtrikman type bounds on

the effective properties of power law composite conductors. Several methods have

indeed been proposed to extend the bounds of Hashin and Shtrikman to nonlinear
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Figure 9: Map of the energy density w2/σ2‖ē‖m+1 for a circular inclusion in a periodic square cell

with m = 2. Case c1 = 0.04 (left), c1 = 0.4 (right).

composites. A first method, proposed by Talbot and Willis (1985), makes uses of

a homogeneous linear comparison medium and generalizes the variational approach

introduced by Hashin and Shtrikman. A second method, due to Ponte Castañeda

(1991), employs a heterogeneous linear comparison medium (i.e. a linear compari-

son composite) having the same microstructure as the original nonlinear composite.

Using that last method, any bound on the effective conductivity of the linear com-

parison composite can be used to generate a corresponding bound for the nonlinear

composite. In particular, when the linear Hashin-Shtrikman bound is used, nonlinear

Hashin-Shtrikman type bounds are obtained (Ponte Castañeda et al., 1992). For the

problem at hand, those two methods give the same Hashin-Shtrikman type lower

bound σLC on the effective conductivity, given by

σLC = σ2
(1 + c1)

m+1
2

(1− c1)m
. (30)

26



Figure 10: Map of the energy density w2/σ2‖ē‖m+1 for a circular inclusion in a periodic square cell

with m = 5. Case c1 = 0.04 (left), c1 = 0.4 (right).

The subscript LC in σLC stands for ’Linear Comparison’. The bound σLC is of the

Hashin-Shtrikman type, i.e. it applies to all isotropic composites and is a function

of the volume fractions (without any quantitative reference to higher order statistics

on the microstructure). For our purpose, it is important to stress that the bound

σLC actually applies to the wider class of composites with square symmetry. As

explained by Ponte Castañeda (1992), the bound (30) applies provided that the

effective behavior of the linear comparison composite is isotropic, which (in two-

dimensional conductivity) is satisfied if the microstructure has square-symmetry (or

3-fold symmetry). For the same reason, the bound σLC also applies to hexagonal

and triangular tessellations that will be considered lated on.

The linear comparison bound is shown in Fig. 11 along with the effective con-

ductivity achieved by the optimized inclusion. The results are shown in terms of

the resistivities κopt = σ
−1/m
opt and κLC = σ

−1/m
LC . We first observe that κopt ≤ κLC
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i.e. that σLC ≤ σopt as expected. In contrast with the linear case, there is a gap

between κopt and κLC . For any given c1, the relative difference (κLC − κopt)/κLC

seems to increase with m. For m = 2, (κLC − κopt)/κLC reaches a maximum of 2.7%

(value attained for c1 ' 0.3). For m = 5, (κLC − κopt)/κLC reaches a maximum of

4.5% (value attained for c1 ' 0.2). In terms of conductivity, the relative difference

between the effective conductivity of the optimized inclusion and the lower bound

σLC reaches value up to 5.6% for m = 2 and up to 25% for m = 5. However, it is

interesting to observe that κopt and κLC almost coincide for large values of c1, i.e.

for small values of c2. In more detail, note from (30) that κLC/κ2 = 2−(m+1)/2mc2 at

the first order in c2, where κ2 = σ
−1/m
2 . The numerical results suggest that

κopt/κ2 − 2−(m+1)/2mc2

c2

−−−→
c2→0

0

i.e. that κopt/κ2 = 2−(m+1)/2mc2 at the first order in c2, meaning that κopt and κLC

coincide at the first order in c2. Consequently, the obtained inclusion shapes give mi-

crostructures that (at the first order c2) are extremal among all microstructures with

square symmetry. In other words, the effective resistivity of any given microstructure

with square symmetry (not necessarily periodic) can only exceed κopt by a term of

the second order in c2. Those results also indicate that the linear comparison upper

bound κLC in (30) is optimal at the first order in c2.

