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We consider two-phase composites whose microstructures are two-dimensional and generated by the periodic replication of a convex polygonal cell containing a single inclusion embedded in a matrix. Adopting the framework of nonlinear conductivity, we address the problem of finding the inclusion shape that optimizes the effective energy. A conceptually simple but numerically effective approach is presented, in which the inclusion shape is parameterized by the Fourier coefficients of a scalar periodic function f that defines its polar representation. Truncating the Fourier expansion to a finite order turns the shape optimization problem into a finite-dimensional constrained optimization problem that can be solved using a numerical algorithm of choice. Explicit expressions of the function to optimize and its gradient are provided and can easily be evaluated from a finite-element model. The proposed approach is applied to perfectly conducting inclusions in a power law matrix. Results for the three types of regular tessellations (square, hexagonal and triangular) are presented and compared with the Vigdergauz (1994, 1999) microstructures giving the extremal inclusions in the linear case. The proposed method gives very simple representations of the extremal inclusions, which could useful for manufacturing the microstructures considered. The obtained nonlinear effective conductivities are compared with known

Introduction

Consider a two-phase composite conductor in which the constitutive materials are isotropic with given energy density functions. The effective energy function of the composite depends on the microstructure, i.e. on the geometrical arrangement of the phases. For linear conductors with statistically isotropic microstructures, [START_REF] Hashin | A variational approach to the theory of the effective magnetic permeability of multiphase materials[END_REF] derived both upper and lower bounds on the effective energy. Those bounds are optimal in the sense that there exist some microstructures that saturate the bounds. Various examples of such extremal microstructures are known. The earliest one is the coated sphere assemblage of [START_REF] Hashin | A variational approach to the theory of the effective magnetic permeability of multiphase materials[END_REF]. An other possible construction is obtained by sequential lamination [START_REF] Lurie | Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion[END_REF][START_REF] Murat | Calcul des variations et homogénéisation[END_REF]. Both those types of microstructures are relatively difficult to manufacture, even in two dimensions. In that regard, simpler microstructures have been proposed by [START_REF] Vigdergauz | Two-dimensional grained composites of extreme rigidity[END_REF][START_REF] Vigdergauz | Energy-minimizing inclusions in a planar elastic structure with macroisotropy[END_REF] by considering periodic arrangements of identical inclusions. Those microstructures are generated by the periodic replication of a regular polygonal cell made of an inclusion embedded in a matrix. Square tessellations were first considered in [START_REF] Vigdergauz | Two-dimensional grained composites of extreme rigidity[END_REF]. Hexagonal and triangular tessellations were later considered in [START_REF] Vigdergauz | Energy-minimizing inclusions in a planar elastic structure with macroisotropy[END_REF]. For all those three types of tessellations, [START_REF] Vigdergauz | Two-dimensional grained composites of extreme rigidity[END_REF][START_REF] Vigdergauz | Energy-minimizing inclusions in a planar elastic structure with macroisotropy[END_REF] showed that is is possible to choose the shape of the inclusion in such fashion that the effective energy of the periodic microstructure coincide with the Hashin-Shtrikman bounds1 . [START_REF] Vigdergauz | Two-dimensional grained composites of extreme rigidity[END_REF][START_REF] Vigdergauz | Energy-minimizing inclusions in a planar elastic structure with macroisotropy[END_REF] used analytical techniques such as holomorphic functions and conformal mapping. The obtained expressions for the inclusion shapes are not explicit and relatively complex. For square tessellations, [START_REF] Grabovsky | Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II: The Vidgergauz microstructure[END_REF] obtained an explicit expression for the shape of the inclusion in terms of elliptic functions.

Numerical approaches have also been studied to find optimal inclusion in linear problems. [START_REF] Vigdergauz | The effective properties of a perforated elastic plate numerical optimization by genetic algorithm[END_REF] notably used a genetic algorithm for finding the inclusion shapes that maximize the effective shear moduli in a perforated elastic plate.

The optimal shape was parameterized using a number M of control points on the boundary of the inclusion (with M in the range 60-90 depending on the tessellation).

Later [START_REF] Vigdergauz | Energy-minimizing openings around a fixed hole in an elastic plate[END_REF] used a genetic algorithm in combination with a truncated Laurent series for the conformal mapping of the unit circle to the inclusion shape, which reduced the number of parameters needed for describing the optimal inclusion to a good approximation (truncated series of order 7 were typically used). Topology optimization methods have also been used to generate Vidgergauz-like inclusions for square tessellations in linear elasticity (see e.g. the books by [START_REF] Allaire | Shape optimization by the homogenization method[END_REF]; [START_REF] Bendsøe | Topology optimization: theory, methods, and applications[END_REF] for a detailed introduction to topology optimization).

This paper aims at pushing the constructions of [START_REF] Vigdergauz | Two-dimensional grained composites of extreme rigidity[END_REF][START_REF] Vigdergauz | Energy-minimizing inclusions in a planar elastic structure with macroisotropy[END_REF] to nonlinear conductivity. In more detail, we consider the shape optimization problem of finding the inclusion shape that optimizes the effective energy of a periodic two-phase composite when the constitutive materials are nonlinear and the volume fractions are prescribed. As detailed in Sect. 2, we parameterize the shape of the inclusion using a scalar 2π-periodic function f that gives the polar representation of the boundary of the inclusion. Imposing the volume fractions sets an integral constraint on f . In mathematical terms, the problem to be solved becomes a constrained optimization problem in the functional space of 2π-periodic functions. Local optimality conditions are derived in Sect. 3 using techniques from calculus of variations. In the nonlinear case there is little hope to obtain exact solutions using analytical techniques so we resort to approximation methods instead. In Sect. 4 is proposed a relatively simple method for constructing approximate solutions in the general case. That method is based on the idea of approximating 2π-periodic function f by considering finite partial sums of Fourier series. The optimization is thus restricted to a finite-dimensional set of functions that satisfy the required constraints, in the spirit of Galerkin methods. In practice that finite-dimensional optimization problem can be solved by combining finite-element techniques and a descent algorithm. The gradient of the function to be optimized is obtained from the results of Sect. 3 and can easily be evaluated from finite-element simulations.

The proposed method has been applied to composites made of perfectly conducting inclusions in a power law matrix. Results from square, hexagonal and triangular tessellations are presented in Sects. 5, 6 and 7, respectively. In the linear case, the microstructures of [START_REF] Vigdergauz | Two-dimensional grained composites of extreme rigidity[END_REF][START_REF] Vigdergauz | Energy-minimizing inclusions in a planar elastic structure with macroisotropy[END_REF] are recovered. The influence of the nonlinearity on the obtained inclusions is discussed in detail. The proposed method gives very simple representations of the extremal inclusions, with very few parameters (3 to 7, depending on the tessellation), which could useful for manufacturing the microstructures considered. The effective conductivities of the optimized microstructures are compared with relevant bounds from the literature, most notably the Hashin-Shtrikman type bounds of [START_REF] Talbot | Variational principles for inhomogeneous nonlinear media[END_REF]Ponte Castañeda et al. (1992); [START_REF] Peigney | Bounds for nonlinear composite conductors via the translation method[END_REF]. This allows one to get some partial information on the optimality of those bounds. Concluding remarks follow in Sect.

8.

Formulation of the problem

We consider the class of two-dimensional microstructures that are generated by regular tessellations of convex polygonal cells where all the cells are identical and consist of a single inclusion of material 1 embedded in a material 2. It is known that there exists only three regular tessellations, corresponding to square, triangular and hexagonal cells as represented in Fig. 1 [START_REF] Singer | Tiling the plane with regular polygons[END_REF]. Those three tessellations differ by the order n of rotational symmetry of the basic cell Ω: n is equal to 3 for triangular tessellations, 4 for square tessellations and 6 for hexagonal tessellations.

We require the inclusion to have the same n-fold rotational symmetry as the basic cell, which is a sufficient (but not necessary) condition for the effective behavior to have n-fold symmetry. In such case, rigorous bounds on the effective properties are available as will be detailed later on.

We are interested in finding the inclusion shape that optimizes the effective energy for prescribed volume fractions of materials 1 and 2. Let us formulate the problem in more detail, focusing first on square and hexagonal tessellations. In those cases, the tessellation is periodic and the periodic cell can be chosen as equal to Ω. The effective energy w eff is given by

w eff (ē) = inf u periodic 1 |Ω| Ω 2 i=1 χ i (x)w i (ē + ∇u)dω (1)
where w i is the energy density function of material i and χ i is the characteristic function of the domain Ω i occupied by material i

(χ i (x) = 1 if x ∈ Ω i , χ i (x) = 0
otherwise). Determining w eff (ē) formally amounts to solve the local equations

div j = 0, j = 2 i=1 χ i (x)w i (ē + ∇u), u periodic, j • n anti-periodic. ( 2 
)
Adopting the terminology of electrical conductivity, the field j in (2) is the current density and and e = ē + ∇u is the electric field. In (1), ē is the effective (or average) electric field. One could alternatively consider thermal conductivity, magnetic permeability or diffusion as all those problems are governed by the same equations.

The elasticity problem of torsion in a cylinder also falls under the umbrella of the framework considered. If the energy density functions w i (i = 1, 2) are known and ē is prescribed, then w eff (ē) can be viewed as a function of the domain Ω 1 . We denote by J(Ω 1 ) the effective energy corresponding to a given inclusion shape Ω 1 , i.e.

J(Ω

1 ) = 1 |Ω| Ω 2 i=1 χ i (x)w i (ē + ∇u)dω (3) 
where u attains the minimum in (1). We consider the problem of optimizing J with respect to domains Ω 1 such that

(i) Ω 1 has n-fold rotational symmetry (ii) The volume fraction |Ω 1 |/|Ω| is prescribed (iii) Ω 1 is a star-shaped set around the center O of the cell Ω.
Requirement (iii) is a sufficient (but not necessary) condition for the domain Ω 1 to be of the inclusion type, i.e. to be a simply, connected set. The motivation for introducing requirement (iii) is that it makes for a simple representation of the geometry Ω 1 . Using coordinates centered at O, any domain fulfilling (iii) can indeed be written as

Ω 1 (f ) = {x = r cos θ u x + r sin θ u y : 0 ≤ r ≤ f (θ)} (4)
where f : R → R is a 2π-periodic function (Fig. 2). Note that requirement (i) implies that f is actually 2π n -periodic. Denoting by c 1 the volume fraction of material 1, requirement (ii) translates as

c 1 |Ω| = 2π 0 1 2 f 2 (θ)dθ. (5) 
We focus on minimizing J in the rest of the paper (the issue of maximizing J could be handled similarly). The problem to be solved becomes

min f ∈K(c 1 ) J(Ω 1 (f )) (6) 
where

K(c 1 ) = f : f 2π n -periodic, 2π 0 1 2 f 2 (θ)dθ = c 1 |Ω| . (7) 
As common in shape optimization problems, the difficulty in solving (6) lies in the fact that the function J is not expressed explicitly in terms of f : For a given f , evaluating J(Ω 1 (f )) requires solving the nonlinear boundary value problem (2) which is parametrized by f . In the next Section, we derive the expression of the gradient of J with respect to f and study optimality conditions in problem (6). 

O • u x u y θ r = f ( θ ) • Ω 1 u r Ω 2

Optimality conditions

Let Ω 1 be a given arbitrary inclusion (not necessarily star-shaped or n-fold symmetric). Considering a variation δΩ 1 of the shape of the inclusion, we calculate the corresponding variation δJ of the functional J in (3). A variation δΩ 1 can be represented by a infinitesimal displacement δξ(x) of the boundary ∂Ω 1 . The corresponding variation δJ is

δJ = 1 |Ω| ∂Ω 1 w (δξ • n)ds + 1 |Ω| Ω 2 i=1 χ i (x)w i (ē + ∇u) • (∇δu)dω (8) 
where w = w 2 (ē + ∇u) -w 1 (ē + ∇u), n is the normal to Ω 1 and δu is the variation of the solution to (1). Since u satisfies (2), the second integral on the right hand of (8) vanishes2 . Thus we have

δJ = 1 |Ω| ∂Ω 1 w (δξ • n)ds. (9) 
Expressing the volume |Ω 1 | of the inclusion as the integral |Ω 1 | = Ω χ 1 (x)dx, we obtain in a similar fashion that the variation δ|Ω 1 | of the volume of the inclusion is given by

δ|Ω 1 | = ∂Ω 1 (δξ • n)ds. ( 10 
)
Let ∂Ω k 1 be the intersection of ∂Ω 1 with the angular sector 2πk/n ≤ θ ≤ 2π(k + 1)/n where n is the order of rotational symmetry of the basic cell Ω. Eq. ( 10) can be rewritten as

δ|Ω 1 | = n-1 k=0 ∂Ω k 1 (δξ • n)ds. (11) 
Eqs. ( 9), ( 10) and ( 11) hold for any domain Ω 1 and variation δΩ 1 . We now specialize those relations to the case where both Ω 1 and δΩ 1 have n-fold symmetry.

In that case, all the n integrals on the right hand side of (11) take the same value so that

δ|Ω 1 | = n ∂Ω 0 1 (δξ • n)ds. (12) 
Expression ( 9) can be rewritten similarly as

δJ = 1 |Ω| n-1 k=0 ∂Ω k 1 w (δξ • n)ds (13) 
In contrast with (12), there is no reason for the integrals on the right-hand side of ( 13) to be equal because the solution u to (1) -and consequently the term w in (13) -depend on the loading ē and are not expected to have n-fold rotational symmetry.

In order to reduce δJ to an integral over ∂Ω 0 1 , it is convenient to introduce the operator • sym that maps any given field v to the n-fold symmetric field v sym defined by

v sym (x) = 1 n n-1 k=0 v(R k • x)
where R k is the rotation with center O and angle 2πk/n. Using the change of variable

x = R k • y and recalling that Ω 1 and δξ have n-fold symmetry, we have

∂Ω k 1 w (x)(δξ(x) • n(x))ds = ∂Ω 0 1 w (R k • y)(δξ(y) • n(y))ds hence δJ = 1 |Ω| ∂Ω 0 1 n-1 k=0 w (R k • y) (δξ(y) • n(y))ds i.e. δJ = n |Ω| ∂Ω 0 1 w sym (δξ • n)ds. (14) 
Consider an inclusion shape Ω 1 that minimizes J with respect to all n-fold symmetric inclusions of given volume. From ( 12) and ( 14), the first order optimality condition reads as

∂Ω 0 1 w sym (δξ • n)ds = 0 (15)
for any n-fold symmetric displacement δξ such that ∂Ω 0 1 δξ • n ds = 0. Condition (15) can be seen to impose that

w sym constant on ∂Ω 1 . ( 16 
)
Let indeed x 0 and x 1 be two given distinct points on ∂Ω 0 1 and consider the n-fold symmetric displacement

ξ * = η(δ x 0 n(x 0 ) -δ x 1 n(x 1 )) sym
where η > 0 is an infinitesimally small parameter, δ x i is the Dirac distribution defined on ∂Ω 0 1 and concentrated at x i , and n(x i ) is the normal to ∂Ω 1 at x i . Since ∂Ω 0 1 ξ * • nds = 0, Eq. ( 15) implies that n η ∂Ω 0 1 w sym ξ * • n ds = w sym (x 0 ) -w sym (x 1 ) = 0, hence w sym (x 0 ) = w sym (x 1 ). Property (16) follows.