6. Hexagonal tessellation

We now consider hexagonal tessellations. In accordance with the 6-fold rotational

symmetry of the hexagonal cell, the function f(θ) is written as

f(θ) = a0 +
M∑
k=1

ak cos 6kθ + bk sin 6kθ
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Figure 11: Effective resistivity as a function of the volume fraction c1, for m = 2 (left) and m = 5

(right). Square tessellation.

For given values of c1, m and θ̄, the values of the coefficients (ak, bk) that minimize

the effective energy are obtained using Algorithm 1.

6.1. Linear case

In Fig. 12 are shown the inclusion shapes obtained numerically for m = 1, θ̄ = 0,

M = 3 and for several values of c1 between 0.1 and 0.9. The effective behavior

of a linear material with 6-fold symmetry and isotropic constituents is necessarily

isotropic, with regard to both conductivity and elasticity. This is in contrast with

square tessellations for which the effective conductivity tensor is isotropic but the

effective elasticity tensor is only square-symmetric. The inclusion shapes shown in

Fig. 12 correspond to the microstructures derived by Vigdergauz (1999) for finding

elastic isotropic materials of extreme bulk modulus when the design domain is a

hexagonal periodic cell with a single inclusion. The effective bulk modulus of the

microstructures of Vigdergauz (1999) was shown to be equal to the Hashin-Shtrikman

bound K−HS. The cross-properties bounds of Gibiansky and Torquato (1995) imply

that the effective conductivity σeff of those microstructures is equal to the Hashin-
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Shtrikman bound σ−HS. This is indeed what comes out of the numerical simulations.

The relative difference (σopt − σ−HS)/σ−HS between the Hashin-Shtrikman bound and

the calculated effective conductivity σopt of the microstructures in Fig. 12 indeed

remains smaller to 0.25% for inclusion volume fractions c1 up to 0.9 (and smaller

than 0.02% for values c1 up to 0.8). In the present case, we note that taking M = 3

is enough for getting a very good approximation of the optimal inclusion shapes.
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Figure 12: Optimal microstructures for m = 1 and c1 = i/10 with i = 1, · · · , 9. Hexagonal

tessellation.

In a way similar to the square tessellation considered in Sect. 5, the inclusions are

symmetric with respect to the x axis, i.e. the coefficients bk vanish. The inclusions

shown in Fig. 12 are thus entirely determined by the 4 coefficients (a0, · · · , a3)

through the polar representation

r = a0 +
3∑
i=1

cos 6πiθ
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c1 a1 a2 a3

0.1 0.0006 0 0

0.2 0.0008 0 0

0.3 0.0009 0 0

0.4 0.0026 0 0

0.5 0.0081 0.0002 0

0.6 0.0167 0.0012 0.0001

0.7 0.0280 0.0035 0.0006

0.8 0.0389 0.0073 0.0020

0.9 0.0489 0.0123 0.0047

Table 2: Coefficients defining approximated Vidgergauz inclusions in hexagonal tessellations

where

a0 =

√√√√3
√

3c1

2π
− 1

2

3∑
i=1

a2
i .

The values of those coefficients (ai)1≤3 are reported in Table 2.

6.2. Influence of the nonlinearity index

In the nonlinear case m 6= 1, the effective conductivity σeff of a hexagonal tes-

sellation is no longer isotropic as illustrated in Fig. 6(red curve) showing σeff as a

function of the loading direction θ̄ for a circular inclusion with m = 2 and c1 = 0.3.