Consider now problem (6) in which the optimization of J is restricted to domains Ω 1 (f ) that admit a representation of the form (4). Any point x on the boundary ∂Ω 1 (f ) can written as x = f (θ)u r for some θ ∈ [0, 2π], where u r is the unit radial vector (Fig. 2). In accordance with (4), variations δΩ 1 are restricted to displacements δξ of the form

δξ = δf (θ)u r ( 17 
)
where δf is a 2π/n-periodic function. Further noting that ds = (f ) 2 + f 2 dθ and 12) and ( 14) yield

n = (f u r -f u θ )/( (f ) 2 + f 2 ), expressions (
δ|Ω 1 | = n 2π/n 0 δf (θ)f (θ)dθ (18) δJ = n |Ω| 2π/n 0 w sym δf (θ)f (θ)dθ. ( 19 
)
The optimality condition now gives inclusion Ω 1 (f ) in ( 6) is such that (16) holds. Hence, if the inclusion Ω 1 (f ) is a local extremum of J with respect to all variation δΩ 1 satisfying (17), then it is also a local extremum with respect to any n-fold symmetric variation δΩ 1 (not necessarily star-shaped).

Fourier expansion

We now describe an approximation method for solving problem (6). Any given function f in K(c 1 ) is 2π n -periodic and can thus be expanded as a Fourier series

f (θ) = a 0 + ∞ k=1 {a k cos(knθ) + b k sin(knθ)}. ( 20 
)
The main idea of the proposed method is to approximate K(c 1 ) by considering partial sum of a given finite rank M in (20). In other words we approximate ( 6) by the finite dimensional minimization problem

min f ∈ K(c 1 , M ) J(Ω 1 (f )) (21) 
where K(c 1 , M ) ⊂ K(c 1 ) is the set constituted by functions of the form

f (θ) = a 0 + M k=1 a k cos(knθ) + b k sin(knθ) (22) 
that satisfy the constraint (5). Parseval's identity shows that the function f in ( 22)

verifies 1 2π 2π 0 f 2 (θ)dθ = a 2 0 + 1 2 M k=1 a 2 k + b 2 k .
Hence the constraint ( 5) is satisfied provided that

c 1 |Ω| π = a 2 0 + 1 2 M k=1 a 2 k + b 2 k . ( 23 
)
We denote by E(c 1 , M ) the ellipsoid in R 2M +1 that is defined by Eq. ( 23). Relation ( 22) defines a one-to-one mapping between functions f in K(c 1 , M ) and vectors

(a 0 , • • • , a M , b 1 , • • • , b M ) in E(c 1 , M ). Identifying a function f in K(c 1 , M ) with the vector X formed by its Fourier coefficients (a 0 , • • • , a M , b 1 , • • • , b M ), problem (21) 
can be rewritten as

min X∈ E(c 1 , M ) J(Ω 1 (X)). ( 24 
)
The constrained optimization problem (24) is amenable to numerical techniques and can notably be solved using a projected gradient algorithm. The implementation of such an algorithm requires the expression of : (i) the gradient of J with respect to

X = (a 0 , • • • , a M , b 1 , • • • , b M ), (ii) the projection operator P on the set E(c 1 , M ).
The expression of the gradient of J with respect to (a k , b k ) follows from ( 19). Using the relation δf = δa 0 + k≥1 δa k cos(knθ) + δb k sin(knθ), we obtain

∂J ∂a k = n |Ω| 2π/n 0 w sym f (θ) cos nkθdθ = 1 |Ω| 2π 0 w f (θ) cos nkθdθ, ∂J ∂b k = n |Ω| 2π/n 0 w sym f (θ) sin nkθdθ = 1 |Ω| 2π 0 w f (θ) sin nkθdθ.
For any given X 0 ∈ R 2M +1 , the projection P(X 0 ) is defined by

P(X 0 ) = arg min X∈E(c 1 , M ) X -X 0 2 (25)
where

• is the Euclidean norm. Even though E(c 1 , M ) is not convex, it can be
shown that (25) admits a unique solution if X 0 0 = 0 (see Appendix A). Moreover, whatever M , it is shown in Appendix A that solving (25) reduces to solving a quartic equation on an interval [λ -(X 0 ), λ + (X 0 )] where λ -and λ + are explicit functions of X 0 .

The shape optimization procedure for finding the inclusion of minimum energy is summarized in Algorithm 1 which is essentially a projected gradient algorithm with variable step size. The inputs are parameters

X 0 = (a 0 0 , • • • , a 0 M , b 0 1 , • • • , b 0 M
) defining a starting shape of the inclusion and an initial step size α 0 . At each iteration, solving the boundary value problem ( 2) is needed for evaluating the function J in (3). This can be achieved using a finite element code. Note that extracting the values of w from the numerical solution of (2) allows one to evaluate the integrals 

= (a 0 , • • • , a M , b 1 , • • • , b M )
defining the shape of the optimized inclusion. We note that the condition f > 0 of a positive radius is not enforced in the algorithm. In practice, Algorithm 1 was started from an initial inclusion shape satisfying f > 0 (a circular shape was often used) and the radius of the inclusion was found to remain strictly positive along the iterations.

Input : X 0 = (a 0 0 , • • • , a 0 M , b 0 1 , • • • , b 0 M ), α 0 Output: X = (a 0 , • • • , a M , b 1 , • • • , b M ) α ← α 0 ; X ← X 0 ; N ← 1 ; repeat u ← solution of (2) for Ω 1 (X); J ← Ω 2 i=1 χ i (x)w i (ē + ∇u); U ← ( 2π 0 w f (θ) cos nkθdθ) 0≤k≤M ; V ← ( 2π 0 w f (θ) sin nkθdθ) 1≤k≤M ; Y ← (U , V ); repeat X ← P(X -αY ); ũ ← solution of (2) for Ω 1 ( X); J ← Ω 2 i=1 χ i (x)w i (ē + ∇ũ); α ← α/2; until J < J; α ← 2α ; N ← N + 1; X ← X ; until α < α min or N > N iter ;
Algorithm 1: Shape optimization algorithm.

Square tessellation

The proposed procedure has been applied to composites made of perfectly conducting inclusions in a power law matrix, i.e. the energy density functions w 1 and w 2 are taken as

w 1 (e) =    0 if e = 0 +∞ otherwise (26) w 2 (e) = σ 2 m + 1 |e| m+1 ( 27 
)
where m is the nonlinearity index and σ 2 is the conductivity parameter of the matrix. The energy density function in ( 26) is the limit case of a power law function σ 1 m+1 |e| m+1 as the conductivity σ 1 becomes infinite. The composites considered here can thus be viewed as two-phase power law composites with an infinite contrast σ 1 /σ 2 . This is the most interesting situation where the effective properties show the largest variations with the microstructure. For the case considered, a standard argument of homogeneity shows that effective energy w eff in ( 1) is positively homogeneous of degree m + 1 and can thus be written as

w eff (ē) = σ eff ( θ) m + 1 |ē| m+1 (28) 
where σ eff is a function of the angle θ between u x and ē. The ratio σ eff ( θ)/σ 2 only depends on the geometries of Ω 1 and Ω.