However, observe that the variations of σeff with θ̄ are much smaller than those cor-

responding to a square tessellation (blue curve in Fig. 6). This can be attributed to

the stronger 6−fold symmetry of the hexagonal tessellation compared to the 4-fold

symmetry of the square tessellation. Also observe in Fig. 6 that the minimum value

of σeff is attained for θ̄ = 0. In Fig. 13 are plotted the inclusion shapes obtained by
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Figure 13: Optimized microstructures for m = 1, 2, 5 with c1 = i/10, 3 ≤ i ≤ 7. Hexagonal

tessellation.

solving (24) for m ∈ {2, 5} and θ̄ = 0 with for several values of c1. For a given c1,

the part 0 ≤ θ ≤ π/3 of boundary of the optimized inclusion tends to flatten as m

increases. Simultaneously, the radius f(0) of the inclusion increases while the radius

f(π/6) decreases. This behavior can be interpreted using similar arguments as those

presented in Sect. 5.3. In that regard, the energy density map for a circular inclusion

with c1 = 0.4 and m = 2 is shown in Fig. 14(left). The energy is concentrated in

domains connecting neighboring inclusions that are best aligned with the loading di-

rection. The values of energy density shown in Fig. 14(left) can be used to calculated

the symmetrized energy density w2,sym and check whether the optimality condition

(16) is satisfied by the circular inclusion. The symmetrized energy w2,sym, shown in

Fig. 14(right), is found to be not constant on the boundary of the circular inclusion.
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The ratio w2,sym(θ = π/6)/w2,sym(θ = 0) is about 1.6, which from (16) shows that

the circular inclusion is not optimal. In Fig. 15(left) is shown the energy density

map for the optimized inclusion obtained for c1 = 0.4 and m = 2. Compared to

Fig. 14(left), the value of w2 at θ = 0 on the boundary of the inclusion is increased,

while that value of w2 at θ = π/6 is decreased. The corresponding symmetrized

energy density w2,sym is shown in Fig. 15(right). In accordance with the optimality

condition (16), the numerical value of w2,sym is close to a constant on ∂Ω1.

Figure 14: Maps of the energy density w2/σ2‖ē‖m+1 (left) and symmetrized energy density

w2,sym/σ2‖ē‖m+1 (right) for a circular inclusion in a periodic hexagonal cell with m = 2, c1 = 0.4,

¯θ = 0.

The effective resistivity κopt = σ
−1/m
opt of the optimized inclusion is shown as

a function of c1 in Fig. 16 and Fig. 17, corresponding to m = 2 and m = 5

respectively. Let us compare the values κopt obtained with relevant bounds. The

linear comparison bound κLC = σ
−1/m
LC in (30) still applies for material with 6−fold

symmetry and is represented as a dotted line in Figs 16 and 17. For any given c1
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Figure 15: Maps of the energy density w2/σ2‖ē‖m+1 (left) and symmetrized energy

densityw2,sym/σ2‖ē‖m+1 (right) for the optimized inclusion in a periodic hexagonal cell with m = 2,

c1 = 0.4, ¯θ = 0.

and m, the gap κLC − κopt is found to be larger than what is obtained for square

tessellations. For m = 2, the gap κLC − κopt is maximum for c1 ' 3 and reaches

0.03κ2, which corresponds to a relative difference (κLC−κopt)/κLC of approximatively

5%. For m = 5, the gap κLC − κopt is maximum for c1 ' 3 and reaches 0.056κ2,

which corresponds to a relative difference (κLC − κopt)/κLC of approximatively 9%.

A tighter Hashin-Shtrikman type bound than the linear comparison bound κLC has

been proposed by Peigney and Peigney (2017) using the translation method (Milton,

2002; Kohn, 1991; Peigney, 2016). That bound –henceforth denoted by κT – applies

to conductors with 3−fold symmetry, of which hexagonal tessellations are a special

case. The bound κT is represented as a red solid line in Figs 16 and 17 . For m = 2,

the gap κT − κopt reaches a maximum of approximatively 0.01κ2 (value obtained for

c1 = 0.4), which corresponds to a relative difference (κT−κopt)/κT of approximatively

2%. For m = 5, the gap κT − κopt reaches a maximum of approximatively 0.015κ2

(value obtained for c1 = 0.4), which corresponds to a relative difference (κT−κopt)/κT
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of approximatively 3%. Figs. 16(right) and 17 (right) show a close up of the results

near c1 = 1. The plots in Figs. 16(right) and 17 (right) suggest that κT and κopt do

not coincide at the first order in c2. Contrary to the bound κLC , we note that the

bound κT cannot be calculated analytically and can only be evaluated numerically.