In this section we first present results for square tessellations, i.e. when the domain Ω is the unit square. Those results have been obtained using an implementation of Algorithm 1 in the finite element software Freefem [START_REF] Hecht | New development in freefem++[END_REF]. With the expressions ( 26) and ( 27) for the constitutive energy-density functions, the boundary value problem (2) becomes

div j = 0 in Ω 2 , j = σ 2 |ē + ∇u| m-1 (ē + ∇u) in Ω 2 , u + ē • x = c 0 on ∂Ω 1 , u periodic, j • n anti-periodic (29)
where c 0 is a constant that can be set to 0 without loss of generality. Regarding the finite element computations, only the domain Ω 2 occupied by material 2 needs to be meshed. We used a simple implementation of Algorithm 1 in which a new finite-element mesh is created from scratch at each update of the geometry. Some computational time could be saved by using nodes relocation strategies. For m = 1, the boundary value problem ( 29) is nonlinear and was solved iteratively using a Newton method. As detailed in Sect. 4, solving (29) allows one to evaluate J and its gradient J . The projection operator P was calculated following the results presented in Appendix A. The quartic equation (A.7) characterizing the projection was solved using a bisection method. Typical values for the algorithm parameters were N iter = 100 and α min = 10 -10 .

The linear case

Let us first consider the linear case m = 1. In that case, the effective conductive behavior of square symmetric material is necessarily isotropic, i.e. σ eff does not depend on the loading direction θ and therefore σ eff /σ 2 is entirely determined by the inclusion shape Ω 1 . In Fig. 3 are shown the inclusion shapes obtained by applying the presented procedure with M = 7 and θ = 0. The average running time for solving problem (24) was about 10 s (on a workstation equipped with an Intel i7-8700@3.2 GHz CPU). Meshes with about 10000 linear triangular elements were used in the finite-element computations reported in the following. Using such a relatively high mesh density ensures that the error between the obtained effective conductivities and theoretical bounds is only limited by the parameters (M, N iter , α min ) of the shape minimization algorithm and not by the mesh used for the finite element calculations.

From ( 16), optimal inclusions are characterized by the constancy of w sym on ∂Ω 1 . In Fig. 4 is shown the computed distribution of w sym on ∂Ω, as obtained from the shape optimization algorithm in the case c 1 = 0.5. The plots in Fig. 4 shows the value of w sym (normalized with respect to σ 2 ē 2 ) as a function of the The inclusion shapes in Fig. 3 actually correspond to some of the microstructures obtained by [START_REF] Vigdergauz | Two-dimensional grained composites of extreme rigidity[END_REF] for the related problem of finding the inclusions that optimizes the elastic energy in grained elastic composites. The microstructures found by [START_REF] Vigdergauz | Two-dimensional grained composites of extreme rigidity[END_REF] depend on the applied strain ε. For a purely hydrostatic strain ε, the Vidgergauz microstructure has square symmetry and its effective bulk modulus K eff is equal to the Hashin-Shtrikman lower bound K - HS [START_REF] Hashin | A variational approach to the theory of the elastic behaviour of multiphase materials[END_REF]. As detailed in Appendix B, the cross-properties bounds of [START_REF] Gibiansky | Rigorous link between the conductivity and elastic moduli of fibre-reinforced composite materials[END_REF] imply that the effective conductivity of that microstructure is necessarily equal to the Hashin-Shtrikman lower bound σ - HS on the effective conductivity, given by σ - HS = σ 2 (1 + c 1 )/(1 -c 1 ). Those results are recovered from the present calculations: the effective conductivity σ opt of the optimized microstructures shown in Fig. 3 is indeed very close to the Hashin-Shtrikman lower bound σ - HS , with a relative error σ opt /σ - HS -1 that does not exceed 0.25% for c 1 ≤ 0.9 and 0.03% for c 1 ≤ 0.8 (Fig. 5). That relative error is notably due to the truncation of the Fourier expansions to a finite order M in (22). To investigate that point in more detail, the optimization problem (24) has been solved for several values of M . The relative error σ opt /σ - HS -1 is shown in Fig. 5 as a function of the volume fraction c 1 . For high value of c 1 , the relative error tends to increase steeply because the optimal inclusion become more square-like and requires more Fourier coefficients to be approximated accurately. For any given volume fraction c 1 , the relative error decreases as M increases and is expected to converge to 0 as M → ∞. Note that taking M = 5 is enough for ensuring that the relative error remains below 1% for volume fractions c 1 up to 0.9 (and below 0.04% for c 1 ≤ 0.8). We keep the value M = 5 for all the examples presented next in this Section. For c 1 ≤ 0.6 we can observe on Fig. 5 that the error does not get better with higher M . This is a numerical artefact due the values (N iter , α min ) used for the convergence criterion in Algorithm 1. For c 1 ≤ 0.6, the differences between the effective conductivities obtained from different values of M are actually very small and require more stringent values of (N iter , α min ) to be captured.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.5 microstructures, which could useful notably for manufacturing them. In Table 1 are reported the coefficients (a i ) 1≤5 calculated for M = 5. The coefficient a 0 is given by

1 1.5 2 2.5 3 •10 -2 c 1 σ opt /σ - HS - 1 M = 2 M = 3 M = 4 M = 5 M = 7
a 0 = c 1 π - 1 2 5 i=1 a 2 i .
Similar tables are given in [START_REF] Vigdergauz | The stress-minimizing hole in an elastic plate under remote shear[END_REF] for the truncated Laurent expansion of the conformal map from the unit circle to the optimized inclusion in the context of plane elasticity.

Influence of the loading direction

For m = 1, the effective conductivity σ eff in ( 28) is expected to depend on the loading direction θ. In the case of square tessellations, σ eff is a π 2 -periodic function of θ as illustrated in Fig. 6 on the loading direction θ. This point is illustrated in Fig. 7 showing the optimized inclusion obtained for θ = 0 and θ = π/4. Those loading directions were found to

give respectively the highest and the lowest conductivity among all loading directions.

The inclusions in Fig. 7 correspond to c 1 = 0.4 and m = 2. We can observe that the inclusion optimized for θ = π/4 is less elongated in the π/4 direction that the inclusion optimized for θ = 0. Conversely, the inclusion optimized for θ = 0 is less elongated in the u x direction that the inclusion optimized for θ = π/4. The average running time for finding the optimized inclusion in the nonlinear case is about 50 s, about 5 times more than in the linear case. The increase in the computation time is mainly due to the Newton iterations needed for solving the boundary value problem

(2) in the nonlinear case. a single inclusion in an infinite matrix of material 2. In particular, the maximum of w 2 on ∂Ω 1 is reached at θ = ±π/4 (i.e. along the loading direction). As c 1 increases, the interaction between neighboring inclusions comes at play as can be observed in 
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w sym (θ) = 1 2 w 2 (θ) + w 2 (θ + π 2 )
where w 2 (θ) and w sym (θ) are respectively the value of w 2 and w sym at the point of polar angle θ on ∂Ω 1 . For c 1 = 0.4, the value of w sym (0) is about 24σ 2 ē m+1

and largely exceeds the value w sym (π/4) (which is about 10σ 2 ē m+1 ). This is an indication that the circular shape is far from optimal in the case c 1 = 0.4. Optimizing the shape of the inclusion requires decreasing w sym (0) and increasing w sym (π/4). This is achieved by increasing the curvature of ∂Ω 1 at θ = π/4 and increasing the radius f (π/4) of the inclusion in the θ = π/4 direction. Increasing the curvature at θ = π/4 indeed tends to promote a local energy concentration, in a way similar to stress concentration around sharp corners. This effect is further magnified by increasing f (π/4) i.e. reducing the distance between neighboring inclusions in the π/4 direction. Simultaneously decreasing the curvature ∂Ω 1 at θ = 0 and increasing f (0) has the opposite effect of reducing w sym (0). Those considerations qualitatively explain the optimized shapes that are found for c 1 ≥ 0.4 as shown in Fig. 8. In contrast, the variations of w sym on the boundary remain small in the case c 1 = 0.04 depicted in Fig. 9(left), meaning that the circular inclusion is much closer to the optimal shape in that case. When the nonlinearity index m increases, the effects that have been discussed are amplified because the interaction between neighboring inclusions gets stronger. 

9(left).

For c 1 = 0.4, the interaction between inclusions is stronger than in the case m = 2, resulting in a larger ratio w sym (0)/ w sym (π/4) (which is about 4 in Fig. 10(right) instead of 2.4 in Fig. 9(right) ).

As mentioned earlier, the inclusions in Fig. 8 Using that last method, any bound on the effective conductivity of the linear comparison composite can be used to generate a corresponding bound for the nonlinear composite. In particular, when the linear Hashin-Shtrikman bound is used, nonlinear

Hashin-Shtrikman type bounds are obtained (Ponte Castañeda et al., 1992). For the problem at hand, those two methods give the same Hashin-Shtrikman type lower bound σ LC on the effective conductivity, given by The subscript LC in σ LC stands for 'Linear Comparison'. The bound σ LC is of the Hashin-Shtrikman type, i.e. it applies to all isotropic composites and is a function of the volume fractions (without any quantitative reference to higher order statistics on the microstructure). For our purpose, it is important to stress that the bound σ LC actually applies to the wider class of composites with square symmetry. As explained by Ponte Castañeda (1992), the bound (30) applies provided that the effective behavior of the linear comparison composite is isotropic, which (in twodimensional conductivity) is satisfied if the microstructure has square-symmetry (or 3-fold symmetry). For the same reason, the bound σ LC also applies to hexagonal and triangular tessellations that will be considered lated on.

σ LC = σ 2 (1 + c 1 ) m+1 2 (1 -c 1 ) m . ( 30 
)
The linear comparison bound is shown in Fig. 11 LC . We first observe that κ opt ≤ κ LC i.e. that σ LC ≤ σ opt as expected. In contrast with the linear case, there is a gap between κ opt and κ LC . For any given c 1 , the relative difference (κ LC -κ opt )/κ LC seems to increase with m. For m = 2, (κ LC -κ opt )/κ LC reaches a maximum of 2.7%

(value attained for c 1 0.3). For m = 5, (κ LC -κ opt )/κ LC reaches a maximum of 4.5% (value attained for c 1 0.2). In terms of conductivity, the relative difference between the effective conductivity of the optimized inclusion and the lower bound σ LC reaches value up to 5.6% for m = 2 and up to 25% for m = 5. However, it is interesting to observe that κ opt and κ LC almost coincide for large values of c 1 , i.e.

for small values of c 2 . In more detail, note from (30) that κ LC /κ 2 = 2 -(m+1)/2m c 2 at the first order in c 2 , where

κ 2 = σ -1/m 2
. The numerical results suggest that

κ opt /κ 2 -2 -(m+1)/2m c 2 c 2 ---→ c 2 →0 0 i.e. that κ opt /κ 2 = 2 -(m+1)/2m
c 2 at the first order in c 2 , meaning that κ opt and κ LC coincide at the first order in c 2 . Consequently, the obtained inclusion shapes give microstructures that (at the first order c 2 ) are extremal among all microstructures with square symmetry. In other words, the effective resistivity of any given microstructure with square symmetry (not necessarily periodic) can only exceed κ opt by a term of the second order in c 2 . Those results also indicate that the linear comparison upper bound κ LC in ( 30) is optimal at the first order in c 2 .

Hexagonal tessellation

We now consider hexagonal tessellations. In accordance with the 6-fold rotational symmetry of the hexagonal cell, the function f (θ) is written as For given values of c 1 , m and θ, the values of the coefficients (a k , b k ) that minimize the effective energy are obtained using Algorithm 1.

f (θ) = a 0 + M k=1 a k cos

Linear case

In Fig. 12 are shown the inclusion shapes obtained numerically for m = 1, θ = 0, M = 3 and for several values of c 1 between 0.1 and 0.9. The effective behavior of a linear material with 6-fold symmetry and isotropic constituents is necessarily isotropic, with regard to both conductivity and elasticity. This is in contrast with square tessellations for which the effective conductivity tensor is isotropic but the effective elasticity tensor is only square-symmetric. The inclusion shapes shown in Fig. 12 correspond to the microstructures derived by [START_REF] Vigdergauz | Energy-minimizing inclusions in a planar elastic structure with macroisotropy[END_REF] for finding elastic isotropic materials of extreme bulk modulus when the design domain is a hexagonal periodic cell with a single inclusion. The effective bulk modulus of the microstructures of [START_REF] Vigdergauz | Energy-minimizing inclusions in a planar elastic structure with macroisotropy[END_REF] was shown to be equal to the Hashin-Shtrikman bound K - HS . The cross-properties bounds of [START_REF] Gibiansky | Rigorous link between the conductivity and elastic moduli of fibre-reinforced composite materials[END_REF] imply that the effective conductivity σ eff of those microstructures is equal to the Hashin-29 Shtrikman bound σ - HS . This is indeed what comes out of the numerical simulations. The relative difference (σ opt -σ - HS )/σ - HS between the Hashin-Shtrikman bound and the calculated effective conductivity σ opt of the microstructures in Fig. 12 indeed remains smaller to 0.25% for inclusion volume fractions c 1 up to 0.9 (and smaller than 0.02% for values c 1 up to 0.8). In the present case, we note that taking M = 3 is enough for getting a very good approximation of the optimal inclusion shapes.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0. In a way similar to the square tessellation considered in Sect. 5, the inclusions are symmetric with respect to the x axis, i.e. the coefficients b k vanish. The inclusions shown in Fig. 12 are thus entirely determined by the 4 coefficients (a 0 , • • • , a 3 ) through the polar representation

r = a 0 + 3 i=1 cos 6πiθ c 1 a 1 a 2 a 3
0.1 0.0006 0 0 0.2 0.0008 0 0 0.3 0.0009 0 0 0.4 0.0026 0 0 0.5 0.0081 0.0002 0 0.6 0.0167 0.0012 0.0001 0.7 0.0280 0.0035 0.0006 0.8 0.0389 0.0073 0.0020 0.9 0.0489 0.0123 0.0047 where

a 0 = 3 √ 3c 1 2π - 1 2 3 i=1 a 2 i .
The values of those coefficients (a i ) 1≤3 are reported in Table 2.

Influence of the nonlinearity index

In the nonlinear case m = 1, the effective conductivity σ eff of a hexagonal tessellation is no longer isotropic as illustrated in Fig. 6(red curve) showing σ eff as a function of the loading direction θ for a circular inclusion with m = 2 and c 1 = 0.3.

However, observe that the variations of σ eff with θ are much smaller than those corresponding to a square tessellation (blue curve in Fig. 6). This can be attributed to the stronger 6-fold symmetry of the hexagonal tessellation compared to the 4-fold symmetry of the square tessellation. Also observe in Fig. 6 that the minimum value of σ eff is attained for θ = 0. In Fig. 13 are plotted the inclusion shapes obtained by The ratio w 2,sym (θ = π/6)/w 2,sym (θ = 0) is about 1.6, which from ( 16) shows that the circular inclusion is not optimal. In Fig. 15 and m, the gap κ LC -κ opt is found to be larger than what is obtained for square tessellations. For m = 2, the gap κ LC -κ opt is maximum for c 1 3 and reaches 0.03κ 2 , which corresponds to a relative difference (κ LC -κ opt )/κ LC of approximatively 5%. For m = 5, the gap κ LC -κ opt is maximum for c 1 3 and reaches 0.056κ 2 , which corresponds to a relative difference (κ LC -κ opt )/κ LC of approximatively 9%.