It is possible, however, to derive the first order expansion of κT in closed form. The

result is

κT = κ2
c2

3
(1 + 2−

1
m ) + o(c2).

A numerical check shows that κopt/c2 does not converge towards κ2
1
3
(1 + 2−

1
m ) as c2

tends to 0, thus confirming that κT and κopt do not coincide at the first order in c2.
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Figure 16: Effective resistivity as a function of the volume fraction c1 for m = 2. Hexagonal

tessellation.

7. Triangular tessellations

For triangular tessellations, the periodic cell Ω is formed by 2 neighboring tri-

angles that can be chosen as in Fig. 18. Let O+ (resp. O−) be the center of the

35



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c1

κ
/κ

2
κopt
κLC
κT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c1

κ
/κ

2

κopt
κLC
κT

Figure 17: Effective resistivity as a function of the volume fraction c1 for m = 5. Hexagonal

tessellation.

right (resp. left) triangle in Ω. In polar coordinates centered at O+, the boundary

of the right inclusion Ω+
1 is defined by the equation r = f(θ). In polar coordinates

centered at O−, the boundary of the left inclusion Ω−1 is defined by the equation

r = f(θ + π). In accordance with the 3−fold rotational symmetry of the triangular

cell, the function f describing the shape of the inclusion is taken as

f(θ) = a0 +
M∑
k=1

ak cos 3kθ + bk sin 3kθ. (31)

A slight modification is needed in Algorithm 1 regarding the expressions of the partial

derivatives ∂J
∂ak

and ∂J
∂bk

. The latter have indeed to be updated to account for the

fact that the domain Ω now contains 2 (symmetry related) inclusions. Adapting the

calculations presented in Sect. 3 shows that

∂J

∂ak
=

1

|Ω|

∫ 2π

0

(Jw+K + Jw−K)f(θ) cosnkθdθ

∂J

∂bk
=

1

|Ω|

∫ 2π

0

(Jw+K + Jw−K)f(θ) sinnkθdθ.
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where Jw+K is the value of w2 − w1 at the point of polar angle θ on ∂Ω+
1 . Similarly,

Jw−K is the value of w2 − w1 at the point of polar angle θ on ∂Ω−1 .

O+
•

O−
• Ω+

1

Ω−1

Figure 18: Periodic cell for the triangular tessellation. The two inclusions are symmetry related

and have 3-fold symmetry. Degrees of freedom thus correspond to one third of a inclusion (shown

in white).

7.1. Linear case

As for the square and the hexagonal tessellations, considering the linear case

m = 1 allows one to recover known results on the optimal inclusions and to calibrate

the number M of needed coefficients. In Fig. 19 are shown the inclusion shapes

obtained by running Algorithm 1 with c1 = i/10 (i = 1, · · · , 9). These inclusions

shapes correspond to the microstructures obtained by Vigdergauz (1999) for trian-

gular tessellations. The effective conductivity of those microstructures is equal to

the Hashin-Shtrikman lower bound σ−HS. The inclusion shapes in Fig. 19 have been

obtained using the value M = 7, which was found to be the minimum value ensur-

ing that the relative error between the optimized effective conductivity σopt and the

bound σ−HS remains below 1% for c1 up to 0.9 (and below 0.1% for c1 up to 0.8). The

value M = 7 is larger than the value M = 3 used with the hexagonal tessellation
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for reaching the same accuracy in the linear case. This can be attributed to the

fact that the optimal inclusions in the triangular tessellation are expected to have

sharper corners than the optimal inclusions in the hexagonal tessellation (especially

at high value of c1). A similar argument explains why the value M = 5 found for

square tessellations falls in between the values of M used for triangular tessellations

and hexagonal tessellations. In Table 3 are reported the coefficients (ai)1≤7 giving

approximations of Vidgergauz inclusions in triangular tessellations, for several values

of the inclusion volume fraction c1. Those approximations are defined by the polar

equation

r = a0 +
7∑
i=1

cos 3πiθ

where

a0 =

√√√√√3c1

4π
− 1

2

7∑
i=1

a2
i .