A tighter Hashin-Shtrikman type bound than the linear comparison bound κ LC has been proposed by [START_REF] Peigney | Bounds for nonlinear composite conductors via the translation method[END_REF] using the translation method [START_REF] Milton | The theory of composites[END_REF][START_REF] Kohn | The relaxation of a double-well energy[END_REF][START_REF] Peigney | Improved bounds on the energy-minimizing strains in martensitic polycrystals[END_REF]. That bound -henceforth denoted by κ T -applies to conductors with 3-fold symmetry, of which hexagonal tessellations are a special It is possible, however, to derive the first order expansion of κ T in closed form. The result is

κ T = κ 2 c 2 3 (1 + 2 -1 m ) + o(c 2 ).
A numerical check shows that κ opt /c 2 does not converge towards κ 2 1 3 (1 + 2 -1 m ) as c 2 tends to 0, thus confirming that κ T and κ opt do not coincide at the first order in c 2 . 

Triangular tessellations

For triangular tessellations, the periodic cell Ω is formed by 2 neighboring triangles that can be chosen as in 1 is defined by the equation r = f (θ). In polar coordinates centered at O -, the boundary of the left inclusion Ω - 1 is defined by the equation r = f (θ + π). In accordance with the 3-fold rotational symmetry of the triangular cell, the function f describing the shape of the inclusion is taken as

f (θ) = a 0 + M k=1 a k cos 3kθ + b k sin 3kθ. (31) 
A slight modification is needed in Algorithm 1 regarding the expressions of the partial derivatives ∂J ∂a k and ∂J ∂b k . The latter have indeed to be updated to account for the fact that the domain Ω now contains 2 (symmetry related) inclusions. Adapting the calculations presented in Sect. 3 shows that

∂J ∂a k = 1 |Ω| 2π 0 ( w + + w -)f (θ) cos nkθdθ ∂J ∂b k = 1 |Ω| 2π 0 ( w + + w -)f (θ) sin nkθdθ.
where w + is the value of w 2 -w 1 at the point of polar angle θ on ∂Ω + 1 . Similarly, w -is the value of w 2 -w 1 at the point of polar angle θ on ∂Ω - 1 . 

O + • O - • Ω + 1 Ω - 1

Linear case

As for the square and the hexagonal tessellations, considering the linear case m = 1 allows one to recover known results on the optimal inclusions and to calibrate the number M of needed coefficients. In Fig. 19 are shown the inclusion shapes obtained by running Algorithm 1 with c 1 = i/10 (i = 1, • • • , 9). These inclusions shapes correspond to the microstructures obtained by [START_REF] Vigdergauz | Energy-minimizing inclusions in a planar elastic structure with macroisotropy[END_REF] for triangular tessellations. The effective conductivity of those microstructures is equal to the Hashin-Shtrikman lower bound σ - HS . The inclusion shapes in Fig. 19 have been obtained using the value M = 7, which was found to be the minimum value ensuring that the relative error between the optimized effective conductivity σ opt and the bound σ - HS remains below 1% for c 1 up to 0.9 (and below 0.1% for c 1 up to 0.8). The value M = 7 is larger than the value M = 3 used with the hexagonal tessellation for reaching the same accuracy in the linear case. This can be attributed to the fact that the optimal inclusions in the triangular tessellation are expected to have sharper corners than the optimal inclusions in the hexagonal tessellation (especially at high value of c 1 ). A similar argument explains why the value M = 5 found for square tessellations falls in between the values of M used for triangular tessellations and hexagonal tessellations. In Table 3 are where

a 0 = √ 3c 1 4π - 1 2 7 i=1 a 2 i .

Nonlinear case

In Fig. 6 (green line) is shown the effective conductivity σ eff as a function of the loading direction θ for circular inclusions with c 1 = 0.3 and m = 2 in a triangular tessellation. Note that σ eff is a π/3-periodic function of θ. The relative variation of σ eff with θ are of the same order as what is obtained for hexagonal tessellation (i.e. about 3%). Also observe in Fig. 6 (green line) that the minimum value of σ eff is attained for θ = 0 (modulo π/3) as for the hexagonal tessellation.

In Fig. 20 The effective resistivity κ opt is reported in Fig. 21. For any given volume fraction c 1 , the numerical results show that the resistivity κ opt of the optimized triangular tessellation is always larger than the resistivity of the optimized hexagonal tessellation.

Consequently, the gap between κ opt and the upper bound κ T is reduced and actually becomes relatively small, especially in the case m = 2 where κ T -κ opt remains smaller than 0.0086κ 2 (value attained for c 1 0.2) which corresponds to a relative difference of 1.27%. For m = 5, the gap between κ opt and κ T is more noticeable, see Fig. 21. In that case, the maximum gap is 0.268κ 2 (value attained for c 1 0.1) which corresponds to a relative difference of 3.2%. It can be observed in Fig. 21 that κ opt and κ T seem to coincide at the first order in c 2 . The numerical results suggest indeed that

κ opt /κ 2 -c 2 3 (1 + 2 -1 m ) c 2 ---→ c 2 →0 0.
This indicates that the bound κ T is optimal at the first order in c 2 . Regarding the optimality of the bounds, the triangular tessellation here plays the same role as the square tessellation for the linear comparison bound.

Concluding remarks

In linear conductivity, the three types of Vidgergauz microstructures have the same effective conductivity. In contrast, their extension to nonlinear conductivity all have different effective properties. In particular, the effective behavior of both hexagonal and triangular tessellations show qualitatively similar variations with respect to the loading direction, but the triangular tessellation gives a lower effective conductivity (or, equivalently, an upper effective resistivity). Compared to the linear case, an other distinctive feature of nonlinear extremal inclusions is the fact that they depend on much more parameters. For isotropic power law materials with the same nonlinearity index m 1 , the extremal inclusion indeed depends on the conductivity ratio, the loading direction, the nonlinearity index and the inclusion volume fraction, i.e. 4 parameters instead of only 1 in linear conductivity (the Vidgergauz microstructures are indeed independent of the conductivity ratio). If the constitutive materials are allowed to have different nonlinearity indices m 1 and m 2 , then 2 additional parameters need to introduced (namely m 2 and |ē|). Hence there is much larger space of parameters to explore compared to the linear case. The gap that exists between the obtained effective properties and known Hashin-Shtrikman type bounds is an other difference with the linear case. Regarding bounds, the results obtained in this paper suggest that the bounds of [START_REF] Talbot | Variational principles for inhomogeneous nonlinear media[END_REF]; Ponte Castañeda et al. (1992); [START_REF] Peigney | Bounds for nonlinear composite conductors via the translation method[END_REF] on the effective resistivity of a power law composite with perfectly conducting inclusions are optimal at the first order in the matrix volume fraction c 2 .

Aside from power law behavior, the proposed method could be used with other types of nonlinear behavior. More generally, the proposed method could be extended to other two-dimensional problems. Nonlinear elasticity is especially interesting as various bounds of the Hashin-Shtrikman type have been proposed [START_REF] Talbot | Variational principles for inhomogeneous nonlinear media[END_REF][START_REF] Ponte Castañeda | The effective mechanical properties of nonlinear isotropic solids[END_REF][START_REF] Talbot | Bounds for the effective constitutive relation of a nonlinear composite[END_REF][START_REF] Peigney | A pattern-based method for bounding the effective response of a nonlinear composite[END_REF][START_REF] Ponte Castañeda | Bounds for nonlinear composites via iterated homogenization[END_REF]. When dealing with elasticity instead of conductivity, the It follows that the solution to (A.6) on [-1 2 , +∞) is unique. A practical way to solve (A.6) is to use a bisection method. This requires to know an interval [λ -, λ + ] that contains the solution, i.e. such that g(λ + ) ≤ 0 ≤ g(λ -). Observing that g(0) = 2u 2 0 + i≥1 u 2 i -1, we can take

λ -= - 1 2 , λ + = 0 if 2u 2 0 + i≥1 u 2 i ≤ 1.
In the case 2u 2 0 + i≥1 u 2 i > 1, we have g(0) > 0 hence we can take λ -= 0. An upper bound λ + can be obtained by observing that

g(λ) ≤ 2u 2 0 + i≥1 u 2 i λ 2 -1
for any λ > 0. It follows that g( 2u 2 0 + i≥1 u 2 i ) ≤ 0 hence we can take λ + = 2u 2 0 + i≥1 u 2 i . A possible choice for (λ -, λ + ) is thus

λ -= 0, λ + = 2u 2 0 + i≥1 u 2 i if 2u 2 0 + i≥1 u 2 i > .1
In summary we have

P(u) = ( u 0 1 + 2λ , u 1 1 + λ , • • • , u 2M -1 1 + λ )
where λ is the unique solution to the equation

2 u 2 0 (1 + 2λ) 2 + i≥1 u 2 i (1 + λ) 2 = 1 (A.7)
bulk modulus is denoted by K h , i.e.

K h = ( c 1 K 1 + c 2 K 2 ) -1
Gibiansky and Torquato (1995) have shown that the pair (σ eff , K eff ) necessarily lies in a certain part Γ of the conductivity-bulk modulus plane. That set Γ is bounded by the outermost pair of the 4 hyperbolas Hyp[(σ - HS , K - HS ), (σ + HS , K + HS ), (σ 1 , K h )], Hyp[(σ - HS , K - HS ), (σ + HS , K + HS ), (σ 2 , K h )] Hyp[(σ - HS , K - HS ), (σ + HS , K + HS ), (σ 1 , K 1 )], Hyp[(σ - HS , K - HS ), (σ + HS , K + HS ), (σ 1 , K 2 )]

where Hyp[(x 1 , y 1 ), (x 2 , y 2 ), (x 3 , y 3 )] denotes the hyperbola passing through the points (x 1 , y 1 ), (x 2 , y 2 ) and (x 3 , y 3 ). The set Γ is shown in Consider now the square-symmetric microstructure of [START_REF] Vigdergauz | Two-dimensional grained composites of extreme rigidity[END_REF] with material 1 in the inclusion. In that case, the effective bulk modulus K eff of the Vigdergauz (1994) microstructure is equal to K - HS . Eq. (B.1) implies that σ eff = σ - HS , i.e. the effective conductivity of the [START_REF] Vigdergauz | Two-dimensional grained composites of extreme rigidity[END_REF] microstructure (with the highest conductive material 1 in the inclusion) is equal to the Hashin-Shtrikman lower bound σ - HS . The same reasoning applies for the microstructures of [START_REF] Vigdergauz | Energy-minimizing inclusions in a planar elastic structure with macroisotropy[END_REF] corresponding to hexagonal and triangular tessellations.

Figure 1 :

 1 Figure 1: The three classes of regular tessellations as considered in the paper (from left to right: square, hexagonal, triangular). The basic cell contains a single inclusion that has the same order of rotational symmetry as the cell itself.

Figure 2 :

 2 Figure 2: Parameterization for the shape of the inclusion in a square periodic cell. The inclusion is required to have 4-fold symmetry so that degrees of freedom correspond to one quarter (shown in white) of the inclusion. The dashed line represents the boundary of the inclusion for a variation ∂Ω 1 .

w

  sym δf (θ)f (θ)dθ = 0 for any 2π/n-periodic function δf such that 2π/n 0 δf (θ)f (θ)dθ = 0. Reproducing a similar argument as used earlier shows that the function f describing the optimal

  θ) sin nkθdθ that define the descent direction in the algorithm. The algorithm stops when either a maximum number N iter of iterations is reached or the step size reaches a prescribed minimum value α min . The output of Algorithm 1 are the parameters X

Figure 3 :

 3 Figure 3: Optimal microstructures for m = 1 and c 1 = i/10 with i = 1, • • • , 9. Square tessellation.

Figure 4 :

 4 Figure 4: Distribution of w sym on the boundary of the inclusion. Square tessellation.

Figure 5 :

 5 Figure5: Influence on M on the relative error σ opt /σ - HS -1 between the effective conductivity σ opt corresponding to the optimized inclusion and the Hashin-Shtrikman lower bound σ - HS in the linear case.

Figure 6 :

 6 Figure 6: Effective resistivity in the loading direction θ for circular perfectly conducting inclusions in a power-law matrix with nonlinearity index m = 2. The volume fraction c 1 of the inclusions is set to 0.3. Three tessellations are considered: square, hexagonal, triangular.

Figure 7 :Figure 8 :

 78 Figure 7: Optimized microstructures for the loading directions θ = 0 and θ = π/4, with c 1 = 0.4, m = 2.

Fig 9 (

 9 Fig 9(right) showing the energy density map for c 1 = 0.4. The energy density is primarily concentrated in the directions θ = kπ/2 (k ∈ Z), i.e. around the shortest paths connecting neighboring inclusions. For c 1 = 0.4, the maximum of w 2 in reached at the points θ = kπ/2 on ∂Ω 1 . The optimality condition (16) is clearly not satisfied in Fig.9 (right). In the present case we have indeed

  Fig 10(left) illustrates that point by showing the energy density map for a circular inclusion with m = 5 and c = 0.04. Notice how the energy is less concentrated near the inclusion compared to the case m = 2 shown in Fig.

  achieve the minimum effective conductivity within the class of microstructures considered. It is interesting to compare their corresponding conductivity σ opt with known Hashin-Shtrikman type bounds on the effective properties of power law composite conductors. Several methods have indeed been proposed to extend the bounds of Hashin and Shtrikman to nonlinear

Figure 9 :

 9 Figure 9: Map of the energy density w 2 /σ 2 ē m+1 for a circular inclusion in a periodic square cell with m = 2. Case c 1 = 0.04 (left), c 1 = 0.4 (right).

  composites. A first method, proposed by[START_REF] Talbot | Variational principles for inhomogeneous nonlinear media[END_REF], makes uses of a homogeneous linear comparison medium and generalizes the variational approach introduced by Hashin and Shtrikman. A second method, due to Ponte Castañeda (1991), employs a heterogeneous linear comparison medium (i.e. a linear comparison composite) having the same microstructure as the original nonlinear composite.

Figure 10 :

 10 Figure 10: Map of the energy density w 2 /σ 2 ē m+1 for a circular inclusion in a periodic square cell with m = 5. Case c 1 = 0.04 (left), c 1 = 0.4 (right).

  along with the effective conductivity achieved by the optimized inclusion. The results are shown in terms of the resistivities κ opt = σ

Figure 11 :

 11 Figure 11: Effective resistivity as a function of the volume fraction c 1 , for m = 2 (left) and m = 5 (right). Square tessellation.

Figure 12 :

 12 Figure 12: Optimal microstructures for m = 1 and c 1 = i/10 with i = 1, • • • , 9. Hexagonal tessellation.

Figure 13 :

 13 Figure 13: Optimized microstructures for m = 1, 2, 5 with c 1 = i/10, 3 ≤ i ≤ 7. Hexagonal tessellation.

  Fig. 14(left), the value of w 2 at θ = 0 on the boundary of the inclusion is increased, while that value of w 2 at θ = π/6 is decreased. The corresponding symmetrized energy density w 2,sym is shown in Fig. 15(right). In accordance with the optimality condition (16), the numerical value of w 2,sym is close to a constant on ∂Ω 1 .