7.2. Nonlinear case

In Fig. 6 (green line) is shown the effective conductivity σeff as a function of the

loading direction θ̄ for circular inclusions with c1 = 0.3 and m = 2 in a triangular

tessellation. Note that σeff is a π/3-periodic function of θ̄. The relative variation of

σeff with θ̄ are of the same order as what is obtained for hexagonal tessellation (i.e.

about 3%). Also observe in Fig. 6 (green line) that the minimum value of σeff is

attained for θ̄ = 0 (modulo π/3) as for the hexagonal tessellation.

In Fig. 20 are shown the optimized inclusions obtained for θ̄ = 0, m ∈ {2, 5}

and c1 = i/10 (i = 3, · · · , 7). The value M = 7 has been used in the numerical

calculations. Triangular tessellation is the case where the largest difference between

the optimized linear inclusion Ωlin
1 and the optimized nonlinear inclusion Ωnlin

1 is
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c1 a1 a2 a3 a4 a5 a6 a7

0.1 -0.0002 0 0 0 0 0 0

0.2 -0.0073 0.0003 0 0 0 0 0

0.3 -0.0190 0.0016 0 0 0 0 0

0.4 -0.0330 0.0046 -0.0007 0 0 0 0

0.5 -0.0504 0.0107 -0.0025 0.0005 0 0 0

0.6 -0.0640 0.0171 -0.0054 0.0017 -0.0005 0 0

0.7 -0.0768 0.0247 -0.0100 0.0044 -0.0020 0.0008 -0.0003

0.8 -0.0868 0.0311 -0.0146 0.0078 -0.0045 0.0026 -0.0014

0.9 -0.0937 0.0349 -0.0175 0.0102 -0.0065 0.0044 -0.0029

Table 3: Coefficients for approximated Vidgergauz inclusions in triangular tessellations.

observed. That difference can be measured by the ratio |∆Ω1|/|Ω1| where ∆Ω1 is

the symmetric difference between the sets Ωlin
1 and Ωnlin

1 , i.e. ∆Ω1 = (Ωlin
1 ∪Ωnlin

1 )−

(Ωlin
1 ∩Ωnlin

1 ). For triangular tessellation, |∆Ω1|/|Ω1| reaches 14% for c1 = 0.4, m = 5.

In contrast, for the same values of c1 and m, |∆Ω1|/|Ω1| is approximatively equal to

6% for square tessellations and equal to 4% for hexagonal tessellations.

The effective resistivity κopt is reported in Fig. 21. For any given volume fraction

c1, the numerical results show that the resistivity κopt of the optimized triangular tes-

sellation is always larger than the resistivity of the optimized hexagonal tessellation.

Consequently, the gap between κopt and the upper bound κT is reduced and actu-

ally becomes relatively small, especially in the case m = 2 where κT − κopt remains

smaller than 0.0086κ2 (value attained for c1 ' 0.2) which corresponds to a relative

difference of 1.27%. For m = 5, the gap between κopt and κT is more noticeable,

see Fig. 21. In that case, the maximum gap is 0.268κ2 (value attained for c1 ' 0.1)
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Figure 19: Optimal microstructures for m = 1 and c1 = i/10 with i = 1, · · · , 9. The boundary of

the triangular cell is shown as a dashed line.

which corresponds to a relative difference of 3.2%. It can be observed in Fig. 21 that

κopt and κT seem to coincide at the first order in c2. The numerical results suggest

indeed that
κopt/κ2 − c2

3
(1 + 2−

1
m )

c2

−−−→
c2→0

0.

This indicates that the bound κT is optimal at the first order in c2. Regarding the

optimality of the bounds, the triangular tessellation here plays the same role as the

square tessellation for the linear comparison bound.

8. Concluding remarks

In linear conductivity, the three types of Vidgergauz microstructures have the

same effective conductivity. In contrast, their extension to nonlinear conductivity
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Figure 20: Optimized microstructures for m = 1, 2, 5 with c1 = i/10, 3 ≤ i ≤ 7. Triangular

tessellation.
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Figure 21: Effective resistivity as a function of the volume fraction c1 for m = 2 (left) and m = 5

(right). Triangular tessellation.
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all have different effective properties. In particular, the effective behavior of both

hexagonal and triangular tessellations show qualitatively similar variations with re-

spect to the loading direction, but the triangular tessellation gives a lower effective

conductivity (or, equivalently, an upper effective resistivity). Compared to the linear

case, an other distinctive feature of nonlinear extremal inclusions is the fact that

they depend on much more parameters. For isotropic power law materials with the

same nonlinearity index m1, the extremal inclusion indeed depends on the conduc-

tivity ratio, the loading direction, the nonlinearity index and the inclusion volume

fraction, i.e. 4 parameters instead of only 1 in linear conductivity (the Vidgergauz

microstructures are indeed independent of the conductivity ratio). If the constitu-

tive materials are allowed to have different nonlinearity indices m1 and m2, then 2

additional parameters need to introduced (namely m2 and |ē|). Hence there is much

larger space of parameters to explore compared to the linear case. The gap that

exists between the obtained effective properties and known Hashin-Shtrikman type

bounds is an other difference with the linear case. Regarding bounds, the results

obtained in this paper suggest that the bounds of Talbot and Willis (1985); Ponte

Castañeda et al. (1992); Peigney and Peigney (2017) on the effective resistivity of

a power law composite with perfectly conducting inclusions are optimal at the first

order in the matrix volume fraction c2.

Aside from power law behavior, the proposed method could be used with other

types of nonlinear behavior. More generally, the proposed method could be ex-

tended to other two-dimensional problems. Nonlinear elasticity is especially inter-

esting as various bounds of the Hashin-Shtrikman type have been proposed (Talbot

and Willis, 1985; Ponte Castañeda, 1991; Talbot and Willis, 2004; Peigney, 2005;

Ponte Castañeda, 2012). When dealing with elasticity instead of conductivity, the

displacement u would play the role of the potential u. The only major change in
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the proposed method lies in problem (1) which would involve the equilibrium equa-

tion. The formal expression (19) of the gradient J ′ as well the layout of Algorithm 1

would remain unchanged. Since the displacement u has two scalar components, com-

putation costs for nonlinear elasticity are expected to be higher than for nonlinear

conductivity.

Finally, we stress that the inclusions considered in this paper are extremal only

within the class of regular tessellations with a single (simply connected) inclusion

in the basic cell. In lack of additional arguments, there is no guarantee that the

obtained microstructures are extremal within the whole class of microstructures with

prescribed volume fractions and a given order of rotational symmetry. Hence it would

be interesting to study a richer class of microstructures and investigate whether

effective properties that are closer to the bounds can be obtained. In the linear case,

Liu et al. (2008) have shown that there exist other periodic matrix/inclusion-type

microstructures than the Vidgergauz microstructures. Those microstructures take

the form of multi-coated inclusions, or multiple disconnected inclusions. The method

presented could be useful for studying nonlinear extensions of those microstructures.

The proposed method could also be used to study rectangular cells and/or non

symmetric inclusions. Beyond matrix / inclusions-type microstructures, it would also

been interested to study more complex microstructures using topology optimization

methods (Allaire, 2012; Bendsøe and Sigmund, 2013).