Figure 14 :

 14 Figure 14: Maps of the energy density w 2 /σ 2 ē m+1 (left) and symmetrized energy density w 2,sym /σ 2 ē m+1 (right) for a circular inclusion in a periodic hexagonal cell with m = 2, c 1 = 0.4, θ = 0.

  case. The bound κ T is represented as a red solid line in Figs16 and 17. For m = 2, the gap κ T -κ opt reaches a maximum of approximatively 0.01κ 2 (value obtained for c 1 = 0.4), which corresponds to a relative difference (κ T -κ opt )/κ T of approximatively 2%. For m = 5, the gap κ T -κ opt reaches a maximum of approximatively 0.015κ 2 (value obtained for c 1 = 0.4), which corresponds to a relative difference (κ T -κ opt )/κ T of approximatively 3%.Figs. 16(right) and 17 (right) show a close up of the results near c 1 = 1. The plots inFigs. 16(right) and 17 (right) suggest that κ T and κ opt do not coincide at the first order in c 2 . Contrary to the bound κ LC , we note that the bound κ T cannot be calculated analytically and can only be evaluated numerically.

Figure 16 :

 16 Figure 16: Effective resistivity as a function of the volume fraction c 1 for m = 2. Hexagonal tessellation.

Figure 17 :

 17 Figure 17: Effective resistivity as a function of the volume fraction c 1 for m = 5. Hexagonal tessellation.

Figure 18 :

 18 Figure 18: Periodic cell for the triangular tessellation. The two inclusions are symmetry related and have 3-fold symmetry. Degrees of freedom thus correspond to one third of a inclusion (shown in white).

  reported the coefficients (a i ) 1≤7 giving approximations of Vidgergauz inclusions in triangular tessellations, for several values of the inclusion volume fraction c 1 . Those approximations are defined by the polar equation r = a 0 + 7 i=1 cos 3πiθ

  are shown the optimized inclusions obtained for θ = 0, m ∈ {2, 5} and c 1 = i/10 (i = 3, • • • , 7). The value M = 7 has been used in the numerical calculations. Triangular tessellation is the case where the largest difference between the optimized linear inclusion Ω lin 1 0.0868 0.0311 -0.0146 0.0078 -0.0045 0.0026 -0.0014 0.9 -0.0937 0.0349 -0.0175 0.0102 -0.0065 0.0044 -0.0029

,

  observed. That difference can be measured by the ratio |∆Ω 1 |/|Ω 1 | where ∆Ω 1 is the symmetric difference between the sets Ω lin 1 and Ω nlin 1 triangular tessellation, |∆Ω 1 |/|Ω 1 | reaches 14% for c 1 = 0.4, m = 5. In contrast, for the same values of c 1 and m, |∆Ω 1 |/|Ω 1 | is approximatively equal to 6% for square tessellations and equal to 4% for hexagonal tessellations.

Figure 19 :

 19 Figure 19: Optimal microstructures for m = 1 and c 1 = i/10 with i = 1, • • • , 9. The boundary of the triangular cell is shown as a dashed line.

Figure 20 :

 20 Figure 20: Optimized microstructures for m = 1, 2, 5 with c 1 = i/10, 3 ≤ i ≤ 7. Triangular tessellation.

  displacement u would play the role of the potential u. The only major change in where λ) 2 -1.Observe that (A.6) is a quartic equation in λ = 0. Direct calculations shows that g (λ) < 0 for λ > -

  Figure B.22: The set Γ in the case σ 1/σ 2 = K 1 /K 2 = 20, µ 1 /µ 2 = 10, c 1 = 0.4

Table 1 :

 1 Coefficients defining approximated Vidgergauz inclusions in square tessellations.

Table 2 :

 2 Coefficients defining approximated Vidgergauz inclusions in hexagonal tessellations

Table 3 :

 3 Coefficients for approximated Vidgergauz inclusions in triangular tessellations.

It should be noted that[START_REF] Vigdergauz | Two-dimensional grained composites of extreme rigidity[END_REF][START_REF] Vigdergauz | Energy-minimizing inclusions in a planar elastic structure with macroisotropy[END_REF] dealt with elasticity problems rather than conductivity problems, more specifically considering the problem of finding microstructures of extremal bulk modulus. Those microstructures can be shown to be also extremal for the conductivity problem. This results from the cross-properties of[START_REF] Gibiansky | Rigorous link between the conductivity and elastic moduli of fibre-reinforced composite materials[END_REF], as detailed in Appendix B

Using (2), that integral can be indeed be rewritten as 1 |Ω| Ω j • (∇δu)dω and we have Ω j • (∇δu)dω = -Ω δu div jdω + ∂Ω (j • n)δuds. Now div j = 0 from (2) and ∂Ω (j • n)δuds = 0 because δu is periodic and j • n is anti-periodic.

the proposed method lies in problem (1) which would involve the equilibrium equation. The formal expression (19) of the gradient J as well the layout of Algorithm 1 would remain unchanged. Since the displacement u has two scalar components, computation costs for nonlinear elasticity are expected to be higher than for nonlinear conductivity.

Finally, we stress that the inclusions considered in this paper are extremal only within the class of regular tessellations with a single (simply connected) inclusion in the basic cell. In lack of additional arguments, there is no guarantee that the obtained microstructures are extremal within the whole class of microstructures with prescribed volume fractions and a given order of rotational symmetry. Hence it would be interesting to study a richer class of microstructures and investigate whether effective properties that are closer to the bounds can be obtained. In the linear case, [START_REF] Liu | New extremal inclusions and their applications to two-phase composites[END_REF] have shown that there exist other periodic matrix/inclusion-type microstructures than the Vidgergauz microstructures. Those microstructures take the form of multi-coated inclusions, or multiple disconnected inclusions. The method presented could be useful for studying nonlinear extensions of those microstructures.

The proposed method could also be used to study rectangular cells and/or non symmetric inclusions. Beyond matrix / inclusions-type microstructures, it would also been interested to study more complex microstructures using topology optimization methods [START_REF] Allaire | Shape optimization by the homogenization method[END_REF][START_REF] Bendsøe | Topology optimization: theory, methods, and applications[END_REF].

Appendix A. Calculation of the projection operator P For a given X 0 ∈ R 2M +1 , we address the calculation of the projection X = P(X 0 ) on the ellipsoid E(c 1 , M ) as defined in Eqs ( 23) and ( 25). We first normalize the problem by setting

where

In (A.1), Ẽ is the ellipsoid with equation

Let v be a solution to (A.1). The local stationarity condition reads as

for some scalar λ. The next step is to determine λ. In the following we focus on the most general situation where u 0 = 0. Eq. (A.3) implies

with λ = 1/2. It can easily be proved that v 0 and u 0 necessarily have the same sign, which yields λ > -1/2. This notably implies that the second relation in (A.3) can be rewritten as

where the denominator is guaranteed not to vanish. Using (A.4) and (A.5), the condition that v ∈ Ẽ translates as

Remark: In the special situation where u 0 = 0, it can be proved that P

Appendix B. Effective conductivity of Vidgergauz microstructures

Consider a two-phase linear composite in two dimensions. The two constitutive materials (labelled as 1 and 2) are assumed to be isotropic. In such case, the constitutive laws of material i are characterized by three scalar parameters, namely the conductivity σ i , the bulk modulus K i and the shear modulus µ i . We suppose that σ 1 ≥ σ 2 and µ 1 ≥ µ 2 . We further assume that the effective behavior of the composite is square symmetric. In such case, the effective constitutive laws of the composite are characterized by four parameters, namely the effective conductivity σ eff , the effective bulk modulus K eff and two effective shear moduli µ eff and µ eff . Let

be respectively the lower and the upper Hashin-Shtrikman bound on the effective conductivity [START_REF] Hashin | A variational approach to the theory of the effective magnetic permeability of multiphase materials[END_REF]. Similarly, let

be respectively the lower and the upper Hashin-Shtrikman bound on the effective bulk modulus [START_REF] Hashin | A variational approach to the theory of the elastic behaviour of multiphase materials[END_REF]. The Voigt lower bound on the effective