Appendix A. Calculation of the projection operator P

For a givenX0 ∈ R2M+1, we address the calculation of the projectionX = P(X0)

on the ellipsoid E(c1,M) as defined in Eqs (23) and (25). We first normalize the
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problem by setting

v = (v0, · · · , v2M+1) =

√
π

2c1|Ω|
X, u = (u0, · · · , u2M+1) =

√
π

2c1|Ω|
X0

so that

P(X0) = P̃(u)

where

P̃(u) = arg min
v∈ ˜E

‖v − u‖2. (A.1)

In (A.1), Ẽ is the ellipsoid with equation

1 = 2v2
0 +

2M+1∑
i=1

v2
i . (A.2)

Let v be a solution to (A.1). The local stationarity condition reads as

u0 = (1 + 2λ)v0, ui = (1 + λ)vi (i ≥ 1) (A.3)

for some scalar λ. The next step is to determine λ. In the following we focus on the

most general situation where u0 6= 0. Eq. (A.3) implies

v0 =
u0

1 + 2λ
(A.4)

with λ 6= 1/2. It can easily be proved that v0 and u0 necessarily have the same sign,

which yields λ > −1/2. This notably implies that the second relation in (A.3) can

be rewritten as

vi =
ui

1 + λ
(A.5)

where the denominator is guaranteed not to vanish. Using (A.4) and (A.5), the

condition that v ∈ Ẽ translates as

g(λ) = 0 (A.6)

44



where

g(λ) = 2
u2

0

(1 + 2λ)2
+

∑
i≥1 u

2
i

(1 + λ)2
− 1.

Observe that (A.6) is a quartic equation in λ = 0. Direct calculations shows that

g′(λ) < 0 for λ > −1

2
, g(λ) −−−−→

λ→− 1
2

+∞, g(λ) −−−−→
λ→+∞

−1

It follows that the solution to (A.6) on [−1
2
,+∞) is unique. A practical way to

solve (A.6) is to use a bisection method. This requires to know an interval [λ−, λ+]

that contains the solution, i.e. such that g(λ+) ≤ 0 ≤ g(λ−). Observing that

g(0) = 2u2
0 +

∑
i≥1 u

2
i − 1, we can take

λ− = −1

2
, λ+ = 0 if 2u2

0 +
∑
i≥1

u2
i ≤ 1.

In the case 2u2
0 +

∑
i≥1 u

2
i > 1, we have g(0) > 0 hence we can take λ− = 0. An

upper bound λ+ can be obtained by observing that

g(λ) ≤
2u2

0 +
∑

i≥1 u
2
i

λ2
− 1

for any λ > 0. It follows that g(
√

2u2
0 +

∑
i≥1 u

2
i ) ≤ 0 hence we can take λ+ =√

2u2
0 +

∑
i≥1 u

2
i . A possible choice for (λ−, λ+) is thus

λ− = 0, λ+ =

√
2u2

0 +
∑
i≥1

u2
i if 2u2

0 +
∑
i≥1

u2
i > .1

In summary we have

P̃(u) = (
u0

1 + 2λ
,
u1

1 + λ
, · · · , u2M−1

1 + λ
)

where λ is the unique solution to the equation

2
u2

0

(1 + 2λ)2
+

∑
i≥1 u

2
i

(1 + λ)2
= 1 (A.7)
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on the interval [λ−, λ+] defined by

λ− = −1
2
, λ+ = 0 if 2u2

0 +
∑
i≥1

u2
i ≤ 1,

λ− = 0, λ+ =
√

2u2
0 +

∑
i≥1 u

2
i if 2u2

0 +
∑
i≥1

u2
i > 1.

Remark: In the special situation where u0 = 0, it can be proved that P̃(u) =

u/‖u‖ if ‖u‖ > 1/2. If ‖u‖ ≤ 1/2, Eq. (A.1) has 2 solutions given by v0 =

±
√

1
2
− 2‖u‖2 and vi = 2ui for i ≥ 1.

Appendix B. Effective conductivity of Vidgergauz microstructures

Consider a two-phase linear composite in two dimensions. The two constitutive

materials (labelled as 1 and 2) are assumed to be isotropic. In such case, the con-

stitutive laws of material i are characterized by three scalar parameters, namely the

conductivity σi, the bulk modulus Ki and the shear modulus µi. We suppose that

σ1 ≥ σ2 and µ1 ≥ µ2. We further assume that the effective behavior of the composite

is square symmetric. In such case, the effective constitutive laws of the composite

are characterized by four parameters, namely the effective conductivity σeff , the

effective bulk modulus Keff and two effective shear moduli µeff and µ′eff. Let

σ−HS = c1σ1 + c2σ2 −
c1c2(σ1 − σ2)2

c2σ1 + c1σ2 + σ2

, σ+
HS = c1σ1 + c2σ2 −

c1c2(σ1 − σ2)2

c2σ1 + c1σ2 + σ1

be respectively the lower and the upper Hashin-Shtrikman bound on the effective

conductivity (Hashin and Shtrikman, 1962). Similarly, let

K−HS = c1K1 + c2K2 −
c1c2(K1 −K2)2

c2K1 + c1K2 + µ2

, K+
HS = c1K1 + c2K2 −

c1c2(K1 −K2)2

c2K1 + c1K2 + µ1

be respectively the lower and the upper Hashin-Shtrikman bound on the effective

bulk modulus (Hashin and Shtrikman, 1963). The Voigt lower bound on the effective
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bulk modulus is denoted by Kh, i.e.

Kh = (
c1

K1

+
c2

K2

)−1

Gibiansky and Torquato (1995) have shown that the pair (σeff , Keff ) necessarily

lies in a certain part Γ of the conductivity–bulk modulus plane. That set Γ is bounded

by the outermost pair of the 4 hyperbolas

Hyp[(σ−HS, K
−
HS), (σ+

HS, K
+
HS), (σ1, Kh)], Hyp[(σ−HS, K

−
HS), (σ+

HS, K
+
HS), (σ2, Kh)]

Hyp[(σ−HS, K
−
HS), (σ+

HS, K
+
HS), (σ1, K1)], Hyp[(σ−HS, K

−
HS), (σ+

HS, K
+
HS), (σ1, K2)]

where Hyp[(x1, y1), (x2, y2), (x3, y3)] denotes the hyperbola passing through the points

(x1, y1), (x2, y2) and (x3, y3). The set Γ is shown in Fig. B.22 in the case σ1/σ2 =
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Figure B.22: The set Γ in the case σ1/σ2 = K1/K2 = 20, µ1/µ2 = 10, c1 = 0.4

K1/K2 = 20, µ1/µ2 = 10, c1 = 0.4. As illustrated in Fig. B.22, the points
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(σ−HS, K
−
HS) and (σ+

HS, K
+
HS) are corners of the set Γ. More precisely, it can eas-

ily be proved that the intersection of Γ with the line σeff = σ−HS reduces to the point

(σ−HS, K
−
HS), i.e.

Γ ∪ {(σeff , Keff ) : Keff = K−HS} = (σ−HS, K
−
HS) (B.1)

Consider now the square-symmetric microstructure of Vigdergauz (1994) with mate-

rial 1 in the inclusion. In that case, the effective bulk modulus Keff of the Vigdergauz

(1994) microstructure is equal to K−HS. Eq. (B.1) implies that σeff = σ−HS, i.e. the

effective conductivity of the Vigdergauz (1994) microstructure (with the highest con-

ductive material 1 in the inclusion) is equal to the Hashin-Shtrikman lower bound

σ−HS. The same reasoning applies for the microstructures of Vigdergauz (1999) cor-

responding to hexagonal and triangular tessellations.
